
z/OS

Bulk Data Transfer Installation
Version 2 Release 1

SC14-7582-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 201.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

This edition replaces SC14-7582-01.

© Copyright IBM Corporation 1986, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

About This Book. ix
Who Should Read This Book. ix
How to Use This Book ix
Related Reading ix
Syntax Conventions Used in This Book ix
How to send your comments to IBM ix

If you have a technical problem x

z/OS Version 2 Release 1 summary of
changes xi

Chapter 1. Introduction 1
Planning Your Configuration 1
Defining BDT to MVS 2
Defining BDT to VTAM. 2
Allocating BDT and TQI Data Sets 2
Formatting TQI Data Sets 3
Creating a BDT Initialization Stream 3
Writing BDT and TQI Start Procedures 3
Writing User Exit Routines 4

Chapter 2. Planning Your Configuration 5
Step 1. Plan Global and Local Relationships
(File-to-File Customers Only) 5

Global-local relationships in a central hub network 5
Global-local relationships in a decentralized
network 6
The effect of global-local relationships on users . . 7

Step 2. Plan the Use of TQI 8
What TQI Does 8
The data sets that TQI uses 9
Example of TQI flow—TQI and BDT in the same
processor 10
Example of TQI flow—TQI and BDT in different
processors 11
Running without TQI 12

Step 3. Decide whether to have a poly-BDT complex 13

Chapter 3. Defining BDT to MVS. . . . 17
Step 1. Define BDT As an MVS Secondary
Subsystem—SYS1.PARMLIB Member IEFSSNxx . . 17
Step 2. Specify MVS System
Parameters—SYS1.PARMLIB Member IEASYSxx . . 19
Step 3. Authorize SYS1.SBDTLIB 19
Step 4. Authorize SYS1.MIGLIB. 19
Step 5. Define BDT to JES3 (JES3 Customers
Only)—CONSOLE, SYSID, and NJERMT Statements 19

Chapter 4. Defining BDT to VTAM . . . 21
Step 1. Define a Node for File-to-File
Transfers—APPL Definition Statement 21

Step 2. Define a Node for SNA NJE
Transfers—APPL Definition Statement 23
Step 3. Define Remote Nodes as Cross-Domain
Resources—CDRSC Definition Statement 24
Step 4. Define File-to-File Session
Parameters—Logon Mode Table 25
Step 5. Define SNA NJE Session Parameters—Logon
Mode Table 25

Chapter 5. Allocating BDT and TQI Data
Sets 27
Step 1. Allocate a Data Set for the BDT Initialization
Stream 27
Step 2. Allocate a Data Set for the BDT Work Queue 28
Step 3. Allocate a System GMJD Library (File-to-File
Customers Only) 28
Step 4. Allocate ISPF Data Sets (File-to-File
Customers Only) 29

ISPF Version 3 30
Other Considerations 30

Step 5. Allocate the TQI Checkpoint Data Set . . . 31
Step 6. Allocate the TQI Bit-Map Data Set 31
Step 7. Allocate Message Data Sets 32

Chapter 6. Formatting TQI Data Sets . . 35
Step 1. Format the TQI Checkpoint, Bit-Map, and
Message Data Sets 35

Chapter 7. Creating a BDT Initialization
Stream. 39
How Many Initialization Streams Should You Have? 39
The IBM-Supplied Initialization Streams 39
Rules for coding initialization statements 42
*—Place Comments in the Initialization Stream . . 43
BDTNODE—Define Characteristics of a Home
File-to-File Node. 43
BDTNODE—Define Session Characteristics between
Home and Remote Nodes 45
CELLPOOL—Allocate Cell Pools 53
DYNALLOC—Dynamically Allocate BDT Data Sets 58
ENDINIT—End the Initialization Stream 60
ENDRBAM—Mark the End of Definitions So Far . . 60
OPTIONS—Define Operating Characteristics of the
BDT Subsystem 60
SNABUF—Define Data Buffers 67
SYSID—Name the Home Node 69
Initialization Statement Parameters That the
Operator Can Override 70

Chapter 8. Writing BDT and TQI Start
Procedures 73
Step 1. Write a BDT Start Procedure 73
Step 2. Write a TQI Start Procedure 75

© Copyright IBM Corp. 1986, 2013 iii

Chapter 9. Writing User Exit Routines 77
Step 1. Understand Which Authorization Exit
Routines You Must Write 77

Authorization Exit Routine in the Link Pack Area 77
Authorization Exit Routines in the BDT Address
Space 77
Authorization Exit Routine in the JES3 Address
Space 78

Step 2. Decide Whether You Want to Write
Customization Exit Routines. 78

Exit Routines to Alter Initialization 78
Exit Routines to Alter Message Processing . . . 79
Exit Routines to Alter Transaction Processing . . 79
Exit Routines to Alter Command Processing . . 79
Exit routines to recognize user-defined
BSIDMOD fields. 80

Step 3. Code Your Exit Routines 80
General Considerations When Writing BDT Exit
Routines 80
How exit routines are invoked 80
Names of Modules That Invoke the Exit Routines 81
Using Text Units to Customize BDT Transaction
Processing 83
A Short Cut for Testing BDT. 84
How Authorization Exit Routines Fit into the
Flow in a BDT File-to-File Subsystem. 84

Step 4. Assemble Your Exit Routines 91
Step 5. Link-Edit Your Exit Routines 91

Exit Routines That Will Run in the Link Pack
Area 91
Exit Routines That Will Run in the JES3 Address
Space 91
Exit Routines That Will Run in the BDT Address
Space 91

Step 6. Load Your Exit Routines 91
Loading Exit Routines into the Link Pack Area 91
Loading Exit Routines into the BDT Address
Space 92
Loading Exit Routines into the JES3 Address
Space 92

Chapter 10. User Exit Routine
Reference 93
BDTUX01—BDT Initialization and Termination
Processing 93

Type. 93
General Description 93
Register Conventions at Entry 94
Register Conventions at Exit 94
Operation 95
Environment 95
Data Areas 95
What If BDTUX01 Is Not Used? 95

BDTUX02—Unrecognized Spool Data Management
(RBAM) Initialization Statements 96

Type. 96
General Description 96
Register Conventions at Entry 97
Register Conventions at Exit 98
Operation 99

Environment 99
Data Areas 99
What If BDTUX02 Is Not Used? 100

BDTUX03—Unrecognized BDT Network
Initialization Statements 100

Type 100
General Description 100
Register Conventions at Entry 101
Register Conventions at Exit 102
Operation 102
Environment 102
Data Areas 103
What If BDTUX03 Is Not Used? 103

BDTUX04—Unrecognized Keywords on
BDTNODE Statements for File-to-File Nodes . . . 103

Type 103
General Description 103
Register Conventions at Entry 104
Register Conventions at Exit 104
Operation 105
Environment 105
Data Areas 105
What If BDTUX04 Is Not Used? 105

BDTUX05—BDTNODE Statement Keyword
Processing for File-to-File Nodes 106

Type 106
General Description 106
Register Conventions at Entry 106
Register Conventions at Exit 106
Operation 107
Environment 107
Data Areas 107
What If BDTUX05 Is Not Used? 107

BDTUX06—BDT Post-Initialization Processing . . 108
Type 108
General Description 108
Register Conventions at Entry 108
Register Conventions at Exit 108
Operation 109
Environment 109
Data Areas 109
What If BDTUX06 Is Not Used? 109

BDTUX07—User-Defined Parameters on the
MSGCLASS Keyword of File-to-File Transactions . 109

Type 109
General Description 109
Register Conventions at Entry 110
Register Conventions at Exit 111
Operation. 111
Environment. 111
Data Areas 112
What If BDTUX07 Is Not Used? 112

BDTUX08—User-Defined File-to-File Transaction
Keywords 112

Type 112
General Description 112
Register Conventions at Entry 112
Register Conventions at Exit 112
Operation 112
Environment 113
Data Areas 113

iv z/OS BDT Installation

What If BDTUX08 Is Not Used? 113
BDTUX10—Command Password Processing . . . 113

Type 113
General Description 114
Register Conventions at Entry 114
Register Conventions at Exit 115
Operation 115
Environment 116
Data Areas 116
What If BDTUX10 Is Not Used? 116

BDTUX11—Unrecognized BSID Modifier 116
Type 116
General Description 116
Register Conventions on Entry 117
Register Conventions at Exit 117
Operation 118
Environment 118
Data Areas 118
What If BDTUX11 Is Not Used? 119

BDTUX12—BDT Message Routing 119
Type 119
General Description 119
Register Conventions at Entry 119
Register Conventions at Exit 119
Operation 120
Environment 121
Data Areas 122
What If BDTUX12 Is Not Used? 122

BDTUX14—BDT User-Defined XOID Type
Conversion 122

Type 122
General Description 122
Register Conventions at Entry 123
Register Conventions at Exit 123
Operation 124
Environment 124
Data Areas 125
What If BDTUX14 Is Not Used? 125

BDTUX15—Unrecognized Parameters on PARMS
Keyword 125

Type 125
General Description 125
Register Conventions at Entry 125
Register Conventions at Exit 126
Operation 126
Environment 126
Data Areas 127
What If BDTUX15 Is Not Used? 127

BDTUX16—BDT Job Message Log 127
Type 127
General Description 127
Register Conventions at Entry 128
Register Conventions at Exit 128
Operation 129
Environment 130
Data Areas 130
What If BDTUX16 Is Not Used? 130

BDTUX17—BDT Job Start 130
Type 130
General Description 131
Register Conventions at Entry 131

Register Conventions at Exit 131
Operation 131
Environment 132
Data Areas 132
What If BDTUX17 Is Not Used? 132

BDTUX18—BDT Job Termination 132
Type 132
General Description 132
Register Conventions at Entry 132
Register Conventions at Exit 133
Operation 133
Environment 133
Data Areas 133
What If BDTUX18 Is Not Used? 134

BDTUX19—File-to-File Transaction Modification 134
Type 134
General Description 134
Register Conventions at Entry 135
Register Conventions at Exit 136
Operation 136
Environment 136
Data Areas 137
Programming Notes 137
What If BDTUX19 Is Not Used? 138

BDTUX24—Monitoring and Modifying the Type 59
SMF Record 138

Type 138
General Description 138
Register Conventions at Entry 138
Register Conventions at Exit 139
Operation 139
Environment 139
Data Areas 140
What If BDTUX24 Is Not Used? 140

BDTUX25—Entry Level Authorization in the BDT
Address Space 140

Type 140
General Description 140
Register Conventions at Entry 140
Register Conventions at Exit 141
Operation 141
Environment 142
Data Areas 142
What If BDTUX25 Is Not Used? 142

BDTUX26—Global Node Level Authorization . . 142
Type 142
General Description 142
Register Conventions at Entry 143
Register Conventions at Exit 143
Operation 143
Environment 144
Data Areas 144
What If BDTUX26 Is Not Used? 144

BDTUX27—Node Level Authorization 145
Type 145
General Description 145
Register Conventions at Entry 145
Register Conventions at Exit 145
Operation 145
Environment 146
Data Areas 146

Contents v

What If BDTUX27 Is Not Used? 146
BDTUX28—MCS Console Authorization 146

Type 146
General Description 146
Register Conventions at Entry 147
Register Conventions at Exit 147
Operation 148
Environment 148
Data Areas 148
What If BDTUX28 Is Not Used? 148

BDTUX29—Initial Authorization of TQI-Enabled
Transactions 148

Type 148
General Description 149
Register Conventions at Entry 149
Register Conventions at Exit 149
Operation 149
Environment 150
Data Areas 150
What If BDTUX29 Is Not Used? 150

BDTUX30—Dynamic Deallocation 150
Type 150
General Description 150
Register Conventions at Entry 150
Register Conventions at Exit 152
Operation 152
Environment 153
Data Areas 153
What If BDTUX30 Is Not Used? 153

BDTUX31—INQUIRY and MODIFY Command
Authorization 153

Type 153
General Description 154
Register Conventions at Entry 155
Register Conventions at Exit 157
Operation 157
Environment 158
Data Areas 158
What If BDTUX31 Is Not Used? 158

Chapter 11. Mapping Macro Reference 159
BDTDBSID 159
BDTDCNS 159
BDTDDATU. 160
BDTDGSD 160
BDTDINT 160
BDTDJCT 161
BDTDLCT 161
BDTDMJD 161
BDTDREG 161
BDTDRLT 161
BDTDSEQ 162
BDTDSMF 162
BDTDTVT 162
BDTDXOID 162

Chapter 12. Executable Macro
Reference 163
BDTDKYWD 163
BDTDTUD 169
BDTXASRV 172
BDTXJCT. 174
BDTXJQE. 175
BDTXTRC 176
BDTXTUAM 178

Appendix A. Parameter map 181

Appendix B. Virtual Storage Required
for the BDT Address Space 185

Appendix C. Moving Transactions to a
New TQI Checkpoint Data Set 187

Appendix D. SNALINE Statement
(File-to-File Feature Only) 189

Appendix E. Initialization Flow and
User Exit Routines 191
Flow diagram for initialization exits 191
Internal to External Conversion of the XOID
Format 192
External to internal conversion of the XOID format 192
Flow diagram for the invocation of BDTUX17 (job
start) 193
Flow diagram for the invocation of BDTUX18 (job
end) 194
Modules That Issue the BDTXXOID Macro . . . 194

Appendix F. Sample User Exit Routine 195
Assembler Code for Sample Routine 195

Appendix G. Accessibility 197
Accessibility features 197
Using assistive technologies 197
Keyboard navigation of the user interface 197
Dotted decimal syntax diagrams 197

Notices 201
Policy for unsupported hardware. 202
Minimum supported hardware 203
Programming Interface Information 203
Trademarks 203

GLOSSARY 205

Index 207

vi z/OS BDT Installation

Figures

1. Example of global-local relationships in a
central hub network 6

2. Example of global-local relationships in a
decentralized network 7

3. Global-local effects on queue location 8
4. Example of TQI in a three-processor JES

complex. 10
5. Example of TQI flow with TQI and BDT in the

same processor 11
6. Example of TQI flow with TQI and BDT in

different processors 12
7. A Poly-BDT complex with BDT address spaces

in the same processor 13
8. A Poly-BDT complex with BDT address spaces

in different processors 14
9. Poly-BDT complexes with separate test and

production systems 14
10. Sample SYS1.PARMLIB Member IEFSSNxx 19
11. Sample SYS1.VTAMLST Member 23
12. A Sample DD Statement to Allocate a Data Set

for the Initialization Stream 28
13. A Sample DD Statement to Allocate a Data Set

for the BDT Work Queue 28
14. A Sample DD Statement to Allocate a Data Set

for a System GMJD Library 29
15. A Sample DD Statement to Allocate the TQI

Checkpoint Data Set 31
16. A Sample DD Statement to Allocate the TQI

Bit-Map Data Set 32
17. A Sample DD Statement to Allocate a Message

Data Set. 33

18. Sample Job to Format the TQI Checkpoint,
Bit-Map, and Message Data Sets 35

19. Sample BDT File-to-File Initialization Stream 40
20. Sample BDT SNA NJE Initialization Stream

(for a JES3 System) 41
21. Sample BDT File-to-File and SNA NJE

Initialization Stream (for a JES3 System) . . . 42
22. Cell pool 54
23. The BDT Start Procedure in SYS1.SBDTSAMP

Member BDT$V2SP 73
24. The TQI Start Procedure in SYS1.SBDTSAMP

Member BDT$V2TP 75
25. Example of Standard Exit Routine Header

Information 80
26. BDTXUEX exit routine linkage conventions 81
27. File-to-file request routing. 86
28. Routing from BDTSSBDT to BDT 88
29. Routing of a file-to-file transaction 90
30. BDT standard message routing. 121
31. Matchups between BDT, MVS, and VTAM

parameters 181
32. Sample JCL to Move Transactions to a New

Checkpoint Data Set 187
33. Flow diagram for initialization exits 191
34. Flow diagram for the invocation of BDTUX17

(job start) 193
35. Flow diagram for the invocation of BDTUX18

(job end) 194

© Copyright IBM Corp. 1986, 2013 vii

viii z/OS BDT Installation

About This Book

This book is a guide to installing the Bulk Data Transfer (BDT) licensed program. It
describes how to plan your BDT configuration, define BDT to MVS and
ACF/VTAM, allocate and format data sets, create an initialization stream, write
start procedures, and write user exit routines.

Who Should Read This Book
This book is for system programmers who must install BDT, test it, and create a
production system.

You should be familiar with Systems Network Architecture (SNA), ACF/VTAM,
and JES2 or JES3 (depending on which job entry subsystem your site uses).

How to Use This Book
If you are new to BDT you should start with Chapter 1, “Introduction,” on page 1.
It is an overview of the installation procedures covered in the rest of the book.
Then you can read the rest of the book in sequence. Note that the sequence in
which the chapters are presented is intended to guide you; you are not required to
install in that order.

Related Reading
Where necessary, this book references information in other books, using shortened
versions of the book title. For complete titles and order numbers of the books for
all products that are part of z/OS, see z/OS Information Roadmap.

Syntax Conventions Used in This Book
The conventions used in this book to describe the syntax of initialization
statements and macro instructions are:
v Any word or character shown in uppercase must be coded as it is shown.
v Any word or character shown in lowercase may be replaced by a value that you

provide.
v When a vertical bar (|) separates items you may select one of the items unless

the item description says you can select more. Do not code the vertical bar.
v When items are enclosed in braces ({}) you must select one of the enclosed items.

Do not code the braces.
v When items are enclosed in brackets ([]) the enclosed items are optional. You

may select none, some, or all of the items. Do not code the brackets.
v Default values are underlined.

How to send your comments to IBM
We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:

© Copyright IBM Corp. 1986, 2013 ix

1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS BDT Installation
SC14-7582-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

x z/OS BDT Installation

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 1986, 2013 xi

xii z/OS BDT Installation

Chapter 1. Introduction

Bulk Data Transfer (BDT) is a licensed program that transfers data from one
computer system to another. The type of data that it transfers depends on which of
its features is installed:
v The File-to-File feature allows users at one z/OS JES2 or z/OS JES3 system in a

SNA network to copy data sets to or from another z/OS JES2 or z/OS JES3
system in the network.

v The SNA NJE feature allows z/OS JES3 users to transmit jobs, output (SYSOUT),
commands, and messages from one computer system to another within a SNA
network. Any of the following systems can participate in the network: z/OS
JES2, z/OS JES3 (with BDT), VM/SP (with RSCS Networking), and
VSE/Advanced Functions (with VSE/POWER).

A third feature, the Base feature, is a prerequisite to the File-to-File feature and the
SNA NJE feature.

This chapter presents an overview of the migration considerations and installation
procedures described in this book. They are:
v Planning your migration
v Planning your configuration
v Defining BDT to MVS
v Defining BDT to VTAM
v Allocating BDT and TQI data sets
v Formatting TQI data sets
v Creating a BDT initialization stream
v Writing BDT and TQI start procedures
v Writing user exit routines.

Planning Your Configuration
There are several planning decisions you must make as a first step in installing
BDT:
1. Within a JES complex, each file-to-file node must have a global or local

relationship with every other file-to-file node it communicates with. (The terms
global and local, as used in BDT, refer to a relationship between nodes and not
to the JES3 global or local processors.) If you will have file-to-file nodes you
must plan these relationships. The global-local relationship between BDT nodes
determines which node processes transactions to copy data sets between the
two nodes, regardless of the node at which the transactions are submitted. The
global node always processes transactions.

2. The transaction queuing integrity (TQI) facility ensures that the commands and
file-to-file transactions that users submit reach the BDT work queue. TQI also
makes it possible for users at other processors to receive BDT messages. TQI is
a separate program that runs in its own address space. TQI is optional. You
must decide whether to use it and, if you do use it, in which processors of a
JES complex it will run.

3. BDT runs in its own address space. A JES complex may have one or more BDT
address spaces. Each processor in the complex may have one or more BDT

© Copyright IBM Corp. 1986, 2013 1

address spaces. A complex with multiple BDT address spaces is called a
poly-BDT complex. You must decide whether you want to set up such a
complex. A poly-BDT complex is beneficial during testing, as a way to separate
testing from production work.

Configuration planning is discussed in Chapter 2, “Planning Your Configuration,”
on page 5.

Defining BDT to MVS
BDT operates under the control of MVS and therefore requires the following MVS
definitions:
1. You must define BDT as a secondary MVS subsystem by creating an entry in

an IEFSSNxx member of SYS1.PARMLIB.
2. You must specify MVS system parameters in an IEASYSxx member of

SYS1.PARMLIB.
3. You must give authorized program facility (APF) authorization to

SYS1.BDTLIB, the BDT module library, by updating SYS1.PARMLIB member
IEAAPFxx.

4. If you are installing BDT in a JES3 complex, you will have to add several
statements containing BDT-related information to the JES3 initialization stream.
The statements are CONSOLE, SYSID, and, for SNA NJE customers, NJERMT.

MVS definitions are discussed in Chapter 3, “Defining BDT to MVS,” on page 17.

Defining BDT to VTAM
BDT runs as a VTAM application program, requiring several VTAM definitions:
1. You must define BDT as a VTAM application program on the APPL definition

statement. One APPL statement is required for each type of node your system
will have, that is, one APPL statement for a file-to-file node and one APPL
statement for a SNA NJE node.

2. You must define each remote node as a VTAM cross-domain resource by
coding a CDRSC definition statement for each remote node.

3. You must define session parameters to VTAM by creating VTAM logon mode
table entries.

VTAM definitions are discussed in Chapter 4, “Defining BDT to VTAM,” on page
21.

Allocating BDT and TQI Data Sets
With MVS and VTAM definitions complete you can start work on BDT itself. Your
first task is to allocate data sets that are used during BDT operation:
1. You must allocate a data set to contain the BDT initialization stream. Later you

will put initialization statements into this data set and then specify its name on
the procedure that the operator invokes to start BDT.

2. You must allocate a data set to contain the BDT work queue, in which BDT
places jobs waiting to be processed.

3. If you plan to have a system generic master job definition (GMJD) library for
users, you must allocate it. A system GMJD library contains precoded file-to-file
transaction definitions.

2 z/OS BDT Installation

4. If you want users to have ISPF panels available for submitting file-to-file
transactions, you must allocate several data sets.

5. If users are to have the commands and file-to-file transactions that they submit
checkpointed by TQI, you must allocate a TQI checkpoint data set. Within a JES
complex, this data set must be shared by a processor that has a BDT address
space and processors that have TQI address spaces.

6. You must allocate a TQI bit-map data set if you allocate a TQI checkpoint data
set.

7. In order for users to receive BDT messages you must allocate one or more
message data sets. Each processor of a JES complex that has a TQI address
space must have a message data set shared by that processor and a processor
that has a BDT address space.

Chapter 5, “Allocating BDT and TQI Data Sets,” on page 27 describes how to
allocate BDT and TQI data sets.

Formatting TQI Data Sets
The TQI checkpoint data set, the TQI bit-map data set, and the message data sets
must be formatted before they can be used. You must run batch jobs to format
them, as described in Chapter 6, “Formatting TQI Data Sets,” on page 35.

Creating a BDT Initialization Stream
To define the environment in which BDT will operate each time it is started you
must code initialization statements. You can specify the amount of main storage
BDT will use, the names of nodes in the network, the pacing rate for
communication between nodes, and many more parameters. You put these
statements, which make up the “initialization stream”, into a data set you
previously allocated. Later on you identify the data set’s name in the BDT start
procedure so that during BDT startup the initialization stream is run, and the BDT
subsystem gets initialized.

You can code initialization statements from scratch or you can modify the
IBM-provided initialization statements in SYS1.SBDTSAMP.

You may wish to code several initialization streams. If several streams are available
then the operator, by warm starting BDT, can easily change the network
configuration or select different options.

Chapter 7, “Creating a BDT Initialization Stream,” on page 39 describes how to
code initialization statements.

Writing BDT and TQI Start Procedures
You must provide start procedures that the operator can use to start BDT and TQI.
Starting BDT creates a BDT address space, and starting TQI creates a TQI address
space.

The BDT start procedure invokes the BDT program, identifies the data sets that
you previously allocated and that are used by BDT during its operation, and
invokes the initialization stream that you previously created. The TQI start
procedure invokes the TQI program and identifies the TQI data sets that you
previously allocated and that are used by TQI during its operation.

Chapter 1. Introduction 3

You can code start procedures from scratch or modify the IBM-provided sample
start procedures in SYS1.SBDTSAMP. Chapter 8, “Writing BDT and TQI Start
Procedures,” on page 73 describes start procedures.

Writing User Exit Routines
User-written exit routines are customer-coded programs that receive control at
specific points during the processing of IBM programs. BDT user-written exit
routines can be of two types:
v Authorization exit routines, which you can write to control who may send and

receive commands and file-to-file transactions. You must code these exit
routines. IBM provides samples in SYS1.SBDTSAMP.

v Customization exit routines, which you can write to alter command processing,
transaction processing, message processing, and the initialization process. You
can code these exit routines if you want; they are not required.

Chapter 9, “Writing User Exit Routines,” on page 77 discusses the steps involved in
developing user exit routines. Chapter 10, “User Exit Routine Reference,” on page
93 describes the input, processing, and output expected of each routine. The
routines are presented in alphanumeric order. Chapter 11, “Mapping Macro
Reference,” on page 159 and Chapter 12, “Executable Macro Reference,” on page
163 describe the macros you can use in your routines. The macros are presented in
alphabetic order.

4 z/OS BDT Installation

Chapter 2. Planning Your Configuration

This chapter describes how to:
v Plan global and local relationships between file-to-file nodes. Global nodes have

BDT work queues.
v Plan the use of the transaction queuing integrity (TQI) facility within a JES

complex. TQI ensures that commands and file-to-file transactions reach the BDT
work queue, and allows users to receive BDT messages.

v Decide whether to have a poly-BDT complex (multiple BDT address spaces
within a JES complex).

Step 1. Plan Global and Local Relationships (File-to-File Customers
Only)

In BDT, a node at one end of each file-to-file connection must be designated global
while the other node is designated local.1 Because a node may take part in many
sessions, it may be global for some sessions and local for others. A node cannot be
described as global or local by itself. A node is global or local only with respect to
another node.

A global node of a given session has a queue where transactions involving the two
nodes are kept until they are scheduled, executed, and finally purged. For
example, if a session exists between node A and node B, and node A is the global
node for that session, then transactions involving file transfers between A and B
are queued and scheduled at A. This is regardless of the direction of data flow.
Because A keeps the queue and does the scheduling, it may require more machine
resources and more experienced operators than node B. This may be offset by the
fact that B could be a global node for some other session pair.

You must designate the global and local relationship of each node by using the
T=LOCAL parameter of the BDTNODE initialization statement (described on page
52).

There are several ways to approach the planning of global-local relationships, as
described on the following pages.

Global-local relationships in a central hub network
One possible configuration is a central hub or star arrangement, shown in Figure 1
on page 6. In this configuration a single node is selected as the hub with all
sessions radiating from it. The hub node becomes the global node for all sessions.

1. As previously mentioned, the BDT global-local terminology has nothing to do with similar terminology used by JES3.

© Copyright IBM Corp. 1986, 2013 5

A central hub network has the advantage of central control of the network.
However, it has several disadvantages:
v It centralizes processor utilization and may require more processor resources

than are available.
v It makes it difficult to transfer data from one remote site to another. There is no

direct session between remote nodes so a remote node user must first send a file
to the hub and then submit a transaction at the hub to transfer the data from the
hub to the local node.

Global-local relationships in a decentralized network
A second network model, shown in Figure 2 on page 7, has all nodes that will
communicate connected by a session. It is possible to have one node global for all
the sessions in which it participates (node B) and another node local (node C) for
all its sessions; however, most nodes will be global for some sessions and local for
others. This is a decentralized network. Its main benefit is that processor cycles
used for networking are spread throughout the network, and it is possible to send
files from one node to another with a single transaction.

Local

Node A

Node B

Node C

Node D

Node E Node F

LocalLocal

Local

Local

Global
Global

GlobalGlobal

Global

Figure 1. Example of global-local relationships in a central hub network

6 z/OS BDT Installation

In the discussion above we have been talking about sessions, not physical lines.
For example, in Figure 2, you might have a hub arrangement for physical lines and
yet define the sessions shown. In this case a transaction sent from node F to node
D would pass through the NCP associated with node A. Connection definitions
can be changed without modifying any physical links.

The effect of global-local relationships on users
You should consider the effect of global-local relationships on users. Submitters of
file-to-file transactions must understand which node is global for each of their file
transfers. For example, in Figure 3 on page 8, assume that you are a user at node
A, which is global to node B but local to node C.

Node C

Node A

Node E Node F

Node B Node D

Figure 2. Example of global-local relationships in a decentralized network

Chapter 2. Planning Your Configuration 7

If you send data to or fetch data from node B, your transaction will be queued and
scheduled at your node, A. To inquire about that transaction’s status, you would
use the I,J=n command. If you submit a transaction to transfer a file in either
direction between nodes A and C, the transaction will be queued and scheduled by
node C. To inquire about the transaction you must use the SEND (T) command to
send an INQUIRY (I) command to node C (T,C,I,J=n).

As you can see, users must understand the topology of the network in order to
issue the proper command. Users at the global node for a given transaction issue
the command directly. Users at the local node use the SEND (T) command to issue
the command on the remote global node.

Global-local relationships also affect the use of dependent transaction control
(DTC). All transactions in a DTC network must be scheduled at the same global
node. DTC cannot be used to send a file to node B and then to C after the node B
transaction completes. This is because the two transactions are queued at two
different nodes.

Step 2. Plan the Use of TQI
You must decide whether to use the transaction queuing integrity (TQI) facility
and, if you do use it, on which processors of a JES complex you will use it.

What TQI Does
Each time a user submits a request (command or file-to-file transaction) to BDT,
the request travels from the user address space to the TQI address space to the
BDT address space on the global (scheduling) node. From there, BDT writes the
request onto the BDT work queue. For example, if a user submits a request
through a TSO terminal, the request travels from the TSO address space to the TQI
address space to the BDT address space. The user and TQI address spaces may be
in the same processor as the BDT address space or in different processors within

Global

Global

Local

Local

Node A

Node B Node C

C to A
or

A to C

A to B
or

B to A

BDT
work
queue

BDT
work
queue

Figure 3. Global-local effects on queue location

8 z/OS BDT Installation

the same JES complex. Thus, the request has to travel from one address space to
another and possibly from one processor to another. The actual path that a request
follows depends on the configuration of your installation and whether your node
is the global (scheduling) node.

TQI Prevents Loss of User Requests
The more address spaces and processors in the path of a request the greater the
chance of losing the request. A lost request is one that does not reach the BDT
work queue on the global (scheduling) node. A request would be lost, for example,
if one of the address spaces or processors in its path were disabled. Users must
resubmit lost requests.

TQI protects against the loss of requests by creating a checkpoint record of each
request. TQI retains the checkpoint record until the request has been written onto
the BDT work queue. If a request is lost after the checkpoint record has been
created, BDT recovers the request from the checkpoint record.

TQI Routes BDT Messages to Users
Each command or file-to-file transaction that a user submits results in BDT issuing
one or more messages to the user. When there are a large number of users, the
message traffic can become heavy. BDT stores these messages on a data set. TQI
periodically reads messages from the data set and routes them to the user. This
method of storing and routing messages eliminates a potential burden on virtual
storage by eliminating the need to store BDT messages there.

The data sets that TQI uses
TQI uses three different types of data sets:
v To record user requests, TQI uses the TQI checkpoint data set and the TQI bit-map

data set. The checkpoint data set contains the requests and the bit-map data set
contains control information. Both data sets must be accessible to the BDT
address space and to each TQI address space in a complex.

v To store BDT messages, TQI uses message data sets. There must be a separate
message data set that is accessible to each TQI address space. All message data
sets must be accessible to the BDT address space.

Note: A message data set is optional for any processor that is going to accept
only intra-node file-to-file transactions.

Figure 4 on page 10 shows a three-processor JES complex that has one BDT
address space and two TQI address spaces. The checkpoint data set and the
bit-map data set are accessible to all of the processors. Each message data set is
accessible to processor A (that is where BDT will execute) and to the processor
whose messages it will store. Users submit requests through either processor B or
C.

BDT in processor A will write messages destined for users of processor B onto
message data set 1. Likewise, BDT in processor A will write messages destined for
users of processor C onto message data set 2.

You could allow users to submit requests through processor A. These requests
would not be protected by TQI, however. If you wished to protect these requests,
you would have to start a TQI address space on processor A and allocate a
message data set to this address space.

Chapter 2. Planning Your Configuration 9

Example of TQI flow—TQI and BDT in the same processor
To help you plan your use of TQI you should understand TQI’s role in the flow of
a command or file-to-file transaction. Figure 5 on page 11 shows the flow of a
request submitted by a user in a single-processor configuration, where TQI and
BDT are in the same processor.

TQI address space TQI address space

User address spaceUser address space

Processor A

Processor B Processor C

data set 1 data set 2
BDT address space

Message Message

TQI
checkpoint
data set

TQI
bit-map
data set

Figure 4. Example of TQI in a three-processor JES complex

10 z/OS BDT Installation

Example of TQI flow—TQI and BDT in different processors
Figure 6 on page 12 shows the flow of a request submitted by a user in a
two-processor complex, where TQI and BDT are in separate processors.

TQI
checkpoint
data set

TQI bit-map
data set

BDT work
queue

Message
data set

Processor

BDT
address
space

TQI
address
space

User
address
space

User

4

3

5

6

7

1

2

7

1. A user submits a request (command or file-to-file transaction).

2. The request travels from the user’s address space to the TQI address space.

3. TQI writes the request onto the TQI checkpoint data set using space information from the TQI bit-map data set.

4. BDT reads the request from the checkpoint data set.

5. BDT writes the request to the BDT work queue. BDT then notifies TQI that the request was written to the work
queue so that TQI can reuse the space on the checkpoint data set that the request had occupied.

6. BDT writes messages for the user onto the message data set. These messages may, for example, report on the
progress of a file-to-file transaction or provide information in response to an INQUIRY command.

7. TQI periodically reads messages from the message data set and routes them to the user.

Figure 5. Example of TQI flow with TQI and BDT in the same processor

Chapter 2. Planning Your Configuration 11

Running without TQI
The use of TQI is optional.

Running without TQI improves system performance. BDT runs faster because there
is no message delay. Less resources are needed because a TQI address space is not
used. Less I/O takes place because messages are not written to and read from
DASD.

However, running without TQI has these disadvantages:
v JES2 users can submit commands and file-to-file transactions only if they are at a

processor with a BDT address space. (JES3 users do not have this restriction.)
v BDT must be running when users submit commands and file-to-file transactions.

If BDT is down, requests will be lost because they cannot be held on a
checkpoint data set until BDT is started or restarted.

Processor A Processor B

TQI

TQI
address

address

address
space

space

space

User

data set

bit-map
data set

data set
Message

BDT BDT
work
queue

User

1

2

3 4

5

7

7

checkpoint
TQI

7 6

1. A user submits a request (command or file-to-file transaction).

2. The request travels from the user’s address space to the TQI address space.

3. TQI writes the request onto the TQI checkpoint data set using space information from the TQI bit-map data set.

4. BDT reads the request from the checkpoint data set.

5. BDT writes the request to the BDT work queue. BDT then notifies TQI that the request was written to the work
queue so that TQI can reuse the space on the checkpoint data set that the request had occupied.

6. BDT writes messages for the user onto the message data set. These messages may, for example, report on the
progress of a file-to-file transaction or provide information in response to an INQUIRY command.

7. TQI periodically reads messages from the message data set and routes them to the user.

Figure 6. Example of TQI flow with TQI and BDT in different processors

12 z/OS BDT Installation

v Users can receive messages associated with their commands and file-to-file
transactions only if they are at a processor with a BDT address space.

If you choose to run without TQI, the following is necessary:
v You must code TQIEN=N and TQIREQ=N on the IEFSSNxx member of

SYS1.PARMLIB. (TQIEN=Y and TQIREQ=Y are the defaults. TQIEN and
TQIREQ are described on page 18.)

v You must not allocate the TQI checkpoint data set, the TQI bit-map data set, or
any message data sets in the BDT start procedure. (The BDT start procedure is
described on page “Step 1. Write a BDT Start Procedure” on page 73.)

v You must code TQIAUTO=NO on the OPTIONS initialization statement.
(TQIAUTO=YES is the default. TQIAUTO is described on page 66.)

Step 3. Decide whether to have a poly-BDT complex
BDT runs in its own address space. A JES complex may have one or more BDT
address spaces. Each processor in the complex may have one or more BDT address
spaces. A complex with multiple BDT address spaces is called a poly-BDT
complex. Figure 7 and Figure 8 on page 14 show examples of poly-BDT complexes.

JES complex

Processor

BDT address
space 1

BDT address
space 2

Figure 7. A Poly-BDT complex with BDT address spaces in the same processor

Chapter 2. Planning Your Configuration 13

A good use for poly-BDT complexes is to separate test work from production
work. Figure 9 illustrates such a situation. In the figure, complexes A and C are
poly-BDT complexes. They each have an address space for daily production work
and another address space for testing (such as testing newly written user exit
routines) and for training operators and users. By separating testing and training
from the production work, a complex reduces the risk of disrupting its production
work.

JES complex

Processor A Processor B

BDT address
space 1

BDT address
space 2

Figure 8. A Poly-BDT complex with BDT address spaces in different processors

JES Complex A (Poly-BDT)

SNA
link

JES Complex C
(Poly-BDT)JES Complex B

BDT
address
space for
production
work

BDT
address
space for
production
work

BDT
address
space for
production
work

BDT
address
space for
testing
and
training

BDT
address
space for
testing
and
training

Figure 9. Poly-BDT complexes with separate test and production systems

14 z/OS BDT Installation

You must decide how many BDT address spaces to have in a complex and on
which processor each should reside. For each BDT address space you must create:
v A separate initialization stream
v A separate BDT start procedure.

If you want to estimate the storage required for each BDT address space, see
Appendix B, “Virtual Storage Required for the BDT Address Space,” on page 185.

Chapter 2. Planning Your Configuration 15

16 z/OS BDT Installation

Chapter 3. Defining BDT to MVS

This chapter describes how to:
v Define BDT to MVS as a secondary subsystem by creating an entry in an

IEFSSNxx member of SYS1.PARMLIB
v Specify system parameters in SYS1.PARMLIB member IEASYSxx

v Give authorized program facility (APF) authorization to SYS1.MIGLIB and
SYS1.SBDTLIB, the BDT module libraries, by updating SYS1.PARMLIB member
IEAAPFxx or PROGxx

v Define BDT to JES3 if you are a JES3 customer.

Some MVS parameters must be matched with BDT parameters. To get an overall
picture of these relationships, refer to Appendix A, “Parameter map,” on page 181.

Step 1. Define BDT As an MVS Secondary Subsystem—SYS1.PARMLIB
Member IEFSSNxx

To define BDT as an MVS secondary subsystem you must create an entry in an
IEFSSNxx member of SYS1.PARMLIB.

You must create a member at each processor that will have a BDT address space or
a TQI address space. If a processor will have more than one BDT address space
you must create one member, with a separate entry for each address space.

The general format of an IEFSSNxx entry and the rules for coding and invoking it
are described in the z/OS MVS Initialization and Tuning Guide. Parameters that
apply to BDT are:

BDT Entry in SYS1.PARMLIB Member IEFSSNxx

subsystem-name,BDTSSINI,'node-name
[,C=bdt-char]
[,D={Y|N}]
[,TQIEN={Y|N}]
[,TQIREQ={Y|N}]'

subsystem-name
is a 1- to 4-character name that you assign to distinguish the BDT secondary
subsystem from other MVS secondary subsystems. Later (on “Step 2. Write a
TQI Start Procedure” on page 75) you will specify this name as the last one to
four characters of the name of the member that contains the TQI start
procedure.

BDTSSINI
is the routine that initializes the BDT secondary subsystem.

node-name
identifies the node to which this IEFSSNxx entry applies. This parameter must
match the name on one of the following SYSID initialization statement
parameters:
v The NAME parameter if the subsystem has a file-to-file node, without or in

addition to a SNA NJE node

© Copyright IBM Corp. 1986, 2013 17

v The NJENAME parameter if the subsystem has only a SNA NJE node

[C=bdt-char]
defines the command character for the subsystem defined by this IEFSSNxx
entry. This character can be prefixed to commands and file-to-file transactions
in order to identify them as intended for this subsystem. The default is no
command character.

[D={Y|N}]
specifies whether node-name (above) is the default BDT node. The default BDT
node is the node that executes (1) any BDT commands that do not request a
particular node via the SY(node-name) prefix and (2) any file-to-file transactions
that do not request a particular node via the SYSTEM parameter.

Y defines the node as the default node.

N specifies that the node is not the default node.

If you intend to have multiple file-to-file nodes within a JES complex you
should code D=Y for one of the nodes. If you fail to do this, commands that do
not use the SY(node-name) prefix and file-to-file transactions that do not use the
SYSTEM parameter will not be accepted from TSO or batch.

[TQIEN={Y|N}]
indicates whether the BDT transaction queuing integrity (TQI) facility is to be
automatically enabled after the TQI address space has started.

Y requests that TQI be automatically enabled.

N requests that TQI not be automatically enabled. Later the operator may
enable TQI by issuing the command MODIFY TQI,E.

[TQIREQ={Y|N}]
indicates whether you require TQI to be enabled before BDT will accept user
requests (commands and file-to-file transactions).

Y requires TQI to be enabled before BDT accepts user requests.

N allows BDT to accept user requests while TQI is disabled. However, the
requests will not be recorded on the TQI checkpoint data set. Therefore, if
you choose N, you risk losing user requests. Users must resubmit lost
requests; they are not automatically resubmitted by TQI.

Table 1 shows the actions taken by BDT and TQI for the various combinations of
the TQIREQ and TQIEN parameters. This table assumes that the operator has not
altered the TQIREQ and TQIEN settings.

Table 1. TQIREQ and TQIEN Interactions

TQIREQ= TQIEN= Action

N N TQI does not record user requests on the checkpoint data
set. In a JES2 complex, BDT processes only those requests
that were submitted through the same processor on which
BDT is executing. In a JES3 complex, BDT processes all
requests.

Y N BDT rejects all user requests.

N Y TQI records user requests on the checkpoint data set. BDT
processes requests.

Y Y TQI records user requests on the checkpoint data set. BDT
processes requests.

18 z/OS BDT Installation

SYS1.SBDTSAMP contains a sample SYS1.PARMLIB member named BDT$V2SN
for defining BDT as a secondary MVS subsystem. It is shown in Figure 10.

Step 2. Specify MVS System Parameters—SYS1.PARMLIB Member
IEASYSxx

Several system parameters in SYS1.PARMLIB member IEASYSxx are of special
importance to BDT:
v To identify the system being initialized you must specify the SYSNAME

parameter. The name you specify on SYSNAME you will later specify on the
FORMAT control statement used to format message data sets (described on 36).

v If BDT is to participate in a global resource serialization (GRS) complex you
must specify the GRS parameter.

The format of an IEASYSxx entry and the rules for coding it are described in the
z/OS MVS Initialization and Tuning Guide.

Step 3. Authorize SYS1.SBDTLIB
SYS1.SBDTLIB, the BDT module library, requires authorized program facility (APF)
authorization. Therefore, you must add the name SYS1.SBDTLIB to SYS1.PARMLIB
member IEAAPFxx or PROGxx.

The format of IEAAPFxx or PROGxx entries and the rules for coding it are
described in the z/OS MVS Initialization and Tuning Reference.

Step 4. Authorize SYS1.MIGLIB
SYS1.MIGLIB, the BDT module library, requires authorized program facility (APF)
authorization. Therefore, you must add the name SYS1.MIGLIB to SYS1.PARMLIB
member IEAAPFxx or PROGxx.

The format of IEAAPFxx or PROGxx entries and the rules for coding them are
described in the z/OS MVS Initialization and Tuning Reference.

Step 5. Define BDT to JES3 (JES3 Customers Only)—CONSOLE,
SYSID, and NJERMT Statements

If you install BDT in a JES3 complex, you will have to add the following
statements to the JES3 initialization stream:
v A CONSOLE statement, which requests JES3 to create a table entry that is

required for BDT console support.
v A SYSID statement with the NAME parameter to define the default BDT node to

JES3. The default BDT node is the node that executes (1) any BDT commands
that do not request a particular node via the SY(node-name) prefix and (2) any
file-to-file transactions that do not request a particular node via the SYSTEM
parameter. The NAME parameter on the JES3 SYSID statement must match the
name on one of the following BDT SYSID statement parameters:

A1,BDTSSINI,’SYSA1,C=/,D=Y,TQIEN=Y,TQIREQ=Y’

Figure 10. Sample SYS1.PARMLIB Member IEFSSNxx. It is contained in SYS1.SBDTSAMP member BDT$V2SN.

Chapter 3. Defining BDT to MVS 19

– The NAME parameter if the BDT subsystem has a file-to-file node, without or
in addition to a SNA NJE node.

– The NJENAME parameter if the BDT subsystem has only a SNA NJE node.
v If BDT has the SNA NJE feature, one or more NJERMT statements with:

– The BDTID parameter to identify the BDT node that receives SNA NJE
transactions. The name specified on the BDTID parameter must match the
name on the NAME parameter of JES3’s SYSID statement.

– The NAME parameter to identify remote SNA NJE nodes to JES3. The name
specified on the NAME parameter must match the name on the N parameter
of BDT’s BDTNODE statement.

These JES3 statements are explained in the z/OS JES3 Initialization and Tuning Guide.

To have these statements take effect, the JES3 operator must warm start or cold
start JES3.

20 z/OS BDT Installation

Chapter 4. Defining BDT to VTAM

This chapter describes how to:
v Define a BDT file-to-file node to VTAM
v Define a BDT SNA NJE node to VTAM
v Define each remote BDT node as a VTAM cross-domain resource
v Define file-to-file session parameters to VTAM
v Define SNA NJE session parameters to VTAM.

Some VTAM parameters must be matched with BDT parameters and other VTAM
parameters. To get an overall picture of these relationships, refer to Appendix A,
“Parameter map,” on page 181.

Step 1. Define a Node for File-to-File Transfers—APPL Definition
Statement

BDT is a VTAM application program. If BDT is to handle file-to-file transfers, you
must define BDT to VTAM as a file-to-file node by coding a VTAM APPL
definition statement.

Values on the VTAM APPL definition statement that are significant to BDT as a
file-to-file node are:

name
is the label on the APPL statement. It must match the name on the APPLID
parameter of the BDT SYSID statement, and must also match the names
(labels) on the CDRSC statements in the remote nodes that define this
application as a cross-domain resource.

AUTH=ACQ
You must code AUTH=ACQ to allow the BDT application to establish sessions
using the VTAM SIMLOGON macro.

DLOGMOD=default logon mode entry name
Use this operand if you wish to specify a default logon mode name to define
the session parameters for sessions in which the BDT node being defined is the
secondary end. (Session parameters are discussed in “Step 4. Define File-to-File
Session Parameters—Logon Mode Table” on page 25.)

In the absence of this operand, the default logon mode name usually defaults
to the first entry in the logon mode table associated with the application (either
the VTAM-supplied default logon mode table or the logon mode table
specified in the MODETAB operand). When the first entry in the table is not
appropriate, you can specify another name as the value in the DLOGMOD
operand and include a logmode table entry with this name in the table.

If you use this operand to specify a default logon mode name, you need not
specify the L parameter on the remote BDTNODE initialization statements that
relate to the BDT node for which the DLOGMOD operand is specified.

EAS=n
Specify a value for n that is equal to the anticipated number of concurrent
sessions that this node will have with all other BDT nodes, plus 10-20 percent
for expansion.

© Copyright IBM Corp. 1986, 2013 21

MAXPVT=n
MAXPVT limits the amount of private area that VTAM attempts to get to
satisfy inbound requests. When the limit is reached, if additional inbound data
arrives over a session, VTAM terminates the session over which the data was
received. It may be useful to restrict the amount of private virtual storage that
VTAM allocates in this manner to ensure that there is enough virtual storage to
perform other BDT functions. No recommended value can be placed on this
operand, as each installation is different. You should consider, however, that it
is better to have VTAM take down a BDT session for lack of buffer space than
to have the BDT address space terminate with an 80A abend.

Usually, you need not provide a large amount of private buffer area through
the MAXPVT operand because BDT allows you to specify the amount of
virtual storage to be made available for SNA buffers through SNABUF
initialization statements. In this way, you can control the amount of private
virtual storage allocated to the SNA buffers.

If you specified sufficient SNA buffers and if sufficient private area exists
within the BDT address space to accommodate that definition, you should not
need to specify a high MAXPVT value, since BDT should always have enough
resources of its own to receive data up to its own pacing limits.

If you provide enough SNA buffers to equal BUFNO + 1 for every outbound
VLU, plus BUFNO for every inbound VLU, plus 1 for every communication
VLU, you should not need to provide a large amount of private buffer area
through the MAXPVT operand.

An exception to the above rule exists, however, when the receiving side of a
BDT connection does not get enough processor cycles to dispatch its VTAM
SRB receive exit. This could occur when the BDT dispatching priority is very
low, or when a subtask within the BDT address space is abending and a dump
is being taken. In these instances, data still arrives from the VTAM interface
from the sending BDT node, but VTAM has no BDT SNA buffer in which to
place that data. It must, therefore, queue the received data in storage obtained
within the BDT address space by means of GETMAIN.

MODETAB=logon mode table name
If you use a unique logon mode table for your BDT applications rather than
the VTAM default logon mode table, specify its name (logon mode table name)
on the APPL statement that defines the home BDT node. This unique logon
mode table must also include entries to define logon mode names specified on
remote BDTNODE initialization statements identifying this BDT node.

PRTCT=password
Code this operand only if you code the APPLPSWD parameter on the BDT
SYSID statement. Specify the same value.

VPACING=n
The value specified on this operand normally governs the flow of inbound
data to the application defined by the VTAM APPL statement. However, BDT
overrides any value on this operand with 0 to ensure that its sessions are not
paced through the SNA pacing mechanisms. See the discussion on BDT pacing
under the BUFNO parameter of the BDTNODE statement (47) to see how BDT
implements its own session-level pacing.

SYS1.SBDTSAMP contains a sample SYS1.VTAMLST member named BDT$VTAM
that includes an APPL statement for defining BDT as a file-to-file node. It is shown
in Figure 11 on page 23.

22 z/OS BDT Installation

Step 2. Define a Node for SNA NJE Transfers—APPL Definition
Statement

BDT is an VTAM application program. If BDT is to handle SNA NJE transfers, you
must define BDT to VTAM as a SNA NJE node by coding an VTAM APPL
definition statement.

Values on the VTAM APPL definition statement that are significant to BDT as a
SNA NJE node are:

name
is the label on the APPL statement. It must match the name on the NJEAPPL
parameter of the BDT SYSID statement, and must also match the names
(labels) on the CDRSC statements in the remote nodes that define this
application as a cross-domain resource.

AUTH=ACQ
You must code AUTH=ACQ to allow the BDT application to establish sessions
using the VTAM SIMLOGON macro.

DLOGMOD=default logon mode entry name
Use this operand if you wish to specify a default logon mode name to define
the session parameters for sessions in which the BDT node being defined is the
secondary end. (Session parameters are discussed in “Step 5. Define SNA NJE
Session Parameters—Logon Mode Table” on page 25.)

In the absence of this operand, the default logon mode name usually defaults
to the first entry in the logon mode table associated with the application (either
the VTAM-supplied default logon mode table or the logon mode table
specified in the MODETAB operand). When the first entry in the table is not
appropriate, you can specify another name as the value in the DLOGMOD
operand and include a logmode table entry with this name in the table.

If you use this operand to specify a default logon mode name, you need not
specify the L parameter on the remote BDTNODE initialization statements that
relate to the BDT node for which the DLOGMOD operand is specified.

EAS=n
Specify a value for n that is equal to the anticipated number of concurrent
sessions that this node will have with all other BDT nodes, plus 10-20 percent
for expansion.

MAXPVT=n
MAXPVT limits the amount of private area that VTAM attempts to get to
satisfy inbound requests. When the limit is reached, if additional inbound data
arrives over a session, VTAM terminates the session over which the data was
received. It may be useful to restrict the amount of private virtual storage that
VTAM allocates in this manner to ensure that there is enough virtual storage to
perform other BDT functions. No recommended value can be placed on this
operand, as each installation is different. You should consider, however, that it
is better to have VTAM take down a BDT session for lack of buffer space than
to have the BDT address space terminate with an 80A abend.

VBUILD TYPE=APPL
FTFAPPL1 APPL AUTH=(PASS,NOTSO,NVPACE,ACQ)
NJEAPPL1 APPL AUTH=(PASS,NOTSO,ACQ),VPACING=2

Figure 11. Sample SYS1.VTAMLST Member. It is contained in SYS1.SBDTSAMP member BDT$VTAM.

Chapter 4. Defining BDT to VTAM 23

Usually, you need not provide a large amount of private buffer area through
the MAXPVT operand because BDT allows you to specify the amount of
virtual storage to be made available for SNA buffers through SNABUF
initialization statements. In this way, you can control the amount of private
virtual storage allocated to the SNA buffers.

If you specified sufficient SNA buffers and if sufficient private area exists
within the BDT address space to accommodate that definition, you should not
need to specify a high MAXPVT value, since BDT should always have enough
resources of its own to receive data up to its own pacing limits.

If you provide enough SNA buffers to equal BUFNO + 1 for every outbound
VLU, plus BUFNO for every inbound VLU, plus 1 for every communication
VLU, you should not need to provide a large amount of private buffer area
through the MAXPVT operand.

An exception to the above rule exists, however, when the receiving side of a
BDT connection does not get enough processor cycles to dispatch its VTAM
SRB receive exit. This could occur when the BDT dispatching priority is very
low, or when a subtask within the BDT address space is abending and a dump
is being taken. In these instances, data still arrives from the VTAM interface
from the sending BDT node, but VTAM has no BDT SNA buffer in which to
place that data. It must, therefore, queue the received data in storage obtained
within the BDT address space by means of GETMAIN.

MODETAB=logon mode table name
If you use a unique logon mode table for your BDT applications rather than
the VTAM default logon mode table, specify its name (logon mode table name)
on the APPL statement that defines the home BDT node. This unique logon
mode table must also include entries to define logon mode names specified on
remote BDTNODE initialization statements identifying this BDT node.

PRTCT=password
Code this operand only if you code the NJEAPSWD parameter on the BDT
SYSID statement. Specify the same value.

VPACING=n
The value for n varies from system to system. It is based on the amount of
private area available, the number of sessions communicating simultaneously,
the size of the SNA buffer pool, the size of the buffers used for each session,
and so forth. The recommended initial value is 2. A value of 0 is not
recommended because the receiving node has no control over the rate of
transmission from the sending node, which could lead to transaction or BDT
subsystem failure.

SYS1.SBDTSAMP contains a sample SYS1.VTAMLST member named BDT$VTAM
that includes an APPL statement for defining BDT as a SNA NJE node. It is shown
in Figure 11 on page 23.

Step 3. Define Remote Nodes as Cross-Domain Resources—CDRSC
Definition Statement

You must define each remote node as a VTAM cross-domain resource. You do this
by coding a VTAM CDRSC definition statement for each remote node. The name
(label) on the CDRSC statement at your node must match the name (label) on the
VTAM APPL statement coded for BDT at the remote node. (This name must also
match the name on the APPL parameter of the BDTNODE statement that is coded
at your node to define the remote node.)

24 z/OS BDT Installation

Step 4. Define File-to-File Session Parameters—Logon Mode Table
Whenever a file-to-file session is established between two BDT nodes, the nodes
exchange session parameters, which govern the characteristics of the session. You
define the session parameters through VTAM logon mode tables. You may define
your own logon mode tables and logon mode entries and associate these with the
BDT application, or you may accept the VTAM-supplied default logon mode table.

When BDT establishes file-to-file sessions it overrides all session parameters except
class of service (COS operand of the MODEENT macro) and cryptography type
(ENCR operand of the MODEENT macro). Therefore, if your installation does not
need to establish a specific class of service for file-to-file connections, and does not
require connection of file-to-file nodes over encrypted sessions, you need not code
VTAM logon mode table entries for BDT nor bother with unique MODETAB or
DLOGMOD operands on the VTAM APPL definition statements. (MODETAB and
DLOGMOD are discussed in “Step 1. Define a Node for File-to-File
Transfers—APPL Definition Statement” on page 21.)

The logon mode table values used by BDT for file-to-file sessions are:
MODEENT COMPROT=4020,

COS=installation-determined,
ENCR=installation-determined,
FMPROF=4,
LOGMODE=LMODFTF,
PRIPROT=00,
PSERVIC=000000000000000000000000,
PSNDPAC=00,
RUSIZES=8585,
SECPROT=00,
SRCVPAC=00,
SSNDPAC=00,
TSPROF=7,
TYPE=0

The session parameters that VTAM uses during session establishment always
originate from the secondary LU. Therefore, if you want to ensure that a specific
set of characteristics are associated with a BDT session, you should ensure that a
logon mode table entry defining these characteristics is present at each secondary
end of each session that BDT establishes. For file-to-file sessions the local end of
the session always becomes the secondary end of the session. Therefore, you
should create logon mode table entries that define specific session characteristics at
each BDT node that can act as a local node. If a BDT node can act only as a global
node, there is no need to define logon mode table entries to VTAM for that BDT
application.

Step 5. Define SNA NJE Session Parameters—Logon Mode Table
Whenever a SNA NJE session is established between two BDT nodes, the nodes
exchange session parameters, which govern the characteristics of the session. You
define the session parameters through VTAM logon mode tables. You may define
your own logon mode tables and logon mode entries and associate these with the
BDT application, or you may accept the VTAM-supplied default logon mode table.

When BDT establishes SNA NJE sessions it overrides all session parameters except
class of service (COS operand of the MODEENT macro), cryptography type (ENCR
operand of the MODEENT macro), and pacing (PSNDPAC, SRCVPAC, and
SSNDPAC operands of the MODEENT macro). Therefore, if your installation does
not require connection of SNA NJE nodes over encrypted sessions, does not need

Chapter 4. Defining BDT to VTAM 25

to establish a specific class of service for SNA NJE connections, and specifies
pacing on the VPACING parameter of the APPL definition statement, you need not
code VTAM logon mode table entries for BDT nor bother with unique MODETAB
or DLOGMOD operands on the VTAM APPL definition statements. (MODETAB
and DLOGMOD are discussed in “Step 1. Define a Node for File-to-File
Transfers—APPL Definition Statement” on page 21.)

The logon mode table values used by BDT for SNA NJE sessions are:
MODEENT COMPROT=4020,

COS=installation-determined,
ENCR=bits 0-1 forced to zero; bits 2-7

installation-determined,
FMPROF=3,
LOGMODE=LMODNJE,
PRIPROT=72,
PSERVIC=000000000000000000000000,
PSNDPAC=installation-determined,
RUSIZES=0000,
SECPROT=72,
SRCVPAC=installation-determined,
SSNDPAC=installation-determined,
TSPROF=3,
TYPE=01

The session parameters that VTAM uses during session establishment always
originate from the secondary LU. Therefore, if you want to ensure that a specific
set of characteristics are associated with a BDT session, you should ensure that a
logon mode table entry defining these characteristics is present at each secondary
end of each session that BDT establishes.

26 z/OS BDT Installation

Chapter 5. Allocating BDT and TQI Data Sets

This chapter describes how to allocate the BDT and TQI data sets needed during
BDT operation. The data sets are:
v The BDT initialization stream data set
v The BDT work queue data set
v The system generic master job definition (GMJD) library data set (file-to-file

customers only)
v ISPF data sets (file-to-file customers only)
v The TQI checkpoint data set
v The TQI bit-map data set
v Message data sets.

Step 1. Allocate a Data Set for the BDT Initialization Stream
You must allocate a data set to contain the BDT initialization stream (or streams)
that is discussed in Chapter 7, “Creating a BDT Initialization Stream,” on page 39.
You may allocate this data set using ISPF, the TSO ALLOCATE command, or a
batch job (using the IEFBR14 program; see Figure 12 on page 28 for sample JCL).

The initialization stream is run when the operator starts BDT. It initializes the BDT
address space. You may wish to have several initialization streams. If several
streams are available then the operator, by warm starting BDT, can easily change
the network configuration or select different options.

Note: A BDT subsystem that has both file-to-file and SNA NJE nodes does not
require two initialization streams. Both nodes exist in one BDT address space, so
only one initialization stream is needed.

Requirements are:
Name: Any name. In 74, you will be directed to specify this name on the
BDTIN DD statement of the BDT start procedure.
Size: Customer-determined, depending on the number of initialization
statements the data set will contain. The minimum is 16 and there is no
maximum. Each initialization statement requires at least one record. (A
statement may be continued, requiring more than one record.) Two important
factors that affect the size of this data set are the number of comment
statements you will use (there is no limit) and the number of remote nodes that
your home node will communicate with (one BDTNODE statement is required
to specify each remote node, with a limit of 100). The IBM-supplied
initialization streams in SYS1.SBDTSAMP have approximately 100 records each.
Organization: The data set may be either sequential or partitioned if it is to
contain one initialization stream. The data set must be partitioned if it is to
contain more than one initialization stream, and each initialization stream must
be a separate member. You can give each member any 3- to 8-character name
you want or you can use the form BDTINxx, where xx is any one or two
alphanumeric characters. The latter method allows the operator a shorthand
way of specifying the member name when starting BDT (see 74 for details.)
Record Format: Fixed blocked (FB)
Record Length: 80

© Copyright IBM Corp. 1986, 2013 27

Block Size: Any multiple of 80

Step 2. Allocate a Data Set for the BDT Work Queue
You must allocate a data set to contain the BDT work queue, on which BDT places
jobs during BDT operation. You may allocate this data set using ISPF, the TSO
ALLOCATE command, or a batch job (using the IEFBR14 program; see Figure 13
for sample JCL).

Requirements are:
Name: Any name. In “Step 1. Write a BDT Start Procedure” on page 73 you
will be directed to specify this name on the BDSPOOL and CRSPOOL DD
statements of the BDT start procedure.
Size: Customer-determined. It is suggested that you initially allocate the
equivalent of 2 cylinders on a 3380. For best performance, do not allocate a
secondary quantity.
Organization: Any may be specified. BDT changes it to physical sequential
(PS).
Record Format: Any may be specified. BDT changes it to fixed (F).
Record Length: Any may be specified. BDT changes it to 0.
Block Size: Any may be specified. BDT changes it to 2048.

Step 3. Allocate a System GMJD Library (File-to-File Customers Only)
This step is optional and applies only to systems that have the File-to-File feature
of BDT.

A generic master job definition (GMJD) library is a data set that contains precoded
file-to-file transaction definitions. There are two types of GMJD libraries: private
and system. Users may define private GMJD libraries or they may use a system
GMJD library that you create.

If you want to create a system GMJD library you must first allocate a partitioned
data set for it. You can allocate it using ISPF, the TSO ALLOCATE command, or a
batch job (using the IEFBR14 program; see Figure 14 on page 29 for sample JCL).

//BDTIN DD UNIT=3380,VOL=SER=BDTDRV,DISP=(NEW,CATLG),
// DSN=SYS1.BDT.INITS,SPACE=(CYL,(5,1,54)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

Figure 12. A Sample DD Statement to Allocate a Data Set for the Initialization Stream. It is contained in
SYS1.SBDTSAMP member BDT$ALOC.

//BDTSPOOL DD UNIT=3380,VOL=SER=BDTDRV,DISP=(NEW,CATLG),
// DSN=BDT1.BDTSPOOL,SPACE=(CYL,(2),,CONTIG),
// DCB=(RECFM=F,LRECL=2048,BLKSIZE=2048,DSORG=PS)

Note: During initialization, BDT places a higher than normal demand on BDSPOOL space. Insufficient BDSPOOL
space can cause the system to end abnormally (completion codes S060 and BD705). This situation occurs most often
during cold starts. If it occurs, increase BDSPOOL space to five contiguous cylinders. The number of cylinders
needed may vary with the installation. In any event, the maximum number of cylinders required should not exceed
20 for 3380's or 25 for 3350's.

Figure 13. A Sample DD Statement to Allocate a Data Set for the BDT Work Queue. It is contained in
SYS1.SBDTSAMP member BDT$ALOC.

28 z/OS BDT Installation

Requirements are:
Name: Any name. Later you will specify this name on a DD statement in the
BDT start procedure (page 75) or on a DYNALLOC statement (page
“DYNALLOC—Dynamically Allocate BDT Data Sets” on page 58) that is in the
initialization stream invoked by the BDT start procedure.
Size: Customer-determined, depending on the total size of all the transaction
definitions that will be stored there.
Organization: Partitioned. Each transaction definition must be stored as a
member of the data set. The name of the member is also the name of the
transaction definition. The member name may be any valid member name
except Q or the name of a BDT command.
Record Format: Fixed (F) or fixed blocked (FB)
Record Length: 80
Block Size: Maximum of 32720

Transaction definitions that are stored in a GMJD library may contain passwords
that are not encrypted. To prevent unauthorized exposure of these passwords you
should RACF-protect the system GMJD library. Only BDT should be authorized to
access the library.

For information on how to use a system GMJD library, see z/OS BDT File-to-File
Transaction Guide .

Step 4. Allocate ISPF Data Sets (File-to-File Customers Only)
This step is optional and applies only to systems that have the File-to-File feature
of BDT.

BDT provides ISPF panels that make it easier for users to submit file-to-file
transactions. These panels provide a dialog capability between the user and ISPF.
The dialog prompts the user for the information needed to build a BDT
transaction. TSO HELP panels and examples guide the user through the task of
providing the transaction information. After the user provides the information,
ISPF builds a BDT transaction which it then routes to BDT for execution.

ISPF also saves the information that the user provided. The next time the user
invokes the ISPF panel, the information that ISPF saved appears on the screen. The
user may then submit another transaction using the same information, or the user
may change the information before submitting the transaction.

If you want to make the BDT ISPF panels available to your installation you must
allocate six data sets and concatenate them with data sets defined in the TSO logon
procedure. You may have already allocated the SBDTxxxx data sets during
installation of z/OS. The data sets you allocate must have the same characteristics
as the data sets with which they are concatenated. See Table 2 on page 30 for the
names of the data sets.

//GMJDLIB DD UNIT=3380,VOL=SER=BDTDRV,DISP=(NEW,CATLG),
// DSN=SYS1.GMJD,SPACE=(CYL,(10,1,111)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

Figure 14. A Sample DD Statement to Allocate a Data Set for a System GMJD Library. It is contained in
SYS1.SAMPLIB member BDT$ALOC.

Chapter 5. Allocating BDT and TQI Data Sets 29

Table 2. ISPF Data Sets for BDT

Data Set Name Data Set Contents

TSO Logon Procedure
ddname to Which Data Set
Gets Concatenated

SYS1.SBDTHELP TSO HELP panels SYSHELP

SYS1.SBDTPN0 BDT ISPF panels ISPPLIB

SYS1.SBDTMSG BDT ISPF messages ISPMLIB

SYS1.SBDTCLI0 BDT ISPF CLISTs SYSPROC

Any name Table output library ISPTABL

Same as ISPTABL data set
name

Table input library ISPTLIB

You have to allocate table input and output library data sets (ddnames ISPTLIB
and ISPTABL, respectively) only if you plan to allow users to save their ISPF
panels. You must allocate unique data sets for each TSO user. If you do not allocate
these data sets, saved transactions will be inaccessible upon reentry to the BDT
panels.

ISPF tables stored by users can contain confidential data, such as passwords. To
prevent unauthorized access to this data, you should RACF-protect the table
output library data sets pointed to by ddname ISPTABL. Access to these data sets
should be granted to the users owning them and to the user ID assigned to the
BDT started procedure.

You can update the ISPF panels to add the BDT File-to-File feature as an option.
The method used to do this depends on which ISPF is installed. Consider
incorporating the changes you make in an SMP/E usermod, so that they will not
be regressed without warning during the installation of service (PTFs) for ISPF. For
more information about constructing SMP/E usermods, see SMP/E for z/OS
Reference or SMP/E for z/OS User's Guide

ISPF Version 3
If ISPF Version 3 is installed:

Modify an existing ISPF panel (the Utility Selection Panel, ISRUTIL, is
recommended) to call CLIST BDTC01, which will display the BDT Selection Menu:
1. Pick an option number that is not used on the panel (Option 15, for example):
2. Add the following to the input panel body:

% 15 +BDT - ACCESS BDT (BULK DATA TRANSFER)

3. Under the line that reads:
&ZSEL = TRANS(TRUNC (&ZCMD,’.’):

add the following to the ")PROC" section:
15,’CMD(BDTC01)’

Other Considerations
If you are running with the Program Cryptographic Facility (PCF) you must define
the BDT transaction prefix of “BDT” in the PCF command table before you can
send any transactions to BDT through TSO or ISPF.

30 z/OS BDT Installation

If BDT is going to be run from an ISPF application ID other than ISR, you must
add the parameter NEWAPPL(ISR) to the command that executes the BDT
command list in the other application ID.

Step 5. Allocate the TQI Checkpoint Data Set
You must allocate a TQI checkpoint data set if users are to have the commands
and file-to-file transactions that they submit checkpointed. There is a limit of one
checkpoint data set per JES complex. This data set must be shared by a processor
that has a BDT address space and processors that have TQI address spaces. (Refer
to “Step 2. Plan the Use of TQI” on page 8 for an introduction to the use of this
data set.)

You may allocate this data set using ISPF, the TSO ALLOCATE command, or a
batch job (using the IEFBR14 program; see Figure 15 for sample JCL).

Requirements are:
Name: Any name. Later you will specify this name on the DATAFILE DD
statement of both the BDT start procedure (page 74) and the TQI start
procedure (page 76).
Size: Customer-determined, with a minimum of 1 record and a maximum of
5000 records. One record is required for each checkpointed request (command
or file-to-file transaction). To determine the maximum number of requests you
want the TQI checkpoint data set to be able to store at one time (and, therefore,
the maximum number of records to allocate for the data set), consider the rate
at which you expect users to submit requests and the rate at which you expect
the BDT address space to be able to read requests from the checkpoint data set.
Remember that a request, once written to the checkpoint data set, remains there
until BDT writes the request onto the BDT work queue. In the case where TQI
is running but BDT is not, the checkpoint data set will continue to fill until
BDT is started. For best performance, do not allocate a secondary quantity.
Organization: Any may be specified. BDT changes it to physical sequential
(PS).
Record Format: Any may be specified. BDT changes it to fixed (F).
Record Length: Any may be specified. BDT changes it to 3584.
Block Size: Any may be specified. BDT changes it to 3584.

Step 6. Allocate the TQI Bit-Map Data Set
You must allocate a TQI bit-map data set if you allocate a TQI checkpoint data set.
They are used together. You may allocate this data set using ISPF, the TSO
ALLOCATE command, or a batch job (using the IEFBR14 program; see Figure 16
on page 32 for sample JCL).

Requirements are:
Name: Any name. Later you will specify this name on the BITMAPS DD
statement of both the BDT start procedure (page 74) and the TQI start
procedure (page 76).

//TQIDATA DD UNIT=3380,VOL=SER=BDTDRV,DISP=(NEW,CATLG),
// DSN=BDT1.TQIDATA,SPACE=(CYL,(2),,CONTIG),
// DCB=(RECFM=F,LRECL=3584,BLKSIZE=3584)

Figure 15. A Sample DD Statement to Allocate the TQI Checkpoint Data Set. It is contained in SYS1.SBDTSAMP
member BDT$ALOC.

Chapter 5. Allocating BDT and TQI Data Sets 31

Size: Customer-determined, with 2 records required for each 120 requests
(commands or file-to-file transactions) that are stored on the TQI checkpoint
data set. (Thus, 121 requests would require 4 records.) For best performance, do
not allocate a secondary quantity.
Organization: Any may be specified. BDT changes it to physical sequential
(PS).
Record Format: Any may be specified. BDT changes it to fixed (F).
Record Length: Any may be specified. BDT changes it to 31.
Block Size: Any may be specified. BDT changes it to 31.

Step 7. Allocate Message Data Sets
You must allocate one or more message data sets in order for users who submit
requests (commands and file-to-file transactions) through TQI to receive messages
from BDT. Within a JES complex, each processor that has a TQI address space but
not a BDT address space must have a message data set shared by that processor
and by a processor that has a BDT address space in order for users at the processor
with TQI to receive BDT messages. Thus, a complex should have as many message
data sets as it has TQI address spaces. A message data set is not required at a
processor that has a BDT address space but not a TQI address space, where users
submit requests directly to the BDT address space.

You can allocate message data sets using ISPF, the TSO ALLOCATE command, or a
batch job (using the IEFBR14 program; see Figure 17 on page 33 for sample JCL).

Requirements are:
Name: Any name. Later you will specify this name on a BDTMxxxx DD
statement in the BDT start procedure (page 74) or on a DYNALLOC statement
(page “DYNALLOC—Dynamically Allocate BDT Data Sets” on page 58) that is
in the initialization stream invoked by the BDT start procedure.
Size: Customer-determined, with 6156 bytes required for each message in the
data set. The size of the data set at any given time depends on message traffic
(the number of messages being written to the data set) and the frequency at
which messages are read off the data set (specified as a PARM on the EXEC
statement of the TQI start procedure, page 76). For best performance, do not
allocate a secondary quantity.
Organization: Any may be specified. BDT changes it to physical sequential
(PS).
Record Format: Any may be specified. BDT changes it to fixed (F).
Record Length: Any may be specified. BDT changes it to 6156.
Block Size: Any may be specified. BDT changes it to 6156.

//TQIBITS DD UNIT=3380,VOL=SER=BDTDRV,DISP=(NEW,CATLG),
// DSN=BDT1.TQIBITS,SPACE=(TRK,(2,1)),
// DCB=(RECFM=F,LRECL=31,BLKSIZE=31)

Figure 16. A Sample DD Statement to Allocate the TQI Bit-Map Data Set. It is contained in SYS1.SBDTSAMP member
BDT$ALOC.

32 z/OS BDT Installation

//TQIMSG DD UNIT=3380,VOL=SER=BDTDRV,DISP=(NEW,CATLG),
// DSN=BDT1.MSG0001,SPACE=(CYL,(2),,CONTIG),
// DCB=(RECFM=F,LRECL=6156,BLKSIZE=6156)

Figure 17. A Sample DD Statement to Allocate a Message Data Set. It is contained in SYS1.SBDTSAMP member
BDT$ALOC.

Chapter 5. Allocating BDT and TQI Data Sets 33

34 z/OS BDT Installation

Chapter 6. Formatting TQI Data Sets

This chapter describes how to format the TQI data sets that you allocated in the
preceding chapter. It describes how to format:
v The TQI checkpoint and bit-map data sets
v Message data sets.

Step 1. Format the TQI Checkpoint, Bit-Map, and Message Data Sets
You must format the TQI checkpoint and bit-map data sets that you allocated in
“Step 5. Allocate the TQI Checkpoint Data Set” on page 31 and “Step 6. Allocate
the TQI Bit-Map Data Set” on page 31, and any message data sets that you
allocated in “Step 7. Allocate Message Data Sets” on page 32. You do this by
running the BDTTQBCH program from a batch job.

Each time you invoke BDTTQBCH you may use only one of its functions: you may
format both a checkpoint data set and a bit-map data set, you may format one
message data set, or you may move the contents of a checkpoint data set and a
bit-map data set. (Moving the contents of old checkpoint and bit-map data sets to
new checkpoint and bit-map data sets becomes necessary if you later discover that
the old data sets are too small. For instructions, see Appendix C, “Moving
Transactions to a New TQI Checkpoint Data Set,” on page 187.) A control
statement that you specify as input (SYSIN) to BDTTQBCH selects the appropriate
function.

The sample JCL and control statements in SYS1.SBDTSAMP (member name
BDT$TQFM) that format the checkpoint, bit-map, and message data sets are shown
in Figure 18. The sample job contains two steps. The first step uses a BUILD
control statement to format the checkpoint and bit-map data sets. The second step
uses a FORMAT control statement to format one message data set. Note that the
sample assumes that the SBDTLINK library is in the link list and that all data sets
are cataloged.

//TQIBATCH EXEC
identifies BDTTQBCH as the program to be executed.

//BDTTQBCH JOB CLASS=A
//TQIBATCH EXEC PGM=BDTTQBCH
//BITMAPS DD DISP=SHR,DSN=BDT1.TQIBITS
//DATAFILE DD DISP=SHR,DSN=BDT1.TQIDATA
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
BUILD,SYSID=SYSA1
//*
//TQIMSG EXEC PGM=BDTTQBCH
//MESSAGE DD DISP=SHR,DSN=BDT1.MSG0001
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
FORMAT,SYSID=SYSA1,SYSNAME=XXXXXXXX
//*

Figure 18. Sample Job to Format the TQI Checkpoint, Bit-Map, and Message Data Sets. It is contained in
SYS1.SBDTSAMP member BDT$TQFM.

© Copyright IBM Corp. 1986, 2013 35

//BITMAPS DD
defines the TQI bit-map data set. The data set name must be the one you
specified when you allocated the data set in“Step 6. Allocate the TQI Bit-Map
Data Set” on page 31.

//DATAFILE DD
defines the TQI checkpoint data set. The data set name must be the one you
specified when you allocated the data set in“Step 5. Allocate the TQI
Checkpoint Data Set” on page 31.

//SYSUDUMP DD
defines the data set where a formatted storage dump is to be written in the
event BDTTQBCH abnormally terminates. You may replace the SYSUDUMP
DD statement with a SYSMDUMP DD statement or a SYSABEND DD
statement, depending on the type of dump you want.

//SYSPRINT DD
defines the data set where BDTTQBCH is to write its messages.

//SYSIN DD
defines the input to BDTTQBCH.

BUILD
is the control statement that formats the checkpoint and bit-map data sets. It
can have two parameters:

,SYSID=node-name
identifies the BDT node that will read the TQI checkpoint data set.
node-name must match the name on one of the following SYSID
initialization statement parameters:
v The NAME parameter if the BDT subsystem has a file-to-file node,

without or in addition to a SNA NJE node
v The NJENAME parameter if the BDT subsystem has only a SNA NJE

node.

This parameter is required. The example uses SYSA1.

,RECORDS=nnnn
defines the number of records that are to be created on the TQI checkpoint
data set. The number of records corresponds to the maximum number of
requests (commands and file-to-file transactions) that the data set can store.
nnnn must be a decimal number from 1 to 5000. If you omit this parameter,
as many records are created (up to a maximum of 5000) as the allocated
space allows. The example omits this parameter.

//TQIMSG EXEC
identifies BDTTQBCH as the program to be executed.

//MESSAGE DD
defines the message data set that is to be formatted. The data set name must
be the one you specified when you allocated the data set on page “Step 7.
Allocate Message Data Sets” on page 32.

FORMAT
is the control statement that formats the message data set. It requires two
parameters:

,SYSID=node-name
identifies the BDT node that will write messages to the message data set.

36 z/OS BDT Installation

node-name must match the node name on the SYSID parameter of the
BUILD control statement (above). This parameter is required. The example
uses SYSA1.

,SYSNAME=system-name
identifies the MVS system that contains the BDT node identified by
node-name. system-name must match the SYSNAME parameter that has been
specified for BDT in an IEASYSxx member of SYS1.PARMLIB (as described
on page “Step 2. Specify MVS System Parameters—SYS1.PARMLIB
Member IEASYSxx” on page 19). This parameter is required. The example
uses XXXXXXXX.

Certain types of errors, such as programming errors in user-written exit routines,
can prevent BDT from reading the checkpoint data set. Permanent data errors on
the checkpoint data set may also cause this problem. The only way to correct the
problem is to reformat the checkpoint and bit-map data sets. After reformatting the
data sets you must restart TQI and BDT. If you determine that an exit routine
caused the problem, you should either fix the routine or disable it before doing the
restart. Transactions that were on the checkpoint data set when the problem
occurred are lost. If a user still wishes to execute one of these transactions, the user
must resubmit the transaction.

Chapter 6. Formatting TQI Data Sets 37

38 z/OS BDT Installation

Chapter 7. Creating a BDT Initialization Stream

This chapter describes the initialization statements (which make up an initialization
stream) that you must put into the data set you allocated in “Step 1. Allocate a
Data Set for the BDT Initialization Stream” on page 27. The initialization stream is
run when the operator starts BDT. It initializes the BDT address space. This chapter
describes:
v The number of initialization streams you should have.
v The IBM-supplied initialization streams in SYS1.SBDTSAMP.
v The rules for coding initialization statements.
v The format of each initialization statement. The statements are presented in

alphabetic order (for easy reference), not in the order in which they must appear
in the initialization stream. (“Rules for coding initialization statements” on page
42 shows the required order.)

v Initialization statement parameters that the operator can override.

Many initialization statement parameters must be matched with MVS parameters,
VTAM parameters, and other BDT parameters. To get an overall picture of these
relationships, refer to Appendix A, “Parameter map,” on page 181.

How Many Initialization Streams Should You Have?
You will probably want to have more than one initialization stream. If several
streams are available then the operator, by warm starting BDT, can easily change
the network configuration or select different options.

If your BDT system has both file-to-file and SNA NJE nodes you do not need
separate initialization streams for each. Both nodes exist in one BDT address space,
so only one initialization stream is needed.

The IBM-Supplied Initialization Streams
You can code your own initialization statements from scratch or you can modify
the ones in SYS1.SBDTSAMP. Regardless of the method you choose, follow the
rules and formats presented in this chapter.

The sample initialization streams in SYS1.SBDTSAMP are shown in Figure 19 on
page 40, Figure 20 on page 41, and Figure 21 on page 42.

© Copyright IBM Corp. 1986, 2013 39

CELLPOOL,ID=CSRB,CNUM=256,SCNUM=256,MAXET=1,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=DCQE,CNUM=10,SCNUM=5,MAXET=5,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=FCT,CNUM=51,SCNUM=30,MAXET=8,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=ICMB,CNUM=15,SCNUM=15,MAXET=5,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=IFC,CNUM=48,SCNUM=30,MAXET=6,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=JCTB,CNUM=112,SCNUM=112,MAXET=8,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=JML,CNUM=6,SCNUM=6,MAXET=15,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=OCMB,CNUM=80,SCNUM=64,MAXET=4,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=SAVE,CNUM=128,SCNUM=128,MAXET=5,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=SICA,CNUM=16,PGRLSE=YES
CELLPOOL,ID=TQCP,CNUM=60,SCNUM=120,MAXET=4,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=TQE,CNUM=113,SCNUM=113,MAXET=2,AUTODEL=YES,PGRLSE=YES

DYNALLOC,DDN=GMJDLIB,DSN=SYS1.GMJD,UNIT=3380,VOLSER=BDTDRV

OPTIONS,JOBNO=(1,100,0),SYSLOG=(JES3,PRINT), X
SYSMSG=YES,WANTDUMP=ASK,JES3=YES

ENDRBAM

SYSID,NJENAME=SYSA1,APPLID=FTFAPPL1

BDTNODE,N=SYSA1,LU=4,BUFSZ=1024,BUFNO=2
BDTNODE,N=SYSA2,LU=8,BUFSZ=256,BUFNO=10,CKPT=100,CS=(NJEDUP,REPDUP), X
APPL=FTFAPPL2
BDTNODE,N=SYSA3,LU=8,BUFSZ=1024,BUFNO=10,CS=NJEDUP,T=LOCAL, X
APPL=FTFAPPL3

SNABUF,SIZE=1024,PRI=80,SEC=(25,3),AUTODEL=YES
SNABUF,SIZE=256,PRI=100,SEC=(100,24),AUTODEL=YES

ENDINIT

Figure 19. Sample BDT File-to-File Initialization Stream. It is contained in SYS1.SBDTSAMP member BDT$FTF. Not
all comment lines are shown.

40 z/OS BDT Installation

CELLPOOL,ID=CSRB,CNUM=256,SCNUM=256,MAXET=1,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=DCQE,CNUM=10,SCNUM=5,MAXET=5,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=FCT,CNUM=51,SCNUM=30,MAXET=8,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=ICMB,CNUM=15,SCNUM=15,MAXET=5,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=IFC,CNUM=48,SCNUM=30,MAXET=6,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=IFCN,CNUM=113,SCNUM=113,MAXET=3,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=JCTB,CNUM=112,SCNUM=112,MAXET=8,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=JML,CNUM=6,SCNUM=6,MAXET=15,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=OCMB,CNUM=80,SCNUM=64,MAXET=4,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=SAVE,CNUM=128,SCNUM=128,MAXET=5,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=SICA,CNUM=16,PGRLSE=YES
CELLPOOL,ID=TQCP,CNUM=60,SCNUM=120,MAXET=4,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=TQE,CNUM=113,SCNUM=113,MAXET=2,AUTODEL=YES,PGRLSE=YES

OPTIONS,JOBNO=(1,100,0),SYSLOG=(JES3,PRINT), X
SYSMSG=YES,WANTDUMP=ASK,JES3=YES

ENDRBAM

SYSID,NJENAME=SYSA1N,NJEAPPL=NJEAPPL1

BDTNODE,N=SYSA2N,LU=9,BUFSZ=1024,BUFNO=8,TYPE=NJE,APPL=NJEAPPL2
BDTNODE,N=SYSA3N,LU=9,BUFSZ=1024,BUFNO=8,TYPE=NJE,APPL=NJEAPPL3

SNABUF,SIZE=1024,PRI=80,SEC=(25,3),AUTODEL=YES

ENDINIT

Not all comment lines are shown.
Figure 20. Sample BDT SNA NJE Initialization Stream (for a JES3 System). It is contained in SYS1.SBDTSAMP
member BDT$NJE. Not all comment lines are shown.

Chapter 7. Creating a BDT Initialization Stream 41

Rules for coding initialization statements
The initialization statements must appear in the following order:

Order Statement Optional or Required Where Statement Is Described

Anywhere Comment Optional “*—Place Comments in the Initialization Stream” on
page 43

First CELLPOOL Required “CELLPOOL—Allocate Cell Pools” on page 53

Second DYNALLOC Optional “DYNALLOC—Dynamically Allocate BDT Data Sets”
on page 58

Third OPTIONS Optional “OPTIONS—Define Operating Characteristics of the
BDT Subsystem” on page 60

Fourth ENDRBAM Required “ENDRBAM—Mark the End of Definitions So Far”
on page 60

CELLPOOL,ID=CSRB,CNUM=256,SCNUM=256,MAXET=1,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=DCQE,CNUM=10,SCNUM=5,MAXET=5,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=FCT,CNUM=51,SCNUM=30,MAXET=8,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=ICMB,CNUM=15,SCNUM=15,MAXET=5,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=IFC,CNUM=48,SCNUM=30,MAXET=6,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=IFCN,CNUM=113,SCNUM=113,MAXET=3,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=JCTB,CNUM=112,SCNUM=112,MAXET=8,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=JML,CNUM=6,SCNUM=6,MAXET=15,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=OCMB,CNUM=80,SCNUM=64,MAXET=4,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=SAVE,CNUM=128,SCNUM=128,MAXET=5,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=SICA,CNUM=16,PGRLSE=YES
CELLPOOL,ID=TQCP,CNUM=60,SCNUM=120,MAXET=4,AUTODEL=YES,PGRLSE=YES
CELLPOOL,ID=TQE,CNUM=113,SCNUM=113,MAXET=2,AUTODEL=YES,PGRLSE=YES

DYNALLOC,DDN=GMJDLIB,DSN=SYS1.GMJD,UNIT=3380,VOLSER=BDTDRV

OPTIONS,JOBNO=(1,100,0),SYSLOG=(JES3,PRINT), X
SYSMSG=YES,WANTDUMP=ASK,JES3=YES

ENDRBAM

SYSID,NAME=SYSA1,APPLID=FTFAPPL1,NJENAME=SYSA1N,NJEAPPL=NJEAPPL1

BDTNODE,N=SYSA1,LU=4,BUFSZ=1024,BUFNO=2
BDTNODE,N=SYSA2,LU=8,BUFSZ=256,BUFNO=10,CKPT=100,CS=(NJEDUP,REPDUP), X
APPL=FTFAPPL2
BDTNODE,N=SYSA2N,LU=9,BUFSZ=492,BUFNO=8,TYPE=NJE,APPL=NJEAPPL2
BDTNODE,N=SYSA3,LU=8,BUFSZ=1024,BUFNO=10,CS=NJEDUP,T=LOCAL, X
APPL=FTFAPPL3
BDTNODE,N=SYSA3N,LU=9,BUFSZ=492,BUFNO=8,TYPE=NJE,APPL=NJEAPPL3

SNABUF,SIZE=1024,PRI=80,SEC=(25,3),AUTODEL=YES
SNABUF,SIZE=492,PRI=80,SEC=(80,5),AUTODEL=YES
SNABUF,SIZE=256,PRI=100,SEC=(100,24),AUTODEL=YES

ENDINIT

Not all comment lines are shown.
Figure 21. Sample BDT File-to-File and SNA NJE Initialization Stream (for a JES3 System). It is contained in
SYS1.SBDTSAMP member BDT$MIX. Not all comment lines are shown.

42 z/OS BDT Installation

Order Statement Optional or Required Where Statement Is Described

Next, in any order
BDTNODE
SNABUF
SYSID

Required
Required
Required

“BDTNODE—Define Characteristics of a Home
File-to-File Node,” “BDTNODE—Define Session
Characteristics between Home and Remote Nodes”
on page 45

“SNABUF—Define Data Buffers” on page 67

“SYSID—Name the Home Node” on page 69

Last ENDINIT Required “ENDINIT—End the Initialization Stream” on page 60

Note: In this chapter the initialization statements are presented in alphabetic order
(for easy reference), not in the order required in the initialization stream.

The first blank character that BDT encounters on a statement marks the end of the
parameters on that statement. BDT treats the rest of the statement as a comment.

All initialization statements may be continued. To continue a statement:
1. Break the statement after the comma following a complete parameter.
2. Code a nonblank character in column 72.
3. Start the next statement (the continuation statement) in column 1.

BDT logs each initialization statement that it reads. If BDT detects an error in a
statement it also logs the error message following the statement. BDT logs this
information in the data set defined by the BDTOUT DD statement in the BDT start
procedure. When an error occurs, BDT attempts to continue with initialization.

*—Place Comments in the Initialization Stream
You may use this statement to place comments in the initialization stream.

How Many Allowed: 0-unlimited.

How Many Required: None.

Placement: Anywhere in the initialization stream.

Comment Statement

*comment

* identifies this statement as a comment statement.

comment
is the text of the comment. The maximum length is 70 characters.

BDTNODE—Define Characteristics of a Home File-to-File Node
This form of the BDTNODE statement specifies information about buffers and
VLUs for intra-node file transfers within a home file-to-file node. In intra-node
communication, only the home node (the node you are at) takes part. That is, the
data set being copied and the copy are directly accessible to the home node.

This form of the BDTNODE statement is not used for SNA NJE nodes.

Chapter 7. Creating a BDT Initialization Stream 43

How Many Allowed: 1-100 BDTNODE statements (home and remote combined)
per initialization stream.

How Many Required: One BDTNODE statement is required to define the home
node if it is a file-to-file node.

Placement: Between the ENDRBAM and ENDINIT statements, before or after the
SNABUF and SYSID statements.

BDTNODE Statement for a Home File-to-File Node

Defaults:

BDTNODE,N=home-node-name

[,BUFNO=num-buffs]
2

[,BUFSZ=buff-size]
1024

[,LU=num-vlus]
7

N=home-node-name
is the name of the home file-to-file node. Operators and users will use this
name to identify the home node in commands and file-to-file transactions. BDT
will use the name in messages to identify the home node.

Specified As: One to eight alphanumeric characters, the first of which must be
alphabetic.

Default: None.

Related Parameters: home-node-name must match the name on the NAME
parameter of the SYSID statement. For JES3 installations, home-node-name and
the name on the NAME parameter of the JES3 NJERMT statement must specify
different names.

[BUFNO=num-buffs]
defines the maximum number of data buffers that are available for intra-node
communication at a home file-to-file node.

Specified As: A decimal number from 1 to 255.

Default: 2.

[BUFSZ=buff-size]
defines the data buffer size (in bytes) that is to be used for intra-node
communication at a home file-to-file node.

Specified As: A number of bytes. It may be a decimal number from 0 to 4096.

Default: 1024.

Related Parameters: buff-size must not exceed the largest SIZE parameter
specified on a SNABUF statement. If it does, initialization will terminate.

[LU=num-vlus]
defines the maximum number of virtual logical units (VLUs) that are available
for intra-node communication at a home file-to-file node.

Specified As: A decimal number from 1 to 255. The first VLU (the
communication VLU) transfers control information and the remaining VLUs
(up to 254) transfer data sets.

BDTNODE (Home)

44 z/OS BDT Installation

Default: 7.

BDTNODE—Define Session Characteristics between Home and Remote
Nodes

This form of the BDTNODE statement defines characteristics of the communication
sessions between the home node (the node you are at) and remote nodes (nodes at
other BDT subsystems). The BDTNODE statement can define a pacing rate, a
checkpoint interval, data compression type, the use of automatic session startup
and restart, the number of VLUs available, and other characteristics.

This form of the BDTNODE statement may be used for file-to-file or SNA NJE
nodes.

How Many Allowed: 1-100 BDTNODE statements (home and remote combined)
per initialization stream.

How Many Required: One or more BDTNODE statements are required to define
sessions with remote nodes (one BDTNODE statement for each remote file-to-file
or SNA NJE node).

Placement: Between the ENDRBAM and ENDINIT statements, before or after the
SNABUF and SYSID statements.

BDTNODE Statement for Sessions with Remote Nodes

Defaults:

BDTNODE,N=remote-node-name,APPL=lu-name

[,A={YES|NO}]
NO

[,ASR={YES|NO|restart- limit}]
YES

[,BUFNO=num-buffs]
2

[,BUFSZ=buff-size]
1024

[,CKPT=K-bytes]
40

[,CS={NJEDUP|REPDUP|(NJEDUP,REPDUP)}
No compress

[,L=logmode]
Standard

[,LU=({num-vlus}, {fence-from},{fence-to})]

[,PIN=receive-password]
8 blanks

[,POUT=send-password]
8 blanks

[,T=LOCAL]
Remote local

BDTNODE (Home)

Chapter 7. Creating a BDT Initialization Stream 45

[,TYPE={FTF|NJE}]
FTF

N=remote-node-name
specifies a remote file-to-file or SNA NJE node. You must name each remote
node that will establish a session with the home node. Users and operators at
the home node will use this name to direct commands, file-to-file transactions,
and SNA NJE jobs to the remote node. You must use a different name for each
remote node. No remote node may have the same name as your home node.

Specified As: One to eight alphanumeric characters, the first of which must be
alphabetic.

Default: None.

Related Parameters: For SNA NJE installations, be sure that remote-node-name is
the same as the name specified on the NAME parameter of the corresponding
JES3 NJERMT statement. Do not use the names ALL, NJE, or FTF.

APPL=lu-name
is the name that VTAM uses for the remote node being defined by this
BDTNODE statement.

Specified As: One to eight alphanumeric characters.

Default: None.

Related Parameters: lu-name must match the name (label) of the VTAM
CDRSC definition statement at the home node and the name (label) of the
VTAM APPL definition statement at the remote node.

[A={YES|NO}]
defines whether BDT at the home node is to automatically start a session with
BDT at the remote node named on this statement.

YES
instructs BDT to automatically start a session with the remote node each
time the operator at the home node starts BDT and activates the BDT SNA
manager.

NO makes the operator responsible for starting the session.

Default: NO.

[ASR={YES|NO|restart-limit}]
defines whether BDT automatically tries to restart a failed session with the
remote node. BDT can try to restart failing sessions with the remote node with
the exception of sessions that failed because they were canceled by the BDT
CANCEL command, and sessions that could not start because of a negotiable
bind disagreement between the home node and the remote node.

YES
requests that BDT try automatic session restart an unlimited number of
times.

NO requests that BDT not attempt automatic session restart.

restart-limit
requests that BDT try automatic restart up to restart-limit number of times
before giving up. restart-limit may be a decimal number from 1 to 32767.

Default: YES.

BDTNODE (Remote)

46 z/OS BDT Installation

Related Parameters: The ASRTIME parameter of the OPTIONS statement
specifies the time delay between restart attempts. This time delay applies to all
sessions for which ASR is specified in the BDTNODE statement.

[BUFNO=num-buffs]
defines the pacing rate for communication that takes place between the remote
node and the home node.

Each time the home node sends data to a remote node, it does so by sending
the data in a data buffer. The home node retains a copy of this buffer until the
remote node acknowledges receipt of the buffer. If a node has several VLUs
actively sending data, each VLU could have sent one or more buffers for which
an acknowledgment has not been received. Each of these buffers will occupy
virtual storage until the acknowledgment is received.

The pacing rate defines the maximum number of data buffers that each home
node VLU can send to the remote node before the remote node must
acknowledge receipt of the buffer. If a VLU has sent the maximum number of
buffers without receiving an acknowledgment, the VLU stops sending data
buffers. The VLU resumes sending data buffers only after it receives the proper
acknowledgment from the remote node.

The pacing rate that you define at your node may be different from the pacing
rate defined at the remote node. If this happens, BDT uses the slower pacing
rate (the smaller num-buffs value).

When selecting a pacing rate, you must consider the amount of virtual storage
required for the buffers versus BDT’s performance. Initially, you should start
with a pacing rate of 2 (the default). You should increase this value only if
doing so improves the data throughput of BDT.

Specified As: A decimal number from 1 to 255.

Default: 2.

Related Parameters: If num-buffs exceeds the number of buffers specified on
the SNABUF statement, BDT abend BD615 could occur. For example, if you
defined BUFNO=30 on the BDTNODE statement and PRI=10,SEC=0 on the
SNABUF statement, and if the 10 primary buffers were sent with no pacing
response, the buffer pool could become exhausted.

File-to-File Consideration: For inbound VLUs, BDT receives and queues up to
the value of num-buffs because that is the maximum that can be sent prior to
an acknowledgment. For outbound VLUs, BDT allows up to the value of
num-buffs+1 SNA buffers to be queued for transmission for each VLU, and
transmits up to the value of num-buffs until an acknowledgment is received.

As an example of the requirements for outbound SNA buffers, consider a
connection that has five VLUs defined—one control VLU and four data
transfer VLUs (two outbound and two inbound)—and BUFNO=3. Then six is
the maximum number of SNA buffers that can be sent by each side of the
session before receiving acknowledgment from the other side.

A slow receiver generally results in an accumulation of SNA buffers at the
receiving side of the session, because the SNA buffers used at the sending side
are released when the VTAM SEND completes, not when the BDT
acknowledgment is received from the receiving VLU. The SNA buffers at the
receiving side remain allocated and in use until the receiving side actually
processes the data. Therefore, for the above example, and with a slow receiver,
up to 15 SNA buffers may be in use at any given time. This includes up to

BDTNODE (Remote)

Chapter 7. Creating a BDT Initialization Stream 47

eight outbound buffers (even though a maximum of six can be sent) as well as
six inbound buffers and a control VLU buffer.

SNA NJE Consideration: For SNA NJE nodes, the communication VLU sends
and receives data, and half of the data transfer VLUs send data and half
receive data. So the total number of SNA buffers this session can use is
(((num-buffs/2)+1) x (num-vlus+1)), where num-vlus is the number of VLUs
specified on the LU parameter of this BDTNODE statement.

[BUFSZ=buff-size]
defines the data buffer size (in bytes) that is to be used for communication
between the remote node and the home node. These buffers are allocated from
the pool of buffers that you define on one or more SNABUF statements.

Specified As: A number of bytes. For file-to-file nodes, buff-size may be a
decimal number from 0 to 4096. For SNA NJE nodes, buff-size may be a
decimal number from 300 to 4096.

Default: 1024.

Related Parameters: buff-size must not exceed the largest SIZE parameter
specified on a SNABUF statement. If it does, initialization will terminate.

When selecting a buff-size value, you should match the value to the speed of
the communication line. For slow speed lines, use a buff-size value of 512 bytes
or less. Increase the size only for high speed lines or if a larger size improves
data throughput. A buff-size value that is too large may delay communication
traffic and increase the use of virtual storage.

The amount of available space within a SNA buffer where BDT can store data
for file transfers is reduced by one byte for each negotiated VLU present on the
connection. This space is used to transfer BDT acknowledgments. The
negotiated VLU corresponds to the smaller of the two values specified in the
LU parameter of the BDTNODE statements for the two nodes in session.

In addition, a small amount of space within the SNA buffer is used for control
information on each transfer, and is not available for transferring user file data.
The reserved space varies with the logical record size being transferred.

In general, to calculate the amount of space available for transfer of file data
within a SNA buffer, reduce the value of buff-size by 3, and subtract one byte
for each negotiated VLU and two bytes for each logical record contained
within the buffer. The above formula is an average, and the control information
may vary somewhat at the start of a file transfer.

For instance, if a given connection has 30 VLUs defined at both nodes, buff-size
is 256 bytes, and the length of the logical records is 80, the amount of file
transfer data that could fit within each SNA buffer is 217, or 256 – (3+(1x30)) =
223 – (3 logical records x 2) = 217.

Note the following for cross-domain and channel-to-channel transmission:
v For cross-domain transmission: The value obtained by adding buff-size plus

the length of the VTAM path information unit (PIU) header must be less than
or equal to the value specified on the MAXDATA parameter of the VTAM
PCCU macro for the network control program (NCP).
The computation of (MAXBFRU x UNITSZ), which are the two parameters
on the NCP HOST macro, must be equal to or greater than the largest PIU
that can flow in the network. Therefore, an installation must ensure that,
when specifying these values for the NCP, the product of the two is at least
as large as the largest buff-size + space for the TH and RH portions of the
PIU, for any connection that may go through that NCP.

BDTNODE (Remote)

48 z/OS BDT Installation

The MAXBFRU and UNITSZ operands on the NCP HOST macro are used in
other VTAM parameter calculations (such as IOBUF size and XPANPT for
the IOBUF pool). Consult VTAM publications for additional information.

v For channel-to-channel transmission: buff-size must be less than or equal to
the value obtained by multiplying the MAXBUFRU parameter on the
GROUP statement for a CTC link group times the size of the VTAM I/O
buffer.

[CKPT=K-bytes] (file-to-file nodes only)
Periodically, BDT takes a checkpoint of sequential data set transfers. If the
transfer fails and has to be restarted, the checkpoint information that BDT
records enables BDT to restart the transfer from the last checkpoint. If the
checkpoint were not taken, BDT would have to retransfer the entire data set.
K-bytes defines how many 1K-byte blocks should be transferred before BDT
checkpoints sequential data set transfers. (For a partitioned data set, BDT
automatically takes a checkpoint after copying each member. You need not take
any action.)

Specified As: A decimal number from 8 to 32767, indicating 1K-byte blocks of
uncompressed data before the transfer.

Default: 40.

When you select a checkpoint frequency, try to match the frequency to the
speed of the communication link. For slower speed links, you should take
checkpoints more frequently than you take them for faster links. Each time
BDT takes a checkpoint, communication takes place between the local node
and the global node. Therefore, frequent checkpoints on fast links could create
excessive communication traffic and adversely affect the performance of the
link.

[CS={NJEDUP|REPDUP|(NJEDUP,REPDU P)}] (file-to-file nodes only)
defines the type of data compression, if any, that the home node will allow for
file-to-file sessions with the remote node specified on this BDTNODE
statement. Data compression removes duplicate strings of characters from data
sets to be transferred. The character strings are removed before the data sets
are transferred.

NJEDUP
requests compression of 3 to 63 duplicate characters (2 to 63 if the
characters are blanks).

REPDUP
requests compression of 3 to 127 duplicate characters.

(NJEDUP,REPDUP)
requests compression of 3 to 127 duplicate characters (2 to 127 if the
characters are blanks).

Default: If the CS parameter is not specified, compression does not take place.

The actual compression that takes place is determined by the CS parameter
specified at this node, the CS parameter specified at the partner node, and the
CSOPT transaction parameter specified by the user, according to the following
table.

BDTNODE (Remote)

Chapter 7. Creating a BDT Initialization Stream 49

Table 3. CSOPT Transaction Parameters

CS Parameter
Specified at the Home
Node

CS Parameter
Specified at the
Remote Node

CSOPT
Transaction
Parameter
Specified by the
User Compression Used

(NJEDUP,REPDUP) (NJEDUP,REPDUP) NJEDUP NJEDUP

(NJEDUP,REPDUP) (NJEDUP,REPDUP) REPDUP REPDUP

(NJEDUP,REPDUP) (NJEDUP,REPDUP) None None

NJEDUP (NJEDUP,REPDUP) NJEDUP NJEDUP

NJEDUP (NJEDUP,REPDUP) REPDUP None

NJEDUP (NJEDUP,REPDUP) None None

REPDUP (NJEDUP,REPDUP) NJEDUP None

REPDUP (NJEDUP,REPDUP) REPDUP REPDUP

REPDUP (NJEDUP,REPDUP) None None

None (NJEDUP,REPDUP) NJEDUP None

None (NJEDUP,REPDUP) REPDUP None

None (NJEDUP,REPDUP) None None

REPDUP NJEDUP NJEDUP None

REPDUP NJEDUP REPDUP None

REPDUP NJEDUP None None

[L=logmode]
identifies the entry in the logmode table that VTAM is to use when the remote
node named on this BDTNODE statement and the home node try to establish a
session.

Specified As: One to eight alphanumeric characters. The first character must
be alphabetic.

Default: If this parameter is not specified, VTAM uses the first entry from the
standard IBM-supplied logmode table.

Related Parameters: Before you code logmode, ensure that the named entry has
been defined in the ACF/VTAM logmode table associated with the VTAM
APPL definition statement at the node defined by this BDTNODE statement.

[LU=({num-vlus},{fence-from},{fence- to})]
defines the number of virtual logical units (VLUs) that are available for
communication between the remote node and the home node. The number of
VLUs determine how many concurrent data transfers can take place between
the remote node and the home node. This parameter also defines, for
file-to-file transfers, how these VLUs are to be fenced.

num-vlus
is the total number of VLUs that are to be available. The first VLU (the
communication VLU) always transfers control information. The remaining
VLUs transfer data.

For File-to-File Nodes, Specified As: A decimal number from 1 to 255. The
first VLU transfers control information and the remaining VLUs (up to 254)
transfer data sets.

Default for File-to-File Nodes: 7.

BDTNODE (Remote)

50 z/OS BDT Installation

For SNA NJE Nodes, Specified As: 5, 9, 13, 17, 21, 25, or 29. The first VLU
transfers control information and the remaining VLUs (up to 28, divided
into groups of four) transfer jobs and SYSOUT. Each group has one VLU
for handling jobs received, one for jobs sent, one for SYSOUT received, and
one for SYSOUT sent. See Table 4 for a summary of SNA NJE VLU
allocation.

Default for SNA NJE Nodes: 5.

Table 4. Number of SNA NJE VLUs for Each num-vlus Value

num-vlus
Value

Number of
Communication
VLUs

Number of
VLUs for
Jobs
Received

Number of
VLUs for
Jobs Sent

Number of
VLUs for
SYSOUT
Received

Number of
VLUs for
SYSOUT
Sent

5 1 1 1 1 1

9 1 2 2 2 2

13 1 3 3 3 3

17 1 4 4 4 4

21 1 5 5 5 5

25 1 6 6 6 6

29 1 7 7 7 7

When you allocate VLUs, keep in mind that:
v It may take only a few active VLUs to saturate the capacity of a

communication line.
v If the total number of VLUs active across all sessions is too large, the

storage capacity of BDT private virtual storage may be exceeded.
v Transferring a data set that has a large block size uses more private

virtual storage than does transferring a data set of a smaller block size.

fence-from (file-to-file nodes only)
fence-to (file-to-file nodes only)

Many file-to-file transactions, each wishing to transfer data in the same
direction, could enter the system. These transactions could monopolize the
VLUs for some time. During this time, other transactions wishing to
transfer data in the other direction would be unable to do so. Whether this
situation would ever occur at your node depends on the number and
characteristics of the transactions that users submit. You can prevent this
situation from happening, however, by fencing VLUs.

Fencing is a way of reserving some VLUs for transactions that will transfer
data in a specific direction. You can fence VLUs for transactions that will
send data to another node; you can also fence VLUs for transactions that
will receive data from another node.

For example, assume that you define nine VLUs and that you fence four in
the “from” direction and two in the “to” direction. BDT may pair the four
“from” VLUs only with transactions that are to receive data from the
remote node and the two “to” VLUs only with transactions that will send
data to the remote node. BDT may pair the remaining VLUs with any
transaction.

You may fence VLUs only for a remote node that is local with respect to
the home node. The remote node is local if this BDTNODE statement does
not contain the T=LOCAL parameter.

BDTNODE (Remote)

Chapter 7. Creating a BDT Initialization Stream 51

fence-from defines the number of VLUs that may be used only to receive
data from the remote node. fence-to defines the number of VLUs that may
be used only to send data to the remote node.

Specified As: Each parameter may be a decimal number from 0 to 254.

Default: 0.

The sum of the values of fence-from and fence-to must be at least 1 less than
the value of num-vlus. This is because BDT uses one VLU to pass control
information and this VLU is unavailable for data transfers.

[PIN=receive-password]
[POUT=send-password]

For each remote node you may define a pair of passwords. When the home
node and the remote node try to establish a session, BDT checks the
passwords. If either the home node or the remote node has failed to provide
the correct password, BDT will not allow the session.

receive-password is the password that the home node expects to receive from the
remote node. send-password is the password that the remote node expects to
receive from the home node.

Specified As: Each parameter may be one to eight alphanumeric characters.

Default: A character string of eight blanks (hex 4040404040404040).

[T=LOCAL] (file-to-file nodes only)
defines the global-local relationship between the home file-to-file node and a
remote file-to-file node.

The global-local relationship determines which of the two nodes schedules and
manages work that takes place between the nodes. Before you decide which
node should be global, consider that:
v All transactions are queued and scheduled at the global node.
v The operator at the global node generally needs to be more experienced than

the operator at the local node.

A given node may be global in its relationship with one remote node and local
in its relationship with a different remote node.

In a JES3 complex, the BDT global-local relationship has no relationship to the
JES3 global-local relationship.

See “Step 1. Plan Global and Local Relationships (File-to-File Customers Only)”
on page 5 for more information.

Specified As: T=LOCAL if the home file-to-file node (the node at which this
BDTNODE statement will execute) is local with respect to the remote file-to-file
node (the node defined by this BDTNODE statement), code T=LOCAL. If the
home file-to-file node is global with respect to the remote file-to-file node, omit
this parameter.

Default: If you omit this parameter from a file-to-file initialization stream, the
home node is defined as global with respect to this remote node. You should
omit this parameter from a SNA NJE initialization stream, although if you
specify it will be ignored.

Related Parameters: T=LOCAL and fencing (specified by the LU parameter)
cannot be specified on the same BDTNODE statement; fencing is not allowed
from a local node to a global node.

BDTNODE (Remote)

52 z/OS BDT Installation

You must ensure that you and the system programmer at the remote node
define the same global-local relationship. If you define your node as the global
node, the system programmer at the remote node must also define your node
as the global node; if you define your node as the local node, the other system
programmer must do likewise. If you and the other system programmer fail to
define the same global-local relationship, the home node and the remote node
will be unable to establish a session.

[TYPE={FTF|NJE}]
specifies the type of data transfers that may occur between the home node and
the remote node specified on this BDTNODE statement.

FTF
specifies that the home and remote BDT nodes may send and receive only
data sets. This parameter corresponds to the BDT File-to-File feature.

NJE
specifies that the home and remote BDT nodes may send and receive only
SNA NJE jobs and SYSOUT. This parameter corresponds to the BDT SNA
NJE feature for JES3 installations.

Default: FTF.

CELLPOOL—Allocate Cell Pools
A cell (sometimes called a storage cell) is another name for the main storage that is
defined by a CELLPOOL statement. A cell pool is a group of cells that are related
by the fact that BDT uses them for the same purpose.

Figure 22 on page 54 shows the structure of a cell pool. It shows that:
v Cells are divided into groups called extents. There are primary extents and

secondary extents.
v Each cell pool must have one primary extent and may optionally have up to 99

secondary extents.
v Each extent may contain up to 4096 cells.
v All cells in a pool are the same size. The sizes are listed in Table 5 on page 57.
v The minimum number of cells in a pool is one. The maximum number is 409600

(4096 cells in each extent x 100 extents).

How Many Allowed: 12 or 13 per initialization stream, as described below.

How Many Required: A BDT subsystem with only a file-to-file node requires 12
different cell pools (all except the one with ID=IFCN). A subsystem with only a
SNA NJE node requires 12 different cell pools (all except the one with ID=DCQE).
A subsystem with both a file-to-file node and a SNA NJE node, requires all 13 cell
pools unless:
v The file-to-file feature is not present in BDTLIB. In this case, the cell pool with

ID=DCQE is not required.
v The SNA NJE feature is not present in BDTLIB. In this case, the cell pool with

ID=IFCN is not required.

BDTNODE (Remote)

Chapter 7. Creating a BDT Initialization Stream 53

Each cell pool has a unique ID and must be defined on a separate CELLPOOL
statement. Table 5 on page 57 lists the IDs of the 13 possible cell pools.

Placement: Except for comment statements, which may appear anywhere if used,
CELLPOOL statements must be first in an initialization stream. You may code the
CELLPOOL statements in any order.

After you have defined your cell pools and have a test system running, you can
use the INQUIRY,C command to monitor BDT’s use of cell pools. (For a
description of this command see z/OS BDT Commands.) This command provides a
report about the amount of storage allocated and the amount of storage used in
each cell pool. With this information, you will be able to decide whether you
allocated too little or too much cell pool storage. You will then be able to adjust the
cell pool allocations accordingly.

CELLPOOL Statement

Defaults:

CELLPOOL,ID=cell-id,CNUM=num-cells

[,AUTODEL={YES|NO}]
NO

[,MAXET=max-extents]
0

[,PGRLSE={YES|NO}]
YES

[,SCNUM=num-cells]
4

[,SPAN={YES|NO}]
NO

ID=cell-id
is the identifier of the cell.

Specified As: One of the IDs listed in Table 5 on page 57.

Default: None.

Primary
extent

Cell 1 Cell 1

Secondary
extend 1
(optional)

Secondary
extend 99
(optional)

Cell 1

Cell 4096
(maximum)

Cell 4096
(maximum)

Cell 4096
(maximum)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

Figure 22. Cell pool. The size of each cell is fixed, depending on what the cell pool is used for.

CELLPOOL

54 z/OS BDT Installation

CNUM=num-cells (pertains to primary extent)
is the minimum number of cells that BDT is to allocate for the primary extent.
There is one primary extent per cell pool and it exists for the life of the cell
pool. The primary extent may contain up to 4096 cells.

Specified As: A decimal number from 4 to 4096. See Table 5 on page 57 for
recommended initial values.

Default: None.

BDT allocates cell pool storage in full-page multiples. This means that BDT
may allocate more cells than you request on the CNUM parameter.

For example, if you code the following statement:
CELLPOOL,ID=CSRB,CNUM=30

360 bytes of storage are needed to satisfy your cell pool request, calculated as
follows:

BDT allocates one full page (4096 bytes) for the CSRB cell pool. Thus, the cell
pool will actually contain 341 cells:

[AUTODEL={YES|NO}] (pertains to secondary extents)
determines whether BDT deletes empty secondary extents.

YES
instructs BDT to delete empty secondary extents.

NO instructs BDT to keep empty secondary extents.

Default: NO.

Some cell pools will become very large as the demand for their storage
increases. When the demand for their storage decreases these same cell pools
will become much smaller. To conserve virtual storage, specify AUTODEL=YES
for these cell pools. The affected cell pools are: IFC, JCTB (if you request
resident JCTs on the JOBNO parameter of the OPTIONS statement), OCMB,
SAVE, and TQCP.

Note: The SICA cell pool does not use secondary extents. If you specify
AUTODEL for the SICA cell pool, the specification will be ignored.

[MAXET=max-extents] (pertains to secondary extents)
is the maximum number of secondary storage extents that BDT may allocate.
BDT allocates a secondary extent only after the primary extent or previously
allocated secondary extents are full. Like the primary extent, secondary extents
may contain up to 4096 cells.

Specified As: A decimal number from 0 to 99. See Table 5 on page 57 for
recommended initial values.

Default: 0.

30 (number of cells requested)
x 12 (size of one CSRB cell)

360 bytes

4096 (size of a page)
____________________________ = 341 cells

12 (size of a CSRB cell)

CELLPOOL

Chapter 7. Creating a BDT Initialization Stream 55

Related Parameters: If you specify MAXET you must also specify SCNUM.

Note: The SICA cell pool does not use secondary extents. If you specify
MAXET for the SICA cell pool, the specification will be ignored.

[PGRLSE={YES|NO}] (pertains to primary and secondary extents)
determines whether BDT releases empty real storage pages in the primary or
secondary extents. Page frames are removed from real storage as soon as BDT
finishes with them. But BDT will not release a page if any cell in that page is
in use. Freeing unused cell pool storage may reduce paging I/O operations for
unused cell pool pages.

YES
instructs BDT to release empty pages.

NO instructs BDT to keep empty pages.

Default: YES.

Related Parameters: If you code SPAN=YES, you must code PGRLSE=NO.

Another way to free cell pool storage is with the AUTODEL parameter.

[SCNUM=num-cells] (pertains to secondary extents)
is the number of cells that may be allocated to each secondary extent.

Specified As: A decimal number from 4 to 4096. See Table 5 on page 57 for
recommended initial values.

Default: 4.

Note: The SICA cell pool does not use secondary extents. If you specify
SCNUM for the SICA cell pool, the specification will be ignored.

[SPAN={YES|NO}] (pertains to primary and secondary extents)
determines whether cells may span page boundaries.

In deciding whether to allow cells to span page boundaries, consider the
amount of paging activity versus the amount of wasted virtual storage. If you
allow cells to span page boundaries, you increase the probability that a cell
will be split across two pages when a page is written to the page data set.
When a cell has been split because of paging, MVS may have to read both
pages into real storage before BDT can use the cell.

When you do not allow cells to cross page boundaries, you increase the
probability that virtual storage will be wasted. For example, a cell that is 1280
bytes long would not fit into a page that had 1000 bytes unused. If this
example were to occur, BDT would have to allocate the cell to the next full
page and 1000 bytes would be wasted.

YES
allows cells to span page boundaries.

NO does not allow cells to span page boundaries.

Default: NO.

Related Parameters: If you specify PGRLSE=YES (the default) you must
specify SPAN=NO (the default).

CELLPOOL

56 z/OS BDT Installation

Table 5. Information for Coding CELLPOOL Statements

Cell Pool ID (and
Name)

Subpool
from
Which
Allocated

Size of
Each
Cell (in
Bytes)

Number
of Cells
per Page

Recommended Initial Value

Allocation ConsiderationsCNUM SCNUM MAXET

CSRB (common
services request
block)

13 16 256 256 256 1 This is a low activity cell
pool. You should seldom
need to allocate more than
341 cells (one page).

DCQE (dynamic
application
program
checkpoint queue
element)

16 816 5 10 5 5 If you change the
checkpoint frequency or
change the speed of the
communication lines, you
should review the output of
the INQUIRY, C command
to determine if you need to
change the size of this cell
pool.

FCT (function
control table pool)

15 1364 3 51 30 8 This cell pool must contain
20 cells for BDT plus 1 cell
for each active transaction.

ICMB (input
console message
buffer)

12 260 15 15 15 5 This is usually a low
activity pool. Use may
increase during session
restart.

IFC (interfunction
communication)

19 816 5 48 30 6 This cell pool is volatile.
That is, for short periods of
time there may be a
demand for a large number
of cells. This type of
demand may occur, for
example, during a session
restart. After the restart
completes, the demand for
cells will decrease.

IFCN
(interfunction
communication
for NJE)

21 36 113 113 113 3 This cell pool is for SNA
NJE nodes only, not
file-to-file nodes.

JCTB (job control
table buffer)

14 256 16 112 112 8 If you do not request
resident JCTs, allocate one
cell for each active
transaction. If you do
request resident JCTs,
allocate one cell for each
active transaction and one
cell for each inactive (on the
BDT work queue)
transaction.

JML (job message
log buffer)

18 676 6 6 6 15 This is a low activity cell
pool. You should seldom
need to allocate more than
six cells (one page).

CELLPOOL

Chapter 7. Creating a BDT Initialization Stream 57

Table 5. Information for Coding CELLPOOL Statements (continued)

Cell Pool ID (and
Name)

Subpool
from
Which
Allocated

Size of
Each
Cell (in
Bytes)

Number
of Cells
per Page

Recommended Initial Value

Allocation ConsiderationsCNUM SCNUM MAXET

OCMB (output
console message
buffer)

11 256 16 80 64 4 The amount of space you
allocate will depend on the
number of INQUIRY
commands issued and on
the amount of output
generated.

SAVE (save area
pool)

10 128 32 128 128 5 This cell pool must contain
four to five cells per active
transaction.

SICA (scheduler
interface control
area)

230 256 16 16 Not used Not used This cell pool is used for
relatively short periods of
time. It does not use
secondary extents.

TQCP
(transaction
queuing cell pool)

20 68 60 60 120 4 This cell pool is volatile.
That is, for short periods of
time there may be a
demand for a large number
of cells. This type of
demand may occur, for
example, during a session
restart. After the restart
completes, the demand for
cells will decrease.

TQE (timer queue
element buffer
pool)

17 36 113 113 113 2 This is a low activity cell
pool. You should seldom
need to allocate more than
113 cells (one page).

DYNALLOC—Dynamically Allocate BDT Data Sets
Some of the data sets that must be allocated during BDT startup can be specified
using DYNALLOC statements in the initialization stream rather than using DD
statements in the BDT start procedure.

You may use DYNALLOC statements to allocate the data sets identified by the
following ddnames:
v BDTMxxxx—message data sets
v GMJDLIB—the system GMJD library data set.

You may not use DYNALLOC statements to allocate the data sets identified by the
following ddnames:
v BDTIN—the data set that contains the BDT initialization stream
v BDTOUT—the data set to which BDT writes initialization statements and

initialization messages
v BDSPOOL and CRSPOOL—the BDT work queue.

To allocate a data set using DYNALLOC, include a DYNALLOC statement for it in
the BDT initialization stream and do not include a DD statement for it in the BDT
start procedure.

CELLPOOL

58 z/OS BDT Installation

Do not confuse the use of DYNALLOC to allocate data sets to BDT during startup
with the allocations of new data sets to the system described in Chapter 5,
“Allocating BDT and TQI Data Sets,” on page 27.

How Many Allowed: 0-288 per initialization stream.

How Many Required: None.

Placement: After the CELLPOOL statements and before the OPTIONS statement. If
OPTIONS is not used, DYNALLOC must be placed before the ENDRBAM
statement.

DYNALLOC Statement

DYNALLOC,DDN=dd-name,DSN=ds-name,UNIT=device-type
[,VOLSER=serial-number]

DDN=dd-name
is the ddname that you want to assign to this allocation.

Specified As: dd-name must follow MVS conventions for ddnames.

Default: None.

DSN=ds-name
is the name of the data set that is to be allocated.

Specified As: ds-name must follow MVS conventions for data set names.

Default: None. You must specify this parameter if you are dynamically
allocating a data set. However, if you are dynamically allocating a unit record
device rather than a data set, this parameter does not apply.

UNIT=device-type
is the generic device type on which the data set resides.

Specified As: A device type such as 3380.

Default: None. You must specify this parameter if you are dynamically
allocating an uncataloged data set or a unit record device. However, if you are
dynamically allocating a cataloged data set, this parameter is optional.

[VOLSER=serial-number]
is the serial number of the volume on which the data set resides.

Specified As: serial-number must follow MVS naming conventions for volume
serial numbers.

Default: None. If you are dynamically allocating a cataloged data set, this
parameter is optional. If you are dynamically allocating an uncataloged data
set, this parameter is optional but using it ensures that the correct volume is
mounted. If you are dynamically allocating a unit record device, this parameter
does not apply.

DYNALLOC

Chapter 7. Creating a BDT Initialization Stream 59

ENDINIT—End the Initialization Stream
The ENDINIT statement marks the end of the initialization stream.

How Many Allowed: One per initialization stream.

How Many Required: One.

Placement: Last in the initialization stream.

ENDINIT Statement

ENDINIT

ENDRBAM—Mark the End of Definitions So Far
The ENDRBAM statement marks the end of the CELLPOOL, DYNALLOC, and
OPTIONS part of the initialization stream.

How Many Allowed: One per initialization stream.

How Many Required: One.

Placement: After the OPTIONS statement. If OPTIONS is not used, after the
DYNALLOC statement. If DYNALLOC is not used, after the CELLPOOL
statements.

ENDRBAM Statement

ENDRBAM

OPTIONS—Define Operating Characteristics of the BDT Subsystem
You can use the OPTIONS statement to specify operating characteristics of the
home BDT subsystem.

How Many Allowed: One per initialization stream.

How Many Required: None; default values are taken for all options if this
statement is not specified.

Placement: After the DYNALLOC statement, or after the CELLPOOL statements if
DYNALLOC is not used, and before the ENDRBAM statement.

OPTIONS Statement

Defaults:

OPTIONS

[,ACCINT=frequency]
10

[,ASRTIME=time-delay]
60

[,AUTORS={YES|NO}]
NO

ENDINIT

60 z/OS BDT Installation

[,BDTRACF={YES|NO}]
YES

[,DUMP={BDT|PRDMP}]
BDT

[,GDGLOCS={YES|NO}]
NO

[,JES3={YES|NO}]
NO

[,JOBNO=({low-job-no},{high-job-no}, {resident-jcts})]

1,1000,0

[,JOBRETPD=retention-period]
0

[,LOGCLASS=print-class]
A

[,LOGLIMIT=line-limit]
999999

[,LOGPAGE=number-of-lines]
60

[,MAXTRAN=concurrent-transfers]
64

[,MSGPROP={YES|NO}]
YES

[,SYSLOG=({JES3|PRINT|WTO})]
PRINT

[,SYSMSG={YES|NO}]
NO

[,TQIAUTO={YES|NO}]
YES

[,TQITIME=read-frequency]
30

[,URSCNT=threshold]
0

[,WANTDUMP={ASK|YES|NO}]
YES

[ACCINT=frequency]
When users submit file-to-file transactions they specify the maximum amount
of processor time (from 1 second to 24 hours) each transaction may use.
frequency defines how often BDT is to calculate the amount of processor time
used.

Specified As: A decimal number from 10 to 900, indicating hundredths of a
second.

Default: 10 (which specifies a frequency of .10 of a second).

Related Parameters: This parameter is related to the TIME parameter that a
user may code on a file-to-file transaction. The TIME parameter defines the
total amount of processor time a transaction may use.

OPTIONS

Chapter 7. Creating a BDT Initialization Stream 61

[ASRTIME=time-delay]
specifies the amount of time that BDT is to delay between the time a session
ends abnormally and the time BDT tries to restart the session. This time delay
allows BDT to do any cleanup work that must be done when a session ends
abnormally.

Specified As: A decimal number from 0 to 99999, indicating time in seconds.

Default: 60 (which specifies 60 seconds).

[AUTORS={YES|NO}]
determines whether BDT is to restart itself automatically after it abnormally
terminates.

YES
instructs BDT to restart automatically.

NO instructs BDT not to restart automatically. The operator will have to restart
BDT.

[BDTRACF={YES|NO}]
determines whether userids and passwords are verified for users submitting
BDT transactions.

YES
instructs BDT to request verification of userids and passwords.

NO bypasses verification of userids and passwords. All users can access BDT
authorized data sets. RACF security verification still occurs at the BDT task
level.

Default: YES.

[DUMP={BDT|PRDMP}]
defines the type of storage dump BDT is to produce if BDT terminates
abnormally and you specified WANTDUMP=ASK or WANTDUMP=YES (the
default).

BDT
requests a formatted dump. BDT writes this dump to the data set defined
by the BDTABEND DD statement in the BDT start procedure.

PRDMP
requests an unformatted dump. BDT writes this dump to the SYS1.DUMP
data set.

Default: BDT.

Related Parameters: In order for the DUMP parameter to take effect you must
specify WANTDUMP=ASK or WANTDUMP=YES (the default) on this
OPTIONS statement.

The dump data sets may contain sensitive information such as unencrypted
RACF passwords. To ensure that such information is not exposed to
unauthorized individuals, you should provide security for these data sets. You
may do this by RACF-protecting the data sets.

[GDGLOCS={YES|NO}]
determines whether the system will resolve a GDG relative generation number
based on the most recent catalog information or on the catalog information
that was available the first time the GDG was referenced by BDT.

OPTIONS

62 z/OS BDT Installation

YES
requests the system use a LOCATE to determine the relative generation
mumber based on the most recent catalog information.

NO requests the systme to determine the relative generation number based on
the catalog information that was available the first time the GDG was
referenced by BDT.

Default: NO.

If the default is taken of NO is explicitly specified, then the first time the TO
section of a transaction specifies a generation data group (GDG) relative data
set number, BDT creates a new data set. Thereafter, each time the same relative
data set number is specified, BDT overlays the data set. BDT continues to do
this until the BDT address space is restarted. Therefore, you should not usually
refer to a GDG by means of a relative data set number.

[JES3={YES|NO}]
determines whether BDT is to establish a communication path between itself
and the JES3 global processor. This communication path must be established
before BDT can receive commands or transactions that have been submitted
through JES3.

YES
instructs BDT to establish a communication path between itself and the
JES3 global processor.

NO instructs BDT not to establish a communication path between itself and the
JES3 global processor.

Default: NO on JES3 systems. On JES2 systems this parameter is ignored.

[JOBNO=({low-job-no},{high-job- no},{resident-jcts})]
defines the range of job numbers that are available for use by BDT and the
number of job control tables (JCTs) that BDT is to keep resident in virtual
storage.

low-job-no
specifies the lowest job number that BDT may use.

Specified As: A decimal number from 1 to 9995. To avoid wasting virtual
storage, use a value of 1.

Default: 1.

high-job-no
specifies the highest job number that BDT may use.

Specified As: A decimal number from 5 to 9999. It must be at least five
greater than low-job-no, so that at least five numbers are in the range.

Default: 1000.

resident-jcts
specifies the number of job control table (JCT) control blocks that BDT is to
keep resident in the BDT address space.

Each resident JCT occupies 256 bytes of storage and resides in the JCTB
cell pool. The advantage of keeping a JCT resident is that BDT need not
access the BDT work queue each time it needs information that is in the
JCT. On the other hand, a resident JCT occupies virtual storage for the life
of the job it represents. To help you decide whether to make JCTs resident,
consider the following example.

OPTIONS

Chapter 7. Creating a BDT Initialization Stream 63

Assume that you have requested BDT to keep up to 150 JCTs resident.
Each time BDT places a job on the work queue, BDT also builds a JCT for
the job and makes the JCT resident. That JCT remains resident until the job
completes. If, at some time, there are 150 jobs on the BDT work queue,
there will be 150 JCTs resident in virtual storage. If another job enters the
system during this time, BDT will allocate a JCT to the job but that JCT
will not become resident until one of the original 150 jobs complete.

If your primary concern is to conserve virtual storage, then do not request
resident JCTs.

Specified As: A decimal number from 0 to 9999.

Default: 0.

Related Parameters: If you do request resident JCTs, be sure to allocate a
cell pool (using the CELLPOOL statement with ID=JCTB) that is large
enough. The cell pool must be large enough to contain at least five more
JCTs than you request be kept resident.

[JOBRETPD=retention-period]
specifies the number of days that BDT may keep a job on the work queue.

Specified As: A decimal number from 0 to 365, indicating days.

Default: 0 (which means that jobs will remain on the work queue until they
execute).

It is possible for a job to remain on the work queue indefinitely. This would
happen, for example, if a user submitted a transaction, put the resulting job
into hold status, and then forgot to release the job. To prevent jobs from
remaining on the work queue indefinitely, specify a retention period other than
the default of 0. (BDT considers a day to end at midnight.) BDT removes any
job from the queue that has been there longer than the specified retention
period.

[LOGCLASS=print-class]
defines the SYSOUT class to which BDT is to log its messages.

Specified As: A letter or a single-digit number. This value must also be
defined as a SYSOUT class for your installation.

Default: A.

[LOGLIMIT=line-limit]
defines the maximum number of lines that BDT may write to the message log
data set before it must print (“spin off”) that data set.

Specified As: A decimal number from 3 to 999999.

Default: 999999.

[LOGPAGE=number-of-lines]
defines the number of lines that are to appear on each page of the printed
output of the message log.

Specified As: A decimal number from 3 to 150.

Default: 60.

[MAXTRAN=concurrent-transfers]
defines the maximum number of concurrent data transfers in which the home
node, when it is defined as the global node, may take part. Concurrent data
transfer refers to the total number of data transfers that may take place at the

OPTIONS

64 z/OS BDT Installation

same time between the home node (where it is defined as the global node) and
any or all of its remote nodes (where they are defined as local nodes).

Specified As: A decimal number from 1 to 999.

Default: 64.

If you are a JES3 customer doing both file-to-file and SNA NJE data transfers,
concurrent-transfers is the total number of concurrent file-to-file and SNA NJE
transfers.

Related Parameters: Enough function control tables (FCTs) to accommodate all
concurrent transfers must be defined by a CELLPOOL statement (ID=FCT).
One FCT is required for each active file-to-file transaction, whether the home
node is global or local.

For sessions where the home node is the local node, the number of VLUs that
are varied online and are active limits the number of concurrent data transfers.

[MSGPROP={YES|NO}]
determines whether BDT will route messages to nodes in the routing table if
the messages come from another BDT system. For example, if system A routes
messages to system B and system B routes messages to system C (or even back
to system A), the MSGPROP option statement will control whether a message
coming from system A is routed to system C by system B.

YES
instructs BDT to route messages coming from another BDT to nodes in the
route table.

NO instructs BDT to bypass message routing for messages coming from
another BDT.

Default: YES.

[SYSLOG=({JES3|PRINT|WTO})]
identifies the output medium on which BDT is to log its messages.

Specified As: None, one, two, or all three of the following parameters. If you
code only one parameter, you may omit the parentheses.

JES3
instructs BDT to log its messages on JES3 consoles that have been assigned
a destination code of D22. JES2 installations should not use this parameter.

PRINT
instructs BDT to log its messages on a data set that MVS has assigned to
the SYSOUT class defined by the LOGCLASS parameter. BDT prints this
data when the total number of lines written to the data set matches the
value specified on the LOGLIMIT parameter.

WTO
instructs BDT to log its messages on the operator’s console.

Default: PRINT.

[SYSMSG={YES|NO}]
determines whether BDT logs MVS messages that have been issued by BDT
dynamic application programs (DAPs). BDT logs these messages on the output
medium identified by the SYSLOG parameter.

YES
instructs BDT to log DAP messages.

OPTIONS

Chapter 7. Creating a BDT Initialization Stream 65

NO prevents logging of DAP messages.

Default: NO.

[TQIAUTO={YES|NO}]
If TQI encounters an unrecoverable error while reading the TQI checkpoint
data set, TQI disables itself. Transactions that are submitted while TQI is
disabled and not required are not written onto the TQI checkpoint data set.
They are, however, put onto the BDT work queue so they can be selected for
execution. If one of these transactions is lost before it gets to the BDT work
queue, the user must resubmit the transaction; it is not resubmitted
automatically.

YES
instructs BDT to execute transactions while TQI is disabled.

NO instructs BDT to process transactions only when TQI is working. Then if
TQI encounters an unrecoverable error, it will reject transactions.

Default: YES.

[TQITIME=read-frequency]
specifies how often, in seconds, that BDT is to read commands and file-to-file
transactions from the TQI checkpoint data set.

Specified As: A decimal number from 1 to 99999.

Default: 30 (which specifies that BDT will read from the TQI checkpoint data
set every 30 seconds).

[URSCNT=threshold]
specifies the number of times BDT will reschedule a transaction that is waiting
for an unavailable resource (URS).

threshold
defines the maximum number of times BDT will reschedule a transaction
that is waiting for an unavailable resource. When BDT reaches threshold, it
will purge the transaction. During a BDT session, the threshold at the global
node is the threshold used for nodes in a global-local relationship.

Specified As: A decimal number from 0 to 255.

Default: 0 (which means that the transaction will remain on the work queue
until the system can process it).

[WANTDUMP={ASK|YES|NO}]
determines whether BDT automatically dumps the BDT address space after an
abnormal termination or whether the operator is given the choice of taking a
dump. You may need a storage dump to determine the cause of the abnormal
termination. It could be a problem within BDT itself or in one of the exit
routines that you have written.

ASK
instructs BDT to ask the operator (via message BDT9990), after an
abnormal termination occurs, if a dump is to be taken. The operator may
select a formatted dump, select an unformatted dump, take the type of
dump specified on the DUMP parameter of this OPTIONS statement, or
decline a dump.

YES
instructs BDT to automatically take a dump. The DUMP parameter of this
OPTIONS statement determines the type of dump taken.

OPTIONS

66 z/OS BDT Installation

NO instructs BDT not to take a dump.

Default: YES.

Related Parameters: The DUMP parameter on this OPTIONS statement
determines the type of dump taken if WANTDUMP=ASK or
WANTDUMP=YES is specified.

SNABUF—Define Data Buffers
Use the SNABUF statement to allocate storage for data buffers.

Each BDT subsystem uses data buffers to send data to and receive data from other
BDT subsystems. You must define the size of these buffers and the number that
BDT is to allocate. You may define several different sizes. You must ensure that
each buffer size you define matches the size of an VTAM request unit (RU). BDT
allocates these buffers from subpools 2, 3, 4, or 5.

How Many Allowed: 1-unlimited.

How Many Required: You must code one SNABUF statement for each buffer size
you define using the BUFSZ parameter of BDTNODE statements. (Thus, if you
have two BDTNODE statements and each specifies the same BUFSZ value, you
need only one SNABUF statement; but if each specifies a different BUFSZ value
you need two SNABUF statements.) At least one SNABUF statement is required.

Placement: Between the ENDRBAM and ENDINIT statements, before or after the
BDTNODE and SYSID statements.

SNABUF Statement

Defaults:

SNABUF,PRI=num-buffs,SIZE=data-size

[,ATF=percent]
20

[,AUTODEL={YES|NO}]
NO

[,SEC=(num-buffs[,num-allocations])]
0,1

PRI=num-buffs (pertains to primary buffers)
is the number of primary buffers that BDT is to allocate. BDT allocates primary
data buffers during BDT initialization. The primary buffers remain allocated
for the life of the BDT address space.

Specified As: A decimal number from 1 to 1000.

Default: None.

Related Parameters: The total number of buffers specified on SNABUF, that is,
primary buffers (PRI parameter) plus secondary buffers (SEC parameter), must
be greater than or equal to the number specified on the BDTNODE statement’s
BUFNO parameter.

SIZE=data-size (pertains to primary buffers)
is the size, in bytes, of the data portion of the primary buffers.

OPTIONS

Chapter 7. Creating a BDT Initialization Stream 67

Specified As: A decimal number from 1 to 4096. If you specify a number that
is not a multiple of 4, BDT rounds the number to the next higher multiple of 4.
For example, if you code SIZE=3, BDT rounds 3 to 4; if you code SIZE=102,
BDT rounds 102 to 104.

Default: None.

Related Parameters: data-size must be equal to or larger than the size specified
(or defaulted) on the BDTNODE statement’s BUFSZ parameter. If it is not,
initialization will terminate.

The control portion of the primary buffers is fixed at 20 bytes. Therefore, the
total size of a primary buffer, as calculated by BDT, is data-size (or the next
higher multiple of 4) + 20 bytes. In the example above, the allocated buffer size
would be 124 bytes (104 + 20).

[ATF=percent] (pertains to primary and secondary buffers)
is the percentage of primary data buffers that must be free (available for use)
before BDT may delete unused secondary data buffers. This parameter
provides a way to reduce and possibly prevent thrashing.

Buffer thrashing is the frequently-repeated allocation and freeing of secondary
data buffers. Thrashing occurs when there are frequent demands for buffers
that cannot be satisfied from primary buffer storage. To satisfy the demand,
BDT allocates secondary data buffers, uses them, and then frees them. Shortly
thereafter, the demand for buffers, the allocation of secondary buffers, and the
freeing of the secondary buffers is repeated. One solution to this problem is for
you to manage buffer thrashing by specifying the ATF parameter.

Specified As: A decimal number from 5 to 100.

Default: 20.

Related Parameters: If you code the ATF parameter you must also code the
AUTODEL=YES and SEC parameters on this SNABUF statement.

[AUTODEL={YES|NO}] (pertains to secondary buffers)
can be used to free any unused secondary data buffers. Freeing an unused
buffer frees the storage that the buffer occupied. BDT may then use that
storage for other purposes.

YES
instructs BDT to free unused secondary data buffers. If you periodically
use different buffer sizes under varying loads you should code
AUTODEL=YES.

NO instructs BDT to keep unused secondary data buffers available.

Default: NO.

Related Parameters: If you specify AUTODEL=YES you must also specify the
SEC parameter on this SNABUF statement.

[SEC=(num-buffs[,num-allocations])] (pertains to secondary buffers)
For each different buffer size you may optionally request that BDT allocate
secondary data buffers. BDT allocates secondary data buffers only after the
primary buffers of that size or previously allocated secondary buffers of that
size are all in use.

num-buffs
defines the number of secondary data buffers that BDT may allocate. BDT
will allocate this number of buffers each time it allocates secondary data
buffers.

SNABUF

68 z/OS BDT Installation

Specified As: A decimal number from 0 to 1000. If this is the only SEC
variable you code, you may omit the parentheses.

Default: 0.

num-allocations
defines how often BDT may allocate secondary data buffers.

Specified As: A decimal number from 1 to 100.

Default: 1.

Related Parameters: The total number of buffers specified on SNABUF, that is,
primary buffers (PRI parameter) plus secondary buffers (SEC parameter), must
be greater than or equal to the number specified on the BDTNODE statement’s
BUFNO parameter.

SYSID—Name the Home Node
The SYSID statement specifies the name of the home file-to-file node or the name
of the home SNA NJE node, or both. It also provides the application name and
password that identify each node to VTAM.

How Many Allowed: One per initialization stream.

How Many Required: One.

Placement: Between the ENDRBAM and ENDINIT statements, before or after the
BDTNODE and SNABUF statements.

SYSID Statement

Defaults:

SYSID

If this BDT system will handle file-to-file transfers:

,NAME=node-name,APPLID=appl-name

[,APPLPSWD=vtam-password]
8 blanks

If this BDT system will handle SNA NJE transfers:

,NJENAME=node-name,NJEAPPL=lu-name

[,NJEAPSWD=vtam-password]
8 blanks

NAME=node-name (pertains to file-to-file)
specifies the name of the home node for file-to-file transfers.

Specified As: One to eight alphanumeric characters, the first of which must be
alphabetic.

Default: None.

Related Parameters: node-name must match the name on the N parameter of
the BDTNODE statement for the home node.

APPLID=appl-name (pertains to file-to-file)
specifies the name by which VTAM recognizes the home file-to-file node.

Specified As: One to eight alphanumeric characters.

SNABUF

Chapter 7. Creating a BDT Initialization Stream 69

Default: None.

Related Parameters: appl-name must match the name on the ACBNAME
operand of the home node’s VTAM APPL statement. If ACBNAME has not
been coded, appl-name must then match the name (label) of the APPL
statement.

[APPLPSWD=vtam-password] (pertains to file-to-file)
specifies the VTAM password.

Specified As: One to eight alphanumeric characters.

Default: Eight blank characters.

Related Parameters: vtam-password must match the password specified on the
PRTCT operand of the VTAM APPL definition statement.

NJENAME=node-name (pertains to SNA NJE)
specifies the name of the home node for SNA NJE transfers.

Specified As: One to eight alphanumeric characters.

Default: None.

Related Parameters: node-name must match the name on the N parameter of a
remote node’s BDTNODE statement (that is, a BDTNODE statement specified
in a remote node’s initialization stream).

NJEAPPL=lu-name (pertains to SNA NJE)
specifies the name by which VTAM recognizes the home SNA NJE node.

Specified As: One to eight alphanumeric characters.

Default: None.

Related Parameters: lu-name must match the name (label) of a VTAM APPL
definition statement.

[NJEAPSWD=vtam-password] (pertains to SNA NJE)
specifies the VTAM password.

Specified As: One to eight alphanumeric characters.

Default: Eight blank characters.

Related Parameters: vtam-password must match the password specified on the
PRTCT operand of the VTAM APPL definition statement.

Initialization Statement Parameters That the Operator Can Override
During BDT operation the operator can override several initialization statement
parameters by issuing BDT commands. Table 6 on page 71 identifies these
parameters and commands.

If the operator restarts BDT, parameter values previously set by the operator will
be replaced by parameter values from the initialization stream:
v If the restart type is hot, BDT uses parameter values from the initialization

stream last read.
v If the restart type is warm or cold, BDT reads the initialization stream to obtain

parameter values.

SYSID

70 z/OS BDT Installation

Table 6. Initialization Statement Parameters That the Operator Can Override

Initialization Statement
and Parameter Overriding Command Explanation

BDTNODE,A= CANCEL,SNA,NODE= The operator can cancel a session.

BDTNODE,A= VARY,node-name The operator at the global node can terminate or
reestablish a session.

BDTNODE,ASR= RESTART,SNA,NODE= The operator can enable automatic session restart.

BDTNODE,LU= MODIFY,NODE=,FENCE= The operator can change the number of fenced VLUs for
file-to-file transfers.

BDTNODE,LU= VARY,vlu-name The operator at the global node can change the number
of available VLUs.

OPTIONS,WANTDUMP= MODIFY,DUMP The operator can change the dump options.

OPTIONS,SYSLOG= MODIFY,LOG,ADEST or
MODIFY,LOG,DDEST

The operator can add consoles to the list of destinations
for the system log. The operator can delete previously
added destinations from the list.

OPTIONS,SYSLOG= MODIFY,LOG,FLUSH If one of the SYSLOG parameters is PRINT, the operator
can print the system log.

OPTIONS,SYSLOG= MODIFY,LOG,SYSLOG= The operator can change the destination of the system
log.

OPTIONS,MAXTRAN= START,SNA,LIMIT The operator can change the limit on the total number
of concurrent data transfers in which the home node can
take part.

OPTIONS,TQITIME= START,TQI,DELAY= The operator can change the frequency with which BDT
reads the TQI checkpoint data set.

OPTIONS,JES3= VARY,JES3 The operator can enable or disable the communication
path between JES3 and BDT.

SYSID

Chapter 7. Creating a BDT Initialization Stream 71

SYSID

72 z/OS BDT Installation

Chapter 8. Writing BDT and TQI Start Procedures

This chapter describes how to:
v Write a procedure to start BDT
v Write a procedure to start the transaction queuing integrity (TQI) facility.

Step 1. Write a BDT Start Procedure
Before an operator can start BDT you must provide a start procedure. The start
procedure identifies the BDT program that is to run first and the data sets that
BDT is to use. Invoking the start procedure creates a BDT address space.

You must store the start procedure as a member of SYS1.PROCLIB or as a member
of a data set that is concatenated to SYS1.PROCLIB. You may give the member any
name you wish. There is no naming restriction like there is for the TQI start
procedure.

Information about invoking the start procedure that you write is in z/OS BDT
Commands. A discussion of cold, warm, and hot starting is included in that book.
Note that starting BDT for the first time after it is installed requires a cold start.

IBM provides a sample BDT start procedure in SYS1.SBDTSAMP (member name
BDT$V2SP). It is shown in Figure 23. A description of each statement that appears
in the example follows the figure.

//BDTA1 PROC
This statement is required. However, the procedure name can be a name other
than BDTA1.

//BDT EXEC
This statement is required. You must code PGM=BDTINTK. REGION and
TIME are optional.

//STEPLIB DD
specifies that BDTINTK is in SYS1.SBDTLIB.

//BDSPOOL DD
//CRSPOOL DD

These two statements define the BDT work queue data set and are required to
be in the start procedure. You may not use the DYNALLOC initialization
statement instead of these DD statements to allocate the data set. The ddnames

//BDTA1 PROC
//BDT EXEC PGM=BDTINTK,REGION=5000K,TIME=1440
//STEPLIB DD DISP=SHR,DSN=SYS1.SBDTLIB
//BDSPOOL DD DISP=OLD,DSN=BDT1.BDTSPOOL
//CRSPOOL DD DISP=OLD,DSN=BDT1.BDTSPOOL
//DATAFILE DD DISP=SHR,DSN=BDT1.TQIDATA
//BITMAPS DD DISP=SHR,DSN=BDT1.TQIBITS
//BDTM001 DD DISP=SHR,DSN=BDT1.MSG0001
//BDTOUT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//BDTABEND DD SYSOUT=A
//BDTIN DD DISP=SHR,DSN=BDT.INISH.DECKS(BDT$FTF)

Figure 23. The BDT Start Procedure in SYS1.SBDTSAMP Member BDT$V2SP

© Copyright IBM Corp. 1986, 2013 73

must be BDSPOOL and CRSPOOL and the dispositions must be OLD. The data
set name you use must be the same one you specified when you allocated the
data set in “Step 2. Allocate a Data Set for the BDT Work Queue” on page 28.

//BDTM001 DD
Each message data set used by your BDT subsystem requires a DD statement
in the start procedure or a DYNALLOC statement in the initialization stream.
Valid ddnames are BDTMx, where x is any 1 to 4 alphanumeric characters. A
suggestion is to start with the name BDTM001 and proceed sequentially:
BDTM001, BDTM002, BDTM003, and so forth. The data set names you use
must be the same ones you specified when you allocated the data sets in “Step
7. Allocate Message Data Sets” on page 32. The disposition of the data sets
must be SHR.

//BITMAPS DD
This statement is optional. It is required if any processors in a complex will
run TQI. It identifies the TQI bit-map data set. The ddname must be BITMAPS.
The data set name must be the same one you specified when you allocated the
data set in “Step 6. Allocate the TQI Bit-Map Data Set” on page 31. The
disposition of the data set must be SHR.

//DATAFILE DD
This statement is optional. It is required if any processors in a complex will
run TQI. It identifies the TQI checkpoint data set. The ddname must be
DATAFILE. The data set name must be the same one you specified when you
allocated the data set in “Step 5. Allocate the TQI Checkpoint Data Set” on
page 31. The disposition of the data set must be SHR.

//BDTOUT DD
This statement identifies the data set to which BDT will write initialization
statements and initialization messages. It is required to be in the start
procedure. You may not use the DYNALLOC initialization statement instead of
BDTOUT to allocate the data set.

//SYSABEND DD
This statement is optional. If you want a formatted MVS storage dump in the
event BDT abnormally terminates, include this statement or a SYSUDUMP DD
statement. To get an unformatted dump, include a SYSMDUMP DD statement.

To determine where the dump is to be sent, use the DUMP parameter of the
OPTIONS initialization statement.

//BDTABEND DD
This statement is optional. It defines the data set to which BDT is to write the
formatted dump.

//BDTIN DD
This statement identifies the data set that contains the BDT initialization
stream. This statement is required to be in the start procedure. You may not
use the DYNALLOC initialization statement instead of BDTIN to allocate the
data set.

By means of the data set name you specify on the BDTIN DD statement, the
operator can be given flexibility in choosing which initialization stream to use.
When starting BDT, the operator can reply to message BDT3037 in any of the
following ways:
v If the BDTIN DD statement specifies a sequential data set, the operator can

reply N (for normal) to use the initialization stream in that data set.
v If the BDTIN DD statement specifies a partitioned data set without a

member name, the operator can reply M=member to use the initialization

74 z/OS BDT Installation

stream in that member, or M=xx to use the initialization stream in member
BDTINxx, where xx is any one or two alphanumeric characters.

v If the BDTIN DD statement specifies a partitioned data set with a member
name, the operator can reply N to use the initialization stream in that
member, M=member to use the initialization stream in member, or M=xx to
use the initialization stream in member BDTINxx, where xx is any one or
two alphanumeric characters.

If you have a system GMJD library (allocated in “Step 3. Allocate a System GMJD
Library (File-to-File Customers Only)” on page 28) you must include a DD
statement for it in the start procedure or a DYNALLOC statement for it in the
initialization stream. The ddname must be GMJDLIB.

Step 2. Write a TQI Start Procedure
Before an operator can start TQI you must provide a start procedure. The start
procedure identifies the TQI program, the parameters to be passed to that
program, and the data sets that TQI is to use. Invoking the start procedure creates
a TQI address space.

The start procedure must be available to each processor on which the TQI address
space will be started. You must store the start procedure as a member of
SYS1.PROCLIB or as a member of a data set that is concatenated to
SYS1.PROCLIB. You must name the member TQIx, where x is the 1- to 4-character
BDT subsystem name that you assigned in SYS1.PARMLIB member IEFSSNxx in
“Step 1. Define BDT As an MVS Secondary Subsystem—SYS1.PARMLIB Member
IEFSSNxx” on page 17.

Information about invoking the TQI start procedure that you write is in z/OS BDT
Commands.

Figure 24 shows the sample TQI start procedure that is in member BDT$V2TP in
SYS1.SAMPLIB. A description of each statement that appears in the example
follows the figure.

//TQIA1 PROC
This statement is required. However, the procedure name can be a name other
than TQIA1.

//TQI EXEC
This statement is required. You must code PGM=BDTTQIAS and TIME=1440
exactly as shown. The PARM keyword contains one required and one optional
parameter:

node-name
identifies the BDT node that will process the requests (commands and
file-to-file transactions) that are on the TQI checkpoint data set. This must

//TQIA1 PROC
//TQI EXEC PGM=BDTTQIAS,TIME=1440,PARM=’SYSA1,04’
//STEPLIB DD DISP=SHR,DSN=SYS1.SBDTLIB
//DATAFILE DD DISP=SHR,DSN=BDT1.TQIDATA
//BITMAPS DD DISP=SHR,DSN=BDT1.TQIBITS
//MESSAGE DD DISP=SHR,DSN=BDT1.MSG0001
//SYSUDUMP DD SYSOUT=A

Figure 24. The TQI Start Procedure in SYS1.SBDTSAMP Member BDT$V2TP

Chapter 8. Writing BDT and TQI Start Procedures 75

be the same name that you coded on one of the following SYSID
initialization statement parameters (in “SYSID—Name the Home Node” on
page 69):
v The NAME parameter if the BDT subsystem has a file-to-file node,

without or in addition to a SNA NJE node
v The NJENAME parameter if the BDT subsystem has only a SNA NJE

node.

It is also the same name that you coded on the BUILD statement used to
format the TQI checkpoint and bit-map data sets (in 36). This is a required
parameter. The sample uses SYSA1.

seconds
specifies how frequently, in seconds, TQI is to read the message data set.
This frequency determines how long users will have to wait to see their
messages. You may select a different frequency for each TQI address space.
seconds is optional and may be a number from 1 to 99. The default is 5. The
sample uses 4.

//STEPLIB DD
specifies that BDTTQIAS is in SYS1.SBDTLIB.

//DATAFILE DD
This statement is required. It identifies the TQI checkpoint data set. The
ddname must be DATAFILE. DSN must specify the name that you gave this
data set when you allocated it in “Step 5. Allocate the TQI Checkpoint Data
Set” on page 31. The disposition of the data set must be SHR.

//BITMAPS DD
This statement is required. It identifies the TQI bit-map data set. The ddname
must be BITMAPS. DSN must specify the name that you gave this data set
when you allocated it in “Step 6. Allocate the TQI Bit-Map Data Set” on page
31. The disposition of the data set must be SHR.

//MESSAGE DD
This statement is required. It identifies the message data set. The ddname must
be MESSAGE. DSN must specify the name that you gave to this data set when
you allocated it in “Step 7. Allocate Message Data Sets” on page 32. The
disposition of the data set must be SHR.

//SYSUDUMP DD
This statement is optional. If you want a formatted storage dump in the event
that TQI abnormally terminates, you must include this statement or a
SYSABEND DD statement. If you want an unformatted dump, include a
SYSMDUMP DD statement.

76 z/OS BDT Installation

Chapter 9. Writing User Exit Routines

Exit routines are intended programming interfaces.

BDT user-written exit routines fall into two categories:
v Authorization exit routines, which control who may send and receive commands

and file-to-file transactions. You must code these exit routines.
v Customization exit routines, which can alter initialization, command processing,

transaction processing, and message processing. You can code these exit routines
if you want; they are not required.

This chapter describes the steps in writing BDT user exit routines:
v Understanding which authorization exit routines you must write
v Deciding whether you want to write customization exit routines
v Coding the exit routines
v Assembling the exit routines
v Link-editing the exit routines
v Loading the exit routines.

Step 1. Understand Which Authorization Exit Routines You Must Write
In order to ensure that only authorized users at your node can send commands
and file-to-file transactions, you must code the authorization exit routines. Even if
you decide you do not need to use all of the authorization exit routines you must
still code them to at least send a return code back to the calling BDT module
authorizing the commands and transactions. Otherwise, BDT will fail the
commands and transactions.

If you want to test BDT before coding your own authorization exit routines you
can do so by using the sample exit routines in SYS1.SBDTSAMP. But you must
realize that these sample routines are provided for testing purposes only; they
allow BDT to run, but they do not enforce the security policies at your site.

Authorization Exit Routine in the Link Pack Area
The following authorization exit routine runs in the link pack area:
v BDTUX28—authorizes users issuing BDT commands at an MCS console. Based

on that authorization level, other authorization exit routines can determine if
work requests from an MCS console will be accepted.

Authorization Exit Routines in the BDT Address Space
Five authorization exit routines run in the BDT address space. Their function is to
examine each command and file-to-file transaction, to determine whether the user
is allowed to issue it, and to send an appropriate return code back to the calling
module. These exit routine are:
v BDTUX25—authorizes users submitting commands to the BDT address space. If

TQI is not enabled, it also authorizes users submitting file-to-file transactions.
BDTUX25 runs when a command or file-to-file transaction enters the BDT

© Copyright IBM Corp. 1986, 2013 77

address space. If the exit routine is not coded, BDT rejects the command or
transaction. If TQI is enabled, transactions skip BDTUX25 and use BDTUX29
instead.

v BDTUX26—authorizes users submitting file-to-file transactions at the global
node. BDTUX26 runs in the global BDT node before a BDT job number is
assigned and the job is placed on the BDT work queue.

v BDTUX27—authorizes users submitting file-to-file transactions at local BDT
nodes. If coded, it runs on both ends of a transfer just before the dynamic
application programs (DAPs) for the transfer are scheduled. The assignment of
the DAPs on both ends of a transfer is the final step before the actual transfer of
the data. BDTUX27 runs on both sides to make authorization checks before the
transfer is actually made.

v BDTUX29—authorizes users submitting file-to-file transactions when TQI is
enabled. It runs for file-to-file transactions only, not for commands. BDTUX29
must check the authorization of the user requesting the transaction.

v BDTUX31—authorizes users to submit INQUIRY and MODIFY commands
concerning specific transactions (both file-to-file and SNA NJE). Information
about the owner of the transaction, the origin of the command, and the type of
command entered are given to BDTUX31 to determine if information about the
transaction should be displayed.

Authorization Exit Routine in the JES3 Address Space
If you are a JES3 customer you must also code the following authorization exit
routine to run in the JES3 address space:
v IATUX56—authorizes users submitting JES3 commands from the BDT address

space.

Step 2. Decide Whether You Want to Write Customization Exit Routines
The customization exit routines that you can write are divided into five categories:
v Exit routines to alter initialization
v Exit routines for routing messages to user-defined destinations or an

installation-defined log
v Exit routines to alter transaction processing
v Exit routines to alter command processing
v Exit routines to process user-defined BSIDs.

Customization exit routines are optional. You do not have to code them.

Exit Routines to Alter Initialization
Exit routines that you can use to alter the initialization process include:
v BDTUX01—allows an installation to examine or modify data areas before

initialization completes and when BDT ends.
v BDTUX02—approves user-defined initialization statements read before the

ENDRBAM statement during a warm or cold start.
v BDTUX03—approves user-defined initialization statements read after the

ENDRBAM statement during a warm or cold start.
v BDTUX04—approves user-defined keywords entered on the BDTNODE

statement when BDTNODE defines a file-to-file node.
v BDTUX05—processes user-defined information that is approved by BDTUX04.

78 z/OS BDT Installation

v BDTUX06—allows an installation to examine or modify data areas before
initialization is complete and control is passed to the multifunction monitor.

Exit Routines to Alter Message Processing
BDT normally routes messages to one or more of the following destinations: the
originator, the BDT message log, or all applicable SYSLOG entries.

Exit routines that you can use to alter message processing are:
v BDTUX07—recognizes and processes user-defined parameters on the

MSGCLASS keyword of file-to-file transactions. An alternate destination for the
message can be approved in this exit routine.

v BDTUX12—allows you to alter messages that are sent to the originator
v BDTUX14—converts the transaction origin (XOID) of a user-defined location

from internal to external or external to internal format. Internal to external
conversion creates a readable format of the user location, one which can be
placed in a message. External to internal format converts the readable format to
an internal format.

v BDTUX16—gives an installation access to messages contained in a job message
log (JML) if LOG was specified on the MSGCLASS parameter of a file-to-file
transaction.

Exit Routines to Alter Transaction Processing
Exit routines that you can use to alter the processing of transactions include:
v BDTUX08—processes user-defined keywords on file-to-file transactions
v BDTUX15—recognizes new keywords on the PARMS transaction parameter

when processing sequential file-to-file transactions
v BDTUX17—for inbound and outbound file-to-file transactions (jobs) and

outbound SNA NJE jobs, reports the starting time of the job and accesses other
information from the job control table (JCT)

v BDTUX18—for inbound and outbound file-to-file transactions (jobs) and
outbound SNA NJE jobs, reports the ending time of a job and accesses other
information from the job control table (JCT)

v BDTUX19—makes final changes to file-to-file transaction text before the
transaction definition is accepted

v BDTUX24—accesses the SMF type 59 record before it is written
v BDTUX30—associates an owner (other than BDT) with a tape or DASD data set.

Note that authorization exit routines BDTUX25, BDTUX26, BDTUX27, BDTUX28,
and BDTUX29, which were discussed in “Step 1. Understand Which Authorization
Exit Routines You Must Write” on page 77, are also associated with transaction
processing.

Exit Routines to Alter Command Processing
An exit routine that you can use to alter command processing is:
v BDTUX10—processes passwords specified on commands. Passwords can

authorize users to issue commands they are not otherwise authorized to issue.

Note that authorization exit routines BDTUX25, BDTUX28, and BDTUX31, which
were discussed in “Step 1. Understand Which Authorization Exit Routines You
Must Write” on page 77, are also associated with command processing.

Chapter 9. Writing User Exit Routines 79

Exit routines to recognize user-defined BSIDMOD fields
Exit routines that can recognize user-defined BSIDMOD fields include:
v IATUX50—recognizes user-defined BSIDMOD fields in BSIDs within the JES3

address space
v BDTUX11—recognizes user-defined BSIDMOD fields in BSIDs within the BDT

address space.

Step 3. Code Your Exit Routines
In order to code your exit routines you will have to refer to:
v Chapter 10, “User Exit Routine Reference,” on page 93 to find out exactly when

each routine receives control, what the register conventions are, and so forth
v Chapter 11, “Mapping Macro Reference,” on page 159 to find out the formats of

mapping macros that you will use in your routines
v Chapter 12, “Executable Macro Reference,” on page 163 to find out the formats

of executable macros that you will use in your routines.

Following are some coding considerations.

General Considerations When Writing BDT Exit Routines
The sample exit routines contained in SYS1.SBDTSAMP contain general header
information that identifies each exit routine. The offset of this information as
presented in each sample exit routine is critical and specific to that exit routine.
You must add the header information to each exit routine you code. When you
code your own routines, be certain to use the same offsets for whatever
information you choose to include; the exit name must be included to provide a
label to be added to a dump should one be taken. Also, this general header
information is required in order that BDTGRSV can create a BDT trace entry. If this
header information is not present and the module size is less than the standard
exit header length, an 0C4 abend can occur. See Figure 25 for an example of the
exit routine header information.

How exit routines are invoked
BDT uses a macro, BDTXUEX, to transfer control to user exit routines. The
BDTXUEX macro either calls or branches to each routine, depending on whether
the routine is in the BDT address space or the link pack area:
v BDTXUEX uses the BDTXCALL linkage to reach user exit routines that are in the

BDT address space. The calling module’s registers are saved in BDTGRSV prior

**
* *
* EXIT HEADER INFORMATION *
* *
**
BDTUX31 CSECT

B ENDCATCH-*(,R15) BR AROUND ENTRY INFORMATION
DC AL1(ENDCATCH-*-1) LENGTH OF ENTRY INFORMATION

MDNUX31 DC CL8’BDTUX31’ MODULE NAME
MDLUV31 DC CL8’ ’ LABEL NAME
MDRUX31 DC CL9’ HBD1102 ’ BDT RELEASE OR PTF NUMBER
MDDUX31 DC CL8’06/20/84’ ASSEMBLY DATE
MDTUX31 DC CL6’-22.35’ ASSEMBLY TIME
ENDCATCH DS OH

Figure 25. Example of Standard Exit Routine Header Information

80 z/OS BDT Installation

to invoking the exit routine, the exit routine is linked, and exit processing is
performed. Return to the calling routine is through register 14, and includes a
return to BDTGRSV to reload the calling routine’s registers before returning
control to the calling module. (Refer to Figure 26, part A, for a representation of
this processing.)

v BDTXUEX uses a BALR instruction to reach user exit routines that are in the
link pack area (always BDTUX28 and usually BDTUX08, BDTUX10, and
BDTUX19). As a result, the caller’s registers are not saved, nor are the registers
automatically restored upon return; this is your responsibility when coding these
exit routines. The BDTXCALL linkage cannot be used in this case: the registers
are not saved in BDTGRSV because the BDTXCALL linkage has no access to the
BDT TVT. Return to the calling module is direct with use of a BR14 instruction.
(Refer to Figure 26, part B, for a representation of this processing.)

Note: The BDTXUEX macro considers all return codes other than a multiple of 4
to be invalid.

Names of Modules That Invoke the Exit Routines
The description of each user exit routine in Chapter 10, “User Exit Routine
Reference,” on page 93 states the name of the BDT (or JES3) module that invokes
the exit routine. The following table summarizes this information.

User Exit Routine
Module That Invokes It

BDTUX01
BDTINTK

BDTUX02
BDTINIC

BDTUX03
BDTINCD

Calling Module

Calling Module

BDTGRSV

module registers

BR14

BDTXUEX
BDTXCALL

:
:

:
:

:
:

:
:

:
:

:
::
:

:
:

:
:

: :
:
:
:
:

:
:

:
:

BR14

BDTXUEX
BALR

:
:

Most User

LPA-User

saved here

Calling

Exit Routines

Exit Routines

Figure 26. BDTXUEX exit routine linkage conventions

Chapter 9. Writing User Exit Routines 81

BDTUX04
BDTINR1

BDTUX05
BDTINR2

BDTUX06
BDTINIT

BDTUX07
BDTGRXD

BDTUX08
BDTLP

BDTUX10
BDTLP

BDTUX11
BDTCMDV

BDTUX12
BDTCMDV

BDTUX14
BDTGRXD

BDTUX15
BDTSEQ

BDTUX16
BDTGRLG

BDTUX17
BDTGRJS

BDTUX18
BDTGRJS

BDTUX19
BDTLP

BDTUX24
BDTACMN

BDTUX25
BDTCMDV

BDTUX26
BDTGRXD

BDTUX27
BDTGRJR

BDTUX28
BDTSS34

BDTUX29
BDTTQI

BDTUX30
BDTGRDA

BDTUX31
BDTIQDV

82 z/OS BDT Installation

IATUX50 (JES3)
IATBDCI (JES3)

IATUX56 (JES3)
IATBDCI (JES3)

Using Text Units to Customize BDT Transaction Processing
For each parameter specified on a transaction, BDT builds a control block called a
text unit. These text units describe the processing to be done for the transaction as
a whole or the processing to be done specifically for the TO or the FROM data set.

BDT puts the text units in the master job definition (MJD) for the transaction. Exit
routine BDTUX08 can be used to define user transaction parameters that can be
used to create text units. Before a transaction is placed on the BDT work queue,
exit routine BDTUX19 can be used to add text units to the MJD. BDTUX19 can also
be used to inspect and modify text units already in the MJD.

BDT processes two kinds of text units:
v Dynamic allocation text units

These text units are created from parameters specified either in the TO section or
the FROM section of a transaction. (For a description of the sections of a BDT
transaction, refer to z/OS BDT File-to-File Transaction Guide.) For example,
dynamic allocation text units are created for the VOLUME and the DSORG
transaction parameters. Dynamic allocation text units are always considered to
be nongeneric: that is, each pertains either to the TO data set or to the FROM
data set, not to the transaction as a whole. Dynamic allocation text units are
defined by MVS allocation services. BDT passes them to allocation services via
SVC 99 to allocate the source and the destination data sets. Refer to z/OS MVS
Programming: Authorized Assembler Services Guidefor information about dynamic
allocation text units in MVS.

v BDT text units
These text units are created from parameters specified in the job definition, the
TO, or the FROM section of a transaction. A BDT text unit can describe either
processing for the whole transaction (a generic text unit) or processing
specifically related to the TO or the FROM data set (a nongeneric text unit). For
example, generic BDT text units are created for the JOBNAME and MSGCLASS
transaction parameters. Nongeneric BDT text units are created for the
LOCATION and BDTENQ transaction parameters. BDT text units are not passed
to SVC 99 to allocate a data set. They are used by BDT in its processing of the
transaction.

Each text unit created for a transaction is identified by a key. Macro IEFZB4D2
maps the key values for dynamic allocation text units. Macro BDTDMJD maps the
key values for BDT text units. User exit routines that have access to the MJD can
use the BDTXTUAM macro to retrieve a particular text unit by specifying its key.
Refer to “BDTXTUAM” on page 178 for a description of how to use the
BDTXTUAM macro.

You can create your own transaction parameters and associated text units that
specify processing unique to your installation. This can be done by using the
BDTDKYWD macro in BDTUX08, the language processor keyword extension table.
This table extends BDT’s keyword table that defines valid transaction parameters
and the text unit table that describes the corresponding text unit for each keyword.
Note that BDTUX08 does not contain executable code; its purpose is to add entries
to the keyword and text unit tables. Refer to the description of BDTUX08 in

Chapter 9. Writing User Exit Routines 83

“BDTUX08—User-Defined File-to-File Transaction Keywords” on page 112 and the
description of the BDTDKYWD macro in “BDTDKYWD” on page 163.

You can also add text units to the MJD during transaction processing with
BDTUX19, the transaction modification exit routine. BDTUX19 receives control
from the language processor after it has processed all available transaction
parameters. (Note that BDTUX19 will receive control twice: once in the user’s
address space (or in BDT’s address space for some transactions entered at MCS
consoles), and again in BDT’s address space after the language processor has
processed the parameters specified in the GMJD library.) In BDTUX19 you may
process the text units created in BDTUX08 for your installation-unique parameters.
You may also inspect, modify, or add any other text units. See the description of
BDTUX19 in “BDTUX19—File-to-File Transaction Modification” on page 134 for a
discussion of the functions this exit routine may perform.

After BDTUX19 is invoked in the BDT address space to make any final changes to
a transaction, the transaction is written to the BDT work queue. Subsequent user
exit routines may retrieve text units via BDTXTUAM and inspect them, but they
may not change existing text units or add new ones.

A Short Cut for Testing BDT
The BDT authorization exit routines must be coded to authorize a user to issue
BDT commands and transactions. However, if you want to test BDT, there are two
quick methods of doing so. First, you can use the sample authorization user exit
routines provided in SYS1.SBDTSAMP. The sample exit routines in
SYS1.SBDTSAMP allow transactions to be submitted from all sources (that is,
batch, TSO, and MCS and JES consoles); however, commands can only be
submitted through MCS and JES consoles (batch and TSO are not supported). The
second method is to code your own user exit routines to set a return code and
return to the invoking module.

You can code each authorization exit routine to set a return code which, when
passed back to the invoking module, causes the authorization of the transaction or
command. BDT authorizes work requests when a return code of 0 is received from
a user exit routine. A return code of 4 in the JES3 address space from IATUX56
authorizes the JES3 command entered by BDT.

These shortcuts should never be taken when BDT is installed on a production
system. Authorizing all commands and transactions can seriously jeopardize
system security.

How Authorization Exit Routines Fit into the Flow in a BDT
File-to-File Subsystem

BDT Request Routing
BDT processes two types of requests from file-to-file users:
v A request for a file transfer. The data is moved from one data set to another.

This is called a transaction.
v A request for BDT to perform some function. This function is to either provide

information, as with an inquiry command, or to change the status of its
environment in some way. For example, this may be a request to schedule work
requests or the use of devices. This is called a command.

84 z/OS BDT Installation

In a JES3 environment BDT also transmits JES3 commands. In this case BDT
merely acts as a route for the command from you to the JES3 address space.
IATUX56 serves this function.

How Requests Enter a BDT File-to-File Subsystem
Commands and file-to-file transactions can enter the BDT subsystem from four
sources: JES3 consoles (only in a JES3 environment), MCS consoles, TSO terminals,
or batch jobs. Figure 27 on page 86 shows these four sources of input. Note that
the routing of commands and file-to-file transactions is affected by an installation’s
use of transaction queuing integrity (TQI) to checkpoint the work request at the
processor on which it is entered.

BDT TQI is a facility that ensures that commands and file-to-file transactions are
not lost in the event of hardware or software failure. Once started, TQI must be
enabled to write those commands and transactions to the TQI files. BDT TQI
ENABLE commands must be entered at an MCS console.

Each of the two types of work requests, commands and transactions, takes a
different path to execution. Each needs authorization checks along the way to
confirm that the user of the command or transaction has the authority to be using
it. Authorization user exit routines must check the input before the command or
transaction has left the node on which it is entered. The node receiving the work
request must also verify the authority of the user before executing the work. For
transaction-specific inquiry (I) and modify (F) commands, BDTUX31 is provided
immediately before processing a specific transaction, to authorize or reject that
command based on a comparison of the transaction origin and the command
origin.

BDT Requests from a TSO Terminal: As you will note in Figure 27 on page 86,
after a TSO user enters a BDT request, it is processed by the BDT command
processor, BDTTSO. BDTTSO issues an SVC to route it to IGX00034. This module
invokes the BDT language processor (BDTLP), building the first control block,
called the BDT subsystem interface data area (BSID), which contains the user’s
request. The BSID is then passed to BDTSSBDT by the subsystem interface (SSI).

BDT Requests from a Batch Job: When a BDT request is issued by a batch job,
the request is processed by a BDT batch processor (BDTBATCH) which issues an
SVC to route it to IGX00034. This module invokes the BDT language processor
(BDTLP). BDTLP builds the first BDT control block, called the BSID, to contain the
user’s request. The new BSID is passed to BDTSSBDT by the subsystem interface
(SSI).

BDT Requests from an MCS Console: Note in Figure 27 on page 86 that when
an MCS console operator enters a BDT request, the request is first processed by
BDTSS34. User exit routine BDTUX28 in BDTSS34 can examine the MCS console to
determine its attributes and, based on those attributes, assign it an authorization
level. The authority level is passed back to BDTSS34 which then places the
authorization level in the BSID. Later, when other authorization user exit routines
examine the BSID and its authorization level, authorization user exit routines can
determine if those requests should be processed.

A skeletal (or native mode) BSID is built and passed to BDTSSBDT. It is passed by
the subsystem interface (SSI).

BDT Requests from a JES3 Console: A BDT work request entered at a JES3
console is processed by IATBDCI, a JES3 module. IATBDCI calls the language

Chapter 9. Writing User Exit Routines 85

processor (BDTLP) to build the first BDT control block. This control block, called
the BSID, contains the user’s request. IATBDCI passes the BSID to BDTSSBDT by
the subsystem interface (SSI).

Checkpointing requests in BDT TQI
Note in Figure 27 that all four sources of work for BDT (TSO terminal, batch job,
an MCS console, or a JES3 console) use TQI to save their commands or file-to-file
transactions.

TQI ensures that work requests are not lost through hardware or software failures.
All file-to-file transactions are always checkpointed, but commands are
checkpointed only when BDT is active. A BDT SEND command is checkpointed
only if a session with the node specified on the SEND command is active. TQI is a
separate address space working in each processor where BDT requests are issued.

Routing from BDTSSBDT to the BDT address space
Figure 28 on page 88 shows the continued processing of a BDT transaction or
command from BDTSSBDT. Note that in traveling from BDTSSBDT to the TQI
address space, then to BDT, the request goes from the user’s address space to the
BDT address space. Details on the use of each of the authorization exit routines can
be found in Chapter 10, “User Exit Routine Reference,” on page 93.

At this point in the logic flow, routing is dependent upon the type of request the
user has made. Note in Figure 28 on page 88 that:

TSO BDTTSO

BDTBATCH

IATBDCI

BDTSS34MCS

JES3

Batch

(BSID SSI)

Reject
No

Yes

Executed

Authorized

BDTUX28

BDTSSBDT

BDTTQIAS

Write BSID

?

?

No

No

No

Error

Yes

Yes

Yes

(BSID)

Cross memory

TQI post BSID

User Address Space

Route BSID to
BDTCMDV in
BDT
address space
(via cross
memory)

TQI
checkpoint
data set

JES3

?

TQI address space

BDTCMDV in

Route BSID to
IATBDCI in
JES3
address space
(via SSI)

BDT
in this

processor
?

TQI

?

Figure 27. File-to-file request routing

86 z/OS BDT Installation

v If BDT is active in the processor, and TQI is not enabled and not required, the
transaction or command is routed directly to the BDT address space. Otherwise,
the transaction or command is rejected.

v If BDT is not active in the processor, and TQI is not enabled and not required,
and the request was made on a JES3 system, the transaction or command is
routed through the JES3 address space (IATBDCI).

BDTUX25 screens all commands entering the BDT address space. BDTUX25 also
screens file-to-file transactions entering the BDT address space when TQI is not
active and not required. If the request is checkpointed by TQI, BDTUX29 in
BDTTQI processes will process transactions and BDTUX25 will process commands.
Once the initial authorization check is made, routing continues in the following
way:
v BDTGRXD picks up file-to-file transactions that are to be executed in this node

and sends them through user exit routine BDTUX26 for another authorization
check. This flow is illustrated in Figure 29 on page 90.

v BDT commands to be executed in this node complete execution. Authorization is
complete.

v BDT commands to be executed at another node are examined in authorization
exit routines at the other node. In the case of a BDT command sent to another
node, the command is authorized in BDTUX25 on the sending node, travels
across the link to the other node, and is authorized once again in BDTUX25 in
the receiving node. All nodes must code the authorization exit routines to
prevent unauthorized users from submitting BDT commands and transactions,
not only within a node but from other nodes as well.

Figure 28 on page 88 illustrates that BDTTQI is notified of the arrival of a
checkpointed request. BDTTQI then reads the request off the BDT TQI checkpoint
file. If the request is a BDT command, BDTTQI sends the command to BDTCMDV
for authorization checking in BDTUX25. If the request is a file-to-file transaction,
BDTTQI passes it through its own authorization exit routine, BDTUX29.

If the request is to be scheduled on this node, BDTTQI passes it directly to
BDTGRXD for processing. Otherwise, it passes by BDTIFCM communications to
the appropriate node.

Chapter 9. Writing User Exit Routines 87

Routing of a file-to-file transaction: Let’s take a look at the authorization checks
made on a transaction processed at this node. In Figure 28, we left off with a
transaction that completed an authorization check in BDTUX25 in BDTCMDV if
BDT TQI is disabled. In the case in which BDT TQI is enabled, transactions skip
BDTUX25 and are examined by user exit routine BDTUX29.

Regardless of whether a file-to-file transaction is authorized in BDTUX25 or
BDTUX29, the path after that point is identical for transactions:
v

If the file-to-file transaction is bound for another node, the exit routines run in
the following order after passing through either BDTUX25 or BDTUX29:
– BDTUX26 in the global node performs an authorization check. Remember that

BDTUX26 runs on the global node’s copy of BDTGRXD. Any limitation on
data sets or prohibition on certain users in the BDT network would ideally be
made at this point in processing. Otherwise, the transaction is put on the BDT

JES3 Address Space User Address Space

IATBDCI
IATUX56

Authorized
?

JES3
Command

?

No

Yes

No

No

TQI Address Space

Write

TQI
Checkpoint
Data Set

A
A

Send post BSID to
BDTCMDV via cross
memory

or
if no TQI, send
command/transaction
BSID to BDTCMVD
via cross memory

Reject

Reject

Yes

Yes

No

No

Yes

BDTTQI

Read request

Command
?

BDTUX29

Authorized
?

Reject

Execute

BDT Address Space

BDTCMDV

TQI
?

BDTUX25

Authorized
?

No

Yes

No

Yes Send to other
node via IFCM

BDTSSBDT

Yes JES3
?

No

Error

TQI
?

Yes

No

No BDT
in this processor

?

Yes

BDTTQIAS

A

B

Post message

Command for
another BDT

node?

Figure 28. Routing from BDTSSBDT to BDT

88 z/OS BDT Installation

job queue and subsequently scheduled for execution. After the job has been
scheduled, BDTUX27 can be used to make further checks on either side of the
transaction, before the DAPs receive control to make the data transfer.
BDTUX26 should be used for as much authorization checking as possible; this
prevents file-to-file transactions waiting on the job queue to only be
unauthorized later (that is, not being authorized by BDTUX27). Some
checking must be provided in BDTUX26, however. For example, if a
file-to-file transaction is submitted at the global node, BDTUX27 will be the
first check to determine if the user is permitted use of that resource (for
example, a unit, a volume, or a data set).

– The local node check in BDTGRJR is made on both ends of the data flow. The
local authorization check on the node receiving the information is made first.
Exit routine BDTUX27 in the sending node examines the file-to-file
transaction after the receiving node completes its authorization.

Chapter 9. Writing User Exit Routines 89

Routing of a Command: Let’s take a look at the authorization checks made on a
command processed at this node. In Figure 28 on page 88, a command completes
the authorization check done in BDTUX25. The command is then passed to the

B

A

A

BDTGRXD

BDTUX26

BDTGRJR

BDTUX27

No

No

No

Yes

Yes

Yes

Schedule job

For this
node

?

Authorized
?

Authorized
?

Data flow begins

Via IFCM
routing to
other node

Also send schedule
request to other node
via IFCM routing

Reject

Reject

Figure 29. Routing of a file-to-file transaction

90 z/OS BDT Installation

appropriate handler routine. For commands that do not request information about
specific transactions, such as an I B command, the command is processed and a
response is routed back to the requestor. Transaction-specific commands, such as I
Q, are processed by another authorization exit routine, BDTUX31.

BDTUX31 is entered every time a response is generated during the processing of a
command. For an I Q command attempting to display information for ten jobs on
the BDT job queue, BDTUX31 is entered for each job. BDTUX31 is passed
information about the origin of the command and the origin of the transaction. The
exit routine can then determine if the response should be displayed or suppressed
for the transaction. This prohibits users from inquiring after, or possibly modifying,
jobs that they do not own.

Step 4. Assemble Your Exit Routines
You must use the High Level Assembler (HLASM).

Step 5. Link-Edit Your Exit Routines

Exit Routines That Will Run in the Link Pack Area
Exit routine BDTUX28 is invoked by CSECT BDTSS34. Both must run in the link
pack area.

Exit routines BDTUX08, BDTUX10, and BDTUX19 are invoked by CSECT BDTLP.
All four may run in the BDT address space or in the link pack area.

Exit Routines That Will Run in the JES3 Address Space
Exit routines IATUX50 and IATUX56 are for JES3 customers only and run in the
JES3 address space. Consult the z/OS JES3 Customizationmanual for information
about these exit routines.

Exit Routines That Will Run in the BDT Address Space
All BDT exit routines except BDTUX28 can run in the BDT address space. You can
link-edit them as members of SYS1.SBDTLIB (the BDT module library) or as
members of a library that is concatenated with SYS1.SBDTLIB.

Step 6. Load Your Exit Routines

Loading Exit Routines into the Link Pack Area
BDTUX28 must be loaded into the link pack area (LPA) or Modified Link Pack
Area (MLPA). The BDTLP module, containing exits BDTUX08, BDTUX10, and
BDTUX19, may be placed in a link list library, a STEPLIB, or loaded into LPA or
MLPA. All LPA and MLPA resident modules must be reentrant, and loading or
changing them requires an IPL.

To load modules into LPA, place them in a library in the LPA list. To load modules
into MLPA, list them in an IEALPAxx member of PARMLIB used for IPL. Loading
new or updated modules into LPA requires an IPL with the CLPA option. Loading
new or updated modules into MLPA requires an IPL. For more information about
loading modules into LPA and MLPA, see z/OS MVS Initialization and Tuning
Reference.

Chapter 9. Writing User Exit Routines 91

BDTUX08, BDTUX10, and BDTUX19 can be tested without an IPL even if the
BDTLP module is loaded into LPA or MLPA. You can link a test copy of BDTLP
into a different library and use STEPLIB to test the copy. You can also test these
exits this way if BDTLP is in a link list library.

If BDTLP is in a link list library, BDTUX08, BDTUX10, and BDTUX19 can change
without an IPL by relinking BDTLP and issuing a MODIFY LLA,REFRESH
operator command.

Loading Exit Routines into the BDT Address Space
You must hot start BDT to load exit routines into the BDT address space. All user
exit routines except BDTUX28 may be loaded into the BDT address space.
(BDTUX28 must be in the link pack area.)

For user exit routines residing in the BDT address space, BDTINIX loads the
routines using the MVS LOAD macro and stores the address of each in the user
exit list in BDTGRPT. Unlike JES3, BDT does not require dummy exit routines with
a branch back to the main code.

Loading Exit Routines into the JES3 Address Space
You must hot start JES3 to load exit routines into the JES3 address space. IATUX50
and IATUX56 must be loaded into the JES3 address space.

92 z/OS BDT Installation

Chapter 10. User Exit Routine Reference

This chapter provides interface information about each BDT user exit routine that
you can write. It provides:
v The type of routine: authorization or customization
v A general description of the routine
v Register conventions at entry to and exit from the routine
v Circumstances under which the exit routine is entered and exited
v The execution environment: the point when the routine receives control, the

address space in which it runs, the task under which it runs, the PSW state, and
the storage protection key

v The mapping and executable macros used by the routine
v The consequences if the routine is not used.

The required authorization exit routines (BDTUX25, BDTUX26, BDTUX27,
BDTUX29 and BDTUX31) are SMP/E installable. For more information, see the
prolog of the exit routines in SYS1.SBDTSAMP.

The exit routines are listed in alphanumeric order.

BDTUX01—BDT Initialization and Termination Processing

Type
Customization (optional).

General Description
This exit routine is called when BDT is started, when BDT initialization completes,
and when BDT ends, to allow an installation to perform any specialized processing
necessary only for the life of the BDT address space.

It should be noted that it is possible during an abnormal termination of the BDT
address space, for an invocation of BDTUX01 with reason code = 16 or 20, that the
TVT is inaccessible when BDTUX01 is called. Therefore, BDTUX01 uses the
BDTXCALL macro to remove a dependency that BDTXUEX has on the TVT. For
reason code 16 or 20, BDTUX01 will not be called via ASAVE, and no save area
will be passed to the exit routine.

Also consider TVT inaccessibility if anchoring BDTUX01 data areas in the TVT.

This exit routine receives control from BDTINTK with the following information:
1. A reason code in register 0 indicates that this exit routine was invoked during

one of the following conditions:
v 0 - Pre-initialization processing
v 4 - Initialization successfully completed
v 8 - Termination processing when initialization is successful
v 12 - Termination processing when initialization is not successful
v 16 - Termination processing when initialization is successful from BDTINTK’s

ESTAE recovery routine

© Copyright IBM Corp. 1986, 2013 93

v 20 - Termination processing when initialization is not successful from
BDTINTK’s ESTAE recovery routine.

2. The address of the TVT that is contained in register 12.

Note: BDTUX01 will not receive control out of BDTINTK’s ESTAE routine if the
ESTAE routine is entered after BDTUX01 has been invoked with a reason code of 8
or 12.

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to the BDTUX01 routine.
Registers 2-14 are saved by BDT ASAVE processing. For reason code 16 or 20,
registers 2-14 are saved by BDTINTK in its own internal data area.

Register 0
Contains a reason code:

Reason 0
Pre-initialization processing

Reason 4
Initialization successfully completed

Reason 8
Termination processing when initialization is successful

Reason 12
Termination processing when initialization is not successful

Reason 16
Termination processing when initialization is successful from
BDTINTK’s ESTAE recovery routine

Reason 20
Termination processing when initialization is not successful from
BDTINTK’s ESTAE recovery routine

Register 12
Address of the BDT TVT. As noted above, it is possible that when
BDTUX01 is invoked with a reason code 16 or 20 that the TVT is
inaccessible. If so, then register 12 is zero.

Register 13
Points to the register save area set up by ASAVE. If reason code = 16 or 20,
register 13 is zero. BDTINTK will save its own registers prior to calling
BDTUX01 and will not link up a new save area for BDTUX01.

Register 14
Contains the address of the return point in BDTGRSV. If reason code = 16
or 20, register 14 contains the return point within BDTINTK.

Register 15
Contains the entry point address into the BDTUX01 user exit routine.

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX01 user
exit routine, registers 2-14 of BDTINTK are saved by BDTGRSV. You must store
registers 12, 13, and 14 in an area you provide (either an area obtained by
GETMAIN or one within your user exit routine) and those registers must be
restored on return to BDTGRSV by register 14.

BDTUX01

94 z/OS BDT Installation

Register 14
Contains the address of the return point in BDTGRSV. If reason code = 16
or 20, register 14 contains the return point within BDTINTK.

Register 15
No return codes - register 15 is ignored.

Operation
BDTINTK invokes this exit routine before initialization begins, after initialization
ends, and when BDT terminates. Parameters are not passed to this exit routine and
any user data areas that need processing can be anchored in the BDT TVT.

Note: When you select user-reserved fields in the TVT for storage of user data, do
not use fields in the TVT initialization save area (TVTINSAV to TVTENDSV) before
BDT is initialized. Data that is saved in the TVT after initialization will be saved
and available during a hot or warm start.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for your user exit routine. If an ESTAE exit routine is not included in the exit
routine, an ESTAE in BDTABMN provides clean-up in the event of exit routine
failure.

Environment
Point Where Exit Routine Receives Control: This exit routine receives control at:
v BDT pre-initialization time
v BDT post-initialization time
v BDT termination time.

Address Space in Which Exit Routine Runs: BDT address space.

Task under Which Exit Routine Runs: This exit routine runs under the TCB for
BDTINTK.

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDTVT to map the TVT
v BDTDREG to map the registers
v BDTDGSD to map the GSD (necessary for coding an ESTAE).

Executable Macros

v BDTXASRV to invoke abend services during abend recovery

What If BDTUX01 Is Not Used?
If the exit routine is not provided, processing is not affected.

BDTUX01

Chapter 10. User Exit Routine Reference 95

BDTUX02—Unrecognized Spool Data Management (RBAM)
Initialization Statements

Type
Customization (optional).

General Description
This exit routine allows an installation to identify and process spool data
management (RBAM) initialization statements not recognized by BDTINIC. RBAM
statements precede network initialization statements processed by BDTUX03.
BDTINIC processes the OPTIONS statement and the ENDRBAM statement. The
exit routine runs only during cold or warm starts. BDTINIC is the initialization
module that processes initialization statements that structure the BDT work queue.

You can also use the exit routine to identify and process unrecognized keywords
specified on the OPTIONS statement.

For example, you might write:
USERSTMT,PASS=YES

.

.

.
OPTIONS,PRIORITY=6

where:
USERSTMT is the unrecognized user statement
PASS is the keyword on the unrecognized user statement
YES is the value associated with the keyword
OPTIONS is the recognized BDT initialization statement
PRIORITY is the unrecognized keyword on the BDT initialization statement.
The value associated with the keyword is 6.

See Appendix E, “Initialization Flow and User Exit Routines,” on page 191 for an
understanding of how this user exit routine fits into the initialization process.

BDTINIC invokes BDTUX02 for four reasons. A reason code in register 0 informs
the user exit routine of the purpose for which it is run. The user exit routine does
not parse the statement; parsing is performed by BDTINIC. BDTINIC passes the
information to the user exit routine.

Reason=0 Invalid initialization statement

This invocation allows the user to recognize and process initialization statements
not recognized by BDT. BDTINIC calls the exit routine to examine the statement. If
the exit routine does not recognize it, BDTINIC processes the statement as an error.

Reason=4 Process a keyword on the user-defined statement

This invocation allows the user to recognize and process a keyword and its
parameters on a user-defined initialization statement. BDTINIC calls BDTUX02
with reason=4 as long as there are keywords associated with a user-defined
initialization statement.

BDTUX02

96 z/OS BDT Installation

Reason=8 EOD condition on a user-defined statement

This invocation communicates the end-of-data condition to the user exit routine.
BDTINIC has passed all the keywords on an unrecognized statement.

Reason=12 Unrecognized keyword on an OPTIONS statement

This invocation allows the user to recognize and process user-defined keywords on
the OPTIONS initialization statement.

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to the BDTUX02 user exit
routine. Registers 2-14 are saved by BDT ASAVE processing in BDTGRSV.

Register 0
Contains a reason code:

Reason 0
Unrecognized initialization statement

Reason 4
Keyword on the user-defined initialization statement

Reason 8
End-of-data condition

Reason 12
Invalid OPTIONS statement keyword

Register 1
Contains the address of the parameter list. The parameter list contents
depend upon the reason for which the user exit routine runs.

Reason 0
Register 1 contains the address of a one-word parameter list:

Word 1
Address of the unrecognized initialization statement

Reason 4
Register 1 contains the address of a three-word parameter list:

Word 1
Address of the keyword on a user-defined initialization
statement

Word 2
Address of the keyword parameter value

Word 3
Address of a halfword field containing the length of the
keyword parameter value

Reason 8
No parameters are passed when the exit routine runs for an EOD
condition.

Reason 12
Register 1 contains the address of a three-word parameter list:

Word 1
Address of the OPTIONS initialization statement
unrecognized keyword

BDTUX02

Chapter 10. User Exit Routine Reference 97

Word 2
Address of the keyword’s parameter value

Word 3
Address of a halfword field containing the length of the
keyword parameter value

Register 11
Contains the address of the initialization data CSECT, BDTINDT.

Register 12
Contains the address of the BDT TVT.

Register 13
Points to the register save area set up by ASAVE processing.

Register 14
Contains the address of the return point in BDTGRSV.

Register 15
Contains the entry point address into the BDTUX02 user exit routine.

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX02 user
exit routine, registers 2-14 of BDTINIC are saved in BDTGRSV. You must store
registers 12, 13, and 14 in an area you provide (either a GETMAINed area or one
within your user exit routine) and those registers must be restored on return to
BDTGRSV by register 14.

Register 14
Contains the address of the return point in BDTGRSV.

Register 15
Used for returning a return code value set by the BDTUX02 user exit
routine.

For reason codes 0, 4, and 8:

RC 0 Indicates that the BDTUX02 user exit routine recognizes the
statement and BDTINIC continues initialization processing.

RC 4 Indicates that BDTUX02 does not recognize the statement or
keyword. BDTINIC prints the statement and initialization
continues until complete. At this time, BDT terminates due to the
error.

RC 8 Indicates that the BDTUX02 user exit routine failed to recognize
the statement or its keywords. BDTINIC prints the statement and
causes initialization to terminate as soon as possible.

For reason code 12:

RC 0 Indicates that the BDTUX02 user exit routine recognizes the
user-defined keyword on the OPTIONS statement and processing
continues.

RC 4 Indicates that BDTUX02 does not recognize the user-defined
keyword on the OPTIONS statement. BDTINIC prints an error
message and processing continues until initialization is complete.
At this time, BDT terminates due to the error.

RC 8 Indicates that the BDTUX02 user exit routine failed to recognize

BDTUX02

98 z/OS BDT Installation

the user-defined keyword on the OPTIONS statement. BDTINIC
prints an error message and terminates initialization as soon as
possible.

Operation
When BDTINIC encounters an unknown initialization statement, it passes control
to the user exit routine with reason code=0. If the exit routine recognizes the
statement, it sets a return code of 0 in register 15 and returns to BDTINIC.

BDTINIC invokes the exit routine again for each keyword it encounters on the
user-defined initialization statement. The exit routine runs in this case with reason
code=4.

When all keywords have been processed, the exit routine is called with reason
code=8, which informs the exit routine of the end-of-data condition on the
user-defined keyword.

For each exit call with reason codes 0, 4, and 8, a return code of 0 indicates the exit
routine recognizes the statement as user-defined; a return code of 4 indicates the
exit routine failed to recognize the parameter as user-defined, but the error is not
serious enough to fail BDT initialization immediately. A return code of 8 indicates
an error serious enough to prevent BDT from completing initialization as soon as
possible. Error messages are issued for return codes 4 and 8.

For reason code 12, a return code of 0 indicates that the user-defined keyword on
the OPTIONS statement is recognized. Processing continues. A return code of 4
causes BDTINIC to issue an error message; processing continues until the end of
initialization. Then BDT terminates. A return code of 8 causes BDTINIC to issue an
error message, then terminate initialization processing as soon as possible.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for your exit routine in the event of an abend. If there is no recovery in the routine,
an ESTAE recovery routine in BDTABMN provides clean-up in the case of system
failure.

Environment
Point Where Exit Routine Receives Control: This exit routine receives control
during BDT cold or warm starts when the initialization file must be opened, read,
and closed.

Address Space in Which Exit Routine Runs: BDT address space.

Task under Which Exit Routine Runs: This exit routine runs under the TCB of
BDTINIT.

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDINT to map the initialization data CSECT
v BDTDREG to map the registers
v BDTDTVT to map the TVT

BDTUX02

Chapter 10. User Exit Routine Reference 99

v BDTDGSD to update the generalized subtask directory (GSD) (if you code an
ESTAE)

Executable Macros

v BDTXASRV to invoke abend services (if you code an ESTAE)

What If BDTUX02 Is Not Used?
If the exit routine is not provided, the error handling for the unrecognized
initialization statement issues error message BDT3243. It displays the unrecognized
statement. The message processing sets the severe error indicator. This causes the
eventual termination of BDT initialization. BDTINIC processing continues by
reading the next initialization statement.

BDTUX03—Unrecognized BDT Network Initialization Statements

Type
Customization (optional).

General Description
This exit routine allows an installation to identify and process statements not
recognized by BDTINCD. The following statements are identified and processed by
BDTINCD and describe the BDT network:

SNABUF
SYSID
BDTNODE
ENDINIT

All BDT network initialization statements follow the ENDRBAM statement.

This exit routine runs only during a cold or warm start when the BDT initialization
stream is processed. The exit routine can recognize user-defined initialization
statements, any keywords associated with those statements (a keyword is followed
by an equal sign), and any values associated with the keyword. For example, you
could code the following:
BDTGOOP,N=SYS01

where:
v BDTGOOP is the initialization statement
v N is the keyword
v SYS01 is the value associated with the keyword.

BDTINCD invokes BDTUX03 for three reasons. A reason code in register 0 informs
the user exit routine of the purpose for which it is run.

Reason=0 BDTINCD encounters an unrecognized initialization statement

This invocation allows the user to identify and process initialization statements not
recognized by BDT. BDTINCD calls the exit routine to examine the statement. If
the exit routine does not recognize it, BDTINCD processes the statement as an
error.

Reason=4 BDTINCD passes a keyword and its parameters

BDTUX02

100 z/OS BDT Installation

This invocation allows the user to recognize and process keywords on a
user-defined initialization statement. BDTINCD calls BDTUX03 with reason=4 as
long as there is a keyword on a user-defined initialization statement.

Reason=8 EOD condition on a user-defined statement

This invocation communicates the end-of-data condition on the user-defined
initialization statement. There are no more keywords to process.

See Appendix E, “Initialization Flow and User Exit Routines,” on page 191 for
further information on where this exit routine occurs during initialization
processing.

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to the BDTUX03 user exit
routine. Registers 2-14 are saved by BDT ASAVE processing.

Register 0
Contains a reason code:

Reason 0
Unrecognized initialization statement

Reason 4
Keyword on the user-defined initialization statement

Reason 8
End-of-data condition

Register 1
Contains the address of a parameter list. The contents of the parameter list
depend upon the reason for which the exit routine runs.

Reason 0
Register 1 contains the address of a one-word parameter list:

Word 1
Address of the unrecognized initialization statement

Reason 4
Register 1 contains the address of a three-word parameter list:

Word 1
Address of the keyword on the user-defined statement

Word 2
Address of the keyword’s parameter value

Word 3
Address of a halfword field containing the length of the
parameter

Reason 8
Parameters are not passed at the end of data.

Register 11
Contains the address of the initialization data CSECT, BDTINDT.

Register 12
Address of the BDT TVT.

Register 13
Points to the register save area set up by ASAVE processing.

BDTUX03

Chapter 10. User Exit Routine Reference 101

Register 14
Contains the address of the return point in BDTGRSV.

Register 15
Contains the entry point address into the BDTUX03 user exit routine.

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX03 user
exit routine, registers 2-14 of BDTINCD are saved in BDTGRSV. You must store
registers 12, 13, and 14 in an area you provide (either an area obtained by
GETMAIN or one within your user exit routine) and those registers must be
restored on return to BDTGRSV by register 14.

Register 14
Contains the address of the return point in BDTGRSV.

Register 15
Used for delivering a return code value set by the BDTUX03 user exit
routine.

RC 0 Indicates that the BDTUX03 user exit routine recognizes the
statement or keyword as user-defined. Processing continues.

RC 4 Indicates that the BDTUX03 user exit routine failed to recognize
the statement as user-defined. BDTINCD issues an error message,
then continues processing the rest of the initialization statements.

RC 8 Indicates that the BDTUX03 user exit routine failed to recognize
the statement as user-defined, or a processing error occurred that is
serious enough to prevent BDT from completing initialization. BDT
initialization processing terminates.

Operation
BDTINCD invokes BDTUX03 for three different reasons. It runs with a reason code
of 0 when BDTINCD encounters an unrecognized initialization statement. If the
exit routine sets a return code of 0 to indicate that the statement is recognized,
BDTINCD scans for keywords associated with the statement. When a keyword is
found, BDTUX03 is given control with reason code=4. BDTUX03 runs with reason
code=4 as long as keywords are found and the exit routine sets a return code of 0.
When all keywords are processed, BDTUX03 runs with a reason code of 8. The exit
routine is advised in this way of an end-of-data condition.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
in your exit routine in the event of system failure. If there is no recovery in the
routine, an ESTAE exit routine in BDTABMN provides clean-up in case of an
abend.

Environment
Point Where Exit Routine Receives Control: This exit routine receives control
during BDT cold or warm starts when the initialization files must be opened, read,
and closed.

Address Space in Which Exit Routine Runs: BDT address space.

Task Block Under Which Exit Routine Runs: The exit routine runs under
BDTINIT’s TCB.

BDTUX03

102 z/OS BDT Installation

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDINT to map the initialization data CSECT
v BDTDREG to map the registers (required by BDTXRTRN)
v BDTDTVT to map the TVT (required by BDTXRTRN)
v BDTDGSD to map the GSD (required for coding an ESTAE)

Executable Macros

v BDTXASRV to invoke abend services during abend recovery processing
(required for coding an ESTAE)

What If BDTUX03 Is Not Used?
If the exit routine is not provided, BDT issues message BDT3243 (which displays
the unrecognized statement), continues BDTINCD processing by reading
subsequent initialization statements, and terminates at the end of initialization
processing.

BDTUX04—Unrecognized Keywords on BDTNODE Statements for
File-to-File Nodes

Type
Customization (optional).

General Description
This exit routine allows an installation to define and process unrecognized
parameters on BDTNODE statements that define file-to-file nodes. BDTINR1
invokes this exit routine.

The BDTNODE initialization statement is used to identify all the nodes with which
an installation can transfer data. A BDTNODE initialization statement also defines
a node to itself. The BDTNODE statement creates the control blocks necessary for
communicating with all the nodes in a network.

On the BDTNODE statement for file-to-file nodes, attributes of that BDT system
can be defined, including global-local relationships, passwords used for
establishing sessions, node name, and virtual logical units (VLUs) and how they
are fenced.

BDTINR1, the module from which this exit routine runs, reads the BDTNODE
initialization statements and builds intermediate control blocks that later become
the line control tables (LCTs) and the resident logical units tables (RLTs). BDTINR2
converts the intermediate control blocks to LCTs and RLTs.

BDTINR1 recognizes only virtual logical units assigned to the interfunction
communication manager (BDTIFCM), or to the transfer of data. The user exit
routine functions as the first step in allowing an installation to define a VLU other
than these two types. BDTUX05 in BDTINR2 must also be coded to process

BDTUX03

Chapter 10. User Exit Routine Reference 103

information passed in the intermediate control blocks built in BDTINR1. BDTINR1
invokes the user exit routine before entering error processing for invalid keywords
on BDTNODE statements.

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to the BDTUX04 user exit
routine. Registers 2-14 are saved by BDT ASAVE processing.

Register 1
Contains the address of a three-word parameter list:

Word 1
Address of the unrecognized keyword encountered on the
BDTNODE statement

Word 2
Address of the unrecognized keyword value

Word 3
Address of a halfword field containing the unrecognized keyword
value length

Register 11
Contains the address of the initialization data CSECT, BDTINDT.

Register 12
Contains the address of the BDT TVT.

Register 13
Points to the register save area set up by ASAVE processing.

Register 14
Address of the return point, which is saved in BDTGRSV.

Register 15
The entry point address into the BDTUX04 exit routine.

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX04 user
exit routine, registers 2-14 of BDTINR1 are saved in BDTGRSV. You must store
registers 12, 13, and 14 in an area you provide (either an area obtained by
GETMAIN or one within your user exit routine) and those registers must be
restored on return to BDTGRSV by register 14.

Register 14
Address of the return point, which is saved in BDTGRSV.

Register 15
Used for delivering a return code value from the BDTUX04 user exit
routine:

RC 0 Indicates that the BDTUX04 user exit routine recognizes the
keyword as user-defined.

RC 4 Indicates that the BDTUX04 user exit routine encounters an error
while processing the keyword, but the error is not severe enough
to fail BDT initialization.

RC 8 Indicates that the BDTUX04 user exit routine encounters an error
while processing the keyword that is serious enough to cause BDT
to terminate initialization.

BDTUX04

104 z/OS BDT Installation

Operation
BDTINR1 invokes BDTUX04 when it encounters an unrecognized keyword on the
BDTNODE statement for a file-to-file node. BDTUX04 is passed the address of the
initialization work area (BDTINDT), which contains the address of the keyword
and associated keyword values If the user exit routine determines that the
keyword is user-defined, the return code is set to 0 (in register 15); BDTINR1
continues to scan for keywords.

If the exit routine does not recognize the keyword, it passes a nonzero return code
back to BDTINR1. A return code of 4 indicates a warning; however, initialization
continues. A return code of 8 indicates a severe error; BDT initialization is
terminated. BDT displays the bad keyword message for both return codes 4 and 8.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for your exit routine. If your user exit routine does not include an ESTAE, an
ESTAE exit routine in BDTABMN performs clean-up in the event of system failure.

Environment
Point Where Exit Routine Receives Control: This exit routine receives control when
an unrecognized keyword is specified on the BDTNODE statement.

Address Space in Which Exit Routine Runs: BDT address space.

Task under Which Exit Routine Runs: This exit routine runs under the TCB
established for BDTINIT.

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDINT to map the initialization data CSECT
v BDTDREG to map the registers (required by BDTXRTRN)
v BDTDTVT to map the TVT (required by BDTXRTRN)
v BDTDRLT (&ENTRY=INISH) to map the intermediate control blocks used to

build the RLT
v BDTDGSD to map the GSD (required for coding an ESTAE)

Executable Macros

v BDTXASRV to invoke abend services during abend recovery processing

What If BDTUX04 Is Not Used?
If the exit routine is not provided, the error handling for the unrecognized
initialization statement issues error message BDT3243. It displays the unrecognized
statement. BDT initialization eventually terminates. BDTINCD processing continues
by reading the next initialization statement.

BDTUX04

Chapter 10. User Exit Routine Reference 105

BDTUX05—BDTNODE Statement Keyword Processing for File-to-File
Nodes

Type
Customization (optional).

General Description
This exit routine is a companion to BDTUX04. It processes unrecognized keywords
found on the BDTNODE statement by exit routine BDTUX04. It runs in BDTINR2
to process user-defined fields in the intermediate storage file built by BDTINR1.

BDTINR1 runs user exit routine BDTUX04. This exit in BDTINR2 allows an
installation to finish processing user-defined keywords specified on the BDTNODE
statement. Both BDTUX04 and BDTUX05 run during a BDT warm or cold start.

See Appendix E, “Initialization Flow and User Exit Routines,” on page 191 for
further information on where this user exit routine occurs during initialization
processing.

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to the BDTUX05 user exit
routine. Registers 2-14 are saved by BDT ASAVE processing.

Register 1
Contains the address of a two-word parameter list:

Word 1
Address of the logical unit control table (LCT) entry for data
transfer

Word 2
Address of the resident logical units table (RLT) node entry

Register 11
Contains the address of the BDT initialization data CSECT, BDTINDT.

Register 12
Contains the address of the BDT TVT.

Register 13
Points to the register save area set up by ASAVE processing.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

Register 15
contains the address of the entry point into the exit routine.

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX05 user
exit routine, registers 2-14 of BDTINR2 are saved in BDTGRSV. You must store
registers 12, 13, and 14 in an area you provide (either an area obtained by
GETMAIN or one within your user exit routine), and those registers must be
restored on return to BDTGRSV by register 14.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

BDTUX05

106 z/OS BDT Installation

Register 15
Used for delivering a return code set by the BDTUX05 user exit routine:

RC 0 BDTINR2 assumes the user set up a special VLU type. BDTINR2
processes the next VLU.

RC 4 BDTINR2 sets up the VLU as a normal transfer VLU type.

Operation
The exit routine is passed a pointer to a logical unit control table (LCT) entry and a
pointer to the resident logical unit control table (RLT). With these two control
blocks, an installation can describe a VLU other than a transfer type.

If the exit routine responds with a zero return code, BDTINR2 continues processing
with the next VLU. If the exit routine responds with a nonzero code, BDTINR2
marks the VLU as a normal transfer type.

If the VLU is the first VLU on a line, it is set up as an interfunction communication
manager (BDTIFCM) VLU. BDTUX05 is not invoked in this instance.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for your user exit routine. If you do not include an ESTAE exit routine, an ESTAE
in BDTABMN provides clean-up in the event of exit routine failure.

Environment
Point Where Exit Routine Receives Control: This exit routine receives control just
before a VLU is processed as a transfer VLU.

Address Space in Which Exit Routine Runs: BDT address space.

Task under Which Exit Routine Runs: This exit routine runs under the TCB for
BDTINIT

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDINT to map the initialization data CSECT
v BDTDLCT to map the logical units table
v BDTDRLT (&ENTRY=ALL) to map the resident logical units table
v BDTDREG to map the registers
v BDTDTVT to map the TVT
v BDTDGSD to map the GSD (necessary for coding an ESTAE)

Executable Macros

v BDTXASRV to invoke abend services during abend recovery

What If BDTUX05 Is Not Used?
If exit routine BDTUX05 is not coded, the VLU is set as a transfer VLU.

BDTUX05

Chapter 10. User Exit Routine Reference 107

BDTUX06—BDT Post-Initialization Processing

Type
Customization (optional).

General Description
This exit routine, invoked by BDTINIT, receives control after BDT has processed all
of the initialization statements. This exit routine runs during cold, warm, or hot
starts. It enables an installation to examine or modify data areas before
initialization completes and control is passed to the multifunction monitor
(BDTGRCT). For example, this exit routine can be used to turn on the TVTJMLAV
bit in TVTOPTNS of the TVT to permit submission of transactions that access the
BDT job message log. (Also, refer to BDTUX16 later in this chapter for that exit
routine’s relationship to BDTUX06.)

No parameters are passed to the exit routine and no return codes are returned
from the exit routine.

BDTUX01 can be used instead of BDTUX06. BDTUX01 is called after BDTUX06.

See Appendix E, “Initialization Flow and User Exit Routines,” on page 191 for
more information on when the user exit routine runs during initialization
processing.

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to the BDTUX06 user exit
routine. Registers 2-14 are saved by ASAVE processing.

Register 11
Contains the address of the BDT initialization data CSECT, BDTINDT.

Register 12
Contains the address of the BDT TVT.

Register 13
Contains the register save area set up by ASAVE processing.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

Register 15
Contains the entry point address into the BDTUX06 user exit routine.

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX06 user
exit routine, registers 2-14 of BDTINIT are saved in BDTGRSV. You must store
registers 12, 13, and 14 in an area you provide (either an area obtained by
GETMAIN or one within your user exit routine) and those registers must be
restored on return to BDTGRSV by register 14.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

BDTUX06

108 z/OS BDT Installation

Operation
BDTINIT invokes this exit routine just before initialization completes. There are no
parameters passed to this exit routine and any user data areas to be processed
must be anchored in the BDT TVT.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for your user exit routine. If an ESTAE exit routine is not included in the exit
routine, an ESTAE in BDTABMN provides clean-up in the event of exit routine
failure.

Environment
Point Where Exit Routine Receives Control: This exit routine receives control just
before initialization completes.

Address Space in Which Exit Routine Runs: BDT address space.

Task under Which Exit Routine Runs: This exit routine runs under the TCB for
BDTINIT.

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDTVT to map the TVT
v BDTDINT to map the initialization data CSECT
v BDTDREG to map the registers
v BDTDGSD to map the GSD (necessary for coding an ESTAE)

Executable Macros

v BDTXASRV to invoke abend services during abend recovery

What If BDTUX06 Is Not Used?
If no user exit routine is provided, there is no impact on processing.

BDTUX07—User-Defined Parameters on the MSGCLASS Keyword of
File-to-File Transactions

Type
Customization (optional).

General Description
This exit routine processes user-defined parameters specified on the MSGCLASS
keyword of file-to-file transactions. Such parameters can be keywords that stand
alone or keywords with values. A stand-alone keyword is not followed by an equal
sign and has no associated values. A keyword with values has an equal sign and
values that follow the equal sign.

The MSGCLASS keyword allows the end user to specify alternate message
destinations, or XOIDs, rather than the XOID submitting the transaction. The XOID

BDTUX06

Chapter 10. User Exit Routine Reference 109

is defined as the origin of a transaction. BDTUX07 can alter the XOID of the
transaction contained in the JCT by the criteria that the MSGCLASS keyword
represents. The XOID contained in the JCT is used when any function of BDT
issues a message on behalf of the job. BDTUX12 can then route the message to its
proper destination.

The MSGCLASS keyword is entered as part of a file-to-file transaction. Those
parameters recognized by BDT include *, LOG, and NONE. The * parameter
specifies that messages be returned to the transaction origin and sent to the job
message log. LOG specifies that messages be sent to the job message log (JML)
data set only. NONE specifies that messages be sent to the system message log
only.

The language processor builds a text unit for the MSGCLASS keyword. Later,
BDTGRXD encounters an unrecognized parameter during the processing of the
MSGCLASS keyword and this user exit routine runs.

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to the BDTUX07 user exit
routine. Registers 2-14 are saved by ASAVE processing.

Register 1
Contains the address of a three-word parameter list:

Word 1
Contains the address of a four-word parameter list:

Word 1
Byte 3 contains the length of a keyword, as provided by
BDTXSUPC.

Word 2
Contains the address of the keyword associated with word
1, as provided by BDTXSUPC.

Word 3
Byte 3 contains the length of an associated parameter, as
provided by BDTXSUPC.

Word 4
Contains the address of the parameter whose length is
contained in word 3. This parameter is associated with the
keyword pointed to by word 2, if it exists, or with the
keyword MSGCLASS if no keyword exists for word 2.

Examples:

Given:
MSGCLASS(NODE=MYNODE)

Then: Keyword is NODE, length=4 Parameter is
MYNODE, length=6

Given:
MSGCLASS(MYNODE)

Then: There is no keyword Parameter is MYNODE,
length=6

BDTUX07

110 z/OS BDT Installation

Word 2
Address of the console message buffer BDTGRXD uses as the
syntax analysis work area for BDTXSUPC.

Word 3
Address of the JCT entry, which can be modified by BDTUX07 to
reflect the user-defined parameter(s).

Register 12
Contains the address of the BDT TVT.

Register 13
Points to the register save area set up by ASAVE processing.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

Register 15
Contains the entry point address into the BDTUX07 exit routine.

Register Conventions at Exit
Since BDTXCALL linkage is used to establish the interface to the BDTUX07 user
exit routine, registers 2-14 of BDTGRXD are saved in BDTGRSV. You must store
registers 12, 13, and 14 in an area you provide (either an area obtained by
GETMAIN or one within your user exit routine), and those registers must be
restored on return to BDTGRSV by register 14.

Register 14
Contains the address of the the return point, which is saved in BDTGRSV.

Register 15
Used for delivering a return code value set by the BDTUX07 exit routine:

RC 0 The parameter is recognized and processed by the exit routine.

RC 4 The parameter is not recognized.

Operation
All MSGCLASS parameters other than *, LOG, or NONE are rejected by
BDTGRXD unless recognized as user-defined in the user exit routine. If the
parameter is not recognized as user-defined, a return code of 4 is sent back to the
transaction driver and an error message is issued stating that an invalid
MSGCLASS is specified and the transaction has failed.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for your user exit routine. If an ESTAE exit routine is not included with the
routine, an ESTAE in BDTGRXD provides clean-up in the event of exit routine
failure.

Environment
Point Where Exit Routine Receives Control: The exit routine receives control from
BDTGRXD when the MSGCLASS keyword parameters are unrecognized by
BDTGRXD.

Address Space in Which Exit Routine Runs: The BDT address space.

Task under Which Exit Routine Runs: This exit routine operates under the TCB for
the BDT transaction driver, BDTGRXD.

BDTUX07

Chapter 10. User Exit Routine Reference 111

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDTVT to map the BDT TVT
v BDTDJCT to map the JCT
v BDTDCNS to map the console message buffer
v BDTDREG to map the registers
v BDTDGSD to map the GSD (necessary for coding an ESTAE)

Executable Macros

v BDTXASRV to invoke abend services during abend recovery

What If BDTUX07 Is Not Used?
If an exit routine is not provided and a MSGCLASS parameter other than *, LOG,
or NONE is specified, the parameter is rejected and message BDT6331 is sent to
the user. This means the transaction has failed.

BDTUX08—User-Defined File-to-File Transaction Keywords

Type
Customization (optional).

General Description
This exit routine allows an installation to define additional keywords that can be
specified on file-to-file transactions. BDTUX08 extends the language processor’s
keyword table. The extension is built through the use of the BDTDKYWD macro.
This macro generates entries in the user-defined keyword table extension located in
a data CSECT called UX08KYWD. The macro creates one or more entries in the
CSECT. BDTDKYWD issues BDTDTUD, another macro, which creates the
corresponding text unit descriptor entries located in the data CSECT UX08TUD.
When the language processor reaches the end of BDT’s keyword table without
finding the keyword, it starts searching the user-defined keyword table located in
BDTUX08.

Register Conventions at Entry
Because this exit routine is only a table and not executable code, there are no
registers involved.

Register Conventions at Exit
Because this exit routine is only a table and not executable code, there are no
registers involved.

Operation
The data CSECT called UX08KYWD is created as the extension to the language
processor’s keyword table. You should use the BDTDKYWD macro to create the

BDTUX07

112 z/OS BDT Installation

keyword entries that make up this extension. An associated text unit descriptor
entry may also be created. The CSECT name, UX08KYWD, is generated when the
BDTDKYWD macro is used.

Note: The default, &USER=YES, must be specified when coding the BDTDKYWD
macro.

Since this exit routine is part of the language processor, it must be link-edited with
the language processor load module, which may be loaded into the link pack area.
Loading exit routines in the link pack area requires an MVS IPL. Any exit routines
loaded in the link pack area (BDTUX08, BDTUX10, BDTUX19, and BDTUX28)
should be link-edited at the same time. This prevents the need for you to perform
more than one MVS IPL to load those exit routines.

Environment
Point Where Exit Routine Receives Control: BDTLP invokes BDTUX08 when it
reaches the end of BDT’s keyword table without finding a keyword.

Address Space in Which Exit Routine Runs: User’s address space (JES3, TSO, or
batch) and BDT address space.

Task under Which Exit Routine Runs: Because the language processor (BDTLP) is
reentrant, it can be used by more than one user at a time. This exit routine
operates under the TCB of the module that invokes the services of the language
processor. Those modules include IGX0034, BDTGRXD, BDTCMDV, BDTTQI, and
IATBDCI, a JES3 module.

PSW State: Supervisor.

Storage Protection Key: The language processor, from which this exit routine is
invoked, runs in the key of the user. This key can be the user’s (key 8), JES3 (key
1), or key 0 from SVC 109.

Data Areas
Mapping Macros

v BDTDKYWD—generates entries in the user-defined keyword table. This invokes
BDTDTUD.

v BDTDTUD—generates entries in the text unit descriptor table

What If BDTUX08 Is Not Used?
If this exit routine is not provided, a user-defined keyword not recognized by the
language processor will result in message BDT1003 being issued and the
unrecognized keyword displayed. The file-to-file transaction fails.

BDTUX10—Command Password Processing

Type
Customization (optional).

BDTUX08

Chapter 10. User Exit Routine Reference 113

General Description
This exit routine verifies a single parameter that a user can attach to a BDT
command verb. The parameter can be used as a password to raise the
authorization level of the user issuing the command. For example:
I(password) A

BDT permits users to attach to the command verb a 1- to 8-character name
enclosed within parentheses. This appended field can be used as a password to
provide increased user authorization on a single command basis. This exit routine
checks for this password field and subsequently either provides or disallows
increased user authorization based on the password value, the authorization level
required for the specific command, and the command type.

BDT users, operating under TSO, have a default authority of 10. BDTUX10 allows
an installation to raise this authority level to 15 for users who specify the correct
password. An authorization level of 15 gives BDT users the authority to issue the
DUMP and RETURN commands, cancel jobs, issue TQI commands, and activate
the SNA manager as well as issue commands authorized at level 10. Table 7 shows
the authorization level required to issue each BDT command.

Table 7. Authorization Levels Required to Issue BDT Commands

BDT Command Authorization Level Required to Issue the Command

CALL (X) 10

CANCEL (C) 15 if submitted from TSO or batch; 10 if submitted from an
MCS or JES3 console

DUMP 15

INQUIRY (I) 10

JES 10

MESSAGE (Z) 10

MODIFY (F) 15 if used to modify TQI, modify the BDT message handler,
or cancel the BDT SNA manager; 10 in all other cases

MSG 15

RESTART (R) 15 if submitted from TSO or batch; 10 if submitted from an
MCS or JES3 console

RETURN 15

SEND (T) 10

START (S) 15 if used to start TQI or if submitted from TSO or batch;
10 if not used to start TQI or if submitted from an MCS or
JES3 console

VARY (V) 10

Register Conventions at Entry
Since this exit routine is entered by a BALR instruction, that is, without going
through BDT ASAVE linkage, the user exit routine must save all language
processor registers in an area obtained by GETMAIN. Those registers must be
restored on return to the language processor.

Register 1
Contains the address of a three-word parameter list:

BDTUX10

114 z/OS BDT Installation

Word 1
Address of the parameter

Word 2
Address of the parameter value’s executable length

Word 3
Address of the BSID

Register 13
Contains the address of the BDT register save area which is located at the
beginning of the BDTLP work area.

Register 14
Contains the address of the return point in the language processor.

Register 15
Contains the entry point address into the BDTUX10 user exit routine.

Register Conventions at Exit
Since the user exit routine is entered directly on a BALR instruction, BDTUX10
must save the language processor’s registers in an area obtained by GETMAIN
(the user exit routine must be reentrant), and restore those registers on return to
BDTLP.

Register 14
Contains the address of the return point in BDTLP.

Register 15
Used for delivering a return code value from the user exit routine:

RC 0 Indicates that the exit routine recognizes the parameter and
processing continues.

RC nonzero
Indicates the parameter is unrecognized and the transaction has
failed.

Operation
The exit routine is called by the language processor and executes in the address
space of the module that invokes the language processor. The language processor
(BDTLP) may reside in the link pack area (LPA). Since the language processor is
reentrant, this exit routine must also be reentrant.

Once exit routine BDTUX10 is coded, it must be link-edited with the language
processor load module. An MVS IPL loads the LPA modules. All language
processor user exit routines (BDTUX08, BDTUX10, and BDTUX19) should be coded
before the link-edit is performed with the language processor. This way, only an
MVS IPL must be performed once.

If you use this exit routine to verify passwords attached to command verbs, the
passwords should be encrypted for security. Otherwise, it is possible to look at the
passwords contained in BDTUX10.

The language processor invokes BDTUX10 when it detects a single parameter
following a BDT command or a command verb. If the exit routine is used to verify
a parameter submitted with a command or command verb, it is possible to raise
the defaulted console authority level from 10 to a number between 10 and 15. This

BDTUX10

Chapter 10. User Exit Routine Reference 115

should be set in the CONSAUTH field in the console message area. The console
area is located in the variable part of the BSID.

If a single parameter following a command is incorrect, an error message informs
the user that the transaction code syntax is invalid. The transaction fails.

If a command is issued with a parameter that is null, or if the parameter is
incorrect, an error message informs the user that the transaction code syntax is
invalid. The transaction fails.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for your user exit routine. If you do not include an ESTAE with the routine, an
ESTAE exit routine in IGX0034, BDTCMDV, BDTGRXD, or IATBDCI (a JES3
module) cleans up after failure of the user exit routine. The ESTAE exit routine
performing clean-up is dependent upon the user at the time of failure.

Environment
Point Where Exit Routine Receives Control: This exit receives control in the
language processor (BDTLP) after the console authority level is defaulted to 10.

Address Space in Which Exit Routine Runs: The user’s address space.

Task under Which Exit Routine Runs: The exit routine is called by the language
processor (BDTLP). The exit routine could run under the TCB for BDTBATCH,
BDTTSO, BDTCMDV, BDTGRXD, or IATBDCI, all of which invoke the services of
the language processor.

PSW State: Supervisor.

Storage Protection Key: Since the language processor runs in either the user’s
address space, the BDT address space, the SVC 109 routine, or the JES3 address
space, the storage protection key is 1, 8, or 0.

Data Areas
Mapping Macros

v BDTDBSID to map the BSID
v BDTDCNS to map the console message area

Executable Macros: None

What If BDTUX10 Is Not Used?
If no exit routine is provided and the user adds a parameter on a BDT command,
the command will fail. Message BDT1008 will be issued to display the parameter.

BDTUX11—Unrecognized BSID Modifier

Type
Customization (optional).

General Description
This exit routine allows an installation to identify user-defined BSIDMOD codes
not recognized by BDT. You can use a user-defined BSID to transmit processing

BDTUX10

116 z/OS BDT Installation

information to the BDT address space from a user address space. The BSID acts as
a medium for the transfer of processing information. For example, an installation
can enter a user-defined command that BDT would normally reject as invalid. You
can use BDTUX19 to turn the command BSID for the user command into a
user-defined BSID. BDTUX11 can then receive the BSID, process it, and then tell
BDT to discard it.

The BSIDMOD codes specify the purpose and use of each BSID. The BSIDMOD
represents, for example, whether the BSID is for a message, transaction, JES3
command, BDT command, or native mode. Because of functional differences
between JES2 and JES3, this exit routine provides some response (for example, a
return code of 4) to JES3 only, if applicable. (Specific JES3 processing requirements
and BDT processing on behalf of JES3 are noted as applicable. JES2 users are not
affected by such JES3-specific processing.) See z/OS BDT Diagnosis Reference for
documentation of the fields in the BSID.

The BSIDMOD is located in the fixed portion of the BSID. It identifies the type of
BSID by number. These numbers include user-defined numbers in the range
128-255.

This exit routine allows the user to process BSIDMOD code values in the user
range. Exit BDTUX11 is similar in function to JES3 exit routine IATUX50. However,
BDTUX11 is invoked from the BDT address space, not the JES3 address space.

Register Conventions on Entry
BDTXCALL linkage is used to establish the interface to the BDTUX11 user exit
routine. Registers 2-14 are saved by ASAVE processing.

Register 1
Contains the address of a one-word parameter list:

Word 1
Address of a BSID containing a BSIDMOD code in the user-defined
range

Register 12
Contains the address of the BDT TVT.

Register 13
Contains the register save area set up by ASAVE processing.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

Register 15
Contains the entry point address into the BDTUX11 user exit routine.

Register Conventions at Exit
Since the BDTXCALL linkage is used to establish the interface to the BDTUX11
user exit routine, registers 2-14 of BDTCMDV are saved in BDTGRSV. You must
store registers 12, 13, and 14 in an area you provide (either an area obtained by
GETMAIN or one within your user exit routine) and those registers must be
restored on return to BDTGRSV by register 14.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

Register 15
Used for returning a return code set by the BDTUX11 user exit routine:

BDTUX11

Chapter 10. User Exit Routine Reference 117

RC 0 The exit routine recognizes the BSIDMOD and processes it;
BDTCMDV does no further processing.

RC 4 The BSIDMOD code value is recognized; BDTCMDV can send it to
JES3 by the BDT/JES3 communications interface. (This return code
should not be used on a JES2 system.)

RC 8 The exit routine does not recognize the BSIDMOD value; it is
invalid. BDTCMDV issues message BDT9957.

Operation
This exit routine can look at the BSIDMOD field in the BSID to determine the
purpose of the BSID and, based on that purpose, how it should be routed. The
codes are assigned by the user.

BSIDMOD modifier codes defining the purpose and usage of each BSID are
available to the user in the range 128-255. The symbol BSIDUSE1 is equated to
BSID modifier code 128.

The exit routine gets control after the BSIDMOD has been checked for all BDT
defined values. The BSIDMOD code must be in the user-defined range or the exit
routine will not run and an error message is issued. If the value of BSIDMOD is in
the user-defined range, the exit routine runs. BDTUX11 returns a return code value
to communicate the results of its processing. If the return code is 0, processing
continues. If the return code is 4, the BSID is shipped to JES3. A return code of 8
signifies the BSIDMOD is invalid.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for your user exit routine. If an ESTAE is not included in the exit routine, an
ESTAE exit routine in BDTCMDV provides clean-up in the event of exit routine
failure.

Environment
Point Where Exit Routine Receives Control: BDTCMDV checks the BSIDMOD
value and passes control to the user exit routine if the BSIDMOD code is within
the user range (128-255).

Address Space in Which Exit Routine Runs: BDT address space.

Task under Which Exit Routine Runs: This exit routine runs under the TCB for
BDTCMDV.

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDBSID to map the BSID
v BDTDTVT to map the TVT
v BDTDREG to map the registers
v BDTDGSD to map the GSD (for coding an ESTAE)

Executable Macros

BDTUX11

118 z/OS BDT Installation

v BDTXASRV to invoke abend services during abend recovery processing

What If BDTUX11 Is Not Used?
If no user exit routine is provided, user-defined BSID modifiers are considered
invalid and the user receives an error message.

BDTUX12—BDT Message Routing

Type
Customization (optional).

General Description
This exit routine allows an installation to process messages that are sent to the
user. Processing includes the ability to inspect and modify those messages.
BDTUX12 should also process the alternate XOIDs that were created in BDTUX07
for user-defined MSGCLASS parameters. You can use BDTUX12 to override
standard message processing. Also, BDTUX12 can be used to override message
suppression to continue to route all messages to the user, not only the message log.
The exit is taken out of BDTCMDV.

For example, the exit routine can be used to process messages destined for
non-BDT users in the BDT network.

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to the BDTUX12 user exit
routine. Registers 2-14 are saved by ASAVE processing.

Register 1
Contains the address of the one-word parameter list:

Word 1
Address of a BSID containing the message text for routing. The text
is hex 4C bytes past the beginning of the data area (BSIDDATA) of
the BSID.

Register 12
Contains the address of the BDT TVT.

Register 13
Contains the address of the register save area set up by ASAVE processing.

Register 14
Contains the address of the return point in the ASAVE routine (BDTGRSV).

Register 15
Contains the entry point address into the BDTUX12 user exit routine.

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX12 user
exit routine, registers 2-14 of BDTCMDV are saved in BDTGRSV. You must store
registers 12, 13, and 14 in an area you provide (either an area obtained by
GETMAIN or one within your user exit routine) and those registers must be
restored on return to BDTGRSV by register 14.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

BDTUX11

Chapter 10. User Exit Routine Reference 119

Register 15
Used for returning a return code value set by the BDTUX12 user exit
routine:

RC 0 Indicates that standard BDT message route processing should
continue.

RC 4 Indicates the processing continues without message suppression.

RC 8 Indicates that the message should be routed only to the BDT log
destination consoles.

RC 12 Discard the message.

Operation
This exit routine is given control by BDTCMDV, just prior to BDT message
processing. The user can inspect, modify, and route the message being processed.
The exit routine indicates by a return code whether the BDT message route
processing should continue or be bypassed. The BSIDMCLS field indicates message
suppression if it is set to BSIDSUPP.

The routine examines BSID XOID type codes (BSIDXTYP), which define the type of
user receiving the message.

The XOID type codes (BSIDXTYP) currently recognized by BDT range from 1 to 7.
The XOID type code values in the range 8 to 127 are reserved. The XOID type
codes from a range of 128-255 are available to the user. The symbol XOIDUSER is
equated to 128, the first XOID type code in the user range.

In message processing (see Figure 30 on page 121) some messages are suppressed
from further routing once they are logged. You can determine if this will happen
by looking at the BSID message class field (BSIDMCLS) contained in the BSID. The
BSID message class bit should be set to BSIDSUPP. Suppression of messages is
helpful because it prevents the originator from becoming flooded with messages
returned from normal transaction and command processing. If the BSIDMCLS bit
is set to BSIDSUPP, the message is only routed to applicable entries in the SYSLOG
destination routing table. The originator never sees the message unless the exit
routine indicates the message should be routed even though it is suppressed.

The BDT macro BDTXMSG routes a message BSID to BDTCMDV. Then the
MSGROUTE subroutine within BDTCMDV writes the message to the BDT message
log. All messages are logged by BDT. If MSGROUTE is unaffected by BDTUX12,
MSGROUTE routes the message to all entries contained in the SYSLOG destination
routing table and then routes the message to the originator. Once the message is
logged, if BDTUX12 is enabled, subsequent message routing can be varied
depending on the return code set by BDTUX12.

BDTUX12

120 z/OS BDT Installation

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for your user exit routine. If you do not include an ESTAE in the exit routine, an
ESTAE exit routine established for BDTCMDV performs clean-up for the user exit
routine in the event of failure.

Environment
Point Where Exit Routine Receives Control: This exit routine is invoked from
BDTCMDV when processing a message.

Address Space in Which Exit Routine Runs: BDT address space.

BDTXMSG

BDTUX12

BSID

BDTCMDV

"MESSAGE"

MSGROUTE

BDTX12
Enabled

BSIDMCLS-
BSIDSUPP

?

?

No

No

Yes

Yes

Set return code:
RC=0

R=4

R=8

R=12

Continue standard
message processing.

Continue without
message suppression.

Route to SYSLOG
only.

Suppress further
message routing.

LOG
the
message

Route message to:
1. All applicable SYSLOG entries
2. Originator

Return to caller

Route to all
applicable
SYSLOG entries

Figure 30. BDT standard message routing

BDTUX12

Chapter 10. User Exit Routine Reference 121

Task under Which Exit Routine Runs: TCB for BDTCMDV, the BDT
communications driver.

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDBSID to map the BSID
v BDTDGSD to map the GSD (for coding an ESTAE)
v BDTDREG to map the registers
v BDTDTVT to map the TVT

Executable Macros

v BDTXASRV to invoke abend services during abend recovery processing

What If BDTUX12 Is Not Used?
If no exit routine is provided, standard message routing continues.

BDTUX14—BDT User-Defined XOID Type Conversion

Type
Customization (optional).

General Description
This exit routine recognizes and processes user-defined XOID type codes
(XOIDXTYP) when converting from internal to external format or external to
internal format. Internal to external conversion occurs when the XOID is printed in
readable form as part of a message. External to internal conversion occurs on the
XOID specification in a MESSAGE (Z) command and other situations. See
Appendix E, “Initialization Flow and User Exit Routines,” on page 191 for a list of
modules that issue the BDTXMSG macro and the types of conversions BDTXXOID
performs for those modules.

A conversion takes place whenever a BDT module issues the BDTXXOID macro to
request the conversion of an XOID. The conversion occurs in a subroutine located
in BDTGRXD, the module from which this user exit routine runs.

See Appendix E, “Initialization Flow and User Exit Routines,” on page 191 for a
diagram of internal to external conversions of XOIDs.

For internal to external conversions, you can use this exit routine to check the
XOIDXTYP field in the XOID (mapped by BDTDXOID). This field must fall
between 128-255 for an internal to external conversion of the XOID type which
describes the type of user issuing the message.

An internal to external conversion is necessary whenever BDT wants to display the
XOID part of the message text. The system identification, user type, and ddname
(for TSO users, the actual user identification) are placed in the message.

BDTUX12

122 z/OS BDT Installation

For external to internal conversions, the conversion takes place when all valid
BSIDXTYP codes (external format) have been tested and the type is not recognized.
An example of this occurs with the MESSAGE command. One user sends another
user a message using the Z command. BDT must convert the externalized address
of the message recipient into an internal format to route the message. If that user is
of a type not defined to BDT but is a type that falls within the user range, the user
exit routine can verify the type and convert the external XOID.

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to the user exit routine.
Registers 2-14 are saved by ASAVE processing.

Register 0
Contains a reason code:

Reason 0
Indicates an internal to external conversion is necessary.

Reason 4
Indicates an external to internal conversion is necessary.

Register 1
Contains the address of a two-word parameter list:

Reason 0
For internal to external conversion:

Word 1
Address of the XOID data to be converted into an external
representation

Word 2
Address of the external text area where the external
representation of the XOID data for conversion is to be
placed

Reason 4
For external to internal conversion:

Word 1
Address of the XOID data where the converted internal
representation of the XOID is to be placed

Word 2
Address of the external form of the XOID to be converted
into its internal XOID representation

Register 12
Contains the address of the BDT TVT.

Register 13
Contains the address of the register save area set up by ASAVE processing.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

Register 15
Entry point address into BDTUX14.

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX14 user
exit routine, registers 2-14 of BDTGRXD are saved in BDTGRSV. You must store

BDTUX14

Chapter 10. User Exit Routine Reference 123

registers 12, 13, and 14 in an area you provide (either an area obtained by
GETMAIN or one within your user exit routine) and those registers must be
restored on return to BDTGRSV by register 14.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

Register 15
Used for returning a return code value set by the BDTUX14 user exit
routine:

RC 0 Indicates the conversion was successful.

RC 4 Indicates the exit routine does not recognize the XOID as user
defined.

Operation
BDTGRXD invokes BDTUX14 for two different situations. It is given control when
the XOID, in its internal (unreadable) format, must be converted to readable format
and placed into a message.

The exit routine receives control in this case if the XOIDXTYP is greater than or
equal to XOIDUSER (128). The user exit routine runs with reason code 0 passed in
register 0. The exit routine examines the type field of the XOID, determines the
external text string that represents the internal XOID code, and moves the text
string to the address passed for external XOID text. A return code of 4 informs
BDTGRXD that the XOID is unrecognized and unconverted. The external XOID on
the message is set to question marks.

This user exit routine also runs for external to internal conversion of user-defined
XOIDXTYPs. If the external XOIDXTYP code is not recognized, BDTGRXD calls the
user exit routine. If the exit routine recognizes the type, it then examines the
external XOID text. It determines the internal representation of this text, then sets
the type field in the passed XOIDXTYP. A return code of 4 indicates that the
XOIDXTYP is unrecognized.

In either external to internal or internal to external conversions, if the conversion is
successful, a return code of 0 is delivered to BDTGRXD.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for your user exit routine. If you do not provide an ESTAE, clean-up for the exit
routine in the event of exit routine failure is provided by an ESTAE exit routine
established for the transaction driver (BDTGRXD).

Environment
Point Where Exit Routine Receives Control: This exit routine receives control in
BDTGRXD whenever XOIDXTYP falls within the user range (128-255), or
whenever the external format of the XOIDXTYP code is not recognized.

Address Space in Which Exit Routine Runs: BDT address space.

Task under Which Exit Routine Runs: TCB for the routine that issues the
BDTXXOID macro (see Appendix E, “Initialization Flow and User Exit Routines,”
on page 191 for a list of the modules that issue the BDTXXOID macro).

PSW State: Supervisor.

BDTUX14

124 z/OS BDT Installation

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDGSD to map the GSD (used for coding an ESTAE)
v BDTDREG to map the registers
v BDTDTVT to map the TVT
v BDTDXOID to map the XOID

Executable Macros

v BDTXASRV to invoke abend services during abend recovery processing

What If BDTUX14 Is Not Used?
No conversion is possible on user-defined types.

BDTUX15—Unrecognized Parameters on PARMS Keyword

Type
Customization (optional).

General Description
This exit routine allows installation-defined parameters on the PARMS transaction
keyword to be recognized by BDTSEQ when processing a sequential file-to-file
transaction. The PARMS parameter specifies information unique to BDTSEQ. (Note
that PARM and USER are synonymous with PARMS.)

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to the user exit routine.
Registers 2-14 are saved by BDT ASAVE processing.

Register 0
Reason code as returned by BDTXSUPC:

RC 0 Indicates that a stand-alone parameter is being processed.

RC nonzero
Indicates a keyword with parameters is being processed.

Register 1
Contains the address of a four-word parameter list:

Word 1
Keyword length (zero if positional)

Word 2
Keyword address (zero if positional)

Word 3
Parameter length

Word 4
Parameter address

Register 11
Contains the address of the BDTSEQ data CSECT that is mapped by the

BDTUX14

Chapter 10. User Exit Routine Reference 125

BDTDSEQ macro. BDTDSEQ contains information about the parameter
starting at label SEQSUPSC with BDTDSEQ.

Register 12
Address of the BDT TVT.

Register 13
Address of the BDT register save area set up by ASAVE processing.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

Register 15
Contains the entry point address into BDTUX15.

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX15 user
exit routine, registers 2-14 of BDTSEQ are saved in BDTGRSV. You must store
registers 12, 13, and 14 in an area you provide (either an area obtained by
GETMAIN or one within your user exit routine) and those registers must be
restored on return to BDTGRSV by register 14.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

Register 15
Used for returning a return code value from the exit routine:

RC 0 Indicates the parameter is user-defined and has been processed
successfully.

RC 4 Indicates the parameter is not recognized as user-defined.

Operation
The BDTSEQ routine runs asynchronously for each side of a transaction (one side
to read, the other side to write).

This exit routine runs during the parsing of the PARMS keyword. BDTSEQ passes
the address of its data CSECT to the exit routine to examine unrecognized
parameters on the USER keyword.

Register 11 contains the data CSECT established for the BDTSEQ routine. The user
exit routine can examine the unrecognized parameter on the USER keyword, then
indicate by return code whether the parameter is recognized. A 0 return code
indicates that the parameter is recognized; a nonzero return code indicates that the
parameter is unrecognized.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for the user exit routine. If an ESTAE is not established for the exit routine,
clean-up for the user exit routine is provided by an ESTAE exit routine established
for BDTSEQ.

Environment
Point Where Exit Routine Receives Control: BDTSEQ invokes the user exit routine
when it encounters an unrecognized parameter on the PARMS keyword.

Address Space in Which Exit Routine Runs: BDT’s address space.

BDTUX15

126 z/OS BDT Installation

Task under Which Exit Routine Runs: This exit routine runs under the TCB
established for BDTSEQ.

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDREG to map the registers
v BDTDTVT to map the TVT
v BDTDSEQ to map the BDTSEQ data csect
v BDTDGSD to map the GSD (for coding an ESTAE)

Executable Macros

v BDTXASRV to invoke abend services for abend recovery processing

What If BDTUX15 Is Not Used?
If BDTUX15 is not provided and a parameter unknown to BDT is entered on the
PARMS keyword, message BDT4005 informs the user of an error and the file-to-file
transaction fails.

BDTUX16—BDT Job Message Log

Type
Customization (optional).

General Description
BDTUX16 gives an installation access to BDT’s job message log (JML) at job
termination time. This can only receive control if BDTUX06 has previously set the
TVTJMLAV bit on; JMLs are invalid if this bit is not on. You can request that a JML
is kept for a job by specifying MSGCLASS(LOG) as part of the transaction text
used to request the transfer. However, to access the JML you must use BDTUX06 to
turn on the TVTJMLAV bit in TVTOPTNS of the transfer vector table (TVT). If the
bit is not set on, BDT issues error message BDT6334, the JML is not accessed, and
the transaction is failed.

BDTGRLG runs BDTUX16 at the end of a job, just before all JML messages are
purged. BDTGRLG first runs the user exit routine to offer it access to the JML.
BDT gives the exit routine a pointer to the job’s JCT, and from this control block,
the user exit routine can use the JCT to retrieve job information that may be
needed while processing the JML.

If the user exit routine decides that the JML should not be processed, the space
occupied by the JML is released. However, if the exit routine decides that the JML
should be processed, subsequent BDTUX16 invocations are made, once for each
message associated with a job and in the same order in which each message was
written to the log. All the messages for a transaction are processed before
processing another message log data set for another transaction. After the exit
routine examines a message, it can tell BDT that it wants to see the next message,
or it can tell BDT that it is finished looking at the set of messages associated with a
job.

BDTUX15

Chapter 10. User Exit Routine Reference 127

The exit routine is invoked a final time when BDTGRLG indicates that the JML
messages have all been passed. After the final invocation of BDTUX16, BDTGRLG
releases the JML space.

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to BDTUX16. Registers 2-14
are saved by BDT ASAVE processing.

Register 0
Contains a reason code for BDTUX16:

Reason 0
BDTGRLG offers the exit routine access to the JML during JML
close processing. The exit routine can decide at this point whether
to process the JML.

Reason 4
Indicates to BDTUX16 that this is a call to process an individual
message for a job. This invocation is repeated as long as there are
messages in the JML for processing.

Reason 8
Indicates to BDTUX16 that the job message log has reached end of
data (EOD). All messages have been retrieved and passed on to the
exit routine.

Register 1
Contains the address of a one- or two-word parameter list, depending on
the reason code:

Reason 0
Address of the job control table entry for this job

Reason 4
The first word contains the address of the current job message log
record being processed. The second word contains the address of
the job control table (JCT).

Reason 8
Address of the JCT

Register 12
Contains the address of the BDT TVT.

Register 13
Contains the address of the register save area set up by ASAVE processing.

Register 14
Contains the address of the return point, which is stored in BDTGRSV.

Register 15
Contains the entry point address into BDTUX16.

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX16 user
exit routine, registers 2-14 of BDTGRLG are saved in BDTGRSV. You must store
registers 12, 13, and 14 in an area you provide (either an area obtained by
GETMAIN or one within your user exit routine), and those registers must be
restored on return to BDTGRSV by register 14.

BDTUX16

128 z/OS BDT Installation

Register 0
Used for returning a reason code from BDTUX16. This is a user-defined
value that you must code. It indicates the type of error encountered if the
exit routine indicates, through a return code of 8 in register 15, that an
error occurred. The reason code is displayed in message BDT9901.

Register 14
Contains the address of the return point in the ASAVE routine (BDTGRSV).

Register 15
Contains the return code value delivered from the BDTUX16 user exit
routine.

Reason 0
On the first invocation of the exit routine:

RC 0 Indicates that BDTGRLG should continue to call the exit
routine to allow processing of the individual messages for
a job.

RC 4 Indicates the BDTUX16 exit routine does not want to
process the job message log and that it should be released.

Reason 4
On invocation of the exit routine for processing each individual
message:

RC 0 Indicates that BDTGRLG should continue with the
processing of the job message log.

RC 4 Indicates the BDTUX16 exit routine does not want to
process any more records and that the job message log can
be released.

RC 8 Indicates an error in the processing of the job message log.

Reason 8
At an end of data condition.

RC 0 BDTUX16 has reached end of data for the job’s JML; the
job message log can be released.

RC 4 An error occurred while processing the end of data
condition on the job message log.

Operation
This exit routine can run for three different reasons out of BDTGRLG.

The exit routine runs the first time at the end of a job for those jobs that specified
MSGCLASS(LOG). MSGCLASS(LOG) indicates that all messages associated with a
job are to be accumulated in a data set and made accessible to exit routine
BDTUX16 at the end of that job. Another message log data set is not processed for
another transaction until the processing for these messages is complete. The exit
routine is run the first time with reason=0, indicating that this is the first time the
exit routine has run and that the exit routine must decide if it wants to look at the
messages associated with the given job.

If the exit routine returns a 0 return code, the exit routine runs again with a reason
code of 4. At this invocation it can view the first message associated with a
particular job. The exit routine runs for each message in the log as long as there

BDTUX16

Chapter 10. User Exit Routine Reference 129

are no errors in the processing of that log (indicated by a return code of 8 back to
BDTGRLG). BDTGRLG continues invoking BDTUX16 with reason code 4 until the
JML is exhausted.

BDTGRLG invokes the exit routine a final time when the end of data condition
occurs. This indicates that all records have been taken from the job message log
and passed to the user exit routine.

If an error is detected by the exit routine, BDTGRLG receives a return code of 8
from the exit routine and performs error processing.

Recovery the Exit Routine Must Establish: An ESTAE is set up for the first call to
BDTUX16 by the issuer of the BDTXLOG macro. An ESTAE exit routine in
BDTGRLG covers the user exit routine in subsequent calls. In the event of exit
routine failure, this ESTAE exit routine releases the JML.

Environment
Point Where Exit Routine Receives Control: The exit routine is invoked when the
message log data set is closed for a transaction. All the messages for a transaction
are passed to the exit routine before processing another message log data set for
another transaction.

Address Space in Which Exit Routine Runs: BDT address space.

Task under Which Exit Routine Runs: Issuer of BDTXLOG.

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDGSD to map the GSD (for coding an ESTAE)
v BDTDJCT to map the JCT
v BDTDREG to map the registers
v BDTDTVT to map the TVT

Executable Macros

v BDTXASRV to invoke abend services for abend recovery processing

What If BDTUX16 Is Not Used?
If an exit routine is not provided, processing continues to purge the job message
log data set. If a transaction that specifies MSGCLASS(LOG) is submitted but the
TVTJMLAV bit in the TVT is not on, the transaction will fail whether or not
BDTUX16 is provided.

BDTUX17—BDT Job Start

Type
Customization (optional).

BDTUX16

130 z/OS BDT Installation

General Description
This exit routine can be implemented to provide information about the execution
time of a job. If your installation does not use SMF accounting, or you wish to
supplement IBM’s SMF provisions within BDT, this exit routine and BDTUX18 are
provided for your use.

This exit routine is invoked for inbound and outbound file-to-file jobs and
outbound (but not inbound) SNA NJE jobs. This exit routine runs in the scheduling
processor when the processor is notified that the remote processor is ready to send
or receive the job.

Register Conventions at Entry
BDTXCALL linkage is used to interface with the BDTUX17 user exit routine.
Registers 2-14 are saved by BDT ASAVE processing.

Register 1
Contains the address of a one-word parameter list:

Word 1
The address of the JCT entry for the job

Register 12
Contains the address of the TVT.

Register 13
Contains the address of the register save area set up by ASAVE processing.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

Register 15
Contains the entry point address in BDTUX17.

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX17 user
exit routine, registers 2-14 of BDTJSFT (for file-to-file jobs) or BDTJSNT (for SNA
NJE jobs) are saved in BDTGRSV. You must store registers 12, 13, and 14 in an area
you provide (either an area obtained by GETMAIN or one within your user exit
routine), and those registers must be restored on return to BDTGRSV by register
14.

Register 14
Contains the address of the return point in the ASAVE routine (BDTGRSV).

Operation
This exit routine runs when the scheduling processor is notified that the remote
processor has scheduled the job. This exit routine can record information in the job
control table about the scheduling of the DAPs while BDTUX18 can record
information about the end of a transfer.

See Appendix E, “Initialization Flow and User Exit Routines,” on page 191 for a
diagram that depicts the steps that precede the invocation of this user exit routine.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for your user exit routine. If you do not supply an ESTAE, clean-up is provided for
the user exit routine by an ESTAE exit routine established in BDTABMN.

BDTUX17

Chapter 10. User Exit Routine Reference 131

Environment
Point Where Exit Routine Receives Control: BDTUX17 is invoked when the
scheduling processor is notified that the remote processor has scheduled the job.
BDTUX17 is invoked from BDTJSFT if the job is a file-to-file job, or from BDTJSNT
if the job is a SNA NJE job.

Address Space in Which Exit Routine Runs: BDT address space.

Task under Which Exit Routine Runs: This exit routine runs under BDTGRJS’s
TCB.

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDGSD to map the GSD (for coding an ESTAE)
v BDTDJCT to map the JCT
v BDTDREG to map the registers
v BDTDTVT to map the TVT

Executable Macros

v BDTXASRV to invoke abend services for abend recovery processing

What If BDTUX17 Is Not Used?
If this exit routine is not coded, scheduled processing continues normally.

BDTUX18—BDT Job Termination

Type
Customization (optional).

General Description
BDTGRJS invokes this exit routine when a BDT job ends. It is intended to operate
for informational purposes, not to make any modifications to the way BDT handles
the job. Any return code set by the user routine is ignored.

This exit routine is invoked for inbound and outbound file-to-file jobs and
outbound (but not inbound) SNA NJE jobs. This exit routine runs in the scheduling
processor when the processor is notified that the remote processor has finished
sending or receiving the job.

This exit routine can run from two different places in BDTGRJS, depending upon
which side of the transfer completes last. See Appendix E, “Initialization Flow and
User Exit Routines,” on page 191 for a diagram of the steps that lead to the
invocation of this exit routine at the end of a job.

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to the BDTUX18 user exit
routine. Registers 2-14 are saved by BDT ASAVE processing.

BDTUX17

132 z/OS BDT Installation

Register 1
Contains the address of a one-word parameter list.

Word 1
Contains the address of the JCT entry for the job.

Register 12
Contains the address of the TVT.

Register 13
Contains the address of the save area set up by ASAVE processing.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

Register 15
Contains the entry point address in BDTUX18.

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX18 user
exit routine, registers 2-14 of BDTJSFT (for file-to-file jobs) or BDTJSNT (for SNA
NJE jobs) are saved in BDTGRSV. You must store registers 12, 13, and 14 in an area
you provide (either an area obtained by GETMAIN or one within your user exit
routine) and those registers must be restored on return to BDTGRSV by register 14.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

Operation
This exit routine is given control once at the end of a job. The exit routine can be
given control from two different places in BDTGRJS. The place depends upon
which side (scheduling processor or remote processor) completes last.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for your user exit routine in the event of failure. If an ESTAE is not included with
the exit routine, clean-up for the user exit routine is provided by the ESTAE exit
routine established in BDTABMN.

Environment
Point Where Exit Routine Receives Control: BDTUX18 is invoked when the
scheduling processor is notified that the remote processor has finished sending the
job. BDTUX17 is invoked from BDTJSFT if the job is a file-to-file job, or from
BDTJSNT if the job is a SNA NJE job.

Address Space in Which Exit Routine Runs: BDT address space.

Task under Which Exit Routine Runs: This exit routine runs under BDTGRJS’s
TCB.

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDGSD to map the GSD (necessary for writing an ESTAE)

BDTUX18

Chapter 10. User Exit Routine Reference 133

v BDTDJCT to map the JCT
v BDTDREG to map the registers
v BDTDTVT to map the TVT

Executable Macros

v BDTXASRV to invoke abend services for abend recovery

What If BDTUX18 Is Not Used?
If this user exit routine is not coded, job termination proceeds normally.

BDTUX19—File-to-File Transaction Modification

Type
Customization (optional).

General Description
This exit routine allows an installation to examine a file-to-file transaction and
modify it before the request is honored. It receives control before BDT accesses
either data set and before RACF receives control.

The exit routine can add to or modify the BSID as well as inspect it. The exit
routine runs before the total length of the BSID is placed into the header, allowing
you to add or delete text units. For example, you can use BDTUX19 to place the
TSO user ID of the submitter of a batch job into the BSID of a transaction.

To support the BDT-RACF interface, you can use BDTUX19 to supply or modify
security information required to protect system and data set integrity.
v Security keywords and passwords can be added to BDTLP to provide security

interface support for consoles.
v Security information (user IDs and passwords) not otherwise permitted to be

added to the GMJD library definitions can be used.

BDTUX19 can be used to disallow password encryption for either the sending or
the receiving node. To do so:
1. Locate the SECPSWD (BTUSECP) keyword text unit.
2. Store X'02' (BTURACP2) in the DATUPAR field of the text unit.

The exit routine is passed the address of the BSID and the address of the next
available byte in the BSID. Since the BSID length can be altered by the exit routine,
the address of the next available byte must be updated and placed into the second
word of the parameter list before the exit routine returns to the language processor.
You can use this exit routine to associate the TSO user ID of the submitter of a
file-to-file batch (BDTBATCH) job with the transactions submitted by that job. This
is accomplished by placing the user ID associated with the address space into the
BSID XOID user field. Otherwise, transactions submitted through the BDTBATCH
program have the batch name in the XOID. The user ID must also be placed here
for later processing by BDTUX30 and BDTUX31.

BDTUX19 can determine whether a file-to-file transaction should be modified or
terminated. Since this is true, the exit routine needs a method of sending an error
message back to the user.

BDTUX18

134 z/OS BDT Installation

It is possible to return a message to the language processor by using the third
word of the parameter list, pointed to by register 1. A system programmer can
code certain conditions under which a transaction terminates because of an error.
The address of an associated error message can be placed into the third word of
the parameter list before returning to the language processor.

Register Conventions at Entry
Since this exit routine is entered by a BALR instruction, that is, without going
through BDT ASAVE linkage, you must save the registers of the language
processor in an area obtained by GETMAIN and restore those registers on return
to BDTLP.

Register 1
Contains the address of a five-word parameter list:

Word 1
Address of the BSID.

Word 2
Address of the next available byte in the BSID (used if the exit
routine adds any new text units to the BSID).

Word 3
Address of a variable message area to be used by BDTLP upon
return from this exit routine when an error has occurred. The first
byte of the message area is the length of the message area minus 1
(that is, the message area is n bytes for the message text plus 1
byte for the length of that text).

Word 4
Pointer to a flag, OPTFLAGS, that indicates if this exit routine is
called from the user’s address space when BDTLP first parses the
transaction or from the BDT address space at merge time.

X‘80’ BDT address space

Other value
User address space

Word 5
Address of the BDT TVT when OPTFLAGS=X‘80’.

Word 6
Address of the MJD.

Word 7
Address of the password text unit (BTUSECP) for the FROM side
of the transaction.

Word 8
Address of the password text unit (BTUSECP) for the TO side of
the transaction.

Register 13
Contains the address of a register save area located at the beginning of the
language processor’s work area.

Register 14
Contains the address of the return point in the language processor.

BDTUX19

Chapter 10. User Exit Routine Reference 135

Register Conventions at Exit
Since the exit routine is entered by a BALR instruction, the user exit routine must
save the registers of the language processor in an area obtained by GETMAIN
(since this user exit routine must be reentrant code) and restore those registers on
return to the language processor.

Register 15
Used for returning a return code value set by BDTUX19:

RC 0 Indicates that the transaction modification was successful.
Processing continues.

RC 4 Indicates that an error was encountered. BDTUX19 checks for a
user error message pointer (third word in the parameter list
pointed to by R1). The transaction fails.

Operation
This exit routine is invoked by the language processor (BDTLP) to modify the BSID
before it is processed. Modification of the BSID can include the addition of text
units in the MJD.

This exit routine gets control before the BSID is complete; the BSID is not always
completely built until just before the transaction is ready to be processed in the
BDT address space. Therefore, the exit routine is invoked before the total length is
placed in the BSID header, and the exit routine may add to or modify the BSID.

Once exit routine BDTUX19 is coded, it must be link-edited with the language
processor load module (BDTLP). An MVS IPL loads the exit routines into LPA. All
language processor user exit routines (BDTUX08, BDTUX10, and BDTUX19) should
be coded before the link-edit is performed with the language processor. This way,
an MVS IPL must only be performed once.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for the user exit routine in the event of system failure. If you do not include an
ESTAE in the routine, an ESTAE exit routine established by IGX00034, BDTTQI,
BDTCMDV, BDTGRXD, or IATBDCI, a JES3 module, cleans up after the failure of
the user exit routine. The ESTAE performing the clean-up is dependent upon the
user at the time of the failure.

Environment
Point Where Exit Routine Receives Control: The exit receives control in the
language processor just before the BSID is sent to BDT for processing.

Address Space in Which Exit Routine Runs: User’s address space and BDT address
space.

Task under Which Exit Routine Runs: The exit routine is called by the language
processor (BDTLP). It can run under the TCB for IGX00034, BDTTQI, BDTCMDV,
BDTGRXD, or IATBDCI, all of which invoke the services of the language processor.

PSW State: Supervisor.

Storage Protection Key: This exit routine operates in the key of the module that
invokes the language processor.

BDTUX19

136 z/OS BDT Installation

Data Areas
Mapping Macros

v BDTDBSID to map the BSID
v BDTDMJD to map the MJD
v BDTDREG to map the registers
v BDTDDATU to map the BDT dynamic allocation text units in the MJD
v BDTDTVT to map the TVT

Executable Macros

v BDTXTUAM to access MJD text units. Note that BDTXTUAM can only be issued
when BDTUX19 runs in the BDT address space (word 5 is nonzero and contains
the TVT address). Prior to using this macro you must establish addressability to
the TVT.

Programming Notes
v The language processor (BDTLP) calls BDTUX19 twice. BDTUX19 is called first

in the user address space and again in the BDT address space (merge mode).
v If a transaction is self-defining (that is, it begins with “Q”) and the transaction

contains security keyword information (SECPSWD), word 7 and word 8 will
contain the address of the SECPSWD text units when BDTUX19 is called in the
user address space.
To determine if a transaction begins with “Q”, look for a “Q” in the MJD
MJDXCODE field.
To search for text units other than SECPSWD, modify the sample subroutine
provided in Appendix G. The sample routine searches for specific text units
while BDTUX19 is running in the user address space.

v If a transaction begins with “Q” and contains password text units, password
encryption occurs while BDTLP is running in the user address space. If you try
to bypass password encryption while BDTLP is running in the BDT address
space by storing X'02' (BTURACP) in the DATUPAR field of the text unit,
encryption will still occur.

v If the transaction is a member of a GMJD library, word 7 and word 8 contain
zeroes when BDTUX19 is called in the user address space. If security keywords
are present in the transaction, they are passed as parameters in word 7 and
word 8 when BDTUX19 is called in the BDT address space.

v If SECPSWD (*) has been specified in the user’s file-to-file transaction to request
that BDTLP use userid, groupid, and password defaults, the security passwords
are always encrypted. The following rules apply to groupid, userid, and
password defaults:

Transaction Type
Defaults

GMJD
No defaults are provided by the security system. You must provide
defaults in BDTUX19.

Batch The defaults are the userid and password from the job card of the batch
job.

TSO The defaults are the userid and password of the TSO terminal user.

BDTUX19

Chapter 10. User Exit Routine Reference 137

What If BDTUX19 Is Not Used?
If no exit routine is provided, the end of transaction text processing continues.

BDTUX24—Monitoring and Modifying the Type 59 SMF Record

Type
Customization (optional).

General Description
After data transfer completes, BDT writes one type 59 SMF record at the
scheduling node. Exit BDTUX24 allows this SMF record to be monitored and
modified before it is written. The exit routine can also suppress the writing of the
SMF record.

For example, this exit routine can be used to allow an installation to write to an
installation-specified data set for auditing data transfers. User exit routine
BDTUX01 should be used to manage user data sets. User exit routine BDTUX01
should be used for managing the installation of user data sets.

An installation can examine or change data in the record, store information in user
fields, write the data to an installation-defined (non-BDT defined) data set, or
choose not to write the SMF record.

If the SMF record is written (exit routine BDTUX24 sends a return code of 0 to
BDTACMN to indicate that it should be written), the SMF user exit routine IEFU83
also runs. IEFU83 allows the user to modify or suppress the type 59 record. If the
return code is 4 (to indicate that the type 59 record should not be written), the
storage for the SMF record is freed.

See the z/OS MVS System Management Facilities (SMF) manual for information on
SMF user exit routine IEFU38 and the type 59 record.

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to the user exit routine.
Registers 2-14 are saved by ASAVE processing.

Register 1
Address of the parameter list:

Word 1
Contains the address of a the SMF record.

Word 2
Contains the address of the MJD.

Register 12
Address of the TVT.

Register 13
Address of the BDT register save area.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

BDTUX19

138 z/OS BDT Installation

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX24 user
exit routine, registers 2-14 of BDTACMN are saved in BDTGRSV. You must store
registers 12, 13, and 14 in an area you provide (either an area obtained by
GETMAIN or one within your user exit routine) and those registers must be
restored on return to BDTACMN by register 14.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

Register 15
Contains a return code for BDTACMN:

RC 0 Indicates that the SMF type 59 record should be written.

RC 4 Indicates that the SMF type 59 record should not be written.

Operation
BDTUX24 is provided for those installations that want to monitor or suppress the
SMF type 59 record before it is written.

For example, an installation may want to write accounting information to an
installation-defined data set. While BDT can format an SMF type 59 record from
the MJD and other control blocks, the system management facility user exit routine
IEFU83 cannot access an installation-defined data set to write that record out.

BDTUX24 gets control from BDTACMN, the BDT accounting manager which is
loaded by BDTACDV, the BDT accounting driver. The exit routine must use
BDTDSMF to map the SMF record. Register 1 points to a parameter list containing
the address of the SMF record. See the z/OS MVS System Management Facilities
(SMF) manual for a description of that macro and the mapping of the type 59
record.

An installation may define how it uses SMF through the SYS1.PARMLIB member
SMFPRMxx. The IBM-supplied member SMFPRM00 specifies the writing of all
SMF records. If TYPE is not specified in the SYS1.PARMLIB member, the default is
to write all records. If the installation has its own SYS1.PARMLIB members
SMFPRMxx, these members may have to be changed to include or suppress type
59 records.

If an installation has supplied an IEFU83 exit routine, it may have to change the
exit routine to select or suppress the type 59 record.

Recovery the Exit Routine Must Establish: This exit routine runs under the ESTAE
exit routine established in BDTACDV, the BDT accounting manager.

Environment
Point Where Exit Routine Receives Control: This exit routine receives control from
BDTACMN, just prior to the writing of the SMF type 59 record.

Information on Entry: This exit routine is passed the address of the SMF record
and the address of the MJD.

The record contains two 40-byte fields for users at SMF59US1 and SMF59US2.

The exit routine also has access to the TVT.

BDTUX24

Chapter 10. User Exit Routine Reference 139

Address Space in Which Exit Routine Runs: BDT address space.

Task under Which Exit Routine Runs: BDTACDV.

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDGSD to map the GSD (for coding an ESTAE exit routine)
v BDTDREG to map the registers
v BDTDTVT to map the TVT
v BDTDSMF is the mapping macro for the SMF type 59 record.

Executable Macros

v BDTXASRV to invoke abend services for abend recovery processing

What If BDTUX24 Is Not Used?
If no exit routine is provided, BDTACMN writes the SMF record.

BDTUX25—Entry Level Authorization in the BDT Address Space

Type
Authorization (required).

General Description
This exit routine is invoked from module BDTCMDV for all file-to-file transactions
when TQI is disabled, and for all BDT and JES3 commands whether TQI is enabled
or disabled.

Note: If TQI is enabled for file-to-file transactions, this exit routine is never entered
for the transaction. User exit routine BDTUX29, located in BDTTQI, must be coded
to check the authorization of transactions issued when TQI is enabled.

The BSID is available for inspection before the command or transaction is sent on
for processing.

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to the BDTUX25 user exit
routine. Registers 2-14 are saved by BDT ASAVE processing.

Register 1
Address of a two-word parameter list:

Word 1
Address of the BSID.

Word 2
Address of the variable portion of the BSID:
v For commands – address of the CONSAREA
v For file-to-file transactions – address of the MJD.

BDTUX24

140 z/OS BDT Installation

Register 12
Address of the TVT.

Register 13
Points to the register save area set up by ASAVE processing.

Register 14
Contains the address of the return point in the ASAVE routine (BDTGRSV).

Register 15
Contains the entry point address into the BDTUX25 user exit routine.

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX25 user
exit routine, registers 2-14 of BDTCMDV are saved in BDTGRSV. You must store
registers 12, 13, and 14 in an area you provide (either an area obtained by
GETMAIN or one within your user exit routine) and those registers must be
restored on return to BDTGRSV by register 14.

Register 14
Contains the address of the return point in the ASAVE routine (BDTGRSV).

Register 15
Used to pass a return code back to BDTCMDV:

RC 0 Authorization verified.

RC 4 The command or file-to-file transaction should be canceled; an
error message is issued indicating that the command or transaction
failed an authorization check and the command or transaction is
failed.

Operation
This exit routine allows an installation to examine the entire BSID. Fields of
particular interest include the BSIDXOID, which is the origin of the user, and
BSIDMOD, which indicates whether the communication with BDT is a JES3 or
BDT command, or a file-to-file transaction. The variable portion of the MJD, which
is built for a transaction by the language processor, is not yet merged for GMJD
transactions. Q-type transactions are complete at this point, however. The user exit
routine can examine the text units built in the MJD.

If a nonzero return code is returned by the exit routine, the file-to-file transaction
or command is canceled and a message is sent to the security console, the BDT log,
and the user. The message states that the command or transaction failed the
authorization check and sends a return code back to the user.

If an abend occurs in BDTUX25, a message is sent stating the name of this exit
routine with an abend code, notifying the user that the command or transaction
failed. The message is viewed by the user and the operator, and is recorded on the
log.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for the user exit routine in the event of system failure. If an ESTAE is not included
as part of your user exit routine, clean-up for the routine is provided by an ESTAE
exit routine established in BDTCMDV.

BDTUX25

Chapter 10. User Exit Routine Reference 141

Environment
Point Where Exit Routine Receives Control: The user exit routine receives control
in BDTCMDV.

Address Space in Which Exit Routine Runs: The exit routine executes as part of the
BDT address space.

Task under Which Exit Routine Runs: This exit routine runs under the TCB of
BDTCMDV, a resident module and subtask of BDT.

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDBSID to map the BSID
v BDTDCNS (with parameters &TYPE=CMA,ICMB,OCMB) to map the command

buffer in the variable portion of the BSID.
v BDTDGSD to map the GSD (for coding an ESTAE exit routine)
v BDTDMJD to map the master job definition
v BDTDREG to map the registers
v BDTDTVT to map the TVT

Executable Macros

v BDTXASRV to invoke abend services for abend recovery processing

What If BDTUX25 Is Not Used?
This exit routine must be coded before BDT will allow file-to-file transactions to be
processed when TQI is disabled, and commands to be processed regardless of
TQI’s condition. If this exit routine is not coded, the transactions and commands
are canceled.

BDTUX26—Global Node Level Authorization

Type
Authorization (required).

General Description
This is a BDT authorization exit routine invoked from the transaction driver,
BDTGRXD, which runs for every file-to-file transaction. This exit routine runs in
BDTGRXD in the global node after the MJD is complete and before BDTGRXD
places the BDT job on the work queue.

The exit routine can look at the MJD, which contains a fixed and variable section.
The fixed section describes all the information necessary to get the job through the
system. The variable section contains the text units for the dynamic allocation of
data sets to make the data transfer. It also contains BDT text units which describe
the particular kind of processing to be performed for the transaction. These text
units have nothing to do with dynamic allocation but simply use the format of
MVS text units to pass information through the BDT system.

BDTUX25

142 z/OS BDT Installation

The exit routine can also modify the JCT or the MJD.

BDTUX26 runs prior to writing the MJD and JCT to the work queue. Once this is
completed, the “sending” BSID is released. BDTUX26 allows the user to modify the
MJD and JCT before writing each to DASD.

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to the BDTUX26 user exit
routine. Registers 2-14 are saved by BDT ASAVE processing.

Register 1
Address of the parameter list:

Word 1
Address of the MJD.

Word 2
Address of the JCT.

Register 13
Points to the register save area set up by ASAVE processing.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

Register 15
Points to the entry point address into the BDTUX26 user exit routine.

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX26 user
exit routine, registers 2-14 of BDTGRXD are saved in BDTGRSV. You must store
registers 12, 13, and 14 in an area you provide (either an area obtained by
GETMAIN or one within the user exit routine) and those registers must be restored
on return to BDTGRSV by register 14.

Register 14
Contains the address of the return point in the ASAVE routine (BDTGRSV).

Register 15
Used to pass a return code back to BDTGRXD:

RC 0 Authorization granted.

RC 4 Authorization failed; an error message is issued indicating that the
transaction failed an authorization check, and the transaction is
failed.

Operation
The global authorization exit routine should provide network-wide checks on
file-to-file transactions entering BDT. It can verify or deny the use of any data sets
that are protected (such as SYS1. data sets). An installation might decide to cancel
any file-to-file transactions from TSO users with a certain prefix identification. This
is the place to provide a high-level check to catch potential violations of system
security. You can avoid needless overhead if the transaction is disapproved in this
exit routine, rather than immediately before the job is to be executed (see
BDTUX27).

BDTUX26

Chapter 10. User Exit Routine Reference 143

This exit routine is passed the address of the MJD and JCT as parameters. The
MJD contains a fixed and variable portion, both of which can be inspected or
modified by this exit routine.

The MJD’s fixed portion contains the job name, priority, source, and destination
locations, and the transaction origin identification which includes the type and
actual identification of the user requesting the transaction. The variable portion of
the MJD contains the text units necessary to perform dynamic allocation of a data
set and carries processing information relevant to BDT.

If the exit routine passes a return code of 4, the transaction is canceled and a
message is sent to the security console, the log and the end user. The message
states that the command failed the authorization check and sends a return code
back to the user.

If an abend occurs in an authorization exit routine, a message is sent identifying
the name of this exit routine with an abend code, notifying the user that the
requested command or transaction is terminated. The message is sent to the user
and the operator, and is recorded on the log.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for the user exit routine in the event of system failure. If an ESTAE is not included
as part of your user exit routine, clean up for the routine is provided by an ESTAE
exit routine established for BDTGRXD.

Environment
Point Where Exit Routine Receives Control: BDTGRXD invokes BDTUX26 after the
MJD for a file-to-file transaction is complete and before BDT places the job on the
work queue.

Address Space: The exit routine executes as part of the BDT address space.

Task under Which Exit Routine Runs: This exit routine runs under BDTGRXD’s
TCB.

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDGSD to map the GSD
v BDTDJCT to map the JCT
v BDTDMJD to map the MJD
v BDTDREG to map the registers
v BDTDTVT to map the TVT

Executable Macros

v BDTXASRV to invoke abend services during abend recovery processing

What If BDTUX26 Is Not Used?
If the exit routine is not coded, the file-to-file transaction is canceled. This exit
routine must be coded before BDT can process file-to-file transactions.

BDTUX26

144 z/OS BDT Installation

BDTUX27—Node Level Authorization

Type
Authorization (required).

General Description
This is a BDT authorization exit routine from BDTGRJR that runs for every
file-to-file transaction. The exit routine runs on both sides of a data transfer just
before the DAPs are scheduled for a data transfer. The exit routine can look at the
MJD. The MJD contains a fixed and variable section. The fixed section describes all
the information necessary to get the job through the system. The variable section
contains the text units that describe the data set information involved in a transfer
of data and other information about the file-to-file transaction.

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to the BDTUX27 user exit
routine. Registers 2-14 are saved by BDT ASAVE processing.

Register 1
Points to a one-word parameter list:

Word 1
Address of the MJD.

Register 13
Points to the register save area set up by ASAVE processing.

Register 14
Points to the address of the return point, which is saved in BDTGRSV.

Register 15
Contains the entry point address into the BDTUX27 user exit routine.

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX27 user
exit routine, registers 2-14 of BDTGRJR are saved in BDTGRSV. You must store
registers 12, 13, and 14 in an area you provide (either an area obtained by
GETMAIN or one within your user exit routine) and those registers must be
restored on return to BDTGRJR by register 14.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

Register 15
Used to pass a return code back to BDTGRJR:

RC 0 Authorization granted.

RC 4 Authorization failed; BDTGRJR cancels the transaction.

Operation
This exit routine allows an installation to examine the MJD.

If the exit routine passes a return code of 4, the file-to-file transaction is canceled
and a message is sent to the security console, the log, and the end user. The
message states that the transaction failed the authorization check and sends a
return code back to the user.

BDTUX27

Chapter 10. User Exit Routine Reference 145

If an abend occurs in an authorization exit routine, a message is sent identifying
the name of this exit routine with an abend code, notifying the user that the
requested command or transaction is terminated. The message is viewed by the
user and the operator, and is recorded on the log.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for the user exit routine in the event of system failure. If an ESTAE is not included
as part of your user exit routine, clean-up for the routine is provided by an ESTAE
exit routine established in BDTABMN.

Environment
Point Where Exit Routine Receives Control: The user exit routine receives control
from BDTGRJR after a new FCT is obtained by BDTGRFC and added to the FCT
chain. A new task is created for this DAP, then BDTGRJR gets control.

BDTGRJR gives control to BDTUX27 before the DAP and the DAP data CSECT are
loaded.

Address Space in Which Exit Routine Runs: BDTUX27 runs in the BDT address
space.

Task under Which Exit Routine Runs: This exit routine runs under the DAP’s TCB.

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDGSD to map the GSD
v BDTDMJD to map the MJD
v BDTDREG to map the register save area
v BDTDTVT to map the BDT TVT

Executable Macros

v BDTXASRV to invoke abend services during abend recovery processing

What If BDTUX27 Is Not Used?
If the exit routine is not coded, the file-to-file transaction is canceled. This exit
routine must be coded before BDT can process file-to-file transactions.

BDTUX28—MCS Console Authorization

Type
Authorization (required).

General Description
This exit routine allows an installation to examine the attributes of an MCS
console, which are set at the time of system generation. Based on those attributes,
the user exit routine can be coded to assign an authorization level for BDT work

BDTUX27

146 z/OS BDT Installation

requests. In later authorization exit routines, this authorization level and the work
request associated with the MCS console can be examined and authorized or not
authorized.

The exit routine gets control in BDTSS34, the module that handles all MCS console
requests.

Table 7 on page 114 shows the authorization levels required of all BDT commands.

Note:

1. This exit routine is invoked only for BDT commands having a prefix of
“bdt-char” or “BDT”. This exit routine is not invoked if the prefix is “F” (MVS
MODIFY command).

2. Exit routine BDTUX25 checks all commands, no matter how they enter BDT.

Register Conventions at Entry
Because this exit routine is entered using a BALR instruction, the routine must
save all registers on entry to the exit routine. Also, because BDTSS34, the routine
that calls this exit routine, is reentrant, the user exit routine must also be reentrant.

Register 1
Contains the address of a parameter list:

Word 1
Address of an MCS console origin (SSCMSCID).

Word 2
Address of MCS console authorization information flags (byte 1):
v X‘80’–information only
v X‘40’–command group I-system
v X‘20’–command group II-I/O
v X‘10’–command group III-console

The fourth byte (X‘80’) indicates master console. One bit past the
master console indicator is the pseudo-master console.

Word 3
Address of an authorization level set by the user exit routine (byte
1).

Register 13
Points to a register save area set up by BDTSS34.

Register 14
Contains the address of the return point in BDTSS34.

Register 15
Contains the entry point address into the BDTUX28 user exit routine.

Register Conventions at Exit
Since the user exit routine is entered directly on a BALR instruction, the routine
must restore the BDTSS34 registers on return.

Register 14
Contains the address of the return point in BDTSS34.

Register 15
Used for delivering a return code value from the exit routine:

BDTUX28

Chapter 10. User Exit Routine Reference 147

RC 0 Indicates a normal return. Processing continues.

RC 4 Indicates that an error was encountered. An error message is
issued indicating that the command or transaction failed an
authorization check and that the transaction failed.

Operation
This exit routine is called by BDTSS34 and executes in the address space of the
user. Because BDTSS34 is reentrant code, this exit routine must also be reentrant.

BDTSS34 invokes BDTUX28 for the assignment of authorization levels to all MCS
consoles. The user exit routine is passed, as part of the parameter list, the address
of the MCS console authorization flags. The routine must determine, based on
these flags, what authorization level to assign. This should be set in the
CONSAUTH field in the console message area. See Table 7 on page 114 for the
proper authorization levels. The exit routine returns the assigned authorization
level in the field pointed to by word 3 of the parameter list. The third word of the
parameter list should be passed on entry.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for the user exit routine in the event of system failure. If you do not include an
ESTAE in the routine, an ESTAE that cleans up after the failure of the user exit
routine is established by IEFJRASP. IEFJRASP acts as an interface between the
communications task (COMTASK) and BDTSS34.

Environment
Point Where Exit Routine Receives Control: The exit routine receives control in
BDTSS34.

Address Space: Link pack area.

Task under Which Exit Routine Runs: The exit routine is called by BDTSS34 and
runs under the TCB for the user.

PSW State: Supervisor.

Storage Protection Key: Key 0.

Data Areas
Mapping Macros: BDTDREG

Executable Macros: None

What If BDTUX28 Is Not Used?
If no exit routine is provided, BDT will not process commands issued via the
command character.

BDTUX29—Initial Authorization of TQI-Enabled Transactions

Type
Authorization (required).

BDTUX28

148 z/OS BDT Installation

General Description
This exit routine allows an installation to authorize file-to-file transactions upon
entry to the TQI address space when TQI is enabled. If TQI is disabled, BDTUX25
is invoked to authorize file-to-file transactions, and transactions flow as commands
always flow—through BDTCMDV, then BDTGRXD.

This exit routine runs in BDTTQI. BDTTQI reads the records from the TQI
checkpoint data set, then passes the transaction to BDTGRXD. See “How
Authorization Exit Routines Fit into the Flow in a BDT File-to-File Subsystem” on
page 84 for more information on the logical flow of transactions when BDT TQI is
enabled and disabled.

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to the BDTUX29 user exit
routine. Registers 2-14 are saved by BDT ASAVE processing prior to returning to
BDTTQI.

Register 1
Contains the address of a two-word parameter list:

Word 1
Address of a BSID.

Word 2
Address of the MJD.

Register 12
Contains the address of the BDT TVT.

Register 13
Contains the address of the register save area set up by ASAVE processing.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX29 user
exit routine, registers 2-14 of BDTTQI are saved in BDTGRSV. You must store
registers 12, 13, and 14 in an area you provide (either a GETMAINed area or one
in your user exit routine) and those registers must be restored on return to
BDTGRSV by register 14.

Register 15
Contains the entry point address into the BDTUX29 user exit routine.

RC 0 The exit routine authorizes the transaction for processing.

RC 4 The exit routine does not authorize the transaction: an error
message is issued indicating that the transaction failed an
authorization check and the transaction failed.

Operation
This exit routine allows an installation to examine the entire BSID for a file-to-file
transaction to determine if that transaction should be processed. Fields in both the
fixed part of the BSID, which includes information about the user, and the variable
portion of the MJD can be examined. The variable portion of the MJD, which is
built for a transaction by the language processor, is not yet merged for GMJD

BDTUX29

Chapter 10. User Exit Routine Reference 149

transactions. Q-type transactions are complete at this point, however. The user exit
routine can examine the text units built in the MJD.

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for your user exit routine. If you do not provide an ESTAE, an ESTAE exit routine
in BDTTQI cleans up in the event of exit routine failure.

Environment
Point Where Exit Routine Receives Control: The exit routine receives control just
before it is entered on the pending table for TQI.

Address Space in Which Exit Routine Runs: BDT address space.

Task under Which Exit Routine Runs: This exit routine runs under the TCB for
BDTTQI.

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDBSID to map the BSID
v BDTDTVT to map the TVT
v BDTDREG to map the registers
v BDTDMJD to map the MJD

Executable Macros

v BDTXASRV to invoke abend services for abend recovery procedures

What If BDTUX29 Is Not Used?
If no exit routine is provided, the file-to-file transaction will fail.

BDTUX30—Dynamic Deallocation

Type
Customization (optional).

General Description
This exit routine allows your installation to specify that a transaction submitter is
the owner of a specific tape or DASD data set. This exit routine receives control
from the dynamic deallocation module (BDTGRDA) and contains a pointer to the
MJD for the transaction for which the data set was allocated. This exit routine
receives control on the “from” side (source) and on the “to” side (destination) for
each transaction.

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to the BDTUX30 user exit
routine. Registers 2-14 are saved using BDT ASAVE processing in BDTGRSV.

Register 0
Contains a reason code:

BDTUX29

150 z/OS BDT Installation

Reason 0
Called on “from” side for normal termination.

Reason 4
Called on “from” side for abnormal termination, restart.

Reason 8
Called on “from” side for abnormal termination, no restart.

Reason 12
Called on “to” side for normal termination.

Reason 16
Called on “to” side for abnormal termination, restart.

Reason 20
Called on “to” side for abnormal termination, no restart.

Register 1
Contains the address of a parameter list.

Word 1
Address of the MJD.

Word 2
Address of the ddname.

Word 3
Data set information; defaults are used if a parameter is not
specified.
v Status (byte 1)

– X‘01’–OLD
– X‘02’–MOD
– X‘04’–NEW
– X‘08’–SHR

v Disposition (byte 2)
– X‘01’–UNCATLG
– X‘02’–CATLG
– X‘04’–DELETE
– X‘08’–KEEP

Reason Code
Disposition Used

0, 12 Normal disposition (the first DISP parameter from the
transaction or its default)

4, 16 KEEP (X‘08’)

8, 20 Conditional disposition (the second DISP parameter
from the transaction or its default)

Word 4
Length (hexadecimal) of user message area; set at X‘AF’ (175
bytes).

Word 5
Address of a user-provided message area to be printed by the
calling module. (This field is zeroed upon entry.)

BDTUX30

Chapter 10. User Exit Routine Reference 151

Register 12
Address of the BDT TVT.

Register 13
Pointer to the register save area set up by ASAVE processing.

Register 15
Address of the entry point in the BDTUX30 user exit routine.

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX30 user
exit routine, registers 2-14 of BDTGRDA are saved in BDTGRSV. You must store
registers 12, 13, and 14 in an area you provide (either an area obtained by
GETMAIN or one within your user exit routine) and those registers must be
restored on return to BDTGRSV by register 14.

Register 14
Contains the address of the return point in the ASAVE routine (BDTGRSV).

Register 15
No return codes; the contents of register 15 are ignored.

Note: The last word of the parameter list (pointed to by register 1)
contains the address of a message area that can be used to return a
message.

Operation
Module BDTGRJR, which runs under the dynamic application program’s (DAP’s)
TCB, calls the dynamic allocation/deallocation module (BDTGRDA); it is from
BDTGRDA that this exit routine receives control. Both modules, BDTGRJR and
BDTGRDA, reside in BDTNUC, the BDT nucleus. Furthermore, because BDTGRDA
is reentrant, this exit routine must also be reentrant.

The exit routine receives control with pointers to the MJD of the transaction and
the ddname. The MJD contains the XOID with the origin information concerning
the transaction. The user ID of the submitter of the transaction is taken from the
TSO user ID field (MJDUSID) or the user fields (MJDXRU1 and MJDXRU2). The
type of user who submitted the transaction is determined from the MJDXTYP field.
The ddname can be used to issue a RDJFCB and then a DEVTYPE macro to
determine the volume serial numbers and other device characteristics associated
with a data set.

To return a message which is printed by BDT, the exit routine must place the
length of the message in the first byte of the message area followed by the message
text. The address of this message is contained in the parameter list pointer to by
register 1. This message area can be filled in by the exit routine. This message must
not exceed 174 bytes of text; if you do exceed this limit, BDT will truncate the
excess portion of the text without returning a message to that effect. If, on return
from the exit routine, BDTGRDA determines that the first byte of the message area
is nonzero, BDTGRDA prints the message. No messages are printed following an
abnormal termination of the exit routine.

You can also use BDTUX19 to associate a user ID with a transaction. When a
transaction is submitted from a batch job, there is no user ID in the XOID; the
XOID contains the batch job name, only. However, BDTUX19 can be used to add
the address of the user to the 8-byte user field in the XOID.

BDTUX30

152 z/OS BDT Installation

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for your exit routine in the event of an abend. If there is no recovery in the routine,
the ESTAE recovery routine established by BDTGRDA gains control.

Environment
Point Where Exit Routine Receives Control: This exit routine receives control from
the dynamic deallocation module (BDTGRDA) called by BDTGRJR.

Address Space in Which Exit Routine Runs: BDT address space.

Task under Which Exit Routine Runs: This exit routine runs under the TCB of the
scheduled DAP (BDTSEQ or BDTPDS).

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDMJD to map the MJD to obtain access to the XOID and the account
(ACCT) parameter. (The MJD is not updated with transaction statistics when this
exit routine gains control.)

v BDTDGSD to map the GSD (if you code an ESTAE)
v BDTDREG to map the registers
v BDTDTVT to map the BDT TVT

Executable Macros

v BDTXASRV to invoke abend services (if you code an ESTAE)
v BDTXTUAM to retrieve text units in the MJD

Data Management Macros

v DEVTYPE to request information on the device characteristics associated with a
specific DD statement

Note: Standard data management macros are required to map the JFCB
(IEFJFCBN) returned from by RDJFCB and the data returned by the DEVTYPE
macro (IHADVA).

What If BDTUX30 Is Not Used?
If this exit routine is not provided, your installation will not be able to associate a
data set with the submitter of a transaction. BDT can appear (depending upon
your use of OPEN, CLOSE, and EOV exits) as owner of all data sets created by
BDT transactions.

BDTUX31—INQUIRY and MODIFY Command Authorization

Type
Authorization (required).

BDTUX30

Chapter 10. User Exit Routine Reference 153

General Description
This exit routine allows your installation to validate and authorize a user to inquire
about or modify a transaction. This is actually a second level of authorization. The
command must have been previously authorized by one of the other BDT-required
authorization exit routines. This exit routine provides further authorization
refinement by checking for user/owner authorization to inquire about or modify a
specific transaction. Thus, you can guarantee only the original user or an
authorized user (such as the operator) can change or inquire about transactions.
This exit routine allows you to compare the user ID for the command to the user
ID of the transaction to be processed. After comparing the two user IDs or
verifying that the command was submitted by an authorized user, you can decide
(based on this comparison) whether to process all transactions associated with this
command, to process this transaction and validate the next transaction, to reject
this transaction and check the next, or reject the entire command.

BDTUX31 is invoked immediately before a command is processed in response to
either an INQUIRY (I) or MODIFY (F) command. The exit routine is entered once
for each transaction processed; this then, could be numerous times for a single
command if more than one transaction on the work queue is associated with that
command. It is your responsibility to control the number of messages returned. For
example, on the first entry for this exit routine you can cause BDT to return a
message that indicates that only transactions belonging to the command submitter
will be processed.

Reason code 252 is returned to the calling routine following the exit call for the last
transaction associated with a specific command. The exit routine is entered with
reason code 252 only after all return codes previously returned were either 4 or 8
(that is, reenter the exit routine for the next transaction associated with this
command) but not for return codes of either 0 or 12 (that is, acceptance of rejection
of all transactions associated with this command). This final call occurs because
there are no more transactions associated with this command to check or process.

This exit routine processes only INQUIRY and MODIFY commands that are
transaction specific. BDTUX31 is not entered, for example, for an I, B (Inquiry on
Backlog) command, because this command requests summary information rather
than transaction-specific information.

This exit routine is called from a common routine in BDTIQDV which is called
from one of the following four modules, depending on the specific INQUIRY or
MODIFY command:

Module
Command

BDTIQQU
I,J= I,P= I,Q F,J=

BDTIQAC
I,A

BDTIQDS
I,DSN

BDTDJIM
All DTC commands (including I,NET;I NET ID=; and F,NET)

BDTUX31

154 z/OS BDT Installation

BDTUX31 is invoked for the following reasons; the reason code (passed in register
0) informs the exit routine of the purpose for which it is called. A valid return code
must be returned for each entry except a last entry (reason code 252) when the
return code is ignored.

Reason Code
Explanation

0 Exit routine is called by a common routine in BDTIQDV which was called
from BDTIQAC for I,A commands. This invocation validates an Inquiry
Active command prior to display of a transaction.

4 Exit routine is called by a common routine in BDTIQDV which was called
from BDTIQDS for I,DSN commands. This invocation validates an Inquiry
by Data Set Name command prior to display of a transaction.

8 Exit routine is called by a common routine in BDTIQDV which was called
from BDTIQQU for I,J= commands. This invocation validates the Inquiry
by Job Name or Number command prior to display of a transaction.

12 Exit routine is called by a common routine in BDTIQDV which was called
from BDTIQQU for I,P= commands. This invocation validates the Inquiry
by Priority command prior to display of a transaction.

16 Exit routine is called by a common routine in BDTIQDV which was called
from BDTIQQU for I,Q commands. This invocation validates the Inquiry
on Work Queue command prior to display of a transaction.

20 Exit routine is called by a common routine in BDTIQDV which was called
from BDTDJIM for I,NET commands. This invocation validates the Inquiry
on a Network command prior to display of a transaction.

24-124 Reserved.

128 Exit routine is called by a common routine in BDTIQDV which was called
from BDTIQQU for F,J= commands. This invocation validates the
Modify-Transaction command prior to changing the status of a transaction.

132 Exit routine is called by a common routine in BDTIQDV which was called
from BDTDJIM for F,NET commands. This invocation validates the
Modify-Network Transaction command prior to changing the status of a
transaction in a network.

136-248
Reserved.

252 Exit routine is called once more following the exit call for the last entry
associated with a specific command to provide an end-of-command
processing notification to the user.

Register Conventions at Entry
BDTXCALL linkage is used to establish the interface to the BDTUX31 user exit
routine. Registers 2-14 are saved by BDT ASAVE processing in BDTGRSV.

Register 0
Contains a reason code:

Reason 0
Validate I,A commands.

Reason 4
Validate I,DSN commands.

BDTUX31

Chapter 10. User Exit Routine Reference 155

Reason 8
Validate I,J= commands.

Reason 12
Validate I,P= commands.

Reason 16
Validate I,Q commands.

Reason 20
Validate I NET commands.

Reason 128
Validate F,J= commands.

Reason 132
Validate F,NET commands.

Reason 252
Last entry for this command.

Register 1
Contains the address of the parameter list.

Word 1
Address of the XOID of the command.

Word 2
Address of the XOID of the transaction.

Word 3
Length of the command text.

Word 4
Address of the command text.

Word 5
Address of the JCT for reason codes 8, 12, 16, 20, 128, 132.

Word 6
Length of message area (X‘AF’).

Word 7
Address of a user message area (this area is zeroed on each entry
to the exit routine).

Word 8
Address of a 1-word user area (this area is zeroed on the first entry
for each command). This area can be used to save the original
reason code for a last (reason code 252) entry and to set a flag to
indicate if any transactions have been processed for a command.

Register 12
Address of the BDT TVT.

Register 13
Pointer to the register save area set up by ASAVE processing.

Register 14
Address of the return point in the ASAVE routine (BDTGRSV).

Register 15
Address of the entry point in the BDTUX31 user exit routine.

BDTUX31

156 z/OS BDT Installation

Register Conventions at Exit
Because BDTXCALL linkage is used to establish the interface to the BDTUX31 user
exit routine, registers 2-14 of BDTINIC are saved in BDTGRSV. You must store
registers 12, 13, and 14 in an area you provide (either an area obtained by
GETMAIN or one within your user exit routine) and those registers must be
restored on return to BDTGRSV by register 14.

Register 14
Contains the address of the return point, which is saved in BDTGRSV.

Register 15
Used for returning a return code value set by the BDTUX31 user exit
routine.

For return codes 0, 4, 8, and 12.

RC 0 Indicates that this command and all transaction checking
associated with this command are accepted. Do not reenter the exit
routine for this command.

RC 4 Indicates that this transaction is accepted and the exit routine
should be reentered to check the next transaction associated with
this command.

RC 8 Indicates that this transaction is rejected and the exit routine
should be reentered to check the next transaction associated with
this command.

RC 12 Indicates that this command is rejected as is all transaction
checking associated with it. Do not reenter the exit routine for this
command.

Note: For all reason codes except 252, a valid return code must be
returned. If a valid return code is not returned, the command is
rejected, and a user message is not printed. For entry reason code
252, the contents of register 15 are not checked.

Operation
When a user issues an INQUIRY (I) or MODIFY (F) command, this exit routine
should verify that users are only displaying or modifying their own transactions or
those transactions which that user is authorized to display or modify. Therefore,
this exit routine should be used to prevent users from either displaying or
modifying all transactions unless they are authorized.

The input passed to the exit routine includes a reason code indicating the type of
command issued (INQUIRY or MODIFY). Furthermore, the parameter list contains
the address of the XOID of the transaction and the address of the XOID of the
command. Origin information in the XOIDs can be compared to determine
whether the transaction should be processed. The exit routine returns a code that
indicates whether to process the transaction and whether to continue processing
other transactions associated with this command. The user may also return the
address of a message (maximum of 174 bytes) to be printed; this message is
returned in the message area whose address is contained in the parameter list
pointed to by register 1.

This exit resides in reusable code; therefore, the exit routine must also be reusable.

BDTUX31

Chapter 10. User Exit Routine Reference 157

Recovery the Exit Routine Must Establish: You should provide ESTAE protection
for your exit routine in the event of an abend. If there is no recovery in the routine,
the ESTAE recovery routine established by BDTIQDV gains control. This ESTAE
rejects the command and prints a message.

Environment
Point Where Exit Routine Receives Control: This exit routine receives control from
a subroutine in BDTIQDV called by BDTIQQU, BDTIQAC, BDTIQDS, or
BDTDJIM.

Address Space in Which Exit Routine Runs: BDT address space.

Task under Which Exit Routine Runs: This exit routine runs under the TCB of
BDTIQDV.

PSW State: Supervisor.

Storage Protection Key: BDTKEY (key 8).

Data Areas
Mapping Macros

v BDTDXOID to map the XOID for both the command and transaction
v BDTDGSD to map the GSD (if you code an ESTAE)
v BDTDJCT to map the JCT
v BDTDREG to map the registers
v BDTDTVT to map the TVT

Executable Macros

v BDTXASRV to invoke abend services (if you code an ESTAE)

What If BDTUX31 Is Not Used?
If this exit routine is not provided, BDT will reject the INQUIRY and MODIFY
commands associated with a specific transaction.

BDTUX31

158 z/OS BDT Installation

Chapter 11. Mapping Macro Reference

This chapter describes the BDT mapping macros that you can use when coding
user exit routines. The macros are listed in alphabetic order.

The mapping macros identified in this chapter are provided as Product-Sensitive
programming interfaces for customers by BDT.

Attention: Do not use as programming interfaces any BDT mapping macros other
than those identified in this chapter.

BDTDBSID
BDTDBSID maps a BDT subsystem interface data area (BSID).

BDTDCNS
BDTDCNS maps five console buffer areas, including the console message area, the
input console message buffer, the output console message buffer, the input console
message action codes, and the intercom request buffer.

Parameter Subparameter Explanation
&TYPE= Specifies the type of console buffer area to be

mapped.
CMA Specifies that the console message area, used to

process input commands, is to be mapped.
INPUT Specifies that a console message area, used to process

input commands, is to be mapped.
ICMB Specifies that the input console message buffer, used

to buffer input commands, is to be mapped.
FCTQ Specifies that the input console message buffer, used

to buffer input commands, is to be mapped.
OCMB Specifies that the output console message buffer, used

to buffer output messages, is to be mapped.
OUTPUT Specifies that the output console message buffer, used

to buffer output messages, is to be mapped.

BDTDBSID

BDTDCNS {CMA }
{INPUT }

&TYPE= {ICMB } one or list of
{FCTQ }
{OCMB }
{OUTPUT}

&CODES= {YES}
{NO }

{CONS}
&PREFIX= {CON }

{CN }

© Copyright IBM Corp. 1986, 2013 159

Parameter Subparameter Explanation
&CODES= Specifies the ability to set symbolic equates for the

various BDT command verbs.
YES Specifies that a set of symbolic equates for the

various BDT command verbs are to be generated.
This is the default.

NO Specifies that the command verb equates are not to
be generated.

&PREFIX= Specifies a prefix to be used in generating labels for
the console message area and for the console message
codes. The prefix must be a 1- to 3-character string,
the first character alphabetic. If three characters are
input, certain generated labels will use only the first
two characters so that the label generated will not
exceed 8 characters. Default prefix values are CONS,
CON, and CN.

BDTDDATU
BDTDDATU maps a BDT dynamic allocation text units that are contained in the
the variable portion of the MJD.

Parameter Subparameter Explanation
DSECT= YES Specifies that the area is to be generated as a DSECT

with the label DATUNIT. This is the default.
NO Generates space for a text unit in-line, on a byte

boundary, with the label DATUNIT.

BDTDGSD
BDTDGSD maps the BDT generalized subtask directory. This macro serves as a
control block for the FCT extension (FCT links to the TCB via the GSD) and for
generalized ESTAE ABEND service.

Parameter Subparameter Explanation
TYPE=F If TYPE=F is coded, the GSD is built in-line on a

full-word boundary. If TYPE=F is not coded, or the
parameter is omitted, a DSECT mapping is
generated.

BDTDINT
BDTDINT maps the BDT initialization data area. The initialization exit routines (2,
3, 4, 5, and 6) receive control, with register 11 containing the address of the
initialization area.

BDTDDATU &DSECT= {YES}
{NO }

BDTDGSD [TYPE=F]

BDTDINT

BDTDCNS

160 z/OS BDT Installation

BDTDJCT
BDTDJCT maps the job control table entry (JCT) and the scheduler element
DSECTs.

BDTDLCT
BDTDLCT maps the BDT logical unit control block (LCT). An LCT is built for each
SNA line and BDT node defined to BDT.

Parameter Subparameter Explanation
RMT= Specifies whether the variable portion of the node

VLU control block is to be defined.
NODE Specifies that the variable portion is to be generated.
NONE Specifies that the variable portion is not to be

generated.
ALL Specifies that the variable portion is to be generated.

This is the default.

BDTDMJD
BDTDMJD maps the master job definition control block (MJD). Text units
describing the transaction are contained in the MJD.

BDTDREG
BDTDREG maps the symbolic equates for the registers.

BDTDRLT
BDTDRLT maps the BDT resident logical unit table (RLT). An RLT is built for each
SNA line and BDT node defined to BDT.

Parameter Subparameter Explanation
&ENTRY= Specifies which sections of BDTDRLT are to be

generated.
RESIDENT Specifies that only the RLT table for the resident node

is to be generated. This is built as a result of
processing BDTNODE initialization statements in
BDTINR2.

BDTDJCT

{NODE}
BDTDLCT &RMT= {NONE}

{ALL }

BDTDMJD

BDTDREG

{RESIDENT}
BDTDRLT &ENTRY= {INISH }

{ALL }

BDTDJCT

Chapter 11. Mapping Macro Reference 161

Parameter Subparameter Explanation
INISH Specifies that the initialization RLT table is to be

generated. This table is used to process the
BDTNODE statements in BDTINR1.
Note: This specification is only valid for exit routine
BDTUX04.

ALL Specifies that all sections are to be generated.

BDTDSEQ
BDTDSEQ maps the data CSECT used by BDTSEQ.

BDTDSMF
BDTDSMF maps the BDT system management facility (SMF) record.

BDTDTVT
BDTDTVT maps the BDT transfer vector table (TVT).

BDTDXOID
BDTDXOID maps a BDT transaction origin ID in its internal format.

Parameter Subparameter Explanation
&label Optionally specifies a label to be associated with the

transaction origin ID.
&PR= Optionally specifies a 1- to 4-character prefix for each

label generated to defined fields within the
transaction origin ID.

BDTDSEQ

BDTDSMF

BDTDTVT

&label BDTDXOID &PR=

BDTDRLT

162 z/OS BDT Installation

Chapter 12. Executable Macro Reference

This chapter describes the executable BDT macros that you can use when coding
user exit routines. The macros are listed in alphabetic order.

The executable macros identified in this chapter are provided as Product-Sensitive
programming interfaces for customers by BDT.

Attention: Do not use as programming interfaces any BDT executable macros other
than those identified in this chapter.

Macros can have two types of operands: positional and keyword. A positional
operand is written as a string of characters. This character string can be an
expression, an implied or explicit address, or some special operand form allowed
in a particular macro instruction. Positional operands must be included in a
specific order. If a positional operand is omitted and another positional operand is
written to the right of it, the comma that would normally have preceded the
omitted operand must be included. This comma should be written only if followed
by a positional operand; it need not be written if followed by a keyword operand
or a blank.

Note: If in the future IBM provides a maintenance PTF that modifies a BDT macro,
the entire macro should be replaced at that time with the shipped PTF. Therefore,
it is highly recommended that you do not make any modifications to any macros
in the macro library. If you do so and want to preserve those modifications
following the macro replacement you must reenter those changes.

BDTDKYWD
BDTDKYWD builds a keyword table CSECT. It calls BDTDTUD, a macro which
generates BDT text units.

Use the BDTDKYWD macro to define a keyword to be added to the BDT
transaction language.

For each keyword you define, the BDTDKYWD macro does two things:
v It generates an entry in a keyword table. This entry contains the keyword and its

synonyms, if any. It also contains a pointer to the first or only text unit
descriptor for the keyword.

v It calls the BDTDTUD macro, which generates the first or only text unit
descriptor for the keyword. (If your keyword is to have more than one
associated text unit, you must code a BDTDTUD macro to define the additional
text unit descriptors. See the example below in the discussion of the LAST
parameter.)
The text unit descriptor contains a skeleton for the text unit to be built, and it
describes the syntactic rules for the keyword values and for the text unit
parameter values.

The BDT language processor uses the information from the keyword table and the
text unit descriptor table to parse the transaction parameters entered by the user
and to build the text units that describe the processing that the parameters request.

© Copyright IBM Corp. 1986, 2013 163

Parameter Subparameter Explanation
&PRIKEY A required label that specifies the keyword defined

by this macro call. This is the statement label coded
on the BDTDKYWD macro.

Example: SECPSWD BDTDKYWD...
&SYN= Specifies the synonym(s) that may be used instead of

the keyword when the keyword is entered on a BDT
transaction. The synonyms may be a list.

&TYPE= A required parameter that specifies the type of
keyword to be generated.

FIXED Indicates that the keyword is a stand-alone keyword
and may have no values. OLD, NEW, and MOD are
fixed keywords.

KEY Indicates that the keyword has a list of valid values.
Only the specified values as defined in the KEYS=
operand may be entered with this keyword on a BDT
transaction. For example:

DISP BDTDKYWD TYPE=KEY,
KEYS=(CATLG,UNCATLG)

When the above example is coded, the DISP
parameter on BDT transactions can only be coded
DISP(CATLG) or DISP(UNCATLG).

&PRIKEY BDTDKYWD &SYN=

{FIXED}
,&TYPE= {KEY }

{VAR }
{TERM }

,&TUKEY=
,&TUNUM= 1
,&TULNG= 1
,&TUPAR=
,&TUCPRM=
,&KEYS=
,&MAXLEN= 255
,&PREFIX=

,&OPT= {YES}
{NO }

,&MAXVAL= x’FFFFFFFF’

,&NUMERIC= {YES}
{NO }

,&CONVERT= {YES}
{NO }

,&LAST= {YES}
{NO }

,&DATU= {YES}
{NO }

BDTDKYWD

164 z/OS BDT Installation

Parameter Subparameter Explanation
VAR Indicates that the keyword being defined has a value

associated with it, and it is variable. For example:

SECUSER BDTDKYWD TYPE=VAR,
MAXLEN=8,...

When the above example is coded, transactions that
use the SECUSER parameter, must have a value of
up to 8 characters entered with them.

TERM Specifies that the end-of-list terminator be generated.
This is a required parameter that is used for the last
occurrence of the BDTDKYWD or BDTDTUD macro
coded.

&TUKEY Defines the text unit key for the text unit being
defined when TYPE=FIXED, KEY, or VAR. If the text
unit is a dynamic allocation text unit, the value
specified for this keyword should be one of the
dynamic allocation text unit values defined in the
IEFZB4D2 macro. If this is a BDT text unit, the value
specified should be in the range of 200-220 for
nongeneric keywords (those that can be specified in
either or both the FROM and TO sections of a
transaction). For generic keywords (those that are
specified in the job definition section of a transaction
and define processing options or the transaction as a
whole) select a key value in the range of 491-511.

For example, if the following is coded, the MEMBER
keyword has a dynamic allocation text unit with a
text unit key equal to the value defined in the
IEFZB4D4 macro for DALMEMBR:

MEMBER BDTDKYWD TYPE=VAR,
TUKEY=DALMEMBR,DATU=YES,...

&TUNUM= Specifies the number of parameter fields to be
included in the text unit generated for the keyword.
The default is 1. Therefore, if the text unit is to have
no parameter fields, TUNUM=0 must be specified.

TUNUM generates the count field in the text unit.
&TULNG= Defines the length of the text unit parameter field, if

one is to be included in the text unit generated for
this keyword. The default is 1.

If there is to be no text unit parameter field,
TUNUM=0 must be coded, and TULNG need not be
coded. (The dynamic allocation generated by BDT for
the ROUND keyword, DALROUND, is an example
of a text unit with no parameter.)

If the keyword value associated with this text unit is
VAR and its value is character (NUMERIC=NO), or if
its value is numeric but not to be converted to binary,
(NUMERIC=YES,CONVERT=NO), then the actual
length of the keyword value entered by the user will
be used for the text unit parameter length when the
language processor is parsing the transaction
parameters and building the text units. For these
cases, TULNG=0 should be specified.

BDTDKYWD

Chapter 12. Executable Macro Reference 165

Parameter Subparameter Explanation
&TUPAR= Defines the parameter value to be included in this

text unit generated for this keyword. TUPAR may be
used, for example, when you are defining a
TYPE=FIXED keyword whose associated text unit has
one defined value.

The length of the generated text unit field is
determined by the value of the TULNG parameter.
TUPAR can be specified as a symbol that has been
equated to the desired value. For example, if you
have coded USRTUPRM EQU X‘80’, you could then
specify TUPAR=USRTUPRM. The resulting text unit
parameter field would contain the value X‘80’. The
length of the field would be that specified via
TULNG. If TULNG was not specified, the length
would default to 1.

&TUCPRM= Defines the parameter value to be included in the
text unit generated for this keyword when this value
is a character string. TUCPRM may be used, for
example, when you are defining a TYPE=FIXED
keyword whose associated text unit has one defined
character value. For example, the text unit parameter
might be the name of a module, MSGROUTE, which
another user is to invoke when the user keyword is
specified on a transaction. In this case, you could
code TUCPRM=MSGROUTE. Note that the character
string is not enclosed in single quotes.

&KEYS= Used with TYPE=KEY to define the valid parameters
associated with the keyword. For example, if the
following is coded, the only parameters that are valid
with the keyword LABEL on a BDT transaction are
NL, SL, SUL, or BLP:

LABEL BDTDKYWD TYPE=KEY,
TUKEY=DALLABEL,
KEYS=(NL,SL,SUL,BLP),...

&MAXLEN= Specifies the maximum length of the keyword value
for a TYPE=VAR value. MAXLEN=255 is the default.
For example, if you were defining a keyword
USR(userid) where the userid could be a maximum
of 8 characters, you would code MAXLEN=8.

BDTDKYWD

166 z/OS BDT Installation

Parameter Subparameter Explanation
&PREFIX= Defines a prefix to be used for the symbols generated

to define the text unit parameter values to be
associated with the keys specified by the KEYS=
parameter for a keyword defined as TYPE=KEY. The
prefix may be from one to seven valid assembler
language characters. The symbols are generated by
concatenating the specific prefix with as many
characters of each KEY value as can be used to create
a symbol of up to eight characters.

For example, assume that you are defining a user
keyword MSGSUPR whose values may be YES, Y,
NO, or N:

MSGSUPR(YES|Y|NO|N)

The text unit parameter value for YES or Y is to be
X‘0200’; the value for NO or N is to be X‘0400’. Your
installation naming convention for user text unit
parameter values is to begin each name with the
characters USR. You could code the following to
define the text unit parameter values:

USRSUPPY EQU X’0200’
USRSUPPN EQU X’0400’

You could then code the following BDTDKYWD
macro:

MSGSUPR BDTDKYWD TYPE=KEY,
KEYS=(YES,Y,NO,N),
TULNG=2,PREFIX=USRSUPP,...

TULNG=2 is necessary to define the 2-byte text unit
parameter field, since 1 is the default. The above
example would generate the following to define the
key values and their associated text unit parameter
values:

DC CL3’YES’,AL2(USRSUPPY)
DC CL3’Y’,AL2(USRSUPPY)
DC CL3’NO’,AL2(USRSUPPN)
DC CL3’N’,AL2(USRSUPPN)

BDTDKYWD

Chapter 12. Executable Macro Reference 167

Parameter Subparameter Explanation
&OPT= Specifies whether this keyword value is optional. The

default is OPT=NO. If OPT=NO is coded or the
parameter is omitted, the value must be specified
when the keyword is entered on a BDT transaction.

For example, suppose you want to define a user
keyword that specifies whether transaction messages
are to be suppressed and the name of a log where
messages are to be written by a user exit routine. If
the log name is not specified, a default will be used.
Syntactically, this keyword might look like the
following:

SMSG(YES|Y|NO|N[,log-name])

The definition of the keyword could be as follows:

SMSG BDTDKYWD TYPE=KEY,
KEYS=(YES,Y,NO,NO),
LAST=NO,...

BDTDTUD TYPE=VAR,MAXLEN=8,
OPT=YES,LAST=YES,...

This definition will cause the value for the log name
to be optional.

&MAXVAL= Specifies the maximum value that a keyword value
may have, when it is TYPE=VAR and the keyword
value is defined as NUMERIC=YES, CONVERT=YES.
If MAXVAL is not specified for a NUMERIC
keyword value that is to be converted to binary, the
converted value must be less than or equal to
X‘FFFFFFFF’. Note that the TULNG parameter must
specify a text unit parameter length great enough to
hold the maximum value.

&NUMERIC= For a TYPE=VAR keyword value, specifies whether
the keyword value must be numeric. The default is
NUMERIC=NO. If this parameter is omitted or if
NUMERIC=NO is coded, the parameter value can be
any valid alpha-national character.

&CONVERT= For a TYPE=VAR, NUMERIC=YES keyword value,
specifies whether the keyword value is to be
converted into binary before being placed in the text
unit parameter field. The default is CONVERT=NO.

BDTDKYWD

168 z/OS BDT Installation

Parameter Subparameter Explanation
&LAST= Specifies whether this is the last text unit to be

associated with this keyword. LAST=YES is the
default. Use LAST=NO if you want to define more
than one text unit to be associated with a particular
keyword. Define each additional text unit with the
BDTDTUD macro, immediately following the
BDTDKYWD macro. Specify (or default) LAST=YES
on the last BDTDTUD macro.

For example, if you want to define a keyword for
which three text units are to be generated, you would
specify the following:

BDTDKYWD...,LAST=NO
BDTDTUD...,LAST=NO
BDTDTUD...,LAST=YES

The BDTDKYWD macro defines the keyword and the
first text unit. The two BDTDTUD macros define the
second and third text units for the keyword.

For example, BDT generates two dynamic allocation
text units for the DISP keyword and for the SPACE
keyword.

&DATU= Identifies the text unit as either a dynamic allocation
text unit (DATU=YES) or a BDT text unit
(DATU=NO). DATU=NO is the default.

BDTDTUD
BDTDTUD creates text units to describe the keywords used in a BDT transaction.
This macro is called by BDTDKYWD.

Use the BDTDTUD macro to define additional text unit descriptors when the
transaction keyword you are defining has more than one text unit associated with
it.

The text unit descriptor contains a skeleton for the text unit which the BDT
language processor will build when the associated keyword is entered on a
transaction. It describes the syntactic rules for the keyword values and for the text
unit parameter values.

BDTDKYWD

Chapter 12. Executable Macro Reference 169

Parameter Subparameter Explanation
&label Optional positional parameter that specifies the label

associated with the first statement generated on the
macro execution.

&TYPE= A required parameter that specifies the type of
keyword to be generated.

FIXED Indicates that the keyword is a stand-alone keyword
and may have no values. OLD, NEW, and MOD are
fixed keywords.

KEY Indicates that the keyword has a list of valid values.
Only the specified values as defined in the KEYS=
operand may be entered with this keyword on a BDT
transaction.

VAR Indicates that the keyword being defined has a value
associated with it, and it is variable.

TERM Specifies that the end-of-list terminator be generated.
This is a required parameter that is used for the last
occurrence of the BDTDKYWD or BDTDTUD macro
coded.

&TUKEY= Defines the text unit key for the text unit being
defined when TYPE=FIXED, KEY, or VAR. If the text
unit is a dynamic allocation text unit, the value
specified for this keyword should be one of the
dynamic allocation text unit values defined in the
IEFZB4D2 macro. If this is a BDT text unit, the value
specified should be in the range of 200-220 for
nongeneric keywords (those that can be specified in
either or both the FROM and TO sections of a
transaction). For generic keywords (those that are
specified in the job definition section of a transaction
and define processing options or the transaction as a
whole) select a key value in the range of 491-511.

&label BDTDTUD {FIXED}
&TYPE= {KEY }

{VAR }
{TERM }

,&TUKEY=
,&TUNUM= 1
,&TULNG= 1
,&TUPAR=
,&KEYS=
,&MAXLEN= 255
,&PREFIX=

,&OPT= {YES}
{NO }

,&MAXVAL= x’FFFFFFFF’

,&NUMERIC= {YES}
{NO }

,&CONVERT= {YES}
{NO }

,&LAST= {YES}
{NO }

,&DATU= {YES}
{NO }

BDTDTUD

170 z/OS BDT Installation

Parameter Subparameter Explanation
&TUNUM= Specifies the number of parameter fields to be

included in the text unit generated for the keyword.
The default is 1. Therefore, if the text unit is to have
no parameter fields, TUNUM=0 must be specified.

TUNUM generates the count field in the text unit.
&TULNG= Defines the length of the text unit parameter field, if

one is to be included in the text unit generated for
this keyword. The default is 1.

If there is to be no text unit parameter field,
TUNUM=0 must be coded, and TULNG need not be
coded. (The dynamic allocation generated by BDT for
the ROUND keyword, DALROUND, is an example
of a text unit with no parameter.)

If the keyword value associated with this text unit is
VAR and its value is character (NUMERIC=NO), or if
its value is numeric but not to be converted to binary,
(NUMERIC=YES,CONVERT=NO), then the actual
length of the keyword value entered by the user will
be used for the text unit parameter length when the
language processor is parsing the transaction
parameters and building the text units. For these
cases, TULNG=0 should be specified.

&TUPAR= Defines the parameter value to be included in this
text unit generated for this keyword. TUPAR may be
used, for example, when you are defining a
TYPE=FIXED keyword whose associated text unit has
one defined value.

The length of the generated text unit field is
determined by the value of the TULNG parameter.
TUPAR can be specified as a symbol that has been
equated to the desired value. For example, if you
have coded USRTUPRM EQU X‘80’, you could then
specify TUPAR=USRTUPRM. The resulting text unit
parameter field would contain the value X‘80’. The
length of the field would be that specified via
TULNG. If TULNG was not specified, the length
would default to 1.

&KEYS= Used with TYPE=KEY to specify the parameter
keyword value.

&MAXLEN= Specifies the maximum length of the keyword value
for a TYPE=VAR value. MAXLEN=255 is the default.
For example, if you were defining a keyword
USR(userid) where the userid could be a maximum
of 8 characters, you would code MAXLEN=8.

&PREFIX= Defines a prefix to be used for the symbols generated
to define the text unit parameter values to be
associated with the keys specified by the KEYS=
parameter for a keyword defined as TYPE=KEY. The
prefix may be from one to seven valid assembler
language characters. The symbols are generated by
concatenating the specific prefix with as many
characters of each KEY value as can be used to create
a symbol of up to eight characters.

BDTDTUD

Chapter 12. Executable Macro Reference 171

Parameter Subparameter Explanation
&OPT= Specifies whether this keyword value is optional. The

default is OPT=NO. If OPT=NO is coded or the
parameter is omitted, the value must be specified
when the keyword is entered on a BDT transaction.

&MAXVAL= Specifies the maximum value that a keyword value
may have, when it is TYPE=VAR and the keyword
value is defined as NUMERIC=YES, CONVERT=YES.
If MAXVAL is not specified for a NUMERIC
keyword value that is to be converted to binary, the
converted value must be less than or equal to
X‘FFFFFFFF’. Note that the TULNG parameter must
specify a text unit parameter length great enough to
hold the maximum value.

&NUMERIC= For a TYPE=VAR keyword value, specifies whether
the keyword value must be numeric. The default is
NUMERIC=NO. If this parameter is omitted or if
NUMERIC=NO is coded, the parameter value can be
any valid alpha-national character.

&CONVERT For a TYPE=VAR, NUMERIC=YES keyword value,
specifies whether the keyword value is to be
converted into binary before being placed in the text
unit parameter field. The default is CONVERT=NO.

&LAST= Specifies whether this is the last text unit to be
associated with this keyword. LAST=YES is the
default. Use LAST=NO if you want to define more
than one text unit to be associated with a particular
keyword. Define each additional text unit with the
BDTDTUD macro, immediately following the
BDTDKYWD macro. Specify (or default) LAST=YES
on the last BDTDTUD macro.

&DATU= Identifies the text unit as a dynamic allocation text
unit (DATU=YES) or a BDT text unit (DATU=NO).
DATU=NO is the default.

BDTXASRV
BDTXASRV invokes abend services during abend recovery processing. This service
must be invoked as part of abend recovery processing so that a task can continue
to run. Abend services cannot clean up after a task. It is the responsibility of the
abending task to properly release all acquired resources. Failure to do so can
seriously impact the proper functioning of BDT. Abend services are only available
to functions running in the BDT address space.

Parameter Subparameter Explanation
&label Optional label associated with the first instruction

generated by the BDTXASRV macro.

&label BDTXASRV &TYPE= {EXIT }
{RETRY}

,&GSD=
,&SDWA=
,&SAPURGE= (R13)
,&NORMAL=
,&RESTART= *
,&TERM= *,
,&RCVMOD= BDTABMN
,&RCVLABEL= BDTABMN

BDTDTUD

172 z/OS BDT Installation

Parameter Subparameter Explanation
&TYPE= Specifies whether abend services is being invoked for

ESTAE exit routine processing (TYPE=EXIT), or for
ESTAE retry routine services (TYPE=RETRY). For
proper recovery, the ESTAE exit routine should issue
this macro with TYPE=EXIT, which records the abend
environment and issues an SVC dump if necessary,
then issue this macro a second time in the retry
routine, which performs general cleanup and
provides a BDT formatted dump, if necessary.

&GSD= Specifies the address of the generalized subtask
directory (GSD) for the task for which abend services
is invoked.

&SDWA= Specifies the address of the system diagnostic work
area (SDWA).

&SAPURGE= Specifies the address of the lowest save area to be
retained for the function following abend services
processing. Abend services frees all save areas below
the specified save area. This ensures that BDT save
areas trapped by an abend will not be permanently
lost. The default address is in register 13.

&NORMAL= Specifies the exit to be taken if normal abend
recovery is permitted. The normal exit address may
be contained in a register. If this exit receives control,
the function may recover from the abend and resume
processing. The function must ensure that the
environment is left with all data sets closed, all
system acquired resources returned to the system.

&RESTART= Specifies the exit to be taken if the operator requests
that the executing function be canceled and
subsequently restarted. The restart address may be
contained in a register. If the exit receives control, the
function must perform any required clean-up. The
function must then return to the address 4 bytes past
the address contained in TVT JSSRT. This applies to
functions running under control of DAPs only (i.e.
jobs), not resident functions. Resident functions
should specify the same address for RESTART and
TERM, and proceed as for TERM.

This parameter is required if TYPE=RESTART is
coded.

&TERM= Specifies the exit be taken if recovery from the abend
is not possible. The termination exit address may be
contained in a register. If this exit receives control,
the function must perform any required clean-up
operations and exit. This parameter is required if
TYPE=RESTART is coded.

&RVCMOD= Specifies the name of the recovery routine (ESTAE)
that issues the BDTXASRV macro. The default is
BDTABMN.

&RCVLABEL= Specifies the name of the recovery routine (ESTAE
exit) label that issues the BDTXASRV macro. The
default is BDTABMN.

BDTXASRV

Chapter 12. Executable Macro Reference 173

BDTXJCT
BDTXJCT provides for the controlled access to the job’s job control table (JCT). The
macro can be used to add a new job and its JCT, modify the JCT, read the JCT,
delete a JCT from the system queue, or purge a job and its JCT from the system.

Parameter Subparameter Explanation
&label An optional name to be associated with the first

instruction generated by this macro.
&TYPE= Specifies the type of access requested by this macro

call. The JCT may be any one of the following:
ADD Add a new job and its corresponding JCT to the

system queue.
RW Obtain read/write access to a JCT to modify or

update it.
RO Obtain read-only access to a JCT.
DEL Delete a JCT from the system queue.
REL Relinquish read-only or read/write access to a JCT

previously obtained using the TYPE=RO or
TYPE=RW specifications, respectively.

PURGE Purge a job from the system.
&JOB= Specifies the JCT to be added if TYPE=ADD is

specified or accessed. For all other TYPE=
specifications the JCT may be any of the following:

1. The job number.

2. The address of an area containing the job number
(1-4 EBCDIC digits terminated by one or more
blanks).

3. The address of an area containing the job name
(1-8 characters terminated by one or more blanks).

4. The address of the job queue element (JQE).

If register notation is used, the specified register must
contain an appropriate address or job number. If
register 1 is specified, register loading is suppressed.

&ERROR= Specifies the return point that receives control if an
error is detected while performing the required
function. If register notation is used, the register must
contain the address of the appropriate exit routine.

&BUSY= Specifies the address of a return point if the access to
a requested priority level is not immediately
available. If register notation is used, the register
must contain the address of the appropriate exit
routine. The use of this keyword is optional; if it is
not specified and access to the specified priority level
cannot be granted immediately, the requestor is put
into a wait state (by AWAIT) until access can be
granted.

&label BDTXJCT &TYPE=
,&JOB=
,&ERROR=
,&BUSY=
,&NORMAL=
,&DEQ=

BDTXJCT

174 z/OS BDT Installation

Parameter Subparameter Explanation
&NORMAL= Specifies the return point that receives control if the

called routine returns to the calling routine specifying
that normal processing has occurred. A branch to the
specified address is automatically taken following
linkage to the called routine.

&DEQ= ONE ALL Specifies the priority level (DEQ=ONE) or levels
(DEQ=ALL) to be dequeued that were previously
enqueued by use of the PRTY= keyword.

BDTXJQE
BDTXJQE provides for the controlled access to the job queue element (JQE). The
initial call returns the first JQE within a specified priority level.

Parameter Subparameter Explanation
&label An optional name to be associated with the first

instruction generated by this macro.
&JOB= Specifies the JQE to be accessed. The JQE may be any

of the following:

1. The job number (binary).

2. The address of an area containing the job number
(1-4 EBCDIC digits terminated by one or more
blanks).

3. The address of an area containing the job name
(1-8 characters terminated by one or more blanks
or an asterisk). The asterisk must to coded in
columns 2 through 7; it specifies that this is a
generic search for any job name containing the
specified character string.

This parameter is mutually exclusive with the use of
the &PRTY= keyword.

&PRTY= Specifies the particular priority level to be searched
by this macro call. The initial call returns the address
of the JQE for the first job within the specified
priority level. Each subsequent call returns the
address of the JQE for the next job within the
specified priority level.

&ERROR= Specifies the return point that receives control if an
error is detected while performing the required
function. If register notation is used, the register must
contain the address of the appropriate exit routine.

&label BDTXJQE &JOB=
,&PRTY=
,&ERROR=
,&BUSY=
,&NORMAL=
,&DEQ=

BDTXJCT

Chapter 12. Executable Macro Reference 175

Parameter Subparameter Explanation
&BUSY= Specifies the address of a return point if the access to

a requested priority level is not immediately
available. If register notation is used, the register
must contain the address of the appropriate exit
routine. The use of this keyword is optional; if it is
not specified and access to the specified priority level
cannot be granted immediately, the requestor is put
in a wait state (by AWAIT) until access can be
granted.

&NORMAL Specifies the return point that receives control if the
called routine returns to the calling routine specifying
that normal processing has occurred. A branch to the
specified address is automatically taken following
linkage to the called routine.

&DEQ= ONE ALL Specifies the priority level (DEQ=ONE) or levels
(DEQ=ALL) to be dequeued that were previously
enqueued by use of the PRTY= keyword.

BDTXTRC
BDTXTRC adds events to the trace table.

Parameter Subparameter Explanation
&label An optional label associated with the first instruction

generated by the BDTXTRC macro.
ID=id An optional parameter that is a one-character

identification for this trace event. This ID appears in
the trace table entry to identify which BDTXTRC
macro expansion created the entry.

REG=n An optional parameter that specifies the register that
will contain the address of the GSD. If the BDTXTRC
macro fails, you can restore the registers that are
saved in BSDERREG. n ranges from 1 to 15.

TWm= An optional parameter that is a fullword field of data
that resides in the trace table entry. m is an integer
from 1 to 6. Code TWm in ascending order: TW1,
TW2, TW3, and so on.

(Rn) Indicates the register that substitutes directly as the
first operand of an ST instruction. n is a number from
1 to 15.

field Indicates the name of a field. This parameter
substitutes directly as the second operand of an MVC
instruction.

offset(Rn) Indicates an offset register. This parameter substitutes
directly as the second operand of an MVC
instruction.

&label BDTXTRC ,ID=id

,REG=n

{{(Rn) }}
{{field }}

,TWm = {{offset(Rn)}} ...

{{=C’data’ }}

BDTXJQE

176 z/OS BDT Installation

Parameter Subparameter Explanation
=C‘data’ Indicates the actual data. Use two equal signs

between TWm and C, and enclose the data in
quotation marks. This parameter substitutes directly
as the second operand of an MVC instruction.

Include the IHAPSA, IKJTCB, BDTDGSD, and BDTDTWA mapping macros when
you use the BDTXTRC macro.

If you do not code any parameters in the BDTXTRC macro, the associated fields in
the trace entry contain zeroes.

The fields in the trace table entries are built by BDTGRTX from data in the trace
work area (TWA). These fields reflect the coding of the BDTXTRC macro. See
Table 8.

Table 8. BDT Trace Table

Offset Length Name Description

0 4 bytes TRCNAME Bytes 4-7 of name of module that issued the BDTXTRC macro

4 1 byte TRCID Unique trace event ID

5 1 byte Reserved

6 2 bytes TRCOFF Offset of BDTXTRC macro in issuing module

8 4 bytes TRCTW1 TW1 unique fullword field

C 4 bytes TRCTW2 TW2 unique fullword field

10 4 bytes TRCTW3 TW3 unique fullword field

14 4 bytes TRCTW4 TW4 unique fullword field

18 4 bytes TRCTW5 TW5 unique fullword field

1C 4 bytes TRCTW6 TW6 unique fullword field

20 4 bytes TRCR00 Register 0 of task when BDTXTRC was issued

24 4 bytes TRCR01 Register 1 of task when BDTXTRC was issued

28 4 bytes TRCR10 Register 10 of task when BDTXTRC was issued

2C 4 bytes TRCR11 Register 11 of task when BDTXTRC was issued

30 4 bytes TRCR14 Register 14 of task when BDTXTRC was issued

34 4 bytes TRCR15 Register 15 of task when BDTXTRC was issued

38 4 bytes TRCTCBT Address of the TCB under which the trace entry was created

3C 4 bytes TRCTIM Time of day when the trace entry is made

As an example of specifying the BDTXTRC macro, a trace entry with the following
data:
v An ID of 10
v Register 4 as a work register
v TW1 containing the character string ‘SSI’,
v TW2 containing the contents of a field called CPID
v TW3 containing the contents of register 8
v TW4 containing the contents of the fullword pointed to by register 8 when you

issued the trace BDTXTRC macro

BDTXTRC

Chapter 12. Executable Macro Reference 177

could be created with this BDTXTRC macro:
BDTXTRC ID=10,REG=4,TW1==C’SSI’,TW2=CPID,TW3=(R8),TW4=0(R8)

BDTXTUAM
BDTXTUAM retrieves text units in an MJD control block. The address of the
located text unit is returned in register 1.

Note: BDTXTUAM can be used to access text units from exit routine BDTUX19
only when BDTUX19 runs in the BDT address space. Prior to using BDTXTUAM
you must establish addressability to the TVT.

Parameter Subparameter Explanation
&label Optional label associated with the first instruction

generated by the BDTXTUAM macro.
&KEY= Specifies the value of the key for the text unit to be

returned. If no key is specified (or is zero) the next
text unit of the specified type is returned.

&TYPE Specifies the type of text unit to be returned.
Note: If this keyword is not specified, the returned
text unit could be either source or destination text
units; this depends upon which is found first.

FROM Indicates the text units to be returned are source text
units.
Indicates the text units to be returned are destination
text units.

&START= Specifies the address where the search is to begin. If
the address is the address of an MJD, the search
begins with the first text unit in the MJD. If the
address is a text unit, the search begins with the
succeeding text unit. The START address may be
contained in a register or an A-type address. This
parameter is required.

&EOD= Specifies the return point given control if the called
routine returns to the calling routine specifying an
end of data condition.

&NORMAL= Specifies the return point given control if the called
routine returns to the calling routine specifying the
occurrence of normal processing.

&label BDTXTUAM &KEY

,&TYPE= {FROM}
{TO }

,&START= {label }
{(register)}

,&EOD= {label }
{(register)}

,&NORMAL= {label }
{(register)}

,&DATU= {YES}
{NO }

,&WORKA=

BDTXTRC

178 z/OS BDT Installation

Parameter Subparameter Explanation
&DATU= Specifies the type of text unit to be returned as either

a dynamic allocation text unit or a BDT text unit, or
both. The default is either.

YES Specifies a dynamic allocation text unit.
NO Specifies a BDT text unit.

Note: If this keyword is not specified, the returned
text unit could be either dynamic allocation or BDT
text units; this depends upon which is found first.

&WORKA= Specifies the address of a work area to be used to
build a parameter list.
Note: If this keyword is not specified, a parameter
list will be generated inline that cannot be used in
reentrant modules such as user exits. It becomes the
user’s responsibility to provide a unique work area.

BDTXTUAM

Chapter 12. Executable Macro Reference 179

BDTXTUAM

180 z/OS BDT Installation

Appendix A. Parameter map

This appendix summarizes the matchups that must exist between BDT, MVS, and
VTAM parameters.

The following explanations apply to Figure 31:

Home BDT System

SNABUF

SIZE=

BDTNODE (remote)

BUFNO=
BUFSZ=
CS=
LU=
PIN=
POUT=
N=
APPL=

BDTNODE (home)

N=

NAME=
NJENAME=

NAME=

NJERMT

NAME=
BDTID=

SYSID

2
3
4
5
6
7

10

21

20 FORMAT

SYSID=

SYSID=
SYSNAME=

IEASYSxx:

SYSNAME=

BUILD

8

BUFNO=
BUFSZ=
CS=
LU=
POUT=
PIN=
N=

name APPL

BDTNODE (remote)

NJEAPSW
APPLPSWD=
APPLID=
NJEAPPL=

SYSID

13
14
15

name APPL
name CDRSC

PRTCT=

IEFSSNxx:

node-name
subsystem-name

=

BDT initialization
statements:

JES3 initialization
statements:

formatting TQI data sets:
Control statements for

ACF/VTAM statement:

16

ACBNAME=

SYS1.PARMLIB member

ACF/VTAM statements:

SYS1.PARMLIB member

TQI start procedure
member name

22

23
19

1

statements:
BDT initialization

Remote BDT System

18

11

17

12

9

Figure 31. Matchups between BDT, MVS, and VTAM parameters. The numbers in the figure are keys to the
explanations that follow.

© Copyright IBM Corp. 1986, 2013 181

1. SIZE must be equal to or greater than BUFSZ.
2. If different values are specified for BUFNO, BDT uses the lesser of the two.
3. If different values are specified for BUFSZ, BDT uses the lesser of the two.
4. The CS values must match in order for data compression to occur. See Table 3

on page 50.
5. If different values are specified for LU, BDT uses the lesser of the two.
6. The passwords specified on PIN and POUT must match.
7. The passwords specified on POUT and PIN must match.
8. If the home subsystem has a SNA NJE node, the name on the NAME

parameter of the JES3 NJERMT statement must match the name on the N
parameter of the BDT BDTNODE statement.

9. The name (label) on CDRSC must match the name specified by APPL.
10. The name specified on the APPL parameter of BDTNODE must match the

name (label) on the VTAM APPL statement.
11. The file-to-file node names specified on N and NAME must match.
12. The SNA NJE node names specified on NJENAME and N must match.
13. The name (label) on APPL and the name specified on NJEAPPL must match.

Note that NJEAPPL is used only for SNA NJE nodes.
14. If ACBNAME is coded, the name specified for APPLID must match it and a

name (label) on APPL is not required. If ACBNAME is omitted, the name
specified for APPLID must match the name (label) on APPL. Note that
APPLID is used only for file-to-file nodes.

15. The passwords specified on PRTCT and APPLPSWD must match. Note that
APPLPSWD is used only for file-to-file nodes.

16. The passwords specified on PRTCT and NJEAPSWD must match. Note that
NJEAPSWD is used only for SNA NJE nodes.

17. If IEFSSNxx defines a subsystem with a file-to-file node, without or in
addition to a SNA NJE node, the node name on IEFSSNxx must match the
SYSID NAME parameter. If IEFSSNxx defines a subsystem with only a SNA
NJE node, the node name on IEFSSNxx must match the SYSID NJENAME
parameter.

18. If the home subsystem has a file-to-file node, without or in addition to a SNA
NJE node, the name on the NAME parameter of the JES3 SYSID statement
must match the name on the NAME parameter of the BDT SYSID statement.
If the home subsystem has a SNA NJE node only, the name on the NAME
parameter of the JES3 SYSID statement must match the name on the
NJENAME parameter of the BDT SYSID statement.

19. The subsystem name on IEFSSNxx must be the last one to four characters of
the TQI start procedure member name.

20. If BDT has the SNA NJE feature, BDTID must match NJENAME.
21. If the home subsystem has a file-to-file node, without or in addition to a SNA

NJE node, the node name on the SYSID parameter of the BUILD statement
must match the SYSID NAME parameter. If the home subsystem has a SNA
NJE node only, the node name on SYSID BUILD must match the SYSID
NJENAME parameter.

22. The SYSID names on the BUILD and FORMAT control statements must
match. (BUILD formats the checkpoint and bit-map data sets, and FORMAT
formats message data sets.)

23. The name on the SYSNAME parameter in IEASYSxx must match the name on
the SYSNAME parameter of the FORMAT control statement.

182 z/OS BDT Installation

Note: BDT does not require the SNALINE statement; BDTNODE can be used
instead. But if you do use SNALINE (which can be used for file-to-file nodes only)
you should know that the following relationships, which are not shown in the
figure, apply:
v The node names specified on SNALINE,NODE= at your node and

BDTNODE,N= at your node must match.
v The name specified on SNALINE,N= at the home node and the name (label)

specified on the APPL statement at the remote node must match.

Appendix A. Parameter map 183

184 z/OS BDT Installation

Appendix B. Virtual Storage Required for the BDT Address
Space

The virtual storage required for the BDT address space is the sum of the virtual
storage required for modules plus the virtual storage required for data areas, as
shown in the following table. (All values are in decimal.)

Activity
Virtual Storage Required
for Modules Virtual Storage Required for Data Areas

Starting BDT 277K bytesSee note 1 19K bytes + (300 bytes × no. of BDTNODE statements) + (136
bytes × total no. of VLUs) – (216 bytes if file-to-file)See note 2

Activating the
SNA manager

58K bytes 1K bytes + (644 bytes × (no. of file-to-file BDTNODE statements
– 1)) + (644 bytes × no. of SNA NJE BDTNODE statements) +
(112 bytes × total no. of VLUs) + (32 bytes × total no. of VLUs)See

note 3

Transferring a
sequential data set

7K bytesSee note 4 (2419 bytes × no. of active transfers) + (376 bytes × no. of active
transfers) + (408 bytes × no. of active transfers)

Transferring a
partitioned data set

10K bytesSee note 4 (990 bytes × no. of active transfers) + (376 bytes × no. of active
transfers) + (408 bytes × no. of active transfers)

Sending a SNA
NJE job or output

8K bytesSee note 4 (975 bytes × no. of active transfers) + (376 bytes × no. of active
transfers) + (408 bytes × no. of active transfers)

Receiving a SNA
NJE job or output

6K bytesSee note 4 (1171 bytes × no. of active transfers) + (376 bytes × no. of active
transfers) + (408 bytes × no. of active transfers)

Notes:

1. 277K bytes includes:
v 25K bytes for the following modules in the PLPA: BDTLP, BDTSSBDT,

BDTSSEOM, BDTSS34, and IGX00034.
v 5K bytes for the sample required (authorization) exit routines provided by

IBM in SYS1.SBDTSAMP: BDTUX25, BDTUX26, BDTUX27, BDTUX28,
BDTUX29, and BDTUX31.

2. A more detailed formula is 19K bytes +:
v For the LCT control block: (136 bytes × (no. of file-to-file BDTNODE

statements – 1) + (no. of VLUs)) + (136 bytes × (no. of SNA NJE BDTNODE
statements + no. of VLUs))

v For the RLT control block: (84 bytes × (2 × no. of file-to-file BDTNODE
statements – 1)) + (84 bytes × (2 × no. of SNA NJE BDTNODE statements))

3. A more detailed formula is 1K bytes +:
v For the LCB control block: (644 bytes × (no. of file-to-file BDTNODE

statements – 1)) + (644 bytes × no. of SNA NJE BDTNODE statements)
v For the DCL and LCTE control blocks: (144 bytes × no. of file-to-file VLUs

specifying compression) + (112 bytes × no. of file-to-file VLUs without
compression) + (144 bytes × no. of SNA NJE VLUs)

4. This storage is for DAP modules, which are kept in storage after they are used
the first time. Subsequent transfers do not cause them to be reloaded.

Additional storage is required for the CSA (which VTAM and JES3 use as staging
areas and for reading and writing to spool), SQA, LSQA, SWA, and subpools

© Copyright IBM Corp. 1986, 2013 185

229-230. Cell pool storage is allocated from user subpools 10-21 (see Table 5 on
page 57). This additional storage is configuration and task dependent.

186 z/OS BDT Installation

Appendix C. Moving Transactions to a New TQI Checkpoint
Data Set

After you start to use BDT you may find that there is insufficient space on the TQI
checkpoint data set. If this is the case you may replace the existing checkpoint data
set and bit-map data set with larger data sets. To do this you must:
1. Allocate the new data sets.
2. Format the new data sets.
3. Use the BDTTQBCH program to transfer transactions that remain on the

existing checkpoint data set to the new checkpoint data set. Include a MOVE
control statement in the BDTTQBCH input stream.

Sample JCL and a MOVE control statement are shown in Figure 32. Note that the
sample assumes that the SBDTLINK library is in the link list and that all data sets
are cataloged.

//TQIMOVE EXEC
identifies BDTTQBCH as the program to be executed.

//OLDBTMP DD
defines the old bit-map data set.

//OLDDATA DD
defines the old checkpoint data set.

//BITMAPS DD
defines the new bit-map data set.

//DATAFILE DD
defines the new checkpoint data set.

//SYSUDUMP DD
defines the data set where a formatted storage dump is to be written in the
event BDTTQBCH abnormally terminates. You may replace the SYSUDUMP
DD statement with a SYSMDUMP DD statement or a SYSABEND DD
statement depending on the type of dump you want.

//SYSPRINT DD
defines the data set where BDTTQBCH is to write its messages.

//SYSIN DD
defines the input to BDTTQBCH.

MOVE
is the control statement that moves the transactions to a new checkpoint data
set. It can have two parameters:

//TQIMOVE EXEC PGM=BDTTQBCH
//OLDBTMP DD DISP=SHR,DSN=BDT1.TQIBITS
//OLDDATA DD DISP=SHR,DSN=BDT1.TQIDATA
//BITMAPS DD DISP=SHR,DSN=BDT1.TQIBITS2
//DATAFILE DD DISP=SHR,DSN=BDT1.TQIDATA2
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
MOVE,SYSID=SYSA1

Figure 32. Sample JCL to Move Transactions to a New Checkpoint Data Set

© Copyright IBM Corp. 1986, 2013 187

,SYSID=node-name
identifies the BDT node that will read the transactions that TQI writes on
the checkpoint data set. node-name must match the name on one of the
following SYSID initialization statement parameters:
v The NAME parameter if the BDT subsystem has a file-to-file node,

without or in addition to a SNA NJE node
v The NJENAME parameter if the BDT subsystem has only a SNA NJE

node.

This parameter is required. The example uses SYSA1.

,RECORDS=nnnn
defines the number of records that are to be moved from the old
checkpoint data set to the new checkpoint data set. If you omit this
parameter, BDTTQBCH moves all of the records that are in the old
checkpoint data set. The example omits this parameter.

188 z/OS BDT Installation

Appendix D. SNALINE Statement (File-to-File Feature Only)

The SNALINE statement can be used to provide VTAM-related information about
the connection to a remote file-to-file node.

In BDT the preferred way of providing this information is on the BDTNODE
statement, which has been expanded, instead of on SNALINE. Using BDTNODE
you can specify all information for a remote node on a single statement. However,
SNALINE is still supported so that those who used it in Version 1 initialization
streams can use those same initialization streams without change for Version 2
file-to-file initializations.

If you use SNALINE you must code a separate SNALINE statement for each
remote node that you have identified on a BDTNODE statement. The maximum
number of SNALINE statements in one initialization stream is 100.

SNALINE Statement

SNALINE,N=lu-name
,NODE=node-name
[,A={YES|NO}]
[,ASR={YES|NO|restrt-limit}]

N=lu-name
identifies the ACF/VTAM logical unit (LU) that the VTAM system
programmer at the remote node has defined for BDT. lu-name must match the
label on the VTAM APPL statement that defines BDT at the remote node. You
must specify this parameter; there is no default.

NODE=node-name
identifies the remote node to which this statement pertains. node-name must be
one to eight alphanumeric characters and must match the N parameter on the
BDTNODE statement that you coded for this remote node. You must specify
this parameter; there is no default.

A={YES|NO}
defines whether BDT is to automatically start a session with the remote node
named on this statement. If you select this option, BDT automatically starts a
session with the remote node each time the operator at the home node starts
BDT and activates the BDT SNA manager.

YES
instructs BDT to automatically start a session.

NO makes the operator responsible for starting the session. This is the default.

ASR={YES|NO|restrt-limit }
defines whether BDT automatically tries to restart a session with a remote
node that has failed. BDT can try to restart failing sessions with the remote
node with the exception of sessions that failed because they were canceled by
the BDT CANCEL command, and sessions that could not start because of a
negotiable bind disagreement between the home node and the remote node.

YES
requests that BDT try automatic session restart an unlimited number of
times. This is the default.

© Copyright IBM Corp. 1986, 2013 189

NO requests that BDT not attempt automatic session restart.

restrt-limit
requests that BDT try automatic restart a limited number of times.
restrt-limit defines the number of times that BDT may try to restart a
session before giving up. The variable may be a decimal number from 1 to
32767.

190 z/OS BDT Installation

Appendix E. Initialization Flow and User Exit Routines

Flow diagram for initialization exits
The following diagram shows how user exit routines fit into the initialization
process in BDT.

BDTINTK
calls

BDTUX01

BDTINIT
calls

BDTUX26

BDTGRCT

BDTNUC

BDTINDT

BDTINRN

BDTINGL

BDTINIX

BDTINIC
calls

BDTUX02

BDTINJC

BDTINGN

BDTINJB

BDTINCD
calls

BDTUX03
calls

BDTUX04

BDTINR2
calls

BDTUX05

ATTACH

LOAD

LOAD

LOAD

LOAD

LOAD

CALL

CALL

CALL

BALR

BDTINR1

Figure 33. Flow diagram for initialization exits

© Copyright IBM Corp. 1986, 2013 191

Internal to External Conversion of the XOID Format
The following steps describe how the XOID format is converted from internal to
external format for messages output to the origin of a transaction or command:
1. A BDT module builds a message to send to the transaction origin (XOID). Part

of the job of building the message includes the conversion of the XOID from
internal to external format. BDTXXOID is called.

External to internal conversion of the XOID format
1. The user issues a MODIFY (F) or MESSAGE (Z) command:

BDT F LOG ADEST=(SPK01,SYS1,TSO,CCJMN)

or
BDT Z (SPK02,SYS1,TSO,CN01)Hi,LLOYD!

2. The external XOID conversion of SYSID, SYSNAME, TYPE, and DDNAME to
internal format is performed by calling BDTXXOID.

3. SYSID and DDNAME are formatted without change. The type field of the
external format is converted to its XOIDTYPE code. In this case, TSO is
converted to 1.

BDT xxxx

Build a message

BDTXXOID

BDTXOIDX

BDTGRXD

SNA

INQUIRY

MODIFY

VARY

1.

4. BDTXXOID converts the internal format (SYSID, SYSNAME, TYPE, DDNAME)
into the processor name, user type, and identification.

BDTXOIDX

BDTGRXD

SPK01 SYS1

external
XOID

TSO USERID

SYSID SYSNAME TYPE DDNAME

2.

192 z/OS BDT Installation

Flow diagram for the invocation of BDTUX17 (job start)

S P K 0 1 S Y S 1 1 C J M

XOIDXTYP

SYSNAME

N

Reserved for
IBM use

C

SYSID DDNAME

Internal XOID Form at

6. Update the JCT

Node A

BDTUX17

Node B

5. Invoke
user exit
routine
BDTUX17

BDTGRJS BDTGRJS

4. Schedual global
function

2. Schedule local
function

DAP DAP

Global BDT ("from") Local BDT ("to")

local function

1. Schedule

3. Job begin

BDT
work
queue

Figure 34. Flow diagram for the invocation of BDTUX17 (job start)

Appendix E. Initialization Flow and User Exit Routines 193

Flow diagram for the invocation of BDTUX18 (job end)

Modules That Issue the BDTXXOID Macro
The following table shows the modules that issue the BDTXXOID macro, and the
associated type of conversion.

Issuing Module Source of Code Type of Conversion

BDTCMDV MESSAGE (Z) command
Message text

External to internal
Internal to external

BDTGRJR Message text Internal to external

BDTGRLG Message text Internal to external

BDTGRXD Message text Internal to external

BDTIQQU Message text Internal to external

BDTMDLG F LOG,ADEST=(SYSID,SYNAME,TYPE,DDNAME)
F LOG,ADEST=(SYSID,SYSNAME,TYPE,DDNAME)
Message text

External to internal
Internal to external
Internal to external

BDTSMAP XOID = parameter External to internal

BDTSNA Message text
S SNA LOG=(SYSID,SYSNAME,TYPE,DDNAME)

Internal to external
External to internal

BDTUX18 4. Invoke
BDTUX18
at job end

BDTGRJS BDTGRJS

2. Job end

3. DAP complete 1. DAP complete

Node A Node B

Global BDT("from") Local BDT("to")

Figure 35. Flow diagram for the invocation of BDTUX18 (job end)

194 z/OS BDT Installation

Appendix F. Sample User Exit Routine

This appendix provides a sample user exit subroutine for BDTUX19. This sample
routine locates a specific text unit in the MJD when BDTUX19 is running in the
user address space. You can modify this subroutine to meet the needs of your BDT
subsystem.

This subroutine requires the following BDT macros and CSECTs:
v BDTDDATU macro (define this macro to map the DATUNIT)
v BDTDMJD macro (MJD macro)
v A user data CSECT similar to the following example:

FINDDSTU DSECT
SAVEAREA DS 18F SAVE AREA USED ON ENTRY TO

USER EXIT 19 (BDTUX19)
SAVEAREA2 DS 18F SAVE AREA USED ON ENTRY TO

FINDTU
FINDTTYP DC X’00’ FIELD TO PASS ’TO’ OR ’FROM’ PARM
FINDTFRM EQU X’80’ ’FROM’ SIDE TEXT UNIT REQUEST
FINDTTO EQU X’40’ ’TO’ SIDE TEXT UNIT REQUEST
FINDTKEY DC F’0’ REQUESTER’S KEY VALUE

Note: You must provide a save area. Register 1 is not saved when FINDTU is
called.

Assembler Code for Sample Routine
CALLING SEQUENCE

MVI FINDTTYP,FINDTTO (’TO’ TEXT UNIT)
(OR)

MVI FINDTTYP,FINDTFRM (’FROM’ TEXT UNIT)
LA RX,=X’F9’ SECPSWD KEY TYPE OR OTHER TYPE

KEY VALUES ARE MAPPED IN THE
MACRO EXPANSION OF THE MJD
(BTUXXXX).

ST RX,FINDTKEY WORD CONTAINING KEY TYPE
LA R15,FINDTU ADDRESS OF SUBROUTINE
BALR R14,R15 BRANCH TO FINDTU SUBROUTINE

ON RETURN, R1=POINTER TO THE
PASSWORD TEXT UNIT. R1=00000000
IF THE TEXT UNIT IS NOT FOUND.
R15=0 IF THE TEXT UNIT IS FOUND.
R15=4 IF THE TEXT UNIT IS NOT
FOUND.

FINDTU DS 0H
STM R14,R12,SAVAREA2+12 SAVE REGISTERS IN FINDTU’S

SAVE AREA
L R4,FINDTKEY GET KEY TYPE
LA R1,MJDSTART MJD ADDRESS
AH R1,MJDFXDLN BUMP DOWN TO THE TEXT UNITS
SLR R2,R2 CLEAR REGISTER 2
SLR R3,R3 CLEAR REGISTER 3
B FINDT400 GO CHECK FIRST KEYWORD

FINDT100 DS 0H
USING DATUNIT,R1 MAP THE DATUNIT
CLC DATUKEY,=X’FFFF’ END OF TEXT UNITS?
BE FINDT800 YES -- GO RETURN ’NOT FOUND’

© Copyright IBM Corp. 1986, 2013 195

CLC DATUNUM,=X’0000’ ANY PARAMETERS?
BNE FINDT200 YES, GO GET NUMBER OF PARMS
LA R1,DATUENT NO, GO GET NEXT TEXT UNIT
B FINDT400 GO SEE IF THIS IS OUR KEY

FINDT200 DS 0H
ICM R2,B’0011’,DATUNUM GET THE NUMBER OF PARMS
LA R1,DATUENT GET ADDRESSABILITY TO PARMS
USING DATUENT,R1

FINDT300 DS OH
ICM R3,B’0011’,DATULNG GET TEXT UNIT LENGTH
LA R1,DATUPAR(R3) POINT TO NEXT PARM ENTRY
BCT R2,FINDT300 IF MORE PARMS, GO TO FINDT300

FINDT400 DS OH
USING DATUNIT,R1
CLC DATUKEY,=X’FFFF’ IS THIS THE END OF TEXT?
BE FINDT800 YES -- GO RETURN ’NOT FOUND’
TM FINDTTYP,TYPETFRM REQUEST FOR ’FROM’ TEXT UNIT?
BZ FINDT500 NO, GO TO FINDT500
TM DATUFLG,DATUDST IS THIS A ’FROM’ TEXT UNIT?
BZ FINDT100 NO, GET NEXT TEXT UNIT
B FINDT600 GO SEE IF THIS IS OUR TEXT UNIT

FINDT500 DS 0H
TM DATUFLG,DATUDST IS THIS A ’TO’ TEXT UNIT?
BZ FINDT100 NO, GET NEXT TEXT UNIT

FINDT600 DS 0H
CLM R4,B’0011’,DATUKEY IS THIS THE ONE WE WANT?
BNE FINDT100 NO, GET THE NEXT TEXT UNIT
TM DATUFLG,DATUNEG IS THIS A NEGATED KEYWORD?
BNZ FINDT100 YES

FINDT700 DS 0H
SLR R15,R15 SET R15 TO ’0’. TEXT UNIT FOUND
B FINDT900 GO TO NORMAL RETURN

FINDT800 DS 0H
SLR R1,R1 SET TEXT UNIT POINTER REG TO 0
LA R15,4 SET R15 TO ’04’. TEXT UNIT NOT

FOUND
FINDT900 DS 0H

L R14,SAVAREA2+12 RESTORE CALLER’S REGISTER 14
L R0,SAVAREA2+20 RESTORE CALLER’S REGISTER 0
LM R2,R12,SAVAREA2+28 RESTORE REGISTER 2 -- REGISTER 12
BR R14

196 z/OS BDT Installation

Appendix G. Accessibility

Accessible publications for this product are offered through the z/OS® Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM® Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1986, 2013 197

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

198 z/OS BDT Installation

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix G. Accessibility 199

200 z/OS BDT Installation

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1986, 2013 201

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS™, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

202 z/OS BDT Installation

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming Interface Information
This book is intended to help the customer install BDT.

This book also documents intended Programming interfaces that allow the
customer to write programs to obtain the services of z/OS BDT. This information
is identified where it occurs by an introductory statement to a chapter.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml
(http://www.ibm.com/legal/copytrade.shtml).

Notices 203

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

204 z/OS BDT Installation

GLOSSARY

This glossary defines important terms and
abbreviations used in this book. If you do not
find the term you are looking for, refer to the
index or to the IBM Dictionary of Computing New
York: McGraw-Hill, 1994.

catalog
The collection of all data set indexes that
is used by the control program to locate a
volume containing a specific data set.

checkpoint data set
See TQI checkpoint data set.

DAP Dynamic application program.

dependent transaction control (DTC)
A method of controlling the scheduling of
file-to-file transactions by organizing the
transactions into a network in which
some transactions wait for the completion
of other transactions before being
scheduled.

DTC Dependent transaction control.

dynamic application program (DAP)
A part of BDT that performs a particular
function, especially the transfer of data.

generic master job definition library
In BDT, a data set that contains
predefined transaction definitions.

global node
In BDT, the node that schedules and
manages all file-to-file transactions
involving itself and a local node and
responds to commands issued against
those transactions.

GMJD
Generic master job definition.

Interactive System Productivity Facility (ISPF)
A licensed program that provides menus
and data entry panels for using system
functions.

ISPF Interactive System Productivity Facility.

JES3 Job entry subsystem 3.

job entry subsystem 3 (JES3)
A component of MVS that receives jobs
into the system and processes all output

data produced by the jobs. JES3 exerts
centralized control over multiple
processor complexes.

local node
In BDT, the node that receives file-to-file
transactions and commands submitted by
users and sends them to the global node
for processing.

MCS Multiple console support.

multiple console support (MCS)
A feature of MVS that permits selective
message routing to multiple operator’s
consoles.

network
In BDT, two or more BDT nodes that are
joined by SNA sessions.

network job entry (NJE)
The transmission of jobs, in-stream data
sets, operator commands and messages,
system output data sets, and job
accounting information from one
computer complex to another across a
telecommunication link. Synonymous
with job networking.

NJE Network job entry.

node In BDT, the point in a BDT address space
that is linked to another BDT address
space for either file-to-file communication
or SNA NJE communication.

poly-BDT complex
A JES complex that has more than one
BDT address space.

RACF Resource Access Control Facility.

Resource Access Control Facility (RACF)
A licensed program that provides for
access control by identifying and
verifying users to the system, authorizing
access to DASD data sets, logging
detected unauthorized attempts to enter
the system, and logging detected accesses
to protected data sets.

session
In SNA, a logical connection between two
network-addressable units. The
connection can be activated, deactivated,
or tailored to provide different protocols.

© Copyright IBM Corp. 1986, 2013 205

SNA Systems Network Architecture.

Systems Network Architecture (SNA)
The description of the logical structure,
formats, protocols, and operational
sequences for transmitting information
units through and controlling the
configuration and operation of networks.

Time sharing option (TSO)
A component of MVS that provides
interactive computing from remote
stations.

TQI Transaction queuing integrity.

TQI checkpoint data set
In BDT, a data set on which the
transaction queuing integrity (TQI) facility
records user-submitted commands and
file-to-tile transactions before sending
them to the BDT address space. Should a
command or transaction fail to reach the
BDT address space, BDT automatically
recovers it from the TQI checkpoint data
set and attempts the transfer again.

transaction
In BDT, (1) a request to copy a data set,
transmit a SNA NJE job, or transmit SNA
NJE output (SYSOUT), and (2) the work
that BDT does to process the request.
Requests to copy data sets are submitted
to BDT by users. Requests to transmit
SNA NJE jobs and output are submitted
to BDT by JES3.

transaction definition
In BDT, a character string that identifies
the data set that BDT is to copy, the data
set into which BDT is to write the copied
data set, and parameter values that BDT
is to use while copying the data set.

transaction queuing integrity
In BDT, a program that records
commands and file-to-file transactions on
a data set at the submitting node, thus
allowing the transfers to be resubmitted
automatically should they not reach the
BDT work queue. TQI also allows users
to receive messages.

TSO Time sharing option.

user exit
A point in an IBM-supplied program at
which a user exit routine may be given
control.

user exit routine
A routine written by a user to take control
at a user exit of a program supplied by
IBM.

work queue
In BDT, a queue whose elements
represent work that BDT must do on
behalf of a transaction.

206 z/OS BDT Installation

Index

Special characters
/ as command character 17
* (comment) statement 43

A
A parameter of BDTNODE statement

(remote) 46
A parameter of SNALINE statement 189
abnormal termination

of BDT
automatic dump after

(OPTIONS,WANTDUMP=) 66
automatic restart after

(OPTIONS,AUTORS=) 62
type of dump desired

(OPTIONS,DUMP=) 62
of session

automatic restart after
(BDTNODE,ASR=) 46

time before restart after
(OPTIONS,ASRTIME=) 62

resulting from insufficient spool
space 28

accessibility 197
contact IBM 197
features 197

ACCINT parameter of OPTIONS
statement 61

address space
BDT

creating when starting BDT 73
estimating storage for 185
exit routine (BDTUX25) to

authorize use of 140
loading exit routines into 91
more than one (poly-BDT) 13

TQI
creating when starting TQI 75
planning use of 8

allocating data sets
during BDT startup via DYNALLOC

statement 58
during BDT startup via JCL 73
during TQI startup 75
to system (new)

initialization stream 27
ISPF 29
message 32
system GMJD library 28
TQI bit-map 31
TQI checkpoint 31
work queue 28

anti-thrashing factor (ATF) 68
APF authorization for SYS1.MIGLIB,

defining 19
APF authorization for SYS1.SBDTLIB,

defining 19
APPL parameter of BDTNODE statement

(remote) 46

APPL statement, VTAM
relation to BDTNODE,APPL= 46
relation to BDTNODE,L= 50
relation to SYSID,APPLID= 69
relation to SYSID,APPLPSWD= 70
relation to SYSID,NJEAPPL= 70
relation to SYSID,NJEAPSWD= 70

application name, BDT
file-to-file (SYSID,APPLID=) 69
SNA NJE (SYSID,NJEAPPL=) 70

APPLID parameter of SYSID
statement 69

APPLPSWD parameter of SYSID
statement 70

ASR parameter
of BDTNODE statement (remote) 46
of SNALINE statement 189

ASRTIME parameter of OPTIONS
statement 62

assembling exit routines 91
assistive technologies 197
ATF parameter of SNABUF

statement 68
authorization exit routines

assembling 91
BDTUX25 140
BDTUX26 142
BDTUX27 145
BDTUX28 146
BDTUX29 148
BDTUX31 153
coding considerations 80
how fit into BDT logic flow 84
IATUX50 (JES3) 80
IATUX56 (JES3) 78
link-editing 91
loading 91
overview of 77

authorization levels for issuing BDT
commands 113

authorized program facility (APF) 19
AUTODEL parameter

of CELLPOOL statement 55
of SNABUF statement 68

automatic
dump of BDT

(OPTIONS,WANTDUMP=) 66
enabling of TQI 18
restart of BDT

(OPTIONS,AUTORS=) 62
restart of sessions

(BDTNODE,ASR=) 46
startup of sessions

(BDTNODE,A=) 46
AUTORS parameter of OPTIONS

statement 62

B
Base feature 1
BDSPOOL DD statement 73

BDSPOOL space, insufficient 28
BDT address space

creating when starting BDT 73
estimating storage for 185
exit routine (BDTUX25) to authorize

use of 140
loading exit routines into 91
more than one (poly-BDT) 13

BDT command character, defining 18
BDT$ALOC member of SYS1.SAMPLIB

(allocate data sets)
initialization stream 27
message 32
system GMJD library 28
TQI bit-map 31
TQI checkpoint 31
work queue 28

BDT$FTF member of SYS1.SBDTSAMP
(file-to-file initialization stream) 39

BDT$MIX member of SYS1.SBDTSAMP
(file-to-file and SNA NJE initialization
stream) 39

BDT$NJE member of SYS1.SBDTSAMP
(SNA NJE initialization stream) 39

BDT$TQFM member of SYS1.SAMPLIB
(format TQI data sets) 35

BDT$V2SN member of SYS1.SBDTSAMP
(IEFSSNxx member of
SYS1.PARMLIB) 17

BDT$V2SP member of SYS1.SBDTSAMP
(BDT start procedure) 73

BDT$V2TP member of SYS1.SAMPLIB
(TQI start procedure) 75

BDT$VTAM member of SYS1.SBDTSAMP
(VTAM APPL statements) 21

BDTABEND DD statement
in BDT start procedure 74
specifying use of

(OPTIONS,DUMP=) 62
BDTACMN module, exit routine

(BDTUX24) invoked from 138
BDTCMDV module, exit routines

invoked from
BDTUX11 116
BDTUX12 119
BDTUX25 140

BDTDBSID macro 159
BDTDCNS macro 159
BDTDDATU macro 160
BDTDGSD macro 160
BDTDINT macro 160
BDTDJCT macro 161
BDTDKYWD macro 163
BDTDLCT macro 161
BDTDMJD macro 161
BDTDREG macro 161
BDTDRLT macro 161
BDTDSEQ macro 162
BDTDSMF macro 162
BDTDTUD macro 169
BDTDTVT macro 162

© Copyright IBM Corp. 1986, 2013 207

BDTDXOID 122
BDTDXOID macro 162
BDTGRDA module, exit routine

(BDTUX30) invoked from 150
BDTGRJR module, exit routine

(BDTUX27) invoked from 145
BDTGRJS module, exit routines invoked

from
BDTUX17 130
BDTUX18 132

BDTGRLG module, exit routine
(BDTUX16) invoked from 127

BDTGRXD module, exit routines invoked
from

BDTUX07 109
BDTUX14 122
BDTUX26 142

BDTIN DD statement 74
BDTINCD module, exit routine

(BDTUX03) invoked from 100
BDTINIC module, exit routine

(BDTUX02) invoked from 96
BDTINIT module, exit routine

(BDTUX06) invoked from 108
BDTINR1 module, exit routine

(BDTUX04) invoked from 103
BDTINR2 module, exit routine

(BDTUX05) invoked from 106
BDTINTK module, exit routine

(BDTUX01) invoked from 93
BDTIQDV module, exit routine

(BDTUX31) invoked from 153
BDTLP load module 91
BDTLP module, exit routines invoked

from
BDTUX08 112
BDTUX10 113
BDTUX19 134

BDTLP work area 115
BDTMx DD statement 74
BDTNODE statement

exit routine (BDTUX04) for
recognizing user-defined
keywords 103

exit routine (BDTUX05) for processing
user-defined keywords 106

to define remote nodes 45
to define the home node 43

BDTOUT DD statement 43, 74
BDTRACF parameter of OPTIONS

statement 62
BDTSEQ module, exit routine (BDTUX15)

invoked from 125
BDTSS34 load module 91
BDTSS34 module, exit routine (BDTUX28)

invoked from 146
BDTSSINI routine 17
BDTTQBCH program

for formatting TQI data sets 35
for moving TQI data sets 187

BDTTQI module, exit routine (BDTUX29)
invoked from 148

BDTUX01 exit routine 93
BDTUX02 exit routine 96
BDTUX03 exit routine 100
BDTUX04 exit routine 103
BDTUX05 exit routine 106

BDTUX06 exit routine 108
BDTUX07 exit routine 109
BDTUX08 exit routine 112
BDTUX10 exit routine 113
BDTUX11 exit routine 116
BDTUX12 exit routine 119
BDTUX14 exit routine 122
BDTUX15 exit routine 125
BDTUX16 exit routine 127
BDTUX17 exit routine 130
BDTUX18 exit routine 132
BDTUX19 exit routine 134
BDTUX24 exit routine 138
BDTUX25 exit routine 140
BDTUX26 exit routine 142
BDTUX27 exit routine 145
BDTUX28 exit routine 146
BDTUX29 exit routine 148
BDTUX30 exit routine 150
BDTUX31 exit routine 153
BDTXASRV macro 172
BDTXJCT macro 174
BDTXJQE macro 175
BDTXTRC macro 176
BDTXTUAM macro 178
BDTXUEX macro, invoking exit routines

with 80
bibliography ix
bit-map data set, TQI

allocating in BDT start procedure 74
allocating in TQI start procedure 76
allocating new 31
example of use 9, 10, 11
formatting 35
moving contents of 187

BITMAPS DD statement
in BDT start procedure 74
in job to format TQI data sets 35
in TQI start procedure 76

BSIDMOD codes, exit routine (BDTUX11)
to identify 116

BSIDMOD fields in exit routines,
recognizing 80

BSIDXTYP 120
buffer thrashing, preventing

(SNABUF,ATF=) 68
buffers

defining storage for (SNABUF
statement) 67

number for intra-node communication
(BDTNODE,BUFNO=) 44

pacing rate using
(BDTNODE,BUFNO=) 47

size for intra-node communication
(BDTNODE,BUFSZ=) 44

size for remote communication
(BDTNODE,BUFSZ=) 48

BUFNO parameter
of home BDTNODE statement 44
of remote BDTNODE statement 47

BUFSZ parameter
of home BDTNODE statement 44
of remote BDTNODE statement 48

BUILD control statement,
BDTTQBCH 36

C
C parameter of SYS1.PARMLIB member

IEFSSNxx 18
CANCEL command to override

initialization statements 70
cataloging a data set

defined 205
CDRSC statement, VTAM

relation to BDTNODE,APPL= 46
relation to name on APPL

statement 23
cell pools

defining on CELLPOOL statement 53
introduction to 53
monitoring the use of 54

CELLPOOL statement 53
central hub network 5
character, defining the BDT

command 18
checkpoint data set, TQI

allocating in BDT start procedure 74
allocating in TQI start procedure 76
allocating new 31
example of use 9, 10, 11
formatting 35
moving contents of 187
read frequency, selecting

(OPTIONS,TQITIME=) 66
checkpoint interval for file transfers

(BDTNODE,CKPT=) 49
CKPT parameter of BDTNODE statement

(remote) 49
CNUM parameter of CELLPOOL

statement 55
coding a user exit routine, example

of 195
coding considerations for exit

routines 80
cold start of BDT 73
command character, defining 18
command password processing exit

routine (BDTUX10) 113
command processing, exit routine to

alter 79
BDTUX10 113

comment (*) statement 43
compression of data, specifying

(BDTNODE,CS=) 49
concurrent data transfers, maximum

(OPTIONS,MAXTRAN=) 64
configuration planning 5
console authorization exit routine

(BDTUX28), MCS 146
console authorization levels 114
CONSOLE statement of JES3 19
continue an initialization statement, how

to 43
CRSPOOL DD statement 73
CS parameter of BDTNODE statement

(remote) 49
CSOPT transaction parameter 49
CSRB (common services request block)

cell pool 57
customization exit routines

assembling 91
BDTUX01 93
BDTUX02 96

208 z/OS BDT Installation

customization exit routines (continued)
BDTUX03 100
BDTUX04 103
BDTUX05 106
BDTUX06 108
BDTUX07 109
BDTUX08 112
BDTUX10 113
BDTUX11 116
BDTUX12 119
BDTUX14 122
BDTUX15 125
BDTUX16 127
BDTUX17 130
BDTUX18 132
BDTUX19 134
BDTUX24 138
BDTUX30 150
coding considerations 80
link-editing 91
loading 91
overview of 78

D
D parameter of SYS1.PARMLIB member

IEFSSNxx 18
data compression, specifying

(BDTNODE,CS=) 49
data sets

allocating new
initialization stream 27
ISPF 29
message 32
system GMJD library 28
TQI bit-map 31
TQI checkpoint 31
work queue 28

formatting TQI 35
specifying in BDT start procedure 73
specifying in TQI start procedure 75

DATAFILE DD statement
in BDT start procedure 74
in job to format TQI data sets 35
in TQI start procedure 76

days jobs can be on work queue, limit to
(OPTIONS,JOBRETPD=) 64

DCQE (dynamic application program
checkpoint queue element) cell pool 57

DD statements
in the BDT start procedure 73
in the job to format TQI data sets 35
in the job to move transactions to a

new data set 187
in the TQI start procedure 75

DDN parameter of DYNALLOC
statement 59

deallocation exit routine (BDTUX30) 150
decentralized network 6
default node for commands and

transactions
defining to BDT 18
defining to JES3 19

dependent transaction control (DTC)
dependent transaction control (DTC)

defined 205

dependent transaction control (DTC)
(continued)

DTC (dependent transaction control)
defined 205

disabled, BDT running while TQI is
(OPTIONS,TQIAUTO=) 66

DSN parameter of DYNALLOC
statement 59

DTC (dependent transaction control)
dependent transaction control (DTC)

defined 205
DTC (dependent transaction control)

defined 205
dump of BDT address space

defining type (OPTIONS,DUMP=) 62
defining whether automatic

(OPTIONS,WANTDUMP=) 66
DUMP parameter of OPTIONS

statement 62
DYNALLOC statement 58
dynamic deallocation exit routine

(BDTUX30) 150
dynamically allocate data sets 58

E
enabling of TQI

automatic 18
exit routine (BDTUX29) to authorize

transactions 148
required before accepting requests 18

end of job, exit routine (BDTUX18) to
record 132

ENDINIT statement 60
ENDRBAM statement 60
estimating storage for BDT address

space 185
executable macros

BDTDKYWD 163
BDTDTUD 169
BDTXASRV 172
BDTXJCT 174
BDTXJQE 175
BDTXTRC 176
BDTXTUAM 178

exit routines, user
assembling 91
authorization

BDTUX25 140
BDTUX26 142
BDTUX27 145
BDTUX28 146
BDTUX29 148
BDTUX31 153
how fit into BDT logic flow 84
IATUX50 (JES3) 80
IATUX56 (JES3) 78
overview of 77

coding considerations 80
customization

BDTUX01 93
BDTUX02 96
BDTUX03 100
BDTUX04 103
BDTUX05 106
BDTUX06 108
BDTUX07 109

exit routines, user (continued)
customization (continued)

BDTUX08 112
BDTUX10 113
BDTUX11 116
BDTUX12 119
BDTUX14 122
BDTUX15 125
BDTUX16 127
BDTUX17 130
BDTUX18 132
BDTUX19 134
BDTUX24 138
BDTUX30 150
overview of 78

example 195
header information 80
how invoked 80
initialization flow 191
link-editing 91
loading 91
names of invoking modules 81

extents, cell 53
defining primary 55
defining secondary 56
deleting empty secondary 55
freeing unused 56
maximum number of secondary 55

external to internal XOID
conversion 122, 192

F
F (MODIFY) command to override

initialization statements 70
F command authorization exit routine

(BDTUX31) 153
FCT (function control table pool) cell

pool 57
related to concurrent transfers

(OPTIONS,MAXTRAN=) 64
FCT chain 146
features of BDT, introduction to 1
fencing VLUs (BDTNODE,LU=) 51
File-to-File feature 1

specified on BDTNODE statement 53
file-to-file transaction

exit routine (BDTUX08) for
user-defined keywords 112

exit routine (BDTUX19) to
modify 134

FORMAT control statement,
BDTTQBCH 36

formatting TQI data sets 35
frequency

of calculating processor time used by
transactions
(OPTIONS,ACCINT=) 61

of file transfer checkpoints
(BDTNODE,CKPT=) 49

of reading checkpoint data set
(OPTIONS,TQITIME=) 66

FTF value of TYPE parameter 53

Index 209

G
GDGLOCS parameter of OPTIONS

statement 62
generic master job definition library

generic master job definition library
defined 205

global node level authorization exit
routine (BDTUX26) 142

global resource serialization (GRS)
complex, BDT in a 19

global-local relationship
defining on BDTNODE statement 52
effect on users 7
example in central hub network 5
example in decentralized network 6
introduction to 1
planning 5

glossary 205
GMJD library

GMJD library
defined 205

GMJD library, system
allocating new data set for 28
specifying on DYNALLOC

statement 58
GRS parameter of

SYS1.PARMLIB(IEASYSxx) 19

H
headers in exit routines 80
home node

defining on BDTNODE statement 43
naming for file-to-file transfers

(SYSID,NAME=) 69
naming for SNA NJE transfers

(SYSID,NJENAME=) 70
hub network, central 5

I
IATBDCI module, exit routines invoked

from
IATUX50 83
IATUX56 83

ICMB (input console message buffer) cell
pool 57

ID parameter of CELLPOOL
statement 54

IEAAPFxx member of SYS1.PARMLIB,
defining 19

IEASYSxx member of SYS1.PARMLIB,
defining 19

IEFSSNxx member of SYS1.PARMLIB,
defining 17

IEFU83 exit routine 139
IFC (interfunction communication) cell

pool 57
IFCN (interfunction communication for

NJE) cell pool 57
initialization flow and user exit

routines 191
initialization statements, BDT

BDTNODE (home) 43
BDTNODE (remote) 45
CELLPOOL 53

initialization statements, BDT (continued)
comment (*) 43
continue on next line, how to 43
DYNALLOC 58
ENDINIT 60
ENDRBAM 60
logging of 43
optional and required 42
OPTIONS 60
order, required 42
overridden by commands 70
rules for coding 42
SNABUF 67
SNALINE 189
SYSID 69
written to BDTOUT data set 74

initialization stream, BDT
allocating new data set for 27
IBM-supplied 39
specifying in BDT start procedure 74

initialization, exit routines to alter 78
BDTUX01 93
BDTUX02 96
BDTUX03 100
BDTUX04 103
BDTUX05 106
BDTUX06 108

INQUIRY command authorization exit
routine (BDTUX31) 153

internal to external XOID
conversion 122, 192

intra-node data transfers
message data set optional for 9
number of buffers for

(BDTNODE,LU=) 44
size of buffers for

(BDTNODE,LU=) 44
VLUs available for

(BDTNODE,LU=) 44
introduction to BDT 1
invoking exit routines 80

names of modules 81
IPL MVS 91
ISPF panels

allocating data sets for 29
RACF-protecting passwords in 30

J
JCL

to format TQI data sets 35
to move transactions to a new

checkpoint data set 187
to start BDT 73
to start TQI 75

JCT, exit routine (BDTUX26) to
modify 142

JCTB (job control table buffer) cell
pool 57

JCTs (job control tables), defining resident
(OPTIONS,JOBNO=) 63

JES3 address space, loading exit routines
into 91

JES3 exit routines
IATUX50 80
IATUX56 78

JES3 initialization statements
CONSOLE 19
NJERMT 19
SYSID 19

JES3 parameter of OPTIONS
statement 63

job control tables (JCTs), defining resident
(OPTIONS,JOBNO=) 63

job end, exit routine (BDTUX18) to
record 132

job numbers, defining the range of
(OPTIONS,JOBNO=) 63

job retention period, defining the
(OPTIONS,JOBRETPD=) 64

job start, exit routine (BDTUX17) to
record 130

JOBNO parameter of OPTIONS
statement 63

JOBRETPD parameter of OPTIONS
statement 64

K
keyboard

navigation 197
PF keys 197
shortcut keys 197

L
L parameter of BDTNODE statement

(remote) 50
language processor (BDTLP) load

module 91
link pack area (LPA), exit routines in 91
link-editing exit routines 91
loading exit routines 91
LOCAL parameter of BDTNODE

statement (remote) 52
local-global relationship

defining on BDTNODE statement 52
effect on users 7
example in central hub network 5
example in decentralized network 6
introduction to 1
planning 5

log, BDT system
DAP messages on

(OPTIONS,SYSMSG=) 65
line limit before printing

(OPTIONS,LOGLIMIT=) 64
lines per printed page

(OPTIONS,LOGPAGE=) 64
medium for

(OPTIONS,SYSLOG=) 65
SYSOUT class for

(OPTIONS,LOGCLASS=) 64
log, job message

cell pool for 57
exit routine (BDTUX16) to access 127
relation to exit routine BDTUX07 110

LOGCLASS parameter of OPTIONS
statement 64

LOGLIMIT parameter of OPTIONS
statement 64

210 z/OS BDT Installation

LOGPAGE parameter of OPTIONS
statement 64

LPA (link pack area), exit routines in 91
LU parameter

of home BDTNODE statement 44
of remote BDTNODE statement 50

M
macros

executable
BDTDKYWD 163
BDTDTUD 169
BDTXASRV 172
BDTXJCT 174
BDTXJQE 175
BDTXTRC 176
BDTXTUAM 178

mapping
BDTDBSID 159
BDTDCNS 159
BDTDDATU 160
BDTDGSD 160
BDTDINT 160
BDTDJCT 161
BDTDLCT 161
BDTDMJD 161
BDTDREG 161
BDTDRLT 161
BDTDSEQ 162
BDTDSMF 162
BDTDTVT 162
BDTDXOID 162

mapping macros
BDTDBSID 159
BDTDCNS 159
BDTDDATU 160
BDTDGSD 160
BDTDINT 160
BDTDJCT 161
BDTDLCT 161
BDTDMJD 161
BDTDREG 161
BDTDRLT 161
BDTDSEQ 162
BDTDSMF 162
BDTDTVT 162
BDTDXOID 162

matchups between parameters 181
MAXET parameter of CELLPOOL

statement 55
MAXTRAN parameter of OPTIONS

statement 64
MCS console authorization exit routine

(BDTUX28) 146
message data sets

allocating in BDT start procedure 74
allocating in TQI start procedure 76
allocating new 32
example of use 9, 10, 11
formatting 35
specifying TQI read interval 76

MESSAGE DD statement
in job to format message data sets 35
in TQI start procedure 76

message log, job
cell pool for 57

message log, job (continued)
exit routine (BDTUX16) to access 127
relation to exit routine BDTUX07 110

message processing, exit routines to
alter 79

BDTUX07 109
BDTUX12 119
BDTUX14 122
BDTUX16 127

message routing exit routine
(BDTUX12) 119

MJD text units 83
MJD, exit routine (BDTUX26) to

modify 142
MLPA (modified link pack area), exit

routines in 91
modified link pack area (MLPA), exit

routines in 91
MODIFY (F) command to override

initialization statements 70
MODIFY command authorization exit

routine (BDTUX31) 153
module names that invoke exit

routines 81
MOVE control statement,

BDTTQBCH 187
moving transactions to a new checkpoint

data set 187
MSGCLASS keyword, exit routine

(BDTUX07) to process 109
MSGCLASS(LOG) 127
multiple BDT address spaces 13
MVS, defining BDT to 17

N
N parameter

of home BDTNODE statement 44
of remote BDTNODE statement 46
of SNALINE statement 189

NAME parameter of SYSID
statement 69

navigation
keyboard 197

NJE value of TYPE parameter 53
NJEAPPL parameter of SYSID

statement 70
NJEAPSWD parameter of SYSID

statement 70
NJEDUP value of CS parameter 49
NJENAME parameter of SYSID

statement 70
NJERMT statement of JES3 19
node level authorization exit routine

(BDTUX27) 145
NODE parameter of SNALINE

statement 189
nodes

defined 205
global, defined 205
local, defined 205

Notices 201

O
OCMB (output console message buffer)

cell pool 58
optional initialization statements 42
OPTIONS statement 60

processing user-defined keywords
on 97

overriding initialization statements with
commands 70

P
pacing

defining on BUFNO parameter of
BDTNODE (remote) 47

parameter map 181
PARMLIB

IEAAPFxx member (authorize
SYS1.SBDTLIB) 19

IEASYSxx member (MVS system
parameters) 19

IEFSSNxx member (BDT as secondary
subsystem) 17

PARMS keyword, exit routine (BDTUX15)
to process 125

passwords
bypassing verification of 62
defining for sessions (PIN and

POUT) 52
on commands, exit routine

(BDTUX10) to process 113
protecting in dump data sets 62
protecting in GMJD library 29
protecting in ISPF panels 30
specifying for file-to-file node

(SYSID,APPLPSWD=) 70
specifying for SNA NJE node

(SYSID,APPLPSWD=) 70
PCF, running with 30
PGRLSE parameter of CELLPOOL

statement 56
PIN parameter of BDTNODE statement

(remote) 52
planning your configuration 5
poly-BDT complex

deciding whether to have 13
defined 205
example of 13, 14
introduction to 1

POUT parameter of BDTNODE statement
(remote) 52

prefix, defining the BDT 18
PRI parameter of SNABUF statement 67
primary buffers, allocating

(SNABUF,PRI=) 67
primary cell pool extent

allocating (CELLPOOL,CNUM=) 55
freeing unused

(CELLPOOL,PGRLSE=) 56
PROCLIB

BDT start procedure in 73
TQI start procedure in 75

production and test system
separation 14

Program Cryptographic Facility
(PCF) 30

Index 211

Q
Q-type transactions 141
queue, BDT work

allocating in BDT start procedure 58,
73

can't using DYNALLOC
statement 58

allocating new data set for 28
BDSPOOL DD statement 73
CRSPOOL DD statement 73
kept at global node 5
limiting time of jobs on

(OPTIONS,JOBRETPD=) 64

R
RACF

to protect dump data sets 62
to protect passwords in a GMJD

library 29
to protect passwords in ISPF

panels 30
RBAM exit routine (BDTUX02) 96
read frequency for TQI, selecting

(OPTIONS,TQITIME=) 66
read interval

of message data sets 76
of TQI checkpoint data set

(OPTIONS,TQITIME=) 66
related parameters 181
remote node

defining on BDTNODE statement 45
REPDUP value of CS parameter 49
request routing 84
required enabling of TQI, defining 18
required initialization statements 42
rescheduling transactions, setting a limit

for 66
restart

of BDT automatically
(OPTIONS,AUTORS=) 62

of sessions automatically
(BDTNODE,ASR=) 46

time before performing
(OPTIONS,ASRTIME=) 62

RESTART command to override
initialization statements 70

S
sample exit routine header 80
sample user exit routine 195
SAMPLIB

BDT$ALOC (allocate data sets)
initialization stream 27
message 32
system GMJD library 28
TQI bit-map 31
TQI checkpoint 31
work queue 28

BDT$FTF (file-to-file initialization
stream) 39

BDT$MIX (file-to-file and SNA NJE
initialization stream) 39

BDT$NJE (SNA NJE initialization
stream) 39

SAMPLIB (continued)
BDT$TQFM (format TQI data

sets) 35
BDT$V2SN (IEFSSNxx member of

SYS1.PARMLIB) 17
BDT$V2SP (BDT start procedure) 73
BDT$V2TP (TQI start procedure) 75
BDT$VTAM (VTAM APPL

statements) 21
exit routines in 77, 84

SAVE (save area pool) cell pool 58
SCNUM parameter of CELLPOOL

statement 56
SEC parameter of SNABUF

statement 68
secondary buffers

allocating (SNABUF,SEC=) 68
freeing (SNABUF,AUTODEL=) 68

secondary cell pool extents
allocating (CELLPOOL,SCNUM=) 56
deleting when empty

(CELLPOOL,AUTODEL=) 55
freeing unused

(CELLPOOL,PGRLSE=) 56
maximum number allocated

(CELLPOOL,MAXET=) 55
secondary MVS subsystem, defining BDT

as 17
sending a command to another node 8
sending comments to IBM ix
sessions

automatic restart, defining
(BDTNODE,ASR=) 46

automatic startup with remote node,
defining (BDTNODE,A=) 46

time before performing restart
(OPTIONS,ASRTIME=) 62

shortcut keys 197
SICA (scheduler interface control area)

cell pool 58
SIZE parameter of SNABUF

statement 67
SMF 138
SNA NJE feature 1

specified on BDTNODE statement 53
SNA session, defined 205
SNABUF statement 67
SNALINE statement 189
SPAN parameter of CELLPOOL

statement 56
spool data management exit routine

(BDTUX02) 96
spool space, insufficient 28
standard exit routine header 80
star network 5
START command to override

initialization statements 70
start of job, exit routine (BDTUX17) to

record 130
start procedure

BDT, writing 73
TQI, writing 75

starting BDT, cold 73
storage required for BDT address

space 185
subsystem, defining BDT as MVS 17
Summary of changes xi

SY(node-name) command prefix 18, 19
syntax conventions used in this book ix
SYS1.DUMP data set 62
SYS1.PARMLIB

IEAAPFxx member (authorize
SYS1.SBDTLIB) 19

IEASYSxx member (MVS system
parameters) 19

IEFSSNxx member (BDT as secondary
subsystem) 17

SYS1.PROCLIB
BDT start procedure in 73
TQI start procedure in 75

SYS1.SAMPLIB
BDT$ALOC (allocate data sets)

initialization stream 27
message 32
system GMJD library 28
TQI bit-map 31
TQI checkpoint 31
work queue 28

BDT$FTF (file-to-file initialization
stream) 39

BDT$MIX (file-to-file and SNA NJE
initialization stream) 39

BDT$NJE (SNA NJE initialization
stream) 39

BDT$TQFM (format TQI data
sets) 35

BDT$V2SN (IEFSSNxx member of
SYS1.PARMLIB) 17

BDT$V2SP (BDT start procedure) 73
BDT$V2TP (TQI start procedure) 75
BDT$VTAM (VTAM APPL

statements) 21
exit routines in 77, 84

SYS1.VTAMLST sample for BDT 21
SYSABEND DD statement

in BDT start procedure 74
in job to format TQI data sets 36
in TQI start procedure 76

SYSID statement 69
SYSID statement of JES3 19
SYSLOG parameter of OPTIONS

statement 65
SYSMDUMP DD statement

in BDT start procedure 74
in job to format TQI data sets 36
in TQI start procedure 76

SYSMSG parameter of OPTIONS
statement 65

SYSNAME parameter of
SYS1.PARMLIB(IEASYSxx) 19

SYSOUT class for BDT message log
(OPTIONS,LOGCLASS=) 64

system GMJD library
allocating new data set for 28
specifying on DYNALLOC

statement 58
SYSTEM job definition parameter 18, 19
system log, BDT

DAP messages on
(OPTIONS,SYSMSG=) 65

line limit before printing
(OPTIONS,LOGLIMIT=) 64

lines per printed page
(OPTIONS,LOGPAGE=) 64

212 z/OS BDT Installation

system log, BDT (continued)
medium for

(OPTIONS,SYSLOG=) 65
SYSOUT class for

(OPTIONS,LOGCLASS=) 64
SYSUDUMP DD statement

in BDT start procedure 74
in job to format TQI data sets 36
in TQI start procedure 76

T
T=LOCAL parameter of BDTNODE

statement (remote) 52
termination exit routine (BDTUX01) 93
termination, abnormal

of BDT
automatic dump after

(OPTIONS,WANTDUMP=) 66
automatic restart after

(OPTIONS,AUTORS=) 62
type of dump desired

(OPTIONS,DUMP=) 62
of session

automatic restart after
(BDTNODE,ASR=) 46

time before restart after
(OPTIONS,ASRTIME=) 62

resulting from insufficient spool
space 28

test and production system
separation 14

text units to customize transaction
processing 83

thrashing, preventing buffer
(SNABUF,ATF=) 68

time
allowed to transaction to run

(OPTIONS,ACCINT=) 61
between abnormal session end and

restart (OPTIONS,ASRTIME=) 62
between file transfer checkpoints

(BDTNODE,CKPT=) 49
between reading checkpoint data set

(OPTIONS,TQITIME=) 66
jobs may be kept on work queue

(OPTIONS,JOBRETPD=) 64
TQCP (transaction queuing cell pool) cell

pool 58
TQE (timer queue element buffer pool)

cell pool 58
TQI (transaction queuing integrity)

allocating new bit-map data set 31
allocating new checkpoint data

set 31
allocating new message data sets 32
data sets used by 9
definition of 206
enabling, defining automatic 18

TQI (transaction queuing integrity)
(continued)

enabling, defining required 18
example of configuration 9
example of flow 10, 11
exit routine (BDTUX29) to authorize

transactions when enabled 148
formatting checkpoint, bit-map, and

message data sets 35
introduction to 1
moving transactions to a new

checkpoint data set 187
planning use of 8
running without 12
transaction execution while disabled

(OPTIONS,TQIAUTO=) 66
TQI bit-map data set

allocating in BDT start procedure 74
allocating in TQI start procedure 76
allocating new 31
example of use 9, 10, 11
formatting 35
moving contents of 187

TQI checkpoint data set
allocating in BDT start procedure 74
allocating in TQI start procedure 76
allocating new 31
example of use 9, 10, 11
formatting 35
moving contents of 187
read frequency, selecting

(OPTIONS,TQITIME=) 66
TQIAUTO parameter of OPTIONS

statement 66
TQIEN parameter of SYS1.PARMLIB

member IEFSSNxx 18
TQIREQ parameter of SYS1.PARMLIB

member IEFSSNxx 18
TQITIME parameter of OPTIONS

statement 66
trace table, macro (BDTXTRC) to add

to 176
trademarks 203
transaction processing, exit routines to

alter 79
BDTUX08 112
BDTUX15 125
BDTUX17 130
BDTUX18 132
BDTUX19 134
BDTUX30 150

transaction queuing integrity (TQI)
transaction queuing integrity (TQI)

definition of 206
transaction, file-to-file

exit routine (BDTUX08) for
user-defined keywords 112

exit routine (BDTUX19) to
modify 134

transactions
setting a limit for rescheduling 66

type 59 record, SMF 138
TYPE parameter of BDTNODE statement

(remote) 53

U
UNIT parameter of DYNALLOC

statement 59
URSCNT parameter of OPTIONS

statement 66
user interface

ISPF 197
TSO/E 197

V
VARY command to override initialization

statements 70
virtual storage required for BDT address

space 185
VLUs

defining (LU on BDTNODE
home) 44

defining (LU on BDTNODE
remote) 50

fencing (BDTNODE,LU=) 51
VOLSER parameter of DYNALLOC

statement 59

W
WANTDUMP parameter of OPTIONS

statement 66
work queue

defined 206
work queue, BDT

allocating in BDT start procedure 58,
73

can't using DYNALLOC
statement 58

allocating new data set for 28
BDSPOOL DD statement 73
CRSPOOL DD statement 73
kept at global node 5
limiting time of jobs on

(OPTIONS,JOBRETPD=) 64

X
XOID 109
XOID type codes, exit routine (BDTUX14)

to process 122
XOIDXTYP 122

Index 213

	Contents
	Figures
	About This Book
	Who Should Read This Book
	How to Use This Book
	Related Reading
	Syntax Conventions Used in This Book
	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Chapter 1. Introduction
	Planning Your Configuration
	Defining BDT to MVS
	Defining BDT to VTAM
	Allocating BDT and TQI Data Sets
	Formatting TQI Data Sets
	Creating a BDT Initialization Stream
	Writing BDT and TQI Start Procedures
	Writing User Exit Routines

	Chapter 2. Planning Your Configuration
	Step 1. Plan Global and Local Relationships (File-to-File Customers Only)
	Global-local relationships in a central hub network
	Global-local relationships in a decentralized network
	The effect of global-local relationships on users

	Step 2. Plan the Use of TQI
	What TQI Does
	TQI Prevents Loss of User Requests
	TQI Routes BDT Messages to Users

	The data sets that TQI uses
	Example of TQI flow—TQI and BDT in the same processor
	Example of TQI flow—TQI and BDT in different processors
	Running without TQI

	Step 3. Decide whether to have a poly-BDT complex

	Chapter 3. Defining BDT to MVS
	Step 1. Define BDT As an MVS Secondary Subsystem—SYS1.PARMLIB Member IEFSSNxx
	Step 2. Specify MVS System Parameters—SYS1.PARMLIB Member IEASYSxx
	Step 3. Authorize SYS1.SBDTLIB
	Step 4. Authorize SYS1.MIGLIB
	Step 5. Define BDT to JES3 (JES3 Customers Only)—CONSOLE, SYSID, and NJERMT Statements

	Chapter 4. Defining BDT to VTAM
	Step 1. Define a Node for File-to-File Transfers—APPL Definition Statement
	Step 2. Define a Node for SNA NJE Transfers—APPL Definition Statement
	Step 3. Define Remote Nodes as Cross-Domain Resources—CDRSC Definition Statement
	Step 4. Define File-to-File Session Parameters—Logon Mode Table
	Step 5. Define SNA NJE Session Parameters—Logon Mode Table

	Chapter 5. Allocating BDT and TQI Data Sets
	Step 1. Allocate a Data Set for the BDT Initialization Stream
	Step 2. Allocate a Data Set for the BDT Work Queue
	Step 3. Allocate a System GMJD Library (File-to-File Customers Only)
	Step 4. Allocate ISPF Data Sets (File-to-File Customers Only)
	ISPF Version 3
	Other Considerations

	Step 5. Allocate the TQI Checkpoint Data Set
	Step 6. Allocate the TQI Bit-Map Data Set
	Step 7. Allocate Message Data Sets

	Chapter 6. Formatting TQI Data Sets
	Step 1. Format the TQI Checkpoint, Bit-Map, and Message Data Sets

	Chapter 7. Creating a BDT Initialization Stream
	How Many Initialization Streams Should You Have?
	The IBM-Supplied Initialization Streams
	Rules for coding initialization statements
	*—Place Comments in the Initialization Stream
	BDTNODE—Define Characteristics of a Home File-to-File Node
	BDTNODE—Define Session Characteristics between Home and Remote Nodes
	CELLPOOL—Allocate Cell Pools
	DYNALLOC—Dynamically Allocate BDT Data Sets
	ENDINIT—End the Initialization Stream
	ENDRBAM—Mark the End of Definitions So Far
	OPTIONS—Define Operating Characteristics of the BDT Subsystem
	SNABUF—Define Data Buffers
	SYSID—Name the Home Node
	Initialization Statement Parameters That the Operator Can Override

	Chapter 8. Writing BDT and TQI Start Procedures
	Step 1. Write a BDT Start Procedure
	Step 2. Write a TQI Start Procedure

	Chapter 9. Writing User Exit Routines
	Step 1. Understand Which Authorization Exit Routines You Must Write
	Authorization Exit Routine in the Link Pack Area
	Authorization Exit Routines in the BDT Address Space
	Authorization Exit Routine in the JES3 Address Space

	Step 2. Decide Whether You Want to Write Customization Exit Routines
	Exit Routines to Alter Initialization
	Exit Routines to Alter Message Processing
	Exit Routines to Alter Transaction Processing
	Exit Routines to Alter Command Processing
	Exit routines to recognize user-defined BSIDMOD fields

	Step 3. Code Your Exit Routines
	General Considerations When Writing BDT Exit Routines
	How exit routines are invoked
	Names of Modules That Invoke the Exit Routines
	Using Text Units to Customize BDT Transaction Processing
	A Short Cut for Testing BDT
	How Authorization Exit Routines Fit into the Flow in a BDT File-to-File Subsystem
	BDT Request Routing
	How Requests Enter a BDT File-to-File Subsystem
	Checkpointing requests in BDT TQI
	Routing from BDTSSBDT to the BDT address space

	Step 4. Assemble Your Exit Routines
	Step 5. Link-Edit Your Exit Routines
	Exit Routines That Will Run in the Link Pack Area
	Exit Routines That Will Run in the JES3 Address Space
	Exit Routines That Will Run in the BDT Address Space

	Step 6. Load Your Exit Routines
	Loading Exit Routines into the Link Pack Area
	Loading Exit Routines into the BDT Address Space
	Loading Exit Routines into the JES3 Address Space

	Chapter 10. User Exit Routine Reference
	BDTUX01—BDT Initialization and Termination Processing
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX01 Is Not Used?

	BDTUX02—Unrecognized Spool Data Management (RBAM) Initialization Statements
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX02 Is Not Used?

	BDTUX03—Unrecognized BDT Network Initialization Statements
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX03 Is Not Used?

	BDTUX04—Unrecognized Keywords on BDTNODE Statements for File-to-File Nodes
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX04 Is Not Used?

	BDTUX05—BDTNODE Statement Keyword Processing for File-to-File Nodes
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX05 Is Not Used?

	BDTUX06—BDT Post-Initialization Processing
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX06 Is Not Used?

	BDTUX07—User-Defined Parameters on the MSGCLASS Keyword of File-to-File Transactions
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX07 Is Not Used?

	BDTUX08—User-Defined File-to-File Transaction Keywords
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX08 Is Not Used?

	BDTUX10—Command Password Processing
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX10 Is Not Used?

	BDTUX11—Unrecognized BSID Modifier
	Type
	General Description
	Register Conventions on Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX11 Is Not Used?

	BDTUX12—BDT Message Routing
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX12 Is Not Used?

	BDTUX14—BDT User-Defined XOID Type Conversion
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX14 Is Not Used?

	BDTUX15—Unrecognized Parameters on PARMS Keyword
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX15 Is Not Used?

	BDTUX16—BDT Job Message Log
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX16 Is Not Used?

	BDTUX17—BDT Job Start
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX17 Is Not Used?

	BDTUX18—BDT Job Termination
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX18 Is Not Used?

	BDTUX19—File-to-File Transaction Modification
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	Programming Notes
	What If BDTUX19 Is Not Used?

	BDTUX24—Monitoring and Modifying the Type 59 SMF Record
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX24 Is Not Used?

	BDTUX25—Entry Level Authorization in the BDT Address Space
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX25 Is Not Used?

	BDTUX26—Global Node Level Authorization
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX26 Is Not Used?

	BDTUX27—Node Level Authorization
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX27 Is Not Used?

	BDTUX28—MCS Console Authorization
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX28 Is Not Used?

	BDTUX29—Initial Authorization of TQI-Enabled Transactions
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX29 Is Not Used?

	BDTUX30—Dynamic Deallocation
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX30 Is Not Used?

	BDTUX31—INQUIRY and MODIFY Command Authorization
	Type
	General Description
	Register Conventions at Entry
	Register Conventions at Exit
	Operation
	Environment
	Data Areas
	What If BDTUX31 Is Not Used?

	Chapter 11. Mapping Macro Reference
	BDTDBSID
	BDTDCNS
	BDTDDATU
	BDTDGSD
	BDTDINT
	BDTDJCT
	BDTDLCT
	BDTDMJD
	BDTDREG
	BDTDRLT
	BDTDSEQ
	BDTDSMF
	BDTDTVT
	BDTDXOID

	Chapter 12. Executable Macro Reference
	BDTDKYWD
	BDTDTUD
	BDTXASRV
	BDTXJCT
	BDTXJQE
	BDTXTRC
	BDTXTUAM

	Appendix A. Parameter map
	Appendix B. Virtual Storage Required for the BDT Address Space
	Appendix C. Moving Transactions to a New TQI Checkpoint Data Set
	Appendix D. SNALINE Statement (File-to-File Feature Only)
	Appendix E. Initialization Flow and User Exit Routines
	Flow diagram for initialization exits
	Internal to External Conversion of the XOID Format
	External to internal conversion of the XOID format
	Flow diagram for the invocation of BDTUX17 (job start)
	Flow diagram for the invocation of BDTUX18 (job end)
	Modules That Issue the BDTXXOID Macro

	Appendix F. Sample User Exit Routine
	Assembler Code for Sample Routine

	Appendix G. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming Interface Information
	Trademarks

	GLOSSARY
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

