<|lI!

Print Services Facility

AFP Conversion and Indexing Facility
User’s Guide

S550-0436-04

Note:

Before using this information and the product it supports, read the information in [“Notices” on page 237/

This edition applies to AFP Conversion and Indexing Facility, which is included with Print Services Facility 4.5.0 for
z/0S (Program Number 5655-M32); Print Services Facility/VM 2.1.1 (Program Number 5684-141); Print Services
Facility/VSE 2.2.1 (Program Number 5686-040); InfoPrint Manager for AIX 4.3.0 (Program Number 5648-F35);
InfoPrint Manager for Windows 2.3.0 (Program Number 5648-F36); and InfoPrint Manager for AIX, Linux, and
Windows 4.4.0 (Program Number 5648-F40). This edition applies to all subsequent releases and modifications until
otherwise indicated in new editions.

This edition replaces S550-0436-03.

© Copyright IBM Corporation 1993, 2014.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Figures
Tables

About this publication
Who should read this publication .
How this publication is organized .
What terms are used in this publication . .
Understanding the notational conventions used in
this publication .
Highlighting .
Syntax notation.
Related information

How to send your comments to IBM
If you have a technical problem .

Summary of changes .

Chapter 1. Understandmg ACIF.
Overview of ACIF
ACIF functions

Converting data streams

Indexing documents .

Retrieving resources .
Scenarios for processing ACIF flles

Preparing files for viewing

Preparing files for printing .

Preparing files for archiving and retneval
IBM products used with ACIF .

AFP Workbench Viewer .

AFP Toolbox .

Document Composmon Fac1hty (DCF)
System considerations for ACIF.

System limitations .

System prerequisites

Chapter 2. Using ACIF .

Using ACIF in AIX and Windows .
Selecting resources . .

Running ACIF . .
Files provided with InfoPrmt Manager .
NLS messages . oo
Suggested reading .

Using ACIF in z/OS .
z/0S JCL statements for runmng ACIF .
Enabling ICONV translation services .

Using ACIF in VM . .o .
VM/CMS commands for runmng ACIF .

Using ACIF in VSE.

VSE JCL statements for runmng ACIF

Chapter 3. ACIF parameters
Syntax rules for ACIF .

© Copyright IBM Corp. 1993, 2014

. Vil

. Xi
. xi
. Xi

. Xxii

. xiii
. xiii
. xdii
. Xiv

XVii
. Xvii

.17
.17
.17
.19
. 19
. 20
. 20
.21
.21
.22
.23
.23
.24
. 24

. 27
.27

Syntax rules for AIX and Windows
Syntax rules for z/OS, VM, and VSE .
Parameter values for ACIF

cc . .
CCTYPE
CHARS.
COLORMAP .
COMSETUP .
CPGID .

DCFPAGENAMES

EXTENSIONS
FDEFLIB
FIELDn.
FILEFORMAT
FONTECH
FONTLIB .
FONTPATH .
FORMDEEF.

GROUPNAME .

IMAGEOUT .
INDEXn
INDEXDD.
INDEXOB]

INDEXSTARTBY.

INDXEXIT.
INPCCSID.
INPEXIT
INPUTDD.
INSERTIMM .
MCF2REF .
MSGDD
OBJCONLIB .
OBJCPATH
OUTCCSID
OUTEXIT .
OUTPUTDD .
OVLYLIB .
PAGEDEF .
PARMDD .
PDEFLIB .
PRMODE .
PSEGLIB
RESEXIT
RESFILE
RESLIB.
RESOBJDD
RESTYPE .
TRACE .
TRACEDD
TRC.
TRIGGERn

UNIQUEBNGS .

USERLIB .
USERPATH

.28
. 28
. 29
. 31
. 32
. 33
. 34
. 35
. 37
. 37
. 38
. 40
. 42
. 44
. 45
. 46
. 48
. 48
. 50
. 51
.51
. 52
. 53
. 54
. 55
. 55
. 55
. 56
. 57
. 58
. 58
. 58
. 60
. 60
. 61
. 61
. 62
. 63
. 65
. 66
. 67
. 68
. 70
.70
.71
.71
.72
.75
. 76
. 76
.77
.79
.79
. 81

iii

Chapter 4. Enhanced indexing

parameters.83
Parameter values for enhanced 1ndex1ng83
FIELDn. . . i .
GROUPMAXPAGES (0]
INDEXn9
TRIGGERn93
USERMASK9

Chapter 5. Examples of using ACIF . . 97

Examples of using ACIF processing parameters . . 97
Transforming line data or XML data into a
MO:DCA-P document.97
Retrieving resources98
Specifying AFP coded fonts98
Specifying TrueType and OpenType fonts e .99
Identifying the location of resource libraries . . 100
Drawing graphics with record format page
definitions 10

Example of using ACIF t0 view and 1ndex

documents . . . e e oo 102
Examining the mput f11e 104
Specifying ACIF processing parameters .. o107
Indexing data in the input file. 111
Identifying the locations of the resources . . . 113
Determining the form definition and the page
definition. . . I i ¢
Running the ACIF]ob e i 1
Concatenating ACIF output files 115
Accessing the document file for viewing . . . 116

Example of using enhanced indexing with ACIF 117
Enhanced indexing telephone bill. 117
Enhanced indexing parameter file 119

Example of using ACIF with UTF-16 data. . . . 120

Chapter 6. User exits and input print
file attributes 121

User programming exits.121
Input record exit122
Index record exit126
Output record exit.128
Resourceexit130

User exit search order133
AIX and Windows.133
z/OS133
VM.133
VSE133

Attributes of the mput prmt frle e R 7

Chapter 7. ACIF messages 137

Message identifiers . . . B < 74
Multiple message scenarios. 138
General messages138

Appendix A. HeIpfuI hints for using

ACIF e . . . 207
Working with control statements that contain
numbered lines.207

1V PSF V4R5 for z/OS: ACIF User's Guide

Placing TLEs in named groups to avoid storage

problems. . . . 207
Understanding how ANSI and machme carrlage
controls are used208
Transferring files into AIX and Wmdows ... 209
Understanding common methods of transferring
files into AIX or Windows from other systems . . 210
Physical media.210
PC file transfer program.210
FIP. . . . A i |
Download for z / OS A b |
Other considerations 211
Creating Invoke Medium Map (IMM) structured
fields A i |
Indexing c0n51derat10ns .o . 212
Concatenating the resource file and the document
file.213
Processing inline resources 214
Specifying the IMAGEOUT parameter 214
Creating MO:DCA-P object containers 215
Understanding error return code 310 215
Processing Unicode complex text.216

Appendix B. Processing resources
installed with resource access tables . 217

Appendix C. Structured fields that

ACIF uses. 219
Tag Logical Element (TLE) structured field . . .219
TLEs generated by ACIF219
TLEs in MO:DCA-P input files220
TLEs in mixed-mode data input files 220
Begin Resource Group (BRG) structured field. . . 221
Begin Resource (BRS) structured field 222
End Resource (ERS) and End Resource Group
(ERG) structured fields 222
Begin Print File (BPF) and End Pr1nt Flle (EPF)
structured fields . . . o222
No Operation (NOP) structured f1eld223
Format of the resources file.223

Appendix D. Format of the index
object file 225

Group-Level Index Element (IEL) structured f1e1d 225
Page-Level Index Element (IEL) structured field 226

Begin Document Index (BDI) structured field. . . 226
Index Element (IEL) structured field. 226
Tag Logical Element (TLE) structured field . . . 227
End Document Index (EDI) structured field . . . 228

Appendix E. Format of the output
documentfile229

Page groups.230
Begin Document (BDT) structured f1e1d ... 2231
Begin Named Group (BNG) structured field . . . 231
Tag Logical Element (TLE) structured field . . . 232
Begin Page (BPG) structured field 232
End Named Group (ENG), End Document (EDT)

and End Page (EPG) structured fields 232

Output MO:DCA-P data stream . . 232
Composed Text Control (CTC) structured freld 232
Map Coded Font (MCF) Format 1 structured
field . 233
Map Coded Font (MCF) Format 2 structured
field . 233
Presentation Text Data Descrlptor (PTD) Forrnat
1 structured field 233
Inline resources. . 233
Page definitions . 233

Appendix F. Accessibility . 235

Using assistive technologies . . 235

Keyboard navigation of the user mterface . 235

Notices . . 237

Policy for unsupported hardware . 239

Minimum supported hardware
Programming interfaces .
Trademarks .

Glossary

Bibliography.

Advanced Function Presentation (AFP).

Text Processing .
Print Management.

Index .

. 239
. 239
. 239

. 241

. 249
. 249
. 249
. 250

. 251

Contents

A\

Vi PSF V4R5 for z/OS: ACIF User's Guide

Figures

1.

10.
11.
12.

13.
14.

15.

16.
17.
18.
19.
20.

21.

How ACIF fits into Advanced Function
Presentation.

AFP document with 1ndex tags and the 1ndex
object file .
Example bank statement 1nput f11e .

ACIF processing parameters to index a bank
statement

Using ACIF to prepare flles for vrewrng
Using ACIF to prepare files for distributed
printing . .

Using ACIF to prepare f11es for arch1vmg and
retrieving . .

AFP Workbench Vrewer .

Sample z/OS JCL to run ACIF . .
Sample VM/CMS commands to run ACIF
Sample VSE JCL to run ACIF .o
Example of a customer’s printed telephone
bill .

Example of the hne data telephone b111
Example of an AIX parameter file for ASCII
input data .

Example of an AIX parameter frle for EBCDIC
input data S
Example of an AIX Parameter Flle

Example of a z/OS parameter file.

Example of a VM parameter file

Example of a VSE parameter file .

Example of the enhanced indexing telephone
bill .

Example of an enhanced 1ndex1ng parameter
file .

© Copyright IBM Corp. 1993, 2014

.12

.13
.14
.21

23

.24

. 103

105

. 106

. 106
. 108
. 109
. 110
. 111

. 118

. 119

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Example of report with UTF-16 data .
Example of a parameter file for UTF-16 input
data.

AIX or W1ndows sample 1nput record ex1t C
language header

z/0S, VM, or VSE sample mput record ex1t
DSECT. .o

AIX or Windows sample 1ndex record ex1t C
language header

z/0S, VM, or VSE sample mdex record exrt
DSECT. .

AIX or Windows sample output record ex1t C
language header

z/0S, VM, or VSE sample output record ex1t
DSECT. .o .
AIX or Windows sample resource ex1t C
language header

z/0S, VM, or VSE sample resource exrt
DSECT.

AIX or Windows sample pr1nt flle attrlbutes
C language header.

z/0S, VM, or VSE sample prmt frle attrrbutes
DSECT. . .o
Example of ACIF parameters for processmg
documents with Unicode data .

Example of code that contains group—level
indexing .

Example of Code that contams group and
page-level indexing

. 120

. 120

. 123

. 123

. 127

. 127

. 128

. 129

. 130

. 131

. 134

. 134

. 213

. 229

. 230

vii

viil PSF V4R5 for z/OS: ACIF User's Guide

Tables

Term definitions . .

2. SYS1.SAMPLIB Members for PSF
Documentation Updates .

3. Search order for AFP resources .

Search order of resource file extensions

5. ACIF parameters and operating systems

—_

L

© Copyright IBM Corp. 1993, 2014

. Xii

. Xiv
.17

18
29

o

Hexadecimal strings for encoding values
ACIF enhanced indexing parameters .
Font short names to use with CHARS
parameter

Output files ACIF creates .

FOCA font naming conventions

45

. 83

.99
. 114
. 233

ix

X PSF V4R5 for z/OS: ACIF User's Guide

About this publication

This publication describes Advanced Function Presentation Conversion and
Indexing Facility (ACIF), which is available for use with Print Services Facility
(PSF) and InfoPrint Manager. PSF uses ACIF in the z/ 0S® VM, and VSE
environments; InfoPrint Manager uses ACIF in the AIX®, Linux, and Windows
environments.

Note: ACIF is also used by Infoprint Server on IBM® i ; however, this publication
only describes how to use ACIF with PSF and InfoPrint Manager. For
information about using ACIF with Infoprint Server on IBM i, see Infoprint
Server for iSeries: User’s Guide, G544-5775.

This publication assumes that you are familiar with Advanced Function
Presentation (AFP) concepts and the parameters that you specify when printing
with PSF and InfoPrint Manager. If you are not familiar with AFP concepts, see
Guide to Advanced Function Presentation. If you are not familiar with the PSF print
parameters, see one of these:

e InfoPrint Manager for AIX: Getting Started

* InfoPrint Manager for Linux: Getting Started

* InfoPrint Manager for Windows: Getting Started

* InfoPrint Manager: Reference

[PSF for z/OS: User’s Guide

This publication also assumes that you are familiar with Mixed Object Document
Content Architecture for Presentation (MO:DCA-P) and structured fields. You can
see Mixed Object Document Content Architecture Reference and Advanced Function

Presentation: Programming Guide and Line Data Reference to read about these topics.

Who should read this publication

This publication contains information that application programmers can use to
develop ACIF applications that do these functions:

¢ Convert line data and XML data print files to MO:DCA-P documents.
* Add indexing tags to documents.

* Create a separate index object file from the indexing tags in a MO:DCA-P
document.

* Retrieve and package AFP resources that are needed for printing or viewing a
MO:DCA-P document.

Note: This publication provides ACIF messages that contain instructions for the
system programmers responsible for maintaining the operating system and
the PSF or InfoPrint Manager program that is running on it. You might need
to show these messages to your system programmer for assistance from
time to time.

How this publication is organized

This publication contains information that pertains to ACIF support for AIX, Linux,
Windows, z/0S, VM, and VSE operating environments that are used by PSF and
InfoPrint Manager:

© Copyright IBM Corp. 1993, 2014 xi

* [Chapter 1, “Understanding ACIF”| presents an overview of tasks you can do
with the ACIF product, describes several related products, and describes system
considerations for using ACIFE.

* [Chapter 2, “Using ACIF”| provides sample code for running ACIF.

* [Chapter 3, “ACIF parameters”| describes the parameters that are used for ACIF
processing, including syntax rules and parameter values.

* [Chapter 4, “Enhanced indexing parameters”| describes the parameters that are
used for ACIF enhanced indexing with PSF for z/OS.

* [Chapter 5, “Examples of using ACIF”| shows examples of an ACIF application.

* |Chapter 6, “User exits and input print file attributes”| describes the exits
available for customizing ACIFE.

* [Chapter 7, “ACIF messages”| provides the ACIF messages, with suggestions for
responding to the errors.

* The appendixes contain more information about ACIF:

— |Appendix A, “Helpful hints for using ACIF”| describes some considerations of
using ACIF as a front-end preprocessor for viewing, archiving, and retrieving
information.

— |Appendix B, “Processing resources installed with resource access tables”]
describes what resources are installed with a resource access table (RAT).

- |Appendix C, “Structured fields that ACIF uses”| describes the structured-field
information for indexing.

- |Appendix D, “Format of the index object file”| describes the file that enables
applications to determine the location of a page group or page within the
MO:DCA-P print file, which is based on the indexing tags.

— |Appendix E, “Format of the output document file”| shows the three separate
output files that ACIF can produce.

— |Appendix F, “Accessibility”| describes the accessibility features available in
z/0OS.

A notices section, glossary, bibliography, and index are included. The bibliography
lists the publications that contain additional information about AFP, PSF, InfoPrint
Manager, and related products.

What terms are used in this publication

Table 1. Term definitions

The terms document, file, and library are used throughout this publication. In all
systems, document is a file that contains AFP structured fields in MO:DCA-P
format. The terms file and library have different meanings in different operating
systems. lists the meanings of file and library in AIX, Linux, Windows,
z/0S, VM, and VSE operating systems.

Operating System

File Library

AIX or Linux

A collection of related data A directory in which AFP resources are stored

Windows A collection of related data * A directory
e A list of files that are stored on a disk or
diskette
2/0S ¢ A sequential data set * A partitioned data set
* A member of a partitioned data set * A series of concatenated data sets

* The name of a DD card

xil PSF VAR5 for z/0S: ACIF User's Guide

Table 1. Term definitions (continued)

Operating System File Library

VM A CMS file (filename filetype filemode) A collection of CMS files, generally with the
same file type

VSE A sequential (SAM) file A library.sublibrary

Understanding the notational conventions used in this publication

This publication uses consistent conventions for these notational conventions:
* Highlighting
* Syntax notation

Highlighting
This publication uses the following highlighting conventions:

Bold Identifies commands, keywords, files, directories, and other items, whose
names are predefined by the system or must be entered as is, such as acif.

Italic Identifies parameters whose actual names or values you supply. Italics also
identify the names of publications.

Monospace
Identifies examples of specific data values, examples of text similar to what
you might see displayed, examples of portions of program code similar to
what you might write as a programmer, messages from the system, or
information you should actually type.

Syntax notation
This publication uses the following syntax notation:

¢ Italics within a command represent variables for which you must supply a
value. For example:
CPGID=codepageid
means that you enter CPGID= as shown and then replace the variable codepageid
with a value that represents any valid code page, which is 3-character decimal
value (for example, 395) that defines an IBM-registered code page.

* Do not enter the following symbols as part of the command:
Vertical bar I
Braces {1}
Brackets []

Underscore

These symbols have the following meanings:

* A vertical bar, |, between values indicates that you can enter only one of the
values with the command. For example:

CC={YES | NO}

means that when you enter CC=, you can specify either YES or NO as the
value, but not both.

About this publication xiii

Note: In AIX, Linux, and Windows operating systems, sometimes the vertical
bar, |, acts as a pipe. When the pipe symbol appears between commands,
it indicates that the output from the first command becomes the input to
the second command. For example:

acif inputdd=myfile | enq -P3825A

means that the output generated by the acif command is the input to the
enq command, which prints the file.

Braces, { }, around values indicate a required value. For example:
CC={YES | NO}

means that when you enter CC=, you must also enter YES or NO.
Brackets, [], around parameters indicate that they are optional. For example:
[CC=value] [CCTYPE=value]

means that you do not have to enter either CC=value or CCTYPE=value.

An underscore, _, indicates the default value, which ACIF uses if you do not
specify the parameter with a non-default value. For example:

CC={YES | NO}

means that if the CC= parameter is not entered, ACIF uses the default value of
YES for the CC parameter.

Related information

xiv

Publications that are referred to in this document or that contain more information
about AFP, InfoPrint Manager, and related products are listed in the

[“Bibliography” on page 249.|For information about all z/OS product publications,

see [z/0S Information Roadmap|

For more information about z/OS, InfoPrint Manager, and PSF for z/OS go to
these web pages:

[z/OS website|at |http://www.ibm.com/systems/z/os/zos/|

2/OS output management software|at|http://www.ibm.com/systems/z/zos/|
printsoftware/

IBM Print Services Facility (PSF) for z/OS|at|http://www.ibm.com/systems/z/|
zos/printsoftware/psthome z ww.html|

Ricoh Production Print Software|at |http://rpp.ricoh-usa.com/products/|

softwar‘e/|

To obtain the latest documentation updates for z/OS base elements and optional
features that result from DOC APARs and PTFs, go to the [DOC APARs and|

[++HOLD DOC web page] at:

|http://publibz.boulder.ibm.com/cgi-bin/bookmgr 05390/Shelves/ZDOCAPAR|

To obtain the latest documentation updates for PSF for z/OS, see the appropriate
SYS1.SAMPLIB members in

Table 2. SYS1.SAMPLIB Members for PSF Documentation Updates

Member Publication

APSGADP5 |PSF for z/OS: AFP Download Plus, S550-0433)
APSGCUS5 |PSF for z/OS: Customization, S550-0427]
APSGDGNS5 |PSF for z/OS: Diagnosis, G550-0428]

PSF V4R5 for z/0OS: ACIF User's Guide

http://www.ibm.com/systems/z/os/zos/
http://www.ibm.com/systems/z/os/zos/
http://www.ibm.com/systems/z/zos/printsoftware/
http://www.ibm.com/systems/z/zos/printsoftware/
http://www.ibm.com/systems/z/zos/printsoftware/
http://www.ibm.com/systems/z/zos/printsoftware/psfhome_z_ww.html
http://www.ibm.com/systems/z/zos/printsoftware/psfhome_z_ww.html
http://www.ibm.com/systems/z/zos/printsoftware/psfhome_z_ww.html
http://rpp.ricoh-usa.com/products/software/
http://rpp.ricoh-usa.com/products/software/
http://rpp.ricoh-usa.com/products/software/
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ZDOCAPAR
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ZDOCAPAR
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ZDOCAPAR

Table 2. SYS1.SAMPLIB Members for PSF Documentation Updates (continued)

Member Publication

APSGDLG5 |PSE for z/OS: Download for z/OS, S550-0429|
APSGMAC5 |PSE for z/OS: Messages and Codes, G550-0432)|
APSGSEC5 |PSE for z/OS: Security Guide, S550-0434]
APSGUSR5 |PSF for z/OS: User’s Guide, S550-0435|

About this publication XV

XVi PSF V4R5 for z/OS: ACIF User's Guide

How to send your comments to IBM

We appreciate comments from you about this publication. Please comment on the
clarity, accuracy, and completeness of the information or give us any other
feedback that you might have.

Use one of these methods to send us your comments:
* Send an email to: mhvrcfs@us.ibm.com

* Visit the web page at:

|http://www-03.ibm.com/systems/z/0s/zos/webgs.html|

* Mail your comments to this address:
IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA.

¢ Fax the comments to us as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include this information:

* Your name and address

* Your email address

* Your telephone or fax number

* The publication title and order number:
PSF V4R5 for z/0S: ACIF User's Guide
5550-0436-04

* The topic and page number related to your comment

¢ The text of your comment

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

IBM or any other organizations will only use the personal information that you
supply to contact you about the issues that you submit.

If you have a technical problem

Do not use the feedback methods listed above. Instead, do one of these:

* Contact your IBM service representative.

* Call IBM technical support.

* Visit the [[BM Support web page] at:
|http://www.ibm.com/systems/z/support/|

© Copyright IBM Corp. 1993, 2014 xvii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

Xviil PSF VAR5 for z/OS: ACIF User's Guide

Summary of changes

AFP Conversion and Indexing Facility User's Guide, $550-0436-04:

This publication contains additions and changes to information previously
presented in AFP Conversion and Indexing Facility User’s Guide, S550-0436-03. The
technical additions and changes are marked with a revision bar (|) in the left
margin.

General changes:

ACIF now supports InfoPrint Manager for Linux.

New information:

A description of Mixed Object Document Content Architecture Presentation
Interchange Set 3 (MO:DCA 1S/3) has been added to [“Mixed Object Document]
[Content Architecture data” on page 4/

[“Linux prerequisites” on page 16| has been added to system considerations.
The PASSPF value has been added to the EXTENSIONS parameter. See
fon page 29| and ["EXTENSIONS” on page 38,

This message has been added:

- [“APK21211” on page 205|

[‘Begin Print File (BPF) and End Print File (EPF) structured fields” on page 222

has been added. Also, a reference to the section has been added to |”Out]2u’£|
[MO:DCA-P data stream” on page 232

Changed information:

References for fonts have been updated in [Table 3 on page 17

[Table 5 on page 29| and ['FORMDEEF” on page 4§ have been updated to indicated
that DUMMY is the default for the FORMDEF parameter and to include a note
that the DUMMY value is case-sensitive.

The EXTENSIONS=ALL parameter description has been updated with a
reminder that many options apply only to specific data. See [“EXTENSIONS” on|
EXTENSIONS=MVSICNV is required if a page definition uses the VARIABLE
option when it is specifying resource objects. See [“Enabling ICONV translation|
[services” on page 22| and the MVSICNV value in ["EXTENSIONS” on page 38|
Information about not using a : or ; delimiter after a path name has been added
to [“Syntax rules for AIX and Windows” on page 28

The number of bytes allowed for the FIELD#n hexadecimal literal value has been
clarified. See ['FIELDn” on page 42|

['PAGEDEF” on page 63| has been updated to include a note that the DUMMY
value is case-sensitive.

The web page for downloading ACIF sample code has been updated in
[programming exits” on page 121/

[“Input record exit” on page 122| has been updated with information about the
EXTENSION=PASSPF parameter.

AIX and Windows message identifiers do not contain an error condition. The
AIX and Windows format in [“Message identifiers” on page 137 has been
corrected to remove the error condition.

© Copyright IBM Corp. 1993, 2014 xix

* These messages have been updated:
— [“APK104S” on page 138|
- [“APK1061” on page 139
— [“APK159S” on page 146|
- [“APK2991” on page 157
— [“APK436S” on page 178|
— [“APK4411” on page 178
— [“APK448S” on page 179
- [“APK472S” on page 182|
* [“Glossary” on page 241|and [“Bibliography” on page 249 have been updated.

Deleted information:

+ Enabling conversion services for PSF has been removed from [“Enabling ICONV|
[translation services” on page 22|

XX PSF V4R5 for z/0S: ACIF User's Guide

Chapter 1. Understanding ACIF

AFP Conversion and Indexing Facility (ACIF) is a batch application development
utility. You can use ACIF to create documents by formatting line data (record
format and traditional), XML data, MO:DCA-P print files, and unformatted ASCII
files, and then print them with InfoPrint Manager or IBM Print Services Facility
(PSF). ACIF also provides indexing and resource retrieval capabilities so you can
view, distribute, archive, and retrieve document files across systems and operating
systems.

InfoPrint Manager uses ACIF in the AIX, Linux, and Windows environments. ACIF
is also used in the z/0S, VM, and VSE environments.

This chapter gives an overview of ACIFE, explains the functions that ACIF can do,

describes different scenarios for processing your files, describes the IBM products

that you can use with ACIF, and lists the system limitations and prerequisites you
must consider for ACIFE.

Note: “InfoPrint Manager” refers to InfoPrint Manager for AIX, Linux, and
Windows, unless otherwise specified.

Overview of ACIF

With ACIF you can do these tasks:

* Convert line data, XML data, or mixed data into Mixed Object Document
Content Architecture for Presentation (MO:DCA-P) data, which is data that is
composed into pages and includes data placement and presentation information
(such as which font to use).

* Index a document to enhance your ability to view, archive, or retrieve individual
pages or groups of pages from large documents; create a separate index object file
from the indexing tags.

* Retrieve and package AFP resources that are needed for printing or viewing a
document and place them in a separate file, so that you can print and view the
exact document, possibly years after its creation.

ACIF accepts data from your application in these formats:

e AFP data

* MO:DCA-P data

* Record format or traditional line data

* Mixed-mode data

* XML data

* Unformatted ASCII data (AIX and Windows operating systems only)

ACIF can process application print data and AFP resources to produce these AFP
files:

* Document file
* Resource file
* Index object file

With the files that ACIF creates, you can do these tasks:

© Copyright IBM Corp. 1993, 2014 1

* Use PSF or InfoPrint Manager to print the AFP document file. If you specified
resources in the AFP document file, PSF or InfoPrint Manager references the
AFP resource file for the names and locations of the resources. The AFP
document file must be concatenated to the end of the resource file before the file
is printed.

* Use the AFP Workbench Viewer application to view the AFP document file. AFP
Workbench Viewer takes MO:DCA-P data and resources as input to produce
output that can be viewed.

* Store report files and the index file entries that are created by ACIF in a
document archival system, such as IBM Content Manager OnDemand.
OnDemand operates in a client/server environment and supports small office
environments and large enterprise installations with hundreds of system users.
OnDemand provides a server to store report files and other types of business
documents. Users can search for and retrieve files from the server with client
programs that run under Microsoft Windows and z/0OS CICS/ESA operating
systems. OnDemand supports viewing with full fidelity and reprinting of report
files on local and remote printers.

* Use your own archive system to store the ACIF-created files.

* Use your own retrieval system to access information in the ACIF files by using
retrieval information in the index object file.

[Figure 1 on page 3[shows a high-level overview of how ACIF fits into an
installation's AFP process for creating, indexing, viewing, and printing documents.
This figure shows the resources and text data that can feed into ACIF for
processing. The resources and text data can be provided and used by various AFP
and AFP-compatible products. The files that ACIF produces can then be sent to a
customer-supplied archival and retrieval system, to the spool, or to the AFP
Workbench Viewer for viewing.

2 PSF V4RS5 for z/OS: ACIF User's Guide

Your
Application

XML MO:DCA-P Resources
Data Data

v v
AFP Conversion
and Indexing Facility
(ACIF)
v
Spool Archive System Transfer files in
poo (customer supplied) binary format
\ 4
Printer
Driver
Printer Viewing on the Workstation

Figure 1. How ACIF fits into Advanced Function Presentation

ACIF functions

You can use ACIF to do these functions:
e Convert data streams
¢ Index documents

* Retrieve resources

Converting data streams
ACITF processes these input data streams to create a MO:DCA-P document:
» AFP data
* MO:DCA-P data
* Record format or traditional line data
* Mixed-mode data
* XML data
* Unformatted ASCII (AIX and Windows operating systems only)

Chapter 1. Understanding ACIF

AFP data

The AFP data stream is a superset of the MO:DCA-P data stream and supports
these objects:

* Graphics (GOCA)

* Presentation text (PTOCA)
* Image (IOCA and IM)

* Bar code (BCOCA)

The AFP data stream also supports print resources such as fonts, overlays, page
segments, form definitions, and page definitions. Fonts are either Font Object
Content Architecture (FOCA) fonts or TrueType and OpenType fonts, which are not
defined by FOCA.

For more information about this data stream format, see Mixed Object Document
Content Architecture Reference, which points to publications that describe the other
types of data objects.

Mixed Object Document Content Architecture data

Mixed Object Document Content Architecture (MO:DCA) is an architected,
device-independent data stream that is used for interchanging documents between
different systems. ACIF accepts MO:DCA Presentation Interchange Set (IS) data
streams, including MO:DCA 1S/3, which is the newest interchange set. MO:DCA
IS/3 provides interoperability among AFP products that are MO:DCA 1S/3
compliant. It also provides enhanced functions, including support for color and the
latest fonts, images, and graphics.

ACIF supports MO:DCA-P data with these restrictions:
* Every structured field must be in one record and cannot span multiple records.

* Each record (structured field) must contain a X'5A" character before the first byte
of the structured field introducer.

ACIF does not change most of the MO:DCA-P structured fields it processes
because they are already in the correct format. However, although the MO:DCA-P
input data stream might contain multiple Begin Document (BDT) and End
Document (EDT) structured fields, the ACIF output normally contains only one
BDT/EDT structured-field pair. To pass all of the BDT/EDT pairs to the output
data stream, the INDEXOBJ=BDTLY parameter is specified. See
[MO:DCA-P data stream” on page 232| for information about the changes ACIF
makes to support MO:DCA-P output format.

For more information about the MO:DCA-P data stream, see Mixed Object
Document Content Architecture Reference.

Line data

Line data is application data that is prepared for printing without any data
placement or presentation information. Line data can be either traditional line data
or record format line data. Traditional line data is data that is prepared for printing
on a line printer. Record format line data is a form of line data where each record
is preceded by a variable length identifier.

ACIF formats line data into pages by using a page definition (PAGEDEF) resource,
in the same manner as PSF. For more information about line data, see Advanced
Function Presentation: Programming Guide and Line Data Reference.

4 PSF V4RS5 for z/OS: ACIF User's Guide

Mixed-mode data

Mixed-mode data is a mixture of line data (with the inclusion of some AFP
structured fields), composed-text pages, and resource objects such as image,
graphics, bar code, and text. For more information about this data stream, see
Advanced Function Presentation: Programming Guide and Line Data Reference.

XML data

Data that is identified by using Extensible Markup Language (XML) standards
from the World Wide Web Consortium is called XML data. XML does not describe
data placement or presentation information. For printing on page printers, a page
definition is required to provide the data placement and presentation information.
The XML data that is processed by ACIF can be encoded in EBCDIC, ASCII, UTF-8
or UTF-16. For more information about XML data, see Advanced Function
Presentation: Programming Guide and Line Data Reference and Extensible Markup
Language (XML) 1.0 Specification at the [World Wide Web Consortium}
http://www.w3.org.

Unformatted ASCII data
Unformatted ASCII data is generated in AIX and Windows environments and is a
type of line data that does not contain escape sequences. Unformatted ASCII data
can have these characteristics:

* No embedded control characters except for newlines

* American National Standards Institute (ANSI) carriage control characters, table
reference characters, or both

* Carriage returns and form feed controls

ACIF formats unformatted ASCII data by using a page definition resource. ASCII
data that contains control characters (or escape sequences) for the IBM Proprinter
and Quietwriter does not need to be formatted by ACIF. Unformatted ASCII data
can also be submitted for printing with InfoPrint Manager without being converted
by ACIEF, but the output format is predetermined (for example, by using a
Proprinter emulation font and 60 lines per page).

A page definition can be created for use with an unformatted ASCII file to allow
the use of AFP functions, such as varied print directions, multiple-up printing, and
different fonts in the output format. You can use IBM Page Printer Formatting Aid
(PPFA) to create your own page definitions. PPFA is a separately orderable feature
of InfoPrint Manager. For information about how to create page definitions by
using PPFA, see |Page Printer Formatting Aid: User's Guide

Indexing documents

One of the principal tasks you can do with ACIF is indexing print files, which are
also known as documents. When indexing with ACIF, you can divide a large print
file into smaller, uniquely identifiable units, called groups, as defined by the
MO:DCA-named group structured fields. For example, you can use ACIF to divide
a large bank-statement application into individual groups by inserting structured
fields that define group boundaries into the file. A group is a named collection of
sequential pages, which, in this example, consists of the pages that describe a
single customer's account. For example, a bank-statement application probably
produces a large printout that consists of thousands of individual customer
statements. You can think of each of these statements as smaller, separate units,
each uniquely identifying an account number, date, Social Security number, or
other attributes.

You can also use ACIF to create an index object file to do these tasks:

Chapter 1. Understanding ACIF 5

http://www.w3.org

* Retrieve individual statements from storage, which is based on an account
number or any other attribute.

* More rapidly access the statements for viewing by, for example, the AFP
Workbench Viewer.

* Archive individual statements or the entire indexed print file for long-term
storage and subsequent data management and reprinting, even years after its
creation.

In addition to building an index-information file containing structured fields (the
index object file), ACIF also inserts strings of character data, called tags, in the print
file in structured-field format. ACIF inserts these same structured fields in the
index object file. (The tags are contained in Tag Logical Element [TLE] structured
fields, which are described in[Appendix A, “Helpful hints for using ACIF”| and
[Appendix C, “Structured fields that ACIF uses.”) You can use the indexing-tag
structured fields to identify a group of pages.' [Figure 2| shows the relationship
between the group-level tags and the entries in the index object file.

AFP Index Object
Document File

Index information,

Group 1 Tag < offset, and size values
for Group 1
Index information,
Group 2 Tag < offset, and size values
for Group 2
Index information,
Group n Tag < offset, and size values

for Group n

Figure 2. AFP document with index tags and the index object file

ACIF can create an index object file for these types of input files:
e Line data, XML data, or mixed-mode data
¢ Unformatted ASCII data

* AFP data that is produced by the AFP Application Programming Interface (API),
DCE, or by AFP Toolbox, with or without indexing tags

Note: In this instance, you are producing an index object file from an input file
that contains index tags. You are not adding new indexing tags to an
existing file.

* AFP data that is produced by any other application

ACIF provides these ways for you to generate the indexing tags placed in the print
file:

1. With ACIF, you can generate group-level tags and also page-level tags with enhanced indexing; with Document Composition
Facility (DCF) and AFP Toolbox, you can generate both group-level tags and page-level tags. For more information about these
products, see [IBM products used with ACIF” on page 13]

6 PSF V4RS5 for z/0S: ACIF User's Guide

* Use literal values that you specify to ACIF, which is useful when the values you
want to use in the indexing tags are not consistently present in the data. This
kind of indexing is called indexing with literal values.

* When the data is formatted, use values present in the input data itself so that
ACIF can reliably locate the values. This kind of indexing is called indexing with
data values.

Indexing with literal values

Some print files, such as technical documents and memos, cannot be divided easily
into groups of pages by using values in the data because no data value is
consistently present in the same location. Likewise, the output of an application
might not contain the data that you would like to use for an indexing tag. In these
cases, you can specify one or more literal values for ACIF to use in the indexing
tags for a single group of pages. The ACIF parameter that you use in this case is
the FIELDn parameter.

Notes:

1. If you are using ACIF to add indexing tags to a file, and the input file already
contains indexing tags, ACIF issues an error message and stops processing. If
the input file already contains indexing tags, you can create the index object file
by running ACIF without specifying any indexing parameters.

2. ACIF includes the name of the output document in the index object file and
includes the name of the index object file in the output document, which
provides a method of correlating the index object file with the appropriate
output document.

Indexing with data values

Some applications such as payroll or accounting statements contain data that might
be appropriate to use for indexing tags. In the bank statement example, the
account number is a type of data value that you might want to tag. You can then
archive a single customer's account statement by account number, and you can
retrieve and view the same statement with the account number. If the data value
you want to use in an indexing tag is consistently in the same place for each
statement, you can specify ACIF parameters that create a separate group of pages
for each statement. The ACIF parameters that you use in this case are the
TRIGGERn, FIELDn, and INDEXn parameters.

Example of indexing with data values: This example shows how to use the ACIF
parameters described in |[Chapter 3, “ACIF parameters,” on page 27/[Figure 3| shows
the print file for a typical bank statement.

1ACCOUNT NUMBER: 445-66-3821-5 PAGE 1
CUSTOMER NAME: HENRY WALES

DATE: 09/30/09

CHECK# 001 - 455.00

CHECK# 002 - 337.85

1ACCOUNT NUMBER: 333-56-4378-5 PAGE 1
CUSTOMER NAME: KATHERINE CHARLES

DATE: 09/30/09

CHECK# 221 - 5.00

CHECK# 222 - 1567.35

Figure 3. Example bank statement input file

Chapter 1. Understanding ACIF 7

In [Figure 3 on page 7} the print file contains bank statements dated September 30,
2009 (09/30/09). Each statement has the same general format, although statements
might vary in size or number of pages. Assume you want to index the bank
statements with the account number and the date. Although the account number
identifies each customer's account, the date is important to differentiate one
month's statement from another. For ACIF to extract the account number and date,
it must first locate the records that contain the required information.

Because ACIF can process different data streams with various file formats (for
example, carriage control characters, no carriage control characters, and
table-reference characters), it requires triggers to determine an anchor point from
which it can locate the necessary index values. You can require multiple triggers to
uniquely identify the start of a new statement. To index the bank statements with
the account number and the date, first define the trigger values and the fields as

shown in

TRIGGER1=#,1,"'1"
TRIGGER2=0,39, 'PAGE 1'
FIELD1=0,18,3
FIELD2=0,22
FIELD3=0,25
FIELD4=0,30
FIELD5=2,8,2

FIELD6=2,11,2

FIELD7=2,14,2

INDEX1="'Account Number',FIELD1,FIELD2,FIELD3,FIELD4
INDEX2="'Date',FIELD5,FIELD6,FIELD7

,2
.4
,1

Figure 4. ACIF processing parameters to index a bank statement

The information in defines two trigger values:

* The first trigger instructs ACIF to examine the first byte of every input record
until it finds the occurrence of an ANSI skip-to-channel 1 carriage control
character ('1'). Because each page created by this particular application can
contain this carriage control character, this trigger alone does not identify the
start of a new bank statement.

* The second trigger accomplishes this task. When ACIF locates a record that
contains a '1' in the first byte, it looks for the string ‘PAGE 1’ in that same
record, starting at byte (column) 39. If this condition is found, a new statement
exists, and ACIF uses the record that contains TRIGGER1 as the anchor point.
The FIELD#n definitions are relative to this anchor point.

In [Figure 4} the account number has four fields. These fields can be defined as one
field if the dashes are included as part of the index information. The date has three
fields to remove the forward slashes. After ACIF extracts all of the necessary
indexing information for this statement, it begins looking for TRIGGER1 again.
This process is repeated until the entire print file is processed.

In summary, when ACIF indexes an input file, it first scans the input file to find
matches for its parameters. When ACIF finds matches in the input file, it inserts
structured fields immediately before the corresponding pages of the output file.
Also, ACIF places structured fields in the index object file that point to matches in
the output file.

Indexing limitations
For a line data or XML application that does not contain the appropriate data
values in the application output and for which literal values are not suitable, the

8 PSF V4RS5 for z/0S: ACIF User's Guide

application program cannot insert tagging structured fields in the print data
because tagging structured fields are not allowed in mixed-mode data. In the case
where the application data does not contain the necessary appropriate data values
for indexing, the application can add the index triggers. One possible location is
the record that contains the new-page carriage control character (for example, a
skip-to-channel 1). The application must add the indexing trigger and attribute
value to this record at a specified location on each statement in the print file. This
addition lets ACIF retrieve this information at processing time. (For information
about different types of carriage control characters, see |"CCTYPE” on page 32| for a
description of the parameter.)

Retrieving resources

ACIF can determine the list of required AFP resources that are needed to view or
print the document and retrieve these resources from the specified libraries. You
can then view or print the document with fidelity. This ACIF function is especially
valuable if the resources are not present on the designated system in a distributed
print environment.

When you archive a document with ACIF, you can also archive the retrieved
resources (such as fonts and page segments) in the form in which they existed
when the file was printed. By archiving the original resources, you can reproduce
the document with fidelity in the future, even if the resources are different. For
example, suppose that a page segment contains a company officer's signature and
is included in the print data. When someone else replaces the officer, current print
files must reference the new officer's signature, but archived files must reference
the former officer's signature.

The type of resources ACIF retrieves from specified libraries is based on the value
of the RESTYPE parameter. When ACIF processes a print file, it:

* Identifies the resources that the print file requests:

While ACIF converts the input file into an AFP document, it builds a list of all
the resources necessary to successfully print the document, including all the
resources referenced inside other resources. For example, a page can include an
overlay, and an overlay can reference other resources such as fonts and page
segments.

* Creates a resource file:

ACIF creates a logical resource library in the form of an AFP resource group and
stores this resource group in a resource file. If you specify RESTYPE=ALL, this
resource file contains all the resources necessary to view or print the document
with fidelity. Each time ACIF processes a print file, it can create a resource file in
one of two different formats:

— A partitioned data set (PDS). The PDS format is supported only on z/OS and
lets the resource file be referenced as a user library (USERLIB) when printing
with PSE.

— An AFP data stream resource group. The AFP resource-group format is useful
when you are routing print output to remote AFP systems (for example,
InfoPrint Manager for Windows) or when you are storing a print file in an
archive system (for example, Content Manager OnDemand).

See [Appendix B, “Processing resources installed with resource access tables,” on|
|Eage 21Z| for information about how ACIF retrieves resources from the resource
access table (RAT).

* Calls the specified resource exit for each resource it retrieves:

Chapter 1. Understanding ACIF 9

Before ACIF retrieves a resource from a library, it first calls the resource exit
program as specified in the RESEXIT parameter. You can write an exit program
to filter out any resources you do not want included in the resource file. For
example, the exit program can specify that all referenced fonts, except for a
specific typeface, be included in the resource file. The only way to accomplish
this action is by using the resource exit.

* Includes the name of the output document in the resource file and the name of

the resource file in the output document, which provides a method of correlating
resource files with the appropriate output document.

Examples of specifying ACIF processing parameters for resource retrieval can be
found in [Chapter 5, “Examples of using ACIF,” on page 97

Scenarios for processing ACIF files

ACIF can process your files for:

* Viewing with AFP Workbench Viewer
* Printing locally and on other systems
* Archiving and retrieving selectively

The following sections show scenarios for preparing files for viewing, printing, and
archiving.

Preparing files for viewing

[Figure 5 on page 11| shows the steps that you can take to prepare files for viewing
with the AFP Workbench Viewer:

1. The process begins with your application (1), which is the program that
processes your print data.

2. Your application creates your print data (2a) and optionally creates ACIF
processing parameters (2b). Resources are stored in the PSF or InfoPrint
Manager resource libraries (2c).

3. You run ACIF (3), specifying that it create the index object file (3a), the AFP
document (3b), and the resource file (3¢).

4. For optimal performance in locating pages in a file, you concatenate (4) the
index object file to the AFP document. If the resources used by the document
are not present on the workstation where the AFP Workbench Viewer is
installed, you concatenate the resource file to the AFP document file. The order
of concatenation must be shown as in [Figure 5 on page 11} with the document
file concatenated last.

5. Transfer (5) the needed files in binary format to the workstation.

6. Using the AFP Workbench Viewer, view (6) your indexed document. You can
also print the document from the AFP Workbench Viewer.

10 PSF V4R5 for z/OS: ACIF User's Guide

Your
Application

ACIF Resource

Libraries

Processing
Parameters

v

AFP Conversion
i and Indexing Facility

T

Resource

Concatenation of Files
(optional) (4)

!

Index Object File

AFP Document

v

Transfer files in
binary format (5)

Viewing on the Workstation

Figure 5. Using ACIF to prepare files for viewing

Preparing files for printing

[Figure 6 on page 12| shows the steps that you can take to prepare your files for

printing:

1. Run ACIF (1), specifying that it create the AFP document file (1a) and the
resource file (1Db).

If you are using ACIF on an AIX or Windows operating system, and your
resources are on another operating system, you can use the Network File
System (NFS) to mount them to the AIX or Windows system where you are
running ACIF.

Chapter 1. Understanding ACIF 11

12

If the print driver program (PSF or InfoPrint Manager) that manages jobs for
your target printer runs on a different operating system than the one on which
you run ACIF, transfer the files in binary format (2) to the system where PSF or
InfoPrint Manager runs.

If your resources are not present on the remote PSF or InfoPrint Manager
system, concatenate the AFP document file to the end of the resource file before
you submit the file to PSF or InfoPrint Manager. If your resources are already
present on the remote PSF or InfoPrint Manager system, you do not have to
concatenate or transmit them.

Submit (3) your MO:DCA-P print job to PSF or InfoPrint Manager.

Your
Application

ACIF
Processing
Parameters

Resource
Libraries

AFP Conversion
and Indexing Facility
(ACIF) ™)

_

AFP
Document

Resource

File

Concatenation of Files
(optional)

v
ResourceFile

AFP Document

For Distributed Printing,
transferfilesin e

binaryformat (2) ®

Printing with PSF
orInfoPrintManager

Figure 6. Using ACIF to prepare files for distributed printing

Preparing files for archiving and retrieval

[Figure 7 on page 13|shows the steps that you can use to archive your files:

1.

Run ACIF (1), specifying that it create the index object file (1a), the AFP
document file (1b), and the resource file (1c).

Run your archival application (2) to archive (3) all three files (1a, 1b, 1c) so that
the document can later be retrieved (4) and viewed or printed with fidelity.

PSF V4R5 for z/OS: ACIF User's Guide

Your
Application

Resource
Libraries

Processing
Parameters

AFP Conversion
and Indexing Facility
(ACIF)

Resource
File

Archive System (2)
(customer supplied)

A4

Storage

Retrieval System (4)|_
(customer supplied)

Figure 7. Using ACIF to prepare files for archiving and retrieving

IBM products used with

ACIF

Although ACIF is a stand-alone utility, it was designed for use with these IBM

products:

¢ AFP Workbench Viewer
e AFP Toolbox

* Document

Composition Facility (DCF)

AFP Workbench Viewer

[Figure 8 on page 14| shows how AFP Workbench Viewer can display documents on

a workstation that is running Microsoft Windows operating systems. These
documents can contain an index object file and a resource group.

Chapter 1. Understanding ACIF 13

14

Index Object File
Resource Groups
Print Data

Filc Edit View Scarch Options Help

]+

ro—

Chapter 3. Starling the Viewer

Adobe

Type
Manager

Fonts

o

Figure 8. AFP Workbench Viewer

4

AFP Workbench Viewer uses Adobe Type 1 or TrueType and OpenType outline
fonts when it displays documents. If the document references an AFP font for
which no Type 1 font is available at the workstation, AFP Workbench Viewer can
substitute an outline font for the requested font. AFP Workbench Viewer matches
the requested point size and attempts to match the typeface as closely as possible.
Font definition files are available with AFP Workbench Viewer so you can define
which Type 1 fonts are to be substituted for your FOCA fonts.

Because AFP Workbench Viewer uses font substitution for AFP font resources
instead of retrieving fonts from a resource file, you do not need to specify the
RESTYPE=FONT or RESTYPE=ALL ACIF parameter when you are preparing a
document to use with AFP Workbench Viewer. However, if you include AFP fonts
in your document, the current version of AFP Workbench Viewer uses the font
metrics to control character spacing. If you use AFP outline fonts, AFP Workbench
Viewer also uses the font characters and substitutes font characters for raster fonts.
If you do not want to use font substitution, use TrueType and OpenType fonts
when you are creating the AFP document, keeping in mind that not all Intelligent
Printer Data Stream (IPDS) printers support TrueType and OpenType fonts.

When you are using ACIF to index a file for viewing, specify INDEXOBJ=ALL.
This setting provides AFP Workbench Viewer with the most complete indexing

information for accessing groups of pages in a file. Also, concatenate the index

object file to the document for optimal performance of AFP Workbench Viewer.
(The document file must come last, at the end of the resulting concatenated file;
otherwise, an error occurs.)

AFP Workbench Viewer supports a subset of MO:DCA-P data and might not
display everything that PSF or InfoPrint Manager can print.

PSF V4R5 for z/OS: ACIF User's Guide

AFP Toolbox

AFP Toolbox (Program Number 5655-A25) assists application programmers in
formatting printed output. Without requiring knowledge of the AFP data stream,
AFP Toolbox provides access to sophisticated AFP functions through a callable C,
C++, or COBOL interface. With AFP Toolbox you can do these tasks:

¢ Combine variable data with electronic forms, electronic signatures, and images.
¢ Define variable length paragraphs.

* Draw fixed or variable depth and width boxes.

* Generate bar code objects.

* Draw horizontal and vertical fixed or variable length lines.

* Include indexing tags for use in efficient viewing, archival, and retrieval.

* Accent printed output with color and shading.

* Dynamically control fonts, including user-defined fonts.

* Precisely position and align text anywhere on a page with a wide variety of
fonts.

* Create graphical data objects such as pie charts and bar charts.

AFP Toolbox is available on the z/OS operating system.

Document Composition Facility (DCF)

Document Composition Facility (DCF) is a program that is used primarily to
prepare and format documents for printing. It is another product that can be used
with ACIF to index your data in the z/OS, VM, or VSE environments. Along with
its many other features, DCF can add both group-level and page-level indexing
tags; whereas, with ACIF, you can add only group-level indexing tags. Only ACIF
generates the index object file.

In DCEF, the indexing function is known as “navigation”. DCF also provides a
different function already called “indexing”. In DCF terminology, you “navigate”
through a document with the viewing application, and its indexing function is
used to build an alphabetical listing of page references (a “back-of-the-book
index”).

Support for navigation (indexing) is provided with DCF Version 4.0. APAR
PN36437 is required to enable the support. For more information about DCF, see
Document Composition Facility SCRIPT/VS Language Reference.

Note: DCF is not applicable to the AIX or Windows environment.

System considerations for ACIF

You must consider these items when you are using ACIF:
* System limitations

e System prerequisites

System limitations

ACIF is used with PSF and InfoPrint Manager products on various operating
systems. However, not all ACIF functions are available in all environments. For
example, PSF/VM and PSF/VSE are no longer functionally enhanced.

Chapter 1. Understanding ACIF 15

16

For specific information about the level of MO:DCA-P function that is supported,
see the documentation for the PSF or InfoPrint Manager product you are using.

System prerequisites

This section describes system prerequisites necessary to use ACIF in the AIX,
Linux, Windows, z/0S, VM, and VSE environments.

AIX prerequisites
To see the AIX software requirements for using ACIF, see InfoPrint Manager for AIX:
Introduction and Planning Guide.

Linux prerequisites
To see the Linux software requirements for using ACIFE, see InfoPrint Manager for
Linux: Introduction and Planning Guide.

Windows prerequisites
To see the Windows software requirements for using ACIF, see InfoPrint Manager
for Windows: Introduction and Planning Guide.

z/OS prerequisites

To see the z/OS software requirements for using ACIF, see |[PSF for z/OS:

VM prerequisites

One of these VM software products is required to use ACIF:
e VM/SP 5 or later

e VM/SP HPO 5 or later

e VM/XA 1.2.1 or later

* VM/ESA 1.1.0 or later

PSF/VM 2.1.0 (with PTF UN37799 for printing files that contain indexing tags) or
PSF/VM 2.1.1

VSE prerequisites
One of these VSE software products is required to use ACIF:

e VSE/SP 4.1.2 or later
e VSE/ESA 1.1.0 or later

PSE/VSE 2.2.0 (with APAR DY42845 for printing files that contain indexing tags)
or PSF/VSE 2.2.1 or later

Note: You can use later versions or releases of these products. Each of these
products might require additional software products. See their respective
publications for the current list of system requirements.

PSF V4R5 for z/OS: ACIF User's Guide

Chapter 2. Using ACIF

This chapter describes how to run ACIF in AIX, Linux, Windows, z/OS, VM, and
VSE environments. Hereafter, “AIX” refers to both AIX and Linux operating

systems.

Using ACIF in AIX and Windows

In AIX and Windows, ACIF transforms line data, XML data, mixed-mode data, and
unformatted ASCII files into the Mixed Object Document Content Architecture for
Presentation (MO:DCA-P) data stream. With this data stream, you can do these

tasks:

¢ Print the file on a printer that is defined to InfoPrint Manager or other PSF

products.

* View the file by using a viewer product such as AFP Workbench Viewer.

¢ Archive and retrieve the file by using your own archival management system.

Selecting resources

lists the order ACIF searches for AFP resources in AIX and Windows.

Note: This table does not apply to resources that are installed with a resource
access table (RAT), including TrueType and OpenType fonts, color
management resources (CMRs), and data object resources. For more
information about those resources, see|Appendix B, “Processing resources

linstalled with resource access tables,” on page 217

Table 3. Search order for AFP resources

Search Order

Windows

AIX

Location

1

1

Paths that are specified by the USERLIB parameter

2

2

Paths that are specified by the FDEFLIB, FONTLIB, PDEFLIB,
PSEGLIB, OBJCONLIB, and OVLYLIB parameters for specific
types of resources

Paths that are specified by the RESLIB parameter

Paths that are specified by the PSFPATH environment variable

The directory /ust/lpp/psf/reslib

|G| W

The directory /ust/lpp/ipfonts

In InfoPrint Manager, AFP outline fonts are included in IBM
Infoprint Fonts for z/OS (PN 5648-E76), and InfoPrint Font
Collection (PN 5639-AFP). For more information, see IBM
Infoprint Fonts: Font Summary and InfoPrint Font Collection: Font
Summary.

The directory /ust/lpp/afpfonts

In InfoPrint Manager, AFP outline and raster fonts are included
in IBM AFP Font Collection (PN 5648-B33) and InfoPrint Font
Collection. For more information, see IBM AFP Fonts: Font
Summary for AFP Font Collection and InfoPrint Font Collection:
Font Summary.

© Copyright IBM Corp. 1993, 2014

17

Table 3. Search order for AFP resources (continued)

Search Order

Windows AIX Location
8 The directory /ust/lpp/psf/fontlib
3 Windows registry that is used to locate:

1. Default RESLIB (\install_directory\reslib)

2. Default FONTLIB (\install_directory\fontlib)

3. AFP Font Collection, InfoPrint Fonts, or InfoPrint Font
Collection

Note: AFP resource files that ACIF processes in all environments must contain a
X'5A' carriage control character at the start of each structured field.

When ACIF finds more than one resource with the same name in the same
directory, it selects the resource to be used depending on the file extension.
shows the order in which resources with the same name but different file
extensions are used by ACIF.

Note: If a file name includes a period (.), the file extension is that part of the file
name that follows the period. For example, the file extension of the file
name ARTWORK.PSEG3820 is PSEG3820.

Table 4. Search order of resource file extensions

Type of Resource File Extensions Search Order (see Note)
AFP font objects: 1. ECP
Coded fonts 2. No file extension
Code pages 3. 240
Outline fonts 4. 300
240-pel resolution fonts 5. FONT300
300-pel resolution fonts 6. FONT3820
7. FONT38PP
8. CDP
9. CFT
10. OLN
11. FONTOLN
12. FIL
Color mapping table 1. No file extension
2. SETUP
3. SET
Data objects that are not installed with a 1. No file extension
RAT (such as BCOCA, GOCA, IOCA, 2. OBJ
and PTOCA) 3. OBJECT
Form definitions 1. No file extension
2. FDEF3820
3. FDEF38PP
4. FDE
5. FIL
MO:DCA objects 1. No File extension
2. OBJ
3. OBJECT

18 PSF V4R5 for z/OS: ACIF User's Guide

Table 4. Search order of resource file extensions (continued)

Type of Resource File Extensions Search Order (see Note)

No file extension
OVLY3820
OVLY38PP

OVL

OLY

OVR

Overlays

No file extension
PDEF3820
PDEE38PP

PDE

Page definitions

No file extension
PSEG3820
PSEG38PP

PSG

PSE

Page segments

No file extension
SETUP

SET

COMSETUP

Setup data

pPOMDIOORONDSIRPONS OO ROD S

TrueType and OpenType fonts, CMRs, See|Appendix B, “Processing resources installed|
and data object resources [with resource access tables,” on page 217.|

Note: All AIX file extensions must be in uppercase.

Running ACIF

The acif command and the line2afp and pdpr commands of InfoPrint Manager are
used to run ACIFE.

To use ACIF to prepare line data, XML data, mixed-mode data, or unformatted
ASCII files for printing with InfoPrint Manager, you can automatically run the acif
command at print submission time by doing one of these:

* Use the -odatatype=line flag and keyword-value pair with one of the AIX print
commands (engq, lp, or qprt).

* Use the psfin command to specify a job script with a setting of -JsFiletype=line.

The line2afp command is the same as the acif command and uses the acif
command conversion parameters to produce output for printing. The line2afp
command uses a page definition to define how the data is to be formatted on the
printed page. If you use the line2afp command, you can transform, print, view,
archive, and retrieve files as in ACIF.

The pdpr command calls line2afp to run ACIF. Parameters that are not allowed on

the pdpr command can be passed to ACIF with the -x "other-transform-options"
attribute.

The line2afp command and the pdpr command are described in InfoPrint Manager:
Reference.

Files provided with InfoPrint Manager

The executable program (acif command)
* AIX: lusr/lpp/psf/bin/acif

Chapter 2. Using ACIF 19

20

Note: AIX maps the line2afp command to the acif command.
* Windows: \install_directory\bin\acif.exe
Windows also includes the executable file, line2afp.exe, which is
identical to acif.exe.
Sample ACIF user exits
* AIX: lust/lpp/pst/acif/apkinp.c, apkind.c, apkres.c, apkout.c, apka2e.c,
asciinp.c, asciinpe.c
* Windows: \install_directory\exits\acif\apkinp.c, apkind.c, apkres.c,
apkout.c, apka2e.c, asciinp.c, asciinpe.c
Sample user exit executable files
* AIX: lusr/lpp/pst/bin/apka2e, apkinp, apkind, apkres, apkout, asciinp,
asciinpe
* Windows: use *.dsw files to build
Build rules for ACIF user exits: apkinp, apkind, apkres, apkout, apka2e, asciinp,
asciinpe
* AIX: /usr/lpp/psf/bin/Makefile
* Windows: use *.dsw files to build

C language header file for ACIF user exits
* AIX: lusr/lpp/pst/acif/apkexits.h
* Windows: \install_directory\exits\acif\apkexits.h

Note: InfoPrint Manager for AIX or Linux must be installed if you want to use the
examples from this publication that contain path names with /psf/; for
example:

inpexit=/usr/1pp/psf/bin/asciinpe

InfoPrint Manager for Windows must be installed if you want to use the
examples from this publication that contain path names with \exits\acif\;
for example:

inpexit=\install _directory\exits\acif\asciinpe.dll

NLS messages

ACIF messages on AIX can be written in any one of these languages: Simplified
Chinese, Traditional Chinese, English, French, French-Canadian, German, or
Japanese. ACIF messages on Windows can be written in any one of these
languages: French, German, Italian, Spanish, or Japanese.

In AIX, consult the description of the NLSPATH and LANG environment variables
for information about setting these variables in an appropriate manner.

Suggested reading

See these publications for more information about printing with InfoPrint Manager
and for information about form definitions and page definitions:

* InfoPrint Manager: Reference for information about transforming line data for
printing with InfoPrint Manager and for information about form definitions and
page definitions.

* InfoPrint Manager for AIX: Getting Started and InfoPrint Manager for AIX:
Procedures.

PSF V4R5 for z/OS: ACIF User's Guide

* InfoPrint Manager for Linux: Getting Started and InfoPrint Manager for Linux:
Procedures.

e InfoPrint Manager for Windows: Getting Started and InfoPrint Manager for Windows:
Procedures.

» |Page Printer Formatting Aid: User’s Guide for information about how to create
your own form definitions and page definitions.

Using ACIF in 2/OS

contains sample JCL that runs ACIF to process print output from an
application.

//USERAPPL EXEC PGM=user application

//PRINTOUT DD DSN=print file,DISP=(NEW,CATLG)

/1%

//ACIF EXEC=APKACIF,PARM=[['PARMDD=ddname] [,MSGDD=ddname ']] ,REGION=3M
//INPUT DD DSN=print file

//OUTPUT DD DSN=output file,DISP=(NEW,CATLG),

// DCB=(LRECL=32756,BLKSIZE=32760,RECFM=VBA,DSORG=PS),
// SPACE=(32760, (nn,nn)) ,UNIT=SYSDA

//RESOBJ DD DSN=resource file,DISP=(NEW,CATLG),

// DCB=(LRECL=32756,BLKSIZE=32760,RECFM=VBA,DSORG=PS),
// SPACE=(32760, (nn,nn)) ,UNIT=SYSDA

//INDEX DD DSN=index file,DISP=(NEW,CATLG),

// DCB=(LRECL=32756,BLKSIZE=32760,RECFM=VBA,DSORG=PS) ,
// SPACE=(32760, (nn,nn)) ,UNIT=SYSDA

//SYSPRINT DD SYSOUT=+
//SYSIN DD *
ACIF parameters go here

Figure 9. Sample z/OS JCL to run ACIF

z/0S JCL statements for running ACIF

The JCL statements in |ﬁigure 9| are explained in this section. For more information
about programming JCL, see [z/0S MVS JCL Referencel

USERAPPL
Represents the job step to run the application that produces the actual print
output. USERAPPL or user application is the name of the program that produces
the print data set.

PRINTOUT
Specifies the DD statement that defines the output data set produced from the
application. The application output cannot be spooled to the Job Entry
Subsystem (JES) because ACIF does not read data from the spool. The print file
is the name of the print data set created by the user application.

ACIF
Represents the job step that runs ACIF to process the print data set. You can
specify two optional input parameters to ACIF:

PARMDD
Defines the DD name for the data set containing the ACIF processing
parameters. If PARMDD is not specified, ACIF uses SYSIN as the default
DD name and stops processing if SYSIN is not defined.

MSGDD
Defines the DD name for the message data set. When ACIF processes a
print data set, it can issue various informational or error messages. If

Chapter 2. Using ACIF 21

MSGDD is not specified as an invocation parameter, ACIF uses
SYSPRINT as the default DD name and stops processing if SYSPRINT is
not defined.

Although [Figure 9 on page 21| shows a specified REGION size of 3 MB, this
value can vary, depending on the complexity of the input data and the
conversion and indexing options requested.

INPUT
Specifies the DD statement that defines the print data set to be processed by

ACIF. In [Figure 9 on page 21} this is the same data set as defined in the
PRINTOUT DD statement.

OUTPUT
Specifies the DD statement that defines the name of the print data set that
ACIF creates as a result of processing the application's print data set.

shows the DCB requirements.

RESOBJ
Specifies the DD statement that defines the name of the resource data set that
ACIF creates as a result of processing the print data set. The RESOB]J file must
be allocated with variable blocked records. This statement is not required if
RESTYPE=NONE is specified in the processing parameter data set. For more
information about the RESTYPE parameter, see |'RESTYPE” on page 72|

INDEX
Specifies the DD statement that defines the name of the index object file that
ACIF creates as a result of processing the application's print data set.

This parameter is not required:

* Unless indexing is requested or unless the input print data set contains
indexing structured fields. If you are not sure whether the print data set
contains indexing structured fields, and you do not want an index object file
to be created, specify DD DUMMY; no index object file is created.

 If INDEXOBJ=NONE is specified in the processing parameter data set and
no indexing keywords are specified (FIELD, INDEX, or TRIGGER).

SYSPRINT
Specifies the DD statement that defines the system output data set. If you are
not writing messages to spool, the data set must have these attributes:
LRECL=137,BLKSIZE=multiple of LRECL + 4 RECFM=VBA,DSORG=PS.

SYSIN
Specifies the DD statement that defines the data set containing the ACIF
processing parameters. This is the default DD name if PARMDD is not
specified as an invocation parameter.

Note: Files that are named by the FDEFLIB, PDEFLIB, PSEGLIB, and OVLYLIB
parameters are allocated to system-generated DD names.

Enabling ICONV translation services

The EXTENSIONS=MVSICNYV parameter in ACIF initializes the CEEPIPI

environment to enable the ICONV translation services on z/OS. The parameter is

required if:

* The page definition specifies Quick Response (QR) Code bar codes and the line
data contains DBCS characters.

* The page definition uses the VARIABLE option when it is specifying resource
objects.

22 PSF V4RS5 for z/OS: ACIF User's Guide

¢ The data contains PTOCA objects.

To enable ICONYV translation services:

1. Set up an OMVS segment in RACF® for the user ID of the job that runs
APKACIFE.

2. Specify EXTENSIONS=MVSICNYV in ACIE.

Note: When you specify the USERPATH, FONTPATH, or OBJCPATH
parameter to request color management or TrueType and OpenType font
support, MVSICNYV is the default.

For more information, see ["EXTENSIONS” on page 38

Using ACIF in VM

contains sample VM/CMS commands that run ACIF to process print
output from an application.

USERAPPL

FILEDEF INPUT DISK filename filetype filemode

FILEDEF OUTPUT DISK filename filetype filemode (LRECL 32756 BLKSIZE 32760
FILEDEF RESOBJ DISK filename filetype filemode (LRECL 32756 BLKSIZE 32760
FILEDEF INDEX DISK filename filetype filemode (LRECL 32756 BLKSIZE 32760
FILEDEF SYSIN DISK filename filetype filemode

FILEDEF SYSPRINT DISK filename filetype filemode

APKACIF (PARMDD ddname MSGDD ddname

Figure 10. Sample VM/CMS commands to run ACIF

VM/CMS commands for running ACIF
The CMS commands in are explained as follows.

USERAPPL
Runs the application that produces the actual print output.

INPUT
Defines the DD name for the print file to be processed by ACIFE. In
this is the same print file that is created by USERAPPL.

OUTPUT
Defines the DD name for the file that ACIF creates as a result of processing the
application's print file.

RESOBJ
Defines the DD name for the resource file that ACIF creates as a result of

processing the application's print file. This command is not required if
RESTYPE=NONE is specified in the processing parameter file.

INDEX
Defines the DD name for the index object file that ACIF creates as a result of
processing the application's print file.

This parameter is not required:

* Unless indexing is requested or unless the print file contains indexing
structured fields. If you are not sure whether the print file contains indexing
structured fields, and you do not want an index object file to be created,
specify FILEDEF INDEXDD DUMMY; no index object file is created.

 If INDEXOBJ=NONE is specified in the processing parameter data set and
no indexing keywords are specified (FIELD, INDEX, or TRIGGER).

Chapter 2. Using ACIF 23

APKACIF
Starts the ACIF program to process the application's print file. You can specify
two optional input parameters to ACIF: PARMDD and MSGDD.

PARMDD
Defines the DD name for the file that contains the ACIF processing
parameters. If PARMDD is not specified, ACIF uses SYSIN as the default
DD name and stops processing if SYSIN is not defined.

MSGDD
Defines the DD name type for the message file. When ACIF processes a
print file, it can issue various informational or error messages. If MSGDD
is not specified as an invocation parameter, ACIF uses SYSPRINT as the
default DD name and stops processing if SYSPRINT is not defined.
MSGDD requires an LRECL of 137 and a block size that is a multiple of
137 plus 4 (for example, (137*10)+4 =1374).

Note: The ACIF naming convention for the DD name is the same as the one
that is used in z/OS.

ACIF requires about 3 MB of virtual memory to convert and index files. The
amount of memory can vary, depending on the complexity of the input data
and the conversion and indexing options requested.

Using ACIF in VSE

contains sample JCL that runs ACIF to process print output from an
application.

// DLBL PRNTOUT,'user print file'

// EXTENT

// ASSGN ...

// EXEC USERAPPL

// DLBL PRD2, 'VSE'PRD2.LIBRARY'

// EXTENT ,volser

// LIBDEF PHASE,SEARCH=(PRD2.AFP)

// ASSGN SYSLST,X'FEE'

// ASSGN SYS006,xxx

// DLBL INPUT,'your input file',0,SD
// EXTENT SYS006,volser...

// ASSGN SYS007,xxx

// DLBL OUTPUT, 'your output file',0,SD
// EXTENT SYS007,volser...

// ASSGN SYS008,xxx

// DLBL RESOBJ,'your resource output file',0,SD
// EXTENT SYS008,volser...

// ASSGN SYS009,xxx

// DLBL INDEX'your index output file',0,SD
// EXTENT SYS009,volser...

// EXEC PGM=APKACIF

ACIF parms go here

/*

/&

Figure 11. Sample VSE JCL to run ACIF

VSE JCL statements for running ACIF

The statements in are explained in this section. For more information
about programming JCL for VSE, see Print Services Facility/VSE: Application
Programming Guide, S544-3666.

24 PSF V4RS5 for z/OS: ACIF User's Guide

PRNTOUT
Defines the output file that is produced from the application. The application
output cannot be spooled to POWER®, because ACIF does not read data from
the spool. The user print file is the name of the print data set created by your
application.

USERAPPL
Represents the job step that runs the application that produces the actual print
output. The user application refers to the program that produces the print file.

// DLBL PRD2,... // EXTENT ,volser // LIBDEF PHASE,SEARCH=...
Defines the library or libraries to be searched for the ACIF program and for all
the AFP resources (form definitions, page definition, fonts, overlays, and page
segments).

// ASSGN SYSLST,...
Defines the control statement and error message listing file. The control
statement is required or processing stops.

// ASSGN SYS006,... // DLBL INPUT,... // EXTENT SYS006,...
Defines the file to be processed by ACIF. In [Figure 11 on page 24} this is the
same data set as defined by the PRNTOUT file.

// ASSGN SYS007,... // DLBL OUTPUT,... // EXTENT SYS@07,...
Defines the document file that ACIF creates as a result of processing the
application's print file. See ["VSE” on page 62| for the characteristics of this file.

// ASSGN SYS008,... // DLBL RESOBJ,... // EXTENT SYS008,...
Defines the optional file in which ACIF places print resources that are used in
processing the application's print file. This file is not required if
RESTYPE=NONE is specified in the processing parameter file. For more
information about the RESTYPE parameter, see |'RESTYPE” on page 72

// ASSGN SYS009,... // DLBL INDEX,... // EXTENT SYS009,...
Defines the optional file in which ACIF places the index object file, if indexing
is requested.

This statement is not required:

* Unless indexing is requested or unless the input print file contains indexing
structured fields. If you are not sure whether the input print file contains
indexing structured fields, and you do not want an index object file that is
created, specify // ASSGN SYS009,IGN; no index object file is created.

* If INDEXOBJ=NONE is specified in the processing parameter data set and
no indexing keywords are specified (FIELD, INDEX, or TRIGGER).

//EXEC PGM=APKACIF
Starts the ACIF program. This statement must be followed immediately by
ACIF processing parameters.

Chapter 2. Using ACIF 25

26 PSF V4R5 for z/OS: ACIF User's Guide

Chapter 3. ACIF parameters

This chapter describes the ACIF parameters, including the syntax rules and values
for parameters in AIX, Windows, z/OS, VM, and VSE operating systems.

Some of the parameters that are specified to ACIF, such as OBJCONLIB,
FONTLIB, and PSEGLIB, specify the directory paths where resources are stored.
Be sure that those parameters are specified with the same directory paths when
you print the job.

Notes:

1. For AIX or Windows, you might need to consult with your system support
group for information about resource directories and other printing defaults
that are contained in the InfoPrint Manager printer profiles that are used in
your installation.

2. For z/0OS and VSE, you might need to consult with your system programmer
for information about resource library names and other printing defaults that
are contained in the PSF startup procedures that are used in your installation.

3. For VM/CMS, you might need to link to the appropriate disks that contain the
resource files used to convert and print your job.

Syntax rules for ACIF

These general syntax rules are used for ACIF parameter files:
* Blank characters that are inserted between parameters, values, and symbols are
allowed, but ignored. For example, specifying:

FORMDEF = FI1TEMP
PAGEDEF = P1PROD
INDEX1 = FIELD1 , FIELD2 , FIELD3

is equivalent to specifying:
FORMDEF=F1TEMP
PAGEDEF=P1PROD
INDEX1=FIELD1,FIELDZ,FIELD3

¢ When ACIF processes any unrecognized or unsupported parameter, it issues a
message, ignores the parameter, and continues processing any remaining
parameters until the end of the file, at which time it ends processing.

¢ If the same parameter is specified more than one time, ACIF uses the last value
specified. For example, if these parameters are specified:
CPGID=037
CPGID=395
ACIF uses code page 395.

¢ Comments must be specified by using “/*” as the beginning delimiter. For
example:
FORMDEF=F1TEMP /* Temporary FORMDEF
FORMDEF=F1PROD /* Production-level FORMDEF
Comments can appear anywhere, but ACIF ignores all information in the record
that follows the “/*” character string.

* Although ACIF supports parameter values that span multiple records, it does
not support multiple parameters in a single record. For example:
CHARS=XOGT10 CCTYPE=A /* This is not allowed.

© Copyright IBM Corp. 1993, 2014 27

28

Syntax rules for AIX and Windows

In AIX and Windows, you can enter ACIF parameters with the acif command, in a
parameter file, or both. If both are used, the value that is specified in the
parameter file overrides the value that is specified with the acif command.

Note: The line2afp command is the same as the acif command and uses the acif
command conversion parameters to produce output for printing. Hereafter,
“acif” refers to both acif and line2afp commands.

To use a parameter file in AIX or Windows, specify the parameter file name with
the acif command and the PARMDD parameter. For example, to use a parameter
file that is named PARMFILE, specify:

acif parmdd=PARMFILE

The acif command expects to receive the syntax exactly as shown in[Table 5 o

For example, acif expects to receive literal single quotation mark

characters for the field, index, and trigger parameters. In order for ACIF to receive
these single quotation mark characters, you must “escape” the quotation mark
characters so that your shell does not parse them. The way that you “escape”
quotation mark characters depends on the shell you are using. If you need
guidance in passing the acif command parameter syntax through the shell, see the
documentation in AIX Commands Reference for the shell you are using.

Though the parameters themselves are not case-sensitive, associated values, such
as file names, attribute names, and directory names in AIX, are case-sensitive. Be
sure to specify these values in the case in which they exist in the file system (for
external resources) or in the print file (for inline resources). For example,

formdef=F1MINE

is not the same as
formdef=flmine

In Windows, ACIF can process path names that are specified in a PARMDD file
with either forward "/" or backward "\" slashes. This allows parameter files to be
interchanged among AIX and Windows operating systems. For example,

fontlib=/my/afp/fonts
or
font1ib=\my\afp\fonts

However, in AIX, ACIF can only process path names that are specified with
forward "/" slashes.

Also, be sure that you do not end the path name with a : or ; delimiter. For
example, ACIF cannot process:

fontlib=/my/afp/fonts:

or
font1ib=/my/afp/fonts;

Syntax rules for z/OS, VM, and VSE

In z/OS, VM, and VSE, you enter ACIF parameters in a parameter file. Each

parameter with its associated values can span multiple records, but the parameter
and the first value must be specified in the same record. If more values need to be
specified in the following record, a comma (,) must be specified, following the last

PSF V4R5 for z/OS: ACIF User's Guide

value in the previous record. The comma indicates that additional values are
specified in one or more of the following records. For example:

z/OS
FDEFLIB=TEMP.USERLIB,PROD.LIBRARY,
OLD.PROD.LIBRARY
VM
FDEFLIB=FDEF38PP,
TEMPFDEF
VSE

/* These are the FORMDEF Tlibraries.

/* These are the FORMDEF Tibraries.

INPUTDD=INPUT | fi lename (LRECL=nnnn ,BLKSIZE=nnnn,RECFM=F | FB|V|VB,DEVT=TAPE | DISK)

Parameter values for ACIF

lists the ACIF parameters and values for the AIX, Windows, z/OS, VM,
and VSE operating systems. “WIN” refers to the Windows operating system.
Underscored values are the default and are used by ACIF if no other value is
specified. Not all parameters are valid in every environment; parameter values are
only listed for those operating systems to which they apply.

Table 5. ACIF parameters and operating systems

ACIF Parameters

Operating System

7]
1)
]
=
o
aq
[¢]

CC={YES | NO}

AIX, WIN, z/0S, VM, VSE

CCTYPE={Z | A | M}

AIX, WIN

CCTYPE=(Z | A | M}

z/0S, VM, VSE

CHARS=fontnamel[fontname2][fontname3][fontname4]

AIX, WIN, z/0OS, VM, VSE

COLORMAP=name

AIX, WIN, z/0OS

COMSETUP=name

AIX, WIN, z/0S, VM

CPGID={850 | codepageid}

AIX, WIN

CPGID={500 | codepageid}

z/0S, VM, VSE

DCFPAGENAMES=(YES | NO}

AIX, WIN, z/0S, VM, VSE

EXTENSIONS={NONE | ALL | [BOX][,CELLED][,EMPTYOK]
[FRACLINE][, IDXCPGID][,PASSOID][,PASSPF][,PRCOLOR]
[RESORDER][,SPCMPRS]}

AIX, WIN, VM, VSE

E2] [[l 5 2] 2] =21 1 8 =]

EXTENSIONS={NONE | ALL | [BOX][,CELLED][,EMPTYOK] 2/0S
[FRACLINE][,IDXCPGID][MVSICNV][,NOICNV][,PASSOID]

[, PASSPF][PRCOLOR][,RESORDER][,SPCMPRS]}

FDEFLIB=pathlist AIX, WIN
FDEFLIB=dsnamel|,dsname2][,dsname3...] z/0S
FDEFLIB=filetypel] filetype2][filetype3...] VM
FIELDn={record,column,length} | {'literalvalue’ | X'literalvalue’} AIX, WIN, z/0OS, VM, VSE
FILEFORMAT={RECORD | RECORD,n | AIX, WIN
STREAMI,(NEWLINE={value | X'nnnn'}{,encoding])1}

FONTECH=UNBOUNDED z/0S, VM, VSE
FONTLIB=pathlist AIX, WIN |
FONTLIB=dsnamel[,dsname2][,dsname3...] z/0S @
FONTLIB=filetypel filetype?][filetype3...] VM @
FONTPATH=pathlist AIX, WIN, z/0S
FORMDEF={fdefname | DUMMY} AIX, WIN, z/0S, VM, VSE

Chapter 3. ACIF parameters

29

Table 5. ACIF parameters and operating systems (continued)

ACIF Parameters

Operating System

7]
)
@
=
&
a9
[¢]

GROUPNAME={INDEX1 | INDEXn}

AIX, WIN, z/0OS, VM, VSE

IMAGEOUT={ASIS | IOCA}

AIX, WIN, z/0S, VM, VSE

INDEXn={"attributename’ | X'attributename’},{FIELDn[,FIELDn...1}

AIX, WIN, z/0OS, VM, VSE

INDEXDD={INDEX | filename} AIX, WIN
INDEXDD={INDEX | ddname} z/0S, VM
INDEXDD=(INDEX | filename (DEVT=TAPE | DISK)} VSE

INDEXOBJ={GROUP | ALL | NONE | BDTLY}

AIX, WIN, z/0OS, VM, VSE

INDEXSTARTBY={1 | nn}

AIX, WIN, z/0S, VM, VSE

INDXEXIT=programname

AIX, WIN

INDXEXIT=modulename

z/0S, VM, VSE

RECFM=FI|FB| VIVB,DEVT=TAPE | DISK)}

INPCCSID=ccsid AIX, WIN
INPEXIT=programname AIX, WIN
INPEXIT=modulename z/0S, VM, VSE
INPUTDD={STDIN | filename} AIX, WIN
INPUTDD=({INPUT | ddname} z/0S, VM
INPUTDD={INPUT | filename (LRECL=nnnn,BLKSIZE=nnnn, VSE

INSERTIMM={YES | NO}

AIX, WIN, z/0OS, VM, VSE

MCF2REF=(CPCS | CF}

AIX, WIN, z/0S, VM, VSE

MSGDD={STDERR | filename} AIX, WIN
MSGDD={SYSPRINT | ddname} z/0S, VM
OBJCONLIB=pathlist AIX, WIN
OBJCONLIB=dsnamel[,dsname?][,dsname3...] z/0S
OBJCONLIB=filetypel| filetype?][filetype3...] VM
OBJCPATH=pathlist AIX, WIN, z/0S
OUTCCSID=ccsid AIX, WIN
OUTEXIT=programname AIX, WIN
OUTEXIT=modulename z/0S, VM, VSE
OUTPUTDD={STDOUT | filename} AIX, WIN
OUTPUTDD={OUTPUT | ddname)} z/0S, VM
OUTPUTDD={OUTPUT | filename (DEVT=TAPE | DISK)} VSE
OVLYLIB=pathname AIX, WIN
OVLYLIB=dsnamel[,dsname2][,dsname3...] z/0S
OVLYLIB=filetypel filetype2][filetype3...] VM
PAGEDEF=pdefname AIX, WIN, z/0OS, VM, VSE
PARMDD-=filename AIX, WIN
PARMDD=(SYSIN | ddname} z/0S, VM
PDEFLIB=pathlist AIX, WIN
PDEFLIB=dsnamel|,dsname2][,dsname3...] z/0S
PDEFLIB=filetypel| filetype2][filetype3...] VM

(=8 EN | N =N i = e {1 = = s = = s ek e s e e s s = s e i e e e s e e f ks

30 PSF V4R5 for z/0S: ACIF User's Guide

Table 5. ACIF parameters and operating systems (continued)

ACIF Parameters

Operating System

7]
)
]
I
£
a9
[¢]

PRMODE={SOSI1 | SOSI2 | SOSI3 | SOSI4 | aaaaaaaa} AIX, WIN, z/0S, VM, VSE @
PSEGLIB=pathlist AIX, WIN
PSEGLIB=dsnamel[,dsname2][,dsname3...] z/0S
PSEGLIB=filetypel] filetype2][filetype3...] VM
RESEXIT=programname AIX, WIN
RESEXIT=modulename z/0S, VM, VSE
RESFILE={SEQ | PDS} /08
RESLIB=pathlist AIX, WIN
RESOBJDD={RESOBJ | filename} AIX, WIN
RESOBJDD={RESOBJ | ddname} z/0S, VM
RESOBJDD={RESOB]J | filename (DEVI=TAPE | DISK)} VSE
RESTYPE={NONE | ALL | [FDEF][,PSEG][,OVLY][,FONT][,OBJCON] |AIX, WIN, z/OS, VM, VSE

[,BCOCA][,GOCA][,IOCA][,PTOCA][,CMRALL][, CMRGEN][,INLINE]
[INLONLY]}

TRACE={YES | NO} AIX, WIN
TRACE={YES | NO | PDS} z/0S
TRACEDD={TRACE | filename} AIX, WIN
TRACEDD={TRACE | ddname} z/0S

TRC={YES | NO}

AIX, WIN, z/0S, VM, VSE

TRIGGERn=(record | *},{column | *}{'triggervalue’ | X'triggervalue’}

AIX, WIN, z/0S, VM, VSE

UNIQUEBNGS={YES | NO}

z/0S, VM, VSE

USERLIB=pathlist AIX, WIN
USERLIB=dsnamel|[,dsname2][,dsname3...] z/0S
USERLIB=filetypel| filetype2][filetype3...] VM

USERPATH=pathlist

2] \[Z] =] &R N &)= & S

AIX, WIN, z/0S

The following sections describe the ACIF parameters. The format and usage is the
same in all environments (AIX Windows, z/0OS, VM, and VSE) unless otherwise

specified.

CcC

Specifies whether the input file has carriage control characters. Carriage control
characters, if present, are located in the first byte (column) of each line in a
document. They are used to control how the line is formatted (single space, double
space, triple space, and so forth). In addition, other carriage control characters can
be used to position the line anywhere on the page. If there are no carriage control

characters, single spacing is assumed.

Cc={YES | NO}
The values are:
YES

The file contains carriage control characters.

NO The file does not contain carriage control characters.

Chapter 3. ACIF parameters 31

32

If this parameter is not specified, ACIF assumes that the file contains carriage
control characters.

CCTYPE

Specifies the type of carriage control characters in the input file. ACIF supports
ANSI carriage control characters in either ASCII or EBCDIC encoding, and
machine carriage control characters. ACIF does not allow a mixture of ANSI and
machine carriage control characters within a file.

The values are:
Z The file contains ANSI carriage control characters that are encoded in ASCIL

The carriage control characters are the ASCII hexadecimal values that directly
relate to ANSI carriage controls, which cause the action of the carriage control
character to occur before the line is printed. For example, if the carriage control
character is zero (X'30'), which represents double spacing, double spacing
occurs before the line is printed.

A The file contains ANSI carriage control characters that are encoded in EBCDIC.

The use of ANSI carriage control characters cause the action of the carriage
control character to occur before the line of data is printed. For example, if the
carriage control character is a zero (X'F0'), which represents double spacing, the
double spacing occurs before the line is printed.

M The file contains machine code carriage control characters that are encoded in
hexadecimal format.

The use of machine code carriage control characters cause the action of the
carriage control character to occur after the line of data is printed. For example,
if the carriage control character is a X'11', which represents double spacing, the
line is printed and the double spacing occurs after the line is printed. In
addition, machine code carriage control has a set of carriage control characters
that perform the action, but do not print the associated line. For example, if the
carriage control character is a X'13', which also represents double spacing, the
print position is moved down two lines but the line that contains the X'13'
carriage control character is not printed. The next line in the data is printed at
the current print position and the action for the associated carriage control
character is performed after the line is printed.

If you are not sure which type of carriage control characters are in your input file,
consult your system support group. For more information, see [“Understanding]|
[how ANSI and machine carriage controls are used” on page 208

AIX and Windows
CCTYPE={Z | A | M}

If you specify CC=YES but you do not specify CCTYPE, ACIF assumes that
the file contains ANSI carriage control characters that are encoded in ASCIIL.

Specify the value of the carriage control encoding after it is converted with a
user exit. For example, if you are calling the apka2e user exit to convert ASCII
encoded carriage controls to EBCDIC, specify the encoding value as EBCDIC.

z/0S, VM, and VSE
CCTYPE=Z | A | M

PSF V4R5 for z/OS: ACIF User's Guide

If you specify CC=YES but you do not specify CCTYPE, ACIF assumes that
the file contains ANSI carriage control characters that are encoded in EBCDIC.

CHARS

Specifies the file name (in AIX, Windows, or VM) or the member name (in z/OS or
VSE) of from one to four coded fonts that you want ACIF to use to process a file.
A coded font specifies a character set and code page pair.

Note: The CHARS parameter is ignored if you specify the FONTPATH or
USERPATH parameter for TrueType and OpenType fonts.

CHARS=fontnamel [, fontname2] [, fontname3] [, fontname4]
The value is:

fontname
The name of the coded font. The name is limited to four characters,
consisting of any combination of alphanumeric characters (a-z, A-Z, 0-9)
and special characters (# $ @). It does not include the 2-character prefix of
the coded-font name (X0 through XG). In AIX and Windows, the font name
is case-sensitive.

Use CHARS to specify coded fonts in a font library that has names of six or
fewer characters (including the prefix). You can rename any fonts that have
more than six characters or use a text editor to create new coded fonts for use
with the CHARS parameter.

When ACIF is used to convert traditional line data, mixed-mode data, or
unformatted ASCII data, you must specify a page definition with the PAGEDEF
parameter. You can then specify the fonts either in the page definition or with the
CHARS parameter, but not both. You cannot mix fonts that are specified in a page
definition with fonts specified with CHARS for a single file. If you use CHARS to
specify fonts, but you also use the PAGEDEF parameter to specify a page
definition that names fonts, the CHARS parameter is ignored. Therefore, if your
page definition names fonts, you should not use the CHARS parameter.

Select fonts with table-reference characters (TRCs), with AFP structured fields, or in
a page definition. If the page definition does not name any fonts, and you want to
specify more than one font with the CHARS parameter, you must specify table
reference characters (TRCs) in the input file to select the fonts. For example, if you
want the file to print with these two fonts, X0GT10 (Gothic 10 pitch) and X0GT12
(Gothic 12 pitch), do these tasks:

1. Specify TRC=YES.
2. Use CHARS to associate the fonts with each TRC:
CHARS=GT10,GT12

where, GT10 is associated with TRC 0 and GT12 is associated with TRC 1.

If the page definition does not name any fonts, and you want the whole file to
print with only one font, you must do these tasks:

1. Specify TRC=NO.

2. Use CHARS to indicate the single font in which the file must be printed. For
example:

CHARS=GT10

Chapter 3. ACIF parameters 33

You can specify fonts in the CHARS parameter only if you want the entire file
printed in a single printing direction. ACIF uses the fonts that have 0° character
rotation for the specified direction. When a file requires fonts with more than one
printing direction or character rotation, you must specify the fonts in the page
definition.

If you do not specify a CHARS parameter, and if no fonts are contained in the
page definition you specified, ACIF uses the printer default font.

AIX and Windows
If you use the ASCII fonts that are supplied with InfoPrint Manager, use the
4-character short names (see [Table 8 on page 99| for examples). In AIX, if you use
your own coded font that has a file name with more than six characters (including
the Xn prefix), then do one of these tasks:
* Rename the font file to a shorter name. For example:

mv X0423002 X04202
* Copy the font file to a file that has a shorter name. For example:

cp X0423002 X04202
* Link the original font file to a shorter name. For example:

Tn -s X0423002 X04202

If the input file is unformatted ASCII, you can do one of these tasks:

 Specify a font that has the appropriate ASCII code points. To specify a font
search path, either use the FONTLIB parameter to specify it explicitly or set the
PSFPATH environment variable to search the appropriate directories.

* Use the apka2e or asciinpe input record exit programs to convert the ASCII
code points in the input file into EBCDIC, and use EBCDIC fonts. To use an
input record program, specify the INPEXIT parameter.

In AIX , use one of these examples:

— inpexit=/usr/1pp/psf/bin/apka2e

— inpexit=/usr/1pp/psf/bin/asciinpe

In Windows, use one of these examples:

— inpexit=\install _directory\exits\acif\apka2e.dl1]
— inpexit=\install directory\exits\acif\asciinpe.dll

See ["'INPEXIT” on page 55| for a description of apka2e and asciinpe functions.

You can also convert encoded data to another coded character set identifier
(CCSID). See ['INPCCSID” on page 55| and [“OUTCCSID” on page 60.

z/0S and VM

In z/OS and VM, fonts you specify must be in a library that is specified with the
FONTLIB parameter or be in a user library specified with the USERLIB
parameter.

VSE
In VSE, you must specify fonts in the // LIBDEF PHASE, SEARCH=(...) JCL
statement.

COLORMAP

Specifies the name of a color mapping table resource in AIX, Windows, and z/OS.
A color mapping table is an AFP resource that is used to map color values that are
specified in a source color space to color values specified in a target color space.

34 PSF V4R5 for z/0S: ACIF User's Guide

COLORMAP=name
The value is:

name
Any valid color mapping table name (in AIX or Windows) or member
name (in z/OS). The name can be 1 - 8 alphanumeric characters (a-z, A-Z,
0-9) and special characters (# $ @), including the 2-character prefix, if there
is one. In AIX, name is case-sensitive.

Note: Do not use a file extension when you are specifying the color
mapping table.

You can create your own color mapping table by using the Color Mapping Tool
that is included with PSF for z/OS (see [PSF for z/OS: User's Guide) or InfoPrint
Manager (see the Procedures document for your InfoPrint Manager operating
system), or you can use an existing resource that is created by your system
programmer.

The color mapping table that is specified on the COLORMAP parameter can be
found in these locations:

* Ina z/OS library or an AIX or Windows directory that is referenced by the
USERLIB or OBJCONLIB parameter.

¢ Inline in the file or print data set.

A color mapping table can be an inline resource in all data formats except XML. If
the color mapping table is an inline resource, you must specify one of these
parameters:

COLORMAP=name
name is the name of the inline color mapping table. If the name specified in
the COLORMAP parameter does not match the name of an inline color
mapping table, ACIF looks for the color mapping table in the OBJCONLIB
or USERLIB library.

COLORMAP=DUMMY
If you specify COLORMAP=DUMMY but the file does not include an
inline color mapping table, ACIF looks for a color mapping table that is
named DUMMY in the OBJCONLIB or USERLIB library.

An input file can contain multiple color mapping tables, but only one can be used
for printing. If a file contains more than one color mapping table and you specify
COLORMAP=name, ACIF uses the first inline color mapping table named name. If
a file contains more than one inline color mapping table and you specify
COLORMAP=DUMMY, ACIF uses the first inline color mapping table in the
input file.

COMSETUP

Specifies the name of a COM setup file in AIX, Windows, z/0OS, and VM. A COM
setup file is an AFP resource that contains instructions that are required when

printing on a microfilm device (microfilm can mean either microfiche or 16 mm
film).

COMSETUP=name
The value is:

name
Any valid COM setup file name (in AIX, Windows, or VM) or member

Chapter 3. ACIF parameters 35

36

name (in z/OS). The name can be 1 - 8 alphanumeric characters (a-z, A-Z,
0-9) and special characters (# $ @), including the 2-character prefix, if there
is one. In AIX, name is case-sensitive.

Note: If the name of the COM setup file includes a file extension, do not
use the file extension when you are specifying the setup file. For
example, to use a setup file that is named MYSETUP.SET, specify
COMSETUP=MYSETUP.

The COM setup file you use can be located:

* Inaz/OS or VM library.

* In an AIX or Windows directory.

* Inline in the file (that is, within the file itself).

If the COM setup file is in an AIX or Windows directory or a z/OS or VM library,
use the USERLIB or OBJCONLIB parameter to specify the path to the file or the
data set.

In AIX , use one of these examples:

* comsetup=mysetup
userlib=/usr/afp/resources

* comsetup=mysetup
objconlib=/usr/1ib/setups

In Windows, use this example:

comsetup=mysetup
userlib=\install _directory\resources

In z/OS or VM, use one of these examples:

¢ COMSETUP=MYSETUP
USERLIB=USER.RESOURCES

* COMSETUP=MYSETUP
OBJCONLIB=USER.SETUPS

A COM setup file can be an inline resource in all data formats except XML. (XML
data cannot have carriage control characters, which are used to identify inline
resources.) If the COM setup file is an inline resource, you must specify one of
these parameters:

COMSETUP=name
name is the name of the inline COM setup file. If the name specified in the
COMSETUP parameter does not match the name of an inline COM setup
file, ACIF looks for the COM setup file in the COMSETUP search path.

COMSETUP=DUMMY
If you specify COMSETUP=DUMMY but the file does not include an
inline COM setup file, ACIF looks for the COM setup file named
DUMMY.

An input file can contain multiple COM setup files, but only one COM setup file
can be used for printing. If a file contains more than one COM setup file, and you
specify COMSETUP=name, ACIF uses the first inline COM setup file named name.
If a file contains more than one inline COM setup file, and you specify
COMSETUP=DUMMY, ACIF uses the first inline COM setup file in the input file.

PSF V4R5 for z/OS: ACIF User's Guide

CPGID

Specifies the 3- or 4-digit identifier that defines an IBM-registered code page that is
used when the index values and attribute names are specified on the INDEXn and
FIELDn parameters.

ACIF uses the code page identifier value when it creates a Coded Graphic
Character Set Global Identifier Triplet X'01" in the Begin Document (BDT)
structured field for the output file. For more information about this triplet, see
Mixed Object Document Content Architecture Reference.

The code page identifier is used by programs, such as AFP Workbench Viewer, that
must display indexing information. These programs use this identifier with code
page translation tables to represent the index attribute and value data. For code
page numbers less than 100, add leading zeros (for example, 037). If a non-decimal
value is specified, ACIF reports an error condition and ends processing. For more
information about code pages, see IBM AFP Fonts: Technical Reference for Code Pages,
5544-3802.

If your input file contains Unicode data and you specify
EXTENSIONS=IDXCPGID to process the code page identifiers, see
[considerations” on page 212| for more information about using the CPGID
parameter.

AIX and Windows

CPGID={850 | codepageid}
The values are:

850
IBM code page 850

codepageid
Any valid code page, which is a 3- or 4-character decimal value (for
example, 395) that defines an IBM-registered code page

If this parameter is not specified, ACIF uses code page 850 as the default.

z/0S, VM, and VSE
CPGID={500 | codepageid}
The values are:

500
IBM code page 500

codepageid
Any valid code page, which is a 3- or 4-character decimal value (for
example, 395) that defines an IBM-registered code page

If this parameter is not specified, ACIF uses code page 500 as the default.

DCFPAGENAMES

Specifies whether ACIF generates page names by using either an 8-byte counter or
structured field tokens that are found in the input data stream. If the input data
contains Begin Page (BPG) structured fields with fully qualified names (FQNs),
ACIF does not generate page names.

DCFPAGENAMES={YES | NO}
The values are:

Chapter 3. ACIF parameters 37

38

YES
ACIF uses structured field tokens in the input data stream to generate page
names.

N0 ACIF generates page names by using an 8-byte counter.

If this parameter is not specified, ACIF generates page names by using an
8-byte counter.

EXTENSIONS

Specifies the extended options that ACIF uses. Extensions are MO:DCA-P data
stream advanced features that might not be supported for all presentation devices.
You must use care when you are choosing these options to ensure that they are
supported by your print server, viewer, or printer. In PSF for z/OS, you can use
the display printer information function to see the supported functions for your
printer. For more information, see |PSF for z/OS: Customization}

EXTENSIONS={NONE | ALL | [BOX] [,CELLED] [,EMPTYOK] [, FRACLINE] [,IDXCPGID]
[,MVSICNV][,NOICNV][,PASSOID][,PASSPF][,PRCOLOR][,RESORDER][,SPCMPRS]}
The values are:

NONE
ACIF does not use any extended options.

ALL
ACIF uses all extended options.

Be careful:

1. Many options apply only to specific data; for example IDXCPGID
applies only to line data. Therefore, when you specify ALL, make sure
that all of the options apply to your data. For best results, specify only
the extended options that apply to the specific type of data you are
using.

2. More options might be added in the future that might not be supported
by your presentation device.

BOX
Specifies that GOCA box drawing orders are supported. This option is
required when you are using the DRAWGRAPHIC command in a record
formatting page definition. See [“Drawing graphics with record format page]
[definitions” on page 101| for an example of using this option.

CELLED
Specifies the IOCA Replicate and Trim function when you are converting
IM1 celled images. This option might reduce the number of bytes needed
for a raster image, and it might display or print faster. It requires that
IMAGEOUT=IOCA is specified (the default).

EMPTYOK

When a job requests indexing, indicates that if the input file specified with
the INPUTDD parameter is empty, ACIF ignores the indexing request,
issues message APK422S with return code 64, and ends processing with
RC=0. ACIF does not issue message APK448S when the indexing request is
not successful and does not produce a resource file.

FRACLINE
Specifies that GOCA fractional line width drawing orders are supported.
This option is required when you are using the DRAWGRAPHIC

PSF V4R5 for z/OS: ACIF User's Guide

command in a record formatting page definition. See [‘Drawing graphics|
(with record format page definitions” on page 101| for an example of using
this option.

IDXCPGID
Specifies that ACIF processes code page identifiers for these Unicode code
pages:
1200 UTE-16 BE
1208 UTE-8
13488 UTE-16 BE
17584 UTE-16 BE
Notes:
1. This value is used only with line data, not MO:DCA-P or mixed-mode
data.

2. ACIF issues an error message if IDXCPGID is specified with the
PASSPF parameter. If EXTENSIONS=ALL is specified, PASSPF is
ignored and IDXCPGID is used.

See |“Indexing considerations” on page 212| for information about using the
CPGID parameter when you are processing code page identifiers for
Unicode data.

MVSICNV
Specifies that ACIF initializes the CEEPIPI environment to enable the
ICONV translation services on MVS™. This parameter is only valid in
z/0S and is required if:

* The page definition specifies Quick Response (QR) Code bar codes and
the line data contains DBCS characters.

* The page definition uses the VARIABLE option when resource objects
are specified.

¢ The data contains PTOCA objects.

See [“Enabling ICONV translation services” on page 22| for the steps you
must do before you specify MVSICNV.

When you specify the USERPATH, FONTPATH, or OBJCPATH parameter
to request color management or TrueType and OpenType font support,
MVSICNYV is the default.

NOICNV
Specifies that ACIF does not initialize the CEEPIPI environment to enable

the ICONV translation services on MVS. This parameter is only valid in
z/0S.

NOICNYV is the default unless you specify the USERPATH, FONTPATH, or
OBJCPATH parameter to request color management or TrueType and
OpenType font support.

PASSOID
Specifies that ACIF passes OID information from the resource access table
(RAT) to the Begin Resource (BRS or BR) structured field when it is saving
TrueType and OpenType fonts. For more information about the RAT, see
Using OpenType Fonts in an AFP System.

PASSPF
Specifies that ACIF passes the Begin Print File (BPF) and End Print File
(EPF) structured fields, which define the boundaries of the print data, to

Chapter 3. ACIF parameters 39

the output file when they are found in the input file. If this value is not
specified, ACIF discards the BPF/EPF pair.

This parameter also controls whether a BPF/EPF structured field pair that
the input record exit tries to insert is inserted. If this value is not specified,
and the input record tries to insert a BPF/EPF pair, the attempt fails, and
the pair is discarded.

Notes:

1. Be careful when you are using PASSPF. If the output file contains BPF
and EPF structured fields and it is concatenated with the resource file,
the resulting MO:DCA-P data stream is not valid.

2. This value is not used when the input file is line data because line data
does not contain BPF and EPF structured fields.

3. When PASSPF is specified and there is a BPF and EPF structured field
pair in the input file, ACIF passes all Begin Document (BDT) and End
Document (EDT) structured field pairs from the MO:DCA-P input file
to the output data stream without adding the normal comment and
time stamp triplets.

4. ACIF issues an error message if PASSPF is specified with the
IDXCPGID parameter. If EXTENSIONS=ALL is specified, PASSPF is
ignored and IDXCPGID is used.

5. ACIF does not verify whether the input file is MO:DCA 1IS/3 compliant.

For more information about BPF and EPF structured fields, see |”Begiﬁ|
[Print File (BPF) and End Print File (EPF) structured fields” on page 222

PRCOLOR
Specifies that GOCA process color drawing orders are supported. This
option is required when you are using the DRAWGRAPHIC command in a
record format page definition. See [“Drawing graphics with record format]
[page definitions” on page 101|for an example of using this option.

RESORDER
Specifies that inline resources do not need to appear in any particular
order in the input file; only before the Begin Document (BDT) structured
field. When RESORDER is not specified, inline resources must appear in
the input file in the order in which they are used. For example, if a coded
font is inline, the character set and code page that the coded font points to
must occur inline first. When RESORDER is specified, ACIF reads into
memory only the inline resources that are actually needed to print the job
and uses them when they are requested; inline resources that are not
needed are not saved in the resource library.

Keep in mind:
1. When RESORDER is specified, TrueType and OpenType fonts that were
originally inline in the input file are not saved in the resource library.

2. Specifying RESORDER impacts performance and storage use.

SPCMPRS
Specifies the repeat string PTOCA order to compress embedded blanks.

FDEFLIB

Specifies the location of form definitions. This parameter is not used for VSE.

40 PSF V4R5 for z/0S: ACIF User's Guide

AIX or Windows

FDEFLIB=pathlist
Specifies the directories in which form definitions are stored. The value is:

pathlist
Any valid search path. You must use a colon (:) in AIX or a semicolon (;) in
Windows to separate multiple paths. ACIF searches the paths in the order
in which they are specified. For example, \acif\resources is searched first
in the following path list:

FDEFLIB=\acif\resources;\download\resources;\my\secret\resources\

Keep in mind: The total number of all characters in the string of path
names cannot exceed 4095 bytes.

For information about how InfoPrint Manager selects resources, see
[ACIF in ATIX and Windows” on page 17| or InfoPrint Manager: Reference.

z/0S

FDEFLIB=dsnamel [,dsname2] [,dsname3. . .]
Specifies the data sets that compose the form definition library. You can specify
a maximum of 16 data sets. For example:

FDEFLIB=SYS1.FDEFLIB,USER.FDEFLIB

This parameter also specifies the concatenation sequence when ACIF searches
for a particular form definition. ACIF first looks for the resource in dsnamel. 1f
it cannot find the resource in dsnamel, it continues the search with dsname2,
and so on, until it locates the requested resource or exhausts the list of
specified data sets.

If USERLIB is also specified, ACIF searches for the resource in the data sets
specified in USERLIB before it searches the data sets identified in FDEFLIB.

Notes:
1. Data sets must be specified as fully qualified names without quotation
marks.

2. If the libraries specified for FORMDEF are not specified in the same order
that is used by the PSF startup procedure, the printed and converted results
might differ. For information about how PSF selects resources, see
lz/OS: Customization|

3. For systems before MVS/DFP Version 2.3, data sets must be concatenated
with the largest block size first.

4. FDEFLIB is a required parameter if USERLIB is not specified. If FDEFLIB
is not specified, ACIF reports an error condition and ends processing.

VM

FDEFLIB=filetypel[,filetype? 1[,filetype3...]
Specifies the file types that define the form definition libraries. You can specify
a maximum of eight file types. For example:

FDEFLIB=FDEF38PP, TEMPFDEF

This parameter also specifies the search order in which ACIF searches for a
particular form definition. ACIF first looks for the resource with a file type of

Chapter 3. ACIF parameters 41

filetypel. If it cannot find the resource with a file type of filetypel, it continues
the search with filetype2, and so on, until it locates the requested resource or
exhausts the list of specified file types.

Notes:
1. File type values must conform to CMS naming conventions.

2. FDEFLIB is a required parameter if USERLIB is not specified. If FDEFLIB
is not specified, ACIF reports an error condition and ends processing.

VSE

This parameter is not used for VSE. Form-definition resources are in the library
that is defined by the // LIBDEF PHASE,SEARCH=(...) JCL statement. For
information about how PSF/VSE selects resources, see Print Services Facility/VSE:
System Programming Guide, S544-3665.

FIELDn

Specifies the data fields to be used to construct the indexing information. These
data fields can be specified as literal values (constants) or ACIF can retrieve the
data from the input records of the file. You can define a maximum of 16 fields
(FIELD1 through FIELD16).

FIELDn={record,column, length} | {'literal value' | X'literal value'}
The values are:

record
Specifies the relative record number from the indexing anchor record.
When ACIF is indexing the file, it uses the information that is specified in
the TRIGGER#n parameter to determine a page-group boundary. When all
of the specified TRIGGER# values are true, ACIF defines the indexing
anchor record as the record where TRIGGER1 is located. TRIGGER1
becomes the reference point from which all indexing information is located.
The supported range of values for record are =0 to 255.

column
Specifies the byte offset from the beginning of the record. A value of “1”
refers to the first byte in the record. For files that contain carriage control
characters, column 1 refers to the carriage control. For those applications
that use a specific carriage control character to define page boundaries (for
example, skip to channel 1), consider defining the value of the carriage
control character as one of the TRIGGER#n parameters. The supported
range of values for column are 1 - 32756. If the specified value exceeds the
physical length of the record, ACIF reports an error condition and ends
processing.

length
Specifies the number of contiguous bytes (characters), starting at column,

that composes this field. The supported range of values for length are 1 -
250.

The field can extend outside the record length, if the column where it
begins lies within the record length. In this case, ACIF adds padding
blanks (X'40") to complete the record. If the field begins outside the
maximum length of the record, ACIF reports an error condition and ends
processing.

literal value | X'literal value'
Specifies the literal (constant) value of the FIELDn parameter. The literal

42 PSF V4R5 for z/0S: ACIF User's Guide

value can be 1 - 250 bytes in length (one hexadecimal literal value equals 2
bytes). ACIF does not do any validity checking on the actual content of the
supplied data.

Note: The literal value can be specified as ASCII character data in AIX or
Windows, EBCDIC character data in z/OS, VM or VSE, or
hexadecimal data. However, if the input data file is anything other
than ASCII in AIX or Windows or EBCDIC in z/0OS, VM, or VSE, the
value must be specified as hexadecimal data (otherwise, the
comparisons between the input data file and what is coded in the
FIELD#n parameter do not yield a match).

For example, to specify five fields in your print job, you can enter:

FIELD1=0,2,20
FIELD2=5,5,10
FIELD3=-15,30,5
FIELD4="'444663821"
FIELD5=X'0001"

In the example, the fields have these values:

The first field is located in the indexing anchor record (TRIGGER1). The
field is 20 bytes in length, starting at the second byte of the record.

The second field is located five records down from the indexing anchor
record. The field is 10 bytes in length, starting at the fifth byte of the record.
The third field is located 15 records before the indexing anchor record. It is 5
bytes in length, starting at byte 30.

The fourth and fifth fields are literal (constant) values. The fourth field is
specified as character data; the fifth field is specified as hexadecimal data.

For more information about using literal values or data values for indexing,
see [“Indexing with literal values” on page 7| and [“Indexing with data values”|

|on page 7.|

Notes:

1.

ACIF allows fields to be defined but never referenced as part of an index.
Because ACIF requires either a field or TRIGGER to appear on the first
page of a logical document, unless the INDEXSTARTBY parameter is used,
you can satisfy this requirement by defining a “DUMMY” field. This
DUMMY field lets ACIF determine the beginning page of a logical
document, but it is not used as part of an index. If you specify the
INDEXSTARTBY parameter, start counting on the first page on which you
have a valid field, not a DUMMY field.

ACIF requires that at least one TRIGGER# or FIELD# value appear within
the page range that is specified by the INDEXSTARTBY parameter (unless
INDEXSTARTBY=0 is specified). If no TRIGGER# or FIELDn parameter is
satisfied within the INDEXSTARTBY page range, ACIF stops processing
and issues an error message. If you do not want ACIF to stop processing
when it cannot find a group indexing field or when a file is empty, you
must set the parameter to INDEXSTARTBY=0 or specify
EXTENSIONS=EMPTYOK.

At least one TRIGGER# or FIELDn value must exist on the first page of
every unique page group. ACIF cannot detect an error condition if
TRIGGER# or FIELDn is missing, but the output might be incorrectly
indexed.

Chapter 3. ACIF parameters 43

44

See |Chapter 4, “Enhanced indexing parameters,” on page 83| for information about
using the FIELDn parameter with enhanced ACIF indexing.

FILEFORMAT

Specifies the format of the input file in AIX and Windows. If you do not specify
the FILEFORMAT parameter, ACIF uses STREAM as the default.

The FILEFORMAT parameter does not apply to resources. Resource files are in
MO:DCA-P or AFP data stream format, and ACIF automatically determines that
the file is a resource.

FILEFORMAT={RECORD | RECORD,n | STREAM[, (NEWLINE={CR | LF | CRLF |
X'nnnn'}[,encoding])1}

The values are:

RECORD
The input file is formatted in S/ 390° or System 7% record format, where
the first 2 bytes of each line, called the record descriptor word (RDW),
specify the length of the line. Files with RECORD format typically are
z/0OS or VM files with a variable record format. These files are either
NFS-mounted to AIX or Windows or sent by using Download for z/OS.

RECORD,n
The input file is formatted in such a way that each record (including AFP
data stream and MO:DCA-P records) is a fixed length, n bytes long. The
value of n is a number 1 - 32760, and specifies the fixed length of the
record, including all control characters. The encapsulated size of the AFP
structured field must be less than the size of n. Files with RECORD,n
format typically come with fixed-length file attributes from a S/390 or
System z host system, such as z/OS or VM.

STREAM
The input file has no length information; it is a stream of data that is
separated by a newline character. The AFP portion of the input file has its
length information encapsulated in the structured field. Files with
STREAM format typically come from a workstation operating system, such
as AIX, Windows, or DOS.

ACIF examines the first 6 bytes of the first line data record of the input file
to determine whether the input file is ASCII or EBCDIC. If ACIF
determines that the input file is ASCII, ACIF looks for the ASCII newline
character (X'0A") to delimit the end of a record. If ACIF determines that the
input file is EBCDIC, ACIF looks for the EBCDIC newline character (X'25")
to delimit the end of a record. If the input record is MO:DCA-P, no newline
character is required. ACIF does not include newline characters in the
MO:DCA-P data stream that it produces.

Note: The default newline characters might be incorrect; therefore, to
ensure correct formatting results, specifty NEWLINE with the
STREAM parameter.

NEWLINE={CR | LF | CRLF | X'nnnn'}[,encoding])
NEWLINE is an optional value of FILEFORMAT that is used only if
STREAM is specified. You use NEWLINE to specify the characters and
optional encoding for determining line breaks in the input data file. The
newline character values are:

CR Carriage returns determine line breaks.

PSF V4R5 for z/OS: ACIF User's Guide

LF Line feeds determine line breaks.
CRLF Carriage returns followed by line feeds determine line breaks.

X'nnnn'
One-, 2-, or 4-byte hexadecimal characters determine line breaks.

encoding
One of these values, ASCII, EBCDIC, UTFS, or UTF16, indicates
which hexadecimal strings ACIF uses to determine line breaks
when CR, LE or CRLF are specified (see . If the encoding
value is UTF8 or UTF16 and the UDTYPE parameter is specified as
UTF16 with the PPFA PAGEDEF command, ACIF checks for a Byte
Order Mark (BOM) character and, if present, reverses the bytes in
the delimiter characters for UTF-16 little endian data.

Note: Specify the value of the data before it is converted with a
user exit. For example, if you are calling the apka2e user
exit to convert ASCII data to EBCDIC, specify the encoding
value as ASCII.

Table 6. Hexadecimal strings for encoding values

Encoding Value CR LF CRLF

ASCII X'0D' X'0A X'0DOA'
EBCDIC X'0D' X25' X'0D25'
UTEF8 X'0D' X'0A X'0D0A'
UTF16 (big endian X'000D' X'000A' X'000D 000A'
data)

UTF16 (little endian | X'0DO00' X'0A00' X'0D00 0A00'
data)

You can use NEWLINE when ACIF’s algorithm cannot determine the
correct newline character (if blanks are at the beginning of the file, for
instance), or you can use NEWLINE if you want to specify a newline
character that is not the standard default. If NEWLINE is not specified,
ACIF uses the algorithm that is specified under ILEFORMAT=STREAM.
However, specifying NEWLINE is always preferable to having ACIF
determine the correct default.

These examples show how to use NEWLINE:

FILEFORMAT=STREAM, (NEWLINE=X"'ODOA")
FILEFORMAT=STREAM, (NEWLINE=X'000DOOOA")
FILEFORMAT=STREAM, (NEWLINE=CRLF,UTF16)

FONTECH
Indicates that ACIF processes 3800 (unbounded box) fonts in z/OS, VM, and VSE.

Note: The FONTECH parameter must be used with caution. Unbounded fonts are
supported only by the IBM 3800 printer. They are not supported by any
other printer or the AFP Workbench Viewer. Any resource object file that is
archived has limited use. Unbounded box fonts cannot be used by InfoPrint
Manager.

Chapter 3. ACIF parameters 45

46

FONTECH=UNBOUNDED
Indicates that ACIF processes 3800 (unbounded box) fonts. Any value other
than UNBOUNDED causes ACIF to issue an error message and end
processing.

If you specifty FONTECH=UNBOUNDED and RESTYPE=FONT or
RESTYPE=ALL, ACIF reads unbounded box fonts and saves them in the
resource object data set. However, the syntax of the unbounded box fonts is
not checked. If there are errors in the AFP data stream that makes up the font,
ACIF does not issue an error message.

You cannot mix unbounded box fonts and TrueType or OpenType fonts in the
same document. Therefore, if you specify FONTPATH and USERPATH, ACIF
ignores them when FONTECH=UNBOUNDED is specified.

FONTLIB

Specifies the location of FOCA fonts, including AFP extended code page fonts. AFP
extended code page fonts contain EBCDIC or ASCII encodings and can contain the
Unicode equivalent value. FONTLIB is not used to specify directories for TrueType
and OpenType fonts. Instead, use the FONTPATH or USERPATH parameter.

Note: ACIF assumes that FOCA fonts are named according to the suggested IBM
naming conventions in [Table 10 on page 233 If the naming conventions are
not followed, you might get unexpected results, such as a character rotation
that you do not expect.

AIX and Windows
FONTLIB=pathlist

Specifies the paths where FOCA fonts are installed. AFP extended code page
fonts have a .ECP file extension.

The value is:

pathlist
Any valid search path. You must use a colon (:) in AIX or a semicolon (;) in
Windows to separate multiple paths. ACIF searches the paths in the order
in which they are specified. For example, \acif\resources is searched first
in the following path list:

FONTLIB=\acif\resources;\download\resources;\my\secret\resources\

Keep in mind: The total number of all characters in the string of path
names cannot exceed 4095 bytes.

For information about how InfoPrint Manager selects resources, see
[ACIF in ATIX and Windows” on page 17| or InfoPrint Manager: Reference.

z/0S
FONTLIB=dsnamel [,dsname2] [,dsname3. ..]

Specifies the data sets that contain the FOCA fonts. You can specify a
maximum of 16 data sets. For example:

FONTLIB=SYS1.FONTLIB,USER.FONTLIB

This parameter also specifies the concatenation sequence when ACIF searches
for a particular font resource. ACIF first looks for the resource in dsnamel. If it

PSF V4R5 for z/OS: ACIF User's Guide

VM

cannot find the resource in dsnamel, it continues the search with dsname2, and
so on, until it either locates the requested resource or exhausts the list of
specified data sets.

If USERLIB is also specified, ACIF searches for the resource in the data sets
specified in USERLIB before it searches the data sets identified in FONTLIB.

Notes:

1. Data sets must be specified as fully qualified names without quotation
marks.

2. If the libraries specified for FONTLIB are not specified in the same order
that is used by the PSF startup procedure, the printed and converted results
might differ. For information about how PSF selects resources, see
lz/OS: Customization|

3. For systems before MVS/DFP Version 2.3, data sets must be concatenated
with the largest block size first.

4. This parameter is required if font retrieval is requested and USERLIB is not
specified, or if MCF2REF=CPCS and any coded fonts are referenced in the
input file or in an overlay. The RESTYPE parameter determines whether
fonts are to be retrieved for inclusion in the resource data set. If this
parameter is not specified, and font retrieval is requested or a coded font is
referenced, ACIF reports an error condition and ends processing.

FONTLIB=filetypel[,filetype2][,filetype3...]

Specifies the file types that define the FOCA raster or outline font libraries. If
your page definition or AFP input file refers to outline fonts on the Map
Coded Font (MCF) structured fields, include an outline font library in the
search order.

You can specify a maximum of eight file types. For example:
FONTLIB=FONT3820, TESTFONT

This parameter also specifies the search order when ACIF searches for a
particular font resource. ACIF first looks for the resource in filetypel. If ACIF
cannot find the resource with a file type of filetypel, it continues the search
with filetype2, and so on, until it either locates the requested resource or
exhausts the list of specified file types.

Notes:
1. File type values must conform to CMS naming conventions.

2. This parameter is required if font retrieval is requested and USERLIB is not
specified, or if MCF2REF=CPCS and any coded fonts are referenced in the
print file or in an overlay. The RESTYPE parameter determines whether
fonts are to be retrieved for inclusion in the resource file. If this parameter
is not specified, and font retrieval is requested or a coded font is
referenced, ACIF reports an error condition and ends processing.

VSE

This parameter is not used for VSE. Font resources are in the library that is defined
by the // LIBDEF PHASE,SEARCH=(...) JCL statement. For information about how
PSF/VSE selects resources, see Print Services Facility/VSE: System Programming
Guide, S544-3665.

Chapter 3. ACIF parameters 47

48

FONTPATH

Specifies the system font path library directories in which TrueType and OpenType
fonts and AFP extended code page fonts are stored. TrueType and OpenType fonts
are Unicode-enabled AFP fonts that are not defined by FOCA. AFP extended code
page fonts are FOCA fonts that contain EBCDIC or ASCII encodings and can
contain the Unicode equivalent value. AFP extended code page fonts have a .ECP
file extension. This parameter is not supported for VM and VSE; if specified, you
see an error message.

FONTPATH=pathlist
The value is:

pathlist
Any valid search path. You must use a colon (:) in AIX and z/OS or a
semicolon (;) in Windows to separate multiple paths. For example:

AIX or Windows

acif inputdd=INFILE outputdd=OUTFILE pagedef=PAGTRUE formdef=F1A10110 \
fontpath=/u/fonts/truetype:/u/fonts/truetype/local

Note: The backslash (\) tells AIX to continue reading the
command from the next line. In Windows, the backslash is
not valid; therefore, the command parameters must be on
one continuous line.

z/OS

INPUTDD=INFILE

OUTPUTDD=0UTFILE

PAGEDEF=PAGTRUE

FORMDEF=F1A10110
FONTPATH='/u/fonts/truetype:/u/fonts/truetype/local/’

Note: To continue a pathlist on multiple lines in a parameter file,
type the pathlist to the last character of the first line and then
continue typing in the first column of the next line.

ACIF searches the paths in the order in which they are specified.

Keep in mind: The total number of all characters in the string of path names
cannot exceed 4095 bytes.

For more information about how ACIF processes resources such as TrueType and
OpenType fonts, see|[Appendix B, “Processing resources installed with resource|
[access tables,” on page 217

FORMDEF

Specifies the file name (in AIX, Windows, or VM) or the member name (in z/OS or
VSE) of the form definition. A form definition defines how a page of data is placed
on a form, the number of copies of a page, any modifications to that group of
copies, the paper source, and duplexing. ACIF uses a form definition only at print
time to retrieve resources; it does not use a form definition at transform time to
convert data streams.

FORMDEF={fdefname | DUMMY}
The values are:

fdefname
Any valid form definition name. The fdefname can be 1 - 8 alphanumeric
characters (a-z, A-Z, 0-9) and special characters (# $ @), including the

PSF V4R5 for z/OS: ACIF User's Guide

2-character prefix, if there is one. Unlike PSF for z/OS, PSF/VM, and
PSF/VSE, ACIF does not require the name to begin with an F1 prefix;
however, if the name does begin with F1, you cannot omit it. For example:

FORMDEF=F1USER10

Notes:
1. In AIX, the fdefname is case-sensitive.

2. If the file name of the form definition includes a file extension, do not
use the file extension when you are specifying the form definition. For
example, to use a form definition that is named MEMO.FDEF38PP,
specify FORMDEF=MEMO.

DUMMY
ACIF requires a form definition to process the input file (even though the
form definition is only used at print time). If you do not specify
FORMDEF, the default is DUMMY, which indicates that ACIF uses the
first inline form definition. If ACIF cannot find an inline form definition, it

reports an error and ends processing.

If you specify FORMDEF=DUMMY but the file does not include an inline
form definition, ACIF looks for a form definition named DUMMY. If ACIF
cannot find a form definition that is named DUMMY, it reports an error
and ends processing.

Note: DUMMY must be specified in all uppercase letters.

The form definition that you use can be found in one of these locations:

Inline in the file
A form definition can be an inline resource in all data formats except
XML. (XML data cannot have carriage control characters, which are
used to identify inline resources.) If the form definition is an inline
resource, you must do these tasks:

1. Include an inline form definition in the file.

2. Specify CC=YES to indicate that the file contains carriage control
characters. If the length of the records in the form definition is less
than or equal to the logical-record length defined for the file, you
can specify fixed-length records for the record format. If the length
of the records in the form definition is greater than the
logical-record length defined for the file, you must specify:

* Variable length records in z/OS or VSE for the record format
(variable blocked with ANSI carriage control characters [VBA] or
variable blocked with machine carriage control characters [VBM])

* Variable length records in VM for the record format

3. Specify FORMDEF with one of these values:

fdefname
The name of an inline form definition. If the name specified
in the FORMDEF parameter does not match the name of
an inline form definition, ACIF looks for the form definition
in a USERLIB or FDEFLIB path, or a VSE library.

DUMMY
If the file does not include an inline form definition, ACIF
looks for the form definition named DUMMY. If ACIF
cannot find a form definition that is named DUMMY, it
reports an error and ends processing.

Chapter 3. ACIF parameters 49

Note: DUMMY must be specified in all uppercase letters.

An input file can contain multiple form definitions, but only one form
definition can be used for printing. If a file contains more than one
inline form definition, and you specify FORMDEF=fdefname, ACIF uses
the first inline form definition named fdefname. If a file contains more
than one inline form definition and you specify FORMDEF=DUMMY,
ACIF uses the first inline form definition in the input file. By changing
the form definition name in the FORMDEF parameter on different
printing jobs, you can test different form definitions.

AIX or Windows directory, or z/OS or VM library
Use the USERLIB or FDEFLIB parameter to specify the path to the file
or the data sets.

In AIX, use one of these examples:
* formdef=memo
userlib=/usr/afp/resources

¢ formdef=memo
fdeflib=/usr/1ib/formdefns

In Windows, use this example:

formdef=memo
userlib=\install _directory\resources

In z/OS or VM, use one of these examples:
* FORMDEF=MEMO

USERLIB=USER.RESOURCES
* FORMDEF=MEMO

FDEFLIB=USER.FORMDEFNS

VSE library
The // LIBDEF PHASE,SEARCH=(...) DLBL JCL statement references
the VSE library.

GROUPNAME

Specifies which of the eight possible INDEX values are used as the group name for
each index group. Using a unique index value for the group name is suggested.
The intent is to have a unique group name for every group ACIF produces in the
output file. The value includes the FIELD definitions from the INDEX parameter
but not the attribute name. ACIF uses this parameter only when the file is indexed.
The AFP Workbench Viewer displays this value along with the attribute name and
index value. You can use the group name to select a group of pages to be viewed.

GROUPNAME={INDEX1 | INDEXn}
The values are:

INDEX1
ACIF uses the value of INDEX1 for the group name.

INDEXn
ACIF uses the value of the specified INDEX (INDEX1, INDEX2,
INDEXS3,...INDEXS) for the group name.

If GROUPNAME is not specified, ACIF uses INDEX1 as the default.

See |Chapter 4, “Enhanced indexing parameters,” on page 83| for information about
using group indexes and triggers with enhanced ACIF indexing.

50 PSF V4R5 for z/OS: ACIF User's Guide

IMAGEOUT

Specifies the format in which ACIF saves IM1 image data in the output document.
IM1 images can be saved as they are in the input file or converted to
uncompressed Image Object Content Architecture (IOCA) images.

Most printers support both IM1 and IOCA image formats, but IM1 images cannot
be rotated or rescaled correctly at different printer resolutions. Print servers, such
as PSF, convert IM1 images to uncompressed IOCA when the IM1 image resolution
differs from the actual printer resolution. Because ACIF does not know what
printer the output might be printed on, by default it converts IM1 images to
uncompressed IOCA.

Because uncompressed IOCA images are often greater in size than the original IM1
images, printer performance can be slower. If you have problems with printer
performance, specify IMAGEOUT=ASIS so the IM1 images are not converted to
IOCA. Also, if you are using the VSE operating system, specify IMAGEOUT=ASIS
to avoid out-of-storage conditions.

IMAGEOUT={ASIS | IOCA}
The values are:

ASIS
Specifies that ACIF produce all IM1 image data in the same format as in
the input file. Use this value when you are archiving or viewing images,
for better printer performance, or when you are using VSE.

I0CA
Specifies that ACIF produce all IM1 image data in uncompressed IOCA
format.

If IMAGEOUT is not specified, ACIF uses IOCA as the default.

INDEXn

Specifies the content of the indexing tags for the entire file. A maximum of eight
indexes can be defined (INDEX1, INDEX2,... INDEX8) and each index can be
made up of one or more FIELD definitions.

INDEXn={'attributename' | X'attributename'}{,FIELDn[,FIELDn...]}
Valid components of the INDEX#n parameter are:

‘attributename’ | X'attributename'
Specifies a user-defined attribute name to be associated with the actual
index value. The attribute name is a label for the actual index value. For
example, assume that INDEX1 is a person’s bank account number. The
string 'Account Number' would be a meaningful attribute name. The value
of INDEX1 would be the account number (for example, 1234567). The
attribute name is a string 1 - 250 bytes in length. ACIF does not do any
validity checking on the contents of the attribute name.

Note: The attribute name can be specified as ASCII character data in AIX
or Windows, EBCDIC character data in z/0OS, VM or VSE, or
hexadecimal data. However, if the input data file is anything other
than ASCII in AIX or Windows or EBCDIC in z/0OS, VM, or VSE, the
value must be specified as hexadecimal data.

FIELDn[,FIELDn...]
Specifies one or more FIELDn parameters that compose the index value. A

Chapter 3. ACIF parameters 51

maximum of 16 FIELDn parameters can be specified. If more than one
FIELDn parameter is specified, ACIF concatenates them into one physical
string of data. No delimiters are used between the concatenated fields.
Because an index value has a maximum length of 250 bytes, the total of all
specified FIELDn parameters for a single index cannot exceed this length.
ACIF reports an error condition and ends processing if this error occurs.

If literal values (constants) are specified for every index, ACIF treats the entire
file as one page group and uses this information to index the document. ACIF
reports an error condition and ends processing if literal values are specified for
all INDEXn parameters and if any TRIGGER# parameters are also specified.

For FIELDn parameters that specify data values within the file, ACIF
determines the actual location of the indexing information that is based on the
indexing anchor record, set by the TRIGGER#n parameters.

A valid set of index parameters comprises either of these:
e FIELD definitions that contain only literal values (constant data).

* FIELD definitions that contain both literal values and application data (data
fields in the print file).

You can also specify the same FIELD# parameters in more than one INDEX#n
parameter.

Note: If one or more TRIGGER# parameters are specified (that is, ACIF
indexes the file), at least one INDEXn parameter must be specified, and
that index must comprise at least one FIELD#n parameter value that is
not a literal. ACIF reports an error condition and ends processing if this
rule is not satisfied.

The following example specifies that the first index tag for the patent number
is made up of the literal character string '1234567' and the second index tag for
the employee name is made up of fields within the file records:
FIELD1="1234567"

FIELD2=0,10,20

FIELD3=0,25,20

INDEX1="'Patent Number',FIELD1

INDEX2="'Employee Name',FIELD2,FIELD3

The next example specifies both index tags as literal values. The entire file is
indexed by using these two values. The resulting index object file contains only
one record in this case.

FIELD1='123456"

FIELD2="'444556677"

INDEX1="'Account Number',FIELD1
INDEX2="'Social Security Number',FIELD2

Note: The preceding examples are based on character input data. If the input
data was not ASCII in AIX or Windows or EBCDIC in z/0S, VM, or
VSE, the literal values that are used in these examples would be
expressed in hexadecimal strings. For an AIX example that uses
hexadecimal strings, see [Figure 15 on page 106}

See |[Chapter 4, “Enhanced indexing parameters,” on page 83| for information about
using the INDEX#n parameter with enhanced ACIF indexing.

INDEXDD

Specifies the name for the index object file.

52 PSF V4RS5 for z/OS: ACIF User's Guide

AIX and Windows

INDEXDD={INDEX | filename}
Specifies the name or the full path name for the index object file. When ACIF
is indexing the file, it writes indexing information in the file with this name.
The values are:

INDEX
ACIF uses INDEX as the name for the index object file.

filename
A character string that contains only those alphanumeric characters that are
supported in AIX and Windows file names.

If you specify the file name without a path, ACIF puts the index object file into
your current directory. If INDEXDD is not specified, ACIF uses INDEX as the
default file name.

z/0S and VM

INDEXDD={INDEX | ddname}
Specifies the DD name for the index object file. The DD name is a 1- to 8-byte
character string that contains only those alphanumeric characters that are
supported in the operating environment. When ACIF is indexing the file, it
writes indexing information to this DD name. These DCB characteristics are
suggested for the file:

* A block size of 32760
¢ A maximum record length of 32756

If a record length other than 32756 is specified, ACIF might produce a record
of length greater than what is allowed by the INDEX DD statement. If that
happens, ACIF ends processing abnormally.

e Variable blocked format
* Physical sequential format

If INDEXDD is not specified, ACIF uses INDEX as the default DD name.

VSE

INDEXDD={INDEX | filename (DEVT=TAPE | DISK)}
Specifies the file name and device type that appears on the DLBL or TLBL JCL
statement. The file name is a 1- to 7-byte character string that contains only
those alphanumeric characters that are supported in VSE. The device type is
either TAPE or DISK. These are the DTF characteristics for the file:
* A block size of 32760

¢ A maximum record length of 32756

If a record length other than 32756 is specified, ACIF might produce a record
of length greater than what is allowed by the DLBL or TLBL JCL statement.
If that happens, ACIF ends processing abnormally.

* Variable blocked format
* Assigned to programmer logical unit 009

If INDEXDD is not specified, ACIF uses INDEX as the default file name and
DISK as the default device type.

INDEXOBJ

Specifies the type of information ACIF puts in the index object file.

Chapter 3. ACIF parameters 53

54

INDEXOBJ={GROUP | ALL | NONE | BDTLY}
The values are:

GROUP
ACIF places only group-level entries into the index object file, which saves
space.

ALL
ACIF places both page-level and group-level entries into the index object
file. Select ALL if you are indexing a file for use with the AFP Workbench
Viewer application.

NONE
ACIF suppresses the collection of all index-level information. Select NONE
if you do not require an external index file. Selecting NONE also reduces
ACIF storage requirements.

BDTLY
ACIF passes all Begin Document (BDT) and End Document (EDT)
structured field pairs from the MO:DCA-P input file to the output data
stream in the same order they are found without creating any additional
BDT/EDT pairs. After the ACIF output goes to PSF for printing, the
printer uses the BDT/EDT pairs to indicate document boundaries for
finishing (such as stapling). If BDTLY is not specified, ACIF normally
removes multiple BDT and EDT structured fields from the input file and
generates a single BDT/EDT structured field pair for the entire output.
This situation is because MO:DCA-P indexes are relative to the BDT
structured field.

Notes:

1. This value is not valid when the input file is line data because line data
does not contain BDT and EDT structured fields.

2. The index object file that is created is suitable for printing, but must
not be used with indexing because the resulting index is not
MO:DCA-P compliant and might not be processed correctly by
programs that use the index.

If this parameter is not specified, ACIF uses GROUP as the default.

INDEXSTARTBY

Specifies the output page number by which ACIF must find a group indexing field,
if ACIF is indexing the file.

Keep in mind: GROUP, RECORDRANGE, and FLOAT triggers apply only if you
are using enhanced indexing. A group indexing field is based on a
GROUP or RECORDRANGE trigger, not on a FLOAT trigger.

INDEXSTARTBY={1 | nn}
The values are:

1 Specifies that ACIF must find a group index on the first page.

nn Specifies the output page number (0-99) by which ACIF must find the
group index criteria specified. 0 indicates that there is no limit to the page
where ACIF must find a group indexing field.

This parameter is helpful if, for example, your file contains header pages. If
your file contains two header pages, you can specify a page number that is one

greater than the number of header pages (INDEXSTARTBY=3).

PSF V4R5 for z/OS: ACIF User's Guide

If ACIF does not find a group indexing field before the page number specified
in the INDEXSTARTBY parameter, it issues a message and stops processing. If
you do not want ACIF to stop processing when it cannot find a group
indexing field or when a file is empty, you must set the parameter to
INDEXSTARTBY=0 or specify EXTENSIONS=EMPTYOK.

INDXEXIT

Specifies the 1- to 8-byte character name of the index record exit program.

AIX and Windows

INDXEXIT=programname
ACIF calls this program for every record (structured field) it writes in the
index object file (specified with the INDEXDD parameter). If you specify the
program file name without a path, ACIF searches for the exit program in the
paths that are specified by the PATH environment variable. If this parameter is
not specified, ACIF does not use an index record exit program. The value is:

programname
Any valid index record exit program name. The exit program name is
case-sensitive.

z/0S, VM, and VSE

INDXEXIT=modulename
ACIF loads this module name during initialization and then calls for every
record (structured field) it writes to the index object file (specified with the
INDEXDD parameter). If this parameter is not specified, no index record exit
is used. For more detailed information, see [“Index record exit” on page 126

INPCCSID

Specifies a valid coded character set identifier (CCSID) for the input code page you
want to convert to another CCSID. This parameter can be used by an input record
exit program, such as apka2e or asciinpe, to translate input data streams (see
[“Using ACIF user input record exits in AIX and Windows” on page 125| for more
information).

INPCCSID=ccsid
The value is:

cesid
Any valid CCSID, which is a 3- to 5-character decimal value in the range
00000 - 65535 that is registered by the Character Data Representation
Architecture (CDRA). You can replace leading zeros with spaces.

For information about CCSIDs, see CDRA Reference and Registry, SC09-2190.

INPEXIT

Specifies the 1- to 8-byte character name of the input record exit program.

AIX and Windows

INPEXIT=programname
ACIF calls this program for every record (every line) it reads from the input
file (specified with the INPUTDD parameter). If you specify the file name
without a path, ACIF searches for the exit program in the paths that are
specified by the PATH environment variable. If you do not specify this
parameter, ACIF does not use an input record exit program. The value is:

Chapter 3. ACIF parameters 55

56

programname
Any valid input record exit program name. The exit program name is
case-sensitive.

If the input file is unformatted ASCII, but the fonts you are using contain
EBCDIC, not ASCII, code points (for example, you specify CHARS=GT15),
you can specify one of these exit programs that are supplied with InfoPrint
Manager:

lusr/lpp/psf/bin/apka2e (AIX) or \install_directory\exits\acif\apka2e.dll
(Windows)
Converts ASCII stream data to EBCDIC stream data. You can also
convert encoded data to another coded character set identifier (CCSID)
if you specify the INPCCSID and OUTCCSID parameters.

lust/lpp/psf/bin/asciinp (AIX) or \install_directory\exits\acif\asciinp.dll
(Windows)
Converts unformatted ASCII data that contains carriage returns and
form feeds into a record format that contains an ANSI carriage control
character. This exit encodes the ANSI carriage control character in byte
0 of every record.

lusr/lpp/psf/bin/asciinpe (AIX) or \install_directory\exits\acif\asciinpe.dll
(Windows)
Converts unformatted ASCII data into a record format in the same way
as asciinp, and then converts the ASCII stream data to EBCDIC stream
data. You can also convert encoded data to another coded character set
identifier (CCSID) if you specify the INPCCSID and OUTCCSID
parameters.

If your input file uses fonts that have ASCII code points (such as
CHARS=H292), you should not use the apka2e or asciinpe exit programs.
However, if your unformatted ASCII file contains carriage returns and form
feeds, you might want to specify the asciinp exit program that is supplied with
InfoPrint Manager.

z/0S, VM, and VSE

INPEXIT=modulename
ACIF loads this module name during initialization and then calls for every
input record it reads from the input file (specified with the INPUTDD
parameter). If this parameter is not specified, no input record exit is used. See
[“Input record exit” on page 122| for more detailed information.

INPUTDD

Specifies the name of the input file.

AIX and Windows

INPUTDD={STDIN | filename}
Specifies the full path name of the input file that ACIF processes. If you do not
specify INPUTDD, ACIF uses STDIN as the default.

z/0OS and VM

INPUTDD={INPUT | ddname}
Specifies the DD name for the file ACIF processes. The DD name is a 1- to
8-byte character string that contains only those alphanumeric characters that
are supported in the operating environment. When ACIF processes a file, it
reads from this DD name.

PSF V4R5 for z/OS: ACIF User's Guide

If INPUTDD is not specified, ACIF uses INPUT as the default DD name.

VSE

INPUTDD={INPUT | filename (LRECL=nnnn,BLKSIZE

=nnnn ,RECFM=F[FB|V|VB,DEVT=TAPE | DISK)}
Specifies the file name and file characteristics that appear on the DLBL or
TLBL JCL statement. The file name is a 1- to 7-byte character string that
contains only those alphanumeric characters that are supported in the
operating environment.

The values are:

INPUT

ACIF uses INPUT as the name for the input file.

filename
A character string that contains only those alphanumeric characters that are

supported in VSE file names.

LRECL=nnnn

Specifies the record length of the input data set.

BLKSIZE=nnnn

Specifies the block size of the input data set.

RECFM=F|FB|V|VB

Specifies the record format of the input data set.

F Fixed
FB Fixed Block
V Variable

VB Variable Block

DEVT=TAPE | DISK

Specifies the device type, either TAPE or DISK.

Note: ACIF supports SAM or VSAM-managed SAM. It does not support
VSAM ISDS, ESDS, or RRDS.

If INPUTDD is not specified, ACIF uses these default values:

INDEX for the file name

133 bytes for the record length
Unblocked records

F for the record format

DISK as the default device type
Assigned to programmer logical unit 006

INSERTIMM

Specifies whether ACIF is to insert an Invoke Medium Map (IMM) structured field
before the first Begin Page (BPG) structured field of every named page group.

INSERTIMM={YES | NO}
The values are:

Chapter 3. ACIF parameters

57

58

YES
Specifies that ACIF inserts an IMM before the first BPG structured field in
the named page group if no IMM was encountered within the named page
group.

NO Specifies that an IMM is not inserted before the first BPG structured field.

If this parameter is not specified, ACIF uses NO as the default.

MCF2REF

Specifies the way ACIF builds the Map Coded Font Format 2 (MCF-2) structured
field in the OUTPUT file and the RESOBJ file.

MCF2REF={CPCS | CF}
The values are:

CPCS
ACIF uses the names of the code page and character set to build the
MCE-2 structured field. ACIF opens and reads the contents of all coded
fonts that are specified in MCFs in the input file or input resources.

CF ACIF uses the name of the coded font to build the MCEF-2 structured field.
This value is recommended when you are processing DBCS fonts.
Specifying CF improves ACIF performance because, if RESTYPE=FONT or
RESTYPE=ALL is not specified, ACIF does not have to read the coded
fonts from the font library.

If this parameter is not specified, ACIF uses CPCS as the default.

MSGDD

Specifies the name of the error message file.

AIX and Windows

MSGDD={STDERR | filename}
Specifies the name or the full path name of the file where ACIF writes error
messages. If you specify the file name without a path, ACIF puts the error file
into your current directory.

If MSGDD is not specified, ACIF uses STDERR as the default for its message
output.

z/0S and VM

MSGDD={SYSPRINT | ddname}
Specifies the DD name for the file where ACIF writes error messages. The DD
name is a 1- to 8-byte character string that contains only those alphanumeric
characters that are supported in the operating environment. When ACIF
processes a file, it writes to the DD name.

If MSGDD is not specified, ACIF uses SYSPRINT as the default DD name.

OBJCONLIB

Specifies the location where object container setup files and resources are stored.
Object container resources contain non-OCA data objects, such as color mapping
tables (CMT), Encapsulated PostScript (EPS), microfilm setup files, Portable
Document Format (PDF) objects, and TIFF images.

PSF V4R5 for z/OS: ACIF User's Guide

AIX and Windows
0BJCONLIB=pathlist

Specifies the directories in which object container files are stored.
The value is:

pathlist
Any valid search path. You must use a colon (:) in AIX or a semicolon (;) in
Windows to separate multiple paths. ACIF searches the paths in the order
in which they are specified. For example, \acif\resources is searched first
in the following path list:

OBJCONLIB=\acif\resources;\download\resources;\my\secret\resources\
Keep in mind: The total number of all characters in the string of path
names cannot exceed 4095 bytes.

For information about how InfoPrint Manager selects resources, see
[ACIF in AIX and Windows” on page 17| or InfoPrint Manager: Reference.

z/0S
OBJCONLIB=dsnamel [,dsname2] [,dsname3...]

VM

Specifies the data sets that compose the object container library. You can
specify a maximum of 16 data sets. For example:

OBJCONLIB=SYS1.0BJCONLIB,USER.OBJCONLIB

This parameter also specifies the concatenation sequence when ACIF searches
for a particular file. ACIF first looks for a file in dsnamel. If it cannot find the

file in dsnamel, it continues the search with dsname2, and so on, until it locates
the requested file or exhausts the list of specified data sets.

If USERLIB is also specified, ACIF searches for the resource in the data sets
specified in the USERLIB before it searches the data sets identified in
OBJCONLIB.

Notes:
1. Data sets must be specified as fully qualified names without quotation
marks.

2. If the libraries specified for FONTLIB are not specified in the same order
that is used by the PSF startup procedure, the printed and converted results
might differ. For information about how PSF selects resources, see
lz/OS: Customization|

3. For systems before MVS/DFP Version 2.3, data sets must be concatenated
with the largest block size first.

OBJCONLIB=filetypel[,filetype? 1[,filetype3...]

Specifies the file types that define the object container file library. You can
specify a maximum of eight file types. For example:

0BJCONLIB=0BJ3820,TEMPOBJ

This parameter also specifies the search order in which ACIF searches for a
particular file. ACIF first looks for the resource with a file type of filetypel. If it
cannot find the resource with a file type of filetypel, it continues the search
with filetype2, and so on, until it locates the requested resource or exhausts the
list of specified file types.

Chapter 3. ACIF parameters 59

Note: File type values must conform to CMS naming conventions.

VSE

This parameter is not used for VSE. Object container resources are in the library
that is defined by the // LIBDEF PHASE,SEARCH=(...) JCL statement. For
information about how PSF/VSE selects resources, see Print Services Facility/VSE:
System Programming Guide, S544-3665.

OBJCPATH

Specifies the names of UNIX file system directories for object container files that
contain data objects and color management resources (CMRs).

Note: This parameter applies only to objects that are installed with a resource
access table (RAT). For more information about resources that are installed
with RATs, see[Appendix B, “Processing resources installed with resource|
laccess tables,” on page 217

OBJCPATH=pathlist
The value is:

pathlist
Any valid search path. You must use a colon (:) in AIX and z/OS or a
semicolon (;) in Windows to separate multiple paths. For example:

AIX or Windows
acif inputdd=INFILE outputdd=OUTFILE pagedef=PAGTRUE formdef=F1A10110 \
objcpath=/jdoe/objects/color:/jdoe/objects/color/myobjects/

Note: The backslash (\) tells AIX to continue reading the
command from the next line. In Windows, the backslash is
not valid; therefore, the command parameters must be on
one continuous line.

z/0S
INPUTDD=INFILE
OUTPUTDD=0QUTFILE
PAGEDEF=PAGTRUE
FORMDEF=F1A10110
O0BJCPATH="/jdoe/objects/color:/jdoe/objects/color/myobjects/"

Note: To continue a pathlist on multiple lines in a parameter file,
type the pathlist to the last character of the first line and then
continue typing in the first column of the next line.

ACIF searches the paths in the order in which they are specified.

Keep in mind: The total number of all characters in the string of path names
cannot exceed 4095 bytes.

OuUTCCSID

Specifies a valid coded character set identifier (CCSID) for the output code page
that you want converted. This parameter can be used by an input record exit
program, such as apka2e or asciinpe, to specify the encoding of the output data
(see ["Using ACIF user input record exits in AIX and Windows” on page 125| for
more information).

OUTCCSID=ccsid
The value is:

60 PSF V4R5 for z/OS: ACIF User's Guide

cesid
Any valid CCSID, which is a 3- to 5-character decimal value in the range
00000 - 65535 that is registered by the Character Data Representation
Architecture (CDRA). You can replace leading zeros with spaces.

For information about CCSIDs, see CDRA Reference and Registry, SC09-2190.

OUTEXIT

Specifies the name of the output record exit program.

AIX and Windows

OUTEXIT=programname
Specifies the name or the full path name of the output record exit program.
ACIF calls this program for every output record (every line) it writes to the
output document file (specified with the OUTPUTDD parameter). If you
specify the file name without a path, ACIF searches for the file name in the
paths that are specified by the PATH environment variable. If you do not
specify this parameter, ACIF does not use an output record exit program. The
value is:

programname
Any valid output record exit program name. The exit program name is
case-sensitive.

z/0S, VM, and VSE

OUTEXIT=modulename
Specifies the name of the output record exit program. This value is a 1- to
8-byte character name of the module ACIF loads during initialization and then
calls for every output record it writes to the output document file (specified
with the OUTPUTDD parameter). If this parameter is not specified, no output
record exit is used. For more detailed information, see [“Output record exit” on|

OUTPUTDD

Specifies the name of the output document file.

AIX and Windows

OUTPUTDD={STDOUT | filename}
Specifies the name or the full path name of the output document file. If you
specify the file name without a path, ACIF puts the output file into your
current directory.

If OUTPUTDD is not specified, ACIF uses STDOUT as the default.

z/0OS and VM

OUTPUTDD={OUTPUT | ddname}
Specifies the DD name for the output document file ACIF produces when it
processes a file. The DD name is a 1- to 8-byte character string that contains
only those alphanumeric characters that are supported in the operating
environment. When ACIF processes a print file, it writes the resultant
converted print data to this DD name. These DCB characteristics are suggested
for the file:

* Variable blocked format
¢ A maximum record length of 32756

Chapter 3. ACIF parameters 61

If a record length other than 32756 is specified, ACIF might produce a record
of length greater than that which is allowed by the OUTPUT DD statement.
If this happens, ACIF ends processing abnormally.

¢ A block size of 32760
* Physical sequential format

If OUTPUTDD is not specified, ACIF uses OUTPUT as the default DD name.

VSE

OUTPUTDD={OUTPUT| filename (DEVT=TAPE | DISK)}
Specifies the file name and file characteristics that appears on the DLBL or
TLBL JCL statement. The file name is a 1- to 7-byte character string that
contains only those alphanumeric characters that are supported in the
operating environment. Characteristics of the file are:
* A block size of 32760

¢ A maximum record length of 32756

If a record length other than 32756 is specified, ACIF might produce a record
of length greater than what is allowed by the DLBL or TLBL JCL statement.
If that happens, ACIF ends processing abnormally.

* Variable blocked format
* Assigned to programmer logical unit 007

If OUTPUTDD is not specified, ACIF uses OUTPUT as the default file name
and DISK as the default device type.

OVLYLIB

Specifies the location of overlays.

AIX and Windows

OVLYLIB=pathlist
Specifies the directories in which overlays are stored. The value is:

pathlist
Any valid search path. You must use a colon () in AIX or a semicolon (;) in
Windows to separate multiple paths. ACIF searches the paths in the order
in which they are specified. For example, \acif\resources is searched first
in the following path list:

OVLYLIB=\acif\resources;\download\resources;\my\secret\resources\

Keep in mind: The total number of all characters in the string of path
names cannot exceed 4095 bytes.

You can specify the same value for the OVLYLIB parameter to ACIF as you
specify to InfoPrint Manager. In this way, the search paths and resources that
are used at transform time are identical to the search paths and resources that
are used at print time.

For information about how InfoPrint Manager selects resources, see
[ACIF in AIX and Windows” on page 17| or InfoPrint Manager: Reference.

z/0S

OVLYLIB=dsnamel[,dsname2] [,dsname3...]
Specifies the data sets that compose the overlay library. You can specify a
maximum of 16 data sets. For example:

OVLYLIB=SYS1.0VLYLIB,USER.QVLYLIB

62 PSF V4R5 for z/OS: ACIF User's Guide

The parameter also specifies the concatenation sequence when ACIF searches
for a particular overlay resource. ACIF first looks for the resource in dsnamel. If
ACIF cannot find the resource in dsnamel, it continues the search with dsname?2,
and so on, until it either locates the requested resource or exhausts the list of
specified data sets.

If USERLIB is also specified, ACIF searches for the resource in the data sets
specified in USERLIB before it searches the data sets identified in OVLYLIB.

Notes:
1. Data sets must be specified as fully qualified names without quotation
marks.

2. If the libraries specified for OVLYLIB are not specified in the same order
that is used by the PSF startup procedure, the printed and converted results
might differ. For information about how PSF selects resources, see
lz/OS: Customization|

3. For systems before MVS/DFP Version 2.3, data sets must be concatenated
with the largest block size first.

4. This parameter is required if overlay retrieval is requested and USERLIB is
not specified. The RESTYPE value determines whether overlays are to be
retrieved for inclusion in the resource data set. If this parameter is not
specified, and overlay retrieval is requested, ACIF reports an error
condition and ends processing.

VM

OVLYLIB=filetypell[,filetype2][,filetype3...]
Specifies the file types that define the overlay libraries. You can specify a
maximum of eight file types. For example:

OVLYLIB=0VLY38PP,TEMPOVLY

This parameter also specifies the search order when ACIF searches for a
particular overlay resource. ACIF first looks for the resource with a file type of
filetypel. If ACIF cannot find the resource with a file type of filetypel, it
continues the search with filetype2, and so on, until it either locates the
requested resource or exhausts the list of specified files.

Notes:
1. File types must conform to CMS naming conventions.

2. This parameter is required if overlay retrieval is requested and USERLIB is
not specified. The RESTYPE parameter determines whether overlays are to
be retrieved for inclusion in the resource file. If OVLYLIB is not specified,
and overlay retrieval is requested, ACIF reports an error condition and
ends processing.

VSE

This parameter is not used for VSE. Overlay resources are in the library that is
defined by the // LIBDEF PHASE,SEARCH=(...) JCL statement. For information
about how PSF/VSE selects resources, see Print Services Facility/VSE: System
Programming Guide, S544-3665.

PAGEDEF

Specifies the file name (in AIX, Windows, or VM) or the member name (in z/OS or
VSE) of the page definition. A page definition defines the page format that ACIF
uses to compose line data, XML data, mixed-mode data, and unformatted ASCII
data into pages; it is not used with MO:DCA-P data. Page definitions are only used

Chapter 3. ACIF parameters 63

64

by ACIF at transform time to convert data streams; they are not used by PSF and
InfoPrint Manager to print the output that is produced by ACIE.

Note: Inline page definitions are removed from the output data, even if
RESTYPE=INLINE or RESTYPE=INLONLY. Page definitions are not saved
in the output resource library.

PAGEDEF=pdefname
The value is:

pdefname
Any valid page definition name. The pdefname can be 1 - 8 alphanumeric
characters (a-z, A-Z, 0-9) and special characters (# $ @), including the
2-character prefix, if there is one. Unlike PSF for z/OS, PSE/VM, and
PSF/VSE, ACIF does not require the name to begin with a P1 prefix;
however, if the name does begin with P1, you cannot omit it. For example:

PAGEDEF=P1USER10

Notes:
1. In AIX, the pdefname is case-sensitive.

2. If the file name of the page definition includes a file extension, do not
use the file extension when you are specifying the page definition. For
example, to use a page definition that is named MEMO.PDEF38PP,
specify PAGEDEF=MEMO.

3. ACIF does not require a page definition when it is indexing an AFP
data stream file. However, ACIF does require a page definition to
transform an input file that contains line data, XML data, mixed-mode
data, or unformatted ASCII data into MO:DCA-P. If you are
transforming such an input file and you do not specify the PAGEDEF
parameter, or you specify PAGEDEF without a page definition file
name, ACIF reports an error condition and ends processing.

4. If you use the PAGEDEF parameter to specify a page definition that
names fonts, but you also use the CHARS parameter to specify fonts,
the CHARS parameter is ignored. Therefore, if your page definition
names fonts, do not use the CHARS parameter.

5. ACIF does not support a parameter equivalent to the LINECT
parameter on the /*JOBPARM, /*OUTPUT, and OUTPUT JCL
statements. The maximum number of lines that are processed on a page
is defined in the page definition.

The page definition that you use can be found in one of these locations:

Inline in the file
A page definition can be an inline resource in all data formats except
XML. (XML data cannot have carriage control characters, which are
used to identify inline resources.) If the page definition is an inline
resource, you must do these tasks:

1. Include an inline form definition in the file.

2. Specify CC=YES to indicate that the file contains carriage control
characters. If the length of the records in the page definition is less
than or equal to the logical-record length defined for the file, you
can specify fixed-length records for the record format. If the length
of the records in the page definition is greater than the
logical-record length defined for the file, you must specify:

PSF V4R5 for z/OS: ACIF User's Guide

* Variable length records in z/OS or VSE for the record format
(variable blocked with ANSI carriage control characters [VBA] or
variable blocked with machine carriage control characters [VBM])

* Variable length records in VM for the record format
3. Specify PAGEDEF with one of these values:

pdefname
Indicates the name of the inline page definition. If the name
specified in the PAGEDEF parameter does not match the
name of an inline page definition, ACIF looks for the page
definition in the PAGEDEEF search path or uses the page
definition from the resource library.

DUMMY
If the file does not include an inline page definition, ACIF
looks for the page definition named DUMMY. If ACIF
cannot find a page definition that is named DUMMY, it
reports an error and ends processing.

Note: DUMMY must be specified in all uppercase letters.

An input file can contain multiple page definitions, but only one page
definition can be used by ACIEF. If a file contains more than one inline
page definition, and you specify PAGEDEF=pdefname, ACIF uses the
first inline page definition named pdefname. If a file contains more than
one inline page definition and you specify PAGEDEF=DUMMY, ACIF
uses the first inline page definition in the input file. By changing the
page definition name in the PAGEDEF parameter on different printing
jobs, you can test different page definitions.

AIX or Windows directory, or a z/OS or VM library
Use the USERLIB or PDEFLIB parameter to specify the path to the file
or the data sets.

In AIX, use one of these examples:

* pagedef=memo
userlib=/usr/afp/resources

* pagedef=memo
pdeflib=/usr/1ib/pagedefns

In Windows, use this example:
pagedef=memo

userlib=\install _directory\resources

In z/OS or VM, use one of these examples:
* PAGEDEF=MEMO

USERLIB=USER.RESOURCES
* PAGEDEF=MEMO

PDEFLIB=USER.PAGEDEFNS

VSE library
The // LIBDEF PHASE,SEARCH=(...) DLBL JCL statement references
the VSE library.

PARMDD

Specifies the name of the parameter file.

Chapter 3. ACIF parameters 65

66

AIX and Windows

PARMDD=filename
Specifies the name or the full path name of the parameter file that contains
ACIF parameters and values. This parameter is specified with the acif
command. For example, to use a parameter file that is named PARMFILE,
specify:
acif parmdd=PARMFILE

If you specity the file name without a path, ACIF searches for the file name in
your current directory.

z/0OS and VM

PARMDD={SYSIN | ddname}
Specifies the DD name for the parameter file that contains ACIF parameters
and values. The DD name is a 1- to 8-byte character string that contains only
those alphanumeric characters that are supported in the operating
environment. This parameter is specified in an EXEC statement or on the
command line.

If PARMDD is not specified, ACIF uses SYSIN as the default DD name.

The parameter file can contain a maximum of 100 records. If the file contains more
than 100 records, ACIF issues an error message.

PDEFLIB

Specifies the location of page definitions.

AIX and Windows

PDEFLIB=pathlist
Specifies the directories in which page definitions are stored. The value is:

pathlist
Any valid search path. You must use a colon () in AIX or a semicolon (;) in
Windows to separate multiple paths. ACIF searches the paths in the order
in which they are specified. For example, \acif\resources is searched first
in the following path list:

PDEFLIB=\acif\resources;\download\resources;\my\secret\resources\

Keep in mind: The total number of all characters in the string of path
names cannot exceed 4095 bytes.

For information about how InfoPrint Manager selects resources, see
[ACIF in ATIX and Windows” on page 17| or InfoPrint Manager: Reference.

z/0S

PDEFLIB=dsnamel[,dsname2] [,dsname3. . .]
Specifies the data sets that compose the page-definition library. You can specify
a maximum of 16 data sets. For example:

PDEFLIB=SYS1.PDEFLIB,USER.PDEFLIB

This parameter also specifies the concatenation sequence when ACIF searches
for a particular page definition. ACIF first looks for the resource in dsnamel. If
ACIF cannot find the resource in dsnamel, it continues the search with dsname2,
and so on, until it either locates the requested resource or exhausts the list of
specified data sets.

PSF V4R5 for z/OS: ACIF User's Guide

If USERLIB is also specified, ACIF searches for the resource in the data sets
specified in USERLIB before it searches the data sets identified in PDEFLIB.

Notes:
1. Data sets must be specified as fully qualified names without quotation
marks.

2. If the libraries specified for PDEFLIB are not specified in the same order
that is used by the PSF startup procedure, the printed and converted results
might differ. For information about how PSF selects resources, see
lz/OS: Customization|

3. For systems before MVS/DFP Version 2.3, files must be concatenated with
the largest block size first.

4. This parameter is required if the input file contains any line data and
USERLIB is not specified. If this parameter is not specified and the input
file contains line data, ACIF reports an error condition and ends processing.

VM

PDEFLIB=filetypel[,filetype? 1[,filetype3...]
Specifies the file types that define the page-definition libraries. You can specify
a maximum of eight file types. For example:

PDEFLIB=PDEF38PP, TESTPDEF

This parameter also specifies the search order when ACIF searches for a
particular PAGEDEF resource. ACIF first looks for the resource with a file type
of filetypel. If ACIF cannot find the resource with a file type of filetypel, it
continues the search with filetype2, and so on, until it either locates the
requested resource or exhausts the list of specified files.

Notes:

1. The file types must conform to CMS naming conventions.

2. This parameter is required if the print file contains any line data and
USERLIB is not specified. If this parameter is not specified, and the print
file contains any line data, ACIF reports an error condition and ends
processing.

VSE

This parameter is not used for VSE. Page-definition resources are in the library that
is defined by the // LIBDEF PHASE,SEARCH=(...) JCL statement. For information
about how PSF/VSE selects resources, see Print Services Facility/VSE: System
Programming Guide, S544-3665.

PRMODE

Specifies the type of data in the input file and whether ACIF must do optional
processing of that data.

PRMODE={SOSI1 | SOSI2 | SOSI3 | SOSI4 | acacaaaa}
The values are:

SOSI1
Specifies that each shift-out, shift-in code is converted to a blank and a Set
Coded Font Local text control. This SOSI1 data conversion is the same as
the one done by PSF for z/OS, PSF/VM, and PSF/VSE.

S0SI2
Specifies that each shift-out, shift-in code is converted to a Set Coded Font

Chapter 3. ACIF parameters 67

68

PSEGLIB

Specifies the location where page segments and BCOCA, GOCA, IOCA, and
PTOCA objects are stored.

AIX and Windows
PSEGLIB=pathlist

Local text control. This SOSI2 data conversion is the same as the one done
by PSF for z/OS, PSF/VM, and PSE/VSE.

S0SI3
Specifies that each shift-out character is converted to a Set Coded Font
Local text control. Each shift-in is converted to a Set Coded Font Local Text
control and two blanks. This SOSI3 data conversion is the same as the one
done by PSF for z/OS.

S0SI4
Specifies that each shift-out, shift-in code is skipped and not counted when
offsets are calculated for the input file. SOSI4 is used when DBCS text is
converted from ASCII to EBCDIC. When SOSI4 is specified, the page
definition offsets are correct after conversion; therefore, the user does not
need to account for SOSI characters when FIELD offsets are computed. The
processing of shift-out and shift-in codes for SOSI4 is the same as for
SOSI2.

aaaaaaaa
Any 8-byte alphanumeric string. This value is supplied to all of the ACIF
user exits. Using the AFPDS value indicates that the data contains
MO:DCA-P structured fields.

Notes:
1. Do not specify a SOSI value if the line data contains UTF8 or UTF16 data.

2. For the SOSI processing to work correctly, the first font that is specified in
the CHARS parameter (or in a font list in a page definition) must be a
single-byte font, and the second font must be a double-byte font.

For more information about processing line data with SOSI controls, see
Advanced Function Presentation: Programming Guide and Line Data Reference.

Specifies the directories in which page segment library files are stored. The
value is:

pathlist
Any valid search path. You must use a colon (:) in AIX or a semicolon (;) in
Windows to separate multiple paths. ACIF searches the paths in the order
in which they are specified. For example, \acif\resources is searched first
in the following path list:

PSEGLIB=\acif\resources;\download\resources;\my\secret\resources\

Keep in mind: The total number of all characters in the string of path
names cannot exceed 4095 bytes.

You can specify the same value for the PSEGLIB parameter to ACIF as you
specify to InfoPrint Manager. In this way, the search paths and resources that
are used at transform time are identical to the search paths and resources that
are used at print time.

For information about how InfoPrint Manager selects resources, see
[ACIF in ATIX and Windows” on page 17| or InfoPrint Manager: Reference.

PSF V4R5 for z/OS: ACIF User's Guide

z/0S
PSEGLIB=dsnamel [,dsname2] [,dsname3...]

VM

Specifies the data sets that compose the page segment library. You can specify
a maximum of 16 data sets. For example:

PSEGLIB=SYS1.PSEGLIB,USER.PSEGLIB

This parameter also specifies the concatenation sequence when ACIF searches
for a particular page segment or BCOCA, GOCA, IOCA, or PTOCA object.
ACIF first looks for the resource in dsnamel. If it cannot find the resource in
dsnamel, it continues the search with dsname2, and so on, until it either locates
the requested resource or exhausts the list of specified data sets.

If USERLIB is also specified, ACIF searches for the resource in the files that
are specified in USERLIB before it searches the files identified in PSEGLIB.

Notes:

1. Data sets must be specified as fully qualified names without quotation
marks.

2. If the libraries specified for PSEGLIB are not specified in the same order
that is used by the PSF startup procedure, the printed and converted results
might differ. For information about how PSF selects resources, see
lz/OS: Customization|

3. For systems before MVS/DFP Version 2.3, data sets must be concatenated
with the largest block size first.

4. This parameter is required if page segment retrieval is requested and
USERLIB is not specified. The RESTYPE value determines whether page
segments are to be retrieved for inclusion in the resource data set. If this
parameter is not specified, and page segment retrieval is requested, ACIF
reports an error condition and ends processing.

PSEGLIB=filetypel[,filetype2][,filetype3...]

Specifies the file types that define the page segment libraries. You can specify a
maximum of eight file types. For example:

PSEGLIB=PSEG38PP,PSEGTEST

This parameter also specifies the search order when ACIF searches for a
particular page segment resource. ACIF first looks for the resource with a file
type of filetypel. If it cannot find the resource with a file type of filetypel, it
continues the search with filetype2, and so on, until it either locates the
requested resource or exhausts the list of specified files.

Notes:

1. The file types must conform to CMS naming conventions.

2. This parameter is required if page segment retrieval is requested and
USERLIB is not specified. The RESTYPE value determines whether page
segments are to be retrieved for inclusion in the resource file. If this
parameter is not specified, and page segment retrieval is requested, ACIF
reports an error condition and ends processing.

Chapter 3. ACIF parameters 69

70

VSE

This parameter is not used for VSE. Page-segment resources are in the library that
is defined by the // LIBDEF PHASE,SEARCH=(...) JCL statement. For information
about how PSF/VSE selects resources, see Print Services Facility/VSE: System
Programming Guide, S544-3665.

RESEXIT

Specifies the name of the resource exit program.

AIX and Windows

RESEXIT=programname
Specifies the name or the full path name of the resource exit program, which
ACIF calls each time that it attempts to retrieve a requested resource from a
directory. If you specify the file name without a path, ACIF searches for the file
name in the paths that are specified by the PATH environment variable. If you
do not specify this parameter, ACIF does not use a resource exit program. The
value is:

programname
Any valid resource exit program name. The exit program name is
case-sensitive.

z/0S, VM, and VSE

RESEXIT=modulename
Specifies the name of the resource exit program. This value is a 1- to 8-byte
character name of the module ACIF loads during initialization and then calls
each time that it attempts to retrieve a requested resource from a library. If this
parameter is not specified, no resource exit is used. For more detailed
information, see [“Resource exit” on page 130}

RESFILE

Specifies the format of the resource file that is created by ACIF in z/OS. This
parameter is only used for z/OS. ACIF can create either a sequential data set or a
partitioned data set (PDS) from the resources it retrieves from the PSF for z/OS
resource libraries.

RESFILE={SEQ | PDS}
The values are:

SEQ
Creates a resource group that can be concatenated to the document file as
inline resources.

The format of the resource file that is specified for TrueType and OpenType
fonts must be SEQ.

PDS
Creates a member that can be placed in a user library or in a system
library for use by PSF. The file that is created by selecting PDS cannot be
concatenated to the document file and used as inline resources.

If this parameter is not specified, ACIF writes to the DD name specified in the
RESOBJDD parameter, assuming a sequential format. For more information
about the contents of the resource data set, see |”F0rmat of the resources file"|

PSF V4R5 for z/OS: ACIF User's Guide

RESLIB

The parameters that you use to allocate the RESOBJDD data set must be
compatible with the value of the RESFILE parameter. For example, if
RESFILE=PDS, then DSORG=PO must be specified in the DD statement of
the data set named by the RESOBJDD parameter. In addition, the SPACE
parameter must include a value for directory blocks, such as
SPACE=(12288,(150,15,15)), in the DD statement of the data set named by the
RESOBJDD parameter.

If RESFILE=SEQ is specified, then DSORG=PS must be specified in the DD
statement of the data set named by the RESOBJDD parameter. In addition, the
SPACE parameter must not include a directory value, as in
SPACE=(12288,(150,15)), in the DD statement of the data set named by the
RESOBJDD parameter. Failure to allocate the data set named by the
RESOBJDD parameter in a manner compatible with the specification of the
RESFILE parameter might result in a RESOBJDD data set that is unusable.

If RESFILE is not specified, ACIF uses SEQ as the default.

Specifies the paths for the system resource directories in InfoPrint Manager.

RESLIB=pathlist

The value is:

pathlist
Any valid search path. You must use a colon (:) in AIX or a semicolon (;) in
Windows to separate multiple paths.

Keep in mind: The total number of all characters in the string of path
names cannot exceed 4095 bytes.

System resource directories typically contain resources that are shared by many
users. The directories can contain any AFP resources (fonts, page segments,
overlays, page definitions, or form definitions). The directories can also contain
objects that are installed with a resource access table (RAT), such as color
management resources (CMRs) and data object resources. However, RESLIB is
not used to specify directories for TrueType and OpenType fonts. Instead, use
the FONTPATH or USERPATH parameter.

In most cases, you want ACIF to find the same resources that InfoPrint
Manager uses when it prints the file. If so, the RESLIB paths must be the same
as the paths specified with the RESPATH parameter to InfoPrint Manager.

For information about how InfoPrint Manager selects resources, see
[ACIF in AIX and Windows” on page 17| or InfoPrint Manager: Reference.

RESOBJDD

Specifies the name of the resource file.

Note: If the input file specified with the INPUTDD parameter is empty and

EXTENSIONS=EMPTYOK, ACIF does not produce a resource file.

AIX and Windows
RESOBJDD={RESOBJ | filename}

Specifies the name or the full path name for the resource file that ACIF writes
data to. When ACIF processes a print file, it can optionally create a file that
contains all or some of the resources that are required to print or view the file.
The values are:

Chapter 3. ACIF parameters 71

72

RESOBJ
ACIF writes the resource data in a file with this name.

filename
A character string that contains only those alphanumeric characters that are
supported in AIX and Windows file names.

If you specify the file name without a path, ACIF puts the resource file into
your current directory. If RESOBJDD is not specified, ACIF uses RESOB]J as
the default file name.

z/0S and VM
RESOBJDD={RESOBJ | ddname}

Specifies the DD name for the resource file. When ACIF processes a print file,
it can optionally create a file that contains all or some of the resources that are
required to print or view the file. It then writes the resource data to this DD
name. The DD name is a 1- to 8-byte character string that contains only those
alphanumeric characters that are supported in the operating environment.
These DCB characteristics are required for the file:
* Variable blocked format
* A maximum record length of 32756
If a record length other than 32756 is specified, ACIF might produce a record
of length greater than what is allowed by the RESOBJDD statement. If this
situation happens, ACIF ends processing abnormally.
* A block size of 32760

* Physical, sequential format

If RESOBJDD is not specified, ACIF uses RESOB]J as the default DD name.

VSE
RESOBJDD={RESOBJ | filename (DEVT=TAPE | DISK)}

Specifies the file name and file characteristics that appears on the DLBL or
TLBL JCL statement. The file name is a 1- to 7-byte character string that
contains only those alphanumeric characters that are supported in the
operating environment. The characteristics of the file are:
* A variable blocked file
* A maximum record length of 32756
If a record length other than 32756 is specified, ACIF might produce a record
of length greater than what is allowed by the DLBL or TLBL JCL statement.
If this situation happens, ACIF ends processing abnormally.
* A block size of 32760

* Assigned to programmer logical unit 008

If RESOBJDD is not specified, ACIF uses RESOB]J as the default file name and
DISK as the default device type.

RESTYPE

Specifies the type of AFP print resources ACIF retrieves from the resource
directories or libraries for inclusion in the resource file (specified with the
RESOBJDD parameter). (See [Table 3 on page 17| for the order that ACIF searches
for AFP resources.)

Note: All inline resources that match the type that is specified with RESTYPE are

included in the resource file, regardless of whether they are used in the

PSF V4R5 for z/OS: ACIF User's Guide

document. However, if you specify EXTENSIONS=RESORDER, only those
resources that are used are written to the resource file.

RESTYPE={NONE | ALL | [FDEF][,PSEG][,0VLY][,FONT][,0BJCON] [,BCOCA]
[,GOCA] [,I0CA] [,PTOCA] [,CMRALL] [,CMRGEN] [, INLINE] [, INLONLY]}
The values are:

NONE
Specifies that no resource file is created.

ALL
Specifies that all resources that are required to print or view the output
document file (specified with the OUTPUTDD parameter) are included in
the resource file.

Attention: Specifying this value can create large resource files, particularly
when color management resources (CMRs) are included.

FDEF
Specifies that the form definition (specified with the FORMDEF parameter)
that is used in processing the file is included in the resource file.

PSEG
Specifies that all page segments that are required to print or view the
output document file are included in the resource file.

OvLY
Specifies that all overlays that are required to print or view the output
document file are included in the resource file.

FONT
Specifies that all font character sets and code pages that are required to
print or view the output file are included in the resource file. Also used for
TrueType and OpenType fonts and specifies that all base fonts, linked
fonts, and font collections that are required to print the output file be
included in the resource file. If MCF2REF=CF is specified, ACIF also
includes coded fonts in the resource file; otherwise, coded fonts are not
included in the resource file.

Notes:

1. Specifying RESTYPE=FONT is not recommended with double-byte
raster fonts because of the size and large number of library members
that are needed to process double-byte raster fonts. If RESTYPE=FONT
is specified, you might want to specify MCF2REF=CF, which can
improve ACIF performance by reducing the number of font members
ACIF processes.

2. When you specify RESTYPE=FONT with TrueType and OpenType
fonts, the embed flag must be set “on” to save the font in the resource
file. For more information, see Using OpenType Fonts in an AFP System.

3. ACIF wraps TrueType and OpenType fonts in MO:DCA-P structured
fields when it saves them in the resource file.

4. When EXTENSIONS=RESORDER is specified with RESTYPE=FONT,
TrueType and OpenType fonts that were originally inline in the input
file are not saved in the resource library.

5. When RESTYPE=FONT is specified, ACIF checks to see whether a
Map Data Resource (MDR) structured field setting requires that a
requested data object font is inline in the input file resource group.

Chapter 3. ACIF parameters 73

0BJCON
Specifies that all object container files requested by the input data stream
be included in the resource file. These object container files include objects
such as color mapping tables specified by the COLORMAP parameter, the
COM setup file that is specified by the COMSETUP parameter, color
management resources (CMRs), Encapsulated PostScript (EPS), Portable
Document Format (PDF) objects, and TIFF images.

Note: When printing only one page from a multiple page object container

file, all pages in the object container are still saved in the resource
file.

BCOCA
Specifies that all BCOCA objects included by an IOB structured field that is
required to print or view the output document file is included in the
resource file.

GOCA
Specifies that all GOCA objects included by an IOB structured field that is
required to print or view the output document file is included in the
resource file.

I0CA
Specifies that all IOCA objects included by an IOB structured field that is
required to print or view the output document file is included in the
resource file.

PTOCA
Specifies that all PTOCA objects included by an IOB structured field that is
required to print or view the output document file is included in the
resource file.

CMRALL
Specifies that all CMRs required to print or view the output document file
(except link CMRs) are included in the resource file. These CMRs include
all CMRs referenced in the data stream, all CMRs referenced through a
data object or color management resource access table (RAT), and all
generic halftone and tone transfer curve CMRs. For more information
about the RAT, see |Appendix B, “Processing resources installed with|
[resource access tables,” on page 217

CMRGEN
Specifies that all CMRs referenced in the data stream plus any non-device
specific CMRs referenced through a data object or color management RAT
(except link CMRs) are included in the resource file. With CMRGEN, the
output that is generated by ACIF is not device-specific, unless the data
stream explicitly references a device-specific CMR.

INLINE
When one or more resource object types are specified with RESTYPE,
specifies that all inline resources that match the types are written to the
output file in addition to the resource file. For example,
RESTYPE=FONT,PSEG,INLINE causes any inline fonts and page
segments to be written to the output file, in addition to writing all inline
and library fonts and page segments to the resource file. The inline
resources precede the document in the output file. For more information,
see [“Processing inline resources” on page 214.|

INLONLY
Specifies that all inline resources contained in the input file are written to

74 PSF V4RS5 for z/OS: ACIF User's Guide

the output file, regardless of resource type. ACIF searches only for
resources that are inline, even if other RESTYPE values are specified. Also,
no resource file is created, even if the RESOBJDD parameter is specified.

Note: If no form definition is found inline and because a form definition is
always required to process the document, ACIF searches for the
requested form definition in the libraries.

Because multiple resource types are contained in the font, object container, and
page segment libraries, and ACIF does not enforce a prefix for the 8-character
resource name, define a naming convention that identifies each type of
resource in the library. IBM suggests that you use a 2-character prefix naming
convention for 8-character resource names. Other resource types (coded fonts,
form definitions, and page definitions) use required prefixes for identification.
See |PSF for z/OS: User’s Guide for the required and IBM-recommended prefixes
for resources.

ACIF supports the specification of BCOCA, CMRALL, CMRGEN, FDEF, FONT,
GOCA, IOCA, INLINE, OBJCON, OVLY, PSEG, and PTOCA in any
combination. For example, if you want to specify form definitions, page

segments, and overlays as the resource types, you can enter
RESTYPE=FDEEPSEG,OVLY or RESTYPE=OVLY,FDEEPSEG.

However, ALL, INLONLY, and NONE are order-dependent and override any
individual resource types specified. If more than one is specified, the last one is
used. For example, if you specify
RESTYPE=FDEEINLONLY,PSEG,NONE,OVLY,ALL, all resources are
included.

Notes:
1. Not all RESTYPE values are supported in VM or VSE.

2. When you are creating AFP files to view on the AFP Workbench Viewer, do
not specify RESTYPE=FONT or RESTYPE=ALL. The AFP Workbench
Viewer uses font definition files for font substitution instead of retrieving
fonts from a resource file when it displays documents. Therefore, you do
not need to download fonts to the resource file, which is time-consuming
and increases the number of bytes transmitted when the file is transferred
to the workstation or archived.

3. If you have a resource type that you want saved in a resource file, and it is
included in another resource type, you must specify both resource types.
For example, if you request that only page segments be saved in a resource
file, and the page segments are included in overlays, the page segments are
not saved in the resource file because the overlays are not searched. In this
case, you must request that both page segments and overlays be saved.

4. ACIF saves specified inline resources in the resource file, even if they are
not needed to print the job. However, if you specify
EXTENSIONS=RESORDER, ACIF saves only the inline resources that are
actually needed to print the job. You can also use a resource exit to filter
out any resources that you do not want included in the resource file (see
[“Resource exit” on page 130| for more information).

TRACE

Specifies that ACIF provides diagnostic trace information while it is processing the
file.

Chapter 3. ACIF parameters 75

76

Note: Tracing increases processor usage and can be turned off unless you need to
do problem determination.

AIX and Windows

TRACE={YES | NO}
The values are:

YES
ACIF writes trace information to the file that is specified by the TRACEDD
parameter.

N0 ACIF does not produce diagnostic trace records.

z/0S

TRACE={YES | NO | PDS}
The values are:

YES
ACIF uses the facilities of the Generalized Trace Facility (GTF) to produce
diagnostic trace records. ACIF writes GTF trace records with a user event
ID of X'314". To capture ACIF GTF records, GTF needs to be started with
the option TRACE=USRP, and then modified with USR=(314).

N0 ACIF does not produce diagnostic trace records

PDS
ACIF writes trace information to the file specified by the TRACEDD
parameter rather than producing a GTF trace.

TRACEDD

Specifies the name of the file where all ACIF trace information is written.

AIX and Windows

TRACEDD={TRACE | filename}
Specifies the name or the full path name of the file where ACIF writes trace
information when TRACE=YES is specified. If you specify the file name
without a path, ACIF puts the trace file into your current directory.

If TRACEDD is not specified, ACIF uses TRACE as the default file name.

z/0S

TRACEDD={TRACE | ddname}
Specifies the DD name of the file where ACIF trace information is written
when TRACE=PDS is specified. The DD name is a 1- to 8-byte character string
that contains only those alphanumeric characters that are supported in z/OS.
The file that is specified must have these characteristics:
DCB=(LRECL=121,RECFM=FB,DSORG=PS)

If TRACEDD is not specified, ACIF uses TRACE as the default DD name.

TRC

Specifies whether the input file contains table reference characters (TRCs). In line
data, you can use different fonts on different lines of a file by specifying a TRC at
the beginning of each line after the carriage control character, if one is present.

PSF V4R5 for z/OS: ACIF User's Guide

Note: TRC characters can be used to map fonts in documents that reference either
TrueType and OpenType fonts or FOCA fonts, but not a combination of the
two.

For more information about TRCs, see Advanced Function Presentation: Programming
Guide and Line Data Reference.

TRC={YES | NO}
The values are:

YES
The input file contains table reference characters.

NO The input file does not contain table reference characters.

Notes:

1. The order in which the fonts are specified in the CHARS parameter
establishes which number is assigned to each associated TRC. For example,
the first font specified is assigned “0”, the second font “1”, and so on.

2. If you specify TRC=YES but TRCs are not contained in the file, ACIF
interprets the first character of each line (or second, if carriage control
characters are used) as the font identifier. Consequently, the font that is
used to process each line of the file might not be the one you expect and 1
byte of data is lost from each record.

3. If you specify TRC=NO or you do not specify TRC at all, but your line
data contains a TRC as the first character of each line (or second if carriage
control characters are used), ACIF processes the TRC as a text character in
the output rather than using it as a font identifier.

TRIGGERN

Specifies the locations and values of data fields within the input file that are to be
used to define indexing groups in the file. These data fields are referred to as
“triggers” because their presence in the file triggers a processing action. A
maximum of four TRIGGER#n parameters can be specified. The number of
TRIGGER#n parameters that are required to uniquely identify the beginning of a
group of pages within the file is a function of the complexity of the application
output. TRIGGER1 is special and each record in the file that contains this value is
referred to as an indexing anchor record. The presence of a TRIGGER#n parameter
causes ACIF to index the input file.

TRIGGERn={record | *}{,column | *}{,'triggervalue’ | X'triggervalue'}
Each TRIGGER# parameter has three values:

record | *
Specifies the relative record number from the indexing anchor record
(TRIGGER1). A value of * must be specified for TRIGGER1 and cannot be
specified for any other TRIGGER# parameter; * indicates that every record
is checked for the presence of the TRIGGERT1 value. After the TRIGGER1
value is found, all other TRIGGER# parameter values are specified as a
relative offset from TRIGGER1. ACIF reports an error condition and ends
processing if an * is specified with any TRIGGER#n parameter other than
TRIGGERT1. The supported range of values for record is 0 - 255.

column | *
Specifies the byte offset from the beginning of the record where the trigger
value is located. This value can be specified in absolute terms (for example,
10), as 0, or as *. Specifying 0 or * results in ACIF scanning the record from
left to right looking for the trigger value. A value of 1 refers to the first

Chapter 3. ACIF parameters 77

78

byte in the record. For files that contain carriage control characters, column
1 refers to the carriage control character. The supported range of values for
column is 1 - 32756. ACIF compares the trigger value to the input data. If
the specified value exceeds the physical length of the record, ACIF
considers the comparison “false” and continues processing.

"triggervalue’ | X'triggervalue’
Specifies the actual alphanumeric or hexadecimal value of the trigger. ACIF
does not do any validity checking on this value, but uses it in doing a
byte-for-byte comparison with the records in the file. The trigger value can
be 1 - 250 bytes in length. If the combined values of column and the
trigger length exceed the physical length of the record, ACIF considers the
comparison “false” and continues processing.

Note: The trigger value can be specified as ASCII character data in AIX or
Windows, EBCDIC character data in z/OS, VM or VSE, or
hexadecimal data. However, if the input data file is anything other
than ASCII in AIX or Windows or EBCDIC in z/0S, VM, or VSE, the
value must be specified as hexadecimal data.

The following example shows how to use a carriage control character as a
trigger:

TRIGGER1=+,1,'1" /* Look for Skip-to-Channel 1
TRIGGER2=0,50, "ACCOUNT: "' /* Find account number
TRIGGER3=3,75, 'Page 1' /* Find page

In this example, TRIGGERT1 instructs ACIF to scan every record, looking for
the occurrence of '1' in the first byte. After ACIF locates a record that contains
'1', it looks in the same record, starting at byte 50, for the occurrence of
'"ACCOUNT:'". If '"ACCOUNT:' is found, ACIF looks at the third record for a
value of 'Page 1', starting at byte 75. If 'Page 1' is found, ACIF defines the
record that contains TRIGGERT1 as the indexing anchor record and all indexing
information is specified as relative locations relative from this point.

If ACIF finds either '"ACCOUNT:' or 'Page 1', it begins scanning the first record
after the farthest field specified. If neither 'ACCOUNT:' nor 'Page 1' is found at
its specified location relative to TRIGGER1, ACIF begins looking for
TRIGGERT1 again, starting with the next record (that is, the current record that
contains TRIGGER1 + 1).

Notes:

1. ACIF requires that at least one TRIGGER# or FIELD# value appear within
the page range that is specified by the INDEXSTARTBY parameter (unless
INDEXSTARTBY=0 is specified). If no TRIGGER#n or FIELD#n parameter is
satisfied within the INDEXSTARTBY page range, ACIF stops processing
and issues an error message. If you do not want ACIF to stop processing
when it cannot find a group indexing field or when a file is empty, you
must set the parameter to INDEXSTARTBY=0 or specify
EXTENSIONS=EMPTYOK.

2. At least one TRIGGER# or FIELD#n value must exist on the first page of
every unique page group. ACIF cannot detect an error condition if
TRIGGER# or FIELD# is missing, but the output might be incorrectly
indexed.

3. TRIGGERI1 must be specified when ACIF is requested to index the file.

4. An error condition occurs if you specify any TRIGGER# parameters when
the input file contains indexing tags.

PSF V4R5 for z/OS: ACIF User's Guide

See |Chapter 4, “Enhanced indexing parameters,” on page 83| for information about
using the TRIGGER# parameter with enhanced ACIF indexing.

UNIQUEBNGS

Specifies whether ACIF creates a unique group name by generating an 8-character
numeric string and appending the string to the group name. The group name that
is defined in the Begin Named Page Group (BNG) structured field consists of an
index value and a sequence number. UNIQUEBNGS is only valid on z/OS, VM,
and VSE.

UNIQUEBNGS={YES | NO}
The values are:

YES
 Specifies that ACIF generate an 8-character numeric string and append the
string to the group name.

NO ACIF does not generate the string. Specify NO if you use an application
such as AFP Toolbox, AFP API, or DCF to generate your own group
names.

If UNIQUEBNGS is not specified, ACIF uses YES as the default unless you
specify DCFPAGENAMES=YES, in which case ACIF uses NO as the default.

USERLIB

Specifies the location of AFP resources for processing the input file.

AIX and Windows

USERLIB=pathlist
Specifies the names of user directories that contain AFP resources for
processing the input file. The directories can contain any AFP resources (fonts,
page segments, overlays, page definitions, form definitions, object container
resources, or COM setup files).

By convention, these resources are typically used by one user, as opposed to
the system resources (specified with the RESLIB parameter) that are shared by
many users. Therefore, you can use the USERLIB parameter to specify
resources that are not retrieved with the FDEFLIB, FONTLIB, OBJCONLIB,
OVLYLIB, PDEFLIB, or PSEGLIB parameters. USERLIB is not used to specify
directories for TrueType and OpenType fonts, or data object resources that are
installed with a resource access table (RAT), such as color management
resources (CMRs). Instead, use the USERPATH parameter.

Note: The directories that USERLIB specifies can contain AFP extended code
page fonts, which are FOCA fonts that contain EBCDIC or ASCII
encodings and can contain the Unicode equivalent value. AFP extended
code page fonts have a .ECP file extension.

The value is:

pathlist
Any valid search path. You must use a colon (:) in AIX or a semicolon (;) in
Windows to separate multiple paths.

Keep in mind: The total number of all characters in the string of path
names cannot exceed 4095 bytes.

Chapter 3. ACIF parameters 79

80

For information about how InfoPrint Manager selects resources, see
[ACIF in ATIX and Windows” on page 17| or InfoPrint Manager: Reference.

z/0S
USERLIB=dsnamel [,dsname2] [,dsname3. . .]

Specifies data sets containing AFP resources for processing the input data set.
You can specify a maximum of 16 data sets. For example:

USERLIB=USER.IMAGES,USER.AFP.RESOURCES

ACIF dynamically allocates these data sets and searches for AFP resources in
them in the order that is specified in the USERLIB parameter. If a resource is
not found, ACIF searches the appropriate resource libraries that are defined for
that resource type (for example, PDEFLIB for page definitions). The libraries
that you specify can contain any AFP resources (fonts, page segments,
overlays, page definitions, or form definitions). If Resource Access Control
Facility (RACF) is installed on your system, RACF checks the authority of the
user ID requesting access to a user library (data set). If ACIF is not authorized
to allocate the data set, it reports an error condition and ends processing.

Notes:

1. The data sets that USERLIB specifies can contain AFP extended code page
fonts, which are FOCA fonts that contain EBCDIC or ASCII encodings and
can contain the Unicode equivalent value.

2. Because AFP resources (except page segments) have reserved prefixes,
naming conflicts should not occur.

3. An inline resource overrides a resource of the same name that is contained
in a USERLIB parameter.

4. Data sets must be specified as fully qualified names without quotation
marks.

5. For systems before MVS/DFP Version 2.3, data sets must be concatenated
with the largest block size first.

VM
USERLIB=filetypel[,filetype2][,filetype3...]

Specifies the file types that define the libraries that contain AFP resources for
processing the input file. You can specify a maximum of eight file types. For
example:

USERLIB=USER3820, TEMPUSER

ACIF searches for AFP resources in these file types in the order that is
specified in the USERLIB parameter. If a resource is not found, ACIF searches
the appropriate resource libraries that are defined for that resource type (for
example, PDEFLIB for page definitions). The libraries that you specify can
contain any AFP resources (fonts, page segments, overlays, page definitions, or
form definitions). If Resource Access Control Facility (RACF) is installed on
your system, RACF checks the authority of the user ID requesting access to a
user library (data set). If ACIF is not authorized to allocate the data set, it
reports an error condition and ends processing.

Note: File types must conform to CMS naming conventions.

PSF V4R5 for z/OS: ACIF User's Guide

VSE

This parameter is not used for VSE. AFP resources are in the library that is defined
by the // LIBDEF PHASE,SEARCH=(...) JCL statement. For information about how
PSF/VSE selects resources, see Print Services Facility/VSE: System Programming
Guide, S544-3665.

USERPATH

Specifies the names of user directories that contain TrueType and OpenType fonts,
AFP extended code page fonts, or data object resources that are installed with a
resource access table (RAT), such as color management resources (CMRs). TrueType
and OpenType fonts are Unicode-enabled AFP fonts that are not defined by FOCA.
AFP extended code page fonts are FOCA fonts that contain EBCDIC or ASCII
encodings and can contain the Unicode equivalent value. AFP extended code page
fonts have a .ECP file extension. For more information about resources that are
installed with RATs, see[Appendix B, “Processing resources installed with resource
laccess tables,” on page 217

By convention, resources that are specified with the USERPATH parameter are
typically used by one user, as opposed to the system resources that are shared by
many users (for example, those resources specified with the FONTPATH or
OBJCPATH parameters).

This parameter is not supported for VM or VSE; if specified, you see an error
message.

USERPATH=pathlist
The value is:

pathlist
Any valid search path. You must use a colon (:) in AIX and z/OS or a
semicolon (;) in Windows to separate multiple paths. For example:

AIX or Windows
acif inputdd=INFILE outputdd=QUTFILE pagedef=PAGTRUE formdef=F1A10110 \
userpath=/jdoe/fonts/truetype:/jdoe/fonts/truetype/myfonts/

Note: The backslash (\) tells AIX to continue reading the
command from the next line. In Windows, the backslash is
not valid; therefore, the command parameters must be on
one continuous line.

z/OS
INPUTDD=INFILE
OUTPUTDD=0UTFILE
PAGEDEF=PAGTRUE
FORMDEF=F1A10110
USERPATH="'/jdoe/fonts/truetype:/jdoe/fonts/truetype/myfonts/'

Note: To continue a pathlist on multiple lines in a parameter file,
type the pathlist to the last character of the first line and then
continue typing in the first column of the next line.

ACIF searches the paths in the order in which they are specified.

Keep in mind: The total number of all characters in the string of path names
cannot exceed 4095 bytes.

Chapter 3. ACIF parameters 81

82 PSF V4RS5 for z/OS: ACIF User's Guide

Chapter 4. Enhanced indexing parameters

You can use enhanced indexing to do these tasks:

* Generate page-level information so you can move to specific pages in a
document.

¢ Define a transaction field and create indexes where ACIF extracts the first and
last value from a group or page.

* Define a field that is based on where the trigger is found.

* Define a default value for a field, which is used if the record is not long enough
to hold the field.

¢ Change to a new group when the maximum number of pages is reached.

* Define a floating trigger, which can appear multiple times in a group or not at
all, or define a trigger that is found within a range of records.

* Match specific characters that might appear in a field column or match a field
mask symbol.

Enhanced ACIF indexing is not supported for ACIF in the VM and VSE
environments.

This chapter describes the ACIF parameters that are used for enhanced indexing
functions. To use enhanced indexing in ACIF, you specify the parameters in this

chapter, in addition to those parameters found in [Chapter 3, “ACIF parameters,”|
The syntax rules for the enhanced indexing parameters are the same as

those rules for z/OS in [“Syntax rules for ACIE” on page 27,

Parameter values for enhanced indexing

lists the ACIF enhanced indexing parameters and values for PSF for z/OS.
Underscored values are the default and are used by ACIF if no other value is
specified.

Table 7. ACIF enhanced indexing parameters

Enhanced Indexing Parameters See Page...
FIELDn={record,column,length,([TRIGGER=1 | 1,]BASE=0 | TRIGGER[, DEFAULT=value |
X'value'])}

FIELDn={literalvalue | X’literalvalue'}

FIELDn={** length,(OFFSET=(start1:end1[start2:end2][start3:end3...]) MASK='@ # = = A
%'[,ORDER=BYROW | BYCOLY])}

FIELDn={record,column,length,(TRIGGER=1,BASE=0 | TRIGGER,MASK='@ # = = A
%'[, DEFAULT=value | X'value’])}

GROUPMAXPAGES=nnnn

INDEXn={"attributename’ |
X'attributename’}{,FIELDnn[, FIELD#nn...]}[,(TYPE={GROUP[, BREAK={YES | NO}] |
GROUPRANGE | PAGE | PAGERANGE})]

TRIGGERn={record | *}{,column | *}{,’triggervalue’ | X'triggervalue’}[,(TYPE={GROUP |
GROUP,RECORDRANGE-=(start,end) | FLOATY})]

USERMASK{n ,’symbolvalue’}{, stringvalue’ | X'stringvalue’}

FE &

E

EEl

(=

© Copyright IBM Corp. 1993, 2014 83

The following sections describe the enhanced indexing parameters.

FIELDn

Specifies the field that identifies the location of index data and provides default
and literal (constant) index values. ACIF supports these types of fields for
enhanced indexing:

Trigger field
This field is based on the location of a trigger string value.

Constant field
This field provides the actual index value that is stored in the database.

Transaction field
This field indexes input data that contains one or more columns of sorted
data when it is not practical to store every value in the database. (ACIF
extracts the beginning and ending sorted values in each group.)

Mask field
This field is based on a floating trigger and uses a mask to match data that
is in the field columns.

You must define at least one field and you can define a maximum of 32 fields
(FIELD1 through FIELD32). When you are adding a field parameter, use the next
available number, beginning with “1”.

Trigger field

A trigger field is a field that is based on the location of a trigger string value.

FIELDn={record,column, length, ([TRIGGER=1 | n,]BASE=0 |
TRIGGER[,DEFAULT=value | X'value']l)}
The values are:

n Specifies the field parameter identifier.

record
Specifies the relative record number from the trigger on which the field is
based. This value is the record number where ACIF begins to search for
the field. The supported range of values are +0 to 255.

column
Specifies the relative column number from the BASE value. This value is
the column number where ACIF begins to search for the field. A value of
“1” refers to the first byte in the record. For files that contain carriage
control characters, column one refers to the carriage control. For those
applications that use a specific carriage control character to define page
boundaries (for example, skip-to-channel 1), consider defining the value of
the carriage control character as one of the TRIGGER#n parameters. If you
specify BASE=0, the column value can be 1 - 32756. If you specify
BASE=TRIGGER, column value can be -32756 to 32756.

Note: If the specified value exceeds the physical length of the record and
you do not specify a DEFAULT value, ACIF reports an error
condition and ends processing.

length
Specifies the number of contiguous bytes (characters) that compose this
field. The supported range of values are 1 - 250. The field can extend

84 PSF V4RS5 for z/OS: ACIF User's Guide

outside the record length, if the column where it begins lies within the
record length. In this case, ACIF adds padding blanks to complete the
record.

Note: If the field begins outside the maximum length of the record and
you do not specify a DEFAULT value, ACIF reports an error
condition and ends processing.

TRIGGER=1 | n
Specifies the TRIGGER#n parameter ACIF uses to locate the field. This
paramter is optional. Replace n with the number of a defined parameter,
such as TRIGGER2.

BASE=0 | TRIGGER
Specifies whether ACIF uses the starting column number of the trigger
string value to locate the field data. The values are:

0 ACIF adds zero to the field column offset. You can use 0 if the field
data always starts in a specific column.

TRIGGER
ACIF adds the starting column number of the trigger string value to
the field column offset. Use TRIGGER if the field data does not
always start in a specific column, but is always offset a specific number
of columns from the trigger string value. The trigger string value can
begin in any column in the record. A field that is based on this trigger
occurs in the trigger record.

The field parameter in the following example causes ACIF to locate field
values that begin in column 83 of the same record that contains the
TRIGGERT1 string value. The field length is 8 bytes. BASE=0 is specified
because the field data always starts in the same column.

TRIGGER1=+,1,"'1", (TYPE=GROUP)
FIELD1=0,83,8, (TRIGGER=1,BASE=0)

The field parameter in the following example causes ACIF to locate field
values that begin 10 columns offset from the trigger string value. By basing
the field on TRIGGER2 and specifying BASE=TRIGGER, ACIF can locate
the field by adding 10 to the starting column offset of the trigger string
value.

TRIGGER2=*,*,'ACCOUNT: ", (TYPE=FLOAT)
FIELD2=0,10,12, (TRIGGER=2,BASE=TRIGGER)

DEFAULT=value | X'value'
Specifies the default value for the index when a record is not long enough
to contain the field data because the JES spool has removed trailing blanks
from the end of the record. The default value can be 1 - 250 bytes in
length.

Note: The value can be specified as an EBCDIC character string or
hexadecimal data. However, if the input data file is anything other
than EBCDIC, the value must be specified as hexadecimal data
(otherwise, the comparisons between the input data file and what is
coded in the FIELDn parameter do not yield a match).

DEFAULT is used with Download for z/OS, which can transmit data from
the JES spool. JES, by default, truncates trailing blanks at the end of
records. When ACIF is processing the records that were truncated, it ends
with an error unless you specify DEFAULT.

Chapter 4. Enhanced indexing parameters 85

86

Constant field

A constant field is a field for which you specify the actual index value that is
stored in the database. It is possible to generate an index value by concatenating or
combining the literal value that you specify for a constant field with the value that
ACIF extracts from a document by using a trigger field. However, the trigger field
cannot be based on a floating trigger.

FIELDn={literalvalue | X'literalvalue'}
The values are:

n Specifies the field parameter identifier.

literalvalue | X'literalvalue'
The actual index value of the field that is stored in the database. The literal
value can be 1 - 250 bytes in length. ACIF does not check the validity of
the actual content of the supplied data.

Note: The value can be specified as an EBCDIC character string or
hexadecimal data. However, if the input data file is anything other
than single-byte EBCDIC, the value must be specified as hexadecimal
data (otherwise, the comparisons between the input data file and
what is coded in the FIELD#n parameter do not yield a match).

The field parameter in the following example causes ACIF to store the same string
of characters in each INDEX3 it creates.

FIELD3='251658240"
INDEX3="Account Number',FIELD3, (TYPE=GROUP,BREAK=NO)

The field parameters in the following example cause ACIF to concatenate a literal
value with the index value extracted from the data. ACIF concatenates the literal
value that is specified in the FIELD3 parameter to each index value located by
using the FIELD4 parameter. In this example, the application stores the
concatenated string value in an OnDemand database. The account number field in
the data is 14 bytes in length. However, the account number in the database is 19
bytes in length. Use a constant field to concatenate a constant 5-byte prefix (0000-)
to all account numbers extracted from the data. The input data is encoded in
EBCDIC.

FIELD3='00006"
FIELD4=0,66,14
INDEX3="Account Number',FIELD3,FIELD4, (TYPE=GROUP,BREAK=YES)

Transaction field

When you cannot store every value in the OnDemand database, you can use a
transaction field to index input data that contains one or more columns of sorted
data.

FIELDn={*,*,length, (OFFSET=(startl:endl[,start2:end?][,start3:end3...1),
MASK='@ # = - ~ %'[,0RDER=BYROW | BYCOL])}
The values are:

n Specifies the field parameter identifier.

* Specifies the record number where ACIF begins searching for the field. A
transaction field must specify an asterisk (*), meaning ACIF searches every
record in the group.

* Specifies the column number where ACIF begins searching for the field. A
transaction field must specify an asterisk (*). The OFFSET specification
determines the column or columns where ACIF locates the field.

PSF V4R5 for z/OS: ACIF User's Guide

Note: If you enter a value other than an asterisk, ACIF ignores the value.
When you specify OFFSET, ACIF always uses the starting column
numbers from OFFSET to determine the location of the field values.

length
Specifies the number of contiguous bytes (characters) that compose this
field. The supported range of values are 1 - 250. The field can extend
outside the record length, if the column where it begins lies within the
record length. In this case, ACIF adds padding blanks to complete the
record.

Note: If the field begins outside the maximum length of the record, ACIF
reports an error condition and ends processing.

OFFSET=(startl:endl[,start2:end?][,start3:end3...])
Specifies the location of the field value from the beginning of the record.
The start is the column where the field begins. The end is the last column
of field data. A maximum of eight pairs of beginning and ending offset
values are allowed. Separate the pairs with a comma. When you specify
OFFSET, you must also specify MASK. The implied length of OFFSET
must be the same as the number of characters in MASK or ACIF cannot
detect a match.

MASK="%@ # = =~ ~ %'
Specifies the pattern of symbols that ACIF matches with data in the field
columns. When you specify MASK, you must also specify OFFSET. When
you define a field that includes a mask, an INDEX parameter that is based
on the field cannot reference any other fields. An INDEX parameter that is
based on a field that includes a mask must create GROUPRANGE or
PAGERANGE type indexes.

Note: You cannot specify MASK with a double-byte or Unicode code page
(EXTENSIONS=IDXCPGID), unless you are using code page 1208
and only indexing single-byte characters. MASK does not support
the multiple-byte characters of code page 1208 (UTF-8).

These mask symbols are valid:

* Matches a user-defined mask; not a literal asterisk. See
["USERMASK” on page 96/

@ Matches an alphabetic character.
Matches a numeric character.

= Matches any character.

- Matches any non-blank character.
A Matches any non-blank character.
% Matches a blank character or numeric character.

The default code page for the symbols in MASK is 500 for z/OS and 850
for other operating systems. If you specify a different code page (with the
CPGID parameter), ACIF translates all characters in the MASK value,
except the MASK symbols. ACIF then matches the input characters against
the MASK value. In the following example, ACIF searches columns 10 - 17
for a hexadecimal C1 followed by four numeric characters (hexadecimal FO
- F9), a hexadecimal 60, and two numeric characters (hexadecimal FO - F9):

CPGID=500
FIELD3=*,*,8, (OFFSET=(10:17) ,MASK="A####-##"',0RDER=BYROW)

Chapter 4. Enhanced indexing parameters 87

88

ORDER=BYROW | BYCOL
Specifies where ACIF can locate the smallest value and the largest value of
a group of sorted values that are arranged in either rows or columns on
the page. For ORDER=BYROW, ACIF extracts the first value in the first
row and the last value in the last row that match the MASK. Data with a
row orientation might appear as:
123

456

78

For ORDER=BYCOL, ACIF extracts the first value in the first column and

the last value in the last column that match the MASK. Data with a

column orientation might appear as:

147

258
36

The field parameter in the following example causes ACIF to locate a 10-character
numeric string that begins in column three of any record in the group. This format
of the FIELD parameter is used to create indexes for the beginning and ending
sorted values of each group.

FIELD4=*,+,10, (OFFSET=(3:12) ,MASK="##########' ,0RDER=BYROW)

Mask field

A mask field is a field with a mask that is based on a floating trigger. An INDEX
parameter that is based on the mask field cannot include any other fields and must
not create GROUPRANGE or PAGERANGE type indexes.

FIELDn={record,column, length, (TRIGGER=n,BASE=0 | TRIGGER,MASK='Q@ # = =~ ~
%' [,DEFAULT=value | X'value'])}
The values are:

n Specifies the field parameter identifier.

record
Specifies the relative record number from the trigger on which the field is
based. This value is the record number where ACIF begins to search for
the field. The supported range of values are +0 to 255.

column
Specifies the relative column number from the BASE value. This value is
the column number where ACIF begins to search for the field. A value of
“1” refers to the first byte in the record. For files that contain carriage
control characters, column one refers to the carriage control. For those
applications that use a specific carriage control character to define page
boundaries (for example, skip-to-channel 1), consider defining the value of
the carriage control character as one of the TRIGGER#n parameters. If you
specify BASE=0, the column value can be 1 - 32756. If you specify
BASE=TRIGGER, column value can be -32756 to 32756.

Note: If the specified value exceeds the physical length of the record and
you do not specify a DEFAULT value, ACIF reports an error
condition and ends processing.

length
Specifies the number of contiguous bytes (characters) that compose this
field. The supported range of values are 1 - 250. The field can extend

PSF V4R5 for z/OS: ACIF User's Guide

outside the record length, if the column where it begins lies within the
record length. In this case, ACIF adds padding blanks to complete the
record.

Note: If the field begins outside the maximum length of the record and
you do not specify a DEFAULT value, ACIF reports an error
condition and ends processing.

TRIGGER=1 | n
Specifies the TRIGGER#n parameter ACIF uses to locate the field. When
you are using MASK, you must specify a trigger that is defined with
TYPE=FLOAT.

BASE=0 | TRIGGER
Specifies whether ACIF uses the starting column number of the trigger
string value to locate the field data. The values are:

0 ACIF adds zero to the field column offset. You can use 0 if the field
data always starts in a specific column.

TRIGGER
ACIF adds the starting column number of the trigger string value to
the field column offset. Use TRIGGER if the field data does not
always start in a specific column, but is always offset a specific number
of columns from the trigger string value. The trigger string value can
begin in any column in the record. A field that is based on this trigger
occurs in the trigger record.

The field parameter in the following example causes ACIF to locate field
values that begin in column 83 of the same record that contains the
TRIGGERT1 string value. The field length is 8 bytes. BASE=0 is specified
because the field data always starts in the same column.
TRIGGER1=*,1,'1", (TYPE=GROUP)

FIELD1=0,83,8, (TRIGGER=1,BASE=0)

The field parameter in the following example causes ACIF to locate field
values that begin 10 columns offset from the trigger string value. By basing
the field on TRIGGER2 and specifying BASE=TRIGGER, ACIF can locate
the field by adding 10 to the starting column offset of the trigger string
value.

TRIGGER2=*,*,'ACCOUNT: ", (TYPE=FLOAT)
FIELD2=0,10,12, (TRIGGER=2,BASE=TRIGGER)

MASK='@ # = -~ ~ %'
Specifies the pattern of symbols that ACIF matches with data in the field
columns. If the data matches the MASK, ACIF selects the field.

Note: You cannot specify MASK with a double-byte or Unicode code page
(EXTENSIONS=IDXCPGID), unless you are using code page 1208
and only indexing single-byte characters. MASK does not support
the multiple-byte characters of code page 1208 (UTE-8).

These mask symbols are valid:

@ Matches an alphabetic character.
Matches a numeric character.

= Matches any character.

-~ Matches any non-blank character.

Chapter 4. Enhanced indexing parameters 89

90

A Matches any non-blank character.
% Matches a blank character or numeric character.

In the following example. ACIF selects the field only if the data in the field
columns contain numeric characters:

TRIGGER2=*,25, 'SOURCE ", (TYPE=FLOAT)
FIELD2=0,38,4, (TRIGGER=2,BASE=0,MASK="####"' ,DEFAULT="'4059099376")

DEFAULT=value | X'value'
Specifies the default value for the index when a record is not long enough
to contain the field data. The default value can be 1 - 250 characters in
length.

Note: The value can be specified as an EBCDIC character string or
hexadecimal data. However, if the input data file is anything other
than single-byte EBCDIC, the value must be specified as hexadecimal
data (otherwise, the comparisons between the input data file and
what is coded in the FIELDn parameter do not yield a match).

DEFAULT is used with Download for z/OS, which can transmit data from
the JES spool. JES, by default, truncates trailing blanks at the end of
records. When ACIF processes the records that were truncated, it ends with
an error unless you specify DEFAULT.

Note: The MASK is not applied to the default value.

GROUPMAXPAGES

Specifies the maximum number of pages that ACIF can put into a group.

GROUPMAXPAGES=nnnn
The value is:

nnnn
A 1- to 4-digit number (1 - 9999).

If the maximum number of pages is reached before a group index value is
changed, ACIF forces a new group. If you do not specify GROUPMAXPAGES,
ACIF does not end the current group and begin a new group until the value of one
of the fields that is specified with the BREAK=YES option on the INDEX
parameter changes.

When indexing transaction data with a GROUPRANGE index, you typically set the
GROUPMAXPAGES parameter to control the maximum number of pages in a
group. For more information about the TYPE and BREAK options, see the INDEX
parameter in IBM DB2 Content Manager OnDemand for Multiplatforms: Indexing
Reference.

INDEXn

Specifies the index name, the field or fields on which the index is based, and the
type of index ACIF generates. You can define group indexes for AFP and line data.
You can define page indexes for AFP data and line data that you convert to AFP.
When you define a group index, IBM suggests that you name the index the same
as the application group database field name.

PSF V4R5 for z/OS: ACIF User's Guide

Keep in mind: Group indexes are stored in the index object file and used to search
for documents. Page indexes are stored with the document, not in
the index object file. This situation means that you cannot use page
indexes to search for documents.

To generate page-level information in the output file so you can go to specific
pages in a document, you must specify INDEXOBJ=ALL. You must also create an
index field by specifying TYPE=PAGE on the INDEX parameter.

You must define at least one index and you can define a maximum of 32 indexes
(INDEX1 through INDEX32). Each index can be made up of one or more FIELD
definitions. When you are adding an index parameter, use the next available
number, beginning with “1”.

INDEXn={"attributename' |
X'attributename'}{,FIELDnn[,FIELDnn...]1}[, (TYPE={GROUP [,BREAK={YES | NoO}]
| GROUPRANGE | PAGE | PAGERANGE})]

The values are:

n Specifies the index parameter identifier.

'attributename’ | X'attributename'
Specifies a user-defined label to be associated with the actual index value.
For example, assume that INDEX1 is a person’s bank account number. The
string “Account Number” would be a meaningful attribute name. The
value of INDEX1 would be the actual account number (for example,
0001234567). The attribute name can be 1 - 250 bytes in length.

Note: The value can be specified as an EBCDIC character string or
hexadecimal data. However, if the input data file is anything other
than single-byte EBCDIC, the value must be specified as hexadecimal
data (otherwise, the comparisons between the input data file and
what is coded in the INDEX#n parameter do not yield a match).

FIELDnn[,FIELDnn...]
Specifies one or more FIELDn parameters that ACIF uses to locate the
index. A maximum of 32 FIELDn parameters can be specified for each
index. If more than one FIELDn parameter is specified, ACIF concatenates
them into one physical string of data. No delimiters are used between the
concatenated fields. Because an index value has a maximum length of 250
bytes, the total of all specified FIELDn parameters for a single index
cannot exceed this length. ACIF reports an error condition and ends
processing if the length is greater than 250 bytes.

GROUPRANGE and PAGERANGE indexes must name only one
transaction field. PAGE indexes must name fields that are based on floating

triggers. An index that names a field that is based on a floating trigger
must be TYPE=GROUP,BREAK=NO or TYPE=PAGE.

TYPE={GROUP[,BREAK={YES | NO}] | GROUPRANGE | PAGE | PAGERANGE}
The type of index ACIF generates. You can define either group or page
indexes for AFP and line data. The types are:

GROUP[,BREAK={YES | NO}]
The values are:

GROUP
Specifies a group index value. ACIF creates one index value for
each group. A group index that names a field parameter that is
based on a floating trigger must specify BREAK=NO.

Chapter 4. Enhanced indexing parameters 91

92

BREAK={YES | NO}
Specifies whether ACIF includes the index when it is calculating a
group break. The values are:

YES
~ ACIF breaks the group when the index value changes.

NO ACIF does not break the group.

The following example indicates that ACIF generates group indexes for
date index values. The input data is encoded in EBCDIC.

INDEX1='Date Due',FIELDI1, (TYPE=GROUP,BREAK=YES)

The next example indicates that ACIF generates group indexes for
customer name and account number index values. The input data is
encoded in EBCDIC. ACIF closes the current group and begins a new
group only when the customer name index value changes (the data is
sorted by customer name). In this example, a customer might have one
or more statements with different account numbers. The page numbers
in each statement begin with the number one, giving the appearance of
unique statements. The goal is to collect all of a customer's statements
in a single group.

INDEX1='Customer Name',FIELD1, (TYPE=GROUP,BREAK=YES)

INDEX2="Account Number',FIELDZ2, (TYPE=GROUP,BREAK=NO)

GROUPRANGE

Specifies a GROUPRANGE index, which does not break the group.
ACIF creates index values for the first and last sorted values in each
group. ACIF creates indexes for the group by extracting the first and
last values that match the MASK of the transaction field on which the
index is based. ACIF assumes that the input values are sorted. You can
define one GROUPRANGE index per report.

A GROUPRANGE index must name only one transaction field, cannot
name a field parameter that is based on a floating trigger, and cannot
break a group.

For a GROUPRANGE index, ACIF can use the value of the
GROUPMAXPAGES parameter to determine the number of pages in a
group and when to break a group. For example, you need to index a
line data report that consists of thousands of pages of sorted
transaction data. You define a GROUP index to hold the report date
index values and a GROUPRANGE index to hold the transaction
numbers for each group. Because every page in the report contains the
same date, the GROUP index cannot be used to break the report into
groups. (And a GROUPRANGE index cannot be used to break a
group.) To break the report into groups, set the GROUPMAXPAGES
parameter to the maximum number of pages you want in a group (for
example, 100). When ACIF calculates group breaks, it uses the value of
the GROUPMAXPAGES parameter to determine when to close the
current group and begin a new group.

The following example indicates that ACIF generates GROUPRANGE
indexes for loan number index values. ACIF extracts the beginning and
ending loan numbers in each group of pages. The input data is
encoded in EBCDIC. Because a GROUPRANGE index cannot be used
to break a report into groups of page, the GROUPMAXPAGES
parameter can be used to determine the number of pages in a group.

PSF V4R5 for z/OS: ACIF User's Guide

TRIGGERN

ACIF closes the current group and begins a new group when the
number of pages in the group is equal to the value of the
GROUPMAXPAGES parameter.

INDEX2="'Loan Number',FIELD2, (TYPE=GROUPRANGE)
GROUPMAXPAGES=100

PAGE

Specifies a page index, which does not break a group. You can create
more than one page index per page. Page indexes must name fields
that are based on floating triggers, and cannot break a group.

Page indexes are stored with the document, not in the index object file,
and cannot be used to search for documents.

To generate page-level information in the output file so you can go to
specific pages in a document, you must create an index field by
specifying a page index with INDEXOBJ=ALL; otherwise, ACIF does
not write the page index data to the index object file.

The following example indicates that ACIF generates PAGE indexes for
subtotal values (the attribute name that appears in the Go To dialog
box is Subtotal). The input data is encoded in EBCDIC. ACIF extracts
the index values from each page.

INDEX3='Subtotal',FIELD3, (TYPE=PAGE)

PAGERANGE

Specifies a PAGERANGE index, which does not break a group. ACIF
creates index values for the first and last sorted values on each page.
ACIF creates indexes for the page by extracting the first and last values
that match the MASK of the transaction field on which the index is
based. ACIF assumes that the input values are sorted. You can define
one PAGERANGE index per report.

A PAGERANGE index must name only one transaction field, cannot
name a field parameter that is based on a floating trigger, and cannot
break a group.

PAGERANGE indexes are stored with the document, not in the
database, and cannot be used to search for documents. After you
retrieve a document, you can use the page indexes to move to a
specific page in the document with the Go To command in the client.

To generate page-level information in the output file so you can go to
specific pages in a document, you must create an index field by
specifying a PAGERANGE index with INDEXOBJ=ALL; otherwise,
ACIF does not write the PAGERANGE index data to the index object
file.

Specifies locations and values that are required to uniquely identify the beginning
of a group and the locations and values of data fields that are used to define
indexes. These data fields are referred to as “triggers” because their presence in the
file triggers a processing action. You must specify at least one TRIGGER#n
parameter and you can specify a maximum of eight parameters. When you are
adding a trigger parameter, use the next available number, beginning with “1”.

TRIGGERn={record | *}{,column | *}{, 'triggervalue’ |
X'triggervalue'}[, (TYPE={GROUP | GROUP,RECORDRANGE=(start,end) | FLOAT})]
The values are:

Chapter 4. Enhanced indexing parameters 93

94

n Specifies the trigger parameter identifier.

record | *
Specifies the input record where ACIF locates the trigger value. You must
specify an asterisk value (*) for TRIGGER1, record range triggers, and
float triggers so that ACIF searches every input record for the trigger
value. For other group triggers, the input record is relative to the record
that contains the TRIGGER1 value. The supported range of record
numbers is 0 - 255.

column | *
Specifies the byte offset from the beginning of the record where the trigger
value is located. The supported range of column values is 0 - 32756. You
can specify an asterisk * or zero (0) so that ACIF scans the record from left
to right looking for the trigger value. A value of “1” refers to the first byte
in the record.

Alternatively, you can specify a column range that is separated by a colon.
For example, “2:5” means the trigger can begin in columns 2, 3, 4, or 5.

Keep in mind: The column values cannot be zero and the ending column
must be greater than the beginning column.

7

The following example indicates that ACIF matches the “Account Number’
value beginning in column 50, 51, or 52 of the sixth input record that
follows the TRIGGERI1 record. The input data is encoded in EBCDIC.

TRIGGER2=6,50:52,X'C1838396A495A340D5A494828599", (TYPE=GROUP)

'triggervalue’ | X'triggervalue'
Specifies the actual alphanumeric or hexadecimal value of the trigger that
ACIF uses to match the input data. The trigger value can be 1 - 250 bytes
in length and is case-sensitive.

Note: The trigger value can be specified as EBCDIC character data or
hexadecimal data. However, if the input data file is anything other
than EBCDIC, the value must be specified as hexadecimal data.

TYPE={GROUP | GROUP,RECORDRANGE=(start,end) | FLOAT
The trigger type. TRIGGER1 must be a GROUP trigger. The types are:

GROUP
Specifies the beginning of a group. In ACIF, a group is a named
collection of sequential pages that form a logical subset of an input file.
You define only as many group triggers as needed to identify the
beginning of a group. In many cases, you need only one group trigger.

A group must contain at least one page, and it can contain all of the
pages in an input file. However, most customers define their group
triggers so that ACIF can logically divide an input file into smaller
parts, such as by statement, policy, bill, or, for transaction data, number
of pages.

A group is determined when the value of an index changes (for
example, account number) or when the maximum number of pages for
a group is reached. ACIF generates indexes for each group in the input
file. Because a group cannot be smaller than one page, a group trigger
must not appear more than once on a page. See the ['BREAK option”]
|on Eaée 91l on the INDEX parameter for more information about
breaking groups.

PSF V4R5 for z/OS: ACIF User's Guide

The following example indicates that ACIF searches column one of
every input record for the occurrence of a skip-to-channel 1 carriage
control character. The record value for TRIGGER1 must be an asterisk
(*) and TRIGGER1 must be a GROUP trigger. The input data is
encoded in EBCDIC.

TRIGGER1=+,1,'1", (TYPE=GROUP)

The next example indicates that ACIF matches the PAGE 1 value
beginning in column two of every input record. The record value for
TRIGGER1 must be an asterisk (*) and TRIGGER1 must be a GROUP
trigger. The input data is encoded in EBCDIC. .

TRIGGER1=*,2,'PAGE 1', (TYPE=GROUP)

The final example indicates that ACIF matches the “Account Number”
value beginning in column fifty of the sixth input record following the
TRIGGERT1 record. The input data is encoded in EBCDIC.

TRIGGER2=6,50, 'Account Number', (TYPE=GROUP)

GROUP,RECORDRANGE=(start,end)
Specifies field data that is not always in the same record relative to
TRIGGER1. ACIF determines the location of the field by searching the
specified range of records. The range can be 0 - 255. ACIF stops
searching after the first match in the specified range of records. For
example, if the range is 5,7 and records six and seven contain the
trigger value, ACIF stops searching after it matches the value in record
six.

The following example indicates that ACIF locates the “Account
Number” value beginning in column 50 within a range of records (the
trigger value can occur in records six, seven, or eight following
TRIGGER]1) in each group. You must specify an asterisk (*) for record
number because ACIF uses the record range to determine which
records to search for the trigger value. The input data is encoded in
EBCDIC.

TRIGGER2=*,50, 'Account Number', (TYPE=GROUP,RECORDRANGE=(6,8))

FLOAT
Specifies field data that does not necessarily occur in the same location
on each page, the same page in each group, or in each group. ACIF
determines the location of the field by searching every input record for
the trigger value that starts in the specified column (or every column,
if an asterisk is specified). For example, you need to index statements
by type of account. Possible types of accounts include savings,
checking, loan, and IRA. Because not all statements contain all types of
accounts, the number of pages in a statement can vary and the page
number where a specific type of account occurs can vary. However,
each type of account is preceded by the string “Account Type”. Define
a float trigger with a trigger string value of “Account Type”. The same
float trigger can be used to locate all of the accounts that occur in a
statement.

The following example indicates that ACIF matches the “Type of
Income” value, beginning in column five of every record in the group.
You must specify an asterisk (*) for the record number. The input data
is encoded in EBCDIC.

TRIGGER3=*,5, 'Type of Income', (TYPE=FLOAT)

Chapter 4. Enhanced indexing parameters 95

96

Notes:

1.

ACIF requires that at least one TRIGGER# or FIELD#n value appear within
the page range that is specified by the INDEXSTARTBY parameter (unless
INDEXSTARTBY=0 is specified). If no TRIGGER#n or FIELD#n parameter is
satisfied within the INDEXSTARTBY page range, ACIF stops processing
and issues an error message. If you do not want ACIF to stop processing
when it cannot find a group indexing field or when a file is empty, you
must set the parameter to INDEXSTARTBY=0 or specify
EXTENSIONS=EMPTYOK.

At least one TRIGGER# or FIELDn value must exist on the first page of
every unique page group. ACIF cannot detect an error condition if
TRIGGER# or FIELD# is missing, but the output might be incorrectly
indexed.

TRIGGER1 must be specified when ACIF is requested to index the file.

An error condition occurs if you specify any TRIGGER# parameters when
the input file contains indexing tags.

USERMASK

Specifies a user mask that identifies a symbol and string for matching field data.

USERMASK={n, 'symbolvalue'}{, 'stringvalue’ | X'stringvalue'}

The values are:

n

Indicates the number of the user mask. Valid values are 1 - 4.

'symbolvalue'’

Indicates a character that represents the characters in the stringvalue or the
field mask. All printable characters except # @ = =~ % are valid. The
symbolvalue does not match its literal value in the field data. For example,
ACIF does not match an asterisk (*) symbol with an * in the field data.

'stringvalue' | X'stringvalue'

Indicates one or more characters you want to match to field data. When
the input data file is anything other than single-byte EBCDIC, the character
string must be specified in hexadecimal.

The following example shows how to use USERMASK to match specific characters
that might appear in the field column:

USERMASK=1, '="', 'AaBbCc'
FIELD3=+,*,15, (OFFSET=(10:24) ,MASK="+@CEEEEREEEEEERA"' ,0RDER=BYRONW)

In this example, USERMASK causes ACIF to match an uppercase or lowercase A,
B, or C in the first position of a 15-character string, such as a name.

A user mask can also match one of the field mask symbols. ACIF reserves the
symbols # @ = ~ A % for the field mask. If the field data contains one of the mask
symbols, you must define a user mask so that ACIF can find a match. For example,
USERMASK=2, '+','%"

FIELD4=+,%,3, (OFFSET=(10:12) ,MASK="##*"',0RDER=BYROW)

In this example, ACIF matches a 3-character string that contains two numerics and
the percent sign (%), such as 85%.

PSF V4R5 for z/OS: ACIF User's Guide

Chapter 5. Examples of using ACIF

This chapter shows examples of how to use ACIF processing parameters for
transforming data, retrieving resources, specifying fonts, identifying the location of
resource libraries, and drawing graphics with record format page definitions.
Detailed examples of how to use ACIF for viewing and indexing a document are
described. An example of using enhanced indexing and indexing UTF-16 data are
is also described.

Note: The line2afp command is the same as the acif command and uses the acif

command conversion parameters to produce output for printing. Hereafter,
“acif” refers to both acif and line2afp commands.

Examples of using ACIF processing parameters

This section shows how you can use ACIF processing parameters to do these tasks:

Transform line data or XML data into a MO:DCA-P document.
Retrieve resources.

Specify AFP coded fonts.

Specify TrueType and OpenType fonts.

Identify the location of resource libraries.

Draw graphics with record format page definitions.

Note: In the AIX and Windows examples in this section, ACIF is run by entering

the acif command, parameters, and values on the command line. In AIX,
when all of the parameters do not fit on a single line across the screen, the
backslash (\) tells AIX to continue reading the command from the next line.
In Windows, the backslash is not valid; therefore, the command parameters
must be on one continuous line.

Transforming line data or XML data into a MO:DCA-P
document

You have an EBCDIC line data file named OLDFILE.1403 or an XML data file
named OLDFILE.xmp that you want to transform into a MO:DCA-P document
named NEWFILE.afp. To transform line data or XML data, enter these parameters
for your operating system:

AIX or Windows

acif inputdd=0LDFILE.1403 outputdd=NEWFILE.afp cctype=a \
fileformat=record pagedef=P1A06462 formdef=F1A10110

Notes:
1. For XML data, use OLDFILE.xmp for inputdd.

2. The backslash (\) tells AIX to continue reading the command from the
next line. In Windows, the backslash is not valid; therefore, the
command parameters must be on one continuous line.

z/OS, VM, or VSE

© Copyright IBM Corp. 1993, 2014 97

98

INPUTDD=0LDFILE
OUTPUTDD=NEWFILE
CCTYPE=A
PAGEDEF=P1A06462
FORMDEF=F1A10110

Note: For XML data, CCTYPE is not used.

ACIF converts the line data or XML data file, pointed to by the INPUTDD
parameter, into a document file pointed to by the OUTPUTDD parameter.

For line data, you specify CCTYPE=A to indicate that the file contains EBCDIC
ANSI carriage control characters. This particular input file is in variable length
record format, so in AIX and Windows you specify FILEFORMAT=RECORD. The
PAGEDEF and FORMDEF parameters are required with your line-data input file,
so you specify the file names of the page definition and form definition you want
ACIF to use in processing this file.

Retrieving resources

You have an AFP file (MYFILE) that contains page segments and overlays. You
would like to retrieve the page segments and overlays from the file and create both
a data file and a resource file. To retrieve resources, enter these parameters for
your operating system:

AIX or Windows

acif inputdd=MYFILE outputdd=MYDATA resobjdd=MYRES \
restype=pseg,ovly,fdef formdef=F1H10110

Note: The backslash (\) tells AIX to continue reading the command from
the next line. In Windows, the backslash is not valid; therefore, the
command parameters must be on one continuous line.

z/0S, VM, or VSE

INPUTDD=MYFILE
OUTPUTDD=MYDATA
RESOBJDD=MYRES
RESTYPE=PSEG,OVLY,FDEF
FORMDEF=F1H10110

From this job, ACIF produces an AFP document file and a resource file. The AFP
document file (MYDATA) contains the AFP data from MYFILE. The resource file
(MYRES) contains the resource data from MYFILE.

You specify RESTYPE=PSEG,OVLY,FDEF so that the page segments and overlays
are included in the resource file, along with the form definition (specified with the
FORMDEF parameter) that you want ACIF to use when it is processing the file.

For more information about using ACIF’s resource retrieval functions, see
[‘Retrieving resources” on page 9|

Specifying AFP coded fonts

You have an input file (MYFILE.asc) that contains unformatted ASCII data, and
you want these three AFP coded fonts to be used in processing the file: Helvetica
10-point, Times New Roman 10-point, and Courier 10-point. (To use any other
ASCII coded fonts, you must first create them.) You are using a page definition
that is supplied with PSF or InfoPrint Manager (P1A06462), and the page definition
does not name any fonts.

PSF V4R5 for z/OS: ACIF User's Guide

You specify the font names with the CHARS parameter. To use fonts with the
appropriate ASCII code points for your unformatted ASCII input, see
which shows the IBM Core Interchange Font names and their corresponding short
names for each of the fonts you want to use: Helvetica 10-point, Times New
Roman 10-point, and Courier 10-point. Because the CHARS parameter limits the
specification of a font name to four characters, you use the corresponding short
name from the table for each of the three fonts.

Table 8. Font short names to use with CHARS parameter

Font Type Coded Font Name Short Name
Helvetica 10-point X0H23002 H350
Times New Roman 10-point | XON23002 N350
Courier 10-point X0423002 4350

Because table reference characters are required in the input file when you want the
file to print with more than one font, you specify TRC=YES.

You specify your input and output file names with the INPUTDD and
OUTPUTDD parameters. You specify the page definition and form definition you
want ACIF to use when it is processing the file with the PAGEDEF and
FORMDEF parameters.

To use the three fonts, enter these parameters for your operating system:

AIX or Windows

acif inputdd=MYFILE.asc outputdd=MYFILE.afp chars=H350,N350,4350 \
trc=yes pagedef=P1A06462 formdef=F1A10110

Note: The backslash (\) tells AIX to continue reading the command from
the next line. In Windows, the backslash is not valid; therefore, the
command parameters must be on one continuous line.

z/0S, VM, or VSE

INPUTDD=MYFILE
OUTPUTDD=MYFILE
CHARS=H350,N350,4350
TRC=YES
PAGEDEF=P1A06462
FORMDEF=F1A10110

Specifying TrueType and OpenType fonts

You have an input file (INFILE) that contains EBCDIC line data. You also have
Unicode-enabled TrueType and OpenType fonts that are in user path libraries, such
as /jdoe/fonts/truetype, or system path libraries, such as /u/fonts/truetype.
TrueType and OpenType fonts are those fonts that are not defined by the Font
Object Content Architecture (FOCA).

You want these TrueType and OpenType fonts to be used in processing the file:
Arial Black, Century Gothic, and Times New Roman. The page definition
(PAGTRUE) you are using references the fonts in Map Data Resource (MDR)
structured fields. See [Page Printer Formatting Aid: User’s Guide for information
about creating page definitions that use TrueType and OpenType fonts.

You specify your input and output file names with the INPUTDD and
OUTPUTDD parameters. You specify the page definition and form definition you

Chapter 5. Examples of using ACIF 99

100

want ACIF to use when it is processing the file with the PAGEDEF and
FORMDEF parameters. You specify font path libraries with either the USERPATH
parameter or the FONTPATH parameter.

To specify the fonts, enter these parameters for your operating system:

AIX or Windows

acif inputdd=INFILE outputdd=OUTFILE pagedef=PAGTRUE formdef=F1A10110 \
userpath=/jdoe/fonts/truetype:/jdoe/fonts/truetype/myfonts/ \
fontpath=/u/fonts/truetype:/u/fonts/truetype/local

Note: The backslash (\) tells AIX to continue reading the command from
the next line. In Windows, the backslash is not valid; therefore, the
command parameters must be on one continuous line. You must use
a colon (:) in AIX or a semicolon (;) in Windows to separate multiple
paths.

z/OS

INPUTDD=INFILE

OUTPUTDD=0OUTFILE

PAGEDEF=PAGTRUE

FORMDEF=F1A10110
USERPATH="'/jdoe/fonts/truetype:/jdoe/fonts/truetype/myfonts/'
FONTPATH="/u/fonts/truetype:/u/fonts/truetype/local/’

Identifying the location of resource libraries

You have an input file and you want to use specific resources during processing.
You want to use a form definition (FORMD1A) and an overlay that are stored in
the general resource library at your location (SYS1.PSEGLIB, /ust/site/resdir, or
\directory\site\resdir, where directory is the installation directory). To be sure that
ACIF finds the resources you want to use, enter these parameters for your
operating system:

AIX

acif inputdd=INFILE outputdd=OUTFILE \
pagedef=PAGED6B formdef=FORMDIA \
userlib=/usr/mystuff/artl:/usr/mystuff/art2 \
pdeflib=/usr/dept/pdefdir3 reslib=/usr/site/resdir

Notes:

1. The backslash (\) tells AIX to continue reading the command from the
next line.

2. You must use a colon (:) to separate multiple paths.

Windows

acif inputdd=INFILE outputdd=OUTFILE pagedef=PAGED6B formdef=FORMD1A
userlib=\directory\mystuff\artl;\directory\mystuff\art2
pdeflib=\directory\dept\pdefdir3 reslib=\directory\site\resdir

Notes:
1. The command parameters must be on one continuous line.

2. You must use a semicolon (;) to separate multiple paths.

z/OS or VM

INPUTDD=INFILE
OUTPUTDD=0UTFILE
PAGEDEF=PAGED6B
FORMDEF=FORMD1A
USERLIB=USER.ART1,USER.ART2
PDEFLIB=USER.PDEFDIR3

PSF V4R5 for z/OS: ACIF User's Guide

VSE

INPUTDD=INFILE
OUTPUTDD=0UTFILE
PAGEDEF=PAGED6B
FORMDEF=FORMD1A

Note: VSE resources are in the library that is defined by the // LIBDEF
PHASE, SEARCH=(...) JCL statement.

The page definition that you want to use (PAGED®6B) is stored in one of the
several page definition libraries that are used by your department
(USER.PDEFDIR3, /ust/dept/pdefdir3, or \install_directory\dept\pdefdir3). The
page definition is a copy of one with the same file name that is stored in the site’s
general resource library, with some modifications made for use by your
department.

Your page segments are stored in two other libraries that you set up for your own
use (USER.ART1, /usr/mystuff/artl, or \install_directory\mystuff\artl and
USER.ART2, /usr/mystuff/art2, or \install_directory\mystuff\art2).

Because ACIF always searches the path that is specified by the USERLIB
parameter first, your page segments are found in your personal libraries. ACIF
next searches the paths that are specified by the parameters for specific resource
libraries (PDEFLIB, FDEFLIB, and so forth), so ACIF then finds the page definition
that you want to use from the department’s library. In AIX or Windows, ACIF then
searches the path that is specified with the RESLIB parameter, finding your form
definition and your overlay. See [“Selecting resources” on page 17 for a complete
list of the search order for AFP resources.

ACIF does not use the page definition that is named PAGEDG6B that is stored in
USER.RESDIR, /ust/site/resdir, or \install_directory\site\resdir, because it already
finds the modified PAGED®6B in the department library that is specified with the
PDEFLIB parameter.

Drawing graphics with record format page definitions

You have a page definition that you are using to format record format line data.
The page definition contains these DRAWGRAPHIC commands to draw colored
lines and boxes:
DRAWGRAPHIC BOX BOXSIZE 2.6 IN .25 IN ROUNDED LARGE

LINETYPE SOLID COLOR Green

FILL ALL SOLID COLOR Blue
DRAWGRAPHIC LINE ACROSS 7.5 IN

LINEWT BOLD

LINETYPE SOLID COLOR Red

To draw the graphics, enter these options on the EXTENSIONS parameter for your
operating system:
AIX or Windows

acif inputdd=INFILE outputdd=QUTFILE fileformat=record \
extensions=prcolor,box,fracline pagedef=PAGERFLD formdef=FORMRFLD

Note: The backslash (\) tells AIX to continue reading the command from
the next line. In Windows, the backslash is not valid; therefore, the
command parameters must be on one continuous line.

z/0S, VM, or VSE

Chapter 5. Examples of using ACIF 101

INPUTDD=INFILE

OUTPUTDD=OUTFILE
EXTENSIONS=PRCOLOR,BOX, FRACLINE
PAGEDEF=PAGERFLD
FORMDEF=FORMRFLD

Example of using ACIF to view and index documents

A communications company produces monthly telephone bills with a line data
application. The company wants to make the billing application output available so
that when a customer calls with a billing inquiry, the customer service
representatives can view the bill in the same format on their workstations as the
customer's printed copy. An example of the customer's printed telephone bill is
shown in [Figure 12 on page 103|

102 PSF V4R5 for z/0S: ACIF User's Guide

Return this portion with your payment.

WILLIAMR. SMITH
5280 SUNSHINE CANYON DR
Make check payable to BOULDER CO 80000-0000

A
AOUNTAIH EﬂéLij\‘g?UJTNDgg; szsosd 097
COMMUNICATIONS

1BASICSERVICE. $30.56
2 LONG DISTANCE CHARGES $26.41
TOTAL$56.97
BILL DATE: JAN 11, 2000
AOUHTAIH ACCOUNT NUMBER: 303-222-3456-6B

PASTOUE .

S RESTDENCE SSERVICE - oimmim i nin i L
i ST SURCHARGE i
B ACCESS SERVICE

MATNTENANCE PLAN

Figure 12. Example of a customer’s printed telephone bill

To meet the communications company's needs, you can use ACIF to do these tasks:

¢ Convert the output from the line data application into a document format that
can be used with the AFP Workbench Viewer.

* Index the file to facilitate searching the file with AFP Workbench Viewer.
e Retrieve resources so that all resources used in the bills are available at the
workstation.

Chapter 5. Examples of using ACIF 103

104

You do these tasks to view and index a telephone bill with ACIF:

1.

Examine the input file to determine what ACIF parameters are needed to view
the telephone bill and whether literal values are expressed as character data
strings or hexadecimal strings. See [“Examining the input file.”|

Specify ACIF parameters in AIX, Windows, z/0OS, VM, or VSE. See
[ACIF processing parameters” on page 107

Index the input data file for data retrieval. See [‘Indexing data in the input file”]
|on page 111.

Identify the locations of the resources that are used when the bill is printed. See
[“Identifying the locations of the resources” on page 113

Determine the form definition and page definition that is needed to format and
print the bill. See [“Determining the form definition and the page definition” on|

Run the ACIF job to create the output files. See [“Running the ACIF job” on|

Concatenate the output files. See [‘Concatenating ACIF output files” on page
115,

Access the document file from a workstation for viewing with AFP Workbench
Viewer. See |“Accessing the document file for viewing” on page 116

Examining the input file

[Figure 13 on page 105|shows the line data file currently used to print the telephone

bill that is shown in [Figure 12 on page 103}

Note: The line-data input file that is provided is hypothetical; it is intended only

to help you understand how ACIF can be used for an actual application and
to assist you when you use ACIF for your own application. For practical
use, you must provide your own input file, and specify paths, directories,
and so forth, as they apply to your particular installation and application.

PSF V4R5 for z/OS: ACIF User's Guide

Line
0

10

15

20

25

30

35

Carriage
Control

Tl T T e e B T Te ey T TTet SR |

1

- 36

(<}

SUMM

LONG
NO.
1

[cNoNo]

2
3
4

1 BASIC SERVICE. . . .
2 LONG DISTANCE CHARGES

6.79 $66.79

ARY OF CURRENT CHARGES
RESIDENCE SERVICE

911 SURCHARGE

CUSTOMER ACCESS SERVICE
WIRING MAINTENANCE PLAN
FEDERAL EXCISE TAX
STATE TAX

LONG DISTANCE CHARGES (I

$0.00

TEMIZED BELOW)

WILLIAM R. SMITH

5280 SUNSHINE CANYON DR
BOULDER CO 80000-0000
TOTAL AMOUNT DUE: $56.97
DATE DUE: JAN 29, 2000

$30.56
$26.41

.$56.97

BILL DATE: JAN 11, 2000

ACCOUNT NUMBER: 303-222-3456-6B

$0.
$56.

00
97

JAN 29, 2000

$56.

97

DISTANCE CHARGES

TIME TO PLACE TO AREA NUMBER MINUTES AMOUNT

DEC 11 7:15P LOVELAND CO 303 666-7777 006 $0.82
DEC 15 9:16A NIWOT CO 303 555-6666 012 $1.56
DEC 24 9:32P SANTA BARBARA CA 805 999-6666 032 $15.80
DEC 25 2:18P LAS VEGAS NV 702 888-7654 015 $8.23

TOTAL $26.41
PAGE 1

Figure 13. Example of the line data telephone bill

Determining how literal values are expressed

The way literal values in the input file are defined in ACIF parameters depends on
whether the input file contains ASCII or EBCDIC data. If the input file is in ASCII
for AIX or Windows or in EBCDIC for z/OS, VM, or VSE, the literal values in the
FIELD#n, INDEXn, and TRIGGER# parameters can be expressed in character data
strings. For example, [Figure 14 on page 106| shows part of an AIX parameter file
for ASCII input data. The CCTYPE parameter value matches the type of data in
the input file, in this case ASCIL. The CPGID parameter indicates a code page for
the type of data in the input file. The FIELD#n, INDEXn, and TRIGGER#
parameters are expressed in character data strings because the input file is ASCII
and the operating system is AIX.

Chapter 5. Examples of using ACIF 105

CC=yes
CCTYPE=z
CHARS=42B2
CPGID=850

FIELD1=13,66,15
FIELD2=0,50,30
FIELD3=1,50,30
FIELD4=2,50,30

TRIGGER1=%,1,"'1'

FIELD5='1"' /* Date Due data field */
INDEX1="'Account Number',FIELD1 /* 1st index attribute =/
INDEX2="'Name',FIELD2 /* 2nd index attribute =/
INDEX3="'Address',FIELD3 /* 3rd index attribute x/
INDEX4="'City, State, ZIP',6FIELD4 /* 4th index attribute x/
INDEX5="Date Due',FIELD5 /* 5th index attribute =/

TRIGGER2=13,50, 'ACCOUNT NUMBER' /* 2nd trigger =/

/* Example phone bill */
/* DATA CHARACTERISTICS*/
/* Carriage control used */
/* ASCIT ANSI carriage controls =/
/* Coded font x/
/* Code page identifier =/
/* FIELD AND INDEX DEFINITION=/
/* Account Number data field =/
/* Name data field */
/* Address data field */
/* City, State, ZIP data field */

/* EXIT AND TRIGGER INFORMATION=*/
/% 1st trigger =/

Figure 14. Example of an AIX parameter file for ASCII input data

If the input data file is not ASCII in AIX or Windows or not EBCDIC in z/0OS, VM,
or VGSE, the literal values in the FIELD#n, INDEX#n, and TRIGGER# parameters
must be expressed in hexadecimal strings. For example, shows part of an
AIX parameter file for EBCDIC input data. The CCTYPE parameter value matches
the type of data in the input file, in this case EBCDIC. The CPGID parameter
indicates a code page for the type of data in the input file. The FIELD#n, INDEX#,
and TRIGGER# parameters are expressed in hexadecimal strings because the input
file is EBCDIC and the operating system is AIX.

CC=yes
CCTYPE=a
CHARS=GT15
CPGID=037

FIELD1=13,66,15
FIELD2=0,50,30
FIELD3=1,50,30
FIELD4=2,50,30
FIELD5=X'0001"

TRIGGER1=,1,X"F1'

INDEX1=X"'C1838396A495A340D5A494828599"' ,FIELD1 /* 1st index attr (Account Number) =/
INDEX2=X'D5819485"' ,FIELD2 /* 2nd index attr (Name) =*/
INDEX3=X"'C184849985A2A2"' ,FIELD3 /* 3rd index attr (Address) x/
INDEX4=X"'C389A3A86B40E2A381A3856B40E98997 ' ,FIELD4 /* 4th index attr (City, State, ZIP) =/
INDEX5=X"'C481A38540C4A485"' ,FIELD5 /* 5th index attr (Date Due) =/

TRIGGER2=13,50,X'C1C3C3D6E4D5E340D5E4D4C2C5D9" /* 2nd trigger (ACCOUNT NUMBER) =*/

/* Example phone bill =/
/* DATA CHARACTERISTICS*/
/* Carriage control used =*/
/* EBCDIC ANSI carriage controls =/
/* Coded font */
/* Code page identifier =/
/* FIELD AND INDEX DEFINITION=/
/* Account Number data field =/
/* Name data field */
/* Address data field */
/* City, State, ZIP data field =/
/* Date Due data field */

/* EXIT AND TRIGGER INFORMATION=*/
/* 1st trigger (1) */

Figure 15. Example of an AlX parameter file for EBCDIC input data

Using the shell with EBCDIC literal values

In AIX and Windows, literal values used in the FIELD#n, INDEXn, and TRIGGER#
parameters must be expressed in hexadecimal strings when the input data is
anything other than ASCII. Because the input data in is EBCDIC,
hexadecimal strings are required, and must be entered if you specify your

106 PSF V4R5 for z/0S: ACIF User's Guide

parameters within a parameter file. If the parameters are not specified in a
parameter file, you can use AIX or Windows commands (such as axeb or iconv) to
convert ASCII literal values into EBCDIC literal values. For example, to convert the
ASCII literal “Name” for the second index attribute (INDEX2), do these tasks:
1. Create a shell environment variable to hold the EBCDIC literal:
e With the axeb command, enter:
— attr2=$(echo -n "Name" | axeb)
e With the iconv command, enter:
— attr2=$(echo -n "Name" | iconv -fIBM-850 -tIBM-037)
2. On the command line or in a shell script, specify the second index attribute by
entering:
INDEX2=""'$attr2'",field2

Note: This example is for use with the Korn Shell (ksh). If you are using a
different shell, see the documentation for the shell you are using in AIX
Commands Reference.

By using this method to convert the ASCII literals to the EBCDIC literals, no
mistakes are made when the literals are converted to a hexadecimal string.

Specifying ACIF processing parameters

You can process the ACIF parameters that are needed to produce the telephone bill
by using one of these methods:

 Create and specify a parameter file.

e In AIX and Windows, enter the acif command, parameters, and values on the
command line or in a shell script.

The following sections show examples of AIX, Windows, z/OS, VM, and VSE
parameter files for the telephone bill.

AIX and Windows parameter file
An AIX parameter file is shown in [Figure 16 on page 108} A Windows parameter
file is the same as the AIX parameter file except for these directories:

FDEFLIB=\d:\res\fdeflibl;\d:\res\fdeflib2
FONTLIB=\d:\res\fontlibl;\d:\res\fontlib2
0BJCONLIB=\d:\res\objconlibl;\d:\res\objconlib2
OVLYLIB=\d:\res\ovlylibl;\d:\res\ovlylib2
PDEFLIB=\d:\res\pdeflibl;\d:\res\pdeflib2
PSEGLIB=\d:\res\pseglibl;\d:\res\pseglib2
INPUTDD=\d:\data\INFILE

Also note that in Windows you use a semicolon (;) instead of a colon (:) to separate
libraries.

Chapter 5. Examples of using ACIF 107

/* Example phone bill */

/* DATA CHARACTERISTICS */
CC=yes /* Carriage control used */
CCTYPE=z /* ASCIT ANSI carriage controls */
CHARS=42B2 /* Coded font =/
CPGID=850 /* Code page identifier =/

/* FIELD AND INDEX DEFINITION */
FIELD1=13,66,15 /* Account Number data field =/
FIELD2=0,50,30 /* Name data field %/
FIELD3=1,50,30 /* Address data field */
FIELD4=2,50,30 /* City, State, ZIP data field */
FIELD5=4,60,12 /* Date Due data field x/
INDEX1="'Account Number',FIELD1 /* 1st index attribute =/
INDEX2="'Name',FIELD2 /* 2nd index attribute */
INDEX3="'Address',FIELD3 /* 3rd index attribute x/
INDEX4='City, State, ZIP',FIELD4 /* 4th index attribute =/
INDEX5="'Date Due',FIELD5 /* 5th index attribute x/

/* INDEXING INFORMATION */
INDEXOBJ=all /* Index object file entries x/

/* RESOURCE INFORMATION */
FORMDEF=F1A10110 /* Formdef name =*/
PAGEDEF=P1A08682 /* Pagedef name */
FDEFLIB=/usr/res/fdeflibl:/usr/res/fdeflib2 /* Formdef directories x/
FONTLIB=/usr/res/fontlibl:/usr/res/font1ib2 /* Font directories =*/
OBJCONLIB=/usr/res/objconlibl:/usr/res/objconlib2 /* Objcon directories =*/
OVLYLIB=/usr/res/ovlylibl:/usr/res/oviylib2 /* Overlay directories */
PDEFLIB=/usr/res/pdeflibl:/usr/res/pdeflib2 /* Pagedef directories */
PSEGLIB=/usr/res/pseglibl:/usr/res/pseglib2 /* Pseg directories x/
RESOBJDD=RESDATA /* Resource file name */
RESTYPE=fdef,pseg,ovly /* Resource type selection */

/* FILE INFORMATION */
INDEXDD=INDXO0BJ /* Index file name */
INPUTDD=/usr/data/INFILE /* Input path & file name */
OUTPUTDD=0UTDOC /* Output file name */
MSGDD=acif.msg /* Error message file name */

/* EXIT AND TRIGGER INFORMATION */
TRIGGER1=+,1,'1" /* 1st trigger */
TRIGGER2=13,50, 'ACCOUNT NUMBER' /* 2nd trigger =/

Figure 16. Example of an AIX Parameter File

z/OS parameter file

The JCL for a z/OS parameter file is shown in [Figure 17 on page 109} This example
creates a sequential data set; however, if you need a partitioned data set, change
the parameters as follows:

* Set RESFILE=PDS
* Set the SPACE and DSORG parameters in the DD statement of the data set

named by the RESOBJDD parameter to
SPACE=(12288,(150,15,15)), DSORG=PO.

Failure to set these parameters as described might produce a RESOBJDD data set
that is unusable.

108 PSF V4R5 for z/0S: ACIF User's Guide

//job... JOB ...
//APKSMAIN EXEC PGM=APKACIF,REGION=8M,TIME=(,30)

//STEPLIB DD DSN=APKACIF.LOAD,DISP=SHR
//INPUT DD DSN=USER.ACIFEX2.DATA,DISP=SHR
//SYSIN DD =
/* Example phone bill
/* DATA CHARACTERISTICS

CC = YES /* Carriage control used

CCTYPE = A /* Carriage control type

CHARS = GT15

CPGID = 500 /* Code page identifier
/* FIELD AND INDEX DEFINITION

FIELD1 = 13,66,15 /* Account Number

FIELD2 = 0,50,30 /* Name

FIELD3 = 1,50,30 /* Address

FIELD4 = 2,50,30 /* City, State, ZIP

FIELD5 = 4,60,12 /* Date Due

INDEX1 = 'Account Number',FIELD1 /* 1st INDEX attribute

INDEX2 = 'Name',FIELD?2 /* 2nd INDEX attribute

INDEX3 = 'Address',FIELD3 /* 3rd INDEX attribute

INDEX4 = 'City, State, ZIP',FIELD4 /* 4th INDEX attribute

INDEX5 = 'Date Due',FIELD5 /* 5th INDEX attribute

/* INDEXING INFORMATION
INDEXOBJ = ALL

/* RESOURCE INFORMATION
FORMDEF = F1A10110 /* Formdef name
PAGEDEF = P1A08682 /* Pagedef name
FDEFLIB = SYS1.FDEFLIB
FONTLIB = SYS1.FONTLIBB,SYS1.FONTLIBB.EXTRA
0BJCONLIB = USER.PSEGLIB
OVLYLIB = SYS1.0OVERLIB
PDEFLIB = SYS1.PDEFLIB
PSEGLIB = SYS1.PSEGLIB
RESFILE = SEQ /* Resource file type
RESTYPE = FDEF,PSEG,QVLY /* Resource type selection
/* FILE INFORMATION
INDEXDD = INDEX /* Index file ddname
INPUTDD = INPUT /* Input file ddname
OUTPUTDD = OQUTPUT /* Output file ddname
RESOBJDD = RESLIB /* Resource file ddname
/* EXIT AND TRIGGER INFORMATION
TRIGGER1 = %,1,'1" /* 1st TRIGGER
TRIGGER2 = 13,50, 'ACCOUNT NUMBER:' /* 2nd TRIGGER
/*
//OUTPUT DD DSN=APKACIF.OUTPUT,DISP=(NEW,CATLG),
// SPACE=(32760, (150,150) ,RLSE) ,UNIT=SYSDA,
// DCB=(LRECL=32756,BLKSIZE=32760,RECFM=VBM,DSORG=PS)
//INDEX DD DSN=APKACIF.INDEX,DISP=(NEW,CATLG),
// SPACE=(32760, (15,15) ,RLSE) ,UNIT=SYSDA,
// DCB=(LRECL=32756,BLKSIZE=32760,RECFM=VBM,DSORG=PS)
//RESLIB DD DSN=APKACIF.RESLIB,DISP=(NEW,CATLG),
// SPACE=(32760, (150,150) ,RLSE) ,UNIT=SYSDA,
// DCB=(LRECL=32756,BLKSIZE=32760,RECFM=VBM,DSORG=PS)
//SYSPRINT DD DSN=APKACIF.SYSPRINT,DISP=(NEW,CATLG),
// SPACE=(9044, (15,15) ,RLSE) ,UNIT=SYSDA,
// DCB=(LRECL=137,BLKSIZE=1374,RECFM=VBA,DSORG=PS)

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Figure 17. Example of a z/OS parameter file

Chapter 5. Examples of using ACIF

109

VM parameter file
The CMS commands for a VM parameter file are shown in

FILEDEF INPUT DISK ACIFEX2 SYSIN A
FILEDEF QOUTPUT DISK APKACIF OUTPUT A (LRECL 32756 BLKSIZE 32760 RECFM VB
FILEDEF INDEX DISK APKACIF INDEX A (LRECL 32756 BLKSIZE 32760 RECFM VB
FILEDEF RESLIB DISK APKACIF RESLIB A (LRECL 32756 BLKSIZE 32760 RECFM VB
FILEDEF SYSPRINT DISK APKACIF SYSPRINT A
APKACIF
Where file ACIFEX2 SYSIN A contains the following:
/* Example phone bill x/
/* DATA CHARACTERISTICS */
CC = YES /* Carriage control used */
CCTYPE = A /* Carriage control type */
CHARS = GT15
CPGID = 500 /* Code page identifier */
FDEFLIB = FDEF3820,FDEF38PP
/* INDEXING INFORMATION */
FIELD1 = 13,66,15 /* Account Number */
FIELD2 = 0,50,30 /* Name */
FIELD3 = 1,50,30 /* Address */
FIELD4 = 2,50,30 /* City, State, ZIP */
FIELD5 = 4,60,12 /* Date Due x/
INDEX1 = 'Account Number',FIELD1 /* 1st INDEX */
INDEX2 = 'Name',FIELD2 /* 2nd INDEX x/
INDEX3 = 'Address',FIELD3 /* 3rd INDEX */
INDEX4 = 'City, State, ZIP',FIELD4 /* 4th INDEX */
INDEX5 = 'Date Due',FIELD5 /* 5th INDEX */
/* FILE INFORMATION */
INDEXDD = INDEX /* Index file ddname x/
INPUTDD = INPUT /* Input file ddname */
OUTPUTDD = QUTPUT /* Output file ddname x/
RESOBJDD = RESLIB /* Resource file ddname */
/* RESOURCE INFORMATION */
FORMDEF = F1A10110 /* Formdef name */
PAGEDEF = P1A08682 /* Pagedef name */
FONTLIB = FONT3820,FONT38PP
OBJCONLIB = 0BJC3820
OVLYLIB = 0VLY3820,0VLY38PP
PDEFLIB = PDEF3820,PDEF38PP
PSEGLIB = PSEG3820,PSEG38PP
RESFILE = SEQ /* Resource file type */
RESTYPE = FDEF,PSEG,OVLY /* Resource type selection =/
/* EXIT AND TRIGGER INFORMATION */
TRIGGER1 = %,1,'1" /* 1st TRIGGER */
TRIGGER2 = 13,50, "'ACCOUNT NUMBER:' /* 2nd TRIGGER */

Figure 18. Example of a VM parameter file

VSE parameter file
The JCL for a VSE parameter file is shown in [Figure 19 on page 111|

110 PSE V4RS5 for z/OS: ACIF User's Guide

// JOB

// LIBDEF
// ASSGN
// ASSGN
DLBL
EXTENT
ASSGN
DLBL
EXTENT
ASSGN
DLBL
EXTENT
ASSGN
DLBL
EXTENT
EXEC

CC = YES
CCTYPE =
CHARS
CPGID

FIELD1
FIELD2
FIELD3
FIELD4
FIELD5
INDEX1
INDEX2
INDEX3
INDEX4
INDEX5

INDEXDD
INPUTDD
OUTPUTDD
RESOBJDD

FORMDEF
PAGEDEF
RESFILE
RESTYPE

TRIGGER1
TRIGGER2
/*
/&

PHASE, SEARCH=(PRD2.AFP)
SYSLST,X'FEE'
SYS006,201
INPUT, "APKACIF.INPUT',0,SD
SYS006,SYSWK1,1,1,9200,13
SYS007,201
OUTPUT, 'APKACIF.QUTPUT',0,SD
SYS007,SYSWK1,1,1,9213,45
SYS008,201
RESOBJ, 'APKACIF.RESLIB',0,SD
SYS008,SYSWK1,1,1,9258,15
SYS009,201
INDEX, "APKACIF.INDEX',0,SD
SYS009,SYSWK1,1,1,9273,15
PGM=APKACIF,SIZE=548K
/* DATA CHARACTERISTICS */
/* Carriage control used */
A /* Carriage control type */
GT15
500 /* Code page identifier */
/* FIELD AND INDEX DEFINITION */
13,66,15 /* Account Number x/
0,50,30 /* Name */
1,50,30 /* Address */
2,50,30 /* City, State, ZIP */
4,60,12 /* Date Due */
"Account Number',FIELD1 /* Ist INDEX */
'Name',FIELD2 /* 2nd INDEX */
'Address',FIELD3 /* 3rd INDEX */
'City, State, ZIP',FIELD4 /* 4th INDEX */
'Date Due',FIELD5 /* 5th INDEX */
/* FILE INFORMATION */
= INDEX /* Index file ddname x/
= INPUT /* Input file ddname x/
= QUTPUT /* Output file ddname */
= RESOBJ /* Resource file ddname */
/* RESOURCE INFORMATION */
= F1A10110 /* Formdef name */
= P1A08682 /* Pagedef name */
= SEQ /* Resource file type */
= FDEF,PSEG,OVLY /* Resource type selection */
/* EXIT AND TRIGGER INFORMATION */
= %,1,'1" /* 1st TRIGGER */
= 13,50, 'ACCOUNT NUMBER:'/* 2nd TRIGGER */

Figure 19. Example of a VSE parameter file

Indexing data

in the input file

The parameter file that you create runs the ACIF program to index the input file.

Note: ACIF does not look for indexing information in PTOCA objects or Unicode
complex text, and does not use PTOCA text controls to index the file.

The example in [Figure 14 on page 106 uses these data values as the indexing

attributes:

e Account Number

Chapter 5. Examples of using ACIF

111

* Name

* Address

* City, State, ZIP
* Date Due

You must specify the ACIF indexing parameters so that the first page of each bill
includes group-level indexing tags that contain the values of all five of these
attributes.

To generate the indexing attributes:

1. Specify the TRIGGERI1 parameter because ACIF always scans for the data that
is specified in TRIGGERT1 first. Because the data contains carriage control
characters, include a carriage control character of ‘1" to indicate a new page.
ACIF locates the start of a page by searching every record in the file for a
trigger value of ‘1" in column 1 of the data. Specify this parameter:

TRIGGERL = =,1,'1"
When ACIF finds a record that contains a ‘1’ in column 1, that record becomes
the indexing anchor record.

2. Define subsequent TRIGGER#n parameters relative to the indexing anchor
record. In this example, you want to ensure that the page that is indexed is the
first page of the bill, which is the only page in the bill that has the text
‘ACCOUNT NUMBER' starting at byte 50 in the 13th record that follows the
anchor record. To specify this additional trigger for locating the correct page to
index, enter:

TRIGGERZ = 13,50, 'ACCOUNT NUMBER'

ACIF uses both trigger values to locate a place in the file to begin searching for
the data that is supplied in the INDEX#n parameters.

3. Specify the attribute name of the first indexing parameter as 'Account Number',
and define the location of the attribute value in the data relative to the index
anchor record set by TRIGGER1. Because the data value for the Account
Number attribute is in the 13th record from the index anchor record that starts
in byte 66 and extends for 15 bytes, specify:

FIELD1=13,66,15
INDEX1="Account Number',FIELD1

4. Define 'Name' as the indexing attribute to create the indexing tag for the Name
attribute. Locate the value for ‘Name’ in the anchor record in the data that
starts at byte 50 and extends for 30 bytes. These are the ACIF parameters to
specify:

FIELD2=0,50,30
INDEX2="'Name',FIELD2

5. Repeat this process to specify the other three indexing tags so that the index
attributes and values are defined as follows:

e INDEX1='Account Number',6FIELD1
"Account Number' is the first index attribute
— FIELD1 maps to the FIELD1 index value, which is:

- 13 lines down from the indexing anchor record, 66 columns across, 15
bytes in length

e INDEX2='Name',FIELD2
— 'Name' is the second index attribute
— FIELD2 maps to the FIELD2 index value, which is:

112 PSF V4RS5 for z/OS: ACIF User's Guide

- 0 lines down (in the indexing anchor record), 50 columns across, 30
bytes in length

e INDEX3='Address',FIELD3
— 'Address' is the third index attribute
— FIELD3 maps to the FIELD3 index value, which is:

- 1 line down from the indexing anchor record, 50 columns across, 30
bytes in length

e INDEX4='City, State, ZIP',FIELD4
'City, State, ZIP' is the fourth index attribute
— FIELD4 maps to the FIELD4 index value, which is:
- 2 lines down from the indexing anchor record, 50 columns across, 30
bytes in length
e INDEX5='Date Due',FIELD5
— 'Date Due' is the fifth index attribute
— FIELD5 maps to the FIELD5 index value, which is:

- 4 lines down from the indexing anchor record, 60 columns across, 12
bytes in length

The result of using these indexing parameters is that the first page of each bill in
the ACIF output file contains indexing tags for each of the five indexing attributes.
Using AFP Workbench Viewer, customer service representatives can locate a single
customer bill in the ACIF document by using any combination of the indexing
attributes.

Identifying the locations of the resources

To build the resource file, you must specify the resource libraries in the parameter
file so ACIF knows where to find the resources that are specified in the job. The
parameter file examples for the telephone bill (Figure 16 on page 108} [Figure 17 on|
[page 109} [Figure 18 on page 110} and [Figure 19 on page 111) define these resource
libraries:

FDEFLIB Form definition library
FONTLIB Font library
OBJCONLIB Object container library

OVLYLIB Overlay library

PDEFLIB Page definition library

PSEGLIB Page segment and BOCA, GOCA, IOCA , and PTOCA object
library

Notes:

1. Resource files that are processed by ACIF must contain a X'5A' carriage control
character at the start of each structured field.

2. See[‘Selecting resources” on page 17]for a complete list of the search order for
AFP resources in AIX or Windows.

Determining the form definition and the page definition

To format and print the job, specify form definition and page definition resources

in the parameter file. The parameter file examples for the telephone bill (IFigure 15|
on page 108 [Figure 17 on page 109} [Figure 18 on page 110} and [Figure 19 on page]
111) define these resources:

Chapter 5. Examples of using ACIF 113

FORMDEF
F1A10110, a standard form definition that is provided with PSF or
InfoPrint Manager.

PAGEDEF
P1A08682, a standard page definition that is provided with PSF or
InfoPrint Manager.

Running the ACIF job

Run the ACIF job, depending on your operating system:

AIX and Windows
Use one of these methods:

¢ Use a parameter file that contains the parameters and values that are
needed for the application (see [Figure 16 on page 108). To use a
parameter file, enter the acif command, the PARMDD parameter, and
the parameter file name. For example, to use a parameter file that is
named PARMFILE, specify this command on the command line:

acif parmdd=PARMFILE

* Enter the acif command, parameters, and values on the command line
or in a shell script. For the telephone bill example, enter:

acif cc=yes cctype=z chars=42B2 cpgid=850...

(continue entering all of the remaining parameters and values).

See [“Examples of using ACIF processing parameters” on page 97| for
examples of running ACIF from the command line. For information
about creating and running shell scripts, see InfoPrint Manager: Reference.

z/OS and VSE
Run a batch job by using the JCL you created for the parameter file (see
[Figure 17 on page 109|and [Figure 19 on page 111).

VM Run the CMS command for the parameter file you created (see
on page 110).

ACIF processes the parameters that you specified in the parameter file, on the
command line, or in the shell script and creates output files. shows the
output files that ACIF creates for AIX, Windows, z/OS, VM, and VSE. The
Windows operating system is referred to as “WIN” in the table.

Table 9. Output files ACIF creates

Type of File

AIX and WIN (z/OS VM VSE

Document file, including OUTDOC APKACIF.OUTPUT APKACIF OUTPUT APKACIF.OUTPUT
indexing structured fields

e Resources used
¢ Return code

* ACIF parameters used

Index object file INDXOB]J APKACIFINDEX APKACIF INDEX APKACIFINDEX
Resource file RESDATA APKACIF.RESLIB APKACIF RESLIB APKACIF.RESLIB
Message file listing: acif.msg APKACIESYSPRINT | APKACIF SYSPRINT | APKACIESYSPRINT

114 PSF V4R5 for z/OS: ACIF User's Guide

Concatenating ACIF output files

To use AFP Workbench Viewer to view the document file on a workstation, you
must first concatenate the resource file, the index object file, and the document file
to create a MO:DCA print file. The order of the files in the concatenated file must
be:

1. Resource file

2. Index object file

3. Document file

Note: The concatenated file can contain only a single resource file, but multiple
index and document files. For example, one resource file (RESDATA), two
index object files (INDXOBJ1 and INDXOB]J2), and two document files
(OUTDOC1 and OUTDOC?2) can be concatenated in this order:

RESDATA INDXOBJ1 OUTDOC1 INDXOBJ2 OUTDOCZ2

See Mixed Object Document Content Architecture Reference, for information
about the print file structure.

AIX files

Use one of the methods that are described in these shell command examples to
concatenate the AIX output files:

e cat RESDATA INDXOBJ OUTDOC > NEWFILE

The resource file, the index object file, and the document file are combined to
create a new file that contains all three files.

e cat INDXOBJ OUTDOC >> RESDATA

The index object file and the document file are added on to the end of the
existing resource file.

Windows files

Use one of the methods that are described in these shell command examples to
concatenate the Windows output files:

e copy /b RESDATA + INDXOBJ + OUTDOC NEWFILE

The resource file, the index object file, and the document file are combined to
create a new file that contains all three files.

* copy /b RESDATA + INDXOBJ + OUTDOC

The index object file and the document file are added on to the end of the
existing resource file.

z/0S files

This example shows the z/OS JCL that you can use to concatenate files:

//PRINT EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=+

//SYSIN DD DUMMY

//SYSUT1 DD DSN=APKACIF.RESLIB,DISP=SHR

// DD DSN=APKACIF.INDEX,DISP=SHR

// DD DSN=APKACIF.OUTPUT,DISP=SHR

//SYSUT2 ~ DD DSN=NEW.PRINT.OBJECT,DISP=(NEW,CATLG),
// UNIT=SYSDA,SPACE=(32760,nnn),

// DCB=(LRECL=32756,BLKSIZE=32760,RECFM=VBM)

Where nnn is equal to the size of the resource file, plus the size of the index object
file, plus the size of the document file.

Note: The resource file must be created by specifying RESFILE=SEQ.

Chapter 5. Examples of using ACIF 115

VM files

This example shows the VM CMS commands that you can use to concatenate files:
COPY APKACIF RESLIB A APKACIF INDEX A APKACIF OUTPUT A APKACIF LIST3820 A (APPEND

VSE files

VSE does not supply a utility for concatenating ACIF output files; you must write
your own program.

Accessing the document file for viewing

To view the concatenated document file with AFP Workbench Viewer, you must
access the file from a workstation that is running Microsoft Windows. You can use
one of these methods to access the file:

* Transfer the document file, in binary format, to the workstation where AFP
Workbench Viewer is installed.

e Mount your AIX or Windows directory on the workstation where AFP
Workbench Viewer is installed.
Notes:

1. You must have TCP/IP installed on both the AIX, Windows, z/0S, VM, or VSE
system and the workstation system where AFP Workbench Viewer is installed.

2. To mount your AIX or Windows directory on the workstation where AFP
Workbench Viewer is installed, you must have TCP/IP with Network File
System (NFS) installed on both the AIX or Windows system and on the
workstation system where AFP Workbench Viewer is installed.

For more information about TCP/IP and NFS, see your TCP/IP documentation.

Transferring the document file to the workstation

You can use the File Transfer Protocol (FTP) program to transfer the concatenated
document file to the workstation where Microsoft Windows and AFP Workbench
Viewer are installed:

1. From the drive and directory of the workstation where you want to save the
document file, enter the FTP command and the name of your AIX, Windows,
z/0S, VM, or VSE system:

ftp systemname
2. Enter your system user name.
3. Enter the password for your system user name.

4. To access the directory where the concatenated document file is currently
located, enter:

cd directoryname
5. To transfer the file in binary format, enter:
bin
6. To transfer a concatenated document file that is named NEWFILE, enter:
get NEWFILE
The file is copied to the workstation, where you can open it for viewing with
AFP Workbench Viewer.
7. To exit the FTP program, enter:
ftp bye

Mounting the AIX or Windows directory on the workstation
You can mount your AIX or Windows directory on the workstation where Microsoft
Windows and AFP Workbench Viewer are installed by using the NFS mount

116 PSF V4RS5 for z/OS: ACIF User's Guide

command and the procedures that are documented in the NFS manuals or your
own installation file mounting procedures.

Example of using enhanced indexing with ACIF

You can use enhanced indexing in ACIF to view and index a report, such as a
telephone bill. The tasks that you do are the same as those tasks described in
[“Example of using ACIF to view and index documents” on page 102.| This section
shows a telephone bill and the ACIF enhanced indexing parameter file that is
needed to view and index the bill.

Enhanced indexing telephone bill

[Figure 20 on page 118 shows an example of a customer's telephone bill.

Chapter 5. Examples of using ACIF 117

1DETAIL REPORT TELECOMMUNICATIONS STATEMENT FOR PERIOD OF JUNE 2005
FOR: APPLE, ANNIE

SUBGROUP SEQ 4020
ACCOUNT

APPLE, ANNIE

CALLS VIA PHONE NETWORK

DATE TIME ORIGINATION DESTINATION DAC NUMBER MIN CHARGES
06-02 08:03 DXSD PLT5 WILLOW GRV PA 215 555-4100 1 .28
06-02 08:24 DXSD PLT5 MEMPHIS ™ 901 555-3293 2 .55
06-02 08:46 DXSD PLT5 NASHVILLE TN 615 555-2000 3 .82
06-02 09:23 DXSD PLT5 PHILA PA 215 555-3573 12 3.22
06-02 09:35 DXSD PLT5 COLUMBIA SC 803 555-6781 4 1.08
06-02 09:46 DXSD PLT5 COLUMBIA SC 803 555-6781 2 .55
06-02 09:48 DXSD PLT5 BOUNDBROOK NJ 201 555-2939 13 3.49
06-02 10:01 DXSD PLT5 NEW YORK ~ NY 212 555-2470 6 1.62
06-02 10:06 DXSD PLT5 NEW YORK ~ NY 212 555-2470 5 1.35
06-02 10:12 DXSD PLT5 INDIANAPLS IN 317 555-2533 5 1.35
06-02 10:40 DXSD PLT5 CHARLESTON WV 204 555-7000 8 2.15
06-02 10:47 DXSD PLT5 CLEVELAND OH 216 555-1744 4 1.08
06-02 11:01 DXSD PLT5 CLEVELAND OH 216 555-1744 2 .55
06-02 13:09 DXSD PLT5 DETROIT MI 313 555-8889 5 1.35
06-02 13:28 DXSD PLT5 COLUMBIA SC 803 555-3580 5 1.35
06-02 14:51 DXSD PLT5 COLUMBIA SC 803 555-3743 2 .55
06-02 14:57 DXSD PLT5 COLUMBIA SC 803 555-3580 17 4.56
06-02 18:47 DXSD PLT5 BIRMINGHAM MI 313 555-9143 1 .21
06-03 10:00 DXSD PLT5 COLUMBIA SC 803 555-3580 5 1.35
06-03 10:10 DXSD PLT5 COLUMBIA SC 803 555-3580 5 1.35
06-03 10:33 DXSD PLT5 PICORIVERA CA 213 555-7426 1 .29
06-03 14:48 DXSD PLT5 PICORIVERA CA 213 555-7426 6 1.43
06-03 15:22 DXSD PLT5 PITTSBURGH PA 412 555-2536 2 .55
06-03 16:10 DXSD PLT5 IRVINE CA 714 555-4933 1 .27
06-03 16:15 DXSD PLT5 HNTNGTNBCH CA 714 555-6488 14 3.05
06-03 16:29 DXSD PLT5 IRVINE CA 714 555-4933 4 .92
06-03 16:34 DXSD PLT5 KALAMAZOO MI 616 555-0478 3 .82
06-03 16:36 DXSD PLT5 IRVINE CA 714 555-4933 3 .70
06-03 16:39 DXSD PLT5 PICORIVERA CA 213 555-7426 3 .75
06-03 16:41 DXSD PLT5 WLOSANGELS CA 213 555-5000 7 1.76
06-03 16:47 DXSD PLT5 IRVINE CA 714 555-0170 3 .70
06-04 08:03 DXSD PLT5 WILLOW GRV PA 215 555-4133 1 .28
06-04 08:24 DXSD PLT5 MEMPHIS ™ 901 555-3293 2 .55
06-04 08:46 DXSD PLT5 NASHVILLE TN 615 555-2000 3 .82
06-04 09:23 DXSD PLT5 PHILA PA 215 555-3573 12 3.22
06-04 09:35 DXSD PLT5 COLUMBIA SC 803 555-6781 4 1.08
06-04 09:46 DXSD PLT5 COLUMBIA SC 803 555-6781 2 .55
06-04 09:48 DXSD PLT5 BOUNDBROOK NJ 201 555-2939 13 3.49
06-04 10:01 DXSD PLT5 NEW YORK ~ NY 212 555-2470 6 1.62
06-04 10:06 DXSD PLT5 NEW YORK ~ NY 212 555-2470 5 1.35
06-04 10:12 DXSD PLT5 INDIANAPLS IN 317 555-2533 5 1.35

1DETAIL REPORT TELECOMMUNICATIONS STATEMENT FOR PERIOD OF JUNE 2005

FOR: APPLE, ANNIE

SUBGROUP SEQ 4020

ACCOUNT

APPLE, ANNIE (CONTINUED)

CALLS VIA PHONE NETWORK

DATE TIME ORIGINATION DESTINATION DAC NUMBER MIN CHARGES
06-04 10:22 DXSD PLT5 LOMBARD IL 312 555-1717 9 2.42
06-04 11:08 DXSD PLT5 LOSANGELES CA 213 555-4732 21 5.12
06-04 11:53 DXSD PLT5 KANSASCITY KS 913 555-1400 4 1.08
06-04 12:18 DXSD PLT5 PICORIVERA CA 213 555-7426 15 4.09
06-04 14:38 DXSD PLT5 INDIANAPLS IN 317 555-2533 15 4.15
06-04 15:12 DXSD PLT5 SAN DIEGO CA 619 555-3133 5 .17
06-04 15:35 DXSD PLT5 BOULDER co 303 555-1442 8 2.15
06-05 10:42 DXSD PLT5 PITTSBURGH PA 412 555-2536 11 2.95
06-05 12:04 DXSD PLT5 PONTIAC MI 313 555-5184 17 4.56
06-05 13:06 DXSD PLT5 BIRMINGHAM MI 313 555-9143 13 3.49
06-06 08:46 DXSD PLT5 MINNEAPOLS MN 612 555-2984 4 1.08
06-06 12:51 DXSD PLT5 PITTSBURGH PA 412 555-3090 3 82
06-06 12:57 DXSD PLT5 MINNEAPOLS MN 612 555-2984 1 .28
06-06 13:13 DXSD PLT5 MINNEAPOLS MN 612 555-2984 5 1.35
06-06 13:19 DXSD PLT5 PITTSBURGH PA 412 555-3090 10 2.69
06-06 13:28 DXSD PLT5 PITTSBURGH PA 412 555-3090 7 1.88
06-06 14:28 DXSD PLT5 PITTSBURGH PA 412 555-2536 8 2.15
06-06 10:12 DXSD PLT5 INDIANAPLS IN 317 555-2533 5 1.35
06-09 08:03 DXSD PLT5 WILLOW GRV PA 215 555-4133 1 .28
06-09 08:24 DXSD PLT5 MEMPHIS ™ 901 555-3293 2 .55
06-09 08:46 DXSD PLT5 NASHVILLE TN 615 555-2000 3 .82
06-09 09:23 DXSD PLT5 PHILA PA 215 555-3573 12 3.22
06-09 09:35 DXSD PLT5 COLUMBIA SC 803 555-6781 4 1.08
06-09 09:46 DXSD PLT5 COLUMBIA SC 803 555-6781 2 .55
06-09 09:48 DXSD PLT5 BOUNDBROOK NJ 201 555-2939 13 3.49
06-09 10:01 DXSD PLT5 NEW YORK ~ NY 212 555-2470 6 1.62
06-09 10:06 DXSD PLT5 NEW YORK ~ NY 212 555-2470 5 1.35
06-09 10:12 DXSD PLT5 INDIANAPLS IN 317 555-2533 5 1.35
06-09 10:40 DXSD PLT5 CHARLESTON WV 204 555-7000 8 2.15
06-09 10:47 DXSD PLT5 CLEVELAND OH 216 555-1744 4 1.08
06-09 11:01 DXSD PLT5 CLEVELAND OH 216 555-1744 2 .55
06-09 13:09 DXSD PLT5 DETROIT MI 313 555-8889 5 1.35
06-09 13:28 DXSD PLT5 COLUMBIA SC 803 555-3580 5 1.35
06-09 14:51 DXSD PLT5 COLUMBIA SC 803 555-3743 2 .55
06-09 14:57 DXSD PLT5 COLUMBIA SC 803 555-3580 17 4.56
06-09 18:47 DXSD PLT5 BIRMINGHAM MI 313 555-9143 1 .21

PAGE 0001

DIVISION SALES
GROUP SEQ 006
DEPARTMENT 3517

PAGE 0002

DIVISION SALES
GROUP SEQ 006
DEPARTMENT 3517

Figure 20. Example of the enhanced indexing telephone bill

118 PSE V4RS5 for z/OS: ACIF User's Guide

Enhanced indexing parameter file

The JCL for a z/OS enhanced indexing parameter file is shown in This
example creates a sequential data set; however, set these parameters if you need a
partitioned data set:

RESFILE=PDS

* SPACE and DSORG parameters in the DD statement of the data set named by
the RESOBJDD parameter to SPACE=(12288,(150,15,15)), DSORG=PO

Failure to set these parameters as described might produce a RESOBJDD data set
that is unusable.

CC=YES

CCTYPE=A
CPGID=500
INPUTDD = INPUT
INDEXDD = INDEX
MSGDD = SYSPRINT
OUTPUTDD = OUTPUT
/*TRACE = YES
RESOBJDD = RESOURCE

INDEXSTARTBY=7

INDEXOBJ=ALL

FORMDEF = F1IBM
TRIGGER1=+,1,X'F1'
TRIGGER2=0,125,X ' FOFOFOF1"
TRIGGER3=0,2,X ' C4C5E3"
TRIGGER4=*,60,X'C6D6CY" , (TYPE=FLOAT)
TRIGGER5=+,60,X'C6D6D9", (TYPE=FLOAT)
FIELD1=6,2,20

FIELD2=5,116,4

FIELD3=4,116,3

FIELD4=3,19,4

FIELD5=0,92,10, (TRIGGER=4)
FIELD6=0,92,10, (TRIGGER=5)
/* INDEX1='NAME', FIELDI
INDEX1=X'D5C1D4C5', FIELD1
/% INDEX2='Dept', FIELD2
INDEX2=X'C4C5D7E3", FIELD2
/*INDEX3="SubGroup' , FIELD3
INDEX3=X'E2E4C2C7D9ID6EAD7 ', FIELD3
/* INDEX4='GROUP',FIELD4
INDEX4=X'C7D9ID6EAD7 ", FIELD4
/* INDEX5='TOTAL',FIELD5
INDEX5=X'E3D6E3C1D3 ", FIELD5

INDEX6=X'E3D6E3C1D3F6"',FIELD6, (TYPE=PAGE)

PAGEDEF = P1C09182
TRC=NO

RESFILE=SEQ
RESTYPE=ALL

/* PAGEDEF = P1STD1

/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Anch
Anch

Pick
Pick
Pick
Pick
Pick
Pick
Put
Put
Put
Put
Put
Put
Put
Put
Put
Put
Put

or point top-of-page
or point for DET

up name

up department number

up group name

subgroup number

up total using trigger2
up total using trigger2
literal in index

literal in index

literal in index
literal in index
literal in index
literal in index
literal in index
literal in index
literal in index
literal in index
literal in index

FDEFLIB = SYS1.FDEFLIB,ACIF.REGRESS.RESLIB

FONTLIB = FONTS.FONTLIB,FONTS.FONTLIBB,FONTS.FONTLIBB.EXTRA,
ACIF.REGRESS.RESLIB

OVLYLIB = SYS1.OVERLIB

PDEFLIB = SYS1.PDEFLIB,ACIF.REGRESS.RESLIB

PSEGLIB = SYS1.PSEGLIB

Figure 21. Example of an enhanced indexing pa