
z/OS

DWARF/ELF Extensions Library
Reference
Version 2 Release 2

SC14-7312-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 217.

This edition applies to Version 2 Release 2 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 2004, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document vii
Who should use this document vii
A note about examples viii
CDA and related publications viii
Softcopy documents x
Where to find more information x

Runtime Library Extensions on the World Wide
Web x
Information updates on the web xi
How to send your comments xi

Chapter 1. About Common Debug
Architecture 1
DWARF program information 2
IBM extensions to libdwarf 3

Changes to DWARF/ELF library extensions . . . 4

Chapter 2. Debugging Information Entry
(DIE) extensions 7
Program scope entries 7

Normal and partial compilation unit entries . . . 7
Byte and bit entries 8
Subroutine and entry point entries 8
Source view entries 9

Object oriented COBOL. 9
Data object and object list entries 9

Data object entries 9
Referencing coordinates 10
Base location entries 11
Type entries 11

Base type entries. 11
Modified type entries 15
Structure, union, class and interface type entries 15
String type entries 16
Condition entries 17
File description entries. 18
Bound checking information for type entries . . 19

Chapter 3. Consumer APIs for standard
DWARF sections 23
Error object consumer operations 23

Error handling macros. 23
dwarf_error_reset operation 34

Initialization and termination consumer operations 34
dwarf_set_codeset operation. 34
dwarf_elf_init_b operation 35
dwarf_raw_binary_init operation 38
dwarf_goff_init_with_csvquery_token operation 39
dwarf_goff_init_with_PO_filename operation . . 41

ELF symbol table and section consumer operations 42
ELF symbol table 42
dwarf_elf_symbol_index_list operation 42
dwarf_elf_symbol operation 43
dwarf_elf_section operation 44

Generalized DIE-section consumer APIs 45
IBM Extensions to DWARF DIE-sections 45
Dwarf_section_type enumeration 45
Dwarf_section_content enumeration 46
dwarf_debug_section operation. 46
dwarf_debug_section_name operation 47
dwarf_next_unit_header operation. 48
dwarf_reset_unit_header operation 49

DIE locating consumer operations 49
dwarf_rootof operation 49
dwarf_parent operation 50
dwarf_offdie_in_section operation 51
dwarf_nthdie operation 52
dwarf_clone operation 52
dwarf_pcfile operation. 53
dwarf_pcsubr operation 54
dwarf_pcscope operation 54

Multiple DIEs locating consumer operations . . . 55
dwarf_tagdies operation 55
dwarf_attrdies operation 56
dwarf_get_dies_given_name operation 57
dwarf_get_dies_given_pc operation 58

DIE-query consumer operations 59
dwarf_diesection operation 59
dwarf_diecount operation 59
dwarf_dieindex operation 60
dwarf_isclone operation 60
dwarf_dietype operation 60
dwarf_refdie operation 61
dwarf_refaddr_die operation 62

DIE-attribute query consumer operation 63
dwarf_attr_offset operation 63
dwarf_data_bitoffset operation 63
dwarf_die_xref_coord operation 64

High level PC location consumer APIs 65
Dwarf_PC_Locn object. 65
Dwarf_Subpgm_Locn object 65
dwarf_pclocns operation 65
dwarf_pc_locn_term operation 66
dwarf_pc_locn_abbr_name operation 66
dwarf_pc_locn_set_abbr_name operation . . . 66
dwarf_pc_locn_entry operation 67
dwarf_pc_locn_list operation 67
dwarf_subpgm_locn operation 68

DWARF flag operations 68
dwarf_flag_any_set operation 68
dwarf_flag_clear operation 69
dwarf_flag_complement operation 69
dwarf_flag_copy operation 70
dwarf_flag_reset operation 71
dwarf_flag_set operation 71
dwarf_flag_test operation. 72

Accelerated access consumer operations 72
IBM extensions to accelerated access debug
sections. 72
Dwarf_section_type object 73

© Copyright IBM Corp. 2004, 2015 iii

||

dwarf_access_aranges operation 74
dwarf_find_arange operation 74
dwarf_get_die_given_name_cuoffset operation. . 75
dwarf_get_dies_given_nametbl operation . . . 76

Non-contiguous address ranges consumer
operations 77

dwarf_get_ranges_given_offset operation . . . 77
dwarf_range_highpc operation 78
dwarf_range_lowpc operation 78

Chapter 4. Program Prolog Area (PPA)
extension 81
Debug section 81

Block header 82
Section-specific DIEs 82
Reference section 82
Companion sections 83
Attributes forms 83

PPA consumer operations. 83
dwarf_get_all_ppa2dies operation 83
dwarf_get_all_ppa1dies_given_ppa2die operation 84
dwarf_get_all_ppa2die_given_cu_offset operation 85
dwarf_find_ppa operation 86

Chapter 5. Program source cross
reference. 89
Debug section 89

Block header 89
Section-specific DIEs 89
Reference section 90
Companion sections 91

Chapter 6. Program line-number
extensions 93
Breakpoint type flags 93
Symbol declaration coordinates 94
State machine registers 94
Extended opcodes 96
Dwarf_Line object 96
Consumer operations 96

dwarf_srclines_dealloc operation 96
dwarf_pc_linepgm operation 97
dwarf_die_linepgm operation 98
dwarf_linepgm_offset operation 98
dwarf_line_srcdie operation 99
dwarf_line_isa operation 99
dwarf_line_standard_flags operation 99
dwarf_line_system_flags operation 100
dwarf_linebeginprologue operation 100
dwarf_lineendprologue operation. 101
dwarf_lineepilogue operation 101
dwarf_persist_srclines operation 101
dwarf_pclines operation 102

Chapter 7. Program source
description extension 105
Debug section 105

Block header 106
Section-specific DIEs 106

Companion sections 106
Reference section 107
Attributes forms 107

Source-file entries 107
Source location entries 107
Source file name entries 107

Callback functions 109
Dwarf_Retrieve_Srcline_CBFunc object 109
Dwarf_Retrieve_Srcline_term_CBFunc object . . 110
Dwarf_Retrieve_Srccount_CBFunc object . . . 110

Source-file consumer operations 110
dwarf_get_srcdie_given_filename operation . . 111
dwarf_srclines_given_srcdie operation 111
dwarf_get_srcline_given_filename operation . . 112
dwarf_get_srcline_count_given_filename
operation 113
dwarf_register_src_retrieval_callback_func
operation 114

Chapter 8. Program source text
extensions 115
Debug section 115

Block header 115
Reference section 116
Attributes forms 116

Source text consumer operations 116
dwarf_access_source_text operation 116

Source text producer operations 117
dwarf_add_source_text operation 117

Chapter 9. Program source attribute
extensions 119
Debug section 119

Definitions 119
State machine registers 120
Source attribute program instructions 120
Source attribute program header 121
Source attribute program 122
Attributes forms 124

Consumer operations 124
dwarf_srcattr_get_version operation 124
dwarf_srcattr_get_altline_used operation . . . 125
dwarf_srcattr_get_altlines operation 126
dwarf_srcattr_map_altline_to_line operation . . 127
dwarf_srcfrags_given_srcdie operation 127
dwarf_srcfrags_stmtcount_given_line operation 129
dwarf_srcfrag_given_line_stmt operation . . . 129
dwarf_srcfrag_line operation 131
dwarf_srcfrag_column operation 131
dwarf_srcfrag_altline operation 132
dwarf_srcfrag_typeflag operation 133
dwarf_srcfrag_xreflist operation 133
dwarf_srcfrag_list_tags operation 134
dwarf_srcfrag_list_items operation 135
dwarf_srcfrag_xref_dealloc operation 136

Producer operations 136
dwarf_srcattr_table operation 136
dwarf_add_srcattr_entry operation 137
dwarf_add_srcattr_xrefitem operation 138
dwarf_add_srcattr_altline operation 139

iv DWARF/ELF Extensions Library Reference

dwarf_add_srcattr_relstmtno operation 140

Chapter 10. DWARF expressions . . . 141
Defaults and general rules 141
Operators 141

DW_OP_IBM_conv 141
DW_OP_IBM_builtin 143
DW_OP_IBM_prefix 145
DW_OP_IBM_logical_and 148
DW_OP_IBM_logical_or 148
DW_OP_IBM_logical_not 148
DW_OP_IBM_user 148
DW_OP_IBM_conjugate 148
DW_OP_IBM_wsa_addr 148
DW_OP_IBM_loadmod_addr 149

Location expression operations 149
dwarf_loclist_n operation 149
dwarf_get_loc_list_given_offset operation . . . 150

Chapter 11. DWARF library debugging
facilities. 153
Machine-register name API 153

Debug sections 153
DW_FRAME_390_REG_type object 153
dwarf_register_name operation 155

Relocation type name consumer API 156
Relocation macros 156
dwarf_reloc_type_name operation 157

Utility consumer operations 157
dwarf_build_version operation 158
dwarf_show_error operation 158
dwarf_set_stringcheck operation 159

Chapter 12. Producer APIs for
standard DWARF sections 161
Initialization and termination producer operations 161

dwarf_producer_target operation 161
dwarf_producer_write_elf operation 161
dwarf_p_set_codeset operation 163

dwarf_error-information producer operations. . . 164
dwarf_p_seterrhand operation 164
dwarf_p_seterrarg operation 164
dwarf_p_show_error operation 165

Chapter 13. Debug-section creation
and termination operations 167
dwarf_add_section_to_debug operation 167
dwarf_section_finish operation 167

Chapter 14. ELF section operations 169
dwarf_elf_create_string operation. 169
dwarf_elf_create_symbol operation 169
dwarf_elf_producer_symbol_index_list operation 170
dwarf_elf_producer_string operation 171
dwarf_elf_producer_symbol operation 172
dwarf_elf_create_section_hdr_string operation . . 173
dwarf_elf_producer_section_hdr_string 174

Chapter 15. DIE creation and
modification operations 175
dwarf_add_die_to_debug_section operation . . . 175
dwarf_add_AT_block_const_attr operation. . . . 175
dwarf_add_AT_const_value_block operation . . . 176
dwarf_add_AT_reference__noninfo_with_reloc
operation 177
dwarf_add_AT_unsigned_LEB128 operation . . . 177
dwarf_add_AT_noninfo_offset operation 178
dwarf_die_merge operation 179

Chapter 16. Line-number program
(.debug_line) producer operations . . 181
dwarf_add_line_entry_b operation 181
dwarf_add_lne_file_decl operation 182
dwarf_add_global_file_decl operation 183
dwarf_line_set_default_isa operation 183
dwarf_line_set_isa operation operation 184
dwarf_global_linetable operation 184
dwarf_subprogram_linetable operation 185

Chapter 17. Location-expression
producer APIs 187
dwarf_add_expr_reg operation 187
dwarf_add_expr_breg operation 187
dwarf_add_conv_expr operation 188
dwarf_add_expr_ref operation. 189
dwarf_add_loc_list_entry operation 190
dwarf_add_loc_list_base_address_entry operation 191
dwarf_add_loc_list_end_of_list_entry operation . . 191

Chapter 18. Accelerated access
producer operation 193
dwarf_add_pubtype operation. 193

Chapter 19. Dynamic storage
management operation 195
dwarf_p_dealloc 195

Chapter 20. Range-list producer APIs 197
dwarf_add_range_list_entry operation 197
dwarf_add_base_address_entry operation 197
dwarf_add_end_of_list_entry operation. 198

Chapter 21. Producer flag operations 199
dwarf_pro_flag_any_set operation 199
dwarf_pro_flag_clear operation 199
dwarf_pro_flag_complement operation 200
dwarf_pro_flag_copy operation 200
dwarf_pro_flag_reset operation 201
dwarf_pro_flag_set operation 202
dwarf_pro_flag_test operation 202

Chapter 22. IBM extensions to libelf 205
ELF initialization and termination APIs. 205

Elf_Alloc_Func object. 205
Elf_Dealloc_Func object 205
Elf_Mem_Image object 205

Contents v

elf_begin_b operation. 205
elf_begin_c operation 206
elf_create_mem_image operation 207
elf_get_mem_image operation 208
elf_term_mem_image operation 208

ELF utilities 209
elf_build_version operation. 209
elf_dll_version operation 209

Appendix A. Diagnosing Problems 211

Appendix B. Accessibility 213
Accessibility features 213

Consult assistive technologies 213
Keyboard navigation of the user interface 213
Dotted decimal syntax diagrams 213

Notices 217
Policy for unsupported hardware. 218
Minimum supported hardware 219
Programming interface information 219
Trademarks 219
Standards 219

Index 221

vi DWARF/ELF Extensions Library Reference

About this document

This information is the reference for IBM extensions to the libdwarf and libelf
libraries. It includes:
v Extensions to libdwarf consumer and producer APIs (Chapters 2 through 23)
v System-dependent APIs (Chapters 24-28)
v System-independent APIs (Chapters 29-30)
v Extensions to DWARF expression APIs (Chapter 31)
v Extensions to libelf utilities (Chapter 32-34)

This document discusses only these extensions, and does not provide a detailed
explanation of standard DWARF and ELF APIs.

This document uses the following terminology:

ABI Application binary interface. A standard interface by which an application
gains access to system services, such as the operating-system kernel. The
ABI defines the API plus the machine language for a central processing
unit (CPU) family. The ABI ensures runtime compatibility between
application programs and computer systems that comply with the
standard.

API Application programming interface. An interface that allows an application
program that is written in a high-level language to use specific data or
functions of the operating system or another program. An extension to a
standard DWARF API can include:
v Extensions to standard DWARF files, objects, or operations
v Additional objects or operations

object In object-oriented design or programming, a concrete realization (instance)
of a class that consists of data and the operations associated with that data.
An object contains the instance data that is defined by the class, but the
class owns the operations that are associated with the data. Objects
described in this document are generally a type definition or data
structure, a container for a callback function prototype, or items that have
been added to a DWARF file. See “The DWARF industry-standard
debugging information format” on page 1 and “Example of a DWARF file”
on page 3.

operation
In object-oriented design or programming, a service that can be requested
at the boundary of an object. Operations can modify an object or disclose
information about an object.

Who should use this document
This document is intended for programmers who will be developing program
analysis applications and debugging applications for the IBM® on the IBM z/OS®

operating system. The libraries provided by CDA allow applications to create or
look for DWARF debugging information from ELF object files on the z/OS V1R10
operating system.

© Copyright IBM Corp. 2004, 2015 vii

This document is a reference rather than a tutorial. It assumes that you have a
working knowledge of the following items:
v The z/OS operating system
v The libdwarf APIs
v The libelf APIs
v The ELF ABI
v Writing debugging programs in C, C++ or COBOL on z/OS
v POSIX on z/OS
v The IBM Language Environment® on z/OS
v UNIX System Services shell on z/OS

A note about examples
Examples that illustrate the use of the libelf, libdwarf, and libddpi libraries are
instructional examples, and do not attempt to minimize the run-time performance,
conserve storage, or check for errors. The examples do not demonstrate all the uses
of the libraries. Some examples are code fragments only, and cannot be compiled
without additional code.

CDA and related publications
This section summarizes the content of the CDA publications and shows where to
find related information in other publications.

Table 1. CDA, DWARF, ELF, and other related publications

Document title and
number

Key sections/chapters in the document

z/OS Common Debug
Architecture Library
Reference, SC09-7654

The reference for IBM's libddpi library. It includes:

v General discussion of CDA

v APIs with operations that access or modify information about stacks, processes, operating
systems, machine state, storage, and formatting.

See http://www.ibm.com/software/awdtools/libraryext/library/.

z/OS Common Debug
Architecture User's
Guide, SC09-7653

The user's guide for the libddpi library. It includes:

v Overview of the libddpi architecture.

v Information on the order and purpose of calls to libddpi operations used to access
DWARF information on behalf of model user applications.

v Hints for using CDA with C/C++ source.

See http://www.ibm.com/software/awdtools/libraryext/library/.

System V Application
Binary Interface Standard

The Draft April 24, 2001 version of the ELF standard.

For more information, go to: http://www.ibm.com/software/awdtools/libraryext/library/.

ELF Application Binary
Interface Supplement

The Draft April 24, 2001 version of the ELF standard supplement.

For more information, go to: http://www.ibm.com/software/awdtools/libraryext/library/.

DWARF Debugging
Information Format,
Version 3

The Draft 8 (November 19, 2001) version of the DWARF standard. This document is
available on the web.

Consumer Library
Interface to DWARF

The revision 1.48, March 31, 2002, version of the libdwarf consumer library.

See http://www.ibm.com/software/awdtools/libraryext/library/.

viii DWARF/ELF Extensions Library Reference

http://www.ibm.com/software/awdtools/libraryext/library/
http://www.ibm.com/software/awdtools/libraryext/library/
http://www.ibm.com/software/awdtools/libraryext/library/
http://www.ibm.com/software/awdtools/commondebug/library/
http://www.ibm.com/software/awdtools/libraryext/library/

Table 1. CDA, DWARF, ELF, and other related publications (continued)

Document title and
number

Key sections/chapters in the document

Producer Library
Interface to DWARF

The revision 1.18, January 10, 2002, version of the libdwarf producer library.

See http://www.ibm.com/software/awdtools/libraryext/library/.

MIPS Extensions to
DWARF Version 2.0

The revision 1.17, August 29, 2001, version of the MIPS extension to DWARF.

See http://www.ibm.com/software/awdtools/libraryext/library/.

z/OS XL C/C++ User's
Guide, SC09-4767 Guidance information for:

v z/OS C/C++ examples

v Compiler options

v Binder options and control statements

v Specifying z/OS Language Environment run-time options

v Compiling, IPA linking, binding, and running z/OS C/C++ programs

v Utilities (Object Library, CXXFILT, DSECT Conversion, Code Set and Locale, ar and make,
BPXBATCH, c89, xlc, as, CDAHLASM)

v Diagnosing problems

v Cataloged procedures and REXX EXECs supplied by IBM

See http://www.ibm.com/software/awdtools/czos/library.

z/OS XL C/C++
Programming Guide,
SC09-4767

Guidance information for:
v Implementing programs that are written in C and C++
v Developing C and C++ programs to run under z/OS
v Using XPLINK assembler in C and C++ applications
v Debugging I/O processes
v Using advanced coding techniques, such as threads and exception handlers
v Optimizing code
v Internationalizing applications

z/OS Enterprise COBOL
Programming Guide,
SC14-7382

Guidance information for:

v Implementing programs that are written in COBOL

v Developing COBOL programs to run under z/OS

v z/OS COBOL examples

v Compiler options

v Compiling, linking, binding, and running z/OS COBOL programs

v Diagnosing problems

v Optimization and performance of COBOL programs

v Compiler listings

See http://www-01.ibm.com/support/docview.wss?uid=swg27036733.

The following table lists the related publications for CDA, ELF, and DWARF. The
table groups the publications according to the tasks they describe.

About this document ix

http://www.ibm.com/software/awdtools/libraryext/library/
http://www.ibm.com/software/awdtools/libraryext/library/
http://www.ibm.com/software/awdtools/czos/library/
http://www-01.ibm.com/support/docview.wss?uid=swg27036733

Table 2. Publications by task

Tasks Documents

Coding programs v DWARF/ELF Extensions Library Reference, SC09-7655

v z/OS Common Debug Architecture Library Reference, SC09-7654

v z/OS Common Debug Architecture User's Guide, SC09-7653

v DWARF Debugging Information Format

v Consumer Library Interface to DWARF

v Producer Library Interface to DWARF

v MIPS Extensions to DWARF Version 2.0

Compiling, binding, and running programs v z/OS XL C/C++ User's Guide, SC09-4767

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS Enterprise COBOL Programming Guide, SC14-7382

General discussion of CDA v z/OS Common Debug Architecture User's Guide, SC09-7653

v z/OS Common Debug Architecture Library Reference, SC09-7654

Environment and application APIs (objects
and operations)

v z/OS Common Debug Architecture Library Reference, SC09-7654

A guide to using the libraries v z/OS Common Debug Architecture Library Reference, SC09-7654

Examples of producer and consumer
programs

v z/OS Common Debug Architecture User's Guide, SC09-7653

Softcopy documents
The following information describes where you can find softcopy documents.

The IBM z/OS Common Debug Architecture publications are supplied in PDF
formats and IBM BookMaster® formats on the following CD: z/OS Collection,
SK3T-4269. They are also available at the following Web site: www.ibm.com/
software/awdtools/libraryext/library

To read a PDF file, use the Adobe Reader. If you do not have the Adobe Reader,
you can download it (subject to Adobe license terms) from the Adobe web site at
www.adobe.com.

You can also browse the documents on the World Wide Web by visiting the z/OS
library at www.ibm.com/servers/eserver/zseries/zos/bkserv/.

Note: For further information on viewing and printing softcopy documents and
using IBM BookManager®, see z/OS Information Roadmap.

Where to find more information
Please see z/OS Information Roadmap for an overview of the documentation
associated with IBM z/OS.

Runtime Library Extensions on the World Wide Web
Additional information on Common Debug Architecture is available on the World
Wide Web on the Runtime Library Extensions home page at: http://
www.ibm.com/software/awdtools/libraryext/

x DWARF/ELF Extensions Library Reference

http://www.ibm.com/software/awdtools/libraryext/library/
http://www.ibm.com/software/awdtools/libraryext/library/
http://www.adobe.com
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/software/awdtools/libraryext/
http://www.ibm.com/software/awdtools/libraryext/

This page contains links to other useful information, including the Runtime Library
Extensions information library, which includes the Common Debug Architecture
documents.

Information updates on the web
For the latest information updates that have been provided in PTF cover letters
and Documentation APARs for IBM z/OS, refer to the online list of APARs and
PTFs. This document is updated weekly and lists documentation changes before
they are incorporated into z/OS publications.

The online list of APARs and PTFs is found at: http://publibz.boulder.ibm.com/
cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

How to send your comments
Your feedback is important in helping to provide accurate and high-quality
information. If you have any comments about this document or the IBM
documentation, send your comments by e-mail to: compinfo@ca.ibm.com

Be sure to include the name of the document, the part number of the document,
the version of, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

About this document xi

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

xii DWARF/ELF Extensions Library Reference

Chapter 1. About Common Debug Architecture

Common Debug Architecture (CDA) was introduced in z/OS V1R5 to provide a
consistent format for debug information on z/OS. As such, it provides an
opportunity to work towards a common debug information format across the
various languages and operating systems that are supported on the IBM zSeries
eServer™ platform. The product is implemented in the z/OS CDA libraries
component of the z/OS Run-Time Library Extensions element of z/OS (V1R5 and
higher).

CDA components are based on:
v “The DWARF industry-standard debugging information format”
v “Executable and Linking Format (ELF) application binary interfaces (ABIs)”

CDA-compliant applications can store DWARF debugging information in an ELF
object file. However, the DWARF debugging information can be stored in any
container. For example, in the case of the C/C++ compiler, the debug information
is stored in a separate ELF object file, rather than the object file. In the case of the
COBOL compiler, the debug information is stored in a GOFF object file, as well as
the program object. In either approach, memory usage is minimized by avoiding
the loading of debug information when the executable module is loaded into
memory.

The DWARF industry-standard debugging information format

The DWARF 4 debugging format is an industry-standard format developed by the
UNIX International Programming Languages Special Interest Group (SIG). It is
designed to meet the symbolic, source-level debugging needs of different
languages in a unified fashion by supplying language-independent debugging
information. The debugging information format is open-ended, allowing for the
addition of debugging information that accommodates new languages or debugger
capabilities.

DWARF was developed by the UNIX International Programming Languages
Special Interest Group (SIG).

The use of DWARF has two distinct advantages:
v It provides a stable and maintainable debug information format for all

languages.
v It facilitates porting program analysis and debug applications to z/OS from

other DWARF-compliant platforms.

Executable and Linking Format (ELF) application binary
interfaces (ABIs)

Using a separate ELF object file to store debugging information enables the
program analysis application to load specific information only as it is needed. With
the z/OSXL C/C++ compiler, use the DEBUG option to create the separate ELF
object file, which has a *.dbg extension.

© Copyright IBM Corp. 2004, 2015 1

Note: In this information, those ELF object files may be referred to as an ELF
object file, an ELF object, or an ELF file. Such a file stores only DWARF debugging
information.

GOFF program objects

Using a GOFF program object file enables the program analysis application to load
specific information only as it is needed. With the Enterprise COBOL compiler, use
the TEST option to create DWARF debugging information in the GOFF object file.
The debugging information is stored in a NOLOAD class, and will not be loaded
into memory when the program object is loaded into memory.

DWARF program information
The DWARF program information is block-structured for compatibility with the
C/C++ (and other) language structures. DWARF does not duplicate information,
such as the processor architecture, that is contained in the executable object.

The basic descriptive entity in a DWARF file is the debugging information entry
(DIE). DIEs can describe data types, variables, or functions, as well as other
executable code blocks. A line table maps the executable instructions to the source
that generated them.

The primary data types, built directly on the hardware, are the base types. DWARF
base types provide the lowest level mapping between the simple data types and
how they are implemented on the target machine's hardware. Other data types are
constructed as collections or compositions of these base types.

A DWARF file is structured as follows:
v Each DWARF file is divided into debug sections.
v Each debug section provides information for a single compilation unit (CU) and

contains one or more DIE sections.
v Each DIE section is identified with a unit header, which specifies the offset of

the DIE section, and contains one or more DIEs.
v Each DIE has:

– A tag that identifies the DIE. Each tag name has the DW_TAG prefix.
– A section offset, which shows the relative position of the DIE within the DIE

section.
– A list of attributes, which fills in details and further describes the entity. Each

attribute name has the DW_AT prefix.
A DIE can have zero or more unique attributes. Each attribute must be unique
to the DIE. In other words, a DIE cannot have two attributes of the same type
but a DIE attribute type can be present in more than one DIE.

– Zero or more children DIEs.
Each descriptive entity in DWARF (except for the topmost entry which
describes the source file) is contained within a parent entry and may contain
child entities. If a DIE section contains multiple entities, all are siblings.

– Nested-level indicators, which identify the parent/child relationship of the
DIEs in the DIE section.

For detailed information about the DWARF format, see http://
www.dwarfstd.org/.

2 DWARF/ELF Extensions Library Reference

http://www.dwarfstd.org/
http://www.dwarfstd.org/

Example of a DWARF file

The example of a DWARF file is based on the output from the dwarfdump example
program, and does not reflect an actual DWARF file that you might see in a
normal program.

The example shows one debug section with one DIE section, which has two DIEs.
.debug_section_name 1

<unit header offset =0>unit_hdr_off: 2

<0>< 11> DW_TAG_DIE01 3

DW_AT_01 value00 4

<1>< 20> DW_TAG_DIE02 5

DW_AT_01 value01 6

DW_AT_02 value02
DW_AT_03 value03

Notes:

1. The name of each DWARF debug section starts with .debug.
2. The start of each DIE section is indicated by a line such as

<unit header offset =0>unit_hdr_off:

The unit header offset indicates the relative location of the DIE sections within
the DWARF debug section.

3. The start of the parent DIE is indicated by the line:<0>< 11>
DW_TAG_DIE01, where:
v <0> is the nested-level indicator that identifies the DIE as the parent of all

DIEs in the DIE section with a nested-level indicator of <1>.
v <11> is the section offset.
v DW_TAG_DIE01 is the DIE tag.

4. In the parent DIE, the attribute DW_AT_01 is defined with value00. DW_AT_01 is
also used in DW_TAG_DIE02.

5. The start of the child DIE is indicated by the line:<1>< 20>
DW_TAG_DIE02, where:
v <1> is the nested-level indicator that identifies DW_TAG_DIE01 as a child of

DW_TAG_DIE01.
v <20> is the section offset.
v DW_TAG_DIE02 is the DIE tag.

6. In the child DIE, the attribute DW_AT_01 is defined with value01. DW_AT_01 is
also used in DW_TAG_DIE01.

IBM extensions to libdwarf
The libdwarf library contains interfaces to create and query DWARF debug objects.

libdwarf is a C library developed by Silicon Graphics Inc. (SGI). It provides:
v A consumer library interface to DWARF, which provides access to the DWARF

debugging information
v A producer library interface to DWARF, which supports the creation of DWARF

debugging information records
v Extensions to support SGI's MIPS processors

Chapter 1. About Common Debug Architecture 3

IBM has extended the libdwarf C/C++ library to support the z/OS operating
system. The libdwarf library that is packaged with z/OS is available in 3 different
forms:
v the 31-bit XPLINK version
v the 31-bit NOXPLINK version
v the 64-bit version

The CDA libraries provide a set of APIs to access DWARF debugging information.
These APIs support the development of debuggers and other program analysis
applications for z/OS.

IBM's extensions to libdwarf focus on:
v Improved speed and memory utilization
v z/OS XL C/C++ Support for the languages
v Enterprise COBOL support
v z/OS future support for languages such as FORTRAN, HLASM, PL/I,

Changes to DWARF/ELF library extensions
This section provides a summary of changes that are shipped with the
DWARF/ELF libraries.

the DW_FRAME_390_REG_type data structure has been updated to add the
following vector registers:
v DW_FRAME_390_vr0
v DW_FRAME_390_vr1
v DW_FRAME_390_vr2
v DW_FRAME_390_vr3
v DW_FRAME_390_vr4
v DW_FRAME_390_vr5
v DW_FRAME_390_vr6
v DW_FRAME_390_vr7
v DW_FRAME_390_vr8
v DW_FRAME_390_vr9
v DW_FRAME_390_vr10
v DW_FRAME_390_vr11
v DW_FRAME_390_vr12
v DW_FRAME_390_vr13
v DW_FRAME_390_vr14
v DW_FRAME_390_vr15
v DW_FRAME_390_vr16
v DW_FRAME_390_vr18
v DW_FRAME_390_vr20
v DW_FRAME_390_vr22
v DW_FRAME_390_vr17
v DW_FRAME_390_vr19
v DW_FRAME_390_vr21
v DW_FRAME_390_vr23

4 DWARF/ELF Extensions Library Reference

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v DW_FRAME_390_vr24
v DW_FRAME_390_vr26
v DW_FRAME_390_vr28
v DW_FRAME_390_vr30
v DW_FRAME_390_vr25
v DW_FRAME_390_vr27
v DW_FRAME_390_vr29
v DW_FRAME_390_vr31

Chapter 1. About Common Debug Architecture 5

|

|

|

|

|

|

|

|

6 DWARF/ELF Extensions Library Reference

Chapter 2. Debugging Information Entry (DIE) extensions

This chapter describes IBM extensions to information within the .debug_info
section.

Program scope entries
This section describes debugging information entries that relate to different levels
of program scope, including compilation, module, subprogram, and so on.

Normal and partial compilation unit entries

A normal compilation unit is represented by a debugging information entry with
the tag DW_TAG_compile_unit (known as CU DIE hence forth). Each CU DIE may
have a DW_AT_stmt_list attribute whose value is a section offset to the line number
information for this compilation unit. A separate line number table is generated for
each source view, and the line number table associated with the CU DIE is the
default source view (user source).

For each additional source view (for example, Assembly View), there is a
DW_TAG_IBM_src_view DIE. The parent of this DIE is the CU DIE. It has the
following attributes:
v A DW_AT_name attribute, whose value is a null-terminated string containing the

name of the source view.
v A DW_AT_stmt_list attribute, whose value is a section offset to the line number

information for this source view.
v A DW_AT_IBM_src_file attribute, whose value is a DIE section offset to the

.debug_srcfiles section. The referenced source file DIE contains additional
information about the primary source file within the source view.

DWARF sample: .debug_info

$1: DW_TAG_compile_unit
DW_AT_stmt_list (...)
DW_AT_low_pc (...)
DW_AT_high_pc (...)

$2: DW_TAG_IBM_src_view
DW_AT_name (Assembly View)
DW_AT_stmt_list (...)
DW_AT_IBM_src_file ($5)

DWARF sample: .debug_srcfiles

$5: DW_TAG_IBM_src_file
DW_AT_name (Assembly View)
DW_AT_IBM_src_type (DW_SFT_compiler_generated)
DW_AT_IBM_src_text (...)
DW_AT_IBM_md5 (0123456789abcdef0123456789abcdef)
DW_AT_IBM_src_attr (...)

A CU DIE may have the following attributes:
v DW_AT_linkage_name attribute, whose value is a null-terminated string

describing the program name associated with the compilation unit. For COBOL,
this contains the program-id name specified in the source program.

© Copyright IBM Corp. 2004, 2015 7

v DW_AT_identifier_case attribute, whose integer constant value is a code
describing the treatment of identifiers within this compilation unit.

v DW_AT_IBM_sync_point attribute, which is a flag indicating that when a debugger
is stopped on an executable statement, it can not reliably modify the content of a
variable and have the new value reflected for the rest of the execution.

v DW_AT_use_UTF8 attribute, which is a flag whose presence indicates that all
strings (such as the names of declared entities in the source program) are
represented using the UTF-8 representation.

v DW_AT_IBM_charset attribute, which is a string representing the codeset used by
the compiler to interpret the identifier names within this compilation unit.

v DW_AT_IBM_set_unreliable attribute, which is a flag whose presence indicates
that when a debugger is stopped on an executable statement, it can not reliably
modify the content of variable and have the new value reflected for the rest of
the execution.

v DW_AT_IBM_line_reordered attribute, which is a flag whose presence indicates
that the execution order of the statements within the line number program may
not match the flow of the original source program. (This only applies to those
statements without synchronization flag)

Byte and bit entries

Many debugging information entries allow either a DW_AT_byte_size attribute or a
DW_AT_bit_size attribute, whose value specifies an amount of storage. The value of
the DW_AT_byte_size attribute is interpreted in bytes and the value of the
DW_AT_bit_size attribute is interpreted in bits.

The value of the attribute is determined based on the class as follows:
v For a constant, the value of the constant is the value of the attribute.
v For a reference, the value is a reference to another entity which specifies the

value of the attribute.
v For an exprloc, the value is interpreted as a DWARF expression. Evaluation of

the expression yields the value of the attribute.

Subroutine and entry point entries

A subroutine or entry point entry may have a DW_AT_frame_base attribute, whose
value is a location description that computes the frame base for the subroutine or
entry point. If the location description is a simple register location description, the
given register contains the frame base address. If the location description is a
DWARF expression, the result of evaluating that expression is the frame base
address. Finally, for a location list, this interpretation applies to each location
description contained in the list of location list entries.

For COBOL, the DW_AT_frame_base attribute provides the base location for all the
local storage within the subprogram.

If a subprogram or entry point is nested, it has a DW_AT_static_link attribute,
whose value is a location description that computes the frame base of the
subprogram that immediately encloses the subprogram or entry point. To resolve
an up-level reference to a variable, a debugger must use the nesting structure of
DWARF to determine which subprogram is the lexical parent and the
DW_AT_static_link value to identify the appropriate frame base of the parent
subprogram.

8 DWARF/ELF Extensions Library Reference

Source view entries

For each additional source view (for example, Assembly View), there is one
DW_TAG_IBM_src_view DIE. The parent of this DIE is the CU DIE. It has the
following attributes:
v A DW_AT_name attribute, whose value is a null-terminated string containing the

name of the source view.
v A DW_AT_stmt_list attribute, whose value is a section offset to the line number

information for this source view.
v A DW_AT_IBM_src_file attribute, whose value is a DIE section offset to the

.debug_srcfiles section. The referenced source file DIE (DW_TAG_IBM_src_file or
DW_TAG_IBM_src_filelist) contains information about the source file(s)
referenced within the line number program.

See the following sample source view DWARF entries:
.debug_info
$1: DW_TAG_compile_unit

DW_AT_stmt_list (...)
DW_AT_IBM_src_file (...)
DW_AT_low_pc (...)
DW_AT_high_pc (...)

$2: DW_TAG_IBM_src_view
DW_AT_name (Assembly View)
DW_AT_stmt_list (...)
DW_AT_IBM_src_file ($5)

.debug_srcfiles
$5: DW_TAG_IBM_src_file

DW_AT_name (Assembly View)
DW_AT_IBM_src_type (DW_SFT_compiler_generated)
DW_AT_IBM_src_text (...)
DW_AT_IBM_md5 (0123456789abcdef0123456789abcdef)
DW_AT_IBM_src_attr (...)

Object oriented COBOL
COBOL has the notion of class-id, which provides a way for the compiler to create
a Java class with the specified name. Within this class, class methods and data can
be declared.

A COBOL class is represented by a debugging information entry with the tag
DW_TAG_namespace. It has a DW_AT_name attribute, whose value is a null-terminated
string containing the class name as it appears in the source program. The
debugging information entries for the class methods and data will be children of
the DW_TAG_namespace.

Data object and object list entries
This section presents the debugging information entries that describe individual
data objects, including variables, parameters and constants, and lists of those
objects that may be grouped in a single declaration, such as a common block.

Data object entries

Some languages (such as COBOL) have the concept of grouping objects into
different sections. The section grouping specifies the section which the object
belongs to.

Chapter 2. Debugging Information Entry (DIE) extensions 9

The section grouping is represented by a DW_AT_IBM_section_grouping attribute,
whose value is a constant:

DW_SG_cobol_working 0x0 COBOL WORKING-STORAGE
SECTION

DW_SG_cobol_linkage 0x1 COBOL LINKAGE SECTION

DW_SG_cobol_file 0x2 COBOL FILE SECTION

DW_SG_cobol_local 0x3 COBOL LOCAL-STORAGE
SECTION

DW_SG_cobol_special_register 0x4 COBOL Special Registers

See the following COBOL snippet:
WORKING-STORAGE SECTION.
01 UBIN4 PIC 9(4) USAGE BINARY.

LOCAL-STORAGE SECTION.
01 SBIN0_1 PIC SV9 USAGE BINARY.

See the following DWARF sample:
$1: DW_TAG_variable

DW_AT_name (UBIN4)
DW_AT_type (PIC 9(4))
DW_AT_IBM_section_grouping (DW_SG_cobol_working)
DW_AT_location (...)

$2: DW_TAG_variable
DW_AT_name (SBIN0_1)
DW_AT_type (PIC SV9)
DW_AT_IBM_section_grouping (DW_SG_cobol_local)
DW_AT_location (...)

Referencing coordinates
Any debugging information entry representing an object, module, or subprogram
may have a DW_AT_IBM_xref_coord attribute whose value is a data block form. This
can be used to indicate all the occurrence of a variable in the program source.

The value of the DW_AT_IBM_xref_coord attribute contains at least one pair of
unsigned LEB128 numbers representing the source line number and source column
number at which the first character of the identifier of the referencing object
appears. The source column number 0 indicates that no column has been specified.
To conserve space, the source line numbers are sorted in ascending order.

Only the first pair of unsigned LEB128 contains the actual source line number and
source column number. In the subsequent pairs, the first number contains the delta
source line number, that is the actual source line number minus the source line
number or the previous entry. The column number for each pair contains the
actual source column number.

For example, in the code sample below:
1 2 3

01234567890123456789012345678901234567890
----------|---------|---------|----------

0149: Display s15a
0150: Compute s30 = s15a * s15a

10 DWARF/ELF Extensions Library Reference

the variable s15a appears in three places at source coordinates: 149,20;150,26 and
150,33. These 3 pairs of values are encoded as:
149,20;1,26;0,33

Base location entries
Some language may group the location of data objects under a common location
anchor. For example, in COBOL, all the local storage items are grouped together at
a specific storage location with a predefined length.

A base location list is represented by a debugging information entry with the tag
DW_TAG_IBM_location_baselist. The base location list is only applicable within the
address range defined by its parent debugging information entry. For example, if
the parent of the debugging information entry is the compilation unit DIE, the base
location list is applicable when the current program counter is within the address
range of the compilation unit.

Each base location item that is a part of the base location list is represented by a
debugging information entry with the tag DW_TAG_IBM_location_base. Each such
entry is a child of the base location list entry. Each base location item entry
contains a DW_AT_location attribute, whose value is a location description,
describing how to find the starting address of the base location item. Each base
location item entry may contain a DW_AT_byte_size attribute whose value is the
length of data in bytes described by this base location item. The value of the
attribute is determined as described in “Byte and bit entries” on page 8

Each base location item entry may contain a DW_AT_IBM_location_type attribute
whose value describes the data referenced by the base location item. The value is a
constant drawn from the set of following codes:

DWARF location type name Value Description

DW_LT_cobol_file 0 COBOL file data

DW_LT_cobol_linkage 1 COBOL linkage data

DW_LT_cobol_external 2 COBOL external data

DW_LT_cobol_oo 3 COBOL object oriented data

DW_LT_cobol_xml 4 COBOL XML data

DW_LT_rent24 5 24-bit reentrant data

DW_LT_rent32 6 32-bit reentrant data

DW_LT_norent32 7 32-bit non-reentrant data

Type entries
This section presents the debugging information entries that describe program
types, including base types, modified types, and user-defined types.

Base type entries

A base type is represented by a debugging information entry with the tag
DW_TAG_base_type.

Chapter 2. Debugging Information Entry (DIE) extensions 11

A base type entry has a DW_AT_encoding attribute describing how the base type is
encoded and is to be interpreted. The value of this attribute is an integer constant.
IBM extensions are introduced to describe the following data types:

DW_AT_encoding name Value Description

DW_ATE_IBM_complex_float_hex 0xde IBM hex complex floating point

DW_ATE_IBM_float_hex 0xdf IBM hex floating point

DW_ATE_IBM_imaginary_float_hex 0xe0 IBM hex imaginary floating point

DW_ATE_IBM_edited_national 0xe5 COBOL national numeric edited data
type

DW_ATE_IBM_edited_DBCS 0xe6 COBOL DBCS edited data type

DW_ATE_IBM_external_float 0xe7 COBOL external floating point data
type

DW_ATE_IBM_external_float_national 0xe8 COBOL national external floating
point data type

DW_ATE_IBM_string_national 0xe9 COBOL national alphanumeric data
type

DW_ATE_IBM_string_DBCS 0xea COBOL DBCS alphanumeric data
type

DW_ATE_IBM_numeric_string_national 0xeb COBOL national numeric data type

DW_ATE_IBM_index_name 0xec COBOL index name

DW_ATE_IBM_index_data_item 0xed COBOL index data item

DWARF standard encoding is used for the following data types:

DW_ATE_packed_decimal 0x0a COBOL unsigned or signed packed
decimal (COMP-3)

DW_ATE_numeric_string 0x0b COBOL zoned decimal (unsigned,
sign trailing included, sign trailing
separate, sign leading included, or
sign leading separate)

DW_ATE_edited 0x0c COBOL alphanumeric edited, COBOL
numeric edited

DW_ATE_signed_fixed 0x0d COBOL signed COMP-4 or COMP-5

DW_ATE_unsigned_fixed 0x0e COBOL unsigned COMP-4 or
COMP-5

In COBOL, a base type entry may have a DW_AT_picture_string attribute whose
value is a null-terminated string containing the picture string as specified in the
source code.

A base type entry has either a DW_AT_byte_size attribute or a DW_AT_bit_size
attribute whose integer constant value is the amount of storage needed to hold a
value of the type.

A packed decimal type (for example, DW_ATE_packed_decimal) may have a
DW_AT_decimal_sign attribute, whose value is an integer constant that conveys the
representation of the sign of the decimal type. The only allowable value is
DW_DS_unsigned. Absence of the attribute indicates that there is a sign in the
encoding.

12 DWARF/ELF Extensions Library Reference

A zoned decimal type (for example, DW_ATE_numeric_string and
DW_ATE_IBM_numeric_string_national) may have a DW_AT_decimal_sign attribute,
whose value is an integer constant that conveys the representation of the sign of
the decimal type. Its integer constant value is interpreted to mean that the type has
a leading overpunch, trailing overpunch, leading separate or trailing separate sign
representation or, alternatively, no sign at all.

A decimal sign attribute has the following values:

DW_DS_unsigned 0x01 unsigned

DW_DS_leading_overpunch 0x02 Sign is encoded in the most
significant digit in a target-dependent
manner.

DW_DS_trailing_overpunch 0x03 Sign is encoded in the least
significant digit in a target-dependent
manner.

DW_DS_leading_separate 0x04 Sign is a + or - character to the left of
the most significant digit.

DW_DS_trailing_separate 0x05 Sign is a + or - character to the right
of the least significant digit.

In COBOL, a native binary number type (for example, DW_ATE_signed_fixed and
DW_ATE_unsigned_fixed) has a DW_AT_IBM_native_binary attribute, which is a flag.
This attribute indicates that the data item is represented in storage as native binary
data.

A fixed-point scaled integer base type (for example, DW_ATE_numeric_string,
DW_ATE_signed_fixed, DW_ATE_unsigned_fixed, DW_ATE_packed_decimal, and
DW_ATE_numeric_string_national) or a COBOL numeric edited type (for example,
DW_ATE_edited and DW_ATE_IBM_edited_national) has the following attributes:
v A DW_AT_digit_count attribute, whose value is an integer constant that

represents the number of digits in an instance of the type.
v A DW_AT_decimal_scale attribute, whose value is an integer constant that

represents the exponent of the base ten scale factor to be applied to an instance
of the type. A scale of zero puts the decimal point immediately to the right of
the least significant digit. Positive scale moves the decimal point to the right and
implies that additional zero digits on the right are not stored in an instance of
the type. Negative scale moves the decimal point to the left; if the absolute value
of the scale is larger than the digit count, this implies additional zero digits on
the left are not stored in an instance of the type.

An alphanumeric base type (for example, DW_ATE_IBM_string_national and
DW_ATE_IBM_string_DBCS) may have a DW_AT_IBM_justify attribute, which is a flag.
This attribute indicates whether the object is justified to the right.

A COBOL index name (for example, DW_ATE_IBM_index_name), has a
DW_AT_byte_stride attribute, whose value is the size of each table entry.

See the following DWARF sample:
* pic ABBA(5).
DW_TAG_base_type

DW_AT_encoding (DW_ATE_edited)
DW_AT_picture_string (ABBA(5))
DW_AT_byte_size (8)

Chapter 2. Debugging Information Entry (DIE) extensions 13

* pic S999V999 SIGN TRAILING.
DW_TAG_base_type

DW_AT_encoding (DW_ATE_numeric_string)
DW_AT_picture_string (S999V999)
DW_AT_byte_size (6)
DW_AT_decimal_sign (DW_DS_trailing_overpunch)
DW_AT_digit_count (6)
DW_AT_decimal_scale (-3)

* pic S999V99 USAGE BINARY.
DW_TAG_base_type

DW_AT_encoding (DW_ATE_signed_fixed)
DW_AT_picture_string (S999V99)
DW_AT_byte_size (4)
DW_AT_digit_count (5)
DW_AT_decimal_scale (-2)

* pic S9(3)V99 PACKED-DECIMAL.
DW_TAG_base_type

DW_AT_encoding (DW_ATE_packed_decimal)
DW_AT_picture_string (S9(3)V99)
DW_AT_byte_size (3)
DW_AT_digit_count (5)
DW_AT_decimal_scale (-2)

* pic 999PP COMP-3.
DW_TAG_base_type

DW_AT_encoding (DW_ATE_packed_decimal)
DW_AT_decimal_sign (DW_DS_unsigned)
DW_AT_picture_string (999PP)
DW_AT_byte_size (2)
DW_AT_digit_count (3)
DW_AT_decimal_scale (2)

* pic +Z,ZZ9.99.
DW_TAG_base_type

DW_AT_encoding (DW_ATE_edited)
DW_AT_picture_string (+Z,ZZ9.99)
DW_AT_byte_size (9)
DW_AT_digit_count (6)
DW_AT_decimal_scale (-2)

* pic 9999/99 USAGE NATIONAL.
DW_TAG_base_type

DW_AT_encoding (DW_ATE_IBM_edited_national)
DW_AT_picture_string (9999/99)
DW_AT_byte_size (14)
DW_AT_digit_count (6)
DW_AT_decimal_scale (0)

* pic N(4) USAGE NATIONAL.
DW_TAG_base_type

DW_AT_encoding (DW_ATE_IBM_string_national)
DW_AT_picture_string (N(4))
DW_AT_byte_size (8)

* pic NNBBNN USAGE NATIONAL.
DW_TAG_base_type

DW_AT_encoding (DW_ATE_IBM_edited_national)
DW_AT_picture_string (NNBBNN)
DW_AT_byte_size (12)

* 01 year-accum.
* 02 month-entry occurs 12 indexed by IDXNAME.
* 03 STABS USAGE IDXITEM.
DW_TAG_base_type * IDXNAME

DW_AT_encoding (DW_ATE_IBM_index_name)

14 DWARF/ELF Extensions Library Reference

DW_AT_byte_size (4)
DW_AT_byte_stride (4)

DW_TAG_base_type * IDXITEM
DW_AT_encoding (DW_ATE_IBM_index_data_item)
DW_AT_byte_size (4)

Modified type entries

A modified type entry describing a COBOL function pointer is represented by a
debugging information entry with the tag DW_TAG_IBM_funcptr_type. It may have a
DW_AT_address_class attribute, whose value is an integer, to describe how objects
having the given pointer type ought to be dereferenced. It has a DW_AT_type
attribute, whose value is a reference to a debugging information entry describing a
base type.

A modified type entry describing a COBOL procedure pointer is represented by a
debugging information entry with the tag DW_TAG_IBM_procptr_type. It may have a
DW_AT_address_class attribute, whose value is an integer, to describe how objects
having the given pointer type ought to be dereferenced. It has a DW_AT_type
attribute, whose value is a reference to a debugging information entry describing a
base type.

A modified type entry describing a COBOL object reference is represented by a
debugging information entry with the tag DW_TAG_IBM_objref_type. It may have a
DW_AT_address_class attribute, whose value is an integer, to describe how objects
having the given pointer type ought to be dereferenced. It has a DW_AT_type
attribute, whose value is a reference to a debugging information entry describing a
base type.

Structure, union, class and interface type entries

Structure, union, and class types are represented by debugging information entries
with the tags DW_TAG_structure_type, DW_TAG_union_type, and DW_TAG_class_type.

In COBOL, a group is by default alphanumeric. When a GROUP-USAGE
NATIONAL clause is declared for a group item, then the corresponding structure
type entry has a DW_AT_type attribute, whose value is a reference to the debugging
information entry describing the national type. If the attribute is absent, the group
is by default alphanumeric.

See the following COBOL snippet:
1 GRP2 GROUP-USAGE NATIONAL.

3 DUPU pic N(20).

See the following DWARF sample:
$1: DW_TAG_base_type

DW_AT_encoding (DW_ATE_IBM_string_national)
$2: DW_TAG_structure_type

DW_AT_type ($1)
$3: DW_TAG_member

DW_AT_name (DUPU)
$4: DW_TAG_variable

DW_AT_name (GRP2)
DW_AT_type ($2)

Chapter 2. Debugging Information Entry (DIE) extensions 15

Some languages (such as COBOL) have the concept of assigning level number to a
structure and its members. The level number defines the parent/child relationship
for the structure members.

A debugging information entry that represents a program variable (for example,
DW_TAG_variable) or a data member entry (for example, DW_TAG_member) may have
a DW_AT_IBM_level_number attribute, whose value is an integer constant.

See the following COBOL snippet:
01 EMPLOYEE-RECORD.

05 EMPLOYEE-NAME.
10 FIRST PICTURE X(10).
10 LAST PICTURE X(10).

05 EMPLOYEE-ADDRESS.
10 STREET PICTURE X(10).
10 CITY PICTURE X(10).

See the following DWARF sample:
$01: DW_TAG_structure_type

DW_AT_name (EMPLOYEE-NAME)
$02: DW_TAG_member

DW_AT_name (FIRST)
DW_AT_IBM_level_number (10)

$03: DW_TAG_member
DW_AT_name (LAST)
DW_AT_IBM_level_number (10)

$05: DW_TAG_structure_type
DW_AT_name (EMPLOYEE-ADDRESS)

$06: DW_TAG_member
DW_AT_name (STREET)
DW_AT_IBM_level_number (10)

$07: DW_TAG_member
DW_AT_name (CITY)
DW_AT_IBM_level_number (10)

$10: DW_TAG_structure_type
DW_AT_name (EMPLOYEE-RECORD)

$11: DW_TAG_member
DW_AT_name (EMPLOYEE-NAME)
DW_AT_type ($01)
DW_AT_IBM_level_number (5)

$12: DW_TAG_member
DW_AT_name (EMPLOYEE-ADDRESS)
DW_AT_type ($05)
DW_AT_IBM_level_number (5)

$20: DW_TAG_variable
DW_AT_name (EMPLOYEE-RECORD)
DW_AT_IBM_level_number (1)
DW_AT_type ($10)

String type entries

A string is a sequence of characters that have specific semantics and operations
that separate them from arrays of characters. A string type is represented by a
debugging information entry with the tag DW_TAG_string_type. In COBOL, this
corresponds to an alphabetic or alphanumeric type.

A string type may have a DW_AT_byte_size attribute whose value is the amount of
storage needed to hold a value of the string type.

16 DWARF/ELF Extensions Library Reference

In COBOL, a string type entry has a DW_AT_picture_string attribute whose value
is a null-terminated string containing the picture string as specified in the source
code.

In COBOL, a string type entry may have a DW_AT_IBM_justify attribute, which is a
flag. This attribute indicates whether the object is justified to the right.

In COBOL, a string type entry may have a DW_AT_IBM_is_alphabetic attribute,
which is a flag. This attribute indicates that the object is an alphabetic type.
Absence of this attribute indicates that the object is an alphanumeric type.

See the following DWARF sample:
* pic A(10) JUST RIGHT.
DW_TAG_string_type

DW_AT_picture_string (A(10))
DW_AT_IBM_justify (yes)
DW_AT_IBM_is_alphabetic (yes)
DW_AT_byte_size (10)

Condition entries

COBOL has the notion of a level-88 condition that associates a data item, called
the conditional variable, with a set of one or more constant values or value ranges.
Semantically, the condition is true if the value of the conditional variable matches
any of the described constants, and the condition is false otherwise.

The DW_TAG_condition debugging information entry describes a logical condition
that tests whether a given data item's value matches one of a set of constant
values. If a name has been given to the condition, the condition entry has a
DW_AT_name attribute whose value is a null-terminated string giving the condition
name as it appears in the source program.

The parent entry of the condition entry describes the conditional variable.
Normally this will be a DW_TAG_variable, DW_TAG_member, or
DW_TAG_formal_parameter entry. If the parent entry has an array type, the condition
can test any individual element, but not the array as a whole. The condition entry
implicitly specifies a comparison type that is the type of an array element if the
parent has an array type; otherwise it is the type of the parent entry.

The condition entry owns DW_TAG_constant and DW_TAG_subrange_type entries that
describe the constant values associated with the condition. If any child entry has a
DW_AT_type attribute, that attribute should describe a type compatible with the
comparison type (according to the source language); otherwise the type of the
child is the same as the comparison type.

For conditional variables with alphanumeric types, COBOL permits a source
program to provide ranges of alphanumeric constants in the condition. Normally a
subrange type entry does not describe ranges of strings. However, this can be
represented using bounds attributes that are references to constant entries
describing strings. A subrange type entry may refer to constant entries that are
siblings of the subrange type entry.

See the following COBOL snippet:
1 ALPHA PIC X(10).
88 TESTALPHA VALUE ’TOM’, ’FRED’, ’A’ thru ’Z’.

Chapter 2. Debugging Information Entry (DIE) extensions 17

See the following DWARF sample:
$01: DW_TAG_string_type

DW_AT_picture_string (X(1))
DW_AT_byte_size (1)

$02: DW_TAG_string_type
DW_AT_picture_string (X(3))
DW_AT_byte_size (3)

$03: DW_TAG_string_type
DW_AT_picture_string (X(4))
DW_AT_byte_size (4)

$10: DW_TAG_variable
DW_AT_name (ALPHA)

$11: DW_TAG_condition
DW_AT_name (TESTALPHA)

$12: DW_TAG_constant
DW_AT_const_value (c1) ! ’A’
DW_AT_type ($01)

$13: DW_TAG_constant
DW_AT_const_value (e9) ! ’Z’
DW_AT_type ($01)

$14: DW_TAG_subrange_type
DW_AT_lower_bound ($12)
DW_AT_upper_bound ($13)

$15: DW_TAG_constant
DW_AT_const_value (c6d9c5c4) ! ’FRED’
DW_AT_type ($03)

$16: DW_TAG_constant
DW_AT_const_value (e3d6d4) ! ’TOM’
DW_AT_type ($02)

File description entries

COBOL file name is represented by a debugging information entry with the tag
DW_TAG_variable. It has a DW_AT_name attribute, whose value is a null-terminated
string containing the file name as it appears in the source program.

The COBOL file name debugging information entry has a DW_AT_type attribute
referencing a file description entry type with the tag DW_TAG_file_type. If the file
description entry type describes a COBOL file description, the file description entry
type has a DW_AT_name attribute, whose value is a string FD. If the file description
entry type describes a COBOL sort file description entry, it has a DW_AT_name
attribute, whose value is a string SD.

The COBOL file name debugging information entry may have a DW_AT_location
attribute, whose value is a location description. The result of evaluating this
description yields the FCB of the file description entry.

If a GLOBAL clause is specified on the COBOL file name, then the file name
debugging information entry has a DW_AT_visibility attribute, whose value is
DW_VIS_exported.

Each top level record debugging information entries is represented by a debugging
information entry with the tag DW_TAG_variable. It may have attributes similar to
those debugging information entries for top level structure variable. In addition, it
has a DW_AT_IBM_owner attribute, whose value is a reference to the owning COBOL
file name debugging information entry.

See the following COBOL snippet:

18 DWARF/ELF Extensions Library Reference

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT RUNDATA
ASSIGN TO SYSIN-S-FILE1DD
ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS RUNDATA-FS.

SELECT SORT-FILE
ASSIGN TO SORTFILE.

DATA DIVISION.
FILE SECTION.
FD RUNDATA DATA RECORD WEEK LABEL RECORDS OMITTED

BLOCK CONTAINS 0 RECORDS.
01 WEEK.

03 MONTH PICTURE 99.
01 SALARY PIC 9(4)V9(2).
SD SORT-FILE.
01 SORT-REC.

02 SD-FN PICTURE X(20).

See the following DWARF sample:
$1: DW_TAG_file_type

DW_AT_name (FD)
$2: DW_TAG_file_type

DW_AT_name (SD)

$5: DW_TAG_variable
DW_AT_name (RUNDATA)
DW_AT_type ($1)
DW_AT_location (location of FCB)

$6: DW_TAG_variable
DW_AT_name (WEEK)
DW_AT_type (struct for WEEK)
DW_AT_IBM_owner ($5) ! indicator for children of RUNDATA
DW_AT_IBM_level_number (1)
DW_AT_location (...)

$7: DW_TAG_variable
DW_AT_name (SALARY)
DW_AT_type (PIC 9(4)V9(2))
DW_AT_IBM_owner ($5) ! indicator for children of RUNDATA
DW_AT_IBM_level_number (1)
DW_AT_location (...)

$8: DW_TAG_variable
DW_AT_name (SORT-FILE)
DW_AT_type ($2) ! no FCB

$9: DW_TAG_variable
DW_AT_name (SORT-REC)
DW_AT_type (struct for SORT-REC)
DW_AT_IBM_owner ($8) ! indicator for children of RUNDATA
DW_AT_IBM_level_number (1)
DW_AT_location (...)

Bound checking information for type entries

Some languages (such as COBOL) have well defined upper and lower storage
limits for objects whose storage is dynamically determined at runtime. Knowing
the storage limits allows the debugger to perform bounds checking when
examining data objects with these types.

A type entry whose storage is not known during compilation may have the
following attributes:

Chapter 2. Debugging Information Entry (DIE) extensions 19

v A DW_AT_IBM_max_upper_bound attribute whose integer constant value specifies
the upper bound associated with the upper storage limit that can be used to
hold a data object of this type. The value of the DW_AT_IBM_max_upper_bound
attribute together with DW_AT_byte_stride or DW_AT_bit_stride can be used to
calculate the upper storage limit for a data object of this type.

v A DW_AT_IBM_min_upper_bound attribute whose integer constant value specifies
the upper bound associated with the lower storage limit that can be used to
hold a data object of this type. The value of the DW_AT_IBM_min_upper_bound
attribute together with DW_AT_byte_stride or DW_AT_bit_stride can be used to
calculate the lower storage limit for a data object of this type.

For data members whose offsets are calculated at runtime, the offset calculation
(specified on DW_AT_data_location) may fail if certain precondition is not met. For
example, the offset calculation may rely on some other variable to be within range
before the calculation can yield correct result. A data member with this
characteristic may have a DW_AT_IBM_valid_expr attribute, whose value is a
DWARF expression. If the result of the evaluation is zero, then the precondition for
evaluating the offset has not been met.

For data types whose lengths are calculated at runtime, the length calculation
(specified on DW_AT_byte_size) may fail if certain precondition is not met. For
example, the length calculation may rely on some other variable to be within range
before the calculation can yield correct result. A data type with this characteristic
may have a DW_AT_IBM_valid_expr attribute, whose value is a DWARF expression.
If the result of the evaluation is zero, then the precondition for evaluating the
length has not been met.

For array types whose strides are calculated at runtime, the stride calculation
(specified on DW_AT_byte_stride) may fail if certain precondition is not met. For
example, the stride calculation may rely on some other variable to be within range
before the calculation can yield correct result. A data type with this characteristic
may have a DW_AT_IBM_valid_expr attribute, whose value is a DWARF expression.
If the result of the evaluation is zero, then the precondition for evaluating the
stride has not been met.

See the following COBOL snippet:
01 CSSS7.

05 CSSS7-C PIC X(4) VALUE "CCCC".
05 CS7-F.

10 CS7-H PIC 9(2) OCCURS 10 TIMES
DEPENDING ON OBJ-7C INDEXED BY CS7-IX3.

05 INCREMENT PIC 99.

See the following DWARF sample:
$01: DW_TAG_variable

DW_AT_name (CSSS7)
DW_AT_type ($02)
DW_AT_IBM_level_number (1)
DW_AT_location (...)

$02: DW_TAG_structure_type
DW_AT_byte_size (DW_OP_call_ref ... DW_OP_lit10 DW_OP_plus)
DW_AT_IBM_valid_expr (DW_OP_call_ref $12)

$03: DW_TAG_member
DW_AT_name (CSSS7-C)
DW_AT_type (...) *PIC X(4)
DW_AT_data_member_location (DW_OP_plus_uconst 0)
DW_AT_IBM_level_number (5)

$04: DW_TAG_member

20 DWARF/ELF Extensions Library Reference

DW_AT_name (CS7-F)
DW_AT_type ($06)
DW_AT_data_member_location (DW_OP_plus_uconst 4)
DW_AT_IBM_level_number (5)

$05: DW_TAG_member
DW_AT_name (INCREMENT)
DW_AT_type (...) *PIC 99
DW_AT_data_member_location (DW_OP_call_ref ... DW_OP_plus)
DW_AT_IBM_valid_expr (DW_OP_call_ref $12)
DW_AT_IBM_level_number (5)

$06: DW_TAG_structure_type
DW_AT_byte_size (DW_OP_call_ref ...)
DW_AT_IBM_valid_expr (DW_OP_call_ref $11)

$07: DW_TAG_member
DW_AT_name (CS7-H)
DW_AT_type ($08)
DW_AT_data_member_location (DW_OP_plus_uconst 0)
DW_AT_IBM_level_number (10)

$08: DW_TAG_array_type
DW_AT_type (...)
DW_AT_byte_size (DW_OP_call_ref ...)
DW_AT_IBM_valid_expr (DW_OP_call_ref $10)

$09: DW_TAG_subrange_type
DW_AT_lower_bound (1)
DW_AT_upper_bound (DW_OP_call_ref ...)
DW_AT_IBM_max_upper_bound (10) * Maximum upper bound

// Bound checking for array type ($08)
$10: DW_TAG_dwarf_procedure

DW_AT_location (DW_OP_call_ref <upper_bound expr>
DW_OP_dup 1 DW_OP_ge 10 DW_OP_le DW_OP_and)

// Bound checking for struct type ($06)
$11: DW_TAG_dwarf_procedure

DW_AT_location (DW_OP_call_ref $10)

// Bound checking for struct type ($02)
$12: DW_TAG_dwarf_procedure

DW_AT_location (DW_OP_call_ref $11)

Chapter 2. Debugging Information Entry (DIE) extensions 21

22 DWARF/ELF Extensions Library Reference

Chapter 3. Consumer APIs for standard DWARF sections

These are IBM's extended consumer operation and the macros that it uses to access
the standard DWARF sections.

Error object consumer operations
This section contains a list of APIs for accessing information within a DWARF
error object.

When an error occurs and an error object is passed to the API, the error object will
contain a value indicating the type of that error.

If an error object is not passed to the API, that is NULL is the last parameter, the
API creates an error object and calls the error handler routine that has been
specified in the libdwarf initialization routine.

If an error object is not passed to the API and you have not specified an error
handler routine when initializing thelibdwarf consumer object, the API will not
complete.

Error handling macros
This topic is a list of error values that are represented in a returned error object.

DW_DLE_INVALID_GOFF_RELOC
Value is 1. The Dwarf_Goff_Reloc object is NULL or not valid.

DW_DLE_ID
Value is 6. The register number specified is out of range.

DW_DLE_IA
Value is 9. The Dwarf_Debug or Dwarf_P_Debug object is corrupted and there
is an eyecatcher mismatch..

DW_DLE_FNO
Value is 12. Unable to open file for processing.

DW_DLE_FNR
Value is 13. The file name specified is not valid.

DW_DLE_NOB
Value is 15. The input file format is not recognized.

DW_DLE_BADBITC
Value is 22. Invalid/Incompatible address size detected.

DW_DLE_DBG_ALLOC
Value is 23. Unable to malloc a Dwarf_Debug/Dwarf_P_Debug object.

DW_DLE_FSTAT_ERROR
Value is 24. fstat() failed.

DW_DLE_FSTAT_MODE_ERROR
Value is 25. The file mode bits do not indicate that the file being opened is a
normal file.

DW_DLE_INIT_ACCESS_WRONG
Value is 26. The file access mode specified is not valid.

© Copyright IBM Corp. 2004, 2015 23

DW_DLE_ELF_BEGIN_ERROR
Value is 27. A call to elf_begin() failed.

DW_DLE_ELF_GETEHDR_ERROR
Value is 28. A call to elf32_getehdr() or elf64_getehdr() failed.

DW_DLE_ELF_GETSHDR_ERROR
Value is 29. A call to elf32_getshdr() or elf64_getshdr() failed.

DW_DLE_ELF_STRPTR_ERROR
Value is 30. A call to elf_strptr() failed trying to get a section name.

DW_DLE_DEBUG_INFO_DUPLICATE
Value is 31. More than one .debug_info section was found.

DW_DLE_DEBUG_INFO_NULL
Value is 32. The .debug_info section is present but an error has occured while
retrieving the content.

DW_DLE_DEBUG_ABBREV_DUPLICATE
Value is 33. More than one .debug_abbrev section was found.

DW_DLE_DEBUG_ABBREV_NULL
Value is 34. The .debug_abbrev section is present but an error has occured
while retrieving the content.

DW_DLE_DEBUG_ARANGES_DUPLICATE
Value is 35. More than one .debug_aranges section was found.

DW_DLE_DEBUG_ARANGES_NULL
Value is 36.The .debug_aranges section is present but an error has occured
while retrieving the content.

DW_DLE_DEBUG_LINE_DUPLICATE
Value is 37. More than one .debug_line section was found.

DW_DLE_DEBUG_LINE_NULL
Value is 38. The .debug_line section is present but an error has occured while
retrieving the content.

DW_DLE_DEBUG_LOC_DUPLICATE
Value is 39. More than one .debug_loc section was found.

DW_DLE_DEBUG_LOC_NULL
Value is 40. The .debug_loc section is present but an error has occured while
retrieving the content.

DW_DLE_DEBUG_MACINFO_DUPLICATE
Value is 41. More than one .debug_macinfo section was found.

DW_DLE_DEBUG_MACINFO_NULL
Value is 42. The .debug_macinfo section is present but an error has occured
while retrieving the content.

DW_DLE_DEBUG_PUBNAMES_DUPLICATE
Value is 43. More than one .debug_pubname section was found.

DW_DLE_DEBUG_PUBNAMES_NULL
Value is 44. The .debug_pubname section is present but an error has occured
while retrieving the content.

DW_DLE_DEBUG_STR_DUPLICATE
Value is 45. More than one .debug_str section was found.

24 DWARF/ELF Extensions Library Reference

DW_DLE_DEBUG_STR_NULL
Value is 46. The .debug_str section is present but an error has occurred while
retrieving the content.

DW_DLE_CU_LENGTH_ERROR
Value is 47. The unit header length of the compilation unit is not valid.

DW_DLE_VERSION_STAMP_ERROR
Value is 48. Incorrect Version Stamp

DW_DLE_ABBREV_OFFSET_ERROR
Value is 49. The .debug_abbrev offset is greater than the size of .debug_abbrev
section..

DW_DLE_ADDRESS_SIZE_ERROR
Value is 50. The size of an address on the target machine is not valid.

DW_DLE_DIE_NULL
Value is 52. Dwarf_Die is NULL

DW_DLE_STRING_OFFSET_BAD
The .debug_str offset is greater than the size of .debug_str section.

DW_DLE_DEBUG_LINE_LENGTH_BAD
Value is 54. The length of this .debug_line segment is greater than the size of
.debug_line section.

DW_DLE_LINE_PROLOG_LENGTH_BAD
Value is 55. The header length of the .debug_line header is smaller than a
recognized form

DW_DLE_LINE_NUM_OPERANDS_BAD
Value is 56. The number of operands given for the line number program
opcode is not valid.

DW_DLE_LINE_SET_ADDR_ERROR
Value is 57. The size of the operand specified on DW_LNE_set_address opcode
does not match the size of an address on the target machine.

DW_DLE_LINE_EXT_OPCODE_BAD
Value is 58. The line number program extended opcode is not recognized.

DW_DLE_DWARF_LINE_NULL
Value is 59. Dwarf_line is NULL.

DW_DLE_INCL_DIR_NUM_BAD
Value is 60. The directory index of the Dwarf_Line object is out of range.

DW_DLE_LINE_FILE_NUM_BAD
Value is 61. The file index of the Dwarf_Line object is out of range.

DW_DLE_ALLOC_FAIL
Value is 62. The required object could not be allocated.

DW_DLE_NO_CALLBACK_FUNC
Value is 63. The callback function was not specified.

DW_DLE_SECT_ALLOC
Value is 64. Dwarf_Section or Dwarf_P_Section was not allocated.

DW_DLE_FILE_ENTRY_ALLOC
Value is 65. There is an error allocating memory to store file information in the
line number table.

Chapter 3. Consumer APIs for standard DWARF sections 25

"DW_DLE_LINE_ALLOC
Value is 66. Dwarf_Line or Dwarf_P_Line was not allocated.

DW_DLE_FPGM_ALLOC
Value is 67. There is an error allocating memory to store information in the
debug_frame section.

DW_DLE_INCDIR_ALLOC
Value is 68. There is an error allocating memory to store directory information
in the line number table.

DW_DLE_STRING_ALLOC
Value is 69. String object was not allocated.

DW_DLE_CHUNK_ALLOC
Value is 70. There is an error allocating memory for an internal variable length
object.

DW_DLE_CIE_ALLOC
Value is 72. Common Information Entry (CIE) was not allocated.

DW_DLE_FDE_ALLOC
Value is 73. Frame Desciption Entry (FDE) was not allocated.

DW_DLE_REGNO_OVFL
Value is 74. A register number overflow was detected.

DW_DLE_CIE_OFFS_ALLOC
Value is 75. here is an error allocating memory to store CIE_pointer in the
.debug_frame section.

DW_DLE_WRONG_ADDRESS
Value is 76. Unable to encode address information in line number table.

DW_DLE_EXTRA_NEIGHBORS
Value is 77. Specifying more than one neighbor is not allowed.

DW_DLE_WRONG_TAG
Value is 78. The input DIE has an unsupported TAG value.

DW_DLE_DIE_ALLOC
Value is 79. Dwarf_Die or Dwarf_P_Die was not allocated.

DW_DLE_PARENT_EXISTS
Value is 80. A parent DIE already exist.

DW_DLE_DBG_NULL
Value is 81. Dwarf_Debug (or Dwarf_P_Debug) object does not exist.

DW_DLE_DEBUGLINE_ERROR
Value is 82. An error has occured while creating .debug_line.

DW_DLE_DEBUGFRAME_ERROR
Value is 83. An error has occured while creating .debug_frame.

DW_DLE_DEBUGINFO_ERROR
Value is 84. An error has occured while creating .debug_info.

DW_DLE_ATTR_ALLOC
Value is 85. Dwarf_Attribute/Dwarf_P_Attribute was not allocated.

DW_DLE_ABBREV_ALLOC
Value is 86. The abbreviation object was not allocated.

DW_DLE_OFFSET_UFLW
Value is 87. Offset is too large to fit in specified container.

26 DWARF/ELF Extensions Library Reference

DW_DLE_ELF_SECT_ERR
Value is 88. Unknown ELF section found.

DW_DLE_DEBUG_FRAME_LENGTH_BAD
Value is 89. The size of the length field plus the value of length is not an
integral multiple of the address size.

DW_DLE_FRAME_VERSION_BAD
Value is 90. The version number of the .debug_frame section is not recognized.

DW_DLE_CIE_RET_ADDR_REG_ERROR
Value is 91. An incorrect register was specified for return address.

DW_DLE_FDE_NULL
Value is 92. Dwarf_Fde/Dwarf_P_Fde object does not exist..

DW_DLE_FDE_DBG_NULL
Value is 93. There is no Dwarf_Debug object associated with the Dwarf_Fde
object.

DW_DLE_CIE_NULL
Value is 94. Dwarf_Cie object does not exist.

DW_DLE_CIE_DBG_NULL
Value is 95. There is no Dwarf_Debug associated with the Dwarf_Cie object.

DW_DLE_FRAME_TABLE_COL_BAD
Value is 96. The column in the frame table specified is not valid.

DW_DLE_PC_NOT_IN_FDE_RANGE
Value is 97. PC requested not in address range of FDE.

DW_DLE_CIE_INSTR_EXEC_ERRORspecified
Value is 98. There was an error in executing instructions in CIE.

DW_DLE_FRAME_INSTR_EXEC_ERROR
Value is 99. There was an error in executing instructions in FDE.

DW_DLE_FDE_PTR_NULL
Value is 100. Null Pointer to Dwarf_Fde .

DW_DLE_RET_OP_LIST_NULL
Value is 101. No location to store pointer to Dwarf_Frame_Op

DW_DLE_LINE_CONTEXT_NULL
Value is 102. Dwarf_Line has no context.

DW_DLE_DBG_NO_CU_CONTEXT
Value is 103. dbg has no CU context for dwarf_siblingof().

DW_DLE_DIE_NO_CU_CONTEXT
Value is 104. Dwarf_Die has no CU context.

DW_DLE_FIRST_DIE_NOT_CU
Value is 105. The first DIE in the CU is not a DW_TAG_compilation_unit.

DW_DLE_NEXT_DIE_PTR_NULL
Value is 106. There was an error when moving to next DIE in .debug_info.

DW_DLE_DEBUG_FRAME_DUPLICATE
Value is 107. More than one .debug_frame section was found.

DW_DLE_DEBUG_FRAME_NULL
Value is 108. The .debug_frame section is present but an error has occurred
while retrieving the content.

Chapter 3. Consumer APIs for standard DWARF sections 27

DW_DLE_ABBREV_DECODE_ERROR
Value is 109. There was an error in processing .debug_abbrev section.

DW_DLE_DWARF_ABBREV_NULL
Value is 110. The Dwarf_Abbrev object specified is null.

DW_DLE_ATTR_NULL
Value is 111. The Dwarf_Attribute object specified is null.

DW_DLE_DIE_BAD
Value is 112. There was an error in processing the Dwarf_Die object.

DW_DLE_DIE_ABBREV_BAD
Value is 113. No abbreviation was found for the abbreviation code embedded
in the Dwarf_Die object.

DW_DLE_ATTR_FORM_BAD
Value is 114. The attribute form for the attribute is not appropriate.

DW_DLE_ATTR_NO_CU_CONTEXT
Value is 115. There is no CU context for the Dwarf_Attribute object.

DW_DLE_ATTR_FORM_SIZE_BAD
Value is 116. The size of block in attribute value is not valid.

DW_DLE_ATTR_DBG_NULL
Value is 117. There is no Dwarf_Debug object associated with the
Dwarf_Attribute object.

DW_DLE_BAD_REF_FORM
Value is 118. The form for the reference attribute is not appropriate.

DW_DLE_ATTR_FORM_OFFSET_BAD
Value is 119. The offset reference attribute is outside current CU.

DW_DLE_LINE_OFFSET_BAD
Value is 120. The offset of lines for the current CU is outside .debug_line.

DW_DLE_DEBUG_STR_OFFSET_BAD
Value is 121. The offset in .debug_str is out of range.

DW_DLE_STRING_PTR_NULL
Value is 122. The pointer to the return string parameter is NULL.

DW_DLE_PUBNAMES_VERSION_ERROR
Value is 123. The version of .debug_pubnames is not recognized.

DW_DLE_PUBNAMES_LENGTH_BAD
Value is 124. The length field in .debug_pubnames section is greater than the
size of the section.

DW_DLE_GLOBAL_NULL
Value is 125. The Dwarf_Global specified is null.

DW_DLE_GLOBAL_CONTEXT_NULL
Value is 126. There was no context given for Dwarf_Global.

DW_DLE_DIR_INDEX_BAD
Value is 127. There was an error in the directory index read.

DW_DLE_LOC_EXPR_BAD
Value is 128. The location expression could not be read.

DW_DLE_DIE_LOC_EXPR_BAD
Value is 129. The expected block value for attribute was not found.

28 DWARF/ELF Extensions Library Reference

DW_DLE_ADDR_ALLOC
Value is 130. There is an error allocating memory for an internal address object.

DW_DLE_OFFSET_BAD
Value is 131. The offset for next compilation-unit in .debug_info is not valid.

DW_DLE_MAKE_CU_CONTEXT_FAIL
Value is 132. The CU context was not created.

DW_DLE_REL_ALLOC
Value is 133. There is an error allocating memory for an internal relocation
object.

DW_DLE_ARANGE_OFFSET_BAD
Value is 134. The debug_arange entry has a DIE offset that is larger than the
size of the .debug_info section.

DW_DLE_SEGMENT_SIZE_BAD
Value is 135. The segment size should be 0 for MIPS processors.

DW_DLE_ARANGE_LENGTH_BAD
Value is 136. The length field in .debug_aranges section is greater than the size
of the section.

DW_DLE_ARANGE_DECODE_ERROR
Value is 137. The aranges do not end at the end of .debug_aranges.

DW_DLE_ARANGES_NULL
Value is 138. The Dwarf_Arange list parameter is NULL.

DW_DLE_ARANGE_NULL
Value is 139. The Dwarf_Arange parameter is NULL.

DW_DLE_NO_FILE_NAME
Value is 140. The file name parameter is NULL.

DW_DLE_NO_COMP_DIR
Value is 141. There was no Compilation directory for compilation-unit.

DW_DLE_CU_ADDRESS_SIZE_BAD
Value is 142. The CU header address size does not match the Elf class.

DW_DLE_INPUT_ATTR_BAD
Value is 143. The attribute on the input DIE is not supported.

DW_DLE_EXPR_NULL
Value is 144. The specified Dwarf_P_Expr object is NULL.

DW_DLE_BAD_EXPR_OPCODE
Value is 145. There is an unsupported DWARF expression opcode specified.

DW_DLE_EXPR_LENGTH_BAD
Value is 146. Unable to create LEB128 constant while constructing DWARF
expression.

DW_DLE_BAD_RELOC
Value is 147. Relocation Information found is not correct.

DW_DLE_ELF_GETIDENT_ERROR
Value is 148. There is an error in elf_getident() on object.

DW_DLE_NO_AT_MIPS_FDE
Value is 149. The DIE does not have DW_AT_MIPS_fde attribute.

DW_DLE_NO_CIE_FOR_FDE
Value is 150. There is no CIE specified for FDE.

Chapter 3. Consumer APIs for standard DWARF sections 29

DW_DLE_DIE_ABBREV_LIST_NULL
Value is 151. There was no abbreviation found for the code in DIE.

DW_DLE_DEBUG_FUNCNAMES_DUPLICATE
Value is 152. More than one .debug_funcnames section was found.

DW_DLE_DEBUG_FUNCNAMES_NULL
Value is 153. The .debug_funcnames section is present but an error has occured
while retrieving the content.

DW_DLE_CANNOT_LOAD_DLLSYM
Value is 154. Unable to load a symbol from DLL to continue processing.

DW_DLE_DEBUG_PUBTYPES_DUPLICATE
Value is 158. More than one .debug_pubtypes section was found.

DW_DLE_DEBUG_PUBTYPES_NULL
Value is 159. The .debug_pubtypes section is present but an error has occured
while retrieving the content.

DW_DLE_DEBUG_VARNAMES_DUPLICATE
Value is 164. More than one .debug_varnames section was found.

DW_DLE_DEBUG_VARNAMES_NULL
Value is 165. The .debug_varnames section is present but an error has occured
while retrieving the content.

DW_DLE_DEBUG_WEAKNAMES_DUPLICATE
Value is 170. More than one .debug_weaknames section was found.

DW_DLE_DEBUG_WEAKNAMES_NULL
Value is 171. The .debug_weaknames section is present but an error has
occured while retrieving the content.

DW_DLE_LOCDESC_COUNT_WRONG
Value is 176. More than one location description found.

DW_DLE_MACINFO_STRING_NULL
Value is 177. The specified macro name is NULL.

DW_DLE_MACINFO_STRING_EMPTY
Value is 178. The specified macro name has zero length.

DW_DLE_MACINFO_INTERNAL_ERROR_SPACE
Value is 179. An error has occurred during construction of .debug_macinfo.

DW_DLE_MACINFO_MALLOC_FAIL
Value is 180. Failed to allocate internal object for writing .debug_macinfo.

DW_DLE_DEBUGMACINFO_ERROR
Value is 181. An error has occured during writing of .debug_macinfo.

DW_DLE_DEBUG_MACRO_LENGTH_BAD
Value is 182. The specified offset is beyond the size of .debug_macinfo.

DW_DLE_DEBUG_MACRO_INTERNAL_ERR
Value is 184. An error has occured during reading of .debug_macinfo.

DW_DLE_DEBUG_MACRO_MALLOC_SPACE
Value is 185. Failed to allocate internal object for reading .debug_macinfo.

DW_DLE_DEBUG_MACRO_INCONSISTENT
Value is 186. Conflicting information found while processing .debug_macinfo.

DW_DLE_DF_NO_CIE_AUGMENTATION
Value is 187. No CIE augmentation was found.

30 DWARF/ELF Extensions Library Reference

DW_DLE_DF_REG_NUM_TOO_HIGH
Value is 188. The call frame register is too big.

DW_DLE_DF_MAKE_INSTR_NO_INIT
Value is 189. Call frame information has not been initialized.

DW_DLE_DF_NEW_LOC_LESS_OLD_LOC
Value is 190. New instruction offset is less than the old instruction offset.

DW_DLE_DF_POP_EMPTY_STACK
Value is 191. The stack is empty while processing .debug_frame

DW_DLE_DF_ALLOC_FAIL
Value is 192. The internal object for reading .debug_frame was not allocated.

DW_DLE_DF_FRAME_DECODING_ERROR
Value = 193. An error has occurred while reading .debug_frame.

DW_DLE_FLAG_BIT_IDX_BAD
Value = 194. The bit index is out of range.

DW_DLE_RETURN_PTR_NUL
Value = 195. The pointer to the return parameter is NULL.

DW_DLE_LINE_TABLE_ALLOC
Value = 196. Memory allocation failed in creating line number table.

DW_DLE_LINE_TABLE_NULL
Value = 197. The line-number table is empty.

DW_DLE_FILE_ENTRY_BODY
Value = 198. A file entry already exists in the line-number program.

DW_DLE_SECTION_NULL
Value = 200. The given debug section is NULL.

DW_DLE_SECTION_INACTIVE
Value = 201. The given debug section is inactive.

DW_DLE_DEBUG_SRCATTR_ERROR
Value = 202. An error occurred processing .debug_srcattr.

DW_DLE_DEBUG_SRCTEXT_ERROR
Value = 203. An error occurred processing .debug_srctext .

DW_DLE_HASHMAP_ERROR
Value = 204. An internal error occurred while accessing the internal hash table.

DW_DLE_DEBUG_SRCFILES_ERROR
Value = 205. An error occurred processing .debug_srcfiles.

DW_DLE_DEBUG_PPA_ERROR
Value = 206. An error occurred processing .debug_ppa.

DW_DLE_DEBUG_STR_ERROR
Value = 207. An error occurred processing .debug_str.

DW_DLE_DEBUG_XREF_ERROR
Value = 208. An error occurred processing .debug_xref.

DW_DLE_DEBUG_XREF_DUPLICATE
Value = 209. More than one .debug_xref section was found.

DW_DLE_DEBUG_XREF_NULL
Value = 210. The .debug_xref section is present but an error has occured while
retrieving the content.

Chapter 3. Consumer APIs for standard DWARF sections 31

DW_DLE_SRCATTR_LINE_BAD
Value = 211. The line number found within .debug_srcattr is not greater than 0.

DW_DLE_SRCATTR_OFFSET_BAD
Value = 212. An invalid offset was found in .debug_srcattr.

DW_DLE_SECTION_NAME_NULL
Value = 213. The name of the section is NULL.

DW_DLE_SECTION_NAME_BAD
Value = 214. An unknown debug-section name has been detected.

DW_DLE_LINE_OWNER_BAD
Value = 215. The line-number program does not have a valid owner.

DW_DLE_DEBUG_PPA_DUPLICATE
Value = 216. More than one .debug_ppa section was found.

DW_DLE_DEBUG_PPA_NULL
Value = 217. The .debug_ppa section is present but an error has occured while
retrieving the content.

DW_DLE_DEBUG_SRCFILES_DUPLICATE
Value = 218. More than one .debug_srcfiles section was found.

DW_DLE_DEBUG_SRCFILES_NULL
Value = 219. The .debug_srcfiles section is present but an error has occurred
while retrieving the content.

DW_DLE_DEBUG_SRCINFO_DUPLICATE
Value = 220. More than one .debug_srcinfo section was found.

DW_DLE_DEBUG_SRCINFO_NULL
Value = 221. The .debug_srctext section is present but an error has occurred
while retrieving the content.

DW_DLE_DEBUG_SRCTEXT_DUPLICATE
Value = 222. More than one .debug_srctext section was found.

DW_DLE_DEBUG_SRCTEXT_NULL
Value = 223. The .debug_srctext section is present but an error has occurred
while retrieving the content.

DW_DLE_DEBUG_SRCATTR_DUPLICATE
Value = 224. More than one .debug_srcattr section was found.

DW_DLE_DEBUG_SRCATTR_NULL
Value = 225. The .debug_srcattr section is present but an error has occurred
while retrieving the content.

DW_DLE_DEBUG_SRCATTR_DECODE
Value = 226. An internal error occurred while processing .debug_srcattr section.

DW_DLE_SRCFRAG_NULL
Value = 227. The source fragment object is NULL.

DW_DLE_ELF_STRING_NULL
Value = 228. A NULL string cannot be added into an ELF section.

DW_DLE_ELF_STRING_ALLOC
Value = 229. The memory allocation failed while creating a string in an ELF
section.

DW_DLE_ELF_SYMBOL_NULL
Value = 230. The ELF-symbol name is NULL.

32 DWARF/ELF Extensions Library Reference

DW_DLE_ELF_SYMBOL_BAD
Value = 231. The ELF-symbol name is invalid.

DW_DLE_ELF_SYMBOL_ALLOC
Value = 232. The memory allocation failed when creating an ELF symbol.

DW_DLE_LINE_INFO_NULL
Value = 233. The line-number program contains no information.

DW_DLE_DEBUG_RANGES_DUPLICATE
Value = 234. More than one .debug_ranges section was found.

DW_DLE_DEBUG_RANGES_NULL
Value = 235. The .debug_ranges section is present but an error has occurred
while retrieving the content.

DW_DLE_DEBUG_INFO_RELOC_DUPLICATE
Value = 236. More than one relocation section for .debug_info was found.

DW_DLE_DEBUG_INFO_RELOC_NULL
Value = 237. The .rel.debug_info section is present but an error has occurred
while retrieving the content.

DW_DLE_DEBUG_LINE_RELOC_DUPLICATE
Value = 238. More than one relocation section for .debug_line was found.

DW_DLE_DEBUG_LINE_RELOC_NULL
Value = 239. The .rel.debug_line section is present but an error has occurred
while retrieving the content.

DW_DLE_LINE_CONTEXT_STACK_FULL
Value = 240. The gap stack becomes full while building line context.

DW_DLE_ELF_WRITE_ERROR
Value = 241. An error occurred when writing to ELF.

DW_DLE_NAME_NULL
Value = 242. The given name is NULL.

DW_DLE_NAME_EMPTY
Value = 243. The given name is empty.

DW_DLE_ELF_NULL
Value = 244. The ELF descriptor is NULL.

DW_DLE_ELF_MACHINE_UNKNOWN
Value = 245. The hardware architecture is unknown.

DW_DLE_PC_LOCN_NULL
Value = 246. The Dwarf_PC_Locn object is NULL.

DW_DLE_SUBPGM_LOCN_NULL
Value = 247. The Dwarf_Subpgm_Locn object is NULL.

DW_DLE_FILE_INDEX_BAD
Value = 248. The file index within the line-number program is out of range.

DW_DLE_GET_LINE_FAILED
Value = 249. An error occurred during the retrieval of one or more source lines.

DW_DLE_CANNOT_LOAD_DLL
Value = 250. Unable to load the required DLL to continue processing.

DW_DLE_RANGES_DECODE_ERROR
Value = 251. The range-list entry extends beyond the end of .debug_ranges.

Chapter 3. Consumer APIs for standard DWARF sections 33

DW_DLE_CODESET_INVALID
Value = 252. The given codeset ID is not valid.

DW_DLE_CODESET_CONVERSION_ERROR
Value = 253. There was an error converting between codesets.

DW_DLE_STRING_NULL
Value = 254. The Dwarf_String object is NULL.

DW_DLE_PROGRAM_OBJECT_EDIT_NO
Value = 255. Program object must be bounded with EDIT=YES.

DW_DLE_CANNOT_FIND_FULLPATH
Value = 256. Unable to resolve full path name for the given file name.

DW_DLE_PROGRAM_OBJECT_PROCESS_ERROR
Value = 257. An internal error has occurred while processing the program
object.

DW_DLE_LOC_LIST_DECODE_ERROR
Value = 258. Location list entry has reached the end of .debug_loc section, but
has incomplete data.

dwarf_error_reset operation
The dwarf_error_reset operation resets the error code within a valid Dwarf_Error
object to DW_DLE_NE (no error).

If the error parameter is NULL or does not contain a valid Dwarf_Error object, this
operation will do nothing.

Prototype
void dwarf_error_reset (

Dwarf_Error* error);

Parameters

error
Input/output. This accepts or returns a Dwarf_Error object.

Initialization and termination consumer operations
This section contains a list of APIs related to creating and terminating libdwarf
consumer objects.

dwarf_set_codeset operation
The dwarf_set_codeset operation specifies the codeset for all the strings (character
arrays) that will be passed to the libdwarf consumer operations. This operation
overrides the default codeset ISO8859-1. This operation is not available in the IBM
CICS® environment.

Prototype
int dwarf_set_codeset(

Dwarf_Debug dbg,
const __ccsid_t codeset_id,
__ccsid_t* prev_cs_id,
Dwarf_Error* error);

34 DWARF/ELF Extensions Library Reference

Parameters

dbg
Input. This libdwarf consumer instance accepts the Dwarf_Debug object.

codeset_id
Input. The CCSID of the strings that will be processed by the libdwarf
consumer operations.

prev_cs_id
Output. The previous CCSID specified.

error
Input/Output. Error. This accepts and returns the Dwarf_Error object.

Return values

DW_DLV_OK
The specified codeset ID is valid. All future calls to libdwarf consumer
operations will use this encoding for the input/output strings.

DW_DLV_NO_ENTRY
Never.

DW_DLV_ERROR

DW_DLE_DBG_NULL
The given Dwarf_Debug object is NULL

DW_DLE_CODESET_INVALID
Either the given CCSID is invalid or the operation is being used in CICS
environment

DW_DLE_CODESET_CONVERSION_ERROR
The operation is unable to find a suitable conversion table to support
conversion of the default CODESET (ISO8859-1) to the specified codeset.

dwarf_elf_init_b operation
Given an elf descriptor obtained from ELF operations, this operation creates and
initializes a libdwarf consumer instance. This operation replaces the functionality
of the dwarf_elf_init operation, and provides the added ability to combine
multiple libdwarf consumer instances into a single one.

If the given or returned object already exists, then dwarf_elf_init_b creates a new
object by merging the existing content with the new content. That is, if ret_dbg
contains non-NULL libdwarf object, then this operation will create a new libdwarf
object derived from elfptr and merge it into the existing libdwarf object.

If the given or returned DWARF object is NULL, then a completely new object is
created. In this case, dwarf_elf_init_b behaves the same as the core libdwarf
operation dwarf_elf_init.

Prototype
int dwarf_elf_init_b(

Elf* elfptr,
Dwarf_Unsigned access,
Dwarf_Handler errhand,
Dwarf_Ptr errarg,
Dwarf_Debug* ret_dbg,
Dwarf_Error* error);

Chapter 3. Consumer APIs for standard DWARF sections 35

Parameters

elfptr
Input. This accepts the elf descriptor from ELF operations. When the
dwarf_elf_init_b operation is invoked, it assumes control of this descriptor,
which prevents the user from using or referencing this elf descriptor.

access
Input. This accepts the file access method:
v For DWARF consumer operations, it is DW_DLC_READ read only access.
v For DWARF producer operations, it is DW_DLC_WRITE write only access.

errhand
Input. This accepts the default error handler if it is used. If default error
handler is not used, it accepts the NULL value.

errarg
Input. When an error condition is triggered within any of the DWARF
consumer operations, the errhand parameter accepts this object.

ret_dbg
Input/output. If *ret_dbg is NULL, then this routine is identical to
dwarf_elf_init. If *ret_dbg is a valid libdwarf instance, this dwarf debug
information will be merged with the dwarf debug information embedded
within elfptr. The operation then initializes a new libdwarf instance
containing the merged dwarf debug information. The user should deallocate
this after use.

error
Input/output. This accepts or returns a Dwarf_Error object.

Return values

DW_DLV_OK
A valid libdwarf consumer instance is returned.

DW_DLV_NO_ENTRY
DWARF debug sections are not present in the given Elf object.

DW_DLV_ERROR

DW_DLE_ELF_NULL
Given Elf object is NULL

DW_DLE_RETURN_PTR_NULL
Given 'ret_dbg' is NULL

DW_DLE_INIT_ACCESS_WRONG
Incorrect file access method. See dwarfInitFlags

DW_DLE_DBG_ALLOC
Unable to allocate memory for creating libdwarf consumer instance

DW_DLE_ELF_GETIDENT_ERROR
Unable to retrieve ELF Identification

DW_DLE_ELF_GETEHDR_ERROR
Unable to retrieve ELF header.

DW_DLE_ALLOC_FAIL
Unable to allocate memory for creating internal objects

DW_DLE_ELF_GETSHDR_ERROR
Unable to retrieve ELF section header

36 DWARF/ELF Extensions Library Reference

DW_DLE_ELF_STRPTR_ERROR
Unable to retrieve name of ELF section

DW_DLE_DEBUG_INFO_DUPLICATE
More than one .debug_info section was found.

DW_DLE_DEBUG_INFO_NULL
Either the .debug_info section does not exist or it is empty.

DW_DLE_DEBUG_ABBREV_DUPLICATE
More than one .debug_abbev section was found.

DW_DLE_DEBUG_ABBREV_NULL
Either the .debug_abbrev section does not exist or it is empty.

DW_DLE_DEBUG_ARANGES_DUPLICATE
More than one .debug_aranges section was found.

DW_DLE_DEBUG_ARANGES_NULL
The .debug_aranges section exists but it is empty.

DW_DLE_DEBUG_RANGES_DUPLICATE
More than one .debug_ranges section was found.

DW_DLE_DEBUG_RANGES_NULL
The .debug_ranges section exists but it is empty.

DW_DLE_DEBUG_LINE_DUPLICATE
More than one .debug_line section was found.

DW_DLE_DEBUG_LINE_NULL
The .debug_line section exists but it is empty.

DW_DLE_DEBUG_FRAME_DUPLICATE
More than one .debug_frame or .eh_frame section was found.

DW_DLE_DEBUG_FRAME_NULL
The .debug_frame section exists but it is empty.

DW_DLE_DEBUG_LOC_DUPLICATE
More than one .debug_loc section was found.

DW_DLE_DEBUG_LOC_NULL
The .debug_loc section exists but it is empty.

DW_DLE_DEBUG_PUBNAMES_DUPLICATE
More than one .debug_pubnames section was found.

DW_DLE_DEBUG_PUBNAMES_NULL
The .debug_pubnames section exists but it is empty.

DW_DLE_DEBUG_PUBTYPES_DUPLICATE
More than one .debug_pubtypes section was found.

DW_DLE_DEBUG_PUBTYPES_NULL
The .debug_pubtypes section exists but it is empty.

DW_DLE_DEBUG_STR_DUPLICATE
More than one .debug_str section was found.

DW_DLE_DEBUG_STR_NULL
The .debug_str section exists but it is empty.

DW_DLE_DEBUG_FUNCNAMES_DUPLICATE
More than one .debug_funcnames section was found.

Chapter 3. Consumer APIs for standard DWARF sections 37

DW_DLE_DEBUG_FUNCNAMES_NULL
The .debug_funcnames section exists but it is empty.

DW_DLE_DEBUG_VARNAMES_DUPLICATE
More than one .debug_varnames section was found.

DW_DLE_DEBUG_VARNAMES_NULL
The .debug_varnames section exists but it is empty.

DW_DLE_DEBUG_WEAKNAMES_DUPLICATE
More than one .debug_weaknames section was found.

DW_DLE_DEBUG_WEAKNAMES_NULL
The .debug_weaknames section exists but it is empty.

DW_DLE_DEBUG_MACINFO_DUPLICATE
More than one .debug_macinfo section was found.

DW_DLE_DEBUG_MACINFO_NULL
The .debug_macinfo section exists but it is empty.

DW_DLE_DEBUG_PPA_DUPLICATE
More than one .debug_ppa section was found.

DW_DLE_DEBUG_PPA_NULL
The .debug_ppa section exists but it is empty.

DW_DLE_DEBUG_SRCFILES_DUPLICATE
More than one .debug_srcfiles section was found.

DW_DLE_DEBUG_SRCFILES_NULL
The .debug_srcfiles section exists but it is empty.

Cleanups

Do not call elf_end until after dwarf_finish is called. ret_dbg can be deallocated
by calling dwarf_finish, as shown in the following code block:
Elf* elf;
Dwarf_Debug dbg;
dwarf_elf_init_b (elf, ..., &dbg, ...);
...
// ’elf’ must be saved before ’dbg’ is terminated
dwarf_get_elf (dbg, &elf, ...);

// terminate ’dbg’
dwarf_finish (dbg, error);

// terminate ’elf’ (optional)
elf_end(elf);

Note: To simplify the example, only the relevant parameters are found in the
above code. Unlisted parameters are represented by ellipses(...).

dwarf_raw_binary_init operation
The dwarf_raw_binary_init operation initializes libdwarf consumer instance with
all DWARF section provided in raw binary format.

Prototype
int dwarf_raw_binary_init(

Dwarf_Block* dwf_data,
Dwarf_Bool bigendian,
Dwarf_Bool is_64bit,

38 DWARF/ELF Extensions Library Reference

Dwarf_Handler errhand,
Dwarf_Ptr errarg,
Dwarf_Debug* ret_dbg,
Dwarf_Error* error);

Parameters

dwf_data
Input. This is an array of DW_SECTION_NUM_SECTIONS elements. Each element is
of type Dwarf_Block. bl_data points to the start of the debug section, and
bl_len is the size of the debug section.

bigendian
Input. True if the debug sections are encoded in big endian.

is_64bit
Input. True if the debug sections are 64-bit DWARF.

errhand
Input. Error handler. NULL if the default error handler is used.

errarg
Input. When an error condition is triggered within any of the DWARF
Consumer APIs, this object is passed into errhand specified above.

ret_dbg
Output. This is the libdwarf consumer instance.

error
Input/Output. Error. This accepts and returns the Dwarf_Error object.

Return values

DW_DLV_OK
A valid libdwarf consumer instance is returned.

DW_DLV_NO_ENTRY

v Unable to initialize the binder API.
v DWARF debug sections are not present in the given GOFF object.

DW_DLV_ERROR

DW_DLE_RETURN_PTR_NULL
The given ret_dbg is NULL.

DW_DLE_DBG_ALLOC
Cannot allocate memory for ret_dbg.

DW_DLE_ALLOC_FAIL
Cannot allocate memory for internal objects.

dwarf_goff_init_with_csvquery_token operation
Given a CSVQUERY token, this API creates and initializes a libdwarf consumer
instance.

Prototype
int

dwarf_goff_init_with_csvquery_token(
void* eptoken,
Dwarf_Handler errhand,

Chapter 3. Consumer APIs for standard DWARF sections 39

Dwarf_Ptr errarg,
Dwarf_Addr ccode_addr,
Dwarf_Debug* ret_dbg,
Dwarf_Error* error);

Parameters

eptoken
Input. The CSVQUERY token.

errhand
Input. NULL if the default error handler is used.

errarg
Input. When an error condition is triggered within any of the DWARF
consumer operations, this object is passed to the errhand parameter.

code_addr
Input. A real C_CODE address used for relocating all address related to
C_CODE

ret_dbg
Output. libdwarf consumer instance.

error
Error. This accepts or returns a Dwarf_Error object.

Return values

DW_DLV_OK
A valid libdwarf consumer instance is returned.

DW_DLV_NO_ENTRY
Unable to initialize binder API

DWARF debug sections are not present in the given GOFF object.

DW_DLV_ERROR

DW_DLE_RETURN_PTR_NULL
Given ret_dbg is NULL

DW_DLE_DBG_ALLOC
Unable to allocate memory for *ret_dbg

DW_DLE_ALLOC_FAIL
Unable to allocate memory for internal objects

DW_DLE_PROGRAM_OBECT_EDIT_NO
The program object is bound with EDIT=NO.

DW_DLE_PROGRAM_OBJECT_PROCESS_ERROR
Unable to process the input program object.

Cleanups
dwarf_goff_init_with_csvquery (eptoken, ..., &dbg, &err);
...
// terminate ’dbg’
dwarf_finish (dbg, error);

Note: To simplify the example, only the relevant parameters are found in the
above code. Unlisted parameters are represented by ellipses(...).

40 DWARF/ELF Extensions Library Reference

dwarf_goff_init_with_PO_filename operation
Given a GOFF program object filename, this API creates and initializes a libdwarf
consumer instance.

Prototype
int

dwarf_goff_init_with_PO_filename(
char* filename,
Dwarf_Handler errhand,
Dwarf_Ptr errarg,
Dwarf_Addr ccode_addr,
Dwarf_Debug* ret_dbg,
Dwarf_Error* error);

Parameters

filename
Input. GOFF program object file name. It must be encoded in IBM-1047.

errhand
Input. NULL if the default error handler is used.

errarg
Input. When an error condition is triggered within any of the DWARF
consumer operations, the errhand parameter accepts this object.

code_addr
Input. A real C_CODE address used for relocating all address related to
C_CODE

ret_dbg
Output. libdwarf consumer instance.

error
Error. This accepts or returns a Dwarf_Error object.

Return values

DW_DLV_OK
A valid libdwarf consumer instance is returned.

DW_DLV_NO_ENTRY
Unable to initialize binder API

DWARF debug sections are not present in the given GOFF object.

DW_DLV_ERROR

DW_DLE_RETURN_PTR_NULL
Given 'ret_dbg' is NULL

DW_DLE_DBG_ALLOC
Unable to allocate memory for *ret_dbg

DW_DLE_ALLOC_FAIL
Unable to allocate memory for internal objects

DW_DLE_FNO
Unable to open filename.

DW_DLE_NOB
filename is 0 length or it is not a valid GOFF program object.

Chapter 3. Consumer APIs for standard DWARF sections 41

DW_DLE_FNR
Input filename contains invalid characters.

DW_DLE_CANNOT_FIND_FULLPATH
Unable to determine absolute path for filename. Make sure all paths
leading to filename have read and execute permission set.

DW_DLE_PROGRAM_OBECT_EDIT_NO
The program object is bound with EDIT=NO.

DW_DLE_PROGRAM_OBJECT_PROCESS_ERROR
Unable to process the input program object.

Cleanups
Dwarf_Debug dbg;
dwarf_goff_init_with_PO_filename ("a.out", ..., &dbg, &err);
...
// terminate ’dbg’
dwarf_finish (dbg, error);

Note: To simplify the example, only the relevant parameters are found in the
above code. Unlisted parameters are represented by ellipses(...).

ELF symbol table and section consumer operations
This section contains a list of APIs related to accessing information from the ELF
symbol table (.symtab section). These APIs are only applicable to libdwarf
consumer objects that are initialized with libelf objects.

ELF symbol table
Example of a typical ELF symbol table.

In this example, the .text section (Sym 1) contains information for relocating the
addresses within the ELF object file. All relocatable addresses within the ELF object
file have offsets relative to the top of the .text section. The value field corresponds
to the PPA2 address of this compilation unit. In this example the PPA2 block is
0x1d8 bytes from the top of the .text section. The last 32 byte of the name field
contains a string version of the 16-byte MD5 signature that is found in the object
file. For the location of the MD5 signature in the object file, refer to the z/OS
Language Environment Vendor Interfaces.
Sect 18 .symtab symtab off=0x57e 0x6ae size=304 addr=0x0 align=1

flag=0x0 [---] esize=16 info=19 link=17
String table = ".strtab"
Sym 0: value= 0x000, size= 0 sect= undef, type= none, bind= local, name=
Sym 1: value= 0x1d8, size= 0 sect= .text, type= none, bind= local,

name= .ppa2_b_546754C452AA8DEB123556EDD3656CC4
Sym 2: value= 0x000, size= 0 sect= abs, type= file, bind= local, name= a.c
Sym 3: value= 0x000, size= 1 sect= .debug_info, type= sect, bind= local, name=
Sym 4: value= 0x000, size= 1 sect= .debug_line, type= sect, bind= local, name=

Note: Refer to ELF Application Binary Interface Supplement for the layout of the
symbol-table entry.

dwarf_elf_symbol_index_list operation
The dwarf_elf_symbol_index_list operation retrieves an index entry from the ELF
symbol table for a given symbol name.

42 DWARF/ELF Extensions Library Reference

Prototype
int dwarf_elf_symbol_index_list(

Dwarf_Debug dbg,
char * sym_name,
Dwarf_Unsigned** ret_elf_symilst,
Dwarf_Unsigned* ret_elf_symcnt,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

sym_name
Input. This accepts the name of an ELF symbol.

ret_elf_symilst
Output. This returns a list of ELF-symbol indexes that match the given name.

ret_elf_symcnt
Output. This returns the count of the ELF-symbol indexes in the list.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_elf_symbol_index_list operation returns DW_DLV_NO_ENTRY if the
sym_name value is not found in the ELF symbol table.

Memory allocation

You can deallocate the parameters as required.

Example: The following example is a code fragment that deallocates the
ret_elf_symilst parameter:
if (dwarf_elf_symbol_index_list (dbg,...&ret_elf_symilst, &ret_elf_symcnt, &err)

== DW_DLV_OK) {
for (i=0; i<*ret_elf_symcnt; i++)

dwarf_dealloc (ret_elf_symilst[i], DW_DLA_ADDR);
dwarf_dealloc (ret_elf_symilst, DW_DLA_LIST);

}

Note: To simplify the example, only the relevant parameters are found in the
above code. Unlisted parameters are represented by ellipses(...).

dwarf_elf_symbol operation
The dwarf_elf_symbol operation retrieves ELF symbol table-entry data for a given
index.

Prototype
int dwarf_elf_symbol(

Dwarf_Debug dbg,
Dwarf_Unsigned elf_symidx,
char ** ret_sym_name,
Dwarf_Addr* ret_sym_value,
Dwarf_Unsigned* ret_sym_size,
unsigned char* ret_sym_type,

Chapter 3. Consumer APIs for standard DWARF sections 43

unsigned char* ret_sym_bind,
unsigned char* ret_sym_other,
Dwarf_Signed* ret_sym_shndx,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

elf_symidx
Input. This accepts the ELF index.

ret_sym_name
Output. This returns the name of the ELF symbol.

ret_sym_value
Output. This returns the value of the ELF symbol.

ret_sym_size
Output. This returns the size of the ELF symbol.

ret_sym_type
Output. This returns the type of the ELF symbol.

ret_sym_bind
Output. This returns the bind of the ELF symbol.

ret_sym_other
Output. This returns any other required value of the ELF symbol.

ret_sym_shndx
Output. This returns the shndx of the ELF symbol.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_elf_symbol operation returns DW_DLV_NO_ENTRY if:
v The ELF symbol table does not exist
v The value of elf_symidx is out of range

dwarf_elf_section operation
The dwarf_elf_section operation retrieves the ELF section for a given index.

Prototype
int dwarf_elf_section(

Dwarf_Debug dbg,
Dwarf_Signed elf_shndx,
Elf_Scn** ret_elf_scn,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

elf_shndx
Input. This accepts the ELF-index section.

ret_elf_scn
Output. This returns the ELF-section object.

44 DWARF/ELF Extensions Library Reference

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_elf_section operation returns DW_DLV_NO_ENTRY if elf_shndx is out of
range.

Generalized DIE-section consumer APIs
In standard DWARF, there is only one type of DIE-section, namely .debug_info
section. IBM provides extensions to DWARF by introducing additional DIE-sections
(for example, debug_srcfiles). This chapter contains a list of APIs related to
navigating between these DIE-sections.

IBM Extensions to DWARF DIE-sections
This section provides a list of DIE-sections introduced by IBM.

The extended sections are:
v .debug_ppa
v .debug_srcfiles
v .debug_xref

Dwarf_section_type enumeration
This enumeration contains a list of supported DWARF sections supported by CDA.
These values can be used within the APIs for specifying a particular DWARF
section.

Type definition
typedef enum Dwarf_section_type_s {

DW_SECTION_DEBUG_INFO = 0,
DW_SECTION_DEBUG_LINE = 1,
DW_SECTION_DEBUG_ABBREV = 2,
DW_SECTION_DEBUG_FRAME = 3,
DW_SECTION_EH_FRAME = 4,
DW_SECTION_DEBUG_ARANGES = 5,
DW_SECTION_DEBUG_RANGES = 6,
DW_SECTION_DEBUG_PUBNAMES = 7,
DW_SECTION_DEBUG_PUBTYPES = 8,
DW_SECTION_DEBUG_STR = 9,
DW_SECTION_DEBUG_FUNCNAMES = 10,
DW_SECTION_DEBUG_VARNAMES = 11,
DW_SECTION_DEBUG_WEAKNAMES = 12,
DW_SECTION_DEBUG_MACINFO = 13,
DW_SECTION_DEBUG_LOC = 14,
DW_SECTION_DEBUG_PPA = 15,
DW_SECTION_DEBUG_SRCFILES = 16,
DW_SECTION_DEBUG_SRCTEXT = 17,
DW_SECTION_DEBUG_SRCATTR = 18,
DW_SECTION_DEBUG_XREF = 19,
DW_SECTION_NUM_SECTIONS

} Dwarf_section_type;

Only the following DWARF sections are DIE-sections, and can be used for
DIE-section APIs:

Chapter 3. Consumer APIs for standard DWARF sections 45

DW_SECTION_DEBUG_INFO
DW_SECTION_DEBUG_PPA
DW_SECTION_DEBUG_SRCFILES
DW_SECTION_DEBUG_XREF

Members
Dwarf_section_type ELF section name GOFF class name
==
DW_SECTION_DEBUG_INFO .debug_info D_INFO
DW_SECTION_DEBUG_LINE .debug_line D_LINE
DW_SECTION_DEBUG_ABBREV .debug_abbrev D_ABREV
DW_SECTION_DEBUG_FRAME .debug_frame D_FRAME
DW_SECTION_EH_FRAME .eh_frame n/a
DW_SECTION_DEBUG_ARANGES .debug_aranges D_ARNGE
DW_SECTION_DEBUG_RANGES .debug_ranges D_RNGES
DW_SECTION_DEBUG_PUBNAMES .debug_pubnames D_PBNMS
DW_SECTION_DEBUG_PUBTYPES .debug_pubtypes D_TYPES
DW_SECTION_DEBUG_STR .debug_str D_STR
DW_SECTION_DEBUG_FUNCNAMES .debug_funcnames D_SFUNC
DW_SECTION_DEBUG_VARNAMES .debug_varnames D_SVAR
DW_SECTION_DEBUG_WEAKNAMES .debug_weaknames D_WEAK
DW_SECTION_DEBUG_MACINFO .debug_macinfo D_MACIN
DW_SECTION_DEBUG_LOC .debug_loc D_LOC
DW_SECTION_DEBUG_PPA .debug_ppa D_PPA
DW_SECTION_DEBUG_SRCFILES .debug_srcfiles D_SRCF
DW_SECTION_DEBUG_SRCTEXT .debug_srctext D_SRCTXT
DW_SECTION_DEBUG_SRCATTR .debug_srcattr D_SRCATR
DW_SECTION_DEBUG_XREF .debug_xref D_XREF

Dwarf_section_content enumeration
This section provides a list of DWARF section content types supported by CDA.

Type definition
typedef enum {

DW_SECTION_IS_DEBUG_DATA = 0,
DW_SECTION_IS_REL = 1,
DW_SECTION_IS_RELA = 2

} Dwarf_section_content;

Members

The following members are supported:

DW_SECTION_IS_DEBUG_DATA
Use this to retrieve DWARF section that carry debug information. This is
applicable to both ELF object and GOFF program object.

DW_SECTION_IS_REL
Use this to retrieve ELF relocation section for the corresponding DWARF
section specified by the Dwarf_section_type enumeration. This is applicable to
ELF object only.

DW_SECTION_IS_RELA
Use this to retrieve ELF relocation section with addend for the corresponding
DWARF section specified by the Dwarf_section_type enumeration. This is
applicable to ELF object only.

dwarf_debug_section operation
The dwarf_debug_section operation accesses a debug section by specifying the
Dwarf_section_type and the Dwarf_section_content enumerations.

46 DWARF/ELF Extensions Library Reference

The operation supports both debug data, and debug data relocation sections.

Prototype
int dwarf_debug_section(

Dwarf_Debug dbg,
Dwarf_section_type type,
Dwarf_section_content content,
Dwarf_Section* ret_section,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer enumeration.

type
Input. This accepts the debug-section type.

content
Input. This accepts the debug-section content.

ret_section
Output. This returns the Dwarf_Section enumeration.

error
Input/output. This accepts or returns the Dwarf_Error enumeration.

Return values

dwarf_debug_section returns DW_DLV_NO_ENTRY if the debug section does not exist.

dwarf_debug_section_name operation
The dwarf_debug_section_name operation queries the name of a given debug
section.

The operation supports both debug data, and debug data relocation sections.

Prototype
int dwarf_debug_section_name(

Dwarf_Debug dbg,
Dwarf_Section section,
char ** ret_name,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

section
Input. This accepts the Dwarf_Section object.

ret_name
Output. This returns the debug-section name.

error
Input/output. This accepts or returns the Dwarf_Error object.

Chapter 3. Consumer APIs for standard DWARF sections 47

Example: Parameter deallocation

You can deallocate the parameters as required.

The following example is a code fragment that deallocates the ret_name parameter:
if (dwarf_debug_section_name (dbg,...&ret_name, &err)

== DW_DLV_OK) {
dwarf_dealloc (ret_name, DW_DLA_STRING);

}

Note: To simplify the example, only the relevant parameters are found in the
above code. Unlisted parameters are represented by ellipses (...).

For more information about deallocating the error parameter, see Consumer Library
Interface to DWARF, by the UNIX International Programming Languages Special
Interest Group.

dwarf_next_unit_header operation
The dwarf_next_unit_header operation functions like the dwarf_next_cu_header
operation; in addition it queries information in the unit header of any DIE-format
section.

The next invocation of this operation will query the information in the first unit
header.

Note: For more information about the dwarf_next_cu_header operation, see section
5.2.2 in A Consumer Library Interface to DWARF.

Subsequent invocations of this operation pass through the .debug_info section.
When at the end of the section, the next invocation will return to the start of the
section and will query the information in the first unit header.

The related operation is dwarf_reset_unit_header. This operation resets the entry
point of the dwarf_next_header to the beginning of the section.

Prototype
int dwarf_next_unit_header(

Dwarf_Debug dbg,
Dwarf_Section section,
Dwarf_Unsigned* ret_unit_length,
Dwarf_Half* ret_version,
Dwarf_Off* ret_abbrev_ofs,
Dwarf_Half* ret_addr_size,
Dwarf_Off* ret_next_hdr_ofs
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

section
Input. This accepts a Dwarf_Section object.

ret_unit_length
Output. This returns the unit length.

ret_version
Output. This returns the DWARF version.

48 DWARF/ELF Extensions Library Reference

ret_abbrev_ofs
Output. This returns the offset of related .debug_abbr information.

ret_addr_size
Output. This returns the address size.

ret_next_hdr_ofs
Output. This returns the offset to the next unit header in the section.

error
Input/output. This accepts or returns the Dwarf_Error object.

Note: All return parameters can be NULL except ret_next_hdr_ofs.

Return values

dwarf_next_unit_header returns DW_DLV_NO_ENTRY if there are no more unit headers
in the .debug_info section.

dwarf_reset_unit_header operation
The dwarf_reset_unit_header operation directs subsequent calls to the
dwarf_next_unit_header operation to search for the first header unit within the
debug section specified.

A subsequent call to dwarf_next_unit_header retrieves information from the first
unit header within the specified section.

If the section parameter refers to the .debug_info section, a subsequent call to
dwarf_next_cu_header retrieves information from the first unit header within that
section.

Prototype
int dwarf_reset_unit_header (

Dwarf_Debug dbg,
Dwarf_Section section,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

section
Input. This accepts a Dwarf_Section object.

error
Input/output. This accepts or returns the Dwarf_Error object.

DIE locating consumer operations
This section contains a list of APIs for locating a specific DIE within a given DIE
section.

dwarf_rootof operation
The dwarf_rootof operation locates the root DIE of a given DIE-format section unit
the section unit's header offset.

Chapter 3. Consumer APIs for standard DWARF sections 49

Prototype
int dwarf_rootof(

Dwarf_Section section,
Dwarf_Off unit_hdr_offset,
Dwarf_Die* ret_rootdie,
Dwarf_Error* error);

Parameters

section
Input. This accepts the Dwarf_Section object.

unit_hdr_offset
Input. This accepts a unit-header section offset.

ret_rootdie
Output. This returns a root DIE object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_rootof operation returns DW_DLV_NO_ENTRY if the debug section is empty.

Example: Parameter deallocation

You can deallocate the parameters as required.

The following code fragment deallocates the ret_rootdie parameter:
if (dwarf_rootof (section,...&ret_rootdie, &err)

== DW_DLV_OK) {
dwarf_dealloc (ret_rootdie, DW_DLA_DIE);

}

Note: To simplify the example, only the relevant parameters are found in the
above code. Unlisted parameters are represented by ellipses (...).

dwarf_parent operation
The dwarf_parent operation locates the parent DIE of a given DIE.

Prototype
int dwarf_parent(

Dwarf_Die die,
Dwarf_Die* ret_parentdie,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

ret_parentdie
Output. This returns the parent DIE object.

error
Input/output. This accepts or returns the Dwarf_Error object.

50 DWARF/ELF Extensions Library Reference

Return values

The dwarf_parent operation returns DW_DLV_NO_ENTRY if the given DIE does not
have a parent.

Example: Parameter deallocation

You can deallocate the parameters as required.

The following code fragment deallocates the ret_parentdie parameter:
if (dwarf_parent (dbg, &ret_parentdie, &err)

== DW_DLV_OK) {
dwarf_dealloc (ret_parentdie, DW_DLA_DIE);

}

dwarf_offdie_in_section operation
The dwarf_offdie_in_section operation locates the DIE for a given section and
offset.

Prototype
int dwarf_offdie_in_section(

Dwarf_Section section,
Dwarf_Off offset,
Dwarf_Die* ret_die,
Dwarf_Error* error);

Parameters

section
Input. This accepts the Dwarf_Section object.

offset
Input. This accepts a section offset.

ret_die
Output. This returns a DIE object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_offdie_in_section operation returns DW_DLV_NO_ENTRY if the offset
value is out of range.

Example: Parameter deallocation

You can deallocate the parameters as required.

The following code fragment deallocates the ret_die parameter:
if (dwarf_offdie_in_section (section,...&ret_die, &err)

== DW_DLV_OK) {
dwarf_dealloc (ret_die, DW_DLA_DIE);

}

Note: To simplify the example, only the relevant parameters are found in the
above code. Unlisted parameters are represented by ellipses(...).

Chapter 3. Consumer APIs for standard DWARF sections 51

dwarf_nthdie operation
Given a DIE-format section unit, the dwarf_nthdie operation return a DIE given a
DIE index. Every DIE has a unique DIE index, returned by dwarf_dieindex(). The
upper limit of DIE index is given by dwarf_diecount()-1. Note that not every DIE
index within this range maps to a DIE.

Prototype
int dwarf_nthdie(

Dwarf_Section section,
Dwarf_Off unit_hdr_offset
Dwarf_Unsigned die_index,
Dwarf_Die* ret_die,
Dwarf_Error* error);

Parameters

section
Input. This accepts the Dwarf_Section object.

unit_hdr_offset
Input. This accepts an offset for a unit-header section.

die_index
Input. This accepts a DIE index. Note that the root index value is 0.

ret_die
Output. This returns a DIE object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_nthdie operation returns DW_DLV_NO_ENTRY if the die_index value is out
of range.

Example: parameter deallocation

You can deallocate the parameters as required.

The following code fragment deallocates the ret_die parameter:
if (dwarf_nthdie (section,...&ret_die, &err)

== DW_DLV_OK) {
dwarf_dealloc (ret_die, DW_DLA_DIE);

}

Note: To simplify the example, only the relevant parameters are found in the
above code. Unlisted parameters are represented by ellipses(...).

dwarf_clone operation
The dwarf_clone operation returns a copy of the Dwarf_Die object for the given
DIE.

Prototype
int dwarf_clone(

Dwarf_Die die,
Dwarf_Die* ret_die,
Dwarf_Error* error);

52 DWARF/ELF Extensions Library Reference

Parameters

die
Input. This accepts the DIE object.

ret_die
Output. This returns the cloned DIE object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_clone operation returns DW_DLV_NO_ENTRY if die is a NULL DIE (used to
identify a DIE with no children).

Example: Parameter deallocation

You can deallocate the parameters as required.

Example: The code fragment deallocates the ret_die parameter:
if (dwarf_clone (die, &ret_die, &err)

== DW_DLV_OK) {
dwarf_dealloc (ret_die, DW_DLA_DIE);

}

dwarf_pcfile operation
The dwarf_pcfile operation returns the CU DIE that encloses a given PC address.
A CU DIE is a DIE with a DW_TAG_compile_unit tag.

Prototype
int dwarf_pcfile(

Dwarf_Debug dbg,
Dwarf_Addr pc,
Dwarf_Die* ret_die,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

pc Input. This accepts the PC address.

ret_die
Output. This returns the DIE with a DW_TAG_compile_unit tag.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_pcfile operation returns DW_DLV_NO_ENTRY if the ret_die does not
contain the PC address.

Example: parameter deallocation

You can deallocate the parameters as required.

The following code fragment deallocates the ret_die parameter:

Chapter 3. Consumer APIs for standard DWARF sections 53

if (dwarf_pcfile (dbg, pc, &ret_die, &err) == DW_DLV_OK)
dwarf_dealloc(dbg, ret_die, DW_DLA_DIE);

dwarf_pcsubr operation
The dwarf_pcsubr operation returns the subroutine DIE that encloses the given PC
address.

A subroutine DIE is a DIE with a DW_TAG_subprogram tag.

Prototype
int dwarf_pcsubr(

Dwarf_Debug dbg,
Dwarf_Addr pc,
Dwarf_Die* ret_die,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

pc Input. This accepts the PC address.

ret_die
Output. This returns the DIE with a DW_TAG_subprogram tag.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_pcsubr operation returns DW_DLV_NO_ENTRY if the ret_die does not
contain the PC address.

Example: Parameter deallocation

You can deallocate the parameters as required.

Example: The following code fragment deallocates the ret_die parameter:
if (dwarf_pcsubr (dbg, pc, &ret_die, &err) == DW_DLV_OK)

dwarf_dealloc(dbg, ret_die, DW_DLA_DIE);

dwarf_pcscope operation
The dwarf_pcscope operation returns the block DIE that encloses the given PC
address with the smallest range.

The block DIE has a DW_TAG_lexical_block tag.

Prototype
int dwarf_pcscope(

Dwarf_Debug dbg,
Dwarf_Addr pc,
Dwarf_Die* ret_die,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

54 DWARF/ELF Extensions Library Reference

pc Input. This accepts the PC address.

ret_die
Output. This returns the block DIE that is closest to the given address.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_pcscope operation returns DW_DLV_NO_ENTRY if the ret_die does not
contain the PC address.

Example: Parameter deallocation

You can deallocate the parameters as required.

The following code fragment deallocates the ret_die parameter:
if (dwarf_pcscope (dbg, pc, &ret_die, &err) == DW_DLV_OK)

dwarf_dealloc(dbg, ret_die, DW_DLA_DIE);

Multiple DIEs locating consumer operations
This section contains a list of APIs for locating a list of DIEs given one or more
search criteria in s DIE section.

dwarf_tagdies operation
The dwarf_tagdies operation returns all of the DIEs in a given debug-section unit
that have the specified tag.

Prototype
int dwarf_tagdies(

Dwarf_Section section,
Dwarf_Off unit_hdr_offset,
Dwarf_Tag tag,
Dwarf_Die** ret_dielist,
Dwarf_Signed* ret_diecount,
Dwarf_Error* error);

Parameters

section
Input. This accepts a Dwarf_Section object.

unit_hdr_offset
Input. This accepts a unit header section offset.

tag
Input. This accepts a DIE tag.

ret_dielist
Output. This returns a list of DIEs.

ret_diecount
Output. This returns a count of the DIEs in the list.

error
Input/output. This accepts or returns the Dwarf_Error object.

Chapter 3. Consumer APIs for standard DWARF sections 55

Return values

The dwarf_tagdies operation returns DW_DLV_NO_ENTRY if the given tag is not found
in the given section.

Example: Parameter deallocation

You can deallocate the parameters as required.

The following code fragment deallocates the ret_dielist parameter:
if (dwarf_tagdies (section,...&ret_dielist, &ret_diecount, &err)

== DW_DLV_OK) {
for (i=0; i<diecount; i++)

dwarf_dealloc (ret_dielist [i], DW_DLA_DIE);
dwarf_dealloc (ret_dielist, DW_DLA_LIST);

}

Note: To simplify the example, only the relevant parameters are found in the
above code. Unlisted parameters are represented by ellipses(...).

dwarf_attrdies operation
The dwarf_attrdies operation returns all the DIEs in a given debug-section unit
that have a specified attribute.

Prototype
int dwarf_attrdies(

Dwarf_Section section,
Dwarf_Off unit_hdr_offset,
Dwarf_Half attr,
Dwarf_Die** ret_dielist,
Dwarf_Signed* ret_diecount,
Dwarf_Error* error);

Parameters

section
Input. This accepts a Dwarf_Section object.

unit_hdr_offset
Input. This accepts a unit header section offset.

attr
Input. This accepts the ID for a DIE attribute.

ret_dielist
Output. This returns a list of DIEs.

ret_diecount
Output. This returns a count of the DIEs in the list.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_attrdies operation returns DW_DLV_NO_ENTRY if the attr value is not
found in the given section.

56 DWARF/ELF Extensions Library Reference

Example: Parameter deallocation

You can deallocate the parameters as required.

Example: The following code fragment deallocates the ret_dielist parameter:
if (dwarf_tagdies (section,...&ret_dielist, &ret_diecount, &err)

== DW_DLV_OK) {
for (i=0; i<diecount; i++)

dwarf_dealloc (ret_dielist [i], DW_DLA_DIE);
dwarf_dealloc (ret_dielist, DW_DLA_LIST);

}

Note: To simplify the example, only the relevant parameters are found in the
above code. Unlisted parameters are represented by ellipses(...).

dwarf_get_dies_given_name operation
The dwarf_get_dies_given_name operation returns a list of DIEs from a given
section, whose DW_AT_name attributes match a given name.

Prototype
int dwarf_get_dies_given_name(

Dwarf_Section section,
const char* id_name,
Dwarf_Die** ret_dielist,
Dwarf_Signed* ret_diecount,
Dwarf_Error* error);

Parameters

section
Input. This accepts the Dwarf_Section object.

id_name
Input. This accepts the name to be compared with the DW_AT_name attribute of
the DIEs in the section.

ret_dielist
Output. This returns a list of DIEs with a matching DW_AT_name attribute.

ret_diecount
Output. This returns the count of the DIEs in the list.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_get_dies_given_name operation returns DW_DLV_NO_ENTRY if none of the
DW_AT_name attribute match id_name.

Example: Parameter deallocation

You can deallocate the parameters as required.

The following code fragment deallocates the ret_elf_symilst parameter:

Chapter 3. Consumer APIs for standard DWARF sections 57

if (dwarf_get_dies_given_name (section, id_name, &ret_dielist, &ret_diecount, &err)
== DW_DLV_OK) {
for (i=0; i<ret_diecount; i++)

dwarf_dealloc (dbg, ret_dielist[i], DW_DLA_DIE);
dwarf_dealloc (dbg, ret_dielist, DW_DLA_LIST);

}

dwarf_get_dies_given_pc operation
The dwarf_get_dies_given_pc operation returns a list of DIEs, from a given
section, that enclose a given PC address.

The DIEs must have either DW_AT_low_pc and DW_AT_high_pc attributes, or a single
DW_AT_range attribute. The dwarf_get_dies_given_pc operation reviews all the DIEs
in the section and determines the low PC address and high PC address that is
closest to the given address. It then returns all the DIEs with matching address
attributes.

Prototype
int dwarf_get_dies_given_pc(

Dwarf_Section section,
Dwarf_Addr pcaddr,
Dwarf_Die** ret_dielist,
Dwarf_Signed* ret_diecount,
Dwarf_Error* error);;

Parameters

section
Input. This accepts the Dwarf_Section object.

pcaddr
Input. This accepts the initial PC address of the block.

ret_dielist
Output. This returns a list of DIEs that enclose the range.

ret_diecount
Output. This returns the count of the DIEs in the list.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_get_dies_given_pc operation returns DW_DLV_NO_ENTRY if none of the
DIEs contains the given PC address.

Example: Parameter deallocation

You can deallocate the parameters as required.

The following code fragment deallocates the ret_dielist parameter:
if (dwarf_get_dies_given_pc (section, pcaddr, &ret_dielist, &ret_diecount, &err)

== DW_DLV_OK) {
for (i=0; i<ret_diecount; i++)

dwarf_dealloc (dbg, ret_dielist[i], DW_DLA_DIE);
dwarf_dealloc (dbg, ret_dielist, DW_DLA_LIST);

}

58 DWARF/ELF Extensions Library Reference

DIE-query consumer operations
This section contains a list of APIs for specific information about a given DIE.

dwarf_diesection operation
The dwarf_diesection operation looks for the debug section and unit-header offset
of a given DIE.

Prototype
int dwarf_diesection(

Dwarf_Die die,
Dwarf_Section* ret_section,
Dwarf_Off* ret_unit_hdrofs,
Dwarf_Error* error);

Parameters

die
Input. This accepts a DIE object.

ret_section
Output. This returns the Dwarf_Section object.

ret_unit_hdrofs
Output. This returns the section offset of the unit header.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_diesection operation never returns DW_DLV_NO_ENTRY.

dwarf_diecount operation
Given a DIE, the dwarf_diecount operation searches the containing DIE section and
return number of DIE entries within the DIE section. For example, if this operation
returns 12, then the allowable DIE index values are between 0 and 11.

Prototype
int dwarf_diecount(

Dwarf_Die die,
Dwarf_Unsigned* ret_die_count,
Dwarf_Error* error);

Parameters

die
Input. This accepts a DIE object.

ret_die_count
Output. This return the maximum DIE index + 1 for the DIE section. .

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_diecount operation never returns DW_DLV_NO_ENTRY.

Chapter 3. Consumer APIs for standard DWARF sections 59

dwarf_dieindex operation
The dwarf_dieindex operation returns the DIE index for a given DIE.

Prototype
int dwarf_dieindex(

Dwarf_Die die,
Dwarf_Unsigned* ret_die_index,
Dwarf_Error* error);

Parameters

die
Input. This accepts a DIE object.

ret_die_index
Output. This returns the DIE index. Please note that the root index value is 0.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_dieindex operation returns DW_DLV_NO_ENTRY if no index is found for
die.

dwarf_isclone operation
The dwarf_isclone operation compares two Dwarf_Die objects to determine if they
represent the same DIE.

Prototype
int dwarf_isclone(

Dwarf_Die die1,
Dwarf_Die die2,
Dwarf_Bool* returned_bool,
Dwarf_Error* error);

Parameters

die1
Input. This accepts the first DIE object.

die2
Input. This accepts the second DIE object.

returned_bool
Output. This returns the results of the test.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_isclone operation never returns DW_DLV_NO_ENTRY.

dwarf_dietype operation
The dwarf_dietype operation returns the DIE that is pointed to by the DW_AT_type
attribute of a given DIE.

60 DWARF/ELF Extensions Library Reference

Prototype
int dwarf_dietype(

Dwarf_Die die,
Dwarf_Die* ret_typedie,
Dwarf_Error* error);

Parameters

die
Input. This accepts a DIE object with a DW_AT_type attribute.

ret_typedie
Output. This returns the DIE pointed to by the DW_AT_type attribute.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_dietype operation returns DW_DLV_NO_ENTRY if the die does not have a
DW_AT_type attribute.

Example: Parameter deallocation

You can deallocate the parameters as required.

The following code fragment deallocates the ret_die parameter:
if (dwarf_pcscope (die, &ret_typedie, &err) == DW_DLV_OK)

dwarf_dealloc(dbg, ret_typedie, DW_DLA_DIE);

dwarf_refdie operation
The dwarf_refdie operation returns the DIE that is pointed by an arbitrary
attribute of a given DIE. The arbitrary attribute must be referencing a DIE within
the same DWARF debug section, that is, the form of the attribute must be
DW_FORM_ref* (where * can be 1, 2, 4, or 8), not DW_FORM_ref_addr.

Prototype
int dwarf_refdie(

Dwarf_Die die,
Dwarf_Half attr,
Dwarf_Die* ret_refdie,
Dwarf_Error* error);

Parameters

die
Input. This accepts a Dwarf_Die object with an attribute of form DW_FORM_ref*.

attr
Input. This is an attribute of form DW_FORM_ref*.

ret_refdie
Output. This returns the DIE that is pointed by attr.

error
Input/output. This accepts or returns the Dwarf_Error object.

Chapter 3. Consumer APIs for standard DWARF sections 61

Return values

The dwarf_refdie operation returns DW_DLV_NO_ENTRY if the given DIE does not
have the user-specified attribute or the form of the attribute is not DW_FORM_ref*.

Example: Parameter deallocation

You can deallocate the parameters as required.

The following code fragment deallocates the ret_refdie parameter:
if (dwarf_refdie (die, attr, &ret_refdie, &err)

== DW_DLV_OK) {
dwarf_dealloc (dbg, ret_refdie, DW_DLA_DIE);

}

dwarf_refaddr_die operation
The dwarf_refaddr_die operation queries the DIE pointed by an arbitrary attribute.
The arbitrary attribute can reference a DIE in any DWARF debug section. This API
supports attribute form of DW_FORM_refaddr and DW_FORM_sec_offset.

Prototype
int dwarf_refaddr_die(

Dwarf_Die die,
Dwarf_Half attr,
Dwarf_section_type ref_sec_type,
Dwarf_Die* ret_refdie,
Dwarf_Error* error);

Parameters

die
Input. Input DIE object.

attr
Input. Input DIE attribute id that is referencing a DIE.

ref_sec_type
Input. DWARF section type of the referenced DIE.

ret_refdie
Output. Referenced DIE.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
The DIE object referenced by the user specified attribute is returned.

DW_DLV_NO_ENTRY

v The given die does not have the user specified attribute.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v The given die is NULL.
v The given ret_dies is NULL.
v Cannot locate a DWARF debug instance associated with the given die.
v An error is encountered when allocating memory for the returned object.

62 DWARF/ELF Extensions Library Reference

v The form of the attribute and the given ref_sec_type is not a valid
combination.

DIE-attribute query consumer operation
This section contains a list of APIs for querying a specific attribute about a given
DIE.

dwarf_attr_offset operation
The dwarf_attr_offset operation returns the section offset of the given attribute.

Prototype
int dwarf_attr_offset(

Dwarf_Die die,
Dwarf_Attribute attr,
Dwarf_Off* attr_offset,
Dwarf_Error* error);

Parameters

die
Input. This accepts a DIE object.

attr
Input. This accepts a DIE attribute.

returned_offset
Output. This returns the offset of the attribute.

error
Input/output. This accepts or returns the Dwarf_Error object.

Note: This API relies on the input die to determine the DIE section that owns the
attribute. If the die and the attr values are not related, the result is meaningless.

dwarf_data_bitoffset operation
The dwarf_data_bitoffset operation queries the bit offset attribute
(DW_AT_data_bit_offset) associated with a given DIE.

Prototype
int dwarf_data_bitoffset(

Dwarf_Die die,
Dwarf_Unsigned* returned_offset,
Dwarf_Error* error);

Parameters

die
Input. This accepts a Dwarf_Die object.

returned_offset
Output. This returns the bit offset value in the DW_AT_data_bit_offset
attribute.

error
Input/output. This accepts or returns the Dwarf_Error object.

Chapter 3. Consumer APIs for standard DWARF sections 63

Return values

The dwarf_data_bitoffset operation returns DW_DLV_NO_ENTRY if
DW_AT_data_bit_offset is not one of the attributes in die.

dwarf_die_xref_coord operation
The dwarf_die_xref_coord operation queries the DW_AT_IBM_xref_coord attribute
associated with a given DIE. It retrieves the list of source coordinates in which the
variable represented by the given DIE is referenced within the source program. The
source coordinate is returned as a pair of integers (line number and column
number).

Prototype
int

dwarf_die_xref_coord(
Dwarf_Die die,
Dwarf_Unsigned **ret_lineno,
Dwarf_Unsigned **ret_colno,
Dwarf_Unsigned *ret_count,
Dwarf_Error* error);

Parameters

die
Input. This accepts a Dwarf_Die object.

ret_lineno
Output. This returns an array of elements containing the source line number.

ret_colno
Output. This returns an array of elements containing the source column
number. This is zero if the column number is not used.

ret_count
Output. This returns the number of elements in the array.

error
Input/output. This accepts or returns the Dwarf_Error object.

Cleanups
Dwarf_Die die;
Dwarf_Unsigned* lineno_arr;
Dwarf_Unsigned* colno_arr;
Dwarf_Unsigned arr_count;

dwarf_die_xref_coord(die, &lineno_arr, &colno_arr, &arr_count, &err);

dwarf_dealloc (dbg, lineno_arr, DW_DLA_ADDR);
dwarf_dealloc (dbg, colno_arr, DW_DLA_ADDR);

Return values

DW_DLV_OK
DW_AT_IBM_xref_coord is found, and the list of source coordinates are returned.

DW_DLV_NO_ENTRY
DW_AT_IBM_xref_coord is not one of the attributes in the DIE.

DW_DLV_NO_ENTRY

DW_DLE_DIE_NULL
The given 'die' is NULL

64 DWARF/ELF Extensions Library Reference

DW_DLE_DBG_NULL
Can not locate a DWARF debug instance associated with the given 'die'

DW_DLE_RETURN_PTR_NULL
The given 'ret_lineno' or 'ret_colno' or 'ret_count' is NULL

DW_DLE_ALLOC_FAIL
There is an error allocating memory for the returned parameters.

High level PC location consumer APIs
These APIs support access to line-number programs and symbolic information for
the instruction at a given PC location.

Dwarf_PC_Locn object
This opaque data type is used as a descriptor for queries about information related
to a PC location. An instance of the Dwarf_PC_Locn type is created as a result of a
successful call to dwarf_pclocns. The storage pointed to by this descriptor should
be not be freed using the dwarf_dealloc operation. Instead free it with the
dwarf_pc_locn_term operation.

Type definition
typedef struct Dwarf_PC_Locn_s* Dwarf_PC_Locn;

Dwarf_Subpgm_Locn object
This opaque data type is used as a descriptor for queries about subprogram
line-number programs related to a PC location. An instance of the
Dwarf_Subpgm_Locn type is created as a result of a successful call to the
dwarf_pc_locn_list operation. This is a persistent copy and should not be freed.

Type definition
typedef struct Dwarf_Subpgm_Locn_s* Dwarf_Subpgm_Locn;

dwarf_pclocns operation
The dwarf_pclocns operation creates a PC object if given a PC address.

Prototype
int dwarf_pclocns(

Dwarf_Debug dbg,
Dwarf_Addr pc_of_interest,
Dwarf_PC_Locn* ret_locn,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

pc_of_interest
Input. This accepts the PC address.

ret_locn
Output. This returns the Dwarf_PC_Locn object.

Refer to “Example: Parameter deallocation” on page 66.

error
Input/output. This accepts or returns the Dwarf_Error object.

Chapter 3. Consumer APIs for standard DWARF sections 65

Return values

The dwarf_pclocns operation returns DW_DLV_NO_ENTRY if the subprogram's
line-number table does not exist.

Example: Parameter deallocation

You can deallocate the parameters as required.

The following code fragment deallocate the ret_locn parameter:
if (dwarf_pclocns (dbg,...&ret_locn, &err)

== DW_DLV_OK) {
dwarf_pc_locn_term (ret_locn, &err);

}

Note: For reasons of clarity, not all the parameters have been entered in the above
code. Unlisted parameters are represented by ellipses (...).

dwarf_pc_locn_term operation
The dwarf_pc_locn_term operation terminates the given Dwarf_PC_Locn object.

Prototype
int dwarf_pc_locn_term(

Dwarf_PC_Locn locn,
Dwarf_Error* error);

Parameters

locn
Input. This accepts a Dwarf_PC_Locn object.

error
Input/output. This accepts or returns the Dwarf_Error object.

dwarf_pc_locn_abbr_name operation
The dwarf_pc_locn_abbr_name operation queries the abbreviated name for the
given PC-location object.

Prototype
int dwarf_pc_locn_abbr_name(

Dwarf_PC_Locn locn,
char** ret_abbr_name,
Dwarf_Error* error);

Parameters

locn
Input. This accepts the Dwarf_PC_Locn object.

ret_abbr_name
Output. This returns the abbreviation for the name.

error
Input/output. This accepts or returns the Dwarf_Error object.

dwarf_pc_locn_set_abbr_name operation
The dwarf_pc_locn_set_abbr_name operation sets the abbreviated name for the
given PC-location object.

66 DWARF/ELF Extensions Library Reference

Prototype
int dwarf_pc_locn_set_abbr_name(

Dwarf_PC_Locn locn,
char* abbr_name,
Dwarf_Error* error);

Parameters

locn
Input. This accepts the Dwarf_PC_Locn object.

abbr_name
Input. This accepts the abbreviation name.

error
Input/output. This accepts or returns the Dwarf_Error object.

dwarf_pc_locn_entry operation
The dwarf_pc_locn_entry operation queries the entry information for a given
Dwarf_PC_Locn object.

Prototype
int dwarf_pc_locn_entry(

Dwarf_PC_Locn locn,
Dwarf_Die* ret_unit_die,
Dwarf_Off* ret_ep_offset,
Dwarf_Error* error);

Parameters

locn
Input. This accepts the Dwarf_PC_Locn object.

ret_unit_die
Output. This returns the unit DIE.

ret_ep_offset
Output. This returns the entry point offset.

error
Input/output. This accepts or returns the Dwarf_Error object.

dwarf_pc_locn_list operation
The dwarf_pc_locn_list operation describes the subprograms which have
contributed to a given PC object.

Prototype
int dwarf_pc_locn_list(

Dwarf_PC_Locn locn,
Dwarf_Subpgm_Locn** ret_subpgms,
Dwarf_Signed* ret_n_subpgms,
Dwarf_Error* error);

Parameters

locn
Input. This accepts the Dwarf_PC_Locn object.

ret_subpgms
Output. This returns the Dwarf_Subpgm_Locn object.

Chapter 3. Consumer APIs for standard DWARF sections 67

ret_n_subpgms
Output. This returns a count of the list entries.

error
Input/output. This accepts or returns the Dwarf_Error object.

dwarf_subpgm_locn operation
The dwarf_subpgm_locn operation queries the details from a subprogram
contribution to a given PC address.

Prototype
int dwarf_subpgm_locn(

Dwarf_Subpgm_Locn subpgm_locn,
Dwarf_Locn_Origin_t* ret_origin,
Dwarf_Die* ret_subpgm_die,
Dwarf_Line* ret_line,
Dwarf_Error* error);

Parameters

subpgm_locn
Input. This accepts the Dwarf_Subpgm_Locn object.

ret_origin
Output. This returns the contribution type.

ret_subpgm_die
Output. This returns the subprogram DIE.

ret_line
Output. This returns the line-matrix row.

error
Input/output. This accepts or returns the Dwarf_Error object.

DWARF flag operations
This section contains a list of APIs for testing or setting the flag bits within a
DWARF flag object.

dwarf_flag_any_set operation
The dwarf_flag_any_set operation tests whether or not any of the Dwarf_Flag
index bit are set.

Prototype
int dwarf_flag_any_set (

Dwarf_Debug dbg,
Dwarf_Flag* flags,
Dwarf_Bool* ret_anyset,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

flags
Input/Output. This accepts or returns the Dwarf_Flag object.

68 DWARF/ELF Extensions Library Reference

ret_anyset
Output. This returns the Boolean value which indicates whether or not any bit
index is set.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_flag_any_set operation never returns DW_DLV_NO_ENTRY.

Memory deallocation

There is no storage to deallocate.

dwarf_flag_clear operation
The dwarf_flag_clear operation clears the given Dwarf_Flag index bit.

Prototype
int dwarf_flag_clear (

Dwarf_Debug dbg,
Dwarf_Flag* flags,
int bit_idx,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

flags
Input/Output. This accepts or returns the Dwarf_Flag object.

bit_idx
Input. This accepts the flag bit index to clear. It can be a value from 0 to 31.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_flag_clear operation never returns DW_DLV_NO_ENTRY.

Memory deallocation

There is no storage to deallocate.

dwarf_flag_complement operation
The dwarf_flag_complement operation complements the given Dwarf_Flag index bit.

Prototype
int dwarf_flag_complement (

Dwarf_Debug dbg,
Dwarf_Flag* flags,
int bit_idx,
Dwarf_Error* error);

Chapter 3. Consumer APIs for standard DWARF sections 69

Parameters

dbg
Input. This accepts a libdwarf consumer object.

flags
Input/Output. This accepts or returns the Dwarf_Flag object.

bit_idx
Input. This accepts the flag bit index to complement. It can be a value from 0
to 31.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_flag_complement operation never returns DW_DLV_NO_ENTRY.

Memory allocation

There is no storage to deallocate.

dwarf_flag_copy operation
The dwarf_flag_copy operation sets or clears the given Dwarf_Flag bit index.

dwarf_flag_copy copies a given Boolean value into the bit index.

Prototype
int dwarf_flag_copy (

Dwarf_Debug dbg,
Dwarf_Flag* flags,
int bit_idx,
Dwarf_Bool val,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

flags
Input/Output. This accepts or returns the Dwarf_Flag object.

bit_idx
Input. This accepts the flag bit index to set or clear. It can be a value from 0 to
31.

val
Input. This accepts the Boolean value which indicates whether to set or clear
the bit index.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_flag_copy operation never returns DW_DLV_NO_ENTRY.

70 DWARF/ELF Extensions Library Reference

Memory deallocation

There is no storage to deallocate.

dwarf_flag_reset operation
The dwarf_flag_reset operation clears all the Dwarf_Flag index bits.

Prototype
int dwarf_flag_reset (

Dwarf_Debug dbg,
Dwarf_Flag* flags,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

flags
Input/Output. This accepts or returns the Dwarf_Flag object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_flag_reset operation never returns DW_DLV_NO_ENTRY.

Memory deallocation

There is no storage to deallocate.

dwarf_flag_set operation
The dwarf_flag_set operation sets the given Dwarf_Flag index bit.

Prototype
int dwarf_flag_set (

Dwarf_Debug dbg,
Dwarf_Flag* flags,
int bit_idx,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

flags
Input/Output. This accepts or returns the Dwarf_Flag object.

bit_idx
Input. This accepts the flag bit index to set. It can be a value from 0 to 31.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_flag_set operation never returns DW_DLV_NO_ENTRY.

Chapter 3. Consumer APIs for standard DWARF sections 71

Memory deallocation

There is no storage to deallocate.

dwarf_flag_test operation
The dwarf_flag_test operation tests whether or not the given Dwarf_Flag index bit
is set.

Prototype
int dwarf_flag_test (

Dwarf_Debug dbg,
Dwarf_Flag* flags,
int bit_idx,
Dwarf_Bool* ret_bitset,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

flags
Input/Output. This accepts or returns the Dwarf_Flag object.

bit_idx
Input. This accepts the flag bit index to test. It can be a value from 0 to 31.

ret_bitset
Output. This returns the Boolean value which indicates whether or not the bit
index is set.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_flag_test operation never returns DW_DLV_NO_ENTRY.

Memory deallocation

There is no storage to deallocate.

Accelerated access consumer operations
This section contains a list of APIs related to accelerated access debug sections. For
more information about accelerated access debug sections, refer to Section 6.1 in
DWARF Debugging Information Format, V4.

For a description of DWARF debugging sections, see “Dwarf_section_type
enumeration” on page 45.

IBM extensions to accelerated access debug sections
This section provides a list of accelerated access debug sections supported by CDA.

Lookup by Name debug sections available via standard DWARF:

.debug_pubnames
Stores names of global objects and functions.

72 DWARF/ELF Extensions Library Reference

.debug_pubtypes
Stores names of global types.

.debug_funcnames
Stores names of file-scoped static functions.

.debug_varnames
Stores names of file-scoped static data symbols.

.debug_weaknames
Stores names of weak symbols.

Lookup by Address debug sections available via standard DWARF:

.debug_aranges
Stores addresses of compilation units.

Dwarf_section_type object
The Dwarf_section_type data structure allows access to the ELF information
through the DWARF sections. Dwarf_section_type can access section numbers and
ELF section name indexes in the symbol table.

Type definition
typedef enum Dwarf_section_type_s {

DW_SECTION_DEBUG_INFO = 0,
DW_SECTION_DEBUG_LINE = 1,
DW_SECTION_DEBUG_ABBREV = 2,
DW_SECTION_DEBUG_FRAME = 3,
DW_SECTION_EH_FRAME = 4,
DW_SECTION_DEBUG_ARANGES = 5,
DW_SECTION_DEBUG_RANGES = 6,
DW_SECTION_DEBUG_PUBNAMES = 7,
DW_SECTION_DEBUG_PUBTYPES = 8,
DW_SECTION_DEBUG_STR = 9,
DW_SECTION_DEBUG_FUNCNAMES = 10,
DW_SECTION_DEBUG_VARNAMES = 11,
DW_SECTION_DEBUG_WEAKNAMES = 12,
DW_SECTION_DEBUG_MACINFO = 13,
DW_SECTION_DEBUG_LOC = 14,
DW_SECTION_DEBUG_PPA = 15,
DW_SECTION_DEBUG_SRCFILES = 16,
DW_SECTION_DEBUG_SRCTEXT = 17,
DW_SECTION_DEBUG_SRCATTR = 18,
DW_SECTION_DEBUG_XREF = 19,
DW_SECTION_NUM_SECTIONS

} Dwarf_section_type;

Only the following DWARF sections are accelerated access debug sections, and can
be used for accelerated access debug section APIs:
DW_SECTION_DEBUG_ARANGES
DW_SECTION_DEBUG_PUBNAMES
DW_SECTION_DEBUG_PUBTYPES
DW_SECTION_DEBUG_FUNCNAMES
DW_SECTION_DEBUG_VARNAMES
DW_SECTION_DEBUG_WEAKNAMES

Members
Dwarf_section_type ELF section name GOFF class name
==
DW_SECTION_DEBUG_INFO .debug_info D_INFO
DW_SECTION_DEBUG_LINE .debug_line D_LINE
DW_SECTION_DEBUG_ABBREV .debug_abbrev D_ABREV

Chapter 3. Consumer APIs for standard DWARF sections 73

DW_SECTION_DEBUG_FRAME .debug_frame D_FRAME
DW_SECTION_EH_FRAME .eh_frame n/a
DW_SECTION_DEBUG_ARANGES .debug_aranges D_ARNGE
DW_SECTION_DEBUG_RANGES .debug_ranges D_RNGES
DW_SECTION_DEBUG_PUBNAMES .debug_pubnames D_PBNMS
DW_SECTION_DEBUG_PUBTYPES .debug_pubtypes D_TYPES
DW_SECTION_DEBUG_STR .debug_str D_STR
DW_SECTION_DEBUG_FUNCNAMES .debug_funcnames D_SFUNC
DW_SECTION_DEBUG_VARNAMES .debug_varnames D_SVAR
DW_SECTION_DEBUG_WEAKNAMES .debug_weaknames D_WEAK
DW_SECTION_DEBUG_MACINFO .debug_macinfo D_MACIN
DW_SECTION_DEBUG_LOC .debug_loc D_LOC
DW_SECTION_DEBUG_PPA .debug_ppa D_PPA
DW_SECTION_DEBUG_SRCFILES .debug_srcfiles D_SRCF
DW_SECTION_DEBUG_SRCTEXT .debug_srctext D_SRCTXT
DW_SECTION_DEBUG_SRCATTR .debug_srcattr D_SRCATR
DW_SECTION_DEBUG_XREF .debug_xref D_XREF

dwarf_access_aranges operation
The dwarf_access_aranges operation returns all the address-range information for
a given consumer object, in ascending order by address.

Prototype
int dwarf_access_aranges(

Dwarf_Debug dbg,
Dwarf_Arange** aranges,
Dwarf_Signed* arange_count,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

aranges
Output. This returns the list of Dwarf_Arange entries.

highpc
Output. This returns the count of entries in the list.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_access_aranges operation never returns DW_DLV_NO_ENTRY.

Memory allocation

The address range array is a persistent copy, associated with the consumer
instance. The array must be deallocated by dwarf_finish.

dwarf_find_arange operation
The dwarf_find_arange operation uses a binary search and returns the
address-range entry for a given PC location.

74 DWARF/ELF Extensions Library Reference

Prototype
int dwarf_find_arange (

Dwarf_Debug dbg,
Dwarf_Addr pc_of_interest,
Dwarf_Arange* returned_arange,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

pc_of_interest
Input. This accepts a PC address.

returned_arange
Output. This returns the address-range entry for the PC address.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_find_arange operation never returns DW_DLV_NO_ENTRY.

Memory allocation

There is no storage to deallocate.

dwarf_get_die_given_name_cuoffset operation
The dwarf_get_die_given_name_cuoffset operation queries a global name lookup
table, searching for a DIEs that match a given a name.

The search is narrowed by specifying the required unit-header offsets. This
function can find a single, specific match, if it exists in the DWARF file.

Prototype
int dwarf_get_die_given_name_cuoffset (

Dwarf_Debug dbg,
Dwarf_section_type sec_type,
const char* name,
Dwarf_Off unit_hdr_off,
Dwarf_Die** ret_die,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

sec_type
Input. This accepts the name of the debug section containing the name lookup
table.

name
Input. This accepts the name.

unit_hdr_off
Input. This accepts the unit-header offset.

Chapter 3. Consumer APIs for standard DWARF sections 75

ret_die
Output. This returns the DIE object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

If the value of the name parameter cannot be found in the specified lookup table,
DW_DLV_NO_ENTRY is returned.

Memory allocation

You can deallocate the parameters as required.

Example: The following example is a code fragment that deallocates the ret_die
parameter:
if (dwarf_get_die_given_name_cuoffset (dbg,...&ret_die, &err)

== DW_DLV_OK) {
dwarf_dealloc (dbg, ret_die, DW_DLA_DIE);

}

Note: For reasons of clarity, not all the parameters have been entered in the above
code. Unlisted parameters are represented by ellipses (...).

dwarf_get_dies_given_nametbl operation
The dwarf_get_dies_given_nametbl operation queries a global name lookup table,
searching for DIEs with a given a name.

The search is narrowed to sections with a given section name.

Prototype
int dwarf_get_dies_given_nametbl (

Dwarf_Debug dbg,
Dwarf_section_type sec_type,
const char* name,
Dwarf_Die** ret_dielist,
Dwarf_Unsigned* ret_diecount,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

sec_type
Input. This accepts one of the five valid types for the name lookup table.

name
Input. This accepts the name of an entry within the lookup table.

ret_dielist
Output. This returns a list of DIE objects.

ret_diecount
Output. This returns the count of the DIE objects in the list.

error
Input/output. This accepts or returns the Dwarf_Error object.

76 DWARF/ELF Extensions Library Reference

Return values

If the debug sections for the name lookup table have multiple entries with the
same name, then all entries matching the name will be returned. If the value of the
name parameter cannot be found in the specified lookup table, then
DW_DLV_NO_ENTRY is returned.

Memory allocation

You can deallocate the parameters as required.

Example: The following example is a code fragment that deallocates the dielist
parameter:
if (dwarf_get_dies_given_nametbl (dbg,...&dielist, &diecount, &err)

== DW_DLV_OK) {
for (i=0; i<diecount; i++)

dwarf_dealloc (dbg, dielist[i], DW_DLA_DIE);
dwarf_dealloc (dbg, dielist, DW_DLA_LIST);

}

Note: For reasons of clarity, not all the parameters have been entered in the above
code. Unlisted parameters are represented by ellipses (...).

Non-contiguous address ranges consumer operations
This sections contains a list of APIs for querying information within the
.debug_ranges section.

dwarf_get_ranges_given_offset operation
The dwarf_get_ranges_given_offset operation returns a unordered list of address
ranges for given an offset within the .debug_ranges section.

Prototype
int dwarf_get_ranges_given_offset (

Dwarf_Debug dbg,
Dwarf_Off offset,
Dwarf_Ranges** ret_ranges,
Dwarf_Unsigned* ret_count,
Dwarf_Off* ret_nextoff,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

offset
Input. This accepts the offset to use in the .debug_ranges section.

ret_ranges
Output. This returns the array of ranges.

ret_count
Output. This returns the number of entries in the array.

ret_nextoff
Output. This returns the offset of the next entry in the array.

error
Input/output. This accepts or returns the Dwarf_Error object.

Chapter 3. Consumer APIs for standard DWARF sections 77

Return values

dwarf_get_ranges_given_offset returns DW_DLV_NO_ENTRY if either the .debug_info
or the .debug_ranges section is empty.

Memory allocation

You can deallocate the parameters as required.

Example: The following example is a code fragment that deallocates the
ret_ranges parameter:
if (dwarf_get_ranges_given_offset (dbg,...&ret_ranges, &ret_count,...&err)

== DW_DLV_OK) {
for (i=0; i<ret_count; i++)

dwarf_dealloc (dbg, ret_ranges[i], DW_DLA_RANGES);
dwarf_dealloc (dbg, ret_ranges, DW_DLA_LIST);

}

Note: For reasons of clarity, not all the parameters have been entered in the above
code. Unlisted parameters are represented by ellipses (...).

dwarf_range_highpc operation
The dwarf_range_highpc operation returns the high PC of a given range entry.

Prototype
int dwarf_range_highpc (

Dwarf_Debug dbg,
Dwarf_Ranges range_entry,
Dwarf_Addr* highpc,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

range_entry
Input. This accepts the range entry.

highpc
Output. This returns the high PC of the range entry.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

dwarf_range_highpc returns DW_DLV_NO_ENTRY if the range entry is empty.

Memory allocation

There is no storage to deallocate.

dwarf_range_lowpc operation
The dwarf_range_lowpc operation returns the low PC of a given range entry.

78 DWARF/ELF Extensions Library Reference

Prototype
int dwarf_range_lowpc (

Dwarf_Debug dbg,
Dwarf_Ranges range_entry,
Dwarf_Addr* lowpc,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

range_entry
Input. This accepts the range entry.

lowpc
Output. This returns the low PC of the range entry.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

dwarf_range_lowpc returns DW_DLV_NO_ENTRY if the range entry is empty.

Memory allocation

There is no storage to deallocate.

Chapter 3. Consumer APIs for standard DWARF sections 79

80 DWARF/ELF Extensions Library Reference

Chapter 4. Program Prolog Area (PPA) extension

The Program Prolog Area (PPA) blocks are data areas in DWARF consumer APIs
that conform to the Language Environment runtime conventions.

PPA blocks are generated by a language translator, which might be either of:
v A compiler.
v A high-level assembler (HLASM), when using the appropriate LE prolog and

epilog macros.

PPA blocks are also referred to as Prolog Information Blocks.

An application can use the PPA blocks to:
v Identify compilation units (CUs) and some of their characteristics (PPA2).
v Identify subprograms (that is, functions, methods, subroutines) and some of

their characteristics (PPA1).

IBM has created extensions to the DWARF sections and Debug Information Entries
(DIEs) to support PPA information. For more information about these sections,
refer to Appendix 7 in DWARF Debugging Information Format, V3, Draft 7.

Debug section
This section discusses the PPA debug section, which is an IBM extension.

The .debug_ppa section is an IBM extension. It contains Debug Information Entries
(DIEs) which describe the PPA blocks in each application executable module. The
PPA block information is used to permit a common set of high-level routines to
provide access to the program attribute information which is stored in, or located
by, each PPA block. This information originates during the program translation
process (compilation or assembly), and initially describes the PPA blocks for a
single CU.

The .debug_ppa section is required when relocating the ELF file. The relocation
process is as follows:
v A scan of the module storage is performed to locate each PPA1 and PPA2 block
v The location of each PPA block is determined
v The location of all .debug_ppa sections are adjusted to match the physical

location of each PPA block in the module

The granularity of the .debug_ppa information is at the CU level. A separate block
will be generated that contains the DIEs for a single PPA2 block and the associated
set of PPA1 blocks. Each .debug_ppa section block may share the associated
.debug_abbr section block, but will have a separate .rela.debug_ppa relocation
section block.

The following example shows a typical .debug_ppa section:
.debug_ppa

<header overall offset = 0>unit_hdr_off:
<0>< 11> DW_TAG_IBM_ppa2

© Copyright IBM Corp. 2004, 2015 81

DW_AT_low_pc 0x108
DW_AT_IBM_ppa_owner 11
DW_AT_name .ppa2_b_B078078AFCCD2F705FDE73A5D3D4E967

<1>< 61> DW_TAG_IBM_ppa1
DW_AT_low_pc 0x98
DW_AT_IBM_ppa_owner 322

For more information about the structure of debug sections, see “DWARF program
information” on page 2.

Block header
Each block of information in the .debug_ppa section begins with a header that
contains the location-format information. This header does not replace any
debugging information entries. It is additional information that is represented
outside the standard DWARF tag/attributes format. It is used to navigate the
information blocks in the .debug_ppa section. This is similar in format and intent to
the standard Compile-Unit Header

The .debug_ppa block header contains:
1. block_length (initial length). A 4-byte or 12-byte unsigned integer representing

the length of the .debug_ppa block, not including the length of the field itself.
In the 32-bit Dwarf format, this is a 4-byte unsigned integer (which must be
less than 0xFFFFFF00). In the 64-bit format, this is a 12-byte unsigned integer
that consists of the 4-byte value 0xFFFFFFFF followed by an 8-byte unsigned
integer that gives the actual value of the integer.

2. version. A 2-byte unsigned integer representing the version of the DWARF
information for that block of .debug_ppa information

3. debug_abbrev_offset (section offset). A 4-byte or 8-byte unsigned offset into the
.debug_abbrev section that associates the PPA location format information with
a particular set of debugging information entry abbreviations

4. address_size (ubyte). A 1-byte unsigned integer representing the size in bytes of
an address on the target architecture. If the system uses segmented addressing,
this value represents the size of the offset portion of an address.

Section-specific DIEs

A .debug_ppa section can have the following DIEs:
v DW_TAG_IBM_ppa1 describes a single PPA1 block. It can be a child of a

DW_TAG_IBM_ppa2 DIE.
v DW_TAG_IBM_ppa2 describes a single PPA2 block and its related set of

CU-level PPA1 location information.

Reference section

DIEs in the .debug_ppa block can reference the following DIEs:
v Other DIEs in the .debug_ppa section
v DIEs in the .debug_info section.

A PPA2 (CU-level) block:
v Is described by a DW_TAG_IBM_ppa2 DIE
v Can contain a DW_AT_low_pc attribute to describe the starting address of the

block

82 DWARF/ELF Extensions Library Reference

v Can contain a DW_AT_IBM_ppa_owner attribute to describe the location of the
corresponding DW_TAG_compilation_unit DIE in the .debug_info section

v Can contain a DW_AT_name attribute to describe a unique signature to identify
the CU

A PPA1 block:
v Is described by a DW_TAG_IBM_ppa1 DIE, using a DW_AT_low_pc attribute
v Can contain a DW_AT_low_pc attribute to describe the starting address of the

block
v Can contain a DW_AT_IBM_ppa_owner attribute to describe the location of the

corresponding DW_TAG_subprogram DIE in the .debug_info section

Companion sections
For each block of information in the .debug_ppa block, there will also be an
associated block in the .debug_abbrev and .rela.debug_ppa sections.

.debug_abbrev contains a list of abbreviation tables. The tables describe the
low-level encoding for each particular form of DIE. This will be a DIE tag,
optionally associated with a specific grouping of attribute entries. Each attribute
will have an associated form code which describes the precise encoding of the data
for each attribute. For more information about abbreviation-table encoding, see the
DWARF Debugging Information Format Standard, V3, Draft 7.

.rel.debug_ppa contains ELF-format relocation entries which are used to perform
relocations related to the .debug_ppa information. These relocations are section
offsets only.

While not strictly part of the .debug_ppa information, there are additional blocks
of debug sections that would also normally be generated to make this section
useful. These include the .debug_info and .debug_line sections.

Attributes forms
The DWARF attribute form governs how the value of a Debug Information Entry
(DIE) attribute is encoded. The IBM extensions to DWARF do not introduce new
attribute form codes, but extend their usage.

The Attribute Form Class ppaptr can identify any debugging information entry
within a .debug_ppa section. This type of reference (DW_FORM_sec_offset in DWARF
V4, DW_FORM_data4 and DW_FORM_data8 in DWARF V3) is an offset from the
beginning of the .debug_ppa section.

PPA consumer operations
This section discusses the PPA consumer operations.

dwarf_get_all_ppa2dies operation
The dwarf_get_all_ppa2dies operation finds and returns the list of all
DW_TAG_IBM_ppa2 DIE objects.

Chapter 4. Program Prolog Area (PPA) extension 83

Prototype
int dwarf_get_all_ppa2dies (

Dwarf_Debug dbg,
Dwarf_Die** ret_dielist,
Dwarf_Signed* ret_diecount,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

ret_dielist
Output. This returns a list of PPA2 DIE objects.

ret_diecount
Output. This returns the count of the PPA2 DIE objects in the list.

error
Input/output. This accepts and returns the Dwarf_Error object.

Return values

The dwarf_get_all_ppa2dies operation returns DW_DLV_NO_ENTRY if it cannot find
any PPA2 DIE objects in the specified unit of the debug section.

Memory allocation

You can deallocate the parameters as required.

Example: A code fragment that deallocates the ret_dielist parameter:
if (dwarf_get_all_ppa2dies (dbg,&dielist, &diecount, &err)

== DW_DLV_OK) {
for (i=0; i < diecount; i++)

dwarf_dealloc (dbg, dielist[i], DW_DLA_DIE);
dwarf_dealloc (dbg, dielist, DW_DLA_LIST);

}

dwarf_get_all_ppa1dies_given_ppa2die operation
The dwarf_get_all_ppa1dies_given_ppa2die operation returns a list of
DW_TAG_IBM_ppa1 DIE objects for a given DW_TAG_IBM_ppa2 DIE object.

Prototype
int dwarf_get_all_ppa1dies_given_ppa2die (

Dwarf_Debug dbg,
Dwarf_Die ppa2_die,
Dwarf_Die** ret_dielist,
Dwarf_Signed* ret_diecount,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

ppa2_die
Input. This accepts a PPA2 DIE object.

ret_dielist
Output. This returns a list of PPA2 DIE objects.

84 DWARF/ELF Extensions Library Reference

ret_diecount
Output. This returns the count of the PPA2-DIE objects in the list.

error
Input/output. This accepts and returns the Dwarf_Error object.

Return values

The dwarf_get_all_ppa1dies_given_ppa2die operation returns DW_DLV_NO_ENTRY if
it cannot find any PPA1 DIE objects in the specified debug-section unit.

Memory allocation

You can deallocate the parameters as required.

Example: A code fragment that deallocates the ret_dielist parameter:
if (dwarf_get_all_ppa1dies_given_ppa2die (dbg,...&dielist, &diecount, &err)

== DW_DLV_OK) {
for (i=0; i<diecount; i++)

dwarf_dealloc (dbg, dielist[i], DW_DLA_DIE);
dwarf_dealloc (dbg, dielist, DW_DLA_LIST);

}

Note: For reasons of clarity, not all the parameters have been entered in the above
code. Unlisted parameters are represented by ellipses (...).

For more information about deallocating the error parameter, see Consumer Library
Interface to DWARF, by the UNIX International Programming Languages Special
Interest Group.

dwarf_get_all_ppa2die_given_cu_offset operation
The dwarf_get_all_ppa2die_given_cu_offset operation finds the DW_TAG_IBM_ppa2
DIE object for a given CU offset in the .debug_info section.

Prototype
int dwarf_get_ppa2die_given_cu_offset (

Dwarf_Debug dbg,
Dwarf_Off offset,
Dwarf_Die* ret_ppa2_die,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

offset
Input. This accepts the offset to be used within the .debug_info section.

ret_ppa2_die
Output. This returns the PPA2 DIE object.

error
Input/output. This accepts and returns the Dwarf_Error object.

Return values

The dwarf_get_all_ppa2die_given_cu_offset operation returns DW_DLV_NO_ENTRY if
none of the PPA2 DIEs refer to the specified offset of the CU.

Chapter 4. Program Prolog Area (PPA) extension 85

Memory allocation

You can deallocate the parameters as required.

Example: A code fragment that deallocates the ret_ppa2_die parameter:
if (dwarf_get_ppa2die_given_cu_offset (dbg, offset, &ret_ppa2_die, &err)

== DW_DLV_OK) {
dwarf_dealloc (dbg, ret_ppa2_die, DW_TAG_IBM_ppa2);

}

dwarf_find_ppa operation
The dwarf_find_ppa operation finds the PPA2 and PPA1 blocks associated with a
given program-counter (PC) address and returns the PPA2 and PPA1 DIE objects.

Prototype
int dwarf_find_ppa(

Dwarf_Debug dbg,
Dwarf_Addr pc_of_interest,
Dwarf_Addr* ret_ppa2_addr,
Dwarf_Die* ret_ppa2_die,
Dwarf_Die* ret_root_die,
Dwarf_Addr* ret_ppa1_addr,
Dwarf_Die* ret_ppa1_die,
Dwarf_Die* ret_subr_die,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

pc_of_interest
Input. This accepts the requested program-counter address.

ret_ppa2_addr
Output. This returns the PPA2 block address.

ret_ppa2_die
Output. This returns the PPA2 DIE object from the .debug_ppa section.

ret_root_die
Output. This returns the root DIE object from the .debug_info section.

ret_ppa1_addr
Output. This returns the PPA1 block address.

ret_ppa1_die
Output. This returns the PPA1 DIE object from the .debug_ppa section.

ret_subr_die
Output. This returns the subprogram DIE object from the .debug_info section.

error
Input/output. This accepts and returns the Dwarf_Error object.

Return values

The dwarf_find_ppa operation returns DW_DLV_NO_ENTRY if none of the PPA2 blocks
are associated with the given pc_of_interest.

86 DWARF/ELF Extensions Library Reference

Memory allocation

You can deallocate the parameters as required.

Example: A code fragment that deallocates the ret_ppa2_addr parameter:
if (dwarf_find_ppa (dbg, pc_of_interest,

&ret_ppa2_addr,
&ret_ppa2_die,
&ret_root_die,
&ret_ppa1_addr,
&ret_ppa1_die,
&ret_subr_die,
&err) == DW_DLV_OK) {

dwarf_dealloc(dbg, ret_ppa2_die, DW_DLA_DIE);
dwarf_dealloc(dbg, ret_root_die, DW_DLA_DIE);
dwarf_dealloc(dbg, ret_ppa1_die, DW_DLA_DIE);
dwarf_dealloc(dbg, ret_subr_die, DW_DLA_DIE);

}

Chapter 4. Program Prolog Area (PPA) extension 87

88 DWARF/ELF Extensions Library Reference

Chapter 5. Program source cross reference

This section contains debugging information entries that provide cross reference
information between a program source file and debugging information entries that
are contained in the .debug_info section.

Cross reference information for an object file may be contributed by one or more
source file units. Each source file unit is represented by a cross reference unit
debugging information entry with the tag DW_TAG_IBM_xref_unit.

Debug section
The .debug_xref section contains debugging information entries that provide cross
reference information between a program source file and debugging information
entries contained in the .debug_info section.

Block header
Each block of information in the .debug_xref section begins with a header that
contains the location-format information. This header does not replace any
debugging information entries. It is additional information that is represented
outside the standard DWARF tag/attributes format. It is used to navigate the
information blocks in the .debug_xref section. This is similar in format and intent
to the standard Compile-Unit Header for .debug_info.

The .debug_xref block header contains:

Block length
A 4-byte or 12-byte unsigned integer representing the length of the .debug_pa
block, not including the length of the field itself. In the 32-bit Dwarf format,
this is a 4-byte unsigned integer (which must be less than 0xFFFFFF00). In the
64-bit format, this is a 12-byte unsigned integer that consists of the 4-byte
value 0xFFFFFFFF followed by an 8-byte unsigned integer that gives the actual
value of the integer.

DWARF version
A 2-byte unsigned integer representing the version of the DWARF information
for that block of .debug_xref information.

.debug_abbrev offset
A 4-byte or 8-byte unsigned offset into the .debug_abbrev section that
associates the .debug_xref information with a particular set of debugging
information entry abbreviations.

Address size
A 1-byte unsigned integer representing the size in bytes of an address on the
target architecture. If the system uses segmented addressing, this value
represents the size of the offset portion of an address.

Section-specific DIEs
The debugging information entries contained in the .debug_xref section provide
cross reference information between a program source file and debugging
information entries contained in the .debug_info section.

© Copyright IBM Corp. 2004, 2015 89

Cross reference information for an object file may be contributed by one or more
source file units. Each source file unit is represented by a cross reference unit
debugging information entry with the tag DW_TAG_IBM_xref_unit.

A cross reference unit entry owns debugging information entries that represent all
cross reference data within the source file unit. Cross reference unit entries may
have the following attributes:
v a DW_AT_IBM_src_file attribute whose value is a reference. This attribute points

to a debugging information entry within .debug_srcfiles containing detail
information about the source file.

v a DW_AT_IBM_owner attribute whose value is a reference. This attribute points to a
compilation unit debugging information entry which all cross reference DIE
references belong to.

Each source line within a source file unit can have one or more statements. Each
statement can have zero or more cross reference items. A statement containing
cross reference items is represented by a debugging information entry with the tag
DW_TAG_IBM_xreflist. The parent of the statement debugging information entry is
the owning cross reference unit entry DIE. A statement DIE does not have any
attribute, and it may have the following cross reference item(s) as children.

There are two types of cross reference items:
v A data variable referenced on a statement is represented by a debugging

information entry with the tag DW_TAG_IBM_xreflist_item.
v A call to a subprogram/label on a statement is represented by a debugging

information entry with the tag DW_TAG_IBM_on_call_item.

Each cross reference item debugging information entry may have the following
attributes::
v a DW_AT_name attribute whose value is a string representing the name of cross

reference item as it appears in the source program.
v a DW_AT_IBM_xreflist_item attribute whose value is a reference. This attribute

points to a debugging information entry within .debug_info describing the
declaration of the cross reference item.

v a DW_AT_IBM_is_modified attribute whose value is a flag. It is applicable to
DW_TAG_IBM_xreflist_item only. This attribute indicates that the cross reference
item is being modified by the statement.

v a DW_AT_IBM_call_type attribute whose integer constant value is a code
describing the how the call is made. It is applicable to DW_TAG_IBM_on_call_item
only. If the attribute is missing, the default value DW_CT_func_call is assumed.
The set of call type codes is:
DW_CT_func_call = 0, /* Normal function call */
DW_CT_alter = 1, /* ALTER <label> */
DW_CT_alter_proceed = 2, /* ALTER ... TO PROCEED TO <label> */
DW_CT_perform = 3, /* PERFORM <label> */
DW_CT_perform_thru = 4, /* PERFORM ... THROUGH <label> */
DW_CT_goto = 5, /* GO TO <label> */
DW_CT_goto_depend = 6, /* GO TO <label> DEPENDING ON */
DW_CT_use_for_debug = 7 /* USE FOR DEBUGGING ON <label> */

Reference section

DIEs in the .debug_xref block can reference the following DIEs:
v DIEs in the .debug_xref section

90 DWARF/ELF Extensions Library Reference

v DIEs in the .debug_infosection

The following section can reference DIEs in the .debug_xref section:
v .debug_srcattr

Companion sections
For each block of information in the .debug_xref block, there will also be an
associated block in the .debug_abbrev and .rel.debug_xref sections.

.debug_abbrev contains a list of abbreviation tables. The tables describe the
low-level encoding for each particular form of DIE. This will be a DIE tag,
optionally associated with a specific grouping of attribute entries. Each attribute
will have an associated form code which describes the precise encoding of the data
for each attribute. For more information about abbreviation-table encoding, see the
DWARF Debugging Information Format Standard, V4.

.rel.debug_xref applies to ELF object file only and contain ELF-format relocation
entries which are used to perform relocations related to the .debug_xref
information. These relocations are section offsets only.

Chapter 5. Program source cross reference 91

92 DWARF/ELF Extensions Library Reference

Chapter 6. Program line-number extensions

The DWARF standard defines the .debug_line section. This section contains a Line
Number Program for each CU, which is encoded in a portable compact manner,
for execution and expansion by the libdwarf Line Number Program state machine.
This provides access to program source line and address information for the CU.
CDA currently can consume and produce version 3 of the .debug_line section.

In the z/OS Common Debug Architecture, the following IBM extensions to this
program are defined:
v Extensions relate to breakpoint type flags, and symbol declaration coordinates.
v Extensions relate to program source files and source text lines. Source file names

and location information is moved from the CU-level Statement Program to the
global .debug_srcfiles section.

Breakpoint type flags
Each standard DWARF line number program matrix row contains a given number
of DWARF attribute flags. These are typically used to determine where to place
overlay breakpoints.

To support the encoding of additional flags, the matrix is expanded to support
additional columns.
v In the program state machine implementation provided by libdwarf, these

columns are currently individual Dwarf_Small (byte) values.
v The DWARF 3 standard defines the new prologue_end and epilogue_begin flags.
v Similarly to support IBM z/OS breakpoint type flags (related to program hook

opcodes, and the equivalent overlay breakpoints), many further columns are
required.

The space required for the expanded libdwarf Dwarf_Line array is minimized by
changing the attribute flag representation of the expanded matrix to use bit flags.
These would be contained in the following new Dwarf_Word flags (4 bytes):
v One with all standard DWARF flags
v One with all platform-specific DWARF flags

To maintain portability, the platform specific attribute flags would be:
v Defined via an enumeration constant whose value represents the bit number

(from 0 to 31).
v Encoded in the line number program using a new opcode with a parameter

whose value is the enumeration constant for the flag to be set.

The initial state for each row during decoding would be FALSE.

In addition to accommodating the mapping of the current z/OS hook types, it
allows for future attribute flag growth.

© Copyright IBM Corp. 2004, 2015 93

Symbol declaration coordinates
To define the declaration coordinates for a symbol or type, the standard DWARF
provides the attributes DW_AT_decl_file, DW_AT_decl_line, and DW_AT_decl_column.
These are referred to by the abbreviation DECL.

The value of the DW_AT_decl_file attribute corresponds to a file number from the
line number information table for the compilation unit containing the debugging
information entry and represents the source file in which the declaration appeared.
The absence of the attribute indicates that no source file has been specified.

The value of the DW_AT_decl_line attribute represents the source line number at
which the first character of the identifier of the declared object appears. The
absence of the attribute indicates that no source line has been specified.

The value of the DW_AT_decl_column attribute represents the source column number
at which the first character of the identifier of the declared object appears. The
absence of the attribute indicates that no column has been specified.

State machine registers

The line number program state machine is extended with the following registers:

Register Purpose

relstmtno An unsigned integer indicating an relative statement on line number
where the source statement begins. The value 0 indicates that this field
is not used.

system_flag A Dwarf_Word value indicating the system-dependent attribute flag
states.

The numbering of bits within the sysattr_flag value for z/OS is defined by the
following DW_SAT_IBM_xxxx enumeration constants:

Attribute Enumeration Description

DW_SAT_IBM_hook 0 A hook opcode is present in
the generated program.

DW_SAT_IBM_path_label 1 Path label.

DW_SAT_IBM_path_call_return 2 Path: call. After return from
call.

DW_SAT_IBM_alloc 3 Storage allocation.

DW_SAT_IBM_autoinit 4 Automatic storage
initialization.

DW_SAT_IBM_path_do_begin 5 Path: start of do loop.

DW_SAT_IBM_path_true_if 6 Path: if statement evaluated
TRUE.

DW_SAT_IBM_path_false_if 7 Path: if statement evaluated
FALSE.

DW_SAT_IBM_path_when_begin 8 Path: start of
case/select/switch statement
specific case.

94 DWARF/ELF Extensions Library Reference

Attribute Enumeration Description

DW_SAT_IBM_path_otherwise 9 Path: start of
case/select/switch statement
default case.

DW_SAT_IBM_path_postcompound 10 Path: merge of multiple
paths.

DW_SAT_IBM_path_call_begin 11 Path: call. After parm list
build, before actual call.

DW_SAT_IBM_goto 12 Goto statement.

DW_SAT_IBM_block_exit 13 Scope block exit.

DW_SAT_IBM_multiexit 14 Scope block multiple exit.

DW_SAT_IBM_prologue_begin 15 The location of where the
subprogram prolog begins.

DW_SAT_IBM_funcentry 16 The first breakpoint location
within a function.

DW_SAT_IBM_path_search_when_begin 17 Path: the logic following a
WHEN within a COBOL
SEARCH is about to be
executed.

DW_SAT_IBM_path_search_otherwise 18 Path: the logic following an
AT END within a COBOL
SEARCH is about to be
executed.

DW_SAT_IBM_path_declarative_return 19 Path: control is about to
return from a declarative
procedure (USEAFTER
ERROR, etc.)

DW_SAT_IBM_path_not_begin 20 Path: the logic associated
with one of the following
phrases is about to be
executed:

v NOT ON SIZE ERROR

v NOT ON EXCEPTION

v NOT ON OVERFLOW

v NOT AT END (other than
SEARCH AT END)

v NOT AT END-OF-PAGE

v NOT INVALID KEY

DW_SAT_IBM_path_not_end 21 Path: the logic following the
end of a statement
containing one of the
following phrases is about to
be executed:

v NOT ON SIZE ERROR

v NOT ON EXCEPTION

v NOT ON OVERFLOW

v NOT AT END (other than
SEARCH AT END)

v NOT AT END-OF-PAGE

v NOT INVALID KEY

DW_SAT_IBM_synchronization 22 Synchronization point.

Chapter 6. Program line-number extensions 95

Attribute Enumeration Description

DW_SAT_IBM_perform_begin 23 A COBOL perform begin
block.

DW_SAT_IBM_perform_end 24 A COBOL perform end
block.

Extended opcodes

The IBM z/OS DWARF extensions define the following additional standard opcode
to support platform specific attribute flag extensions:

DW_LNE_IBM_define_global_file
This opcode takes a DIE offset as an operand. It identifies the
DW_TAG_IBM_src_file DIE in the global .debug_srcfiles section. This opcode
must precede all other opcodes in the line number program except for
DW_LNE_define_file.

DW_LNE_IBM_set_system_flag
This opcode takes a single unsigned LEB128 operand and perform a bitwise
OR operation with the system flag attribute of the state machine.

DW_LNE_IBM_clear_system_flag
This opcode takes a single unsigned LEB128 operand and perform a bitwise
NOT operations and then a bitwise AND operation with the system flag
attribute of the state machine.

Dwarf_Line object
The Dwarf_Line object contains an opaque data type that applies to Dwarf_Line
data, which can be used as descriptors in searches for source lines.

When it is no longer needed, the storage identified by these descriptors is freed
individually, using the dwarf_dealloc operation with the allocation type
DW_DLA_LINE. Dwarf_Line data is returned from successful calls to the following
operations:
v dwarf_persist_srclines

v dwarf_srclines

Type definition
typedef struct Dwarf_Line_s* Dwarf_Line;

Consumer operations

The operations in this section are introduced by the program line-number
extensions to DWARF.

dwarf_srclines_dealloc operation
The dwarf_srclines_dealloc operation deallocates all memory acquired from
dwarf_srclines.

96 DWARF/ELF Extensions Library Reference

Prototype
void

dwarf_srclines_dealloc(
Dwarf_Debug dbg, /* libdwarf consumer instance I*/
Dwarf_Line* linebuf, /* List of line number rows I*/
Dwarf_Signed linecount, /* List entry count I*/
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer instance.

linebuf
Input. This is the list of line number matrix rows obtained from
dwarf_srclines()

linecount
Input. This is the number of line number matrix rows obtained from
dwarf_srclines().

error
Input/output. This accepts and returns the Dwarf_Error object.

Example
Dwarf_Line *linebuf;
Dwarf_Signed linecount;

/* Get line number table entries */
dwarf_srclines (cudie, &linebuf, &linecount, &err);

/* Add code to process returned line number table entries */

/* Once finished, deallocate memory */
dwarf_srclines_dealloc (dbg, linebuf, linecount);

dwarf_pc_linepgm operation
The dwarf_pc_linepgm operation locates the line-number program for a given PC
address.

Prototype
int dwarf_pc_linepgm (

Dwarf_Debug dbg,
Dwarf_Addr pc,
Dwarf_Off* ret_linepgm_ofs,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

pc Input. This accepts a value for the PC.

ret_linepgm_ofs
Output. This returns the line-program offset.

error
Input/output. This accepts and returns the Dwarf_Error object.

Chapter 6. Program line-number extensions 97

Return values

The dwarf_pc_linepgm operation returns DW_DLV_NO_ENTRY if the PC address is not
within the range of line-number programs.

dwarf_die_linepgm operation
The dwarf_die_linepgm operation locates the line-number program for a given DIE.
The operation navigates towards the root DIE.

dwarf_die_linepgm navigates towards the root DIE. It stops when it locates the CU
DIE or partial-unit DIE with the most relevant line-number program.

Prototype
int dwarf_die_linepgm(

Dwarf_Die die,
Dwarf_Die* ret_line_die,
Dwarf_Off* ret_linepgm_ofs,
Dwarf_Error* error);

Parameters

die
Input. This accepts the DIE object.

ret_line_die
Output. This returns the DIE that owns the line-number program.

ret_linepgm_ofs
Output. This returns the offset in .debug_line for the line-number program.

error
Input/output. This accepts and returns the Dwarf_Error object.

Return values

The dwarf_die_linepgm operation returns DW_DLV_NO_ENTRY if the line-number
program does not exist.

dwarf_linepgm_offset operation
The dwarf_linepgm_offset operation searches for the line-number program offset
attribute (DW_AT_stmt_list) associated with a given DIE.

Prototype
int dwarf_linepgm_offset(

Dwarf_Die die,
Dwarf_Off* returned_offset,
Dwarf_Error* error);

Parameters

die
Input. This accepts the DIE object.

returned_offset
Output. This returns the .debug_line offset.

error
Input/output. This accepts and returns the Dwarf_Error object.

98 DWARF/ELF Extensions Library Reference

Return values

The dwarf_linepgm_offset operation returns DW_DLV_NO_ENTRY if the given DIE
does not have a DW_AT_stmt_list attribute.

dwarf_line_srcdie operation
The dwarf_line_srcdie operation searches for the source file DIE for a line-matrix
row.

Prototype
int dwarf_line_srcdie(

Dwarf_Line line,
Dwarf_Die* ret_die,
Dwarf_Error* error);

Parameters

line
Input. This accepts the line-number matrix row.

ret_die
Output. This returns the DW_TAG_IBM_srcfile DIE associated with the
line-number matrix row.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_line_srcdie operation returns DW_DLV_NO_ENTRY if no line-number
information exists.

dwarf_line_isa operation
The dwarf_line_isa operation searches for the instruction set architecture ISA for a
line-matrix row.

Prototype
int dwarf_line_isa(

Dwarf_Line line,
Dwarf_Unsigned* ret_isa,
Dwarf_Error* error);

Parameters

line
Input. This accepts a line number of a matrix row.

ret_isa
Output. This returns the line ISA value.

error
Input/output. This accepts and returns the Dwarf_Error object.

dwarf_line_standard_flags operation
The dwarf_line_standard_flags operation searches for the standard line-attribute
flags for a line-matrix row.

Chapter 6. Program line-number extensions 99

Prototype
int dwarf_line_standard_flags(

Dwarf_Line line,
Dwarf_Flag* returned_flags,
Dwarf_Error* error);

Parameters

line
Input. This accepts a line number of a matrix row.

returned_flags
Output. This returns the standard line flags.

error
Input/output. This accepts and returns the Dwarf_Error object.

dwarf_line_system_flags operation
The dwarf_line_system_flags operation searches for the system specific line
attribute-flags for a line matrix row.

Prototype
int dwarf_line_system_flags(

Dwarf_Line line,
Dwarf_Flag* returned_flags,
Dwarf_Error* error);

Parameters

line
Input. This accepts a line number of a matrix row.

returned_flags
Output. This returns the system line flags.

error
Input/output. This accepts and returns the Dwarf_Error object.

dwarf_linebeginprologue operation
The dwarf_linebeginprologue operation tests if the line-matrix row begins the
subprogram prologue.

Prototype
int dwarf_linebeginprologue(

Dwarf_Line line,
Dwarf_Bool* returned_bool,
Dwarf_Error* error);

Parameters

line
Input. This accepts a line number of a matrix row.

returned_bool
Output. This returns the test results.

error
Input/output. This accepts and returns the Dwarf_Error object.

100 DWARF/ELF Extensions Library Reference

dwarf_lineendprologue operation
The dwarf_lineendprologue operation tests if the line-matrix row ends the
subprogram prologue.

Prototype
int dwarf_lineendprologue(

Dwarf_Line line,
Dwarf_Bool* returned_bool,
Dwarf_Error* error);

Parameters

line
Input. This accepts a line number of a matrix row.

returned_bool
Output. This returns the test results.

error
Input/output. This accepts and returns the Dwarf_Error object.

dwarf_lineepilogue operation
The dwarf_lineepilogue operation tests if the line-matrix row begins the
subprogram epilogue.

Prototype
int dwarf_lineepilogue(

Dwarf_Line line,
Dwarf_Bool* returned_bool,
Dwarf_Error* error);

Parameters

line
Input. This accepts a line number of a matrix row.

returned_bool
Output. This returns the test results.

error
Input/output. This accepts and returns the Dwarf_Error object.

dwarf_persist_srclines operation
The dwarf_persist_srclines operation decodes a line-number program into the
line-number information matrix. The line-number information matrix is a persistent
copy that is associated with the owning compilation unit.

Prototype
int dwarf_persist_srclines(

Dwarf_Die die,
Dwarf_Line** ret_linebuf,
Dwarf_Signed* ret_linecount,
Dwarf_Error* error);

Parameters

die
Input. This accepts the Dwarf_Die object with the DW_AT_stmt_list attribute.

Chapter 6. Program line-number extensions 101

ret_linebuf
Output. This returns the list of line-number matrix rows.

ret_linecount
Output. This returns the number of line-number matrix rows in the list.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_persist_srclines operation returns DW_DLV_NO_ENTRY if no line-number
information can be found or the DIE does not have the DW_AT_stmt_list attribute.

dwarf_pclines operation
The dwarf_pclines operation returns one or more line-number entries that match a
given PC-line slide argument.

The following list describes what is returned when a given PC-line slide argument
is specified:
v If DW_DLS_NOSLIDE is specified, then the operation returns a line-number entry

with an address that exactly matches the given PC.
v If DW_DLS_FORWARD is specified, then the operation returns a line-number entry

with an address that is the closest to the given PC, and line-number entries that
are greater than and equal to the PC address.

v If DW_DLS_BACKWARD is specified, then the operation returns a line-number entry
with an address that is the closest to the given PC, and line-number entries that
are less than and equal to the PC address.

Prototype
int dwarf_pclines(

Dwarf_Debug dbg,
Dwarf_Addr pc,
Dwarf_Line** ret_linebuf,
Dwarf_Signed slide,
Dwarf_Signed* ret_linecount,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts the libdwarf consumer.

pc Input. This accepts the PC address.

slide
Input. This accepts the PC-line slide argument.

ret_linebuf
Output. This returns the list of line-number matrix rows.

ret_linecount
Output. This returns the count of the items in the list.

error
Input/output. This accepts or returns the Dwarf_Error object.

102 DWARF/ELF Extensions Library Reference

Return values

The dwarf_pclines operation returns DW_DLV_NO_ENTRY if no line-number entry
matches the PC-line slide argument.

Memory allocation

You can deallocate the parameters as required.

Example: The following example is a code fragment that deallocates the
ret_linebuf parameter:
if (dwarf_pclines (dbg, pc, slide, &linebuf, &linecount, &err)

== DW_DLV_OK)
dwarf_dealloc (dbg, linebuf, DW_DLA_LIST);

Chapter 6. Program line-number extensions 103

104 DWARF/ELF Extensions Library Reference

Chapter 7. Program source description extension

This section is used by DWARF consumer APIs to identify source files in an
application module. It accommodates programs that are built using global
optimization compiler options, as well as those compiled as a single compilation
unit. Because common source files are recorded in a single object, minimal space is
required to represent source files.

Debug section
The .debug_srcfiles section contains Debug Information Entries (DIEs), which
describe the contents and usage of program source files. This information
originates during the program translation process (compile or assembly), and
initially describes the source files used for the single CU.

A separate DIE section block is generated for each:
v source file
v include file
v file location information

Each .debug_srcfiles section block may share the associated .debug_abbr section
block, but must have a separate .rel.debug_srcfiles relocation section block.

The .debug_srcfiles section is a global section and contains DIEs with optional
attribute tags. These attribute tags define the globally unique source files for all
CUs in the application module. A source file is identified by attributes such as the
system name, file name, date and time last modified, type, and file contents
(considering macro expansions, conditional compilation, and preprocessor
expansion as appropriate). Whenever all attributes are the same, a single entry is
used. A difference in one or more of these values results in the creation of a
separate entry. If multiple source file DIEs have fields that refer to other DIEs with
the same value, the referenced DIE is shared to minimize the size of the DWARF
information.

The DWARF file contains the name of each source file that contributed to an object
or executable file. Typically, the DWARF file is used by a debugger to locate and
open each source file, so that the contents can be retrieved and used to support
program source display functions. In the .debug_info section, each CU is
represented by a DIE with the tag DW_TAG_compile_unit. This DIE typically has the
following attributes:
v DW_AT_stmt_list, with an offset to the CU's line table information in the

.debug_line section
v DW_AT_comp_dir, with the current working directory at the compile time

In the .debug_line section, the line data associated with each CU is encoded as a
line number program (for more information, refer to DWARF Debugging Information
Format, V3, Draft 7). The line number program consists of opcodes. These opcodes
represent operations in the statement state machine. For more information, refer to
DWARF Debugging Information Format, V4.

© Copyright IBM Corp. 2004, 2015 105

The DW_LNE_IBM_define_global_file opcode refers to the source-file entry defined
in .debug_srcfiles debug section.

Block header
Each block of information in the .debug_srcfiles section begins with a header that
contains the location-format information. This header does not replace any
debugging information entries. It is additional information that is represented
outside the standard DWARF tag/attributes format. It is used to navigate the
information blocks in the .debug_srcfiles section. This is similar in format and
intent to the standard Compile-Unit Header for .debug_info.

Block length
A 4-byte or 12-byte unsigned integer representing the length of the .debug_pa
block, not including the length of the field itself. In the 32-bit Dwarf format,
this is a 4-byte unsigned integer (which must be less than 0xFFFFFF00). In the
64-bit format, this is a 12-byte unsigned integer that consists of the 4-byte
value 0xFFFFFFFF followed by an 8-byte unsigned integer that gives the actual
value of the integer.

DWARF version
A 2-byte unsigned integer representing the version of the DWARF information
for that block of .debug_srcfiles information.

.debug_abbrev offset
A 4-byte or 8-byte unsigned offset into the .debug_abbrev section that
associates the .debug_scrfiles information with a particular set of debugging
information entry abbreviations.

address_size (ubyte)
A 1-byte unsigned integer representing the size in bytes of an address on the
target architecture. If the system uses segmented addressing, this value
represents the size of the offset portion of an address .

Section-specific DIEs

The following DIEs could occur within a .debug_srcfiles section:

DW_TAG_IBM_src_location
Identifies the system and primary location of a source file. It is created in a
separate .debug_srcfiles block.

DW_TAG_IBM_src_file
Identifies a single globally-unique program source file. It is created in the same
.debug_srcfiles block as any child DW_TAG_IBM_src_nest DIEs.

Companion sections

For each block of information in the .debug_srcfiles block, there is an associated
block in the debug sections that are listed below

.debug_abbrev
This contains abbreviations-table entries which describe the low-level encoding
for each particular form of DIE. The entry is a DIE tag that is optionally
associated with a specific grouping of attribute entries. Each attribute has an
associated form code which describes the precise encoding of the data for each
attribute. For more information, see section 7.5.3 in DWARF Debugging
Information Format, V3, Draft 7.

106 DWARF/ELF Extensions Library Reference

.rel.debug_srcfiles
This contains the ELF-format relocation entries which are used to perform
relocations related to the .debug_srcfiles information. These relocation entries
are section offsets.

Reference section
DIEs in .debug_info, .debug_line and .debug_srcfiles sections can refer to DIEs in a
.debug_srcfiles section.

A source file is described by a DW_TAG_IBM_src_file DIE, which uses a
DW_AT_IBM_src_location attribute to specify the location of the source file. This
attribute contains the offset within the .debug_srcfiles section of the associated
DW_TAG_IBM_src_location DIE. The line number table in .debug_line can use the
DW_LNE_IBM_define_global_file opcode to specify the source file that contributes
to the line number table. The opcode data value is the .debug_srcfiles section offset
of the DW_TAG_IBM_src_file DIE.

Attributes forms
The DWARF attribute form governs how the value of a Debug Information Entry
(DIE) attribute is encoded. The IBM extensions to DWARF do not introduce new
attribute form codes, but extend their usage.

The Attribute Form Class srcfileptr can identify any debugging information entry
within a .debug_srcfiles section. This type of reference (DW_FORM_sec_offset in
DWARF V4, DW_FORM_data4 and DW_FORM_data8 in DWARF V3) is an offset from the
beginning of the .debug_srcfiles section.

Source-file entries

Source location entries
The DIE with the tag DW_TAG_IBM_src_location identifies the system and
primary location of the source file. The source location DIE is followed by the
DW_AT_name attribute. The attribute value is of form DW_FORM_string. This is a
null-terminated string that follows the convention used for the standard DWARF
DW_LNS_define_file opcode (which means that it consists of the system name, a
colon delimiter, and the primary location, which is operating-system-dependent
and file-system-dependent.

The following table lists the defined formats for the z/OS environments.

Table 3. Defined formats for the z/OS environments

OS and file system Format

z/OS HFS path name system:/absolute/hfs/path/name

z/OS MVS™ data set system://data.set.name

CMS minidisk system://volume_label

CMS SFS system://pool:sfs.dir.name

CMS POSIX BFS path name system:/absolute/bfs/path/name

Source file name entries
The DIE with the DW_TAG_IBM_src_file tag identifies a single globally-unique
program source file.

Chapter 7. Program source description extension 107

The source-file DIE may be followed by one or more of the following attributes:
v DW_AT_name
v DW_AT_IBM_charset
v DW_AT_IBM_date
v DW_AT_IBM_src_location
v DW_AT_IBM_src_origin
v DW_AT_IBM_src_type

DW_AT_name
This attribute is a string of form DW_FORM_string, and it is a standard
DWARF attribute. This optional value is the minor portion of the file name. It
is used in combination with the major portion of the file name from the
DW_TAG_IBM_src_location DIE at the offset identified by the
DW_AT_IBM_src_location attribute. The DW_AT_name attribute is used to
complete the location information for the source file. The value is a
null-terminated string, in a format which is operating-system and file-system
dependent. If the source file is compiler generated, the name can be used to
provides a description of the compiler generated file, and not necessarily a
physical file name.

Table 4. DW_AT_name formats

OS and file system Format

z/OS HFS path name filename.ext

z/OS MVS sequential data set Attribute is omitted.

z/OS MVS partitioned data set membername

CMS minidisk fn.ft.fm

CMS SFS file.name.ext

CMS POSIX BFS path name file.name.ext

DW_AT_IBM_charset
This attribute value is a string of form DW_FORM_string. This value indicates
the codepage for the program source file. If the attribute is missing on z/OS,
the program source file is assumed to be encoded in IBM-1047.

DW_AT_IBM_date
This attribute value is a constant of form DW_FORM_udata. This value
represents the date and time of last modification of the file. The base date is
the same as that used for the line number program DW_LNE_define_file
opcode. This is an optional attribute, because some z/OS files do not have this
value available.

DW_AT_IBM_src_location
This attribute value provides the source file location and the attribute encoding
is of the class srcfileptr. It contains the offset in the .debug_srcfiles section
for the DW_TAG_IBM_src_location DIE for this file.

DW_AT_IBM_src_origin
This attribute value is a constant of form DW_FORM_data*. The value
describes the file system where the program source is located. The following
values are defined:
v 0 - Unix file system (including z/OS HFS file system)
v 1 - z/OS sequential data set
v 2 - z/OS partitioned data set

108 DWARF/ELF Extensions Library Reference

v 3 - z/VM® enhanced disk format (CMS minidisk files)
v 4 - z/VM shared file system
v 5 - z/VM OpenExtensions byte file system
v 6 - z/VSE® file system

DW_AT_IBM_src_type
This attribute value is a constant of form DW_FORM_data*. This value
categorizes the program source file into one of the following categories:
v 0 - Primary file
v 1 - User Include file
v 2 - System Include file
v 3 - Compiler generated file

DW_AT_artificial
Any source file that does not participate in the line number table, (i.e. only
used for declaration of object or type) may have this attribute, which is a flag.

DW_AT_IBM_md5
Contains a 16 byte MD5 signature that uniquely identifies the source file. The
form of the attribute is DW_FORM_block1 containing a 16 byte value.

DW_AT_IBM_src_text
This attribute value provides the source text content and the attribute encoding
is of the class srctextptr. It contains the offset in the .debug_srctext section for
this file. (refer to "Source text extension" for more info)

DW_AT_IBM_src_attr
This attribute value provides the source attribute and the attribute encoding is
of the class srcattrptr. It contains the offset in the .debug_srcattr section for
this file. For more information, see Chapter 9, “Program source attribute
extensions,” on page 119.

Callback functions

Dwarf_Retrieve_Srcline_CBFunc object
This object contains a prototype for a callback function that returns the source line.
The user-supplied function is called when the debugging information does not
include captured source file information. The callback function must be defined
before the dwarf_get_srcline_given_filename operation is called.

Type definition
typedef int (*Dwarf_Retrieve_Srcline_CBFunc) (

char* filename,
Dwarf_Unsigned lineno,
Dwarf_IBM_charset_type charset,
char** r_srcline,
int* errorcode);

Parameters

filename
Input. This accepts the path and filename (/pathname/filename).

lineno
Input. This accepts the required line number.

Chapter 7. Program source description extension 109

charset
Input. This accepts the type of the source-file character set.

r_srcline
Output. This returns the source line data.

errorcode
Output. This returns the error code.

Dwarf_Retrieve_Srcline_term_CBFunc object
This object contains a prototype for a callback function that frees the storage
allocated for the data source line returned by the Dwarf_Retrieve_Srcline_CBFunc
callback function. The callback function must be defined before the
dwarf_get_srcline_given_filename operation is called.

Type definition
typedef void (*Dwarf_Retrieve_Srcline_term_CBFunc)(

char* srcline);

Parameters

srcline
Input. This accepts the source line returned by the
Dwarf_Retrieve_Srcline_CBFunc function.

Dwarf_Retrieve_Srccount_CBFunc object
This object contains the prototype for a callback function that returns the count of
source lines. The function is called when the debugging informatio does not
contain captured source. The callback function must be defined before the
dwarf_get_srcline_given_filename operation is called.

Type definition
typedef int (*Dwarf_Retrieve_Srccount_CBFunc) (

char* filename,
Dwarf_IBM_charset_type charset,
Dwarf_Unsigned* r_srccnt,
int* errorcode);

Parameters

filename
Input. This accepts the path and filename (/pathname/filename).

charset
Input. This accepts the type of the source-file character set.

r_srccnt
Output. This returns the number of source lines.

errorcode
Output. This returns the error code.

Source-file consumer operations
This section describes the operations that are used to access debug information
using information found within .debug_srcfiles

110 DWARF/ELF Extensions Library Reference

dwarf_get_srcdie_given_filename operation
The dwarf_get_srcdie_given_filename operation searches all DW_TAG_IBM_src_file
DIEs for a DW_AT_name field that matches the given filename.

Prototype
int dwarf_get_srcdie_given_filename (

Dwarf_Debug dbg,
const char* filename,
Dwarf_Die** ret_sfdies,
Dwarf_Unsigned* ret_diecount,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

filename
Input. This accepts a short filename, without a path. The format is filename.

ret_sfdies
Output. This returns the source file DIEs that match the filename.

ret_diecount
Output. This returns the count of the ret_sfdies.

error
Input/output. This accepts and returns the Dwarf_Error object.

Return values

The dwarf_get_srcdie_given_filename operation returns DW_DLV_NO_ENTRY if none
of the DW_TAG_IBM_src_file DIEs matches the given filename.

Memory allocation

The list object ret_sfdies and its elements are persistent copies that are associated
with the owning libdwarf consumer object, and must be deallocated only by
dwarf_finish().

dwarf_srclines_given_srcdie operation
The dwarf_srclines_given_srcdie operation identifies all the Dwarf_Line objects
that are associated with the given Dwarf_Die object.

The Dwarf_Die object must be a DW_TAG_IBM_src_file DIE. The returned
Dwarf_Line objects are sorted in ascending order first by line number, then by PC
address.

Prototype
int dwarf_srclines_given_srcdie (

Dwarf_Debug dbg,
Dwarf_Die sf_die,
Dwarf_Line** ret_linebuf,
Dwarf_Signed* ret_linecount,
Dwarf_Error* error);

Chapter 7. Program source description extension 111

Parameters

dbg
Input. This accepts a libdwarf consumer object.

sf_die
Input. This accepts the DW_TAG_IBM_src_file DIE.

ret_linebuf
Output. This returns a list of the line-number matrix rows in the given sf_die.

ret_linecount
Output. This returns the count of the rows in sf_die.

error
Input/output. This accepts and returns the Dwarf_Error object.

Return values

The dwarf_srclines_given_srcdie operation returns DW_DLV_NO_ENTRY if there are
no Dwarf_Line objects that reference the given sf_die.

Memory allocation

The list object ret_linebuf and its elements are persistent copies that are
associated with the owning libdwarf consumer object, and must be deallocated
only by dwarf_finish().

dwarf_get_srcline_given_filename operation
The dwarf_get_srcline_given_filename operation searches a given file and returns
the content of the specified source line.

Prototype
int dwarf_get_srcline_given_filename(

Dwarf_Debug dbg,
char* longfn,
Dwarf_IBM_charset_type charset,
Dwarf_Unsigned lineno,
char** ret_srcline,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

longfn
Input. This accepts a path and filename. The format is system:/pathname/
filename.

charset
Input. This accepts the character-set type of the longfn file.

lineno
Input. This accepts the line number of the required source line. Note that the
line numbering starts from 1 and not 0.

ret_srcline
Output. This returns the source line.

error
Input/output. This accepts or returns the Dwarf_Error object.

112 DWARF/ELF Extensions Library Reference

Return values

The dwarf_get_srcline_given_filename operation returns DW_DLV_NO_ENTRY if it
cannot find the file or the line number does not exist.

Memory allocation

You can deallocate the parameters as required.

Example: A code fragment that deallocates the ret_srcline parameter:
if (dwarf_get_srcline_given_filename (dbg, ..., &ret_srcline, &err)

== DW_DLV_OK) {
dwarf_dealloc (dbg, ret_srcline, DW_DLA_STRING);

}

Note: For reasons of clarity, not all the parameters have been entered in the above
code. Unlisted parameters are represented by ellipses (...).

For more information about deallocating the error parameter, see Consumer Library
Interface to DWARF, by the UNIX International Programming Languages Special
Interest Group.

dwarf_get_srcline_count_given_filename operation
The dwarf_get_srcline_count_given_filename operation counts the lines within a
source file.

Prototype
int dwarf_get_srcline_count_given_filename(

Dwarf_Debug dbg,
char* longfn,
Dwarf_IBM_charset_type charset,
Dwarf_Unsigned* ret_linecount,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

longfn
Input. This accepts a long filename. The format is system:/pathname/filename.

charset
Input. This accepts the character-set type of the longfn file.

ret_linecount
Output. This returns the total number of lines within a specified source file.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_get_srcline_count_given_filename operation returns DW_DLV_NO_ENTRY
if the file is empty.

Chapter 7. Program source description extension 113

dwarf_register_src_retrieval_callback_func operation
The dwarf_register_src_retrieval_callback_func operation registers the
user-defined source-retrieval functions.

The dwarf_register_src_retrieval_callback_func operation is called when
captured source is not available within the debugging information.

This operation refers to callback functions that are based on the following
prototypes:
v Dwarf_Retrieve_Srcline_CBFunc

v Dwarf_Retrieve_Srcline_term_CBFunc

v Dwarf_Retrieve_Srccount_CBFunc

Prototype
int dwarf_register_src_retrieval_callback_func(

Dwarf_Debug dbg,
Dwarf_Retrieve_Srcline_CBFunc rs_f,
Dwarf_Retrieve_Srcline_term_CBFunc termrs_f,
Dwarf_Retrieve_Srccount_CBFunc rsc_f,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

rs_f
Input. This accepts the name of a function that is of the
Dwarf_Retrieve_Srcline_CBFunc type.

termrs_f
Input. This accepts the name of a function that is of the
Dwarf_Retrieve_Srcline_term_CBFunc type.

rsc_f
Input. This accepts the name of a function that is of the
Dwarf_Retrieve_Srccount_CBFunc type.

error
Input/output. This accepts and returns the Dwarf_Error object.

114 DWARF/ELF Extensions Library Reference

Chapter 8. Program source text extensions

This section is used to hold the contents of the source files or compiler generated
source. A source-level debugger might need to display the user source when the
original source file is not available on the system.

Debug section
The .debug_srctext section contains the source text. A separate block is generated
for each primary source file and each include file. Each block contains a block
header followed by the source text, which is encoded in UTF-8 and compressed
with zlib. The end of each line is delimited with the UTF-8 character ’\n’
(codepoint: 0x0A).

Block header
Each block of information in the .debug_srctext section begins with a header,
which consists of the following information:

Block length
This holds the total length of the compressed source text, and the section
header, not including the block length field itself. It is also used to determine
whether this block of information is 32-bit DWARF format or 64-bit DWARF
format. In the 32-bit DWARF format, the first 4-byte is an unsigned integer
representing the block length (which must be less than 0xFFFFFF00). In the
64-bit DWARF format, the first 4-byte is 0xFFFFFFFF, and the following 8 bytes
is an unsigned integer representing the block length.

In the 64-bit DWARF format, this is a 12-byte unsigned integer, and it has two
parts:
v The first 4 bytes have the value 0xFFFFFFFF.
v The following 8 bytes contain the actual length represented as an unsigned

64-bit integer.

Version field
A 2-byte unsigned integer represents the version of the .debug_srctext
information for the block. This version is specific to the .debug_srctext section.
The currently supported version is 0x0001.

Header length
The number of bytes following the header_length field to the beginning of the
first byte of the compressed source text. In the 32-bit DWARF format, it is a
4-byte unsigned length; in the 64-bit DWARF format, this field is an 8-byte
unsigned length.

Eye catcher
A 2-byte eye catcher to help identify the boundaries of different source text
sections. The value should be 0xCDA6.

Data size
An 8-byte unsigned integer representing the size of the original source text
after it has been uncompressed.

© Copyright IBM Corp. 2004, 2015 115

Reference section
DIEs in the .debug_srcfiles section can refer to the source text in the .debug_srctext
section.

A source file is described by a DW_TAG_IBM_src_file DIE, which can have a
DW_AT_IBM_src_text attribute that points to the start of the source text stream in
the .debug_srctext section.

Attributes forms
The DWARF attribute form governs how the value of a Debug Information Entry
(DIE) attribute is encoded. The IBM extensions to DWARF do not introduce new
attribute form codes, but extend their usage.

The Attribute Form Class srctextptr can identify any source text block within a
.debug_srctext section. This type of reference (DW_FORM_sec_offset in DWARF V4,
DW_FORM_data4 and DW_FORM_data8 in DWARF V3) is an offset from the beginning
of the .debug_srctext section.

Source text consumer operations
The operations in this section retrieve and manipulate information within the
.debug_srctext section.

dwarf_access_source_text operation
The dwarf_access_source_text operation retrieves the source data embedded in
.debug_srctext. The returned source text information is encoded in the codeset
specified by dwarf_set_codeset. Source lines are delimited by the ’\n’ character.

Prototype
int dwarf_access_source_text(

Dwarf_Die die,
Dwarf_Unsigned* ret_numlines,
Dwarf_Off** ret_lineoff,
char** ret_srclines,
Dwarf_Unsigned* ret_srclen,
Dwarf_Error* error);

Parameters

die
Input. This accepts the Dwarf_Die object that contains the DW_AT_IBM_src_text
attribute.

ret_numlines
Output. This returns the number of lines stored within the source text.

ret_lineoff
Output. This returns an array that contains byte offsets, relative to the start of
*ret_srclines, to the start of each source line.

ret_srclines
Output. This returns a contiguous block of memory that contains the entire
source text referenced by DIE. It is encoded in the codeset specified by
dwarf_set_codeset.

ret_srclen
Output. This returns the length of *ret_srclines.

116 DWARF/ELF Extensions Library Reference

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_access_source_text operation returns DW_DLV_NO_ENTRY if the DIE does
not have the DW_AT_IBM_src_text attribute or the .debug_srctext section is not
available.

Source text producer operations
The operations in this section create content in the .debug_srctext section.

dwarf_add_source_text operation
The dwarf_add_source_text operation embeds source data in .debug_srctext, and
adds a DW_AT_IBM_src_text attribute in the given DIE. The value of the attribute
contains the offset in .debug_srctext that contains the embedded source data.

Prototype
int dwarf_add_source_text (

Dwarf_P_Debug dbg,
Dwarf_P_Die die,
char* buf,
Dwarf_Unsigned buflen,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts the Dwarf_P_Debug object.

die
Input. This accepts the Dwarf_Die object that contains the DW_AT_IBM_src_text
attribute.

buf
Input. This accepts the source data buffer encoded in UTF-8.

buflen
Input. This accepts the length of source data buffer.

error
Input/output. This accepts and returns the Dwarf_Error object.

Return values

The dwarf_add_source_text operation never returns DW_DLV_NO_ENTRY.

Chapter 8. Program source text extensions 117

118 DWARF/ELF Extensions Library Reference

Chapter 9. Program source attribute extensions

This section contains source fragment information about a source file. A source line
can contain multiple source fragments. A source fragment, such as an executable
statement, a compiler directive, or other information such as a comment, can have
one or more attributes.

A source-level debugger might need to know a list of variables or expressions that
are referenced on a given statement. Knowing this would enable the debugger user
to automatically monitor the list of variables or expressions that are referenced on
the currently running statement.

A source-level debugger might need to know if a given source fragment is a
compiler directive. In that case, it could place emphasis on the source fragment
when displaying the source view to the user.

Debug section

The .debug_srcattr section contains a table of source fragment entries, which
describe the source attributes for one program source file.

If space were not a consideration, the information provided in the .debug_srcattr
section could be represented as a large matrix, with one row for each source
fragment. The matrix would have columns for:
v the source line number
v the source column number
v the source type (for example, comment and executable statement.)
v the offset to DW_TAG_IBM_xreflist DIE representing a list of variables or

expressions
v and so on

The matrix would also be sorted according to source line number and then source
column number to allow for efficient searching. Such a matrix, however, would be
impractically large. A byte-codeded language for a state machine is designed to
shrink the matrix and store a stream of bytes in the object file instead of the matrix
(similar to .debug_line). This language can be much more compact than the
matrix. When a consumer of the source meta information executes, it must "run"
the state machine to generate the matrix for each source file it is interested in. The
concept of an encoded matrix also leaves room for expansion. In the future,
columns can be added to the matrix to encode other things that are related to
individual source statements.

Definitions

The following terms are used in the description of the source attribute information
format:

state machine
The hypothetical machine used by a consumer of the source meta information
to expand the byte-coded instruction stream into a matrix of source meta
information.

© Copyright IBM Corp. 2004, 2015 119

source attribute program
A series of byte-coded source meta information representing one source file.

State machine registers

The source attribute information state machine has the following registers:

line
An unsigned integer indicating a source line number where the source
statement begins. Lines are numbered beginning at 1.

column
A signed integer indicating a column number where the source statement
begins. Columns are numbered beginning at 1. The value -1 indicates that this
field is not used.

xreflist
A DIE index into .debug_xref. This locates the DW_TAG_IBM_xreflist DIE
which contains a list of variables or expressions being referenced by this source
fragment. All DW_TAG_IBM_xreflist DIEs within the same source attribute
program must appear within the same unit section. The value 0 indicates that
this field is not used. (The first DIE within a .debug_xref section is never a
DW_TAG_IBM_xreflist DIE.)

type
Source type (for example, comments or compiler directive). The value 0
indicates that this field is not used.

altline
An unsigned integer indicating an alternate user-specified line number where
the source statement begins. The value 0 indicates that this field is not used.

relstmtno
An unsigned integer indicating an relative statement on line number where the
source statement begins. The value 0 indicates that this field is not used.

At the beginning of each sequence within a source attribute program, the state of
the registers is:
v line: 1
v column: -1
v xreflist: 0
v type: 0
v altline: 0
v relstmtno: 0

Source attribute program instructions

The state machine instructions in a source attribute program belong to one of
following categories:

special opcodes
These instructions have a ubyte opcode field and no operands. The purpose is
to provide a compact way to advance line and xreflist information.

standard opcodes
These instructions have a ubyte opcode field which may be followed by zero
or more LEB128 operands. The opcode implies the number of operands and

120 DWARF/ELF Extensions Library Reference

their meanings, but the source attribute program header also specifies the
number of operands for each standard opcode.

extended opcodes
These instructions have a multiple byte format. The first byte is zero; the next
bytes are an unsigned LEB128 integer giving the number of bytes in the
instruction itself (does not include the first zero byte or the size). The
remaining bytes are the instruction itself (which begins with a ubyte extended
opcode).

Source attribute program header

The optimal encoding of source attribute information depends to a certain degree
upon the structure of the source program. The source attribute program header
provides information used by consumers in decoding the source attribute program
instructions for a particular source file and also provides information used
throughout the rest of the source attribute program.

The source attribute program for each source file begins with a header containing
the following fields in order:

unit_length
A 4-byte or 12-byte unsigned integer represents the size in bytes of the source
attribute information for this source file. This does not include the length of
the field itself. In the 32-bit DWARF format this is a 4-byte unsigned integer
(which must be less than 0xFFFFFF00). In the 64-bit DWARF format, this is a
12 byte unsigned integer, and it has two parts:
v The first 4 bytes have the value 0xFFFFFFFF.
v The following 8 bytes contains the actual length represented as an unsigned

64-bit integer.

version
A 2-byte unsigned integer represents the version number. This number is
specific to the source attribute information and is independent of the DWARF
version number. Currently it is 2.

header_length
An unsigned integer represents the number of bytes following this field to the
beginning of the first byte of the source attribute information itself. In the
32-bit DWARF format, this is a 4-byte unsigned length; in the 64-bit DWARF
format, this is an 8-byte unsigned length.

eyecatcher
A 2-byte eye-catcher. Expected value: 0xCDA7.

When version is 2, the block header also contains the following fields in order:

debug_xref_offset (section offset)
A 4-byte or 8-byte offset into the .debug_xref section of the compilation unit
header. In the 32-bit DWARF format, this is a 4-byte unsigned offset; in the
64-bit DWARF format, this field is an 8-byte unsigned offset. This unit header
offset contains all the DW_TAG_IBM_xreflist DIEs that are referenced for this
source attribute program.

dieidx_base (sbyte)
This parameter affects the meaning of the special opcodes. See below.

dieidx_range (ubyte)
This parameter affects the meaning of the special opcodes. See below.

Chapter 9. Program source attribute extensions 121

opcode_base (ubyte)
The number assigned to the first special opcode. If opcode_base is less than the
highest-numbered standard opcode, then standard opcode numbers greater
than or equal to the opcode_base are not used in the source attribute program
of this unit (and the codes are treated as special opcodes). If opcode_base is
greater than the highest-numbered standard opcode, the numbers between that
of the highest-numbered standard opcode and the first special opcode (not
inclusive) are used for vendor specific extensions.

standard_opcode_length (array of ubyte)
This array specifies the number of LEB128 operands for each of the standard
opcodes. The first element of the array corresponds to the opcode whose value
is 1, and the last element corresponds to the opcode whose value is
opcode_base - 1. By increasing opcode_base, and adding elements to this array,
new standard opcodes can be added, while allowing consumers who do not
know about these new opcodes to be able to skip them.

Source attribute program
As stated before, the goal of a source attribute program is to build a matrix
representing one source file. The line number may only increase.

Special Opcodes

Each ubtye special opcode has the following effect on the state machine:
v Add an unsigned integer to the line register.
v Add a signed integer to the xreflist register.
v Append a row to the matrix using the current values of the state machine

registers.

All of the special opcodes do the above things. They differ from one another only
in what values they add to the line and xreflist registers.

Instead of assigning a fixed meaning to each special opcode, the source attribute
program uses several parameters in the header to configure the instruction set.
There are two reasons for this. First, the opcode space available for special opcodes
now ranges from 6 through 255, but the lower bound might increase if one adds
new standard opcodes. Thus, the opcode_base field of the source attribute program
header gives the value of the first special opcode. Second, the best choice of
special-opcode meaning depends on the source file. For example, a source file may
have source fragments, each referencing at least 5 symbols. It is advantageous to
trade away the ability to increase the line register in return for the ability to add
larger positive values to the xreflist register. For compilers that do not use the
xreflist register, it is advantageous to trade away the ability to increase xreflist
register for the ability to add larger positive values to the line register. To permit
this variety of strategies, the source attribute program header defines a
dieidx_range field that defines the range of values it can add to the xreflist
register.

A special opcode value is chosen based on the amount that needs to be added to
the line and xreflist registers. The maximum xreflist increment for a special
opcode is (dieidx_base + dieidx_range - 1). If the desired xreflist increment is
greater than the maximum xreflist increment, a standard opcode must be used
instead of a special opcode. The special opcode is then calculated using the
following formula:

122 DWARF/ELF Extensions Library Reference

opcode = (desired xreflist increment - dieidx_base) +
(dieidx_range * desired line increment) +
opcode_base

If the resulting opcode is greater than 255, a standard opcode must be used
instead. To decode a special opcode, subtract the opcode_base from the opcode
itself to give the adjusted opcode. The new line and xreflist values are given by
the following formula:
adjusted opcode = opcode - opcode_base
line increment = adjusted opcode / dieidx_range
xreflist increment = dieidx_base + (adjusted opcode % dieidx_range)

As an example, suppose that the opcode_base is 13, dieidx_base is 1, dieidx_range
is 12. This means that a special opcode can be used whenever two successive rows
in the matrix have xreflist DIE indexes differing by any value within the range
[1, 12] and (because of the limited number of opcodes available) when the
difference between source line number is within the range [0, 20], but not all line
advances are available for the maximum xreflist advance. The opcode mapping
would be:

\ xreflist Increment
Line \
Increment \ 1 2 3 4 5 6 7 8 9 10 11 12
--------- ---

0 13 14 15 16 17 18 19 20 21 22 23 24
1 25 26 27 28 29 30 31 32 33 34 35 36
2 37 38 39 40 41 42 43 44 45 46 47 48
3 49 50 51 52 53 54 55 56 57 58 59 60
4 61 62 63 64 65 66 67 68 69 70 71 72
5 73 74 75 76 77 78 79 80 81 82 83 84
6 85 86 87 88 89 90 91 92 93 94 95 96
7 97 98 99 100 101 102 103 104 105 106 107 108
8 109 110 111 112 113 114 115 116 117 118 119 120
9 121 122 123 124 125 126 127 128 129 130 131 132
10 133 134 135 136 137 138 139 140 141 142 143 144
11 145 146 147 148 149 150 151 152 153 154 155 156
12 157 158 159 160 161 162 163 164 165 166 167 168
13 169 170 171 172 173 174 175 176 177 178 179 180
14 181 182 183 184 185 186 187 188 189 190 191 192
15 193 194 195 196 197 198 199 200 201 202 203 204
16 205 206 207 208 209 210 211 212 213 214 215 216
17 217 218 219 220 221 222 223 224 225 226 227 228
18 229 230 231 232 233 234 235 236 237 238 239 240
19 241 242 243 244 245 246 247 248 249 250 251 252
20 253 254 255

Standard Opcodes

The standard opcodes, their applicable operands, and the actions performed by
these opcodes are as follows:

DW_SAS_copy
The DW_SAS_copy opcode takes no operands. It appends a row to the matrix
using the current values of the state machine registers.

DW_SAS_advance_line
The DW_SAS_advance_line opcode takes a single unsigned LEB128 operand
and adds that value to the line register of the state machine.

DW_SAS_advance_xreflist
The DW_SAS_advance_xref opcode takes a single signed LEB128 operand and
adds that value to the xreflist register of the state machine.

Chapter 9. Program source attribute extensions 123

DW_SAS_set_column
The DW_SAS_set_column opcode takes a single signed LEB128 operand and
stores it in the column register of the state machine.

DW_SAS_set_type_flag
The DW_SAS_set_type_flag opcode takes a single unsigned LEB128 operand
and perform a bitwise OR operation with the type register of the state
machine.

DW_SAS_clear_type_flag
The DW_SAS_set_type_flag opcode takes a single unsigned LEB128 operand
and perform a bitwise NOT operations and then a bitwise AND operation with
the type register of the state machine.

DW_SAS_advance_altline
The DW_SAS_advance_altline opcode takes a single unsigned LEB128 operand
and adds that value to the altline register of the state machine.

Extended Opcodes

DW_SAE_set_relstmtno
The DW_SAE_set_relstmtno opcode takes a single unsigned LEB128 operand
and stores it in the relstmtno register of the state machine.

Attributes forms
The DWARF attribute form governs how the value of a Debug Information Entry
(DIE) attribute is encoded. The IBM extensions to DWARF do not introduce new
attribute form codes, but extend their usage.

The Attribute Form Class srcattrptr can identify any source text block within a
.debug_srcattr section. This type of reference (DW_FORM_sec_offset in DWARF V4,
DW_FORM_data4 and DW_FORM_data8 in DWARF V3) is an offset from the beginning
of the .debug_srcattr section.

Consumer operations
The operations in this section retrieve and manipulate information within the
.debug_srcattr debug section.

dwarf_srcattr_get_version operation
The dwarf_srcattr_get_version operation returns the version number for the
content within .debug_srcattr.

Prototype
int dwarf_srcattr_get_version(

Dwarf_Die die,
Dwarf_Half* ret_version,
Dwarf_Error* error);

Parameters

die
Input. DIE containing the DW_AT_IBM_src_attr attribute.

ret_version
Output. Version number of the content that is referenced by the
DW_AT_IBM_src_attr attribute.

124 DWARF/ELF Extensions Library Reference

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
The version number of the .debug_srcattr content referenced by
DW_AT_IBM_src_attr is found successfully.

DW_DLV_NO_ENTRY
DIE does not have the DW_AT_IBM_src_attr attribute.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v The given die is NULL.
v The given die does not contain CU context information.
v The given die is corrupted. Cannot determine which debug section the die

belongs to.
v Cannot locate a DWARF debug instance associated with the given die.
v Cannot locate the .debug_srcattr section, or the .debug_srcattr section is

empty.
v The given ret_version is NULL.
v The length of the encoded text in .debug_srcattr is too large.

dwarf_srcattr_get_altline_used operation
The dwarf_srcattr_get_altline_used operation returns whether the altline
register in the .debug_srcattr section is used.

Prototype
int dwarf_srcattr_get_altline_used(

Dwarf_Die die,
Dwarf_Bool* ret_altline_used,
Dwarf_Error* error);

Parameters

die
Input. DIE containing the DW_AT_IBM_src_attr attribute.

ret_altline_used
Output. Returns whether the altline register is used.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
The boolean value is returned indicating whether the alternate line number
register is used in the .debug_srcattr section.

DW_DLV_NO_ENTRY
DIE does not have the DW_AT_IBM_src_attr attribute.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v The given die is NULL.
v The given die does not contain CU context information.

Chapter 9. Program source attribute extensions 125

v The given die is corrupted. Cannot determine which debug section the die
belongs to.

v Cannot locate a DWARF debug instance associated with the given die.
v Cannot locate the .debug_srcattr section, or the .debug_srcattr section is

empty.
v The given ret_altline_used is NULL.
v The length of the encoded text in .debug_srcattr is too large.

dwarf_srcattr_get_altlines operation
The dwarf_srcattr_get_altlines operation returns an array of alternate line
number entries. The array is index by source line number (index 0 corresponds to
source line number 1). Each array entry contains the alternate line number. If not
available, the entry contains the value 0.

Prototype
int dwarf_srcattr_get_altlines(

Dwarf_Die die,
Dwarf_Unsigned** ret_altlines,
Dwarf_Unsigned* ret_numlines,
Dwarf_Error* error);

Parameters

die
Input. DIE containing the DW_AT_IBM_src_attr attribute.

ret_altlines
Output. Array of alternate line number entries indexed by source line number.
Index 0 corresponds to source line number 1.

ret_numlines
Output. Number of entries within the returned array.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
The returned array contains the alternate line number for each source line.

DW_DLV_NO_ENTRY

v DIE does not have the DW_AT_IBM_src_attr attribute.
v The altline register is not used in the .debug_srcattr section.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v The given die is NULL.
v The given die does not contain CU context information.
v The given die is corrupted. Cannot determine which debug section the die

belongs to.
v Cannot locate a DWARF debug instance associated with the given die.
v Cannot locate the .debug_srcattr section, or the .debug_srcattr section is

empty.
v The given ret_altlines or ret_numlines is NULL.
v The length of the encoded text in .debug_srcattr is too large.

126 DWARF/ELF Extensions Library Reference

dwarf_srcattr_map_altline_to_line operation
The dwarf_srcattr_map_altline_to_line operation maps an alternate line number
to a source line number.

Prototype
int dwarf_srcattr_map_altline_to_line(

Dwarf_Die die,
Dwarf_Unsigned altline,
Dwarf_Unsigned* ret_lineno,
Dwarf_Error* error);

Parameters

die
Input. DIE containing the DW_AT_IBM_src_attr attribute.

altline
Iutput. Alternate line number.

ret_lineno
Output. Source line number corresponding to the given alternate line number.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
The source line number corresponding to the given alternate line number is
returned.

DW_DLV_NO_ENTRY

v DIE does not have the DW_AT_IBM_src_attr attribute.
v The altline register is not used in the .debug_srcattr section.
v The specified alternate line number does not exist in the .debug_srcattr

section.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v The given die is NULL.
v The given die does not contain CU context information.
v The given die is corrupted. Cannot determine which debug section the die

belongs to.
v Cannot locate a DWARF debug instance associated with the given die.
v Cannot locate the .debug_srcattr section, or the .debug_srcattr section is

empty.
v The given altline or ret_lineno is NULL.
v The length of the encoded text in .debug_srcattr is too large.

dwarf_srcfrags_given_srcdie operation
The dwarf_srcfrags_given_srcdie operation runs the state machine referenced in
the DW_AT_IBM_src_attr attribute of the given DIE. It stores each row of the source
attribute program matrix into its own source fragment object (Dwarf_SrcFrag). The
returned source fragment objects are ordered as they are ordered in the source
attribute program matrix.

Chapter 9. Program source attribute extensions 127

Prototype
int dwarf_srcfrags_given_srcdie (

Dwarf_Die sf_die,
Dwarf_SrcFrag** ret_sfragbuf,
Dwarf_Unsigned* ret_sfragcount,
Dwarf_Error* error);

Parameters

sf_die
Input. DIE containing the DW_AT_IBM_src_attr attribute.

ret_sfragbuf
Output. Returned array of source fragment objects.

ret_sfragcount
Output. Number of entries in the returned array of source fragment objects.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
All source fragment objects associated with the given sf_die is returned.

DW_DLV_NO_ENTRY
No source fragment objects are found within the .debug_srcattr section.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v The given die is NULL.
v The given die does not contain CU context information.
v The given die is corrupted. Cannot determine which debug section the die

belongs to.
v Cannot locate a DWARF debug instance associated with the given die.
v Cannot locate the .debug_srcattr section, or the .debug_srcattr section is

empty.
v The given ret_sfragbuf or ret_sfragcount is NULL.
v The length of the encoded text in .debug_srcattr is too large.
v An error is encountered when decoding the source attribute program state

machine.
v The .debug_srcattr version is not supported.
v Cannot allocate memory to store the decoded source attribute information.

Cleanup

The source fragment object returned by this API is a persistent copy and is
associated with the owning compilation unit. It can only be deallocated using one
of the following calls:
v dwarf_srcfrag_xref_dealloc()

v dwarf_finish()

128 DWARF/ELF Extensions Library Reference

dwarf_srcfrags_stmtcount_given_line operation
The dwarf_srcfrags_stmtcount_given_line operation searches through the source
fragment objects stored in the source attribute program matrix, and returns the
number of executable source statements in the given line number. The line number
is 1-based.

Prototype
int dwarf_srcfrags_stmtcount_given_line (

Dwarf_Die sf_die,
Dwarf_Unsigned line_no,
Dwarf_Unsigned* ret_stmt_count,
Dwarf_Error* error);

Parameters

sf_die
Input. DIE containing the DW_AT_IBM_src_attr attribute.

line_no
Input. Source line number.

ret_stmt_count
Output. Number of source fragment objects marked with DW_IST_executable
on the given line.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
Number of source fragment objects with DW_IST_executable is returned.

DW_DLV_NO_ENTRY

v No source fragment object is found within the .debug_srcattr section.
v No source fragment object is associated with the given line number.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v The given die is NULL.
v The given die does not contain CU context information.
v The given die is corrupted. Cannot determine which debug section the die

belongs to.
v Cannot locate a DWARF debug instance associated with the given die.
v Cannot locate the .debug_srcattr section, or the .debug_srcattr section is

empty.
v The given ret_stmt_count is NULL.
v The length of the encoded text in .debug_srcattr is too large.
v An error is encountered when decoding the source attribute program state

machine.
v The .debug_srcattr version is not supported.
v Cannot allocate memory to store the decoded source attribute information.

dwarf_srcfrag_given_line_stmt operation
Given a line number and executable statement count, the
dwarf_srcfrag_given_line_stmt operation searches through the source fragment

Chapter 9. Program source attribute extensions 129

objects stored in the source attribute program matrix, and returns the source
fragment object that matches the search criteria. Both the line number and
statement number are 1-based. Statement number restarts from 1 at the beginning
of each line and increments by one for every executable statement encountered on
the same source line.

Prototype
int dwarf_srcfrag_given_line_stmt (

Dwarf_Die sf_die,
Dwarf_Unsigned line_no,
Dwarf_Unsigned stmt_no,
Dwarf_SrcFrag* ret_sfrag,
Dwarf_Error* error);

Parameters

sf_die
Input. DIE containing the DW_AT_IBM_src_attr attribute.

line_no
Input. Source line number.

stmt_no
Input. Executable statement number, which restarts from 1 at the beginning of
each line and increments by one for every executable statement encountered on
the same source line.

ret_sfrag
Output. Source fragment objects marked with DW_IST_executable on the given
line and statement number.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
The source fragment object with DW_IST_executable matching the given line
number and statement number is returned.

DW_DLV_NO_ENTRY

v No source fragment object is found within the .debug_srcattr section.
v No source fragment object is associated with the given line number and

statement number.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v The given die is NULL.
v The given die does not contain CU context information.
v The given die is corrupted. Cannot determine which debug section the die

belongs to.
v Cannot locate a DWARF debug instance associated with the given die.
v Cannot locate the .debug_srcattr section, or the .debug_srcattr section is

empty.
v The given ret_sfragbuf or ret_sfragcount is NULL.
v No current source attribute table is defined.
v The length of the encoded text in .debug_srcattr is too large.

130 DWARF/ELF Extensions Library Reference

v An error is encountered when decoding the source attribute program state
machine.

v The .debug_srcattr version is not supported.
v Cannot allocate memory to store the decoded source attribute information.

Cleanup

The source fragment object returned by this API is a persistent copy and is
associated with the owning compilation unit. It can only be deallocated using one
of the following calls:
v dwarf_srcfrag_xref_dealloc()

v dwarf_finish()

dwarf_srcfrag_line operation
The dwarf_srcfrag_line operation retrieves the line number associated with the
source fragment object.

Prototype
int dwarf_srcfrag_line(

Dwarf_SrcFrag srcfrag,
Dwarf_Unsigned* ret_line,
Dwarf_Error* error);

Parameters

srcfrag
Input. Input source fragment object.

ret_line
Output. Line number associated with the given source fragment object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
The line number associated with the source fragment object is returned.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v The given srcfrag is NULL.
v The given ret_line is NULL.

dwarf_srcfrag_column operation
The dwarf_srcfrag_column operation retrieves the column number associated with
the source fragment object. If the column information is unavailable, column value
of -1 is returned.

Prototype
int dwarf_srcfrag_column(

Dwarf_SrcFrag srcfrag,
Dwarf_Signed* ret_column,
Dwarf_Error* error);

Chapter 9. Program source attribute extensions 131

Parameters

srcfrag
Input. Input source fragment object.

ret_column
Output. Column number associated with the given source fragment object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
The column number associated with the source fragment object is returned.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v The given srcfrag is NULL.
v The given ret_column is NULL.

dwarf_srcfrag_altline operation
The dwarf_srcfrag_altline operation retrieves the alternative line number
associated with the source fragment object.

Prototype
int dwarf_srcfrag_altline(

Dwarf_SrcFrag srcfrag,
Dwarf_Unsigned* ret_altline,
Dwarf_Error* error);

Parameters

srcfrag
Input. Input source fragment object.

ret_altline
Output. Alternative line number associated with the given source fragment
object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
The alternative line number associated with the source fragment object is
returned.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v The given srcfrag is NULL.
v The given ret_altline is NULL.

132 DWARF/ELF Extensions Library Reference

dwarf_srcfrag_typeflag operation
The dwarf_srcfrag_typeflag operation retrieves the type flag associated with the
source fragment object. The supported type flags are listed in
Dwarf_IBM_srcattr_type.

Prototype
int dwarf_srcfrag_typeflag(

Dwarf_SrcFrag srcfrag,
Dwarf_Flag* ret_typeflag,
Dwarf_Error* error);

Parameters

srcfrag
Input. Input source fragment object.

ret_typeflag
Output. Source type flag associated with the given source fragment object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
The source type flag associated with the source fragment object is returned.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v The given srcfrag is NULL.
v The given ret_typeflag is NULL.

dwarf_srcfrag_xreflist operation
The dwarf_srcfrag_xreflist operation retrieves the DW_TAG_IBM_xreflist DIE
associated with the source fragment object.

Prototype
int dwarf_srcfrag_xreflist(

Dwarf_SrcFrag srcfrag,
Dwarf_Die* ret_die,
Dwarf_Error* error);

Parameters

srcfrag
Input. Input source fragment object.

ret_die
Output. The DW_TAG_IBM_xreflist DIE associated with the given source
fragment object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Chapter 9. Program source attribute extensions 133

Return values

DW_DLV_OK
The DW_TAG_IBM_xreflist DIE associated with the given source fragment object
is returned.

DW_DLV_NO_ENTRY
No DW_TAG_IBM_xreflist DIE is associated with the given source fragment
object.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v The given srcfrag is NULL.
v The given ret_die is NULL.
v There is cross reference information available, but the corresponding

.debug_xref section is not found.
v The DW_TAG_IBM_xreflist DIE does not contain CU context information.

Cleanup

The DW_TAG_IBM_xreflist DIE returned by this API is owned by the source
fragment object. You can not deallocate the returned list directly, but the source
fragment object can be deallocated using dwarf_srcfrag_xref_dealloc().

dwarf_srcfrag_list_tags operation
The dwarf_srcfrag_list_tags operation looks at all the children DIEs under the
DW_TAG_IBM_xreflist DIE associated with the given source fragment object, and
returns a list of unique TAGs used by the children DIEs.

Prototype
int dwarf_srcfrag_list_tags(

Dwarf_SrcFrag srcfrag,
Dwarf_Tag** ret_taglist,
Dwarf_Unsigned* ret_n_taglist,
Dwarf_Error* error);

Parameters

srcfrag
Input. Source fragment object.

ret_taglist
Output. An array of DIE TAG values associated with the given source
fragment object.

ret_n_taglist
Output. Number of DIE TAG values in the returned array of ret_taglist.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
The list of unique TAG value is returned.

DW_DLV_NO_ENTRY
No DW_TAG_IBM_xreflist DIE is associated with the given source fragment
object.

134 DWARF/ELF Extensions Library Reference

DW_DLV_ERROR
Returned if either of the following conditions apply:
v The given srcfrag is NULL.
v The given ret_dies or ret_n_dies is NULL.
v There is cross reference information available, but the corresponding

.debug_xref section is not found.
v The DW_TAG_IBM_xreflist DIE does not contain CU context information.
v Can not allocate memory required to store the returned

DW_TAG_IBM_xreflist_item DIEs in the persistent information.

Cleanup

The list of DIEs returned by this API is owned by the source fragment object. You
can not deallocate the returned list directly, but the source fragment object can be
deallocated using dwarf_srcfrag_xref_dealloc().

dwarf_srcfrag_list_items operation
The dwarf_srcfrag_list_items operation retrieves all the children DIEs of the
given TAG value under the DW_TAG_IBM_xreflist DIE associated with the given
source fragment object.

Prototype
int dwarf_srcfrag_list_items(

Dwarf_SrcFrag srcfrag,
Dwarf_Half tag,
Dwarf_Die** ret_dies,
Dwarf_Unsigned* ret_n_dies,
Dwarf_Error* error);

Parameters

srcfrag
Input. Input source fragment object.

tag
Input. The given tag value.

ret_dies
Output. An array of DIEs (with the given tag) associated with the given source
fragment object.

ret_n_dies
Output. Number of DIEs in the returned array of ret_dies.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
The list of children DIEs of the given TAG value for the source fragment object
is returned.

DW_DLV_NO_ENTRY

v No DW_TAG_IBM_xreflist DIE is associated with the given source fragment
object.

v The DW_TAG_IBM_xreflist DIE does not have any children DIE matching the
given tag.

Chapter 9. Program source attribute extensions 135

DW_DLV_ERROR
Returned if either of the following conditions apply:
v The given srcfrag is NULL.
v The given ret_dies or ret_n_dies is NULL.
v There is cross reference information available, but the corresponding

.debug_xref section is not found.
v The DW_TAG_IBM_xreflist DIE does not contain CU context information.
v Cannot allocate memory required to store the returned

DW_TAG_IBM_xreflist_item DIEs in the persistent information.

Cleanup

The list of DIEs returned by this API is owned by the source fragment object. You
can not deallocate the returned list directly, but the source fragment object can be
deallocated using dwarf_srcfrag_xref_dealloc().

dwarf_srcfrag_xref_dealloc operation
The dwarf_srcfrag_xref_dealloc operation deallocates internal storage held by a
source fragment object to keep track of information about DW_TAG_IBM_xreflist
DIE. If this API succeeds, it invalidates all returned object(s) from these calls:
dwarf_srcfrag_xreflist(), * dwarf_srcfrag_list_tags() , or
dwarf_srcfrag_list_items(). If you are holding the returned object from these
calls, do not make use of them after calling this API:

Prototype
int

dwarf_srcfrag_xref_dealloc(
Dwarf_SrcFrag srcfrag,
Dwarf_Error* error);

Parameters

srcfrag
Input. Input source fragment object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
All internal storage held by the input source fragment object is deallocated.

DW_DLV_NO_ENTRY
Never

DW_DLV_ERROR
The given srcfrag is NULL:

Producer operations
The operations in this section create content in the .debug_srcattr debug section.

dwarf_srcattr_table operation
On first invocation of this API, DW_TAG_IBM_src_attr attribute is added to the given
DW_TAG_IBM_src_file DIE. The value of the attribute contains the offset in

136 DWARF/ELF Extensions Library Reference

.debug_srcattr containing the source attribute program. All subsequent producer
APIs that adds row to a source attribute matrix will be added to this source
attribute program until this API is called again with a different
DW_TAG_IBM_src_file DIE.

Prototype
int dwarf_srcattr_table(

Dwarf_P_Debug dbg,
Dwarf_P_Die srcdie
Dwarf_Error* error);

Parameters

dbg
Input. This accepts the Dwarf_P_Debug object.

srcdie
Input. DIE to receive the DW_AT_IBM_src_text attribute. This should be a
DW_TAG_IBM_src_file DIE.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
All future .debug_srcattr matrix row additions will be applied to the source
attribute program associated with the given source DIE.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v dbg is NULL.
v The Dwarf_P_Debug object contains invalid version information.
v srcdie is NULL.
v Cannot find the .debug_srcfiles section.
v Not enough memory to allocate internal objects.

dwarf_add_srcattr_entry operation
The dwarf_add_srcattr_entry operation adds a row into the source attribute
matrix. The owner of the source attribute program is specified by the previous
dwarf_srcattr_table() call. If a row has already been created with the same
line_no and col_no, the existing source fragment object will be returned with the
typeflag attribute merged with the existing entry. Additional information can be
appended to the row via the returned source fragment object (Dwarf_P_SrcFrag).
The rows entered into the source attribute matrix are always sorted using line_no
first, then col_no.

Prototype
int dwarf_add_srcattr_entry(

Dwarf_P_Debug dbg,
Dwarf_Unsigned line_no,
Dwarf_Signed col_no,
Dwarf_Flag typeflag,
Dwarf_P_SrcFrag* ret_srcfrag,
Dwarf_Error* error);

Chapter 9. Program source attribute extensions 137

Parameters

dbg
Input. This accepts the Dwarf_P_Debug object.

line_no
Input. An unsigned integer indicating a source line number where the source
statement begins. Lines are numbered beginning at 1.

col_no
Input. A signed integer indicating a column number where the source
statement begins. Columns are numbered beginning at 1. The value -1
indicates that this field is not used.

typeflag
Input. A flag indicating source type as defined in Dwarf_IBM_srcattr_type. The
value 0 indicates that this field is not used.

ret_srcfrag
Output. Returned source fragment object representing this source attribute
matrix row.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
A row has been entered successfully into the current source attribute program.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v dbg is NULL.
v The Dwarf_P_Debug object contains invalid version information.
v The value of line_no is not valid.
v Given ret_srcfrag is NULL.
v No current source attribute table is defined.
v Memory is not enough to allocate returned source fragment object.

dwarf_add_srcattr_xrefitem operation
The dwarf_add_srcattr_xrefitem operation adds a DIE to the given source
fragment object. The input DIE must not have a parent DIE. The parent DIE is
created during creation of the .debug_srcattr section, and the parent DIE will
have the DW_TAG_IBM_xreflist tag. All the DIEs added to the input source
fragment object are written into the .debug_xref section under a common
DW_TAG_IBM_xreflist DIE.

Prototype
int dwarf_add_srcattr_xrefitem(

Dwarf_P_Debug dbg,
Dwarf_P_SrcFrag srcfrag,
Dwarf_P_Die xrefitem,
Dwarf_Error* error);

138 DWARF/ELF Extensions Library Reference

Parameters

dbg
Input. This accepts the Dwarf_P_Debug object.

srcfrag
Input. A source fragment object that is obtained from the
dwarf_add_srcattr_entry call.

xrefitem
Input. DIE containing information about the source fragment object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
The cross reference DIE is now associated with the given source fragment
object.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v dbg is NULL.
v The Dwarf_P_Debug object contains invalid version information.
v Given srcfrag is NULL.
v Given xrefitem is NULL.
v No current source attribute table is defined.

dwarf_add_srcattr_altline operation
The dwarf_add_srcattr_altline operation adds an alternate line number to the
given source fragment object.

Prototype
int dwarf_add_srcattr_altline(

Dwarf_P_Debug dbg,
Dwarf_P_SrcFrag srcfrag,
Dwarf_Unsigned altline_no,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts the Dwarf_P_Debug object.

srcfrag
Input. A source fragment object that is obtained from the
dwarf_add_srcattr_entry call.

altline_no
Input. An alternate line number for the source fragment object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Chapter 9. Program source attribute extensions 139

Return values

DW_DLV_OK
The alternate line number is now associated with the given source fragment
object.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v dbg is NULL.
v The Dwarf_P_Debug object contains invalid version information.
v The given srcfrag is NULL.
v No current source attribute table is defined.

dwarf_add_srcattr_relstmtno operation
The dwarf_add_srcattr_relstmtno operation adds a relative statement number to
the given source fragment object.

Prototype
int dwarf_add_srcattr_relstmtno(

Dwarf_P_Debug dbg,
Dwarf_P_SrcFrag srcfrag,
Dwarf_Unsigned relstmtno,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts the Dwarf_P_Debug object.

srcfrag
Input. A source fragment object that is obtained from the
dwarf_add_srcattr_entry call.

relstmtno
Input. A relative statement number for the source fragment object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
The relative statement number is now associated with the given source
fragment object.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v dbg is NULL.
v The Dwarf_P_Debug object contains invalid version information.
v The given srcfrag is NULL.
v No current source attribute table is defined.

140 DWARF/ELF Extensions Library Reference

Chapter 10. DWARF expressions

The IBM extensions to DWARF expressions allow the DWARF expression evaluator
to resolve generic expressions, in addition to those that specify a location or value.
Because standard DWARF consumer operations do not cause an exception on
overflow or underflow, this extension provides a DWARF stack-entity type for
these expression operations. This means that floating point operations that cause
exceptions will return error information.

In this document:
v DWARF operations are always discussed in terms of their effect on the DWARF

stack machine.
v The input is discussed in terms of a stream of DWARF operations with their

operands.

For specific information about standard DWARF expressions, refer to section 2.5 in
DWARF Debugging Information Format, V4.

Defaults and general rules

The following defaults and general rules are associated with the addition of types
to the stack machine:
v The default for arithmetic operations is unsigned 64-bit arithmetic.
v If a float or complex type is specified without a given size, then the element size

defaults to 8 bytes.
v Bitwise operations on floating point types are not allowed.
v Const operations default to the type of the constant they are loading, when

given in the op.

Operators

This section include operators that are introduced by the IBM extensions to
DWARF expressions.

DW_OP_IBM_conv
The DW_OP_IBM_conv operation takes the next item on the stack and converts it from
one type to another.

DW_OP_IBM_conv also takes a variable number of operands that are associated with
the acquired stack item.

Notes:

v The first set of operands indicates the type of the value on the stack (the from
type operand).

v The second set of operands indicates the new type (the to type operand).
v Both types will be encoded using the minimum amount of information required

to define the type.

© Copyright IBM Corp. 2004, 2015 141

v The first element of the type description is an unsigned byte indicating the base
type encoding; this is the same encoding that is used on the DW_AT_encoding
attribute.

v The number of additional parameters expected is dependent on the base type.

Example

The code to convert a C unsigned short to an IEEE floating-point long double is:
DW_OP_IBM_conv DW_ATE_unsigned 2 DW_ATE_float 16

Parameters

Table 5. DW_OP_IBM_conv parameters

Base type encoding Additional parameters

DW_ATE_signed_char

DW_ATE_unsigned_char

No additional parameters.

DW_ATE_address

DW_ATE_boolean

DW_ATE_unsigned

DW_ATE_signed

DW_ATE_float

DW_ATE_IBM_float_hex

Container size
A 2-byte unsigned integer
indicating the physical size of the
type expressed in bytes. A value of
0xFFFF indicates a LEB128 value.
An error will occur if 0xFFFF is
given with a floating-point, Boolean
or address type.

142 DWARF/ELF Extensions Library Reference

Table 5. DW_OP_IBM_conv parameters (continued)

Base type encoding Additional parameters

DW_ATE_numeric_string

DW_ATE_signed_fixed

DW_ATE_unsigned_fixed

DW_ATE_packed_decimal

DW_ATE_IBM_numeric_string_national

decimal sign
a 1 byte value indicating the
decimal sign encoding; this is the
same encoding that is used on the
DW_AT_decimal_sign attribute. If this
does not apply, the value is zero.

digit count
a 1 byte unsigned value indicating
the number of digits in an instance
of the type.

decimal scale
a 1 byte signed value indicating the
exponent of the base ten scale
factor to be applied to an instance
of the type. A scale of zero put the
decimal point immediately to the
right of the least significant digit.
Positive scale moves the decimal
point immediately to the right and
implies that additional zero digits
on the right are not stored in an
instance of the type. Negative scale
moves the decimal point to the left;
if the absolute value of the scale is
larger than the digit count, this
implies additional zero digits on the
left are not stored in an instance of
the type.

container size
a LEB128 value indicating the
physical size of the type expressed
in bytes.

DW_OP_IBM_builtin
The DW_OP_IBM_builtin operation takes one unsigned-byte operand which indicates
what kind of built-in function will occur.

Note: The DW_OP_IBM prefix indicates that an operation is a built-in function.

Chapter 10. DWARF expressions 143

Built-in functions

Table 6. DW_OP_IBM_builtin functions

Sub Op Description

DW_SubOP_builtin_strlen (0x01) This Sub_Op treats the top item on the stack
as a machine address (Dwarf_Addr) that
refers to user storage. It then references the
memory at that address and counts the
number of bytes before a byte that contains
the value 0x00 is encountered. Like strlen
in the C library, the value 0x00 is not
included in the count. The count is then
placed on the stack as an 8-byte unsigned
integer. A prefix operation DW_OP_IBM_prefix
can be used to say that the address comes
from local rather than user storage.

DW_SubOP_builtin_substr (0x02) This Sub_Op takes the top three items from
the stack:

v A machine address (Dwarf_Addr) that
refers to user storage

v An 8-byte signed integer (Dwarf_Signed)
that is the starting offset from the address

v A signed 8-byte integer indicating the
requested length of the substring

If the substring has a negative length, then
the substring length will extend until a byte
containing the value 0x00 is encountered.
The 0x00 byte will be part of the substring.

The expression evaluator then allocates local
memory space long enough for the given
substring, and copies the string into the
storage.

Finally, the evaluator returns the address of
the space on the stack as a Dwarf_Addr
machine address. The allocated space will be
in the local address space. A prefix operation
DW_OP_IBM_prefix can be used to say that
the address comes from local rather than
user storage.

DW_SubOP_builtin_strcat (0x03) This Sub_Op takes the top two items on the
stack:

v A machine address (Dwarf_Addr) that
refers to user storage

v An 8-byte signed integer (Dwarf_Signed)
that is the starting offset from the address

DW_SubOP_builtin_strcat treats them as
machine addresses (Dwarf_Addr) in user
storage. The API then behaves exactly like
strcat in the ISO C library. The machine
address of the local buffer is placed on the
stack. A prefix operation DW_OP_IBM_prefix
can be used to say that the incoming
addresses come from local rather than user
storage.

144 DWARF/ELF Extensions Library Reference

Table 6. DW_OP_IBM_builtin functions (continued)

Sub Op Description

DW_SubOP_builtin_pow (0x04) This Sub_Op uses the top two values from
the stack:

v The base

v The exponent

The compiler returns the result of the base
exponent to the stack. The result is in the
same type as the base item unless a
DW_OP_IBM_prefix is used.

DW_OP_IBM_prefix
The DW_OP_IBM_prefix operation allows the standard DWARF Expression
Operations to encode items like long double float arithmetic.

DW_OP_IBM_prefix passes additional information to be used while the evaluator
interprets the expression. DW_OP_IBM_prefix applies to the the next opcode that is a
non-DW_OP_IBM_prefix opcode.

DW_OP_IBM_prefix takes at least two operands:
v The prefix type is a single unsigned byte that indicates the type of information is

being provided
v Additional operands, with the number and size of each dependent on the prefix

type

Additional parameters

The following table describes the currently supported prefix types and the
operands that each requires.

Table 7. DW_OP_IBM_prefix additional parameters

Prefix Description

DW_SubOP_prefix_type(0x01) This prefix has one additional parameter:

Type A single unsigned byte indicating the
DWARF base-type encoding. The
following may not be specified on this
prefix type: DW_ATE_complex,
DW_OP_IBM_user,

DW_ATE_IBM_complex_hex,
DW_ATE_IBM_packed_decimal and
DW_ATE_IBM_zoned_decimal

Example: The following code would do an IEEE
floating point add and uses the default floating
point size:

DW_OP_IBM_prefix
DW_SubOP_prefix_type
DW_AT_float
DW_OP_plus

Chapter 10. DWARF expressions 145

Table 7. DW_OP_IBM_prefix additional parameters (continued)

Prefix Description

DW_SubOP_prefix_size(0x02) This prefix has one additional parameter:

Size Two unsigned bytes indicating the size of
the type that is either the default or
previously specified. A value of 0xFFFF
indicates a LEB128 value. An error will
occur if 0xFFFF is given with a floating
point type. DW_OP_IBM_user,
DW_ATE_complex, DW_ATE_IBM_complex_hex,
DW_ATE_IBM_packed_decimal and
DW_ATE_IBM_zoned_decimal may not be
specified on this prefix type.

Example: The following code would do a HEX
long-double floating-point add:

DW_OP_IBM_prefix
DW_SubOP_prefix_type
DW_AT_IBM_float_hex
DW_OP_IBM_prefix
DW_SubOP_prefix_size 16
DW_OP_plus

146 DWARF/ELF Extensions Library Reference

Table 7. DW_OP_IBM_prefix additional parameters (continued)

Prefix Description

DW_SubOP_prefix_kind(0x3) This is a compressed prefix that passes all the type
and size information at one time. It can be used for
any type. The third and fourth parameters will
normally be 0 for the basic types such as char or
float. This prefix must be used for complex
numbers, packed-decimal number, zoned decimal
numbers, and user types. For user types, the sizes
of the fields remain the same but their meanings
are user defined.

Type A 1-byte unsigned integer indicating the
type. I uses the DW_AT_encoding types
provided by DWARF. A 0xFFFF value
indicates a LEB128 value. An error will
occur if 0xFFFF is given with a floating
point, Boolean or address type.

Physical Size
A 2-byte unsigned integer indicating the
complete physical size of the instance in
bytes. For a complex number this should
include all parts. For a packed/zoned
decimal number it should include the sign
bits and any padding.

Logical Size/Element Size
A 1-byte unsigned integer. For a complex
number this is the size of each element.
For a packed or zoned decimal number
this is the number of digits. For any other
type this should be 0x00.

Decimal Places/Memory Space
A 1-byte unsigned integer describing the
number of digits after the implied period
in a packed or zoned decimal number. For
any other type, this should be 0x00. If this
value is non-zero on an object of type
DW_ATE_address, the address is in the local
address space.

Example: A long-double floating-point add could
also be expressed as:

DW_OP_IBM_prefix
DW_SubOP_prefix_kind
DW_ATE_float 16 0 0
DW_OP_PLUS

Example: Similarly, a HEX floating-point double
complex number add would be:

DW_OP_IBM_prefix
DW_SubOP_prefix_kind
DW_ATE_IBM_complex_hex 16 8 0
DW_OP_PLUS

DW_SubOP_prefix_local_storage
(0x04)

This prefix means that the address referenced by
the following op is in local storage rather than user
storage. There are no additional parameters.

Chapter 10. DWARF expressions 147

DW_OP_IBM_logical_and
The DW_OP_IBM_logical_and operation takes the top two items on the stack and
performs a logical and like in the ISO C library.

That is, it will place:
v An 8-byte integer 1 on the stack if both of the given stack values are not zero (in

the appropriate type)
v An 8-byte integer 0 on the stack if either or both of the given stack entries are

equal to zero

If the stack values are floating point, then they are first compared to a
floating-point 0.

DW_OP_IBM_logical_or
The DW_OP_IBM_logical_or operation takes the top two items on the stack and
performs a logical or like in the ISO C library.

That is, it will place:
v An 8-byte integer 1 on the stack if either of the given stack values are not zero
v An 8-byte integer 0 on the stack if both of the given stack entries are equal to

zero

If the stack values are floating point, then they are first compared to a
floating-point 0.

DW_OP_IBM_logical_not
The DW_OP_IBM_logical_not operation takes the top two items on the stack and
performs a logical not like in the ISO C library.

That is, it will place:
v An 8-byte integer 1 on the stack if the given stack value is equal to zero (in the

appropriate type)
v An 8-byte integer 0 on the stack if the given stack value is not equal to zero

If the stack values are floating point, then they are first compared to a
floating-point 0.

DW_OP_IBM_user
The DW_OP_IBM_user operation indicates if the operation is a user-supplied function.

It takes a single unsigned byte to indicate which user operation is processed.
User-supplied functions can either be unary or binary, depending on the type of
function used to supply the function pointer. Unary functions use the top item on
the stack, and binary functions use the top two items on the stack.

DW_OP_IBM_conjugate
The DW_OP_IBM_conjugate operation takes the top item on the stack and performs a
complex conjugate operation. That is, it will reverses the sign of the imaginary part
of the complex number and place the result on the stack.

DW_OP_IBM_wsa_addr
The DW_OP_IBM_wsa_addr operation takes no operand and pushes the WSA address
on top of the stack.

148 DWARF/ELF Extensions Library Reference

DW_OP_IBM_loadmod_addr
The DW_OP_IBM_loadmod_addr operation takes no operand and pushes the start of
the loadmodule address on top of the stack.

Location expression operations

The operations in this section are introduced by the IBM extensions to DWARF
expressions.

dwarf_loclist_n operation
The dwarf_loclist_n operation decodes location list or location expression of a
given attribute. It returns the location expressions as a list of Dwarf_Locdesc
objects.

Prototype
int dwarf_loclist_n(

Dwarf_Attribute attr,
Dwarf_Locdesc*** ret_llbuf,
Dwarf_Signed * ret_listlen,
Dwarf_Error* error);

Parameters

attr
Input. DWARF attribute holding a location list or location expression.

ret_llbuf
Output. An array of Dwarf_Locdesc* objects.

ret_listlen
Output. Number of Dwarf_Locdesc* objects in the array.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
An array of Dwarf_Locdesc* object is returned.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v The given attr is NULL.
v The given ret_llbuf or ret_listlen is NULL.
v The form of the attribute is not supported.
v Unable to allocate memory for creating internal objects.

Cleanups
Dwarf_Locdesc** loclist;
Dwarf_Signed loclist_n;

dwarf_loclist_n (attr, &loclist, &loclist_n, &err);

for (i=0; i<loclist_n; i++) {
dwarf_dealloc (dbg, loclist[i]->ld_s, DW_DLA_LOC_BLOCK);

Chapter 10. DWARF expressions 149

dwarf_dealloc (dbg, loclist[i], DW_DLA_LOCDESC);
}
dwarf_dealloc (dbg, loclist, DW_DLA_LIST);

dwarf_get_loc_list_given_offset operation
The dwarf_get_loc_list_given_offset operation decodes location list given an
offset within .debug_loc. The offset must point to the beginning of a location list.
The order of expression locations returned is in the same order as the encoded
information in .debug_loc.

Prototype
int dwarf_get_loc_list_given_offset (

Dwarf_Debug dbg,
Dwarf_Off offset,
Dwarf_Locdesc*** ret_llbuf,
Dwarf_Signed * ret_listlen,
Dwarf_Off* ret_nextoff,
Dwarf_Error* error);

Parameters

dbg
Input. libdwarf consumer instance.

offset
Input. The offset to the beginning of the location list.

ret_llbuf
Output. An array of Dwarf_Locdesc* objects.

ret_listlen
Output. Number of Dwarf_Locdesc* objects in the array.

ret_nextoff
Output. The offset to the beginning of the next location list. This field can be
NULL, in which case, this value will not be used.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
An array of Dwarf_Locdesc* object is returned.

DW_DLV_NO_ENTRY

v .debug_loc debug section does not exist or is empty.
v .debug_info debug section does not exist or is empty.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v The given dbg is NULL.
v Unable to determine the offset of the next location list entry.
v Unable to allocate memory for creating internal objects.

Cleanups
Dwarf_Locdesc** loclist;
Dwarf_Signed loclist_n;

dwarf_get_loc_list_given_offset (dbg, offset, &loclist, &loclist_n, NULL, &err);

150 DWARF/ELF Extensions Library Reference

for (i=0; i<loclist_n; i++) {
dwarf_dealloc (dbg, loclist[i]->ld_s, DW_DLA_LOC_BLOCK);
dwarf_dealloc (dbg, loclist[i], DW_DLA_LOCDESC);

}
dwarf_dealloc (dbg, loclist, DW_DLA_LIST);

Chapter 10. DWARF expressions 151

152 DWARF/ELF Extensions Library Reference

Chapter 11. DWARF library debugging facilities

These consumer APIs can be used when debugging a DWARF application.

Machine-register name API
These APIs provide specific information about a register used within the location
expression.

Debug sections
IBM has created an extension to the DWARF sections and Debug Information
Entries (DIEs). Only the .debug_info section describes the contents and usage of a
machine register.

DW_FRAME_390_REG_type object
The machine registers are accessed through the DW_FRAME_390_REG_type data
structure. This type is transparent, machine-dependent and describes the z/OS
CPU-register assignments.

Type definition
typedef enum {

DW_FRAME_390_gpr0 = 0,
DW_FRAME_390_gpr1 = 1,
DW_FRAME_390_gpr2 = 2,
DW_FRAME_390_gpr3 = 3,
DW_FRAME_390_gpr4 = 4,
DW_FRAME_390_gpr5 = 5,
DW_FRAME_390_gpr6 = 6,
DW_FRAME_390_gpr7 = 7,
DW_FRAME_390_gpr8 = 8,
DW_FRAME_390_gpr9 = 9,
DW_FRAME_390_gpr10 = 10,
DW_FRAME_390_gpr11 = 11,
DW_FRAME_390_gpr12 = 12,
DW_FRAME_390_gpr13 = 13,
DW_FRAME_390_gpr14 = 14,
DW_FRAME_390_gpr15 = 15,
DW_FRAME_390_fpr0 = 16,
DW_FRAME_390_vr0 = 16,
DW_FRAME_390_fpr2 = 17,
DW_FRAME_390_vr2 = 17,
DW_FRAME_390_fpr4 = 18,
DW_FRAME_390_vr4 = 18,
DW_FRAME_390_fpr6 = 19,
DW_FRAME_390_vr6 = 19,
DW_FRAME_390_fpr1 = 20,
DW_FRAME_390_vr1 = 20,
DW_FRAME_390_fpr3 = 21,
DW_FRAME_390_vr3 = 21,
DW_FRAME_390_fpr5 = 22,
DW_FRAME_390_vr5 = 22,
DW_FRAME_390_fpr7 = 23,
DW_FRAME_390_vr7 = 23,
DW_FRAME_390_fpr8 = 24,
DW_FRAME_390_vr8 = 24,
DW_FRAME_390_fpr10 = 25,
DW_FRAME_390_vr10 = 25,
DW_FRAME_390_fpr12 = 26,

© Copyright IBM Corp. 2004, 2015 153

DW_FRAME_390_vr12 = 26,
DW_FRAME_390_fpr14 = 27,
DW_FRAME_390_vr14 = 27,
DW_FRAME_390_fpr9 = 28,
DW_FRAME_390_vr9 = 28,
DW_FRAME_390_fpr11 = 29,
DW_FRAME_390_vr11 = 29,
DW_FRAME_390_fpr13 = 30,
DW_FRAME_390_vr13 = 30,
DW_FRAME_390_fpr15 = 31,
DW_FRAME_390_vr15 = 31,
DW_FRAME_390_cr0 = 32,
DW_FRAME_390_cr1 = 33,
DW_FRAME_390_cr2 = 34,
DW_FRAME_390_cr3 = 35,
DW_FRAME_390_cr4 = 36,
DW_FRAME_390_cr5 = 37,
DW_FRAME_390_cr6 = 38,
DW_FRAME_390_cr7 = 39,
DW_FRAME_390_cr8 = 40,
DW_FRAME_390_cr9 = 41,
DW_FRAME_390_cr10 = 42,
DW_FRAME_390_cr11 = 43,
DW_FRAME_390_cr12 = 44,
DW_FRAME_390_cr13 = 45,
DW_FRAME_390_cr14 = 46,
DW_FRAME_390_cr15 = 47,
DW_FRAME_390_ar0 = 48,
DW_FRAME_390_ar1 = 49,
DW_FRAME_390_ar2 = 50,
DW_FRAME_390_ar3 = 51,
DW_FRAME_390_ar4 = 52,
DW_FRAME_390_ar5 = 53,
DW_FRAME_390_ar6 = 54,
DW_FRAME_390_ar7 = 55,
DW_FRAME_390_ar8 = 56,
DW_FRAME_390_ar9 = 57,
DW_FRAME_390_ar10 = 58,
DW_FRAME_390_ar11 = 59,
DW_FRAME_390_ar12 = 60,
DW_FRAME_390_ar13 = 61,
DW_FRAME_390_ar14 = 62,
DW_FRAME_390_ar15 = 63,
DW_FRAME_390_PSW_mask = 64,
DW_FRAME_390_PSW_address = 65,
DW_FRAME_390_WSA_address = 66, /* DEPRECATED */
DW_FRAME_390_loadmodule = 67, /* DEPRECATED */
DW_FRAME_390_CEESTART = 67, /* DEPRECATED */
DW_FRAME_390_vr16 = 68,
DW_FRAME_390_vr18 = 69,
DW_FRAME_390_vr20 = 70,
DW_FRAME_390_vr22 = 71,
DW_FRAME_390_vr17 = 72,
DW_FRAME_390_vr19 = 73,
DW_FRAME_390_vr21 = 74,
DW_FRAME_390_vr23 = 75,
DW_FRAME_390_vr24 = 76,
DW_FRAME_390_vr26 = 77,
DW_FRAME_390_vr28 = 78,
DW_FRAME_390_vr30 = 79,
DW_FRAME_390_vr25 = 80,
DW_FRAME_390_vr27 = 81,
DW_FRAME_390_vr29 = 82,
DW_FRAME_390_vr31 = 83,
DW_FRAME_390_LAST_REG_NUM

} DW_FRAME_390_REG_type;

154 DWARF/ELF Extensions Library Reference

Members

The members of DW_FRAME_390_REG_type are organized as follows:

DW_FRAME_390_gpr0 to DW_FRAME_390_gpr15
General-purpose registers.

DW_FRAME_390_fpr0 to DW_FRAME_390_fpr15
Floating-point registers.

DW_FRAME_390_cr0 to DW_FRAME_390_cr15
Control registers.

DW_FRAME_390_ar0 to DW_FRAME_390_ar15
Address registers.

DW_FRAME_390_PSW_mask
PSW mask.

DW_FRAME_390_PSW_address
PSW address.

DW_FRAME_390_WSA_address
WSA address.

DW_FRAME_390_loadmodule to DW_FRAME_390_CEESTART
Load-module address.

DW_FRAME_390_vr0 to DW_FRAME_390_vr31
Vector registers.

DW_FRAME_390_LAST_REG_NUM
The number of columns in the Frame Table.

dwarf_register_name operation
The dwarf_register_name operation queries the name of the given machine
register.

Prototype
int dwarf_register_name(

Dwarf_Debug dbg,
Dwarf_Signed reg,
char** ret_name,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

reg
Input. This accepts the machine-register number.

ret_name
Output. This returns the register name.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_register_name operation returns DW_DLV_NO_ENTRY if reg is not a valid
register number.

Chapter 11. DWARF library debugging facilities 155

Relocation type name consumer API
This API provides specific information about a relocation type.

Relocation macros
The following relocation macros are defined for the z/OS operating system.

R_390_NONE
Value = 0. No relocation.

R_390_8
Value = 1. Direct 8-bit.

R_390_12
Value = 2. Direct 12-bit.

R_390_16
Value = 3. Direct 16-bit.

R_390_32
Value = 4. Direct 32-bit.

R_390_PC32
Value = 5. PC-relative 32-bit.

R_390_GOT12
Value = 6. 12-bit GOT entry.

R_390_GOT32
Value = 7. 32-bit GOT entry.

R_390_PLT32
Value = 8. 32-bit PLT entry.

R_390_COPY
Value = 9. Copy symbol at run time.

R_390_GLOB_DAT
Value = 10. Create GOT entry.

R_390_JMP_SLOT
Value - 11. Create PLT entry.

R_390_RELATIVE
Value = 12. Adjust by program base.

R_390_GOTOFF
Value = 13. 32-bit offset to GOT.

R_390_GOTPC
Value = 14. 32-bit PC-relative offset to GOT.

R_390_GOT16
Value = 15. 16-bit GOT entry.

R_390_PC16
Value = 16. PC-relative 16-bit.

R_390_PC16DBL
Value = 17. PC-relative 16-bit redirected to 1.

R_390_PLT16DBL
Value = 18. 16-bit redirected to 1 PLT entry.

156 DWARF/ELF Extensions Library Reference

R_390_PC32DBL
Value = 19. PC relative 32-bit redirected to 1.

R_390_PLT32DBL
Value = 20. 32-bit redirected to 1 PLT entry.

R_390_GOTPCDBL
Value = 21. 32-bit redirected to 1 PC-relative offset to GOT.

R_390_64
Value = 22. Direct 64-bit.

R_390_PC64
Value = 23. PC relative 64-bit.

R_390_GOT64
Value = 24. 64-bit GOT entry.

R_390_PLT64
Value = 25. 64-bit PLT entry.

R_390_GOTENT
Value = 26. 32-bit redirected to 1 PC-relative GOT entry.

R_390_NUM
Value = 27. Number of defined types.

dwarf_reloc_type_name operation
The dwarf_reloc_type_name operation queries the name of the given relocation
type.

Prototype
int dwarf_reloc_type_name(

Dwarf_Debug dbg,
Dwarf_Signed reloc_type,
char** ret_name,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

reloc_type
Input. This accepts one of the relocation macros, as defined in “Relocation
macros” on page 156.

ret_name
Output. This returns the relocation-type name.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_reloc_type_name operation returns DW_DLV_NO_ENTRY if reloc_type is not
a valid relocation type.

Utility consumer operations
These utilities assist in debugging a program-analysis tool that is being developed.

Chapter 11. DWARF library debugging facilities 157

dwarf_build_version operation
This operation displays the build ID of the dwarf library. Every release/PTF of the
dwarf library will have an unique build ID. This information is useful for
providing service information to IBM customer support. Calling this function will
emit the build ID string (encoded in ISO8859-1) to stdout.

Prototype
char*

dwarf_build_version (void);

Return values

Returns build ID of the dwarf library. The returned string is encoded in ISO8859-1.

Example
/* Compile this code with ASCII option */
printf ("Library(dwarf) Level(%s)\n", dwarf_build_version());

dwarf_show_error operation
If the user error handler is responsible for the error display, then the
dwarf_show_error operation enables or disables the verbose display.

The verbose display is disabled by default. Enabling the display will send the
message number, text and any available traceback to STDERR.

Prototype
int dwarf_show_error (

Dwarf_Debug dbg,
Dwarf_Bool new_show,
Dwarf_Bool* ret_prev_show,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf consumer object.

new_show
Input. This accepts the Boolean value that will enable or disable the verbose
error display.

ret_prev_show
Output. This returns the previous Boolean value replaced by the new_show
value.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_show_error operation never returns DW_DLV_NO_ENTRY.

Memory allocation

There is no storage to deallocate.

158 DWARF/ELF Extensions Library Reference

dwarf_set_stringcheck operation
The dwarf_set_stringcheck operation enables or disables the libdwarf internal
string checks.

This API must be called before a Dwarf_Debug object is created for it to have an
effect.

Internal string checks ensure that the string literals have a proper length and are
within the bounds of the debug section. String checks are done when libdwarf
operations retrieve string literals from the debug information. By default, string
checks are enabled. This is the safest way to run your application. If disabled, then
performance will improve.

The previous setting is returned when the operation has finished.

Prototype
int dwarf_set_stringcheck(

int stringcheck);

Parameters

stringcheck
Input. This accepts 0 to enable the checks, and 1 to disable them.

Return values

The dwarf_set_stringcheck operation never returns DW_DLV_NO_ENTRY.

Memory allocation

There is no storage to deallocate.

Chapter 11. DWARF library debugging facilities 159

160 DWARF/ELF Extensions Library Reference

Chapter 12. Producer APIs for standard DWARF sections

These are IBM's extended producer operations for the standard DWARF sections.

Initialization and termination producer operations
The operations that create, terminate, and specify the codeset of DWARF producer
objects.

dwarf_producer_target operation
This operation sets up the size of the pointers and relocation types within the
producer DWARF object using the information provided in the ELF file header.

Prototype
int dwarf_producer_target(

Dwarf_P_Debug dbg,
Elf* elfptr,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

elfptr
Input. This accepts an ELF descriptor.

error
Input/Output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
Returned upon successful completion of the operation.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if:
v dbg is NULL
v elfptr is NULL
v Header information within the given ELF descriptor is corrupt

dwarf_producer_write_elf operation
This operation writes the contents of the ELF descriptor to the side file.

This content includes:
v The ELF file header, section headers and section data
v Generated ELF sections
v Sections, such as .debug_info, generated via libdwarf operations

The section data is retrieved via the dwarf_get_section_bytes operation, which
also sets the final section data length. The data must be in the exact order of the

© Copyright IBM Corp. 2004, 2015 161

ELF-section index values. These values are assigned by calls to the callback
function passed to either the dwarf_producer_init or dwarf_producer_init_b
operation.

User ELF sections, such as .text and .data, are not generated via libdwarf
operations. The section header must be complete, and include the section data
length. user_elf_data may be NULL if all the user sections are SHT_NOBITS.
ELF-section index values will follow those in the generated list.

Prototype
int dwarf_producer_write_elf(

Dwarf_P_Debug dbg,
Elf* elfptr,
int n_gend_scns,
Elf_Scn ** gend_elf_scns,
char ** gend_elf_names,
int n_user_scns,
Elf_Scn ** user_elf_scns,
char ** user_elf_names,
char ** user_elf_data,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

elfptr
Input. This accepts the ELF descriptor.

n_gend_scns
Input. This accepts the number of generated ELF sections.

gend_elf_scns,
Input. This accepts the generated ELF sections.

gend_elf_names
Input. This accepts the name of the generated ELF section.

n_user_scns
Input. This accepts the number of user ELF sections.

user_elf_scns
Input. This accepts the user ELF section.

user_elf_names
Input. This accepts the name of the user ELF section.

user_elf_data
Input. This accepts the section data of the user ELF section.

error
Input/Output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
Returned upon successful completion of the operation.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if:

162 DWARF/ELF Extensions Library Reference

v dbg is NULL.
v elfptr is NULL.

dwarf_p_set_codeset operation
This operation specifies the code set for all the strings (character arrays) that will
be passed into the libdwarf producer operations.

Prototype
int dwarf_p_set_codeset(

Dwarf_P_Debug dbg,
const __ccsid_t codeset_id,
__ccsid_t* prev_cs_id,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts the Dwarf_P_Debug object.

codeset_id
This accepts the codeset for all the strings that will be passed into the libdwarf
producer operations. You can obtain this ID by calling __toCcsid(). For more
information on the __toCcsid() function, see the library functions in z/OS
C/C++ Run-Time Library Reference. For a list of codesets that are supported,
seez/OS C/C++ Programming Guide.

prev_cs_id
Output. This returns the code set that was specified in the last call to this
operation. If the operation is called for the first time, this returns ISO8859-1,
which is the default code set. If you specify NULL, then the previously
specified codeset will not be returned.

error
Input/Output. This accepts and returns the Ddpi_Error object. This is a
required parameter that handles error information generated by the producer
or consumer application. If error is not NULL, then error information will be
stored in the given object. If error is NULL, then the libddpi error process will
look for an error-handling callback function that was specified by the
ddpi_init operation. If no callback function was specified, then the error
process will abort.

Return values

DW_DLV_OK
Returned upon successful completion of the operation.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if:
v dbg is NULL.
v codeset_id is invalid.
v dwarf_p_set_codeset is unable to convert the specified codeset to an internal

codeset.

Chapter 12. Producer APIs for standard DWARF sections 163

dwarf_error-information producer operations
This section discusses the set of operations that manipulate the error objects for
producers.

dwarf_p_seterrhand operation
The dwarf_p_seterrhand operation assigns a new error handler to the producer
error object.

Prototype
Dwarf_Handler dwarf_p_seterrhand(

Dwarf_P_Debug dbg,
Dwarf_Handler errhand);

Parameters

dbg
Input. This accepts a libdwarf producer object.

errhand
Input. This accepts the error handler or NULL.

Return values

DW_DLV_OK
Returned upon successful completion of the operation.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if dbg is NULL.

dwarf_p_seterrarg operation
The dwarf_p_seterrarg operation assigns a new error argument to the producer
error object.

Prototype
Dwarf_Ptr dwarf_p_seterrarg(

Dwarf_P_Debug dbg,
Dwarf_Ptr errarg);

Parameters

dbg
Input. This accepts a libdwarf producer object.

errhand
Input. This accepts the error invocation-ID argument.

Return values

DW_DLV_OK
Returned with the previous error argument upon successful completion of the
operation.

DW_DLV_NO_ENTRY
Never returned.

164 DWARF/ELF Extensions Library Reference

DW_DLV_ERROR
Returned if dbg is NULL.

dwarf_p_show_error operation
The dwarf_p_show_error operation enables or disables the verbose error display.

The default is false, when the user error handler is responsible for the error
display. When set to true, messages are sent to STDERR when an error is detected,
showing the message number, text and available traceback.

Prototype
int dwarf_p_show_error(

Dwarf_P_Debug dbg,
Dwarf_Bool new_show,
Dwarf_Bool* ret_prev_show,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

new_show
Input. This accepts the flag that indicates whether or not to display the error.

ret_prev_show
Input. This accepts the flag that indicates whether or not to display the
previous setting that is returned.

error
Input/Output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
Returned upon successful completion of the operation.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if:
v dbg is NULL.
v ret_prev_show is NULL.

Chapter 12. Producer APIs for standard DWARF sections 165

166 DWARF/ELF Extensions Library Reference

Chapter 13. Debug-section creation and termination
operations

These APIs deal with creating and terminating debug sections within the ELF
object.

dwarf_add_section_to_debug operation
The dwarf_add_section_to_debug operation creates a new debug section on an
initial call.

If a section already exists, then dwarf_add_section_to_debug creates a separate
instance of the section (with a separate unit header).

Prototype
int dwarf_add_section_to_debug(

Dwarf_P_Debug dbg,
char * section_name,
Dwarf_P_Section* ret_section,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

section_name
Input. This accepts the debug section name.

ret_section
Output. This returns the Dwarf_P_Section.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
Returned upon successful completion of the operation.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if:
v dbg is NULL
v Debug section name is NULL
v Returned section object is NULL

dwarf_section_finish operation
The dwarf_section_finish operation completes a debug section, after which no
more information can be added.

© Copyright IBM Corp. 2004, 2015 167

Prototype
int dwarf_section_finish(

Dwarf_P_Debug dbg,
Dwarf_P_Section section,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

section
Input. This accepts the Dwarf_P_Section.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
Returned upon successful completion of the operation.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if:
v dbg is NULL
v section object given is NULL
v section object given has been completed before (in other words,

dwarf_section_finish has been called before for this object)

168 DWARF/ELF Extensions Library Reference

Chapter 14. ELF section operations

These operations are used for creating and querying information on other sections
in ELF that are not part of the debug section. Examples of these sections are
.strtab (string table) and .symtab (symbol table).

dwarf_elf_create_string operation
The dwarf_elf_create_string operation creates an entry in the .strtab section.

Only one entry is created for a given string, therefore this operation can be used to
look up the index of a given string.

Prototype
int dwarf_elf_create_string(

Dwarf_P_Debug dbg,
char* string,
Dwarf_Unsigned* ret_elf_stridx,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

string
Input. This accepts the ELF string (NULL terminated).

ret_elf_stridx
Output. This returns the ELF strtab index.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_elf_create_string operation returns:
v DW_DLV_OK if successful
v DW_DLV_ERROR if:

– dbg is NULL
– string is NULL
– Returned parameter is NULL

dwarf_elf_create_string never returns DW_DLV_NO_ENTRY.

dwarf_elf_create_symbol operation
The dwarf_elf_create_symbol operation creates an ELF symbol in .symtab.

Prototype
int dwarf_elf_create_symbol(

Dwarf_P_Debug dbg,
char* sym_name,
Dwarf_Addr sym_value,

© Copyright IBM Corp. 2004, 2015 169

Dwarf_Unsigned sym_size,
unsigned char sym_type,
unsigned char sym_bind,
unsigned char sym_other,
Dwarf_Signed sym_shndx,
Dwarf_Unsigned* ret_elf_symidx,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

sym_name
Input. This accepts the ELF symbol name.

sym_value
Input. This accepts the ELF symbol value.

sym_size
Input. This accepts the ELF symbol size.

sym_type
Input. This accepts the ELF symbol type.

sym_bind
Input. This accepts the ELF symbol bind.

sym_other
Input. This accepts the ELF symbol other.

sym_shndx
Input. This accepts the ELF section idx.

ret_elf_stridx
Output. This returns the ELF .symtab index.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_elf_create_symbol operation returns:
v DW_DLV_OK if successful
v DW_DLV_ERROR if:

– dbg is NULL
– sym_name is NULL
– Returned parameter is NULL

dwarf_elf_create_symbol never returns DW_DLV_NO_ENTRY.

dwarf_elf_producer_symbol_index_list operation
The dwarf_elf_producer_symbol_index_list operation retrieves the ELF symbol
table-entry index, given a symbol name.

170 DWARF/ELF Extensions Library Reference

Prototype
int dwarf_elf_producer_symbol_index_list(

Dwarf_P_Debug dbg,
char* sym_name,
Dwarf_Unsigned** ret_elf_symlist,
Dwarf_Unsigned* ret_elf_symcnt,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

sym_name
Input. This accepts the ELF symbol name.

ret_elf_symlist
Output. This returns a list of ELF symbol indexes for the given name.

ret_elf_symcnt
Output. This returns the number of ELF symbol indexes in the list.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_elf_producer_symbol_index_list operation returns:
v DW_DLV_OK if successful
v DW_DLV_ERROR if:

– dbg is NULL
– sym_name is NULL
– Returned parameters are NULL

dwarf_elf_producer_symbol_index_list returns DW_DLV_NO_ENTRY if either .symtab
is not found or if sym_name is not found in .symtab.

Memory allocation

You can deallocate the parameters as required.

Example: The following example is a code fragment that deallocates the
ret_elf_symilst parameter:
if (dwarf_elf_producer_symbol_index_list(dbg, ..., &ret_elf_symilst,

&ret_elf_symcnt, &err)
== DW_DLV_OK)

{ dwarf_p_dealloc (dbg, ret_elf_symilst, DW_DLA_LIST); }

dwarf_elf_producer_string operation
The dwarf_elf_producer_string operation retrieves the ELF string table entry data
for a given .strtab index.

Prototype
int dwarf_elf_producer_string(

Dwarf_P_Debug dbg,
Dwarf_Unsigned elf_stridx,
char** ret_str_name,
Dwarf_Error* error);

Chapter 14. ELF section operations 171

Parameters

dbg
Input. This accepts a libdwarf producer object.

elf_stridx
Input. This accepts the ELF strtab index.

ret_str_name
Output. This returns the ELF string name.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_elf_producer_string operation returns:
v DW_DLV_OK if successful
v DW_DLV_ERROR if:

– dbg is NULL
– Returned parameter is NULL

dwarf_elf_producer_string returns DW_DLV_NO_ENTRY if either .symtab is not found
or if elf_stridx is out of bounds.

dwarf_elf_producer_symbol operation
The dwarf_elf_producer_symbol operation retrieves the ELF symbol for a given
.strtab index.

Prototype
int dwarf_elf_producer_symbol(

Dwarf_P_Debug dbg,
Dwarf_Unsigned elf_symidx,
char** ret_sym_name,
Dwarf_Addr* ret_sym_value,
Dwarf_Unsigned* ret_sym_size,
unsigned char* ret_sym_type,
unsigned char* ret_sym_bind,
unsigned char* ret_sym_other,
Dwarf_Signed* ret_sym_shndx,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

elf_symidx
Input. This accepts the ELF symbol table (.symtab) index.

ret_sym_name
Output. This returns the ELF symbol name.

ret_sym_value
Output. This returns the ELF symbol value.

ret_sym_size
Output. This returns the ELF symbol size.

172 DWARF/ELF Extensions Library Reference

ret_sym_type
Output. This returns the ELF symbol type.

ret_sym_bind
Output. This returns the ELF symbol bind.

ret_sym_other
Output. This returns the ELF symbol other.

ret_sym_shndx
Output. This returns the ELF section idx.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_elf_producer_string operation returns:
v DW_DLV_OK if successful
v DW_DLV_ERROR if:

– dbg is NULL
– Returned parameter is NULL

dwarf_elf_producer_symbol returns DW_DLV_NO_ENTRY if either .symtab is not found
or if elf_symidx is out of bounds.

dwarf_elf_create_section_hdr_string operation
The dwarf_elf_create_section_hdr_string operation creates an entry in the ELF
section-header string table (.shstrtab).

Only one entry is created for each given string. Therefore, it can also be used to
look up the index of a given string.

Prototype
int dwarf_elf_create_section_hdr_string(

Dwarf_P_Debug dbg,
char* string,
Dwarf_Unsigned* ret_elf_hstridx,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

string
Input. This accepts the ELF string (NULL terminated).

ret_elf_hstridx
Output. This returns the ELF shstrtab index.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_elf_create_section_hdr_string API returns:
v DW_DLV_OK if successful

Chapter 14. ELF section operations 173

v DW_DLV_ERROR if:
– dbg is NULL
– string is NULL
– Returned parameter is NULL

dwarf_elf_create_section_hdr_string never returns DW_DLV_NO_ENTRY.

dwarf_elf_producer_section_hdr_string
The dwarf_elf_producer_section_hdr_string operation retrieves the entry data in
the string table of the ELF section header, by index.

Prototype
int dwarf_elf_producer_section_hdr_string(

Dwarf_P_Debug dbg,
Dwarf_Unsigned elf_hstridx,
char** ret_str_name,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

elf_hstridx
This accepts the ELF shstrtab index.

ret_str_name
Output. This returns the ELF string name.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_elf_producer_section_hdr_string API returns:
v DW_DLV_OK if successful
v DW_DLV_ERROR if:

– dbg is NULL
– Returned parameter is NULL

dwarf_elf_producer_section_hdr_string returns DW_DLV_NO_ENTRY if either .symtab
is not found or if elf_hstridx is out of bounds.

174 DWARF/ELF Extensions Library Reference

Chapter 15. DIE creation and modification operations

These operations are used to create DIEs in DIE sections, and to add attributes of
different forms to the DIEs.

dwarf_add_die_to_debug_section operation
The dwarf_add_die_to_debug_section operation attaches a DIE in an arbitrary
DIE-format debug section as root.

Prototype
int dwarf_add_die_to_debug_section(

Dwarf_P_Debug dbg,
Dwarf_P_Section section,
Dwarf_P_Die first_die,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

section
Input. This accepts the owning Dwarf_P_Section.

first_die
Input. This accepts the first (root) DIE in the section.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_add_die_to_debug_section operation returns:
v DW_DLV_OK if successful
v DW_DLV_ERROR if:

– dbg is NULL
– section object is NULL
– section object has been completed
– Given root DIE is NULL
– The tag of the root DIE does not match DW_TAG_compile_unit or

DW_TAG_partial_unit

dwarf_add_die_to_debug_section never returns DW_DLV_NO_ENTRY.

dwarf_add_AT_block_const_attr operation
The dwarf_add_AT_block_const_attr operation adds an arbitrary attribute to the
specified DIE and encodes the value using the form of block class.

Prototype
Dwarf_P_Attribute

dwarf_add_AT_block_const_attr(
Dwarf_P_Die ownerdie,

© Copyright IBM Corp. 2004, 2015 175

Dwarf_Half attr,
Dwarf_Unsigned block_size,
Dwarf_Ptr block_data,
Dwarf_Error* error);

Parameters

ownerdie
Input. This accepts the DIE that receives the given attribute.

attr
Input. This accepts the attribute name.

block_size
Input. This accepts the block data in a fixed sized buffer.

block_data
Input. This accepts the length of block data buffer.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_add_AT_block_const_attr operation returns the Dwarf_P_Attribute
descriptor for attr on success, and DW_DLV_BADADDR if:
v The ownerdie object is NULL
v The ownerdie object does not have a valid producer debug instance
v The memory to allocate internal objects is not adequate

dwarf_add_AT_const_value_block operation
The dwarf_add_AT_const_value_block operation adds the DW_AT_const_value
attribute to the specified DIE and encodes the value using the form of block class.

Prototype
Dwarf_P_Attribute

dwarf_add_AT_const_value_block(
Dwarf_P_Die ownerdie,
Dwarf_Unsigned block_size,
Dwarf_Ptr block_data,
Dwarf_Error* error);

Parameters

ownerdie
Input. This accepts the DIE that receives the given attribute.

block_size
Input. This accepts the constant value data in a fixed-size buffer.

block_data
Input. This accepts the length of constant value data buffer.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_add_AT_const_value_block operation returns the Dwarf_P_Attribute
descriptor for attr on success, and DW_DLV_BADADDR if:

176 DWARF/ELF Extensions Library Reference

v The ownerdie object is NULL
v The ownerdie object does not have a valid producer debug instance
v The memory to allocate internal objects is not adequate

dwarf_add_AT_reference__noninfo_with_reloc operation
The dwarf_add_AT_reference_noninfo_with_reloc operation adds references to DIE
that does not belong to the .debug_info section.

This type of reference (DW_FORM_sec_offset) is an offset from the beginning of the
debug section of other DIEs. The offset field is 4 bytes for 32-bit objects, and 8
bytes for 64-bit objects.

Prototype
Dwarf_P_Attribute dwarf_add_AT_reference_noninfo_with_reloc (

Dwarf_P_Debug dbg,
Dwarf_P_Die ownerdie,
Dwarf_Half attr,
Dwarf_P_Die otherdie,
Dwarf_Error* error);

Parameters

dbg
Input. This accept the Dwarf_P_Debug object.

ownerdie
Input. DIE to receive the given attribute.

attr
Input. DIE attribute name.

otherdie
Input. DIE being referenced by this attribute.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_add_AT_reference_noninfo_with_reloc operation returns a valid
Dwarf_P_Attribute DIE attribute on success, and DW_DLV_BADADDR if:
v dbg is NULL.
v The Dwarf_P_Debug object contains invalid version information.
v The given ownerdie or otherdie is NULL.
v Attribute does not allow the use of DW_FORM_sec_offset.
v There is not enough memory to allocate internal objects.

dwarf_add_AT_unsigned_LEB128 operation
The dwarf_add_AT_unsigned_LEB128 operation adds an unsigned LEB128 number of
form DW_FORM_udata for a given attribute.

Chapter 15. DIE creation and modification operations 177

Prototype
Dwarf_P_Attribute dwarf_add_AT_unsigned_LEB128 (

Dwarf_P_Die ownerdie,
Dwarf_Half attribute,
Dwarf_Signed unsigned_value,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

ownerdie
Input. This accepts the owning DIE.

attribute
Input. This accepts the DIE attribute.

unsigned_value
Input. This accepts a constant value.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_add_AT_unsigned_LEB128 operation returns the Dwarf_P_Attribute
descriptor for attribute on success, and DW_DLV_BADADDR if ownerdie is NULL.

dwarf_add_AT_noninfo_offset operation
The dwarf_add_AT_noninfo_offset operation adds an offset in a section other than
.debug_info or .debug_str (that is, DW_FORM_sec_offset).

The offset field is 4 bytes for 32-bit objects, and 8-bytes for 64-bit objects.

Prototype
Dwarf_P_Attribute dwarf_add_AT_noninfo_offset (

Dwarf_P_Debug dbg,
Dwarf_P_Die ownerdie,
Dwarf_Half attr,
Dwarf_Unsigned offset,
Dwarf_Error* error);

Parameters

dbg
Input. This accept the Dwarf_P_Debug object.

ownerdie
Input. DIE to receive the given attribute.

attr
Input. DIE attribute name.

offset
Input. Section offset in a section other than .debug_info or .debug_str.

error
Input/output. This accepts or returns the Dwarf_Error object.

178 DWARF/ELF Extensions Library Reference

Return values

The dwarf_add_AT_noninfo_offset operation returns a valid Dwarf_P_Attribute
DIE attribute on success, and DW_DLV_BADADDR if:
v dbg is NULL.
v The Dwarf_P_Debug object contains invalid version information.
v The given ownerdie is NULL.
v Attribute does not allow the use of DW_FORM_sec_offset.
v There is not enough memory to allocate internal objects.
v There is not enough memory to allocate space to hold offset.

dwarf_die_merge operation
The dwarf_die_merge operation merges the attributes from die_b to die_a.

If the two DIEs are identical, no merge will take place. If usetag_b is true, the tag
of die_a will be replaced with the tag of die_b. If usepar_b is true, die_a will
inherit the parent of die_b.

Prototype
Dwarf_P_Die dwarf_die_merge (

Dwarf_P_Die die_a,
Dwarf_P_Die die_b,
Dwarf_Bool usetag_b,
Dwarf_Bool usepar_b,
Dwarf_Error* error);

Parameters

die_a
Input. The target DIE.

die_b
Input. The source DIE.

usetag_b
Input. Inherit TAG value from source DIE?

usepar_b
Input. Attach target DIE to the parent of the source DIE?

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_die_merge operation returns the target DIE on success, and
DW_DLV_BADADDR if dbg is NULL.

Chapter 15. DIE creation and modification operations 179

180 DWARF/ELF Extensions Library Reference

Chapter 16. Line-number program (.debug_line) producer
operations

These operations create and add information to a line-number program.

dwarf_add_line_entry_b operation
The dwarf_add_line_entry_b operation creates a line-number program and is an
alternative method to dwarf_add_line_entry.

dwarf_add_line_entry_b supports compact-flag representation, source view, and
sub-line extensions.

Prototype
int dwarf_add_line_entry_b(

Dwarf_P_Debug dbg,
Dwarf_Unsigned file_index,
Dwarf_Addr code_address,
Dwarf_Unsigned lineno,
Dwarf_Unsigned sublineno,
Dwarf_Signed column_number,
Dwarf_Unsigned view_index,
Dwarf_Flag line_std_flags,
Dwarf_Flag line_sys_flags,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

file_index
Input. This accepts the index of source-file entries. The entries are from calls to
the dwarf_add_file_decl, dwarf_add_lne_file_decl and
dwarf_add_global_file_decl APIs.

code_address
Input. This accepts the program address.

lineno
Input. This accepts the source-file line number.

sublineno
Input. This accepts the source-file subline number or 0.

column_number
Input. This accepts the source-file column number or 0.

view_index
Input. This accepts the source-file view index or 0.

line_std_flags
Input. This accepts the standard line-table flags.

line_sys_flags
Input. This accepts the system line-table flags.

error
Input/output. This accepts or returns the Dwarf_Error object.

© Copyright IBM Corp. 2004, 2015 181

Return values

The dwarf_add_line_entry_b operation returns 0 on success and DW_DLV_ERROR if:
v dbg is NULL
v .debug_line section does not exist

dwarf_add_line_entry_b never returns DW_DLV_NO_ENTRY.

dwarf_add_lne_file_decl operation
The dwarf_add_lne_file_decl operation adds a source file declaration.

It results in a DW_LNE_define_file opcode in the body of the current line-number
program. dwarf_add_lne_file_decl must be called after all files in the header of
the current line-number program have been declared through the
dwarf_add_file_decl operation.

Prototype
int dwarf_add_lne_file_decl(

Dwarf_P_Debug dbg,
char* name,
Dwarf_Unsigned dir_index,
Dwarf_Unsigned time_last_modified,
Dwarf_Unsigned length,
Dwarf_Unsigned * ret_src_idx,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

name
Input. This accepts the source-file name.

dir_index
Input. This accepts the source-directory index.

time_last_modified
Input. This accepts the source-file time stamp.

length
Input. This accepts the source-file size.

ret_src_idx
Output. This returns the source-file index.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_add_lne_file_decl operation returns:
v DW_DLV_OK if successful
v DW_DLV_ERROR if:

– dbg is NULL
– Return parameter is NULL
– .debug_line section does not exist

182 DWARF/ELF Extensions Library Reference

dwarf_add_lne_file_decl never returns DW_DLV_NO_ENTRY.

dwarf_add_global_file_decl operation
The dwarf_add_global_file_decl operation adds a global source-file declaration.

It results in a DW_LNE_IBM_define_global_file opcode in the body of the current
line-number program. dwarf_add_global_file_decl must be called after all files in
the header of the current line-number program have been declared through the
dwarf_add_file_dec operation, and after any files in the body of the current
line-number program have been declared through the dwarf_add_lne_file_decl
operation.

Prototype
int dwarf_add_global_file_decl(

Dwarf_P_Debug dbg,
Dwarf_P_Die src_die,
Dwarf_Unsigned * ret_src_idx,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

src_die
Input. This accepts the source-file DIE object in the .debug_srcfiles section.

ret_src_idx
Output. This returns the source-file index.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_add_global_file_decl operation returns:
v DW_DLV_OK if successful
v DW_DLV_ERROR if:

– dbg is NULL
– Return parameter is NULL
– .debug_line section does not exist

dwarf_add_global_file_decl never returns DW_DLV_NO_ENTRY.

dwarf_line_set_default_isa operation
The dwarf_line_set_default_isa operation sets the default instruction set
architecture (ISA).

Prototype
int dwarf_line_set_default_isa(

Dwarf_P_Debug dbg,
Dwarf_Unsigned isa,
Dwarf_Error* error);

Chapter 16. Line-number program (.debug_line) producer operations 183

Parameters

dbg
Input. This accepts a libdwarf producer object.

isa
Output. This returns the default ISA value.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_line_set_default_isa operation returns:
v DW_DLV_OK if successful
v DW_DLV_ERROR if dbg is NULL

dwarf_line_set_default_isa never returns DW_DLV_NO_ENTRY.

dwarf_line_set_isa operation operation
The dwarf_line_set_isa operation sets the current instruction set architecture
(ISA).

Prototype
int dwarf_line_set_isa(

Dwarf_P_Debug dbg,
Dwarf_Unsigned isa,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

isa
Output. This returns the new ISA value.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_line_set_isa operation returns:
v DW_DLV_OK if successful
v DW_DLV_ERROR if dbg is NULL

dwarf_line_set_isa never returns DW_DLV_NO_ENTRY.

dwarf_global_linetable operation
The dwarf_global_linetable operation switches to global line number table.

All subsequent line-number information is placed in the statement program
associated with the CU DIE.

184 DWARF/ELF Extensions Library Reference

Prototype
int dwarf_global_linetable(

Dwarf_P_Debug dbg,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_global_linetable operation returns:
v DW_DLV_OK if successful
v DW_DLV_ERROR if:

– dbg is NULL
– .debug_info does not exist

dwarf_global_linetable never returns DW_DLV_NO_ENTRY.

dwarf_subprogram_linetable operation
The dwarf_subprogram_linetable operation switches to the subprogram
line-number table, which is created on the first call.

All subsequent line-number information is placed in the statement program
associated with the subprogram DIE.

Prototype
int dwarf_subprogram_linetable(

Dwarf_P_Debug dbg,
Dwarf_P_Die subpgm_die,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

subpgm_die
Input. This accepts the subprogram DIE object in the .debug_info section.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_subprogram_linetable operation returns:
v DW_DLV_OK if successful
v DW_DLV_ERROR if:

– dbg is NULL
– .debug_info does not exist
– subpgrm_die does not exist

Chapter 16. Line-number program (.debug_line) producer operations 185

dwarf_subprogram_linetable never returns DW_DLV_NO_ENTRY.

186 DWARF/ELF Extensions Library Reference

Chapter 17. Location-expression producer APIs

These APIs deal with creation of DWARF location expressions.

dwarf_add_expr_reg operation
The dwarf_add_expr_reg operation takes a given pseudo register and pushes the
appropriate DW_OP_reg opcode on the given location expression.

Prototype
Dwarf_Unsigned dwarf_add_expr_reg(

Dwarf_P_Expr expr,
Dwarf_Unsigned reg,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

expr
Input. This accepts the location expression.

reg
Input. This accepts the pseudo register. It must be of the type
DW_FRAME_MIPS_REG_type or DW_FRAME_390_REG_type.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_add_expr_reg operation returns the number of bytes in the byte stream
for the expr currently generated. It returns DW_DLV_NOCOUNT if:
v expr is NULL
v reg is out of bounds

dwarf_add_expr_breg operation
The dwarf_add_expr_breg operation takes a given pseudo register and a given
offset and pushes the appropriate DW_OP_breg opcode on the given location
expression.

Prototype
Dwarf_Unsigned dwarf_add_expr_breg(

Dwarf_P_Expr expr,
Dwarf_Unsigned reg,
Dwarf_Signed offset,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

© Copyright IBM Corp. 2004, 2015 187

expr
Input. This accepts the location expression.

reg
Input. This accepts the pseudo register. It must be of the type
DW_FRAME_MIPS_REG_type or DW_FRAME_390_REG_type.

offset
Input. This accepts the offset from the register.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_add_expr_breg operation returns the number of bytes in the byte stream
for the expr currently generated. It returns DW_DLV_NOCOUNT if:
v expr is NULL
v reg is out of bounds

dwarf_add_conv_expr operation
The dwarf_add_conv_expr operation pushes a type conversion opcode on the
location expression expr. The meaning of val1, val2, and val3 depends on the
encoding of the type.

Prototype
Dwarf_Unsigned dwarf_add_conv_expr (

Dwarf_P_Expr expr,
Dwarf_Small opcode,
Dwarf_Small f_encoding,
Dwarf_Unsigned f_size,
Dwarf_Small f_val1,
Dwarf_Small f_val2,
Dwarf_Small f_val3,
Dwarf_Small t_encoding,
Dwarf_Unsigned t_size,
Dwarf_Small t_val1,
Dwarf_Small t_val2,
Dwarf_Small t_val3,
Dwarf_Error *error);

Parameters

expr
Input. This accepts the Dwarf_P_Expr location expression object.

opcode
Input. This accepts a DWARF expression type conversion operator.

f_encoding
Input. This contains the DWARF basetype encoding attribute value for the from
operand of the type conversion.

f_size
Input. This contains the size of the from operand of the type conversion in
bytes.

f_val1
Input. The first value for describing the from operand of the type conversion.

188 DWARF/ELF Extensions Library Reference

f_val2
Input. The second value for describing the from operand of the type
conversion.

f_val3
Input. The third value for describing the from operand of the type conversion.

t_encoding
Input. This contains the DWARF basetype encoding attribute value for the to
operand of the type conversion.

t_size
Input. This contains the size of the to operand of the type conversion in bytes.

t_val1
Input. The first value for describing the to operand of the type conversion.

t_val2
Input. The second value for describing the to operand of the type conversion.

t_val3
Input. The third value for describing the to operand of the type conversion.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_add_conv_expr operation returns the next available byte for pushing
operators in the input location expression object. It returns DW_DLV_NOCOUNT if:
v expr is NULL.
v expr does not contain a valid producer debug instance.
v The size of type conversion operands cannot be encoded.
v The opcode value is not supported.
v The total length of the location expression exceeded program limit.

dwarf_add_expr_ref operation
The dwarf_add_expr_ref operation pushes opcode that takes a DIE as operand on
the location expression expr.

Prototype
Dwarf_Unsigned dwarf_add_expr_ref (

Dwarf_P_Expr expr,
Dwarf_Small opcode,
Dwarf_P_Die die,
Dwarf_Error *error);

Parameters

expr
Input. This accepts the Dwarf_P_Expr location expression object.

opcode
Input. This accepts a DWARF expression operator that takes a DIE as an
operand.

die
Input. The referenced DIE.

Chapter 17. Location-expression producer APIs 189

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_add_expr_ref operation returns the next available byte for pushing
operators in the input location expression object. It returns DW_DLV_NOCOUNT if:
v expr is NULL.
v expr does not contain a valid producer debug instance.
v There is not enough memory to allocate internal objects.
v The opcode value is not supported.

dwarf_add_loc_list_entry operation
The dwarf_add_loc_list_entry operation adds a location list entry into the
.debug_loc section.

Prototype
int dwarf_add_loc_list_entry (

Dwarf_P_Debug dbg,
Dwarf_Addr begin_addr,
Dwarf_Addr end_addr,
Dwarf_P_Expr loc_expr,
Dwarf_Off* ret_sec_off,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts the Dwarf_P_Debug object.

begin_addr
Input. The start address to which loc_expr is valid.

end_addr
Input. The end address to which loc_expr becomes invalid.

loc_expr
Input. The location expression that is valid within the given address range.

ret_sec_off
Output. The .debug_loc section offset that points to the beginning of this
location list entry. If NULL, this field is not used.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
The operation is successful. If ret_sec_off is not NULL, it will contain the
.debug_loc section offset that points to the beginning of this location list entry.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v dbg is NULL.
v The Dwarf_P_Debug object contains invalid version information.

190 DWARF/ELF Extensions Library Reference

v There is not enough memory to allocate internal objects.

dwarf_add_loc_list_base_address_entry operation
The dwarf_add_loc_list_base_address_entry operation adds a base address
selection entry into the .debug_loc section.

Prototype
int dwarf_add_loc_list_base_address_entry (

Dwarf_P_Debug dbg,
Dwarf_Addr baseaddr,
Dwarf_Signed sym_index,
Dwarf_Off* ret_sec_off,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts the Dwarf_P_Debug object.

baseaddr
Input. A relocatable address which represents the base address for the rest of
the location list entries.

sym_index
Input. An ELF symbol table index.

ret_sec_off
Output. The .debug_loc section offset that points to the beginning of this
location list entry. If NULL, this field is not used.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
The operation is successful. If ret_sec_off is not NULL, it will contain the
.debug_loc section offset that points to the beginning of this location list entry.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v dbg is NULL.
v The Dwarf_P_Debug object contains invalid version information.
v There is not enough memory to allocate internal objects.

dwarf_add_loc_list_end_of_list_entry operation
The dwarf_add_loc_list_end_of_list_entry operation adds an end-of-list entry
into the .debug_loc section.

Prototype
int dwarf_add_loc_list_end_of_list_entry (

Dwarf_P_Debug dbg,
Dwarf_Error* error);

Chapter 17. Location-expression producer APIs 191

Parameters

dbg
Input. This accepts the Dwarf_P_Debug object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

DW_DLV_OK
The operation is successful. An end-of-list entry is added into the .debug_loc
section.

DW_DLV_NO_ENTRY
Never returned.

DW_DLV_ERROR
Returned if either of the following conditions apply:
v dbg is NULL.
v The Dwarf_P_Debug object contains invalid version information.
v There is not enough memory to allocate internal objects.

192 DWARF/ELF Extensions Library Reference

Chapter 18. Accelerated access producer operation

The APIs in this section create entries in a fast-access debug section.

dwarf_add_pubtype operation
The dwarf_add_pubtype operation defines a global type name in .debug_pubtypes.

Prototype
Dwarf_Unsigned dwarf_add_pubtype(

Dwarf_P_Debug dbg,
Dwarf_P_Die die,
char* pubtype_name,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

die
Input. This accepts a file-scoped user defined type DIE.

pubtype_name
Input. This accepts the name of the public type.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_add_pubtype operation returns a non-zero value on success, and returns
zero if:
v dbg is NULL.
v die is NULL.
v pubtype_name is NULL.

© Copyright IBM Corp. 2004, 2015 193

194 DWARF/ELF Extensions Library Reference

Chapter 19. Dynamic storage management operation

The operation in this section controls the dynamic storage within the libdwarf
producer object.

dwarf_p_dealloc
The dwarf_p_dealloc API frees the dynamic storage pointed to by a given space
address and allocated to the given Dwarf_P_Debug.

Prototype
void dwarf_p_dealloc(

Dwarf_P_Debug dbg,
Dwarf_Ptr space,
Dwarf_Unsigned type);

Parameters

dbg
Input. This accepts a libdwarf producer object.

space
Input. This accepts the storage address.

type
Input. This accepts the storage allocation type.

Return values

The dwarf_p_dealloc API does not have a return value.

© Copyright IBM Corp. 2004, 2015 195

196 DWARF/ELF Extensions Library Reference

Chapter 20. Range-list producer APIs

Range-list producer operations update the .debug_ranges section.

dwarf_add_range_list_entry operation
The dwarf_add_range_list_entry operation adds a range-list entry.

The addresses are either offset from DW_AT_low_pc of the CU, or based on a
specified address-selection entry.

Prototype
int dwarf_add_range_list_entry (

Dwarf_P_Debug dbg,
Dwarf_Addr begin_addr,
Dwarf_Addr end_addr,
Dwarf_Off* ret_sec_off,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

begin_addr
Input. This accepts the starting address.

end_addr
Input. This accepts the final address.

ret_sec_off
Output. This returns the section offset in the .debug_ranges section. This can
be NULL, if the section is not needed.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_add_range_list_entry operation returns:
v DW_DLV_OK if successful
v DW_DLV_ERROR if dbg is NULL

dwarf_add_range_list_entry never returns DW_DLV_NO_ENTRY.

dwarf_add_base_address_entry operation
The dwarf_add_base_address_entry operation adds a base address-selection entry.

Prototype
int dwarf_add_base_address_entry (

Dwarf_P_Debug dbg,
Dwarf_Addr baseaddr,
Dwarf_Off* ret_sec_off,
Dwarf_Error* error);

© Copyright IBM Corp. 2004, 2015 197

Parameters

dbg
Input. This accepts a libdwarf producer object.

baseaddr
Input. This accepts the starting address.

ret_sec_off
Output. This returns the section offset in the .debug_ranges section.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_add_base_address_entry operation returns:
v DW_DLV_OK if successful
v DW_DLV_ERROR if dbg is NULL

dwarf_add_base_address_entry never returns DW_DLV_NO_ENTRY.

dwarf_add_end_of_list_entry operation
The dwarf_add_end_of_list_entry operation adds an end-of-list entry.

Prototype
int dwarf_add_end_of_list_entry (

Dwarf_P_Debug dbg,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

The dwarf_add_end_of_list_entry operation returns:
v DW_DLV_OK if successful
v DW_DLV_ERROR if dbg is NULL

dwarf_add_end_of_list_entry never returns DW_DLV_NO_ENTRY.

198 DWARF/ELF Extensions Library Reference

Chapter 21. Producer flag operations

These operations query and set the flags that are used by the producer operations.

dwarf_pro_flag_any_set operation
The dwarf_pro_flag_any_set operation tests whether or not any of the Dwarf_Flag
index bit are set.

Prototype
int dwarf_pro_flag_any_set (

Dwarf_P_Debug dbg,
Dwarf_Flag* flags,
Dwarf_Bool* ret_anyset,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

flags
Input/Output. This accepts or returns a Dwarf_Flag object.

ret_anyset
Output. This returns the Boolean value which indicates whether or not any bit
index is set.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

dwarf_pro_flag_any_set returns DW_DLV_ERROR if the returned parameter is NULL
and it never returns DW_DLV_NO_ENTRY.

Memory allocation

There is no storage to deallocate.

dwarf_pro_flag_clear operation
The dwarf_pro_flag_clear operation clears the given Dwarf_Flag index bit.

Prototype
int dwarf_pro_flag_clear (

Dwarf_P_Debug dbg,
Dwarf_Flag* flags,
int bit_idx,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

© Copyright IBM Corp. 2004, 2015 199

flags
Input/Output. This accepts or returns a Dwarf_Flag object.

bit_idx
Input. This accepts the flag bit index to clear. It can be a value from 0 to 31.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

dwarf_pro_flag_clear returns DW_DLV_ERROR if the returned parameter is NULL
and it never returns DW_DLV_NO_ENTRY.

Memory allocation

There is no storage to deallocate.

dwarf_pro_flag_complement operation
The dwarf_pro_flag_complement operation complements the given Dwarf_Flag
index bit.

Prototype
int dwarf_pro_flag_complement (

Dwarf_P_Debug dbg,
Dwarf_Flag* flags,
int bit_idx,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

flags
Input/Output. This accepts or returns a Dwarf_Flag object.

bit_idx
Input. This accepts the flag bit index to complement. It can be a value from 0
to 31.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

dwarf_pro_flag_complement returns DW_DLV_ERROR if the returned parameter is
NULL and it never returns DW_DLV_NO_ENTRY.

Memory allocation

There is no storage to deallocate.

dwarf_pro_flag_copy operation
The dwarf_pro_flag_copy operation sets or clears the given Dwarf_Flag index bit.

The action is determined by a given Boolean value.

200 DWARF/ELF Extensions Library Reference

Prototype
int dwarf_pro_flag_copy (

Dwarf_P_Debug dbg,
Dwarf_Flag* flags,
int bit_idx,
Dwarf_Bool val,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

flags
Input/Output. This accepts or returns a Dwarf_Flag object.

bit_idx
Input. This accepts the flag bit index to set or clear. It can be a value from 0 to
31.

val
Input. This accepts the Boolean value which indicates whether to set or clear
the bit index.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

dwarf_pro_flag_copy returns DW_DLV_ERROR if the returned parameter is NULL and
it never returns DW_DLV_NO_ENTRY.

Memory allocation

There is no storage to deallocate.

dwarf_pro_flag_reset operation
The dwarf_pro_flag_reset operation clears all the Dwarf_Flag index bits of a given
libdwarf consumer object.

Prototype
int dwarf_pro_flag_reset (

Dwarf_P_Debug dbg,
Dwarf_Flag* flags,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

flags
Input/Output. This accepts or returns a Dwarf_Flag object.

error
Input/output. This accepts or returns the Dwarf_Error object.

Chapter 21. Producer flag operations 201

Return values

dwarf_pro_flag_reset returns DW_DLV_ERROR if the returned parameter is NULL
and it never returns DW_DLV_NO_ENTRY.

Memory allocation

There is no storage to deallocate.

dwarf_pro_flag_set operation
The dwarf_pro_flag_set operation sets the given Dwarf_Flag index bit.

Prototype
int dwarf_pro_flag_set (

Dwarf_P_Debug dbg,
Dwarf_Flag* flags,
int bit_idx,
Dwarf_Error* error);

Parameters

dbg
Input. This accepts a libdwarf producer object.

flags
Input/Output. This accepts or returns a Dwarf_Flag object.

bit_idx
Input. This accepts the flag bit index to set. It can be a value from 0 to 31.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

dwarf_pro_flag_set returns DW_DLV_ERROR if the returned parameter is NULL and it
never returns DW_DLV_NO_ENTRY.

Memory allocation

There is no storage to deallocate.

dwarf_pro_flag_test operation
The dwarf_pro_flag_test operation tests whether or not the given Dwarf_Flag
index bit is set.

Prototype
int dwarf_pro_flag_test (

Dwarf_P_Debug dbg,
Dwarf_Flag* flags,
int bit_idx,
Dwarf_Bool* ret_bitset,
Dwarf_Error* error);

202 DWARF/ELF Extensions Library Reference

Parameters

dbg
Input. This accepts a libdwarf producer object.

flags
Input/Output. This accepts or returns a Dwarf_Flag object.

bit_idx
Input. This accepts the flag bit index to test. It can be a value from 0 to 31.

ret_bitset
Output. This returns the Boolean value which indicates whether or not the bit
index is set.

error
Input/output. This accepts or returns the Dwarf_Error object.

Return values

dwarf_pro_flag_test returns DW_DLV_ERROR if the returned parameter is NULL and
it never returns DW_DLV_NO_ENTRY.

Memory allocation

There is no storage to deallocate.

Chapter 21. Producer flag operations 203

204 DWARF/ELF Extensions Library Reference

Chapter 22. IBM extensions to libelf

IBM extensions to the libelf library facilitate the creation of ELF objects for
different platforms and file systems. ELF objects are used to store the DWARF
debugging information.

Extensions to the libelf library are categorized as follows:
v “ELF initialization and termination APIs”
v “ELF utilities” on page 209

ELF initialization and termination APIs
ELF initialization and termination APIs are IBM extensions to the libelf library
that facilitate the creation of ELF objects for different platforms and file systems.
ELF objects are used to store the DWARF debugging information.

Elf_Alloc_Func object
If an Elf_Mem_Image object is used to create the ELF object file, the Elf operation
will use the user-specified memory deallocation function to get storage used for
the ELF object file.

Type definition
typedef void* (*Elf_Alloc_Func) (size_t size);

Elf_Dealloc_Func object
If an Elf_Mem_Image object is used to create the ELF object file, the Elf operation
will use the user-specified memory allocation function to free storage for the ELF
object file.

Type definition
typedef void (*Elf_Dealloc_Func) (void* p);

Elf_Mem_Image object
An opaque datatype for accessing an ELF object file that is stored in memory.

Type definition
typedef struct Elf_Mem_Image_s* Elf_Mem_Image;

elf_begin_b operation
The elf_begin_b operation is used to read from and write to an ELF descriptor.

elf_begin_b is similar to elf_begin except that it accesses the ELF descriptor with
a file pointer returned from the fopen function.

Prototype
Elf * elf_begin_b (

FILE * __fp,
Elf_Cmd __cmd,
Elf * __ref);

© Copyright IBM Corp. 2004, 2015 205

Parameters

__fp
Input. This accepts a file pointer to the ELF descriptor. The pointer is returned
from the fopen function.

__cmd
Input. This accepts the ELF access mode.

__ref
Input. This accepts the return from the previous elf_begin, elf_begin_b, or
elf_begin_c API.

Memory allocation

elf_end is used to terminate the ELF descriptor and deallocate the memory
associated with the descriptor.

elf_begin_c operation
The elf_begin_c operation is used to initialize and obtain an ELF descriptor.
elf_begin_c might read an existing file, update an existing file, or create a new
file. Before the first call to the elf_begin_c operation, a program must call the
elf_version operation to coordinate versions.

Prototype
Elf * elf_begin_c (

ELF_Mem_Image elf_mem_image,
Elf_Cmd cmd,
Elf * ref);

Parameters

elf_mem_image
Input. Contains a memory image of the ELF object file .

cmd
Input. This specifies the command that obtains the ELF access mode.
v The ELF_C_NULL command returns a NULL pointer, without opening a

new descriptor.
v The ELF_C_READ command examines the contents of the memory image.

The API allocates a new ELF descriptor and prepares to process the entire
ELF object file.

v The ELF_C_RDWR command duplicates the actions of ELF_C_READ and
then allows the API to update the memory image.

Note: The ELF_C_READ command gives a read-only view of the file, while
the ELF_C_RDWR command lets the API read and write the file.

ref
Input. Intended for supporting archive files. Currently not supported on z/OS.
User must specify NULL as input.

Return values

Returns NULL if ELF_C_NULL is specified as the command, or an error has
occurred. Otherwise, returns a non-NULL ELF descriptor.

206 DWARF/ELF Extensions Library Reference

Cleanups

The elf_end operation is used to terminate the ELF descriptor and deallocate the
memory associated with the descriptor, as shown in Figure 1.

elf_create_mem_image operation
If the ELF object is stored in memory (not in physical file), use this operation to
create an Elf_Mem_Image object for reading or writing.

Prototype
Elf_Mem_Image

elf_create_mem_image(
char* buf,
long length,
Elf_Alloc_Func alloc_func,
Elf_Dealloc_Func dealloc_func);

Parameters

buf
Input. Memory pointer to the start of the ELF object. Specify NULL if the
purpose is to create a new ELF object in memory.

length
Input. Length of the ELF object. This field is ignored if the purpose is to create
a new ELF object in memory.

alloc_func
Input. Elf operations use this memory allocation function to get storage during
creation of the ELF object file. This field is ignored if the purpose is to read an
ELF object.

dealloc_func
Input. Elf operations use this memory deallocation function to free storage
during creation of the ELF object file. This field is ignored if the purpose is to
read an ELF object.

Return values

Returns NULL if there is not enough memory to allocate the Elf_Mem_Image
object. Otherwise, returns an initialized Elf_Mem_Image object.

Elf* elf;
Elf_Mem_Image image;

// Coordinate ELF version
elf_version (EV_CURRENT);

// The ELF object is 1000 bytes long, and is stored in ’buffer’
image = elf_create_mem_image (buffer, 1000, NULL, NULL);

// Examine ELF object for reading
elf = elf_begin_c (image, ELF_C_READ, NULL);

// terminate ’elf’ (optional)
elf_end(elf);

// terminate Elf_Mem_Image
elf_term_mem_image (image);

Figure 1. Example: Code that terminates an ELF descriptor and deallocates memory

Chapter 22. IBM extensions to libelf 207

Cleanups

elf_term_mem_image is used to terminate the Elf_Mem_Image object and
deallocate the memory associated with the descriptor.

Example
Elf* elf;
Elf_Mem_Image image;

// Coordinate ELF version
elf_version (EV_CURRENT);

// Create an Elf_Mem_Image in memory to store ELF object
image = elf_create_mem_image (NULL, 0, malloc, free);

// Create ELF object for writing
elf = elf_begin_c (image, ELF_C_WRITE, NULL);

// terminate ’elf’ (optional)
elf_end(elf);
// terminate Elf_Mem_Image
elf_term_mem_image (image);

elf_get_mem_image operation
This operation retrieves the memory image from the Elf_Mem_Image object.

Prototype
int

elf_get_mem_image(
Elf_Mem_Image elf_mem_image,
char** buf,
long* length);

Parameters

elf_mem_image
Input. Accepts the Elf_Mem_Image object containing the ELF object.

buf
Output. Returns a pointer to the ELF object held in memory

length
Output. ReturnS the length of the ELF object held in memory.

Return values

Returns 1 if the returned parameters are NULL, or if the Elf_Mem_Image object is
NULL. Otherwise, this returns 0.

Cleanups

None.

elf_term_mem_image operation
This operation terminates the Elf_Mem_Image object and deallocates the memory
associated with the descriptor.

208 DWARF/ELF Extensions Library Reference

Prototype
void

elf_term_mem_image(
Elf_Mem_Image elf_mem_image);

Parameters

elf_mem_image
Input. The input Elf_Mem_Image object containing the ELF object

Return values

None.

Cleanups

None.

ELF utilities
ELF utilities manipulate ELF executable objects.

elf_build_version operation
This operation displays the build ID of the elf library. Every release/PTF of the elf
library will have an unique build ID. This information is useful for providing
service information to IBM customer support. Calling this function will emit the
build ID string (encoded in ISO8859-1) to stdout.

BLD_LEVEL is an unsigned integer. elf_build_version can then query this
build-level value.

Prototype
char*

elf_build_version (void);

Return values

elf_build_version only returns the build ID of the elf library. The returned string
is encoded in ISO8859-1.

Example
/* Compile this code with ASCII option */
printf ("Library(elf) Level(%s)\n", elf_build_version());

elf_dll_version operation
This operation validates the version of the DLL, and should be used when
dynamically linking to the libelf or libdwarf library. To retrieve the current
library version, call the function with '-1' as an argument.

If the call is successful, '0' is returned. Otherwise, the version value
LIBELF_DLL_VERSION is returned inside the DLL.

Prototype
unsigned int

elf_dll_version(
unsigned int ver);

Chapter 22. IBM extensions to libelf 209

Parameters

ver
Version of current DLL, which can be obtained using the
LIBELF_DLL_VERSION macro found in libelf.h.

Return values

0 The DLL version is compatible. The user code is compiled with an elf/dwarf
DLL that is the same as the current one, or perhaps earlier.

Any non-zero value
The version of the elf/dwarf DLL used for building the user code, means that
the user code is compiled with an elf/dwarf DLL that is more recent than the
current library and is incompatible.

Example
#include
#include "libelf.h"

dllhandle *cdadll;
unsigned int (*version_chk)(unsigned int);
unsigned int dll_version;

#ifdef _LP64
#define __CDA_ELF "CDAEQED"
#else
#define __CDA_ELF "CDAEED"
#endif

#if LIBELF_IS_DLL
cdadll = dllload(__CDA_ELF);
if (cdadll == NULL) {

/* elf/dwarf DLL not found */
}

version_chk = (unsigned int (*)(unsigned int))
dllqueryfn(cdadll, "elf_dll_version");

if (version_chk == NULL) {
/* Version API not found, should NEVER happen */

}

dll_version = version_chk (LIBELF_DLL_VERSION);
if (dll_version != 0) {

/* Incompatible DLL version */
}
#endif

210 DWARF/ELF Extensions Library Reference

Appendix A. Diagnosing Problems

The following information describes how to determine the source of errors in your
code.

Limitation of service

Service is limited to IBM customers through the normal service channels.

Diagnosis checklist

This checklist is designed to either solve your problem or help you gather the
diagnostic information required for determining the source of the error. It can help
you confirm if the suspected failure is a user error caused by incorrect usage of the
libelf or libdwarf library or by an error in the logic of the routine.

Step through each of the items in the diagnosis checklist below to see if they apply
to your problem:
1. If your failing application contains programs that were changed since they last

ran successfully, review the output of the compile or assembly (listings) for any
unresolved errors.

2. If you are an IBM customer, your installation may have received an IBM
Program Temporary Fix (PTF) for the problem. Verify that you have received all
issued PTFs and have installed them, so that your installation is at the most
current maintenance level.

3. If you are an IBM customer, the preventive service planning (PSP) bucket, an
online database available through IBM service channels, gives information
about product installation problems and other problems. Check to see whether
it contains information related to your problem.

4. Narrow the source of the error:
v Verify that either the libdwarf or libelf DLL exists. You can use the

following code to see if the DLL can be found during execution.
#define _UNIX03_SOURCE
#include <dlfcn.h> /* dlopen,dlsym,dlclose */
#include "libelf.h"

void *cdadll;
unsigned int (*version_chk)(unsigned int);
unsigned int dll_version;

#ifdef _LP64
#define __CDA_ELF "CDAEQED"
#else
#define __CDA_ELF "CDAEED"
#endif

#if LIBELF_IS_DLL
cdadll = dlopen(__CDA_ELF, RTLD_LOCAL | RTLD_LAZY);
if (cdadll == NULL) {
/* elf/dwarf DLL not found */
}

version_chk = (unsigned int (*)(unsigned int))
dlsym(cdadll, "elf_dll_version");
if (version_chk == NULL) {

© Copyright IBM Corp. 2004, 2015 211

/* Version API not found, should NEVER happen */
}

dll_version = version_chk (LIBELF_DLL_VERSION);
if (dll_version != 0) {
/* Incompatible DLL version */
}
dlclose(cdadll);
#endif
</dlfcn.h>

v Verify that either the libdwarf or libdelf version is correct. You can use the
following code to verify the version:
if (elf_dll_version(LIBELF_DLL_VERSION) != 0) {

/* Version mismatched */
/* Make sure your application is compiled with the

libdwarf/libelf header file that are found together
with the DLL module */

}

v Verify that an abend is caused by product failures and not by program
errors. By reading the CEEDUMP, you can identify if the abends happens within
either the libdwarf or libdelf module. Figure 2 shows that the
dwarf_producer_init_b API (highlighted in bold letters) is causing the abend:

5. After you identify the failure, consider writing a small test case that recreates
the problem. The test case could help you determine if the error is in a user
routine or in either the libdwarf or libdelf library. Do not make the test case
larger than 75 lines of code. The test case is not required, but it could expedite
the process of finding the problem.
If the error is not a libdwarf or libdelf library failure, refer to the diagnosis
procedures for the product that failed.

6. Record the conditions and options in effect at the time the problem occurred.
Compile your program with the appropriate options to obtain an assembler
listing and data map. If possible, obtain the binder or linkage-editor output
listing. Note any changes from the previous successful compilation or run. For
an explanation of compiler options, refer to the compiler-specific programming
guide.

7. If you are experiencing a no-response problem, try to force a dump, and cancel
the program with the dump option.

8. Record the sequence of events that led to the error condition and any related
programs or files. It is also helpful to record the service-level of the compiler
associated with the failing program.

CEE3DMP V1 R5.0: Condition processing resulted in the unhandled condition.
Information for enclave main

Information for thread 282D51C000000000

Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
2867EF08 CEEHDSP 281A1068 +00004808 CEEHDSP 281A1068 +00004808 CEEPLPKA DRIVER5 Call
2867E350 CEEHRNUH 281ADD60 +00000086 CEEHRNUH 281ADD60 +00000086 CEEPLPKA DRIVER5 Call
28731560 28845FE8 +00000080 dwarf_producer_init_b

28845FE8 +00000080 202 CDAEED Exception
27E1F070 +00000678 main 27E1F070 +00000678 360 *PATHNAM Call

28731720 28275398 +000009AA CEEVROND 282753F0 +00000952 CEEPLPKA Call
2867E0F8 EDCZHINV 285E8250 +0000009A EDCZHINV 285E8250 +0000009A CELHV003 DRIVER5 Call
2867E030 CEEBBEXT 28173B70 +000001A6 CEEBBEXT 28173B70 +000001A6 CEEPLPKA DRIVER5 Call

Figure 2. Example of traceback of condition processing that resulted in an unhandled condition

212 DWARF/ELF Extensions Library Reference

Appendix B. Accessibility

Accessible publications for this product are offered through .

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS V2R2 ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 2004, 2015 213

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* * FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In the example, if you include the FILE
keyword, but do not specify an option, the default option KEEP is applied. A

214 DWARF/ELF Extensions Library Reference

default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix B. Accessibility 215

216 DWARF/ELF Extensions Library Reference

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2004, 2015 217

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

218 DWARF/ELF Extensions Library Reference

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see:
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain services of Common Debug Architecture.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States and/or other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product, and service names may be trademarks or service marks
of others.

Standards
The libddpi library supports the DWARF Version 3 and Version 4 format and ELF
application binary interface (ABI).

DWARF was developed by the UNIX International Programming Languages
Special Interest Group (SIG). CDA's implementation of DWARF is based on the
DWARF 4 standard.

ELF was developed as part of the System V ABI. It is copyrighted 1997, 2001, The
Santa Cruz Operation, Inc. All rights reserved.

Notices 219

220 DWARF/ELF Extensions Library Reference

Index

A
accessibility 213

contact IBM 213
features 213

assistive technologies 213

C
CDA

definition 1
Common Debug Architecture 1
consumer library 3
contact

z/OS 213

D
DW_FRAME_390_REG_type

z/OS V2R2 changes 4
DWARF

definition 1
objects 1

DWARF expression operators 141
DWARF program information

structure 2
Dwarf_Debug 1
Dwarf_P_Debug 1

E
ELF

definition 1
object file, definition 1

ELF symbol table 42
access 45

K
keyboard

navigation 213
PF keys 213
shortcut keys 213

L
libdwarf extensions 3
libdwarf objects definition 1

N
navigation

keyboard 213
Notices 217

O
object

consumer 1
DWARF 1
ELF object file 1
libdwarf 1
producers 1

objects
creating

elf_create_mem_image 207

P
producer library

DWARF 3 ABI 3

S
shortcut keys 213
symbol table

ELF 42

U
user interface

ISPF 213
TSO/E 213

Z
z/OS V2R2 changes

DW_FRAME_390_REG_type 4

© Copyright IBM Corp. 2004, 2015 221

222 DWARF/ELF Extensions Library Reference

����

Product Number: 5650-ZOS

Printed in USA

SC14-7312-02

	Contents
	About this document
	Who should use this document
	A note about examples
	CDA and related publications
	Softcopy documents
	Where to find more information
	Runtime Library Extensions on the World Wide Web
	Information updates on the web
	How to send your comments

	Chapter 1. About Common Debug Architecture
	DWARF program information
	IBM extensions to libdwarf
	Changes to DWARF/ELF library extensions

	Chapter 2. Debugging Information Entry (DIE) extensions
	Program scope entries
	Normal and partial compilation unit entries
	Byte and bit entries
	Subroutine and entry point entries
	Source view entries

	Object oriented COBOL
	Data object and object list entries
	Data object entries

	Referencing coordinates
	Base location entries
	Type entries
	Base type entries
	Modified type entries
	Structure, union, class and interface type entries
	String type entries
	Condition entries
	File description entries
	Bound checking information for type entries

	Chapter 3. Consumer APIs for standard DWARF sections
	Error object consumer operations
	Error handling macros
	dwarf_error_reset operation

	Initialization and termination consumer operations
	dwarf_set_codeset operation
	dwarf_elf_init_b operation
	dwarf_raw_binary_init operation
	dwarf_goff_init_with_csvquery_token operation
	dwarf_goff_init_with_PO_filename operation

	ELF symbol table and section consumer operations
	ELF symbol table
	dwarf_elf_symbol_index_list operation
	dwarf_elf_symbol operation
	dwarf_elf_section operation

	Generalized DIE-section consumer APIs
	IBM Extensions to DWARF DIE-sections
	Dwarf_section_type enumeration
	Dwarf_section_content enumeration
	dwarf_debug_section operation
	dwarf_debug_section_name operation
	dwarf_next_unit_header operation
	dwarf_reset_unit_header operation

	DIE locating consumer operations
	dwarf_rootof operation
	dwarf_parent operation
	dwarf_offdie_in_section operation
	dwarf_nthdie operation
	dwarf_clone operation
	dwarf_pcfile operation
	dwarf_pcsubr operation
	dwarf_pcscope operation

	Multiple DIEs locating consumer operations
	dwarf_tagdies operation
	dwarf_attrdies operation
	dwarf_get_dies_given_name operation
	dwarf_get_dies_given_pc operation

	DIE-query consumer operations
	dwarf_diesection operation
	dwarf_diecount operation
	dwarf_dieindex operation
	dwarf_isclone operation
	dwarf_dietype operation
	dwarf_refdie operation
	dwarf_refaddr_die operation

	DIE-attribute query consumer operation
	dwarf_attr_offset operation
	dwarf_data_bitoffset operation
	dwarf_die_xref_coord operation

	High level PC location consumer APIs
	Dwarf_PC_Locn object
	Dwarf_Subpgm_Locn object
	dwarf_pclocns operation
	dwarf_pc_locn_term operation
	dwarf_pc_locn_abbr_name operation
	dwarf_pc_locn_set_abbr_name operation
	dwarf_pc_locn_entry operation
	dwarf_pc_locn_list operation
	dwarf_subpgm_locn operation

	DWARF flag operations
	dwarf_flag_any_set operation
	dwarf_flag_clear operation
	dwarf_flag_complement operation
	dwarf_flag_copy operation
	dwarf_flag_reset operation
	dwarf_flag_set operation
	dwarf_flag_test operation

	Accelerated access consumer operations
	IBM extensions to accelerated access debug sections
	Dwarf_section_type object
	dwarf_access_aranges operation
	dwarf_find_arange operation
	dwarf_get_die_given_name_cuoffset operation
	dwarf_get_dies_given_nametbl operation

	Non-contiguous address ranges consumer operations
	dwarf_get_ranges_given_offset operation
	dwarf_range_highpc operation
	dwarf_range_lowpc operation

	Chapter 4. Program Prolog Area (PPA) extension
	Debug section
	Block header
	Section-specific DIEs
	Reference section
	Companion sections
	Attributes forms

	PPA consumer operations
	dwarf_get_all_ppa2dies operation
	dwarf_get_all_ppa1dies_given_ppa2die operation
	dwarf_get_all_ppa2die_given_cu_offset operation
	dwarf_find_ppa operation

	Chapter 5. Program source cross reference
	Debug section
	Block header
	Section-specific DIEs
	Reference section
	Companion sections

	Chapter 6. Program line-number extensions
	Breakpoint type flags
	Symbol declaration coordinates
	State machine registers
	Extended opcodes
	Dwarf_Line object
	Consumer operations
	dwarf_srclines_dealloc operation
	dwarf_pc_linepgm operation
	dwarf_die_linepgm operation
	dwarf_linepgm_offset operation
	dwarf_line_srcdie operation
	dwarf_line_isa operation
	dwarf_line_standard_flags operation
	dwarf_line_system_flags operation
	dwarf_linebeginprologue operation
	dwarf_lineendprologue operation
	dwarf_lineepilogue operation
	dwarf_persist_srclines operation
	dwarf_pclines operation

	Chapter 7. Program source description extension
	Debug section
	Block header
	Section-specific DIEs
	Companion sections
	Reference section
	Attributes forms

	Source-file entries
	Source location entries
	Source file name entries

	Callback functions
	Dwarf_Retrieve_Srcline_CBFunc object
	Dwarf_Retrieve_Srcline_term_CBFunc object
	Dwarf_Retrieve_Srccount_CBFunc object

	Source-file consumer operations
	dwarf_get_srcdie_given_filename operation
	dwarf_srclines_given_srcdie operation
	dwarf_get_srcline_given_filename operation
	dwarf_get_srcline_count_given_filename operation
	dwarf_register_src_retrieval_callback_func operation

	Chapter 8. Program source text extensions
	Debug section
	Block header
	Reference section
	Attributes forms

	Source text consumer operations
	dwarf_access_source_text operation

	Source text producer operations
	dwarf_add_source_text operation

	Chapter 9. Program source attribute extensions
	Debug section
	Definitions
	State machine registers
	Source attribute program instructions
	Source attribute program header
	Source attribute program
	Attributes forms

	Consumer operations
	dwarf_srcattr_get_version operation
	dwarf_srcattr_get_altline_used operation
	dwarf_srcattr_get_altlines operation
	dwarf_srcattr_map_altline_to_line operation
	dwarf_srcfrags_given_srcdie operation
	dwarf_srcfrags_stmtcount_given_line operation
	dwarf_srcfrag_given_line_stmt operation
	dwarf_srcfrag_line operation
	dwarf_srcfrag_column operation
	dwarf_srcfrag_altline operation
	dwarf_srcfrag_typeflag operation
	dwarf_srcfrag_xreflist operation
	dwarf_srcfrag_list_tags operation
	dwarf_srcfrag_list_items operation
	dwarf_srcfrag_xref_dealloc operation

	Producer operations
	dwarf_srcattr_table operation
	dwarf_add_srcattr_entry operation
	dwarf_add_srcattr_xrefitem operation
	dwarf_add_srcattr_altline operation
	dwarf_add_srcattr_relstmtno operation

	Chapter 10. DWARF expressions
	Defaults and general rules
	Operators
	DW_OP_IBM_conv
	DW_OP_IBM_builtin
	DW_OP_IBM_prefix
	DW_OP_IBM_logical_and
	DW_OP_IBM_logical_or
	DW_OP_IBM_logical_not
	DW_OP_IBM_user
	DW_OP_IBM_conjugate
	DW_OP_IBM_wsa_addr
	DW_OP_IBM_loadmod_addr

	Location expression operations
	dwarf_loclist_n operation
	dwarf_get_loc_list_given_offset operation

	Chapter 11. DWARF library debugging facilities
	Machine-register name API
	Debug sections
	DW_FRAME_390_REG_type object
	dwarf_register_name operation

	Relocation type name consumer API
	Relocation macros
	dwarf_reloc_type_name operation

	Utility consumer operations
	dwarf_build_version operation
	dwarf_show_error operation
	dwarf_set_stringcheck operation

	Chapter 12. Producer APIs for standard DWARF sections
	Initialization and termination producer operations
	dwarf_producer_target operation
	dwarf_producer_write_elf operation
	dwarf_p_set_codeset operation

	dwarf_error-information producer operations
	dwarf_p_seterrhand operation
	dwarf_p_seterrarg operation
	dwarf_p_show_error operation

	Chapter 13. Debug-section creation and termination operations
	dwarf_add_section_to_debug operation
	dwarf_section_finish operation

	Chapter 14. ELF section operations
	dwarf_elf_create_string operation
	dwarf_elf_create_symbol operation
	dwarf_elf_producer_symbol_index_list operation
	dwarf_elf_producer_string operation
	dwarf_elf_producer_symbol operation
	dwarf_elf_create_section_hdr_string operation
	dwarf_elf_producer_section_hdr_string

	Chapter 15. DIE creation and modification operations
	dwarf_add_die_to_debug_section operation
	dwarf_add_AT_block_const_attr operation
	dwarf_add_AT_const_value_block operation
	dwarf_add_AT_reference__noninfo_with_reloc operation
	dwarf_add_AT_unsigned_LEB128 operation
	dwarf_add_AT_noninfo_offset operation
	dwarf_die_merge operation

	Chapter 16. Line-number program (.debug_line) producer operations
	dwarf_add_line_entry_b operation
	dwarf_add_lne_file_decl operation
	dwarf_add_global_file_decl operation
	dwarf_line_set_default_isa operation
	dwarf_line_set_isa operation operation
	dwarf_global_linetable operation
	dwarf_subprogram_linetable operation

	Chapter 17. Location-expression producer APIs
	dwarf_add_expr_reg operation
	dwarf_add_expr_breg operation
	dwarf_add_conv_expr operation
	dwarf_add_expr_ref operation
	dwarf_add_loc_list_entry operation
	dwarf_add_loc_list_base_address_entry operation
	dwarf_add_loc_list_end_of_list_entry operation

	Chapter 18. Accelerated access producer operation
	dwarf_add_pubtype operation

	Chapter 19. Dynamic storage management operation
	dwarf_p_dealloc

	Chapter 20. Range-list producer APIs
	dwarf_add_range_list_entry operation
	dwarf_add_base_address_entry operation
	dwarf_add_end_of_list_entry operation

	Chapter 21. Producer flag operations
	dwarf_pro_flag_any_set operation
	dwarf_pro_flag_clear operation
	dwarf_pro_flag_complement operation
	dwarf_pro_flag_copy operation
	dwarf_pro_flag_reset operation
	dwarf_pro_flag_set operation
	dwarf_pro_flag_test operation

	Chapter 22. IBM extensions to libelf
	ELF initialization and termination APIs
	Elf_Alloc_Func object
	Elf_Dealloc_Func object
	Elf_Mem_Image object
	elf_begin_b operation
	elf_begin_c operation
	elf_create_mem_image operation
	elf_get_mem_image operation
	elf_term_mem_image operation

	ELF utilities
	elf_build_version operation
	elf_dll_version operation

	Appendix A. Diagnosing Problems
	Appendix B. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks
	Standards

	Index
	A
	C
	D
	E
	K
	L
	N
	O
	P
	S
	U
	Z

