Interactive System Productivity Facility (ISPF)

User's Guide Volume I

z/OS Version 2 Release 10

IBM
Chapter 4. Using commands, function keys, and light pen or cursor selection. 75
ISPF system commands

- ACTIONS 76
- AUTOTYPE 76
- BACKWARD 76
- BOTTOM 76
- CANCEL 76
- CMDE 77
- COLOR 77
- CRETRIEV 77
- CUAATTR 78
- CURSOR 78
- DOWN 78
- DLIST 78
- DTEST 78
- END 79
- ENVIRON 79
- EPDF 80
- EXHELP 81
- EXIT 81
- EXPAND 81
- FKA 81
- FORWARD 82
- HELP 82
- INT 82
- ISPDPTRC 82
- ISPD TLC 83
- ISPFITRC 83
- ISPFVAR 84
- ISPFWORK 84
- ISPLIBD 85
- ISSPPREP 85
- ISRRLIST 85
- ISSRRROUTE 85
- KEYLIST 85
- KEYS 86
- KEYSHELP 86
- LEFT 86
- LIST 87
- LOG 87
- MSGID 87
- NOP 88
- NRETRIEV 88
- PANELID 88
- PFSHOW 88
- PRINT 89
- PRINTG 89
- PRINT-HI 90
- PRINTL 90
- PRINTLHI 91
- PS COLOR 91
- RCHANGE 91
- REFAC TED 91
- REFACTL 91
- REFADD. 92
- REFADDL 92
- REFLISTD 92
- REFLISTL 92
- REFOPEN 92
- REFOPE NL 92
- RESIZE 93
- RETF 93
- RETP 93
- RETRIEVE 93
- RETURN 94
- RFIN D 94
- RIGHT 94
- SAREA 94
- SCRNAME 94
- SETTINGS 95
- SPLIT 95
- SPLITV 95
- START 95
- SWAP 96
- SWAPBAR 97
- SWITCH 98
- SYSNAME 98
- TOP 98
- TSO 98
- TSOCMD 99
- TSOCMD 99
- TSOGUI 99
- TUTOR 99
- UDLIST 99
- UP 100
- USERID 100
- WINDOW 100
- WS 100
- WCON 101
- WS DISCON 101
- ZCLRSFLD 102
- ZKEYS 102
- USING the RETRIEVE, RETF, and RETP commands 102
- Using the RETURN command 105
- Using the jump function 106
- Using the scrolling commands 107
- Using the EXPAND command 109
- Using command tables to define commands 109
- SELECT action commands temporarily invoke a new dialog 111
- Assigning command aliases 112
- Overriding system commands 113
- Passing commands to a dialog function 114
- Specifying command actions dynamically 115
- Using function keys 115
- Defining function key values 117
- Changing the format of the function key area 117
- Saving function key definitions 120
- Using the light pen and cursor-select key 120
- How Program Access (PA) keys affect ISPF operation 121
- The AUTOTYPE function, for automatic data set name and member name completion 122
- How to use AUTOTYPE 123
- Rules for specifying the 'Other Data Set Name' field 123
- Rules for Library fields - Project, Group, Type, Member 123
- Cursor position sensitivity 124
- Restrictions 124
- Enabling applications to use AUTOTYPE 124
## Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sample syntax diagram xiii</td>
</tr>
<tr>
<td>2.</td>
<td>ISPF Primary Option Menu (ISR@PRIM) with license information 6</td>
</tr>
<tr>
<td>3.</td>
<td>ISPF Primary Option Menu (ISR@PRIM) 6</td>
</tr>
<tr>
<td>4.</td>
<td>Panel Format 16</td>
</tr>
<tr>
<td>5.</td>
<td>Primary Option Menu showing key features 19</td>
</tr>
<tr>
<td>6.</td>
<td>Panel with an Action Bar Pull-Down Menu 23</td>
</tr>
<tr>
<td>7.</td>
<td>An Unavailable Choice on a Pull-Down 24</td>
</tr>
<tr>
<td>8.</td>
<td>Pop-Up Selected from an Action Bar Pull-Down 25</td>
</tr>
<tr>
<td>9.</td>
<td>Panel with an Action Bar and Point-and-Shoot Fields 26</td>
</tr>
<tr>
<td>10.</td>
<td>The Workstation Agent window 32</td>
</tr>
<tr>
<td>11.</td>
<td>The Initiate Workstation Connection Panel 33</td>
</tr>
<tr>
<td>12.</td>
<td>WSA Connection Panel 33</td>
</tr>
<tr>
<td>13.</td>
<td>ISPF Primary Option Menu Displayed in Personal Communications 34</td>
</tr>
<tr>
<td>14.</td>
<td>ISPF Primary Option Menu Displayed Using ISPF Workstation Agent 35</td>
</tr>
<tr>
<td>15.</td>
<td>ISPF Dialog Test Display Panel Displayed on a 3270 Emulator 39</td>
</tr>
<tr>
<td>16.</td>
<td>ISPF Dialog Test Display Panel Displayed Using ISPF Workstation Agent 40</td>
</tr>
<tr>
<td>17.</td>
<td>A Pull-Down Menu with an Unavailable Choice Displayed on a 3270 Emulator 41</td>
</tr>
<tr>
<td>18.</td>
<td>A Pull-Down Menu with an Unavailable Choice Displayed Using ISPF Workstation Agent 42</td>
</tr>
<tr>
<td>19.</td>
<td>ISPF/TSO GUI Window 44</td>
</tr>
<tr>
<td>20.</td>
<td>ISPF/TSO GUI Window with Pull-Down Menu 44</td>
</tr>
<tr>
<td>21.</td>
<td>ISPF Task List 50</td>
</tr>
<tr>
<td>22.</td>
<td>Splitting the 3290 Screen 53</td>
</tr>
<tr>
<td>23.</td>
<td>RefList Pull-Down Menu 56</td>
</tr>
<tr>
<td>24.</td>
<td>RefMode Pull-Down Menu 57</td>
</tr>
<tr>
<td>25.</td>
<td>Personal Data Set List Panel (ISRPDSNL) 61</td>
</tr>
<tr>
<td>26.</td>
<td>Personal Data Set Lists Panel (ISRPLTAB) 64</td>
</tr>
<tr>
<td>27.</td>
<td>Defining Function Keys to Issue Referral List Commands 70</td>
</tr>
<tr>
<td>28.</td>
<td>Example Panel Definition Enabling NRETIEV 73</td>
</tr>
<tr>
<td>29.</td>
<td>Tailor Function Key Definition Display Panel (ISPOPFA) 118</td>
</tr>
<tr>
<td>30.</td>
<td>Use of Light Pen Attribute 121</td>
</tr>
<tr>
<td>31.</td>
<td>Hierarchy of ISPF Libraries 132</td>
</tr>
<tr>
<td>32.</td>
<td>Member List Commands Pop-Up Window (ISRCMLEP) 135</td>
</tr>
<tr>
<td>33.</td>
<td>Member List Display (ISRUDMM) 136</td>
</tr>
<tr>
<td>34.</td>
<td>Member List Display cont. (ISRUDMM) 137</td>
</tr>
<tr>
<td>35.</td>
<td>Member List Color Change Utility Panel (ISRMLCP) 138</td>
</tr>
<tr>
<td>36.</td>
<td>Enhanced Member List Initial Sort Panel (ISRMLIS) 139</td>
</tr>
<tr>
<td>37.</td>
<td>Load Module Library Display (ISRUDMM) 141</td>
</tr>
<tr>
<td>38.</td>
<td>Library Utility before Print, Rename, and Delete (ISRUDMM) 153</td>
</tr>
<tr>
<td>39.</td>
<td>Library Utility after Print, Rename, and Delete (ISRUDMM) 153</td>
</tr>
<tr>
<td>40.</td>
<td>Log Data Set Defaults Panel (ISPLLP01) 159</td>
</tr>
<tr>
<td>41.</td>
<td>List Data Set Defaults Panel (ISPLLP02) 160</td>
</tr>
<tr>
<td>42.</td>
<td>Specify Disposition of Log and List Data Sets Panel (ISPPFT03) 162</td>
</tr>
<tr>
<td>43.</td>
<td>Local Print Command Edit Panel (ISPCHPLP) 163</td>
</tr>
<tr>
<td>44.</td>
<td>ISPF Client/Server Installation Notice (ISPWSD02) 178</td>
</tr>
<tr>
<td>45.</td>
<td>Second Client/Server Component Download Panel (ISPWSD04) 179</td>
</tr>
<tr>
<td>46.</td>
<td>ISPF Client/Server Component Install Program Panel (ISPWSD07) 180</td>
</tr>
<tr>
<td>47.</td>
<td>Client/Server Component Download Panel (ISPWSD05) 180</td>
</tr>
<tr>
<td>48.</td>
<td>Workstation Agent Install Program 181</td>
</tr>
<tr>
<td>49.</td>
<td>The Workstation Agent window 182</td>
</tr>
<tr>
<td>50.</td>
<td>System Register Panel 184</td>
</tr>
<tr>
<td>51.</td>
<td>Add System Pop-up Dialog 185</td>
</tr>
<tr>
<td>52.</td>
<td>Add User Pop-up Dialog 186</td>
</tr>
<tr>
<td>53.</td>
<td>Sample Source Listing 196</td>
</tr>
<tr>
<td>54.</td>
<td>Sample Index Listing - Managed Source Library 197</td>
</tr>
<tr>
<td>55.</td>
<td>Sample Index Listing - Managed Load Library 198</td>
</tr>
<tr>
<td>56.</td>
<td>Sample ISPF Log Listing 199</td>
</tr>
<tr>
<td>57.</td>
<td>Sample Member List Listing for a Source Library 200</td>
</tr>
<tr>
<td>58.</td>
<td>Sample Member List Listing for a Load Library 200</td>
</tr>
<tr>
<td>59.</td>
<td>Sample Data Set List Listing 202</td>
</tr>
<tr>
<td>60.</td>
<td>Internal Character Representations for APL Keyboards 203</td>
</tr>
<tr>
<td>61.</td>
<td>Internal Character Representations for Text Keyboards 204</td>
</tr>
<tr>
<td>62.</td>
<td>Current Data Set Allocations List panel 210</td>
</tr>
<tr>
<td>63.</td>
<td>Data Set Attributes in ISRDDN 211</td>
</tr>
<tr>
<td>64.</td>
<td>Additional DD Information 212</td>
</tr>
<tr>
<td>65.</td>
<td>Additional DD Information 212</td>
</tr>
<tr>
<td>66.</td>
<td>Current Data Set Allocations List in LONG Format 214</td>
</tr>
<tr>
<td>67.</td>
<td>Results of the MEMBER Command 215</td>
</tr>
<tr>
<td>68.</td>
<td>The Duplicates List Display 217</td>
</tr>
<tr>
<td>69.</td>
<td>The CSVQUERY Results Panel 218</td>
</tr>
<tr>
<td>70.</td>
<td>The System ENQ Status List Panel 220</td>
</tr>
<tr>
<td>71.</td>
<td>ARRAY Storage Format 223</td>
</tr>
<tr>
<td>72.</td>
<td>ARRAYP Storage Format 224</td>
</tr>
<tr>
<td>73.</td>
<td>CHAIN Storage Format 226</td>
</tr>
<tr>
<td>74.</td>
<td>Storage Viewed in FORMAT Mode 227</td>
</tr>
<tr>
<td>75.</td>
<td>Sample ISRDDN Named Storage File 230</td>
</tr>
</tbody>
</table>
## Tables

1. A sample ISPF session .................. 11
2. Finishing the sample session ............ 13
3. Entry Methods and Command Types ........ 28
4. Characteristics of the Line Command Field 30
5. Examples of SELECT action commands ........ 111
6. Examples of a chain of command-parameter aliases .......... 113
7. Some more examples of defining alias values 114
8. Examples of overriding a system command 114
9. Examples of passing commands to the dialog 114
10. Examples of entries in an application command table ........ 115
11. Function key arrangement ............... 116
12. ZPFFMT system variable on PF$SHOW 118
13. ZPRIKEYS values .......................... 118
14. ZPFSET system variable, on PF$SHOW 118
15. Member Selection List Differences ........ 133
17. Sort Fields for Load Libraries ............ 148
18. MEMBER LIST Srchfor Options panel: search string examples ............ 150
19. Required Partitioned Data Sets ............ 167
20. LRECL Limits during ISPF Initialization 168
21. Table Data Sets ............................ 170
22. File-Tailoring Data Sets .................. 170
23. Image Data Set .............................. 171
24. TCP/IP workstation and host requirements 187
25. Determining the Internet address .......... 188
26. APPC workstation and host requirements 190
27. Identifying a candidate name ............. 191
28. Determining the full qualified name ........ 193
29. Format of Source Library Member List Listing 201
30. Format of Load Library Member List Listing 201
31. Format of Data Set List Listing ........... 202
32. Some examples invoking BROWSE .......... 219
Preface

This document provides reference and usage information for programmers who develop applications with ISPF. It also provides conceptual and functional descriptions of ISPF.

About this document

This document contains two parts. The first part provides introductory information about using ISPF:
• An overview of ISPF and the ISPF user interface
• How to enter commands and perform other actions
• How to use libraries and data sets

The second part contains the appendixes. These cover installing the ISPF Client/Server component, using the ISRDDN diagnostic utility, and other reference material such as sample listings and command abbreviations.

For detailed information about using ISPF menu options, see the z/OS ISPF User's Guide Vol II.

Who should use this document

This document is for application programmers who use ISPF. Users should be familiar with coding CLISTs, REXX EXECs, or programs in the MVS™ environment.

What is in this document?

Chapter 1, “Overview of ISPF,” on page 1 describes the components, functions, and utilities provided by ISPF, including the Primary Option Menu panel.

Chapter 2, “The ISPF user interface,” on page 15 describes the features of the ISPF user interface:
• Panel formats and features
• Action bars
• Commands
• The ISPF Workstation Agent, including the ISPF Graphical User Interface (GUI)
• Splitting the screen

Chapter 3, “Using personal data set lists and library lists,” on page 55 describes the four types of referral lists, which are used to retrieve a stored data set or library to the currently displayed panel:
• Reference data set list
• Reference library list
• Personal data set list
• Personal library list.

Chapter 4, “Using commands, function keys, and light pen or cursor selection,” on page 75 describes ISPF system commands, the function keys and their default assignments, and the light pen and cursor select facilities.

Chapter 5, “ISPF libraries and data sets,” on page 127 describes how to allocate, create, and use libraries and data sets.
Chapter 6, “Getting ready to run on MVS,” on page 167 helps you prepare to use ISPF data-element libraries.

Appendix A, “Installing the Client/Server component,” on page 175 provides information that you need to know before you install the ISPF Client/Server component workstation software.

Appendix B, “Configuring communications for the ISPF Client/Server,” on page 187 provides information on configuring your communications protocols so you can use the ISPF Client/Server.

Appendix C, “Listing formats,” on page 195 describes and displays the kinds of listings you can produce using ISPF.

Appendix D, “APL and TEXT character conversion,” on page 203 describes how APL and TEXT characters are converted by ISPF for internal storage.

Appendix E, “Abbreviations for commands and other values,” on page 205 lists commands, field values, keywords/operands, and scroll amounts that can be abbreviated.

Appendix F, “Allocation data sets,” on page 207 provides information on ALLOC commands that ISPF issues based on ISPF libraries, data set names, list IDs, options, and additional input libraries.

Appendix G, “ISRDDN diagnostic utility,” on page 209 explains how to use ISRDDN, a program that is provided with ISPF as a service aid.

How to read the syntax diagrams

The syntactical structure of commands described in this document is shown by means of syntax diagrams.

Figure 1 on page xiii shows a sample syntax diagram that includes the various notations used to indicate such things as whether:
- An item is a keyword or a variable.
- An item is required or optional.
- A choice is available.
- A default applies if you do not specify a value.
- You can repeat an item.
Here are some tips for reading and understanding syntax diagrams:

Order of reading
Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The \(|\) symbol indicates the beginning of a statement.

The \(\rightarrow\) symbol indicates that a statement is continued on the next line.

The \(\rightsquigarrow\) symbol indicates that a statement is continued from the previous line.

The \(\rightarrow\rightarrow\) symbol indicates the end of a statement.

Keywords
Keywords appear in uppercase letters.

Sometimes you only need to type the first few letters of a keyword. The required part of the keyword appears in uppercase letters.
In this example, you could type "KEY", "KEYW", "KEYWO", "KEYWOR" or "KEYWORD".

The abbreviated or whole keyword you enter must be spelled exactly as shown.

**Variables**

Variables appear in lowercase letters. They represent user-supplied names or values.

```
---required_variable---
```

**Required items**

Required items appear on the horizontal line (the main path).

```
---COMMAND_NAME---required_variable---
```

**Optional items**

Optional items appear below the main path.

```
 OPTIONAL_KEYWORD=variable
```

**Choice of items**

If you can choose from two or more items, they appear vertically, in a stack.

If you *must* choose one of the items, one item of the stack appears on the main path.

```
---required_choice1---
---required_choice2---
---required_choice3---
```

If choosing one of the items is optional, the entire stack appears below the main path.

```
 optional_choice1
 optional_choice2
```

If a default value applies when you do not choose any of the items, the default value appears above the main path.

```
 DEFAULT_KEYWORD
---KEYWORD1---
---KEYWORD2---
```

**Repeatable items**

An arrow returning to the left above the main line indicates an item that can be repeated.
If you need to specify a separator character (such as a comma) between repeatable items, the line with the arrow returning to the left shows the separator character you must specify.

Fragments

Where it makes the syntax diagram easier to read, a section or fragment of the syntax is sometimes shown separately.
z/OS information

This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross-document links that go directly to the topic in reference using shortened versions of the document title. For complete titles and order numbers of the documents for all products that are part of z/OS®, see z/OS Information Roadmap.

To find the complete z/OS library, including the z/OS Information Center, see z/OS Internet Library (http://www.ibm.com/systems/z/os/zos/bkserv/).
How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and completeness of the information or provide any other feedback that you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrdfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:
   IBM Corporation
   Attention: MHVRCS Reader Comments
   Department H6MA, Building 707
   2455 South Road
   Poughkeepsie, NY 12601-5400
   US
4. Fax the comments to us, as follows:
   From the United States and Canada: 1+845+432-9405
   From all other countries: Your international access code +1+845+432-9405

Include the following information:
• Your name and address.
• Your email address.
• Your telephone or fax number.
• The publication title and order number:
  z/OS V2R1.0 ISPF User’s Guide Vol I
  SC19-3627-00
• The topic and page number that is related to your comment.
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute the comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the issues that you submit.

If you have a technical problem

Do not use the feedback methods that are listed for sending comments. Instead, take one of the following actions:
• Contact your IBM service representative.
• Call IBM technical support.
• Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/systems/z/support/)
Summary of changes

This summary lists changes and enhancements made in z/OS V2R1.0 ISPF. It has two parts:

Product function changes
 describes the functional changes made in z/OS V2R1.0 ISPF, listed by each ISPF component. This part appears in most of the ISPF documents.

Changes to this document
 Lists the changes and enhancements made in z/OS V2R1.0 ISPF which affect this document, including cross-references to the new or changed sections.

Product function changes made in z/OS V2R1.0 ISPF

z/OS V2R1.0 ISPF contains the following changes and enhancements:

- “ISPF product changes”
- “ISPF Dialog Manager component changes” (including DTL changes)
- “ISPF PDF component changes” on page xxii
- “ISPF SCLM component changes” on page xxii
- “Migration considerations” on page xxii

For details of migration actions relating to ISPF and other z/OS elements, see z/OS Migration.

ISPF product changes
 There are no ISPF product changes relating to this release.

ISPF Dialog Manager component changes
 The DM component of ISPF includes the following new functions and enhancements:
- Support is added for the processing of data sets allocated with an extended task I/O table (XTIOT) entry.
- The ISPF Services Guide is updated to include a new section documenting the format of JSON messages exchanged between TSO/ISPF and a client. This JSON API enables the user interface for an ISPF application to operate in the client environment.
- The ISPF Dialog Developers Guide and Reference is updated to describe ISPF variables that can be used by an application to pass information to the client by means of the JSON API.
- Support is provided for users to define a command stack to be run at ISPF invocation. This can be used to start multiple logical screens.
- Scroll amounts up to 9,999,999 are now supported.
- A new options panel allows a user to customize the display format for the SWAPBAR.
- Dialog Tag Language (DTL) changes:
  There are no changes to Dialog Tag Language (DTL) for this release.
ISPF PDF component changes

The ISPF PDF component contains the following new functions and enhancements:

- The ISPF editor FIND and CHANGE commands have been enhanced to support regular expressions.
- The ISPF editor CREATE, REPLACE, COPYING, and CUT commands have been enhanced to support data conversion to/from EBCDIC, ASCII, and UTF-8.
- The ISPF editor HILITE command has been enhanced to show invalid use of lower-case characters in JCL.
- The member count field on member list panels is expanded to support values up to 9,999,999.
- The following enhancements have been made to the z/OS UNIX Directory List Utility:
  - Pattern matching characters can now be used to specify a path name filter for a z/OS UNIX directory list display.
  - A SRCHFOR command is provided to search for strings in regular files in the directory.
  - Directory list line commands can now be entered in blocks.
  - The file name column in the directory list can now have a display width of up to 110 characters.
  - A command shell is now provided allowing users to save and retrieve z/OS UNIX commands.
- The Data Set List Utility is changed to allow a path name to be entered in the Dsname Level field in order to have a z/OS UNIX Directory List displayed.
- The F (free) line command of the Data Set List Utility can now be used against a multi-volume data set to free unused space.
- The MEMLIST service supports the new DEFAULT keyword which allows the caller to specify a line command that is used to replace an “S” line command entered on the member list display.
- The ISPF editor provides support to view and edit Unicode data in data sets and z/OS UNIX files.
- The following enhancements have been made to the ISPF editor COMPARE command:
  - The VOL parameter is provided to support comparing against an uncataloged data set.
  - The target data set or path name can now be entered on the options panel displayed when the COMPARE command is entered without any parameters.
- To support the input of long editor commands, the editor command field can be expanded to a length of 255 characters using the ZEXPAND command.
- The UDLIST command is enhanced to convert the specified pathname to lowercase and re-issue the directory find if the directory for the pathname initially specified with the UDLIST command is not found.
- Data in the PROMPT column of the enhanced member list is now passed as an argument to a command entered against a member.

ISPF SCLM component changes

There are no ISPF SCLM component changes relating to this release.

Migration considerations

There are no migration considerations relating to this release.
Changes to this document for z/OS V2R1.0 ISPF

This book contains terminology, maintenance, and editorial changes. Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

Extended attributes
The extended member list format display has been updated to add an I(Info) command to display a panel with all the relevant extended information.

For changes to this document relating to this modification, see:
- Figure 32 on page 135
- "Library and data set list utility line commands" on page 151
What's in the z/OS V2R1.0 ISPF library?

You can order the ISPF books using the numbers provided below.

<table>
<thead>
<tr>
<th>Title</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS ISPF Dialog Developer's Guide and Reference</td>
<td>SC19-3619–00</td>
</tr>
<tr>
<td>z/OS ISPF Dialog Tag Language Guide and Reference</td>
<td>SC19-3620–00</td>
</tr>
<tr>
<td>z/OS ISPF Edit and Edit Macros</td>
<td>SC19-3621–00</td>
</tr>
<tr>
<td>z/OS ISPF Messages and Codes</td>
<td>SC19-3622–00</td>
</tr>
<tr>
<td>z/OS ISPF Planning and Customizing</td>
<td>GC19-3623–00</td>
</tr>
<tr>
<td>z/OS ISPF Reference Summary</td>
<td>SC19-3624–00</td>
</tr>
<tr>
<td>z/OS ISPF Software Configuration and Library Manager Guide and Reference</td>
<td>SC19-3625–00</td>
</tr>
<tr>
<td>z/OS ISPF Services Guide</td>
<td>SC19-3626–00</td>
</tr>
<tr>
<td>z/OS ISPF User’s Guide Vol I</td>
<td>SC19-3627–00</td>
</tr>
<tr>
<td>z/OS ISPF User’s Guide Vol II</td>
<td>SC19-3628–00</td>
</tr>
</tbody>
</table>
Chapter 1. Overview of ISPF

ISPF is a multifaceted development tool set for the z/OS operating system. Since 1975, MVS programmers have used ISPF for host-based application development productivity. ISPF forms the basis of many TSO and CMS applications and provides extensive programmer-oriented facilities as well.

ISPF components

ISPF helps programmers develop interactive applications called dialogs. Dialogs are interactive because ISPF uses them to communicate with terminal users through a series of panels while the users do application development tasks.

ISPF panels:
- Provide access to ISPF functions through menus
- Request information from users through data entry panels
- Provide information from users through scrollable data displays

These are the main components of ISPF:
- Dialog Manager (DM): The Dialog Manager provides services to dialogs and end users. These include display, variable services, input and output, user and application profiles, table management, system interface services, dialog testing and debugging aids, and other services.
- Program Development Facility (PDF): The Program Development Facility provides services to assist the dialog or application developer. These include the edit and browse functions, data set and catalog utilities, TSO or CMS command interfaces, and data set search and compare functions.
- Software Configuration and Library Manager (SCLM): The SCLM facility provides library management capabilities such as versioning, auditing, and promotion. It also provides configuration management capabilities to track how all of the pieces of an application fit together, including source code, objects, load modules, test cases, documentation, and other items. The Build function tracks and invokes the necessary compilers, assemblers and linkage editors.
- Client/Server component: The Client/Server component allows the users of ISPF applications to use a workstation running Windows or UNIX to display the panels of an ISPF application. It does this using the Graphical User Interface of the workstation. Because of this, there is no requirement to change your existing ISPF applications to run in a GUI environment.

ISPF functions

ISPF can be used in these ways:
- Managers can use ISPF Edit, SCRIPT/VS, and the Hardcopy utility or another print utility provided by their installation to prepare memos.
- Data processing administrators and system programmers can use ISPF to:
  - Monitor and control program libraries
  - Communicate with MVS through TSO commands, CLISTs, or REXX EXECs.
- Programmers can use ISPF to develop a batch, interactive, or any other type of program and its documentation.
ISPF functions

- Terminal users can call dialogs that use Dialog Manager (DM) component and Program Development Facility (PDF) component dialog services to do the work of the application.

The View, Browse, and Edit functions, a wide range of utilities, foreground and batch compilers, program library control, and other facilities are available to help you develop ISPF dialogs.

**View, Browse, Edit, edit macros, and models**

The View, Browse, and Edit functions allow you to look at the contents of a dialog. While editing a dialog, you can change it by adding or deleting lines, typing over the existing source code, or copying lines from another dialog to the one being edited.

To enhance the existing Edit function, you can write edit macros. Edit macros allow you to combine several often-used functions so that you do not have to call each function separately. You can write initial edit macros that are automatically run when the Edit option is selected. Other uses for edit macros include:

- Overriding Edit commands
- Calling DM and PDF component dialog services
- Accessing cursor position and data location.

Also, ISPF provides online models that you can insert into the dialog. A model is an example of a service call, panel format, table format, or message that contains the proper syntax and all the available parameters for the programming language being used. Since these models are online, they can be called directly into the member being edited.

See [z/OS ISPF Edit and Edit Macros](#) for more information.

**Dialog services**

The PDF component provides View, Browse, Edit, and library access services that can be combined in a dialog with any of the ISPF services. The library access services carry out functions involving members of a programming library. These functions include adding, finding, and deleting members, and displaying member lists.

The PDF component includes a separate edit model of each service call for each programming language ISPF supports: CLIST, COBOL, EXEC, FORTRAN, PL/I, Pascal, C, and REXX. See [z/OS ISPF Services Guide](#) for complete information about the PDF component dialog services.

**Note:** For information about library access services that apply to the Software Configuration and Library Manager (SCLM), refer to the [z/OS ISPF Software Configuration and Library Manager Guide and Reference](#).

**Utilities**

ISPF provides a wide range of utilities. Utilities enable you to:

- Display and print library and data set member lists
- Reset statistics for ISPF library members
- Define commands to be used with specific dialogs
- Compare data sets and search for strings of data
- Move, copy, and print library and data set members.
Dialog Test, Foreground, and Batch

ISPF provides special facilities for testing dialogs. The Dialog Test option allows testing of individual dialog elements and complete dialogs.

After a program has been developed, you can either assemble it or compile and link it using either the Foreground or Batch option. The Foreground option allows you to watch the program being compiled. The Batch option frees the terminal, which helps when you compile a long program. If errors occur, you can use the debugging capabilities of the Dialog Test facility to correct them.

TSO commands, CLISTs, and REXX EXECs

While using ISPF, you can call TSO commands, CLISTs, or REXX EXECs by:

• Prefixing a command with TSO and entering it from any command line
• Selecting the Command option and entering the TSO command, CLIST, or REXX exec on the panel
• Entering a TSO command, CLIST, or REXX exec in the Line Command field on a data set list display or a member list display.

Software Configuration and Library Manager (SCLM)

To help you maintain different levels or versions of a library member, ISPF includes the Software Configuration and Library Manager (SCLM). SCLM is a tool that helps you develop complex software applications. Throughout the development cycle, SCLM automatically controls, maintains, and tracks all of the software components of the application. And you can lock the version being edited in a private library and then promote it. See z/OS ISPF Software Configuration and Library Manager Guide and Reference for more information.

Other IBM program development products

You might want to call another IBM® program development product while using ISPF. The IBM Products option allows you to call the Tivoli® Information Management, COBOL Structuring Facility, and Screen Definition Facility licensed programs without leaving ISPF.

Online tutorial

Learning to use ISPF is made easier by the online help and tutorial facilities, which are available while using ISPF.

For example, if you need help filling in the data requested by an ISPF utility, you can use the tutorial to help you understand the data entry requirements for that utility.

Supported data types

ISPF supports partitioned (PDS), sequential (SEQ), and partitioned extended (PDSE) data sets. These data sets can be used in any of the ISPF options, such as Edit and Browse. ISPF does not support:

• Data sets with a record format of variable block spanned (VBS)
• Direct access data sets
• Multivolume data sets for the ISRELMX program, SCLM, and File Tailoring
• Generation data group (GDG) base data sets
• Deletion of data sets allocated with an esoteric device type
Supported Data Types

- Member aliases, except under the ISPF Move/Copy utility (option 3.3)
- PDSEs as the ISPF control file
- Unmovable data sets under the ISPF Move/Copy utility (option 3.3) or using the LMMOVE or LMCOPY service
- Data sets allocated with the BUFNO parameter (ISPF handles its own buffering)
- Browse for packed multivolume data sets.

ISPF provides partial support for VSAM data sets and tape data sets.
- You can create and delete VSAM data sets and obtain VSAM data set information.
- VSAM data sets are supported for Edit, Browse, and View if the ISPF Configuration table has been customized to enable such support.
- You can define an interface to an external utility such as DFSMSrmm that the Data Set List utility (Option 3.4) can use to process data sets stored on tape or some other removable media. The interface is configured in the ISPF configuration table. It enables the Data Set List utility to call the tape or removable media interface for these line commands:
  - **I** Information
  - **S** Short Information
  - **D** Delete
  - **R** Rename
  - **C** Catalog
  - **M** Member List
  - **P** Print
  - **X** Print Index
  - **CO** Copy
  - **MO** Move

ISPF requires exclusive enqueues on data sets for many of its functions. If a data set is allocated as SHAREd to a user and then is operated on by one of these functions, the allocation will be converted to OLD by MVS dynamic allocation. This allocation of OLD may remain after ISPF frees its enqueue. This is a restriction of the MVS operating system.

**Member name conventions**

Members created through ISPF must follow this naming convention:
- The first character must be alphabetic or special (@ # $)
- Characters 2-8 must be alphabetic, numeric, or special (@ # $)

Special characters are as defined in the U.S. English code page (037):
- @ (X'7C'), # (X'7B'), $ (X'5B')

All member names created within ISPF are converted to uppercase. If you create members outside of ISPF that do not meet these conventions, they are displayed in ISPF member lists and can be selected from those lists. These member names can also be specified for the Browse service with the exception of member names containing lowercase alphabets. (ISPF converts the member name to uppercase before searching for the member and therefore cannot process a lowercase member.) Member names not meeting the ISPF naming convention are not supported for the other ISPF services.
Supported Data Types

Note: ISPF does not support using option M (member list) from a data set list and then selecting E to edit a member whose name contains lowercase letters. ISPF uses the Edit service in this case, and its services do not support lowercase member names.

Running ISPF

As an interactive dialog, ISPF communicates with you through panels and messages. Ordinarily, the first panel you see when you enter the ISPF command is the ISPF Primary Option Menu, shown in Figure 2 on page 6. Panels display data, selection lists, and data-entry fields, such as a data set name or an ISPF command.

ISPF responds interactively to the information or command you enter by displaying another panel, displaying a message, or carrying out a command. For more information about how panels and messages are displayed, see “Understanding ISPF panels” on page 16.

One helpful aspect of your interaction with ISPF is the online tutorial. If you need information about using the online tutorial, see the topic about ISPF Tutorial Panels in z/OS ISPF Dialog Developer’s Guide and Reference.

Starting ISPF

To start ISPF:
1. Log on to TSO.
2. When the READY prompt appears, type ISPF or PDF and press Enter.
   If your installation has established an alias for ISPF, such as SPF, you can enter that instead.

The ISPF and PDF commands are aliases of ISPF module ISRPCP. When you run ISRPCP or one of its aliases with no parameters, ISPF is started through this command:

ISPSTART PANEL(default_primary_panel) NEWAPPL(ISR)

The default primary panel is usually ISR@PRIM, the ISPF Primary Option Menu (see Figure 2 on page 6).

You can specify any of the ISPSTART parameters when invoking ISPF, PDF, or ISRPCP. However, if you do this you must ensure that you specify all the parameters that ISPSTART needs to run your application in the correct environment. This is because only those parameters you specify are passed to ISPSTART. For example, if you specify:

ISP NEWAPPL(ABC)

ISPF is invoked with this command:

ISPSTART NEWAPPL(ABC)

Note that in this case ISPF does not pass PANEL(ISR@PRIM), part of its normal default string, to ISPSTART. Because the ISPSTART command generated does not contain a PANEL(...), PGM(...) or CMD(...) keyword, there is no primary panel to display.

For information about the syntax and options for ISPSTART, including the rules for specifying or overriding the default primary panel, refer to the z/OS ISPF Dialog Developer’s Guide and Reference
Running ISPF

**The Primary Option Menu panel**

Figure 2 shows the first panel, the ISPF Primary Option Menu, with the license information.

![Primary Option Menu](image)

Press the Enter key to dismiss the license information. The full Primary Option Menu is displayed.

![Full Primary Option Menu](image)

Figure 2. ISPF Primary Option Menu (ISR@PRIM) with license information

Figure 3. ISPF Primary Option Menu (ISR@PRIM)
## ISPF Primary Options

When you select one of these options, ISPF displays the selected panel. These options are described in detail in the *z/OS ISPF User's Guide Vol II*. Brief descriptions follow:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><strong>Settings</strong> displays and changes selected ISPF parameters, such as terminal characteristics and function keys. For more information, see the Settings (Option 0) topic in the <em>z/OS ISPF User's Guide Vol II</em>.</td>
</tr>
<tr>
<td>1</td>
<td><strong>View</strong> displays data using the View or Browse function. You can use View or Browse to look at (but not change) large data sets such as compiler listings. You can scroll the data up, down, left, or right. If you are using Browse, a FIND command, entered on the command line, allows you to search the data for a character string. If you are using View, you can use all the commands and macros available to you in the Edit function. For more information, see the View (Option 1) topic in the <em>z/OS ISPF User's Guide Vol II</em>.</td>
</tr>
<tr>
<td>2</td>
<td><strong>Edit</strong> allows you to create or change source data such as program code and documentation using the ISPF full-screen editor. You can scroll the data up, down, left, or right. You can change the data by using Edit line commands, which are entered directly on a line number, and primary commands, which are entered on the command line. For more information, see the Edit (Option 2) topic in the <em>z/OS ISPF User's Guide Vol II</em> and refer to <em>z/OS ISPF Edit and Edit Macros</em>.</td>
</tr>
<tr>
<td>3</td>
<td><strong>Utilities</strong> perform library and data set maintenance tasks, such as moving or copying library or data set members, displaying or printing data set names and volume table of contents (VTOC) information, comparing data sets, and searching for strings of data. For more information, see the Utilities (Option 3) topic in the <em>z/OS ISPF User's Guide Vol II</em>.</td>
</tr>
<tr>
<td>4</td>
<td><strong>Foreground</strong> calls IBM language processing programs in the foreground. For more information, see the Foreground (Option 4) topic in the <em>z/OS ISPF User's Guide Vol II</em>.</td>
</tr>
<tr>
<td>5</td>
<td><strong>Batch</strong> calls IBM language processing programs as batch jobs. ISPF generates Job Control Language (JCL) based on information you enter and submits the job for processing. For more information, see the Batch (Option 5) topic in the <em>z/OS ISPF User's Guide Vol II</em>.</td>
</tr>
<tr>
<td>6</td>
<td><strong>Command</strong> calls TSO commands, CLISTs, or REXX EXECs under ISPF. For more information, see the Command (Option 6) topic in the <em>z/OS ISPF User's Guide Vol II</em>.</td>
</tr>
<tr>
<td>7</td>
<td><strong>Dialog Test</strong> tests individual ISPF dialog components, such as panels, messages, and dialog functions (programs, commands, menus). For more information, see the Dialog Test (Option 7) topic in the <em>z/OS ISPF User's Guide Vol II</em>.</td>
</tr>
<tr>
<td>9</td>
<td><strong>IBM Products</strong> allows you to select other installed IBM program development products on your system. Products supported are:</td>
</tr>
</tbody>
</table>
Running ISPF

- Tivoli Information Management
- COBOL Structuring Facility foreground dialog (COBOL/SF)
- Screen Definition Facility II (SDF II) licensed program
- Screen Definition Facility II-P (SDF II-P) licensed program.

For more information, see the IBM Products (Option 9) topic in the z/OS ISPF User's Guide Vol II.

10 SCLM controls, maintains, and tracks all of the software components of an application.

For more information, see the z/OS ISPF Software Configuration and Library Manager Guide and Reference.

11 Workplace gives you access to the ISPF Workplace, which combines many of the ISPF functions onto one object-action panel.

For more information, see the ISPF Object/Action Workplace (Option 11) topic in the z/OS ISPF User's Guide Vol II.

X EXIT leaves ISPF using the log and list defaults. You can change these defaults from the Log/List pull-down on the ISPF Settings panel action bar.

Primary Option Menu action bar choices

The Primary Option Menu action bar choices function as follows:

Menu This choice is available from most panels within ISPF. It displays many of the options listed on the Primary Option Menu panel. See the topic about the Primary Option Menu in the z/OS ISPF User's Guide Vol II for details on each choice.

Utilities This choice is available from most panels within ISPF. It displays the options listed on the Utility Selection panel (Option 3). See the topic about the Primary Option Menu in the z/OS ISPF User's Guide Vol II for details on each choice.

Compilers The Compilers pull-down provides access to the foreground and background compilers listed under options 4 and 5, as well as the ISPPREP (Preprocessed Panel) utility and the ISPDTLC (Dialog Tag Language Conversion) utility.

Options The Options pull-down provides access to many ISPF settings, including CUA attributes and colors, keylists, and point-and-shoot fields, and the Dialog Test Application ID pop-up. See the topic about Settings (Option 0) in the z/OS ISPF User's Guide Vol II for details on each choice.

Status The Status pull-down enables you to control what is displayed in the status area of the Primary Option Menu.

Note: The current setting is shown as an unavailable choice. That is, in non-GUI mode it is colored blue (the default) with an asterisk as the first digit of the selection number. In GUI mode, the choice is grayed.

See the topic about the status area on the Primary Option Menu in the z/OS ISPF User's Guide Vol II for more information about using these choices to tailor the status area.

Help The Help pull-down provides access to the online help and tutorial topics for the main ISPF options.
User profiles

ISPF stores information in your user profile. This allows ISPF to insert a value in panel input fields by using the values you last entered on either the same panel or a similar type of panel. Sometimes default values are provided if you have not specified otherwise. Information maintained in your user profile includes:

- Project name, group names, and type
- Job statement information
- SYSOUT class for printed output
- Defaults for list and log allocation and processing
- Terminal characteristics and function key definitions
- Edit profiles, including mask, tabs, and bounds
- Current scroll amount for Browse, Edit, Data Set List, and member lists
- Processing options for each of the language processors
- Data set allocation/information parameters.

ISPF maintains this information automatically from one session to another. If you are a new user, you have to enter certain information the first time. But then, you simply review the information and make whatever changes you want before proceeding.

ISPF maintains sets of job statements for:

- JCL for printing the Log and List data sets
- The Hardcopy utility (3.6)
- The Outlist utility (3.8)
- The SuperC utility (3.12)
- The SuperCE utility (3.13)
- The Foreground Print Options panel (option 4, excluding SCRIPT/VS)
- The Batch option (5)
- The SCLM option (10)
- SCRIPT/VS draft output (4.9)
- SCRIPT/VS final output (4.9)
- Ending ISPF

Thus, you can provide different job statement parameters for each of these functions. For more information, see "Job statement information" on page 165.

Getting help

The HELP command (F1/13) shows you general information about an ISPF system command, ISPF option, or panel, or offers more information about a message that has been displayed in the upper-right corner of the screen.

For short messages, HELP displays a one-line explanation. To get further information, enter the HELP command a second time for the appropriate section of the tutorial. Long messages display (by default) in a pop-up window. Enter END (F3/15) or RETURN (F4/16) to return to the screen that you were viewing when you entered the HELP command.

1. This information is maintained separately for SCLM.
Ending an ISPF function or ISPF

To end an ISPF function without ending ISPF, enter END or RETURN.

**Note:**
1. If you are using the Hardcopy utility (option 3.6) or the Batch option (option 5), entering END or RETURN submits your job for processing. Type CANCEL (or press F12) to leave the Hardcopy utility without submitting a job.
2. If a SuperC or Search-For member list is displayed, END processes any members you have selected. Enter CANCEL or RETURN to leave one of these member lists without processing your selections.

To end ISPF from the ISPF Primary Option Menu, you can use the:
- EXIT command (F3)
- END command
- RETURN command
- Exit option (X).

If the display screen is split, taking one of the actions listed ends ISPF on the active logical screen only. See [z/OS ISPF Dialog Developer’s Guide and Reference](http://www.ibm.com/support/docview.wss?uid=swg27005996) for more information.

**Exit option (X)**
The Exit option ends ISPF using any defaults for processing log and list data sets that you have specified using the Log/List pull-down on the ISPF Settings panel action bar. If you have not specified any defaults and if a log or list data set has been generated, the Exit option displays the Specify Disposition of Log and List Data Sets panel.

**Jump function**
If you are not in split-screen mode (see [“Splitting the screen horizontally or vertically” on page 48](#)), and the primary options panel has been coded to select the EXIT command for the X selection, then you can use the jump function. Enter =X.
- From any panel, this immediately leaves the current Primary Options menu.
- If there is only one ISPF logical session, this exits ISPF.

ISPF recognises =XALL as an extended version of =X. This propagates an =X to all active logical screens. This terminates all logical sessions and exits ISPF.

**Note:** In the situation where a logical screen is running an application that does not support the =X command, ISPF halts termination processing at that logical screen. Once the application is terminated =XALL processing can be continued for any remaining logical screens.

**Running a sample ISPF session**
This topic provides an example of an ISPF session. For new users, it is a quick introduction to ISPF. For users with previous ISPF experience, it is a quick review. It can also be used to demonstrate that ISPF has been properly installed and is operational.

The scenario requires the installation of a data set named ISP.SISPSAMP. This data set is included on the ISPF basic distribution tape and should contain these four members:

**ISRASM**

Sample assembler source
Running a sample ISPF session

**ISRCOBOL**  
Sample COBOL source

**ISRFORT**  
Sample FORTRAN source

**ISRPLI**  
Sample PL/I source.

During this scenario, member ISRASM is copied from ISP.SISPSAMP to a user data set. The other three members are not used.

Table 1. A sample ISPF session

<table>
<thead>
<tr>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Log on to TSO.</td>
<td>READY is displayed on your screen.</td>
</tr>
<tr>
<td>2. Type ISPF (or the appropriate alias) and press Enter.</td>
<td>The ISPF Primary Option Menu is displayed.</td>
</tr>
<tr>
<td>3. On the Option line, type 3 to select the Utilities option. Then press Enter.</td>
<td>The Utility Selection Panel is displayed.</td>
</tr>
<tr>
<td>4. On the Option line, type 2 to select the Data Set utility. Then press Enter.</td>
<td>The Data Set Utility panel is displayed.</td>
</tr>
<tr>
<td>5. On the Option line, type A to allocate a new data set. Specify an ISPF library by typing this information, but substitute your first name in the Group field: Project .. your_user_id Group .. name Type .... ASM</td>
<td>The Allocate New Data Set panel is displayed. Note: The Project name must be defined as a valid high-level identifier on your installation. Generally, user-ids are defined as such. If this is not true for your installation, ask your system programmer what project names are valid for your system.</td>
</tr>
<tr>
<td>6. Type the information shown. Note: Leave ALL fields blank except:</td>
<td>Data set your_user_id.name.ASM is allocated on scratch volume. The Data Set Utility panel is displayed.</td>
</tr>
<tr>
<td>Space units .... TRKS</td>
<td>Note: Leave ALL fields blank except:</td>
</tr>
<tr>
<td>Primary quantity .... 2</td>
<td>Space units .... TRKS</td>
</tr>
<tr>
<td>Secondary quantity .... 1</td>
<td>Primary quantity .... 2</td>
</tr>
<tr>
<td>Directory blocks .... 1</td>
<td>Secondary quantity .... 1</td>
</tr>
<tr>
<td>Record format .... FB</td>
<td>Directory blocks .... 1</td>
</tr>
<tr>
<td>Record length .... 80</td>
<td>Record format .... FB</td>
</tr>
<tr>
<td>Block size .... 3120</td>
<td>Record length .... 80</td>
</tr>
<tr>
<td>Now press Enter.</td>
<td>Block size .... 3120</td>
</tr>
<tr>
<td>7. Select option A again and specify this ISPF library, again substituting your first name in the Group field: Project .. your_user_id Group .. name Type .... OBJ</td>
<td>The Allocate New Data Set panel is displayed.</td>
</tr>
<tr>
<td>Press Enter.</td>
<td>The Allocate New Data Set panel is displayed.</td>
</tr>
<tr>
<td>8. Leave everything the same. Just press Enter.</td>
<td>Data set your_user_id.name.OBJ is allocated. The Data Set Utility panel is displayed.</td>
</tr>
<tr>
<td>10. Press F3 again.</td>
<td>The ISPF Primary Option Menu is displayed.</td>
</tr>
<tr>
<td>11. Type 3.3 to select the Move/Copy utility, bypassing the Utility Selection Menu. Press Enter.</td>
<td>The Move/Copy Utility panel is displayed.</td>
</tr>
</tbody>
</table>
Running a sample ISPF session

Table 1. A sample ISPF session (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Now you will copy a data set. On the Option line, type C to select</td>
<td>A panel titled COPY FROM ISP.SISPSAMP(ISRASM) is displayed.</td>
</tr>
<tr>
<td>Copy data set or member(s). Then, under From Other Partitioned or</td>
<td></td>
</tr>
<tr>
<td>Sequential Data Set:, enter this data set name:</td>
<td></td>
</tr>
<tr>
<td>Data Set Name ... 'ISP.SISPSAMP(ISRASM)'</td>
<td></td>
</tr>
<tr>
<td>Press Enter.</td>
<td></td>
</tr>
<tr>
<td>13. Under To ISPF Library:, type these values:</td>
<td>Member ISRASM is copied from data set ISP.SISPSAMP to ISPF library</td>
</tr>
<tr>
<td>Project ... your_user_id</td>
<td>your_user_id.name.ASM. Then, the Move/Copy Utility panel is displayed.</td>
</tr>
<tr>
<td>Group ... name</td>
<td></td>
</tr>
<tr>
<td>Type ... ASM</td>
<td></td>
</tr>
<tr>
<td>Press Enter.</td>
<td></td>
</tr>
<tr>
<td>14. Press F3.</td>
<td>The ISPF Primary Option Menu is displayed.</td>
</tr>
<tr>
<td>15. Now you will browse member ISRASM. On the Option line, type 1 to</td>
<td>The View Entry Panel is displayed. Select Browse Mode.</td>
</tr>
<tr>
<td>select View and press Enter.</td>
<td></td>
</tr>
<tr>
<td>16. Type these details under ISPF LIBRARY:</td>
<td>A member list is displayed, showing ISRASM as the only member in the</td>
</tr>
<tr>
<td>Project ... your_user_id</td>
<td>your_user_id.name.ASM library.</td>
</tr>
<tr>
<td>Group ... name</td>
<td></td>
</tr>
<tr>
<td>Type ... ASM</td>
<td></td>
</tr>
<tr>
<td>Note: Leave the Member field blank.</td>
<td></td>
</tr>
<tr>
<td>Press Enter.</td>
<td></td>
</tr>
<tr>
<td>17. Move the cursor to the left of ISRASM. Then type $ to select</td>
<td>A panel titled BROWSE your_user_id.name.ASM (ISRASM) is displayed.</td>
</tr>
<tr>
<td>ISRASM and press Enter.</td>
<td>This is the first page of member ISRASM.</td>
</tr>
<tr>
<td>18. Press F8 to scroll ahead one page.</td>
<td>The second page of ISRASM is displayed.</td>
</tr>
<tr>
<td>19. Press F7 to scroll backward one page.</td>
<td>The first page of ISRASM is displayed.</td>
</tr>
<tr>
<td>20. Type FIND COMMENT on the Command line and press Enter.</td>
<td>The cursor moves to the first occurrence of the character string</td>
</tr>
<tr>
<td></td>
<td>COMMENT and the string is intensified. Also, the message CHARS '</td>
</tr>
<tr>
<td></td>
<td>COMMENT' FOUND is displayed in the upper-right corner of the screen.</td>
</tr>
<tr>
<td>21. To find the next occurrence of COMMENT, press F5, the RFIND</td>
<td>The cursor moves to the second occurrence of COMMENT and once again</td>
</tr>
<tr>
<td>command.</td>
<td>the string is intensified.</td>
</tr>
<tr>
<td>22. Press F3.</td>
<td>The member list is displayed.</td>
</tr>
<tr>
<td>23. Press F3 again.</td>
<td>The View Entry Panel is displayed.</td>
</tr>
<tr>
<td>24. Press F3 one more time.</td>
<td>The ISPF Primary Option Menu is displayed.</td>
</tr>
<tr>
<td>25. Now you will edit member ISRASM. On the Option line, type 2 to</td>
<td>The Edit Entry Panel is displayed.</td>
</tr>
<tr>
<td>select Edit and press Enter.</td>
<td></td>
</tr>
<tr>
<td>26. Type ISRASM in the Member field and press Enter.</td>
<td>A panel titled EDIT your_user_id.name.ASM(ISRASM) is displayed.</td>
</tr>
<tr>
<td></td>
<td>This is the first page of member ISRASM.</td>
</tr>
<tr>
<td>27. On the Command line, type FIND COMMENT and press Enter to find the</td>
<td>The cursor moves to the first occurrence of the character string</td>
</tr>
<tr>
<td>line containing the character string COMMENT.</td>
<td>COMMENT and the line number is intensified.</td>
</tr>
<tr>
<td>28. Delete COMMENT by pressing the Erase EOF key.</td>
<td>COMMENT is erased. Any characters to the right of COMMENT are erased,</td>
</tr>
<tr>
<td></td>
<td>also.</td>
</tr>
<tr>
<td>29. Press F5 to find the next occurrence of COMMENT.</td>
<td>The cursor moves to the second occurrence of COMMENT and the line</td>
</tr>
<tr>
<td></td>
<td>number is intensified.</td>
</tr>
</tbody>
</table>
Running a sample ISPF session

Table 1. A sample ISPF session (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>30. Move the cursor to the sequence number of the line below COMMENT, then move the cursor up one line. Repeat the COMMENT line by typing R over the first digit of the line number and pressing Enter.</td>
<td>The line is repeated.</td>
</tr>
<tr>
<td>31. On the Command line, type AUTOLIST ON, and press Enter.</td>
<td>Sets autolist mode on for automatic source listings.</td>
</tr>
<tr>
<td>32. Try out more Edit commands if you like, but remember: this program will be assembled later.</td>
<td>HAVE FUN!</td>
</tr>
<tr>
<td>33. Press F3.</td>
<td>Member ISRASM is saved in data set your_user_id.name.ASM and a listing of the member is placed in the ISPF list data set. The Edit Entry Panel is displayed.</td>
</tr>
<tr>
<td>34. Press F3 again.</td>
<td>The ISPF Primary Option Menu is displayed.</td>
</tr>
<tr>
<td>35. Move the cursor to Help on the action bar. Press Enter. On the resulting pop-up window, select 18.</td>
<td>The beginning of the ISPF tutorial is displayed. Follow the directions to learn more about ISPF. When you have finished, press F3 to return to the ISPF Primary Option Menu.</td>
</tr>
</tbody>
</table>

If you have followed this scenario, you should have an Assembler listing in a data set named either prefix.userid.ASMTEST1.LIST or userid.ASMTEST1.LIST. Also, when the job that you submitted has finished, you will have another listing in a data set named either prefix.userid.ASMTEST2.LIST or userid.ASMTEST2.LIST. Try the Browse option to review the listings and try experimenting with other ISPF options. hen you have finished, return to the ISPF Primary Option Menu.

Table 2. Finishing the sample session

<table>
<thead>
<tr>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>50. With the ISPF Primary Option Menu on the screen, press F3.</td>
<td>The ISPF Specify Disposition of Log and List Data Sets panel is displayed.</td>
</tr>
<tr>
<td>51. Select the process option to print and delete both the log and list data sets, and fill in the job statement information as required by your installation. Press Enter.</td>
<td>Data sets will be printed, then deleted through batch jobs submitted by ISPF. The job name is displayed at the bottom of the screen.</td>
</tr>
<tr>
<td>52. You are now out of ISPF. To leave TSO, type LOGOFF and press Enter.</td>
<td>This is the end of this usage scenario.</td>
</tr>
</tbody>
</table>
Running a sample ISPF session
Chapter 2. The ISPF user interface

ISPF provides an action bar-driven interface that exploits many of the usability features of Common User Access (CUA) interfaces. For more information about CUA, see Object-Oriented Interface Design: IBM Common User Access Guidelines.

These action bars give you another way to move around in ISPF, as well as the ability to nest commands. Command nesting allows you to suspend an activity while you perform a new one rather than having to end a function to perform another function.

This chapter primarily explains the action bar-driven interface and the use of ISPF’s graphical user interface (GUI). If you use a non-programmable terminal to access ISPF and you do not want to use the command nesting function, you can make selections by typing in a selection number and pressing Enter.

Some terms you should know

These terms are used in this document:

**action bar**
The area at the top of an ISPF panel that contains choices that give you access to actions available on that panel. When you select an action bar choice, ISPF displays a *pull-down menu*.

**command procedure**
A CLIST or REXX exec

**data set**
A sequential or partitioned data set

**ellipsis**
Three dots that follow a pull-down choice. When you select a choice that contains an ellipsis, ISPF displays a *pop-up window*.

**function key**
In previous releases of ISPF, a programmed function (PF) key. *This is a change in terminology only.*

**library**
A partitioned data set

**menu**
A selection panel

**mnemonics**
Action bar choices can be defined with a underscored letter in the action bar choice text. In host mode you can access the action bar choice with the ACTIONS command and parameter *x*, where *x* is the underscored letter in the action bar choice text. In GUI mode you can use a *hot key* to access a choice on the action bar; that is, you can press the ALT key in combination with the letter that is underscored in the action bar choice text.

**modal pop-up window**
A type of window that requires you to interact with the panel in the pop-up before continuing. This includes canceling the window or supplying information requested.
The ISPF user interface

**modeless pop-up window**
A type of window that allows you to interact with the dialog that produced the pop-up before interacting with the pop-up itself.

**point-and-shoot text**
Text on a screen that is cursor-sensitive. See “Point-and-Shoot text fields” on page 25 for more information.

**pop-up window**
A bordered temporary window that displays over another panel.

**pull-down menu**
A list of numbered choices extending from the selection you made on the action bar. The action bar selection is highlighted; for example, Utilities in Figure 6 on page 23 appears highlighted on your screen. You can select an action either by typing in its number and pressing Enter or by selecting the action with your cursor. ISPF displays the requested panel. If your choice contains an ellipsis (...), ISPF displays a pop-up window. When you exit this panel or pop-up, ISPF closes the pull-down and returns you to the panel from which you made the initial action bar selection.

**push button**
A rectangle with text inside. Push buttons are used in windows for actions that occur immediately when the push button is selected (available only when you are running ISPF in GUI mode).

**select**
In conjunction with point-and-shoot text fields and action bar choices, this means moving the cursor to a field and simulating Enter.

**terminal**
Any of the supported display devices

### Understanding ISPF panels

A panel is a predefined display image that you see on a display screen. ISPF formats all panels to fit on a 24-line by 80-character screen. On a 3278 Model 3 or 4, data that you can scroll occupies the full length of the screen (32 or 43 lines). On a 3278 Model 5, ISPF normally displays information in default mode; that is, 24 lines by 80 characters, with the same size characters as other models. "Browse" and "Edit" data that is wider than 80 characters is displayed with the smaller native mode characters, that is, up to 132 per line. You can use the Settings option (0) to override the automatic switching of modes.

#### Panel format

Figure 4 shows how ISPF formats the first three and last few lines of each display:

<table>
<thead>
<tr>
<th>Action Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel ID</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Long Message</td>
</tr>
<tr>
<td>Option</td>
</tr>
<tr>
<td>F1=Help</td>
</tr>
</tbody>
</table>

Figure 4. Panel Format
Understanding ISPF Panels

Note: The “Panel display CUA mode” field on the ISPF Settings panel determines where the Command or Option line and long messages are displayed. The default setting selects “Panel display CUA mode”, which causes the Command or Option line to be displayed on the bottom of the panel. The default setting also selects “Long message in pop-up”, which causes long messages to be displayed in a pop-up window directly above the Command or Option line. To display the command or option line and long messages at the top of the panel, select option 0, deselect the “Panel display CUA mode” field, and deselect the “Command line at bottom” field. See z/OS ISPF Dialog Developer’s Guide and Reference for more information about the “Panel display CUA mode” and “Command line placement” fields.

The fields on Figure 4 on page 16 function as follows:

Action Bar
The action bar provides access to pull-down menus that give you a new and faster way to move around in the product as well as access to command stacking. See Figure 6 on page 23 for more information about using the action bar.

Panel ID
This area can be overlaid by the system commands SYSNAME, USERID, SCRNAME, or PANELID. The data displayed can be up to 17 characters wide. If none of these commands is in effect, data from the panel title line is displayed.

Note: For more information about the system commands PANELID, SCRNAME, SYSNAME, USERID, and the order of priority that determines what is displayed in this 17-character area (if you specify more than one of these commands), see ISPF system commands” on page 76.

Title
Identifies the function being carried out and, where appropriate, the library or data set information.

Short Message
Shows:
• Current line for Browse, and column positions for View, Browse, and Edit.
• Current row position in a table display if the short message area is not overlaid by a function-requested message.
• Successful completion of a processing function.
• Error conditions (with an audible alarm, if one is installed). See z/OS ISPF Dialog Developer’s Guide and Reference for information about coding an alarm.

Command/Option
Allows you to enter a command or, on a menu, to enter either a command or an option.

Scroll
Indicates the scroll amount (if scrolling applies). You can type over it to change it. The valid scroll amounts are:

nnnn  A number of lines or columns (between 0 and 9999).

CSR  Move the line or column that contains the cursor to the edge of the scrollable area. For example, if you scroll right, the cursor will be positioned at the left side of the scrollable area. If you scroll down, the cursor will be positioned at the top of the scrollable area.
Understanding ISPF Panels

DATA Scroll by one line or column less than a full page. For example, if you scroll up, the line that was displayed at the top of the page becomes the bottom line in the new page of data.

HALF Scroll by half the number of lines or columns in the scrollable area.

MAX Scroll to the limit of the data. For example, if you enter MAX and scroll down, the last page of data is displayed. If you enter MAX and scroll up, the first page of data is displayed. Note that MAX only applies to the next scroll command. When the MAX scroll command has been processed, the scroll amount reverts to the previous setting.

PAGE Scroll by the full height (if scrolling up down) or width (if scrolling left or right).

Long Message
Displays an explanation of error conditions in a pop-up window when you enter the HELP command (see “Getting help” on page 9). On some displays, data may be overlaid temporarily by a long message.

Function Keys
Displays settings for the function keys. These settings are controlled through the Function keys pull-down on the action bar on the ISPF Settings panel.

Panel types
When using ISPF, you see three basic types of panels:
• Menus (selection panels)
• Data-entry panels
• Scrollable data displays.

Menus
A menu, or selection panel, allows you to type a number or letter in the Option field and press Enter to select one of the listed items. The number or letter can be typed in either uppercase or lowercase. Allowable numbers and letters are shown in high intensity. You can also enter ISPF commands. See Figure 5 on page 19 for an example of a menu.

Note: If the word BLANK or blank is listed, leave the Option field blank and press Enter to select that option. Do not type the word blank.
Understanding ISPF Panels

Data entry panels
A data-entry panel is a panel on which you specify information, such as data set names, job statement parameters, and language processing options. If you do not enter a required value or if you enter inconsistent values, ISPF prompts you with a message.

Some data-entry fields retain their previous values. If so, the next time you use the panel, you do not have to type them again. Just press Enter. If you do not want those values, type over them and then press Enter.

The retained values come from your user profile, which ISPF automatically builds and maintains across sessions. See "User profiles" on page 9 for more information about user profiles.

Edit modes and defaults are also maintained in the Edit portion of your user profile. See z/OS ISPF Edit and Edit Macros for more information.

Option selection
You can select an ISPF option three ways:

- Select a choice from one of the pull-downs on the action bar. See Figure 6 on page 23 for more information.
- Select one of the point-and-shoot fields. See "Point-and-Shoot text fields" on page 25 for more information.
Type an option number on the Option line and press Enter.

Many options have a secondary list of options. To bypass the second menu, type two selections, separating them with a period, on the ISPF Primary Option Menu. For example, entering 3.1 on the ISPF Primary Option Menu is the same as entering 3 on the ISPF Primary Option Menu and 1 on the Utility Selection Panel.

An even faster way to select an option is to bypass both the ISPF Primary Option Menu and the secondary menus. To do this, include your options in the ISPF (or alias) command. For example:

**ISPF 2** To go directly to the Edit option.

**ISPF 3.1** To go directly to the Library utility (3.1).

### Action bars

Action bars give you another way to move through ISPF. Most ISPF panels have action bars at the top; the choices appear on the screen in white by default. Many panels also have point-and-shoot text fields, which appear in turquoise by default. The panel shown in Figure 5 on page 19 has both.

If you use a non-programmable terminal to access ISPF and you do not want to take advantage of the command nesting function, you can make selections by typing a selection number and pressing Enter.

If the cursor is located somewhere on the panel, there are several ways to move it to the action bar:

- Use the cursor movement keys to manually place the cursor on an action bar choice.
- Type ACTIONS on the command line and press Enter to move the cursor to the first action bar choice.
- Press F10 (Actions) or the Home key to move the cursor to the first action bar choice.

If mnemonics are defined for action bar choices, you can:

- In 3270 mode, on the command line, type ACTIONS and the mnemonic letter that corresponds to an underscored letter in the action bar choice text. This results in the display of the pull-down menu for that action bar choice.
- In 3270 mode, on the command line enter the mnemonic letter that corresponds to an underscored letter in the action bar choice text, and press the function key assigned to the ACTIONS command. This results in the display of the pull-down menu for that action bar choice.
- In GUI mode, you can use a hot key to access a choice on an action bar or on a pull-down menu; that is, you can press the ALT key in combination with the mnemonic letter that is underscored in the choice text to activate the text.

Use the tab key to move the cursor among the action bar choices. If you are running in GUI mode (see “Running in GUI mode” on page 31), use the right and left cursor keys.

**Note:**

1. ISPF does not provide a mouse emulator program. This document uses select in conjunction with point-and-shoot text fields and action bar choices to mean moving the cursor to a field and simulating Enter.

Some users program their mouse emulators as follows:
• Mouse button 1: position the cursor to the pointer and simulate Enter
• Mouse button 2: simulate F12 (Cancel)

2. If you want the Home key to position the cursor at the first input field on an
   ISPF panel, type SETTINGs on any command line and press Enter to display the
   ISPF Settings panel. Deselect the “Tab to action bar choices” option.

3. If you are running in GUI mode, the Home key takes you to the beginning of
   the current field.

When you select one of the choices on the action bar, ISPF displays a pull-down
menu.

The action bar choices available vary from panel to panel, as do the choices
available from their pull-downs. However, Menu and Utilities are basic action bar
choices, and the choices on their pull-down menus are always the same.

**Menu action bar choice**
The following choices are available from the Menu pull-down:

**Settings**
Displays the ISPF Settings panel

**View**
Displays the View Entry panel

**Edit**
Displays the Edit Entry panel

**ISPF Command Shell**
Displays the ISPF Command Shell panel

**Dialog Test**
Displays the Dialog Test Primary Option panel

**Other IBM Products**
Displays the Additional IBM Program Development Products panel

**SCLM**
Displays the SCLM Main Menu

**ISPF Workplace**
Displays the Workplace entry panel

**Status Area**
Displays the ISPF Status panel

**Exit**
Exits ISPF

**Utilities action bar choice**
The following choices are available from the Utilities pull-down:

**Library**
Displays the Library Utility panel

**Data Set**
Displays the Data Set Utility panel

**Move/Copy**
Displays the Move/Copy Utility panel

**Data Set List**
Displays the Data Set List Options panel

**Reset Statistics**
Displays the Reset ISPF Statistics panel
Understanding ISPF Panels

**Hardcopy**
Displays the Hardcopy Utility panel

**Download**
Displays the panel that enables you to download workstation clients and other files from the host

**Outlist**
Displays the Outlist Utility panel

**Commands**
Displays the Command Table Utility panel

**Reserved**
Reserved for future use by ISPF; an unavailable choice

**Format**
Displays the Format Specification panel

**SuperC**
Displays the SuperC Utility panel

**SuperCE**
Displays the SuperCE Utility panel

**Search-for**
Displays the Search-For Utility panel

**Search-forE**
Displays the Search-ForE Utility panel

Figure 6 on page 23 shows the pull-down menu displayed when you select Utilities on the ISPF Primary Option Menu action bar.
To select a choice from the Utilities pull-down menu, type its number in the entry field (underlined) and press Enter or select the choice. To cancel a pull-down menu without making a selection, press F12 (Cancel). For example, if you select choice 9, ISPF displays the Command Table Utility pop-up, as shown in Figure 8 on page 25.

**Note:** If a choice displays in blue (the default) with an asterisk as the first digit of the selection number (if you are running in GUI mode, the choice will be *grayed*), the choice is unavailable for one of these reasons:

- Recursive entry is not permitted here
- The choice is the current state; for example, the Status is currently set to Session in Figure 7 on page 24.
Interaction of command and action bar choice

If you enter a command on the command line before selecting an action bar choice, the command is processed and the pull-down menu is not displayed. The CANCEL, END, and RETURN commands are exceptions. These three commands are not processed and the cursor is repositioned to the first input field in the panel body. If there is no input field, the cursor is repositioned under the action bar area. If you are running in GUI mode and select an action bar choice, any existing command on the command line is ignored.
Point-and-Shoot text fields

Point-and-shoot text fields are cursor-sensitive; if you select a field, the action described in that field is performed. For example, if you select Option 0, Settings, in Figure 9 on page 26, ISPF displays the ISPF Settings panel.

Note:
1. If you have entered a command on the command line, it is processed before any point-and-shoot command unless you are running in GUI mode.
2. As the cursor-sensitive portion of a field often extends past the field name, you may want to make this area visible. To display point-and-shoot fields in reverse video, use the PSCOLOR command to set Highlight to REVERSE.
3. You can use the Tab key to position the cursor to point-and-shoot fields by selecting the “Tab to point-and-shoot fields” option on the ISPF Settings panel (Option 0).
Function keys

ISPF uses CUA-compliant definitions for function keys F1-F12 (except inside the Edit function). F13-F24 are the same as in ISPF Version 3. By default you see the CUA definitions because your "Primary range" field is set to 1 (Lower -1 to 12).

To use non-CUA-compliant keys, select the “Tailor function key display” choice from the Function keys pull-down on the ISPF Settings (option 0) panel action bar. On the Tailor Function Key Definition Display panel, specify 2 (Upper -13 to 24) in the “Primary range” field.

These function keys help you navigate in ISPF:

**F1** Help. Displays Help information. If you press F1 (and it is set to Help) after ISPF displays a short message, a long message displays in a pop-up window.

**F2** Split. Divides the screen into two logical screens separated by a horizontal line or changes the location of the horizontal line.

*Note:* If you are running in GUI mode, each logical screen is displayed in a separate window.

**F3** Exit (from a pull-down). Exits the panel underneath a pull-down.

**F3** End. Ends the current function.

**F7** Backward. Moves the screen up the scroll amount.

**F8** Forward. Moves the screen down the scroll amount.
Understanding ISPF Panels

F9  **Swap.** Moves the cursor to where it was previously positioned on the other logical screen of a split-screen pair.

F10  **Actions.** Moves the cursor to the action bar. If you press F10 a second time, the cursor moves to the command line.

F12  **Cancel.** Issues the Cancel command. Use this command to remove a pull-down menu if you do not want to make a selection. F12 also moves the cursor from the action bar to the Option ==> field on the ISPF Primary Option Menu. See [z/OS ISPF Dialog Developer's Guide and Reference](https://www.ibm.com/support/docview.wss?uid=swg27013359) for cursor-positioning rules.

F16  **Return.** Returns you to the ISPF Primary Option Menu or to the display from which you entered a nested dialog. RETURN is an ISPF system command.

**Selection fields**

ISPF uses these CUA-compliant conventions for selection fields:

**A single period (.)**

Member lists that use a single period in the selection field recognize only a single selection. For example, within the Edit function you see this on your screen:

<table>
<thead>
<tr>
<th>Name</th>
<th>VV MM Created Changed Size Init Mod ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>. MEM1</td>
<td>01.00 94/05/12 94/07/22 40 0 0 USER1</td>
</tr>
<tr>
<td>. MEM2</td>
<td>01.00 94/05/12 94/07/22 30 0 0 KEENE</td>
</tr>
</tbody>
</table>

You can select only one member to edit.

**A single underscore (_)**

Selection fields marked by a single underscore prompt you to use a slash (/) to select the choice. You may use any nonblank character. For example, the “Panel display CUA mode” field on the ISPF Settings panel has a single underscore for the selection field:

**Options**
- Enter "/" to select option
  - Command line at bottom
  - Panel display CUA mode
  - Long message in pop-up

**Note:** In GUI mode, this type of selection field displays as a check box; that is, a square box with associated text that represents a choice. When you select a choice, the check box is filled to indicate that the choice is in effect. You can clear the check box by selecting the choice again.

**An underscored field (____)**

Member lists or text fields that use underscores in the selection field recognize multiple selections. For example, from the Display Data Set List Option panel, you may select multiple members for print, rename, delete, edit, browse, or view processing.
Entering Commands in ISPF

Table 3. Entry Methods and Command Types

<table>
<thead>
<tr>
<th>Entry Methods</th>
<th>TSO Cmds, CLISTs, and REXX EXECs</th>
<th>DM Commands</th>
<th>PDF Primary Commands</th>
<th>PDF Line Commands</th>
<th>WS Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISPF Command Shell (option 6)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Option field</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X (1)</td>
<td></td>
</tr>
<tr>
<td>Command field</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X (1)</td>
<td></td>
</tr>
<tr>
<td>Line Command fields (1-6 chars)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Line Command fields (9 chars)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Note: (1) Available when prefixed by "WS"

For example, to use the TSO ALLOCATE command, you could enter:
Command ===> TSO ALLOCATE

Also, CLIST names and REXX exec names can be preceded by a percent (%) symbol, as in:
Option ===> TSO %CLIST

This symbol informs TSO that the command is a CLIST or REXX exec, not a TSO command.

You can also use two command entry methods not shown in the table: the PA keys and the function keys. PA1 (ATTENTION) and PA2 (RESHOW) are hardware keys that you cannot redefine. You can use function keys to enter all commands.

Types of commands

Three types of commands operate at three levels:
- TSO commands, CLISTs, and REXX EXECs
  You invoke high-level commands through the MVS/TSO operating system. These include TSO commands, CLISTs, REXX EXECs, and the commands assigned to the PA1 and PA2 keys.
- DM component commands
  You call middle-level commands through the DM component of ISPF.
- PDF component primary and line commands
  You call low-level commands through the PDF component of ISPF.

**TSO commands, CLISTs, and REXX EXECs**

ISPF gives you access to the MVS/TSO operating system by letting you enter TSO commands, CLISTs, and REXX EXECs from within ISPF. z/OS TSO/E Command Reference contains descriptions of all TSO commands.
You can enter most TSO commands, CLISTS, and REXX EXECs from all three panel types: data entry; menu; and scrollable data display. However, some TSO commands, such as LOGON and LOGOFF, can cause unwanted results when you enter them from ISPF. This is also true of CLISTS and REXX EXECs that contain these TSO commands. The rules for entering TSO Commands, CLISTS and REXX EXECs are described in the Command (Option 6) topic in the z/OS ISPF User's Guide Vol II.

**DM component commands**
DM component commands are valid from all three types of panels. However, the validity of some commands depends on the type of panel displayed or the type of terminal you use. For example, the scroll commands (UP, DOWN, LEFT, and RIGHT) are valid only on scrollable data displays, and the SPLITV command is valid only on a 3290 display terminal.

For a description of the ISPF commands, default function key settings, and the PA1 and PA2 keys, see “ISPF system commands” on page 76.

**PDF component primary and line commands**
These commands are valid only when you call them within the PDF component. Exceptions are the primary and line commands for Edit (option 2), which are defined in z/OS ISPF Edit and Edit Macros and those for SCLM (option 10), which are defined in z/OS ISPF Software Configuration and Library Manager Guide and Reference. The ISPF primary option that you are using determines which commands are valid. For example, the CAPS primary command is valid only when using the Edit option.

For information about which commands are valid for a particular option, see the relevant topic in the z/OS ISPF User’s Guide Vol II that describes the option.

PDF component primary commands can affect a complete data set or PDS member, but the line commands can affect only one or more specified lines within a data set (unless you specify all the lines in the data set). For example, the Edit COPY command can copy a complete data set, whereas the C or CC Edit line command can copy only lines or blocks of lines within a data set.

**Multicultural support**

*Note:* The term "multicultural support" has replaced the previous term "National Language Support" (or "NLS").

Multicultural support gives countries the option of translating commands and keywords so that users can enter them in the country’s national language. In addition, panels, messages, and literal modules are provided with the product. The supported languages are German, Swiss-German, and Japanese.

When multicultural support is enabled, users can be required to enter certain keywords in the national language and not in English.

When the Danish, French, Korean, Traditional Chinese, Simplified Chinese, Spanish, Brazilian-Portuguese, or Italian session language is specified, its respective literal module is used. However, the ISPF product panels and messages are displayed in English.
**ISPF command syntax notation**

The notation conventions for ISPF command syntax follow.

- Uppercase commands and their uppercase parameters show required entry.
- Lowercase parameters show variables (substitute your values for them).

**Stacking commands**

To enter more than one command, you can stack them by typing a special delimiter between them. The default delimiter is a semicolon. Use the Settings option (0) to change the delimiter. For example, to stack two Edit CHANGE commands, use:

```
Command ==> CHANGE ALL ABC XYZ;CHANGE ALL PQR GHIJK
```

The system variable for the delimiter is ZDEL. See the topic about system variables in the [z/OS ISPF Dialog Developer’s Guide and Reference](https://www-01.ibm.com/support/docview.wss?uid=swg27039390) for more information about ZDEL.

**Dual command processing**

You can enter information on a command or option line in combination with pressing a related function key. The command is called first. For example, typing 4 on the command line and pressing F7 (UP command) is the same as typing UP 4 on the command line and pressing Enter.

If the command you type is unrelated to the command assigned to a function key you press, ISPF passes the entry to the function in control, which either processes or ignores the entry. For example, if the Edit function is in control, ISPF may display an error message. However, if the Tutorial is in control, the command is ignored. ISPF processes any stacked valid commands.

**Line command fields**

Line command fields can take many forms. Some have headings, some do not. Most are blank, but some contain single quotation marks or sequence numbers. For some, you type one character; for others, you type up to nine characters (even typing over data set names). Table 4 shows the functions that provide the line command fields.

<table>
<thead>
<tr>
<th>Functions Providing Line Command Fields</th>
<th>Heading Displayed</th>
<th>Characters Allowed</th>
<th>Initial Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member Selection List</td>
<td>None</td>
<td>1-9</td>
<td>Blank</td>
</tr>
<tr>
<td>Edit (option 2)</td>
<td>None</td>
<td>6</td>
<td>Quotes or numbers</td>
</tr>
<tr>
<td>Data Set List utility (option 3.4)</td>
<td>Command</td>
<td>9</td>
<td>Blank</td>
</tr>
<tr>
<td>Command Table utility (option 3.9)</td>
<td>None</td>
<td>4</td>
<td>Quotes</td>
</tr>
<tr>
<td>Format Specification utility (option 3.11)</td>
<td>None</td>
<td>1</td>
<td>Blank</td>
</tr>
<tr>
<td>SCRIPT/VS (option 4.9)</td>
<td>Line Cmd</td>
<td>1</td>
<td>Quotes</td>
</tr>
<tr>
<td>Dialog Test (option 7):</td>
<td>None</td>
<td>4</td>
<td>Quotes</td>
</tr>
<tr>
<td>Variables (option 7.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tables (option 7.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traces (option 7.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breakpoints (option 7.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The line command field for member selection lists is blank and has no heading. This includes typical member lists, which have a 1-character line command field, and the member list displayed when you use option M of the Data Set List utility, which has a 9-character line command field.

Quotes appear when you create a new data set or member, or when you insert one or more lines. Sequence numbers appear if you have NUMBER ON in your Edit profile.

Data set lists with 9-character line command fields allow you to type over data set names, thus extending the length of the fields to allow you to type long TSO commands, CLIST names, and REXX exec names. For information about entering TSO commands, CLISTS, and REXX EXECS in a line command field, see the Data Set List Utility (Option 3.4) topic in the z/OS ISPF User’s Guide Vol II. Also, the rules for entering TSO Commands, CLISTS and REXX EXECS from within ISPF are described in the Command (Option 6) topic in the z/OS ISPF User’s Guide Vol II.

PDF component line commands

Most PDF component line commands use only one letter, such as S, for selecting a member from a member list. Others, such as many of the Edit line commands, use more than one letter and sometimes allow you to add a number so the command affects more than one line. For example, the UC line command plus the number 3, as in UC3, converts three lines to uppercase.

Another type of line command is the block line command, which affects the block of lines between and including the lines on which the commands are entered. For example, the UCC line command, when entered beside two different lines, converts all lines between and including the two commands to uppercase.

Command nesting

You can use the action bars to suspend an activity while you perform a new one.

For example, if you are editing a data set and want to allocate another data set, select the Data set choice from the Utilities pull-down on the Edit panel action bar. ISPF suspends your edit session and displays the Data Set Utility panel. When you have allocated the new data set and ended the function, ISPF returns you directly to your edit session.

By contrast, if you used the jump function (=3.2), ISPF would end your edit session before displaying the Data Set Utility.

Running in GUI mode

In addition to the standard interface seen in terminals and terminal emulators, ISPF can be run from a workstation using the display functions of your workstation operating system. In the ISPF library this is called running in GUI mode.

The ability to run in GUI mode is provided via the ISPF Client/Server component, also known as the ISPF Workstation Agent (WSA). The WSA is an application that runs on your local workstation and maintains a connection between the workstation and the ISPF host. The WSA also allows you to edit host data on your workstation and workstation data on the host. In ISPF this is called distributed editing. For more information about distributed editing, see the 'Download Data Set to Workstation Utility (Option 3.7)' section of the z/OS ISPF User’s Guide Vol II.
Running in GUI mode

The ISPF WSA is supported on these platforms:
- Microsoft Windows 2000 and Windows NT
- AIX®
- HP-UX
- Solaris

Starting a GUI session

Before you can start a GUI session, you must have performed these actions:
- Successful installation and initialization of TCP/IP or APPC.
  'Appendix B: Configuring Communications for the ISPF Client/Server', in the
  z/OS ISPF User’s Guide Vol I contains procedures to help you to test whether
  you have satisfied this requirement.
- Successful installation of the ISPF Workstation Agent component.
  See 'Appendix A: Installing the Client/Server component', in the z/OS ISPF
- Initialization of the ISPF WSA component.

To initialize the WSA:
- If you have created a shortcut on your desktop that automatically launches
  the WSA, double-click the icon.
If you do not have a shortcut icon:
1. Go to a command line in your operating system (Windows or UNIX).
2. Change to the directory that contains your WSA executable file.
3. Enter WSA.
The Workstation Agent window is displayed on your workstation.

Figure 10. The Workstation Agent window

This window represents the executing ISPF C/S workstation program. For
more information about this window, see “The Workstation Agent window”
on page 182. You can minimize this window but you cannot close it while
ISPF is running in GUI mode.

Note: If you do not close the WSA window after you end an ISPF C/S
session, you will not have to repeat this step to start another ISPF C/S
session; that is, as long as the ISPF C/S component has been started, you can
start a workstation session.

To start a GUI session:
1. Display the Initiate Workstation Connection panel, using any of these methods:
   - From the Primary Option Menu panel, select Option 0 (Settings), select
     Workstation from the Action Bar, then enter 1 (Workstation Connection).
   - From other panels, select Menu from the Action Bar, enter 1 (Settings), then
     select Workstation from the Action Bar and enter 1 (Workstation Connection).
   - On the Command line in any panel, enter the WSCON command.
2. If necessary, type 1 in the Workstation Connection field. The remaining fields in this panel usually contain values saved when the WSA was installed and configured. For more information about the Workstation Connection panel, see the Settings (Option 0) topic in the z/OS ISPF User's Guide Vol II.

3. Press Enter. The Incoming Connection dialog box is displayed.

4. Click Yes to accept the connection. The panel that was active in ISPF before you opened the Workstation Connection panel is now displayed in the GUI dialog box.
Running in GUI mode

What GUI mode looks like

This topic describes changes that you see when you run ISPF in GUI mode.

Figures Figure 13 through Figure 18 on page 42 show the differences between ISPF panels displayed on a 3270 emulator and a GUI display. Emulator screens shown are from the Personal Communications Workstation Program. The GUI display panels are shown as they would be displayed on a workstation running Windows 2000.

Figure 13 shows the ISPF Primary Option Menu in 3270 mode.

![ISPF Primary Option Menu Displayed in Personal Communications](image)

Figure 13. ISPF Primary Option Menu Displayed in Personal Communications

Figure 14 on page 35 shows the same panel on a workstation using ISPF WSA.
Action Bars and Pull-Down Menus

Action bars are responsive entities at the workstation; that is, pull-down menus display without issuing an interrupt to the host so you can browse the action bars quickly and easily. If you have entered a command on the command line, this command is ignored when you select a pull-down choice.

Title Bars

Various types of data can be displayed in the title bar. What data appears in the title bar depends on which of these values ISPF finds data in first:

- The value defined in the application dialog variable ZWINNTTL is used if the panel is displayed in a pop-up.
- The value defined in the application dialog variable ZAPPTTL.
- The value specified in the title variable on the TITLE parameter of the ISPSTART command.
- The value specified in the title variable on the TITLE parameter of the WSCON service.
- The value specified in the “GUI Title” field on the Initiate GUI Session panel available from option 0.
- Your user ID.

If PANELID is set to On, the panel ID displays in front of the window title (or your user ID, if no window title is defined) rather than on the first line of the panel.
Running in GUI mode

Push Buttons
Function keys display as push buttons if FKA or PFSHOW is set to On. You can determine whether the F= prefix is shown on the push button by specifying PREFIX or NOPREFIX on the FKA command. Point-and-shoot output and text fields display as push buttons.

Note: If you entered a command on the command line, this command is ignored when you push a point-and-shoot push button. Point-and-shoot input fields are cursor-selectable.

Cursor Movement
The up and down cursor keys move the cursor vertically through a group of input fields, point-and-shoot fields, and pull-down choices. Use the right and left cursor keys to move through the choices on an action bar.

You can group pushbuttons and checkbox fields together by using Cursor Groups. If you choose to use Cursor Groups in an application, the cursor up and cursor down keys move the focus through each of the fields within a group, and the TAB key moves the focus out of the group.

You can also set Radio buttons in an application. When the focus is within a radio button group, the up and down keys move the focus and the selection through the radio button choices.

Messages
Long and short messages are displayed as they are in non-GUI mode. If the message would appear in a pop-up window, it will be displayed in a message box. The message box will have CANCEL and HELP push buttons as well as the appropriate CUA-defined icon:

- An i in a circle (the international symbol for information) signifies an informational message.
- An exclamation point (!) signifies a warning message.
- A red circle with a diagonal line across it signifies an error message.

Note: You can force long messages into pop-ups using ISPF option 0.

Mnemonics
You can use a hot key to access a choice on an action bar or on a pull-down menu; that is, you can press the ALT key in combination with the letter that is underscored in the choice to activate the choice.

Check Boxes
A selection field that is marked by a single underscore on the host displays as a check box (that is, a square box with associated text that represents a choice) if the attribute for the entry field has CKBOX(ON) and it is a valid check box field.

When you select a choice, some operating systems display a symbol (such as ✔️) in the check box to indicate that the choice is in effect. You can clear the check box by selecting the choice again. Some operating systems (AIX and HP-UX) treat the check box as a pushbutton.

List Boxes
A control that enables you to display scrollable lists of choices in boxes. You can select a choice by tabbing to the desired choice and pressing Enter, or by positioning the mouse pointer on the desired choice. A single click selects the choice, a double click selects the choice and processes an Enter
Running in GUI mode

action. The vertical scroll bar of the list box enables you to scroll through the choices. The horizontal scroll bar enables you to scroll horizontally through the choices.

Drop-down Lists
A variation of a list box. A drop-down list only displays one item until you take action to display the other choices. You can select a choice by tabbing to the desired choice and pressing Enter, or by positioning the mouse pointer on the desired choice. A single click selects the choice, a double click selects the choice and processes an Enter action. The vertical scroll bar of the drop-down list enables you to scroll through the choices.

Combination Boxes
A combination box combines the functions of an entry field with a drop-down list. It has an entry field and contains a list of choices to select from to complete the entry field. The list of choices is hidden until you take action to display it.

You can also type text directly into the entry field. The text does not have to match one of the list choices.

The width of the combination box is the width of the input field.

Separator bars
You can provide visual distinction between two adjacent areas within a pull-down menu by coding a separator bar between the two areas.

Accelerators
You can use an accelerator to invoke an application-defined function from a pull-down menu. An accelerator is a key or combination of keys that you define.

Radio buttons
A radio button is a control that shows a fixed set of mutually exclusive choices, one of which is usually chosen.

To select a radio button, you can use your mouse pointing device to press the desired button. You can also use the TAB key to move the focus of your session to the currently selected radio button group, then use the cursor keys to move to the desired choice within the group. If the focus is on a radio button choice, the TAB key moves the focus to the next field or group of fields following the first radio button choice. After one of the radio buttons is selected, you cannot blank it back out. Some applications handle this situation by using a radio button choice of NONE.

Unavailable Choices
Radio button, checkbox, and push button choices can display as unavailable choices. The unavailable choice is colored gray and audible feedback occurs if you try to select it.

Function Keys
Function keys display as push buttons.

Panel Display CUA Mode
When you are running in GUI mode, the “Panel display CUA mode” option on the ISPF Settings panel is set to On.

Enter Key
An Enter key appears as a push button, by default, on all panels. You can control the display of this key from the GUI Settings panel (option 0).
Running in GUI mode

Color, Intensity, and Highlighting
The Global GUI Color Change Utility allows you to map host colors to workstation colors. For more information, see the information about the Global GUI Color Change Utility in the Settings (Option 0) topic of the [z/OS ISPF User’s Guide Vol II](https://www.ibm.com). Character-level color, intensity, and highlighting are not supported; field-level intensity and highlighting are not supported.

Split Screen
When you split a screen, the new screen is displayed as a new physical window that is added to the window list. Each modeless window is single-threaded to MVS. SPLIT without parameters always acts as SPLIT NEW in GUI mode. Splitting a screen after the maximum number of screens is reached acts as a SWAP command. If you have only two split screens, SWAP simply toggles between the two. If you have more than two split screens, SWAP displays the Swap List.

PRINT Command
The PRINT, PRINT-HI, PRINTL, PRINTLHI, and PRINTG commands are not available in GUI mode.

WINDOW Command
The WINDOW command is not available in GUI mode.

WS Command
The WS command modelessly invokes the command you specify to provide a seamless interface between host and workstation applications. For example, this command opens a modeless window and invokes the workstation editor on the file named “myfile”:

```plaintext
WS e.exe myfile
```

APL/TEXT Character Sets
The ZGE variable is set to Off when you are running in GUI mode. Any character defined with the GE(ON) attribute displays as a blank.

Graphic Areas
Graphic areas are not supported. When a GRINIT statement is encountered, you receive a message that panels with graphics cannot be displayed. You may choose to continue. When a panel with graphics is encountered, a pop-up is displayed that allows you to specify that the panel be displayed on the host emulator session or on the workstation without the graphic.

Note:
1. If you are in split screen mode, the graphic area panel cannot be displayed on the host session.
2. If you specified GUISCRD or GUISCRW values on the ISPSTART invocation that are different from the actual host screen size, GDDM® cannot be initialized, and the GRINIT service ends with a return code of 20.

Input Fields
See “Sample screens” on page 39 for more information about how input fields are displayed in GUI mode.

Note: Blank fields and trailing blanks are displayed as nulls in GUI mode to avoid the need to delete blank characters when replace mode is not available.
Running in GUI mode

Fonts   All GUI displays use the font that you specify in the Font option on the Workstation Agent window. If the GUI display of your panels does not appear as you expect, try using a monospace font.

Codepages and Character sets
Users invoking ISPF GUI from a terminal or emulator that does not support code pages (indicated in the terminal query response) should specify code page and character set parameter values if values other than English are preferred when translating host data to workstation data.

Use the CODEPAGE and CHARSET parameters of the ISPSTART command, and the Host Codepage and Host Character Set fields on the ISPF Settings Initiate Workstation Connection panel, to set your chosen values. See the topic about Extended Code Page Support in the z/OS ISPF Dialog Developer’s Guide and Reference for code page and character set values supported by ISPF.

Images
ISPF supports image files in Graphics Interchange Format (GIF) when running in GUI mode.

ISPF ships sample files in the sample library SISPSAMP. The panel ISR@PRIM uses three of the images (ISPFGIFL, ISPFGIFS, and ISPEXIT).

To use images, store the image files on the host in a partitioned data set and allocate this image data set to ddname ISPILIB before invoking ISPF. For more information about allocating this image library see Allocating optional image ISPF library on page 171.

Sample screens
Figure 15 shows the ISPF Dialog Test Display Panel displayed on a 3270 emulator.

![ISPF Dialog Test Display Panel Displayed on a 3270 Emulator](image)

Figure 15. ISPF Dialog Test Display Panel Displayed on a 3270 Emulator
Running in GUI mode

Figure 16 shows this panel displayed on a programmable workstation using ISPF WSA.

Figure 16. ISPF Dialog Test Display Panel Displayed Using ISPF Workstation Agent.

Notes about how GUI panels are displayed:

1. Input fields appear as input boxes.

2. If an input field wraps multiple lines on a 3270, the field scrolls horizontally in the GUI input box. Blank lines are displayed for those lines of the input field that would have wrapped on a 3270 display.

3. For a panel not displayed in a pop-up window, only the area needed to display the information is used. That is, ISPF does not add blank space at the bottom of the panel. ISPF does display blank space coded into the panel.

4. ISPF maintains the original window size on a pop-up window. If the panel exceeds the width or depth of the physical display, scroll bars are automatically added to allow you to view the hidden portions of the screen.

Figure 17 on page 41 shows a pull-down with an unavailable choice (Session) displayed on a 3270 emulator.
Figure 17. A Pull-Down Menu with an Unavailable Choice Displayed on a 3270 Emulator

Figure 18 on page 42 shows this panel displayed on a programmable workstation using ISPF WSA.
Running in GUI mode

Switching between GUI mode and 3270 mode

You can switch logical screens back and forth between GUI mode and 3270 mode by issuing the SWITCH 3270 or SWITCH GUI commands. See “The SWITCH command” on page 51 for more information.

Special characters or symbols

This topic describes techniques that can be used to display special characters or symbols while running ISPF in GUI mode. Although some are similar, the techniques are platform specific. In each case, the text refers to a number (sometimes in hexadecimal form) which is the code point of the character or symbol within the current (in use) code page. Note that the code point for a symbol may have different values depending on the code page being used.

Windows

Use Microsoft’s Character Map program to find the special character that you want to insert into your document or entry field. The Character Map program is available from the Start menu under the Accessories folder.

After you have found the special character, select it by clicking with your mouse. Notice that the key sequence used to generate the character displays in the lower right portion of the window. You can use this key sequence in an entry field or GUI editor to display the character.
Running in GUI mode

Alternatively, you can use the Character Map program to copy the character to the clipboard, then paste it into your document.

When entering a character using its key sequence, remember that you must use the numeric keypad. For example, the key sequence for the host 'not' sign (¬) is ALT+0172. To enter this key sequence, press and hold the ALT key, then press the numbers 0172 on the keypad, then release the ALT key. Note that the leading zero is important and must be specified in order to display the character using the current (in use) character set. Without the leading zero, the OEM (or DOS) character set is used. Also note that within an entry field, some key sequences only work if NumLock is ON.

See the online help for the Character Map program for more information about using the program.

UNIX (AIX)
On AIX you can enter a key sequence to generate a special character or symbol. For example, the key sequence for the host 'not' sign (¬) is ALT+172. To enter this key sequence, press and hold the ALT key, then press the numbers 172 on the keypad, then release the ALT key. Note that within an entry field, some key sequences only work if NumLock is ON.

UNIX (SOLARIS and HP)
SOLARIS and HP do not support this transformation technique. Instead, you can remap the keyboard. Remapping the keyboard works on all UNIX systems (AIX, SOLARIS, and HP). This example shows how to remap shift 6 to be the host 'not' sign (¬).

1. Execute this command:
   /usr/openwin/bin/xmodmap -pke > output.file
   This will dump the current mapping into the file named output.file.

2. Edit output.file and replace "keycode 42 = 6 asciicircum" with "keycode 42 = 6 0XAC" (AC is the ASCII equivalent of the not symbol)


Once the keycode you are going to change is known, the change can also be made by executing this command: /usr/openwin/bin/xmodmap -e 'keycode 42 = 6 0XAC' (the single quotes are required).

Note: The remap only affects new windows created after the command is run. Any existing windows will not honor the change. Also note that the change is only for the life of the current session. You might want to put the commands into some kind of startup that executes when you start a session. For more information about xmodmap, check the online documentation on your system.

ISPF GUI support of TSO line mode output and input
When running ISPF in GUI mode, users connected by TCP/IP on a z/OS UNIX system, and all users connected by APPC, have the option to display all non-fullscreen TSO data in an ISPF/TSO GUI window. This window is scrollable and it contains an input field for entering required user responses. The data in the window can be selected and copied to a file of your choice.

This support enables you to minimize the emulator window from which you logged on without missing any messages that might appear in the emulator window.
Running in GUI mode

Figure 19 shows the ISPF/TSO GUI window.

The ISPF/TSO window has one item on its action bar: Edit. Clicking on this option causes a pull-down menu to appear.

The options on the menu are as follows:

**Copy** Enables you to copy the lines of the window that you have marked. You designate a line to copy by clicking on it in the window.

**Select All**
Mark all of the lines in the window for further action. The ISPF/TSO window is scrollable, and can contain 30,000 bytes of data in Windows, and 60,000 bytes of data in the other supported environments.

**Deselect All**
Unmark all lines in the TSO window.

**Clear** Erase everything in the ISPF/TSO window.

The ISPF/TSO Window title contains the system name of the host system that you logged on to and your User ID. The system name is the SYSNAME value defined by your system programmer in the IERASYSTAT member of SYS1.PARMLIB. For ISPF
to display the line mode data in this ISPF/TSO Window, you must log on to TSO using a logon procedure that invokes the alternate entry point IKJEFT1I. For more details on installation requirements for TSO line mode support, refer your system programmer to "z/OS ISPF Planning and Customizing"

When you make a connection to the workstation to run ISPF in GUI mode, an additional connection is made for the ISPF/TSO Window. The window is created on your workstation when the first TSO message needs to be displayed. All messages are appended to this scrollable window until you end your ISPF session. At that time, the ISPF/TSO Window is closed and all TSO data from that point on is displayed on the 3270 emulator session.

**Note:** You cannot close the ISPF/TSO Window during the ISPF GUI session.

When running ISPF in GUI mode, if TSO input is required from the user, the ISPF/TSO Window is displayed in the foreground and the input field is enabled for you to enter your data.

**Note:** A maximum of 256 characters can be entered in this input field. When input is not being requested, the input field is disabled.

The ISPF/TSO window has a maximum capacity of approximately 32000 bytes of data in a Windows environment, and 60000 bytes of data in all other ISPF-supported operating environments. After these limits are reached, a message is displayed informing you that the ISPF/TSO window will be cleared before appending the next line of data. This gives you a chance to use the data in the window. Using the options under the Edit menu item, you can select lines from the window, copy them, and paste them to any file of your choice. After you respond OK to the informational message, the window is cleared and any following TSO data is appended from the top of the window.

**Restrictions for the TSO GUI line mode support**

Applications issuing TGETs must ensure that their TGET buffer is large enough for the user's response. The maximum allowable response is 256 characters. Normally, exceeding this limit results in a return code of 12 or 28 being returned. With the TSO GUI line mode support, a zero (0) return code is returned, and only the amount of data that fits in the supplied buffer is returned.

Users running in a Session Manager environment in the 3270 session will see any cross memory messages that appeared in the ISPF/TSO Window displayed again in the session manager screen after the ISPF GUI session ends.

**Fullscreen TSO data:** Fullscreen TPUTs will continue to be displayed in the 3270 emulator session. Required input to satisfy a fullscreen TGET must be entered in the 3270 emulator session. For example, if the user from ISPF GUI mode invokes SDSF through its fullscreen TPUT interface (that is, the user enters TSO SDSF from an ISPF command line) the SDSF screens are displayed in the 3270 emulator screen.

However, if the user invokes SDSF through the ISPF interface ISPEXEC SELECT PANEL(ZSDSFOP2) NEWAPPL(ISF) then the SDSF screens are displayed in the ISPF GUI mode window just like any other ISPF panel.

Users running fullscreen applications like RMFMON, CSP, and OMVS from an ISPF GUI session with GUI TSO line mode support should first suspend the ISPF/TSO Window. This forces all fullscreen and line mode data to appear in the
Running in GUI mode

3270 screen until the completion of the fullscreen application. The ISPF/TSO Window should be resumed at the completion of the fullscreen application processing.

You can query the current status of the ISPF/TSO Window using the CONTROL TSOGUI QUERY service. You can suspend and resume the window using one of these methods:

1. ISPF CONTROL Service
   
   **CONTROL TSOGUI QUERY**

   **QUERY**
   
   Calls for the current status of the ISPF/TSO window. One of these return codes is shown:
   
   **0** Either the user is not running ISPF GUI with TSO line mode support, or TSOGUI is off. All TSO input and output is directed to the 3270 session.
   
   **1** All TSO line mode output is displayed in the ISPF/TSO window. Line mode input must be entered into the ISPF/TSO window's input field.

   **OFF** Specifies that the ISPF/TSO window is suspended. All fullscreen and line mode data appears in the 3270 window until CONTROL TSOGUI ON is issued.

   **ON** Specifies that the ISPF/TSO window is resumed. All TSO line mode output and input is directed to the ISPF/TSO window.

   **Note:**
   
   a. If you do not run ISPF GUI with TSO line mode support, issuing CONTROL TSOGUI results in no operation being performed (NOP).
   
   b. CONTROL TSOGUI defaults to ON during ISPF GUI session initialization.

   Example CLIST:
   
   ```
   PROC 0
   ISPEXEC CONTROL TSOGUI QUERY
   SET &TSOGUIST= &LASTCC
   IF (&TSOGUIST = 1) THEN +
     DO
       ISPEXEC CONTROL TSOGUI OFF
     END
   ISPEXEC SELECT CMD (OMVS)
   IF (&TSOGUIST = 1) THEN +
     DO
       ISPEXEC CONTROL TSOGUI ON
     END
   ```

2. ISPF TSOGUI command
   
   The TSOGUI command is found in the ISPF command table as:
   
   ```
   SELECT PGM(ISPISM) PARM(TSOGUI,&ZPARM)
   ```

   You can enter TSOGUI OFF or TSOGUI ON from any ISPF command line.

Bi-directional language support

The ISPF workstation agent supports two bi-directional (bidi) languages: Arabic and Hebrew. This enablement of the workstation agent is supported on Windows 2000 and Windows NT.
Shortcut keys
With bi-directional versions of the Windows operating systems, support for special
key sequences called shortcut, or “hot” keys, is provided to control bi-directional
behavior within an application.

The ISPF workstation agent supports these existing hot key combinations
whenever possible. However, the workstation agent does provide some new or
modified hot key combinations. The new or modified hot keys follow.

Note: The abbreviations “LtR” and “RtL” refer to the orientation of a field or
application. LtR means Left to Right orientation. RtL means Right to Left orientation.

Screen reverse (Alt+Enter): The term “screen reverse” is a remnant of ISPF’s
native 3270 support. Within a Windows application, this hot key combination
reverses the application window, not the whole desktop screen. Alt+Enter is used
to toggle the orientation of the screen.

Note: On an Arabic 102 keyboard, the Enter key is called New Line.

Auto reverse (Alt+Numpad5): This key combination is used to automatically
reverse the orientation of specific entry fields. Use Alt+Numpad5 to toggle
between Auto Reverse ON and Auto Reverse OFF.

When Auto Reverse is ON, all numeric only entry fields switch to LtR orientation,
and alphanumeric entry fields switch to RtL orientation.

When Auto Reverse is OFF, all entry fields have the same orientation as the
application screen.

Field reverse (Ctrl+Left/RightShift): This combination has been modified from its
normal Windows processing.

On the Windows operating system, the key combination Ctrl+Left/RightShift
performs a field reverse. The effect of this is to change the keyboard language so
that it matches the new typing direction. In a standard Windows application, this
keyboard language change is global to the whole application window.

On a native 3270 display, the keyboard language change (resulting from a field
reverse) affects only the target field, not the whole screen.

The ISPF workstation agent follows the behavior of a native 3270 display when
this key combination is used on Windows.

Bi-directional file transfer limitations
Data files that contain all LtR text are not affected by the limitations described in
this topic. Neither is the workstation build function.

The ISPF Workstation Agent does not perform any transformations on the contents
of files that are transferred to or from the host in text mode. The implications of
this depend on how the files are edited on the workstation. If your host files
contain Arabic or Hebrew text, consider these points before editing them on the
workstation:

• Host data is stored in Visual form. If you download a file to the workstation and
  edit it with an editor that expects the file contents to be in implicit form, the file
can become corrupted.
Running in GUI mode

- On Arabic Windows, the contents of a data file can become corrupted if the file is downloaded to the workstation then uploaded back to the host. This is because the host Arabic code page (420) supports shaped characters, while the Windows Arabic code page (1256) does not. Therefore, it is possible to lose shaping during the file transfer process.

**Attention:** If your host files contain Arabic or Hebrew text, do not edit them in GUI mode. Instead, edit these files on the host using the ISPF editor in its non-GUI mode.

**Ending a GUI session**

You can end a GUI session in one of these ways:
- Terminate the ISPF session.
- Issue the WSDISCON command. See “WSDISCON” on page 101 for more information.
- Invoke the WSDISCON dialog service. See the z/OS ISPF Services Guide for more information.

After invocation of WSDISCON, the GUI screen continues to display back in the 3270 emulator session.

**Closing the ISPF Client/Server Workstation Agent component**

If the ISPF WSA component window is closed while ISPF is running in GUI mode, ISPF issues a 989 abend on the host, unless the “3270 mode after losing workstation connection” field is selected on the GUI Settings panel. If this field is selected, the GUI session continues in your 3270 emulator session.

If the GUI session has been ended and the Client/Server WSA component is no longer needed, the Workstation Agent window can be closed.

**Splitting the screen horizontally or vertically**

While using a dialog, you can use the SPLIT command to partition the display into two or more logical screens. The logical screens are treated as though they are independent ISPF sessions.

The maximum number of screens available to you depends on the value of the MAXIMUM_NUMBER_OF_SPLIT_SCREENS keyword in the ISPF Configuration table. ISPF ships with a default figure of 8. Support for up to 32 split screens is available for all terminal types except the 3290.

**Note:** If you are running in GUI mode, when you split a screen, the new screen is displayed as a new physical window. If you want, representations of every screen can be displayed at once. Although a 3270 screen can only display two screens at one time, there can be other screens (up to 32) that are not visible. You can select which logical screen to display by using the SWAP LIST command to display a list of logical screens.

**The SPLIT command**

You enter split-screen mode by using the SPLIT command. You also use this command to reposition the horizontal line that separates the two logical screens on a 3270 display. On a 3270 display the location of the cursor identifies the active logical screen. On a 3270 display, the horizontal divider line that separates the logical screens is not considered part of either logical screen. If the cursor is placed
on this horizontal divider line and a function key is pressed, the result is the same as if the ENTER key was pressed and the cursor is positioned on the active logical screen's command line. Because ISPF runs in both host and GUI modes, the SPLIT command behaves differently in each.

**SPLIT command without parameters, in 3270 mode**
If only one screen is currently being used, the physical display is divided into two logical screens with a divider at the cursor. If two or more screens exist, the divider line is moved, but no new screen is started.

**SPLIT command without parameters, in GUI mode**
A new logical screen is added each time the command is given, until the maximum number is reached. After the limit is reached, a message appears when the command is issued again.

**SPLIT NEW command, in 3270 mode**
A new logical screen is added each time the command is given, until the maximum number is reached. After the limit is reached, a message appears when the command is issued again. Each new logical screen is added below the cursor, where the split line appears. If two or more screens already exist, the new one replaces the screen in which the SPLIT command was *not* entered.

**SPLIT NEW command, in GUI mode**
This command behaves the same as the SPLIT command without parameters.

End split-screen mode by ending the application on all but one logical screen. The remaining logical screen is then expanded to the full size of the display screen.

**The SWAP command**
Although you can alternately use any logical screen, only one of the logical screens is considered active at a time. The location of the cursor identifies the active screen. You make a screen active by using the SWAP command and its parameters to choose the desired screen.

The parameters on the SWAP command (LIST, PREV, NEXT, *screen_name*, and *n*) control which screens you see displayed.

**SWAP command without parameters in 3270 mode**
If only one screen exists, this command has no effect. If more than one screen exists, this command moves the cursor between the two logical screens that are displayed.

**SWAP command without parameters in GUI mode**
If only two screens are present, the cursor moves to the one that it is not currently on. If more than two screens exist, this command defaults to the SWAP LIST command and causes the ISPF task list to display in a pop-up window. See SWAP LIST command in GUI mode for more information.

**SWAP PREV|NEXT|*screen_name*|*n* commands in both modes**
Entering SWAP PREV changes the focus (for GUI mode) or display (for 3270 mode) to the next lower screen number from the one where the command is entered. Repeatedly issuing the same command causes each lower-numbered screen to display until screen number 1 is reached, then the counter wraps back to screen number 32 (or your installation’s maximum number).
Splitting the Screen

Entering SWAP NEXT changes the focus (for GUI mode) or display (for 3270 mode) to the next higher screen number from the one where the command is entered. Repeatedly issuing the same command causes each higher-numbered screen to display until screen number 32 (or your maximum) is reached, then the counter wraps back to screen number 1.

Entering SWAP screen_name changes the focus (for GUI mode) or display (for 3270 mode) to the screen named screen_name if it is active.

Entering SWAP n changes the focus (for GUI mode) or display (for 3270 mode) to the screen numbered n (ZSCREEN variable) if it is active.

SWAP LIST command in 3270 mode
This command displays the ISPF Task List, from which you can select which screen to display. The screen you select replaces the screen on which you entered the command.

SWAP LIST command in GUI mode
This command displays the ISPF Task List (Figure 21), from which you can select which screen to focus on.

All of the fields on the ISPF Task List panel are point-and-shoot fields. The results when choosing one are as follows:

Start a new screen
Starts a new logical ISPF screen.

Start a new application
This field is used in conjunction with the Application Name field. If you choose "Start a new application" you must enter an application name in the "Application Name" field.

Application Name
The name of an application you want to start by choosing
the "Start new application" field on the ISPF Task List panel. This application is started in a new logical screen. ISPF invokes the application through the ISPF START command, so any application name and parameters that are valid for the START command are valid in the Application Name input field. If you need more space to enter the application name and parameters, press the Expand PF key to display a pop-up window that contains a longer input field.

For example, if a user types "keylist" in the Application Name input field and presses Enter, the ISPF KEYLIST application is invoked in a new logical screen.

Select a screen from the list of active sessions
Provides a list of active sessions for you to choose from.

The SWITCH command
In addition to using the swap command to change the focus of your session from one screen to another, if you are running the ISPF Client/Server you can use the SWITCH command to change the way the screen is displayed, either GUI mode or 3270 mode.

From any GUI screen you can enter the command SWITCH 3270. The GUI screen disappears and the screen is then displayed full-screen on your 3270 display. The 3270 screen is now operational. If you had been in split screen mode, the remaining GUI screens remain in GUI, but are disabled. To swap back and forth between the GUI and 3270 sessions now, you must use the SWAP commands (SWAP x, SWAP LIST, and so forth). The SWAP LIST panels ISPSLIST and ISPTLIST have a field indicating the session type (GUI or 3270).

If you want to switch your 3270 screen back to GUI mode, enter SWITCH GUI on the command line.

Rules for splitting and swapping 3270 and GUI screens
The rules for splitting and swapping screens when you have combinations of both 3270 and GUI screens are as follows:

- If you have only one 3270 screen and enter split, the new logical screen is displayed in GUI mode.
- If you have two or more 3270 screens and enter split from one of them, the next 3270 screen is displayed full-screen, but no new screen is started.
- If you enter split from a GUI screen, a new GUI screen is started (until the maximum number is reached).
- If you enter split new from either a GUI or 3270 screen, the new logical screen is displayed in GUI mode.
- If you have one 3270 screen and one GUI screen, then entering swap from either of these screens causes a swap to the other.
- If you have two GUI screens and one 3270 screen, swap from one of the GUI screens swaps you to the other GUI screen. Swap from the 3270 screen does nothing.
- If you have one GUI screen and two 3270 screens, swap from one of the 3270 screens swaps to the other 3270 screen. Swap from the GUI screen does nothing.
- If you have two GUI screens and two 3270 screens, swap from one of the GUI screens swaps you to the other GUI screen. Swap from one of the 3270 screens swaps you to the other 3270 screen.
### Splitting the Screen

- If you have more than two GUI screens and enter **swap** from one of them, the SWAP LIST panel appears.
- If you have more than two 3270 screens and **swap** from one of them, you swap to the next 3270 screen.
- Entering **SWAP PREV** | **NEXT** | **screen_name** | **n** commands in either GUI or 3270 mode swaps as described in "The SWAP command" on page 49.
- After a GUI screen is enabled, you can swap to other GUI screens using your mouse pointer.

### SWITCH command restrictions

At the completion of ISPF command processing, ISPF does not reprocess the panel from which the command was invoked. The panel is simply relaunched to the screen without processing, for example, the panel's )INIT section. Therefore, if certain constructs are defined within the panel sections based on the ZGUI variable (nonblank indicating connected in GUI mode), these constructs are not defined properly until after the Enter key is pressed following the SWITCH invocation.

These are some known restrictions for the SWITCH command:

- When switching to GUI mode, the first panel displayed in GUI mode cannot contain group boxes and images that are defined on the panel. After the user presses the Enter key, causing the panel to be reprocessed, then these constructs are visible in GUI mode.
- When switching to 3270 mode, the name of any group boxes defined on the panel that the SWITCH was issued from display on the screen in 3270 mode. After the user presses the Enter key, causing the panel to be reprocessed, these group box names disappear and any panel text under these names reappears.
- If a 3270 screen already exists when the SWITCH 3270 command is invoked from another GUI screen, the screen from which the SWITCH was invoked is displayed in the full 3270 emulator session without a split line, regardless of the user's "Always show split line" setting. The other 3270 sessions are hidden and are available for display if the appropriate swap command is entered.
- If pop-up windows are displayed in GUI mode when the SWITCH 3270 command is invoked, those pop-up windows are suspended on the 3270 session and the panels are displayed as full-screen panels. If new addpops are then invoked, these new panels are displayed as pop-ups.
- The user cannot switch to 3270 mode when running in batch GUI mode.
- When running in GUI mode, if at least one screen has been switched to 3270 mode, then the user is not allowed to change the screen format in ISPF Settings.
- If you started GUI mode from ISPSTART and specified **GUICRD** or **GUICRW** values different than your actual emulator session, then you are not allowed to switch to 3270 mode.

### 3290 terminals

On 3290 terminals, in addition to splitting the screen horizontally, you can use the SPLITV command to split the screen vertically, for a total of four logical screens. In the case of the 3290 terminal, four is the maximum number of screens possible. (The SPLITV function is not active if the data being displayed on a screen is more than 80 characters wide.) [Figure 22 on page 53](#) shows the effect of SPLIT and SPLITV, starting in single-screen mode.
Note:
1. ISPF logical screens are separate subtasks that do not share subpool 0 (attached with SZERO=NO parameter.) Thus, VSAM data sets cannot be accessed from more than one logical screen.
2. If you are in a VSAM application, perform a split screen operation, then enter another VSAM application in the second session, you must be sure to end the second session before you end the first session, or an abend can occur.
3. On 3290 hardware, using the jump function to move from screen to screen might result in the loss of data that has been typed but not processed. The use of the 3290 hardware jump is not recommended.
4. In split-screen mode, if you type a command on the command line and swap screens before pressing Enter, the command is erased.
5. You cannot start ISPF in GUI mode if you are configured to run ISPF in 3290 partition mode.

Figure 22. Splitting the 3290 Screen
Splitting the Screen
Chapter 3. Using personal data set lists and library lists

Personal lists are named lists of data sets, z/OS UNIX files and ISPF libraries that you can use to speed up access to frequently used data sets. You can use personal lists to fill in panel fields quickly and to create data set lists that are built from more than one level name. **Personal data set lists** contain data set names, volumes, and z/OS UNIX files. **Personal library lists** contain lists of ISPF library names and concatenations.

ISPF provides four types of personal lists:

**Personal data set list**
- Lists of up to 30 data set names and z/OS UNIX files. For data sets, each name can include a member name or a volume name, or both. z/OS UNIX file path names can be for regular files, directories, or symbolic links to directories or regular files. Personal data set lists can also contain workstation file names and data set name levels. See “Personal data set lists” on page 57.

**Personal library list**
- Lists of up to eight ISPF library names or ISPF library concatenations. ISPF library names contain three qualifiers called `project`, `group`, and `type`. Personal list entries can optionally contain a member name. See “Personal library lists” on page 57.

**Reference data set list**
- A special kind of personal data set list in which ISPF saves the names of the most recently used data sets, data set name levels, and z/OS UNIX files and directories. This list is always named REFLIST. See “Reference data set list” on page 58.

**Reference library list**
- A special kind of personal library in which ISPF saves the names of the most recently used ISPF libraries. This list is always named REFLIST. See “Reference library list” on page 58.

You can have a personal data set list with the same name as a personal library list. ISPF reserves the name REFLIST as the name of the reference lists, so there is a personal data set list called REFLIST, and a personal library list called REFLIST.

**Reference lists** are active lists of data sets, z/OS UNIX files, and libraries that you have referenced in your ISPF session. ISPF adds a data set name to the data set reference list when you enter a data set name in the Other Partitioned or Sequential Data Set Name field. ISPF also adds a z/OS UNIX file pathname to the data set reference list when you enter a pathname in the Other Partitioned or Sequential Data Set, or z/OS UNIX File Name field. A library is added to the library reference list when you enter a library in the ISPF Library field. Only data sets and libraries that are successfully allocated by ISPF’s ALLOCATE routine are added to the reference lists.

**Note:** Reference lists can be manipulated just like any other personal list, but ISPF might dynamically change reference lists when new data sets or libraries are referenced by ISPF.
Using personal data set lists

Current lists are the most recently opened or the last list to which something was saved from within the personal list panels. One named data set list, and one named library list, are the current lists at any time. The current list is used for the NRETRIEV key, and in the RefList pull-downs. The current list names are shown in the RefList pull-down choices, and in the lists of personal lists.

Note: The RefList pull-down is unavailable from Utilities options 8, 9, and 13; it does not offer library list choices from options 4 and 6.

You can use personal lists for data set selection from the View Entry, Edit Entry, and most of the Utilities panels. You can access lists in two ways:

- From the RefList pull-down menu on the action bar of the View Entry, Edit Entry, and most Utilities panels, as shown in Figure 23.
- Through the command interface (or fast path) described in "Command interface (fast path) to the personal list function" on page 69.

Personal list modes

The action taken when you select a data set from a list depends on how you have the Mode set. All personal lists can be set to either Retrieve or Execute mode from the RefMode pull-down on the action bar of the View Entry, Edit Entry, and most Utilities panels, as shown in Figure 24 on page 57. List Retrieve displays in blue (the default) with an asterisk as the first digit of the selection number (if you are running in GUI mode, the choice is grayed), which indicates that RefMode is currently set to Retrieve.
Using personal data set lists

The RefMode pull-down offers you these choices:

List Execute
Sets personal data set lists and personal library lists to Execute mode; that is, when you select an entry from the list, the information is placed into the ISPF Library or Other Data Set Name field, and ISPF proceeds as if you also pressed the Enter key.

List Retrieve
Sets personal data set lists and personal library lists to Retrieve mode; that is, when you select an entry from the list, the information is placed into the ISPF Library or Other Data Set Name field, but the simulated pressing of the Enter key is not performed. This allows you to set other options before you press Enter.

Personal data set lists

You can build lists of personal data sets that contain up to 30 data set names and z/OS UNIX file path names. You can have as many lists as you like as long as each has a unique name. Personal data set lists are a good way to group (by project, for example) those data sets and z/OS UNIX file path names that you use frequently. You can use personal data set lists to avoid typing in data set names and z/OS UNIX file path names and to create customized data set lists similar to those using ISPF Option 3.4. To create or use a personal data set list, perform one of these actions:

- Select the Personal Data Set List choice from the RefList pull-down on the View Entry, Edit Entry, or Utilities action bar.
- Enter the REFACTD command from the command line.
- Use the “Save As” action when viewing the data set reference list (REFLISTD command).

The REFACTD command displays the Personal Data Set List panel, as shown in Figure 25 on page 61. If you have one or more personal data set lists, ISPF displays the current list. If you have no personal data set lists, ISPF displays the reference list called REFLIST, which is updated by ISPF whenever a new data set is used by ISPF.

Personal library lists

You can build personal library lists of up to eight ISPF libraries. You can have as many lists as you like as long as each has a unique name. Personal library lists are
Using personal data set lists

A good way to group (by project, for example) those libraries that you use frequently. To create or use a personal library list, select the Personal Library List choice from the RefList pull-down on the View Entry, Edit Entry, or Utilities panel action bar. You can also use the REFOPENL command from any ISPF command line and use the Save As action to save the reference library list as a personal library list.

Note: Personal library lists are not available from RefList pull-downs for any options that do not support library names. For example, the data set list utility and data set print utilities do not support personal library lists.

Personal library list can be used with the NRETRIEV name retrieve command.

Personal library lists are created, and maintained with facilities similar to those of personal data set lists. Select the library list options from the RefList pull-downs to access the library list functions. As with personal data set lists, the list named REFLIST is the reference list that contains the most recently referenced ISPF libraries and library concatenations.

Reference data set list

The Reference Data Set List is a special personal data set list that contains a list of up to 30 data set names (and the volumes on which they are located), data set level names, and z/OS UNIX file path names that you have referenced (that is, entered on panels or called with services) throughout ISPF. Data set names are also added to the list when ISPF refers to them; for example, during a MOVE/COPY operation or a DELETE function. ISPF adds z/OS UNIX file path names to the Reference Data Set List whenever they are referenced in Edit, Browse, or View, or on the z/OS UNIX Directory List Utility entry panel. Data Set Level names are added when entered on option 3.4 (Data Set List), option 11(Workplace) or as a parameter on the command DSLIST.

The reference data set list is a personal data set list with the name REFLIST. The name REFLIST is reserved by ISPF to refer to the reference list, but you can use the list just like any other list. If you save a personal list under the name REFLIST, the reference list reflects the names you save into it, but it is still updated when other data set are referenced by ISPF.

You can control the automatic updating of the reference list with data sets or z/OS UNIX files and pathnames with the option Automatically update reference list by using the settings panel on any personal list, the settings panel on Workplace, or the DSLIST Settings panel of the data set list facility (ISPF option 3.4).

The automatic updating of the reference list with the data set name level can be controlled with the option Update REFLIST with Dsname Level on the settings panel of the personal lists or the workplace.

ISPF does not automatically store workstation files in the data set reference list; however you can add them manually.

Reference library list

The reference library list is a special personal library list named REFLIST that contains a list of up to 30 library names that you have referenced through panels or ISPF services. The reference library list is updated by the system when ISPF uses ISPF libraries. In all other respects, it functions like a regular personal library list.
Using personal data set lists

How to get a list of your personal lists
To see a list of your personal lists, perform one of these actions:

- Select the List of Personal Data Set Lists or the List of Personal Library Lists choice from the RefList pull-down on the Edit Entry, View Entry, or Utilities panel action bar.
- Select the Open List of Lists choice from the File pull-down on the Personal Data Set List or Personal Library List panel action bar.
- Type MORE on the command line of the Personal Data Set List panel or the Personal Library List panel.
- Enter the REFOPEND (for data set lists) or REFOPENL (for library lists) on any ISPF command line.

How to create a personal list
There are several ways to create personal lists:

- Type data set names into an empty list.
  1. Select the New choice from the File pull-down on the Personal Data Set List panel action bar or use the NEW primary command to display an empty temporary list.
  2. Type in the data set names.
  3. Save the list.
- Use the reference data set list as a starting point.
  1. Display the reference data set list by selecting the Reference Data Set List choice from the RefList pull-down on the View Entry, Edit Entry, or Utilities panel action bar.
  2. If you want to save this entire list as a personal data set list, select the Save as... choice from the File pull-down on the Reference Data Set List panel action bar.
  3. If you want to save some subset of the reference data set list, see the next item for more information.
- Use an existing list as a base, edit it, and save it.
  1. Display an existing list.
  2. Modify this list by typing over data set names or adding new ones. Do not select any lists.
  3. Select the Save choice from the File pull-down on the Personal Data Set List panel action bar.

  Note: Closing the list display by pressing Exit or End will Save the list. It is possible to have a single list open on multiple screens. It is therefore recommended that a list only be open on one screen if modifications are to be made. This will prevent the loss of updates when an unchanged list display is closed after a modified one.
- Use an existing list as a base and save it under another name.
  1. Display an existing list.
  2. Modify this list by typing over data set names or adding new ones. Do not select a choice.
  3. Select the Save as... choice from the File pull-down on the Personal Data Set List panel action bar and assign a unique name to this list.
  4. ISPF displays the new list.
- Issue the REFADDx command and specify a new list name.
Using personal data set lists

- Issuing 'REFADDD NEWLIST' from the command line creates a new personal data set list called NEWLIST. The list will contain the last referenced data set name.
- Issuing 'REFADDL NEWLIST' from the command line creates a new personal library list called NEWLIST. The list will contain the last referenced library specification.

Retrieving data from personal lists

You have three choices for retrieving data from personal lists.

- Use the NRETRIEV function key. Assign a function key to the value "NRETRIEV". On panels where NRETRIEV is available (such as edit, view, and some of the utilities), pressing the NRETRIEV key fills in the library name fields, data set name field, or workstation name field based on where the cursor is when the key is pressed. See "Command interface (fast path) to the personal list function" on page 69 for more information.
- Use the RefList pull-down on the View Entry, Edit Entry, Utilities, or other panels that have the RefList pull-down available. From within these options, you can point to a data set or library name and press Enter to retrieve or use the name you selected. See "Personal list modes" on page 56 for more information.
- Use the command interface (fast path commands) described in "Command interface (fast path) to the personal list function" on page 69.

Using personal lists to create customized DSLIST displays

You can use any personal data set list or personal library list to create a data set list (similar to ISPF option 3.4) which contains multiple level names. The easiest way to use a Personal Data Set List to create a DSLIST is to type `DSLIST listname` on an ISPF command line. `Listname` is the name of the personal data set list. If you are already viewing a DSLIST, you can add names listed in a personal data set list by typing `APPEND listname` on the command line.

You can also create a list with the L action while displaying a list or a list of lists.

Using personal lists to create customized z/OS UNIX list displays

You can use any personal data set list to create complex lists of z/OS UNIX files and directories, similar to those displayed using ISPF option 3.17 (the z/OS UNIX Directory List Utility). The easiest way to use a Personal Data Set List to create a z/OS UNIX list is to type `UDLIST listname` on an ISPF command line (`listname` is the name of the personal data set list). ISPF uses each pathname entry in the personal list to build the displayed list of files and directories.

Note that a pathname containing glob characters is permitted in a personal list.
You can work with your personal data set lists in three ways:

- Use the choices in the File, View, or Options pull-downs.
- Select one of the point-and-shoot options (for example, Save As).
- Type an action mnemonic in the Action field and press Enter. Actions are listed at the top of the panel.

**Note:** The commands and actions on the Personal Data Set List panel are similar to those on the Personal Library List panel. The descriptions here apply to both panels, although the Library List panel does not contain the Sort options and does not support the U (UDLIST) action.

There are two commands you can use on this panel:

**MORE**
Displays the list of all of your personal data set lists. This is the same action as selecting Open List of Lists from the File pull-down.

**NEW**
Saves the current list and displays a new empty list. This is the same action as selecting New List from the File pull-down.

**Personal data set list panel action bar choices**
The Personal Data Set List panel action bar choices function as follows:

**File**
The File pull-down offers you these choices:

1. **New List**
Displays an empty (temporary) personal data set list.
After you save this list, it is permanent until you delete it.

2. **Open List of Lists**
Displays a list of your personal data set lists.
You can open a list to change it and make it the current active list.
Using personal data set lists

3  Save  Saves the current contents of a personal data set list.
4  Save as...  Saves the current contents to a new personal data set list.
   You are prompted for a list name and optional description.
5  Delete  Deletes the current personal data set list. You are not asked to confirm the delete action. After the current list is deleted, ISPF displays an empty personal data set list as if you had requested a New action.
6  Edit  Enters the personal list edit dialog.
7  DSLIST  Builds a DSLIST based on list entries.
8  UDLIST  Builds a z/OS UNIX directory list based on list entries.
9  Cancel  Cancels the function.
10 Exit  Returns you to the panel from which you accessed the personal list.

View  The View pull-down offers you these choices:
1  Show data sets  The list contains the data set entries.
2  Show data sets and notes  The list contains the data set entries with notes.
3  Sort by data set name  The data set list is sorted by the Data Set Name field. The sort routine deletes duplicate names, sorts blank entries to the end of the list, saves the list, and redisplays the personal list.
   
   Note: If a volume or entry description exists without a data set field entry, the volume and description are deleted by the sort routine.
4  Sort by data set volume  The data set list is sorted by data set volume field. The sort routine deletes duplicate names, sorts blank entries to the end of the list, saves the list, and redisplays the personal list.
   
   Note: If a volume or entry description exists without a data set field entry, the volume and description are deleted by the sort routine.
5  Sort by data set note  The data set list is sorted by data set note field. The sort routine deletes duplicate names, sorts blank entries to the end of the list, saves the list, and redisplays the personal list.
   
   Note: If a volume or entry description exists without a data set field entry, the volume and description are deleted by the sort routine.

Options  The Options pull-down offers you these choices:
1  Personal List Settings  Displays the Personal List Settings panel (ISRRFOPT). From this panel, you can alter all settings that affect personal lists.
2  Browse shared lists

Help  The Help pull-down provides access to the online tutorial.
Using personal data set lists

Personal data set list panel fields
The fields on the Personal Data Set List Panel function as follows:

Action
These choices are valid in the Action field:

Note: The dots in the Action field are point-and-shoot selectable. If you select a data set or library name, and you invoked this dialog from a panel that supports the RefList pull-down, ISPF retrieves the selected data set or library name, terminates this panel, and places the name you selected in the ISPF Library or Other Data Set Name field. If you have the RefMode set to “List Execute”, ISPF also simulates pressing the Enter key on the panel.

S=Save
Saves the current list. If the list is new, you are prompted to enter a name for the list.

A=Save as
Saves the current list with a different list name.

D=Delete this list
Deletes the personal data set list that you are working with. You are asked to confirm this delete action. The currently active list cannot be deleted.

E=Extended edit
Invokes the personal list editor dialog. This enables you to insert, repeat, and delete lines in the list.

L=DSLIST
Invokes DSLIST based on list entries.

U=UDLIST
Displays a z/OS UNIX directory list based on the list entries.

Name
The name of the personal data set list.

Description
A brief description of the personal data set list. The Description field is an input field. You can change the description for all personal lists except the reference list (REFLIST).

Created
The date the personal data set list was created.

Referenced
The last date/time the personal data set list was referenced.
Personal data set lists panel

<table>
<thead>
<tr>
<th>File</th>
<th>View</th>
<th>Options</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISRPLTAB EFLIST</td>
<td>Personal Data Set Lists</td>
<td>List 1 of 3</td>
<td></td>
</tr>
</tbody>
</table>

**Action:** O=Open A=Save As D=Delete E=Edit L=DSLIST U=UDLIST

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Created</th>
<th>Referenced</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFLIST</td>
<td>Last 30 referenced data sets</td>
<td>07/05/02 14:20</td>
<td></td>
</tr>
<tr>
<td>TEST</td>
<td>Test list</td>
<td>07/04/23</td>
<td>07/05/02 13:33</td>
</tr>
<tr>
<td>TEST2</td>
<td>Second Test List</td>
<td>05/08/09</td>
<td>07/05/01 12:36</td>
</tr>
</tbody>
</table>

**Note:** The current setting is shown as an unavailable choice; that is, it displays in blue (the default) with an asterisk as the first digit of the selection number. If you are running in GUI mode, the choice is grayed.

**Using personal data set lists**

The Personal Data Set Lists panel shows a list of your personal data set lists. You can show the Personal Data Set Lists panel by selecting it from the RefList pull-down or by using the REFOPEND command.

The Personal Library Lists panel is similar. You can display a list of personal library lists by selecting the choice from the RefList pull-down or by using the REFOOPENL command.

**Personal data set lists panel action bar choices**

The Personal Data Set Lists Panel action bar choices function as follows:

**Note:** The current setting is shown as an unavailable choice; that is, it displays in blue (the default) with an asterisk as the first digit of the selection number. If you are running in GUI mode, the choice is grayed.

**File**

- **New List** Displays a new personal list.
- **Open** Displays the personal list entries.
- **Save as...** Saves the current list entries to a new list.
- **Delete...** Deletes the list.
- **Edit** Invokes the personal list edit dialog.
- **DSLIST** Invokes DLIST based on list entries.
- **UDLIST** Builds a z/OS UNIX directory list based on list entries.
- **Exit** Returns you to the panel from which you accessed the Open dialog.

**View**

The View pull-down offers you these choices:
Using personal data set lists

1 Standard View Displays a list of personal lists with list name, list description, and list statistics.

2 Extended View Displays a list of personal lists with list name, list description, list statistics, and a partial view of list entries.

3 Sort by name Sorts the displayed list alphabetically by the Name field.

4 Sort by description Sorts the displayed list alphabetically by the Description field.

5 Sort by created Sorts the displayed list in descending order by the Created field.

6 Sort by referenced Sorts the displayed list in descending order by the Referenced field.

Options
The Options pull-down offers you these choices:

1 Personal List Settings... Displays the Personal List Settings panel, from which you can alter all settings that affect personal lists.

2 Browse shared lists... Displays shared personal data set lists. See “Shared personal lists” on page 66 for additional information.

Help
The Help pull-down provides access to the online tutorial.

Personal data set lists panel fields
The fields on the Personal Data Set Lists Panel function as follows:

Action
These choices are valid in the Action field:

Note: The dots in the Action field are point-and-shoot selectable. If you are in GUI mode and select the action field, ISPF displays the Personal List Commands pop-up so that you can select the action you want to take. In 3270 mode, selecting a list opens the list. This means that you can open a list by moving the cursor to the action field and pressing Enter.

N=New
Displays an empty (temporary) personal data set list. Once you save this list, it is permanent until you delete it.

O=Open
Opens the selected list to modify it, perform actions, or selections of data sets.

A=Save as
Saves the current contents of the selected list to a personal data set list. You will be prompted for a list name and optional description.

D=Delete
Deletes the selected personal data set list. You will be asked to confirm the delete action. The currently active list cannot be deleted.

E=Edit
Invokes the personal list editor dialog.

L=DSLIST
Invokes DSLIST based on list entries.
Using personal data set lists

U=UDLIST
   Displays a z/OS UNIX directory list based on the list entries.

Name  The name of the personal data set list. The Name field is a point-and-shoot sort field. The current (Active) list is indicated to the left of the panel title.

Description
   A brief description of the personal data set list.

Created
   The date the personal data set list was created. The Created field is a point-and-shoot sort field.

Referenced
   The last date/time the personal data set list was referenced. The Referenced field is a point-and-shoot sort field.

Note: A personal list is updated whenever a save action is performed against it.

The LOCATE command is supported as follows:
   L xxxxxxxx
   LOC xxxxxxxx
   LOCATE xxxxxxxx

where:  xxxxxxxx is the name of the list you wish to locate.

An asterisk is supported in the last position of the list name. For example, enter LOCATE PRIV* to locate the list named PRIVATE.

The SELECT command is supported as supported as follows:
   S nnnnnnn A
   SEL nnnnnnn A
   SELECT nnnnnnn A

where:  nnnnnnn is the name of the list you want to select and A is the action to perform.

An asterisk is supported in the last position of the list name. For example, enter SELECT PRIV* L to select the list named PRIVATE, with a DSLIST action of “L”.

Shared personal lists

Personal lists (library and data set) can be shared with other users on the system. Tables ISRPLSHR for data sets and ISRLLSHR for libraries are shared lists. They are kept in an ISPTLIB concatenated data set. Private lists are tables ISRPLIST (for data set lists) and ISRRLIST (for library lists). They are kept in the ISPPROF user profile data set.

Shared lists are created by using ISPF option 3.3 to copy an existing personal list table from a user profile data set to a data set concatenated to ISPTLIB. You must rename the table to ISRPLSHR (for data set lists) or ISRLLSHR (for library lists) during the copy operation. You can open a shared list and use it; you cannot update or delete a shared list. You can also save it to a private list using the Save As function available from the Personal Data Set Lists panel (ISRPLTAB) and the Personal Library Lists panel (ISRLLTAB). You must save the shared list to a personal list before you can retrieve names from it.
Use the Options pull-down on these two panels to view the shared lists and to save them locally. When you specify shared lists, these actions are available:

- Open (to interact with the list in any supported way)
- Save As (to save the contents of the current list)

### Name retrieval with the NRETRIEV command

The ISPF command table contains an entry named NRETRIEV. On enabled panels such as Edit, NRETRIEV retrieves the library names from the current library referral list, or data set name, z/OS UNIX file name, or workstation file name from the current data set referral list. The user is responsible for assigning the NRETRIEV command to a PF key.

When the cursor is not in the Other Data Set Name field, the Volume Serial field, or the Workstation File Name field, and the NRETRIEV key is pressed, the ISPF library fields are filled in from the current list. As long as the cursor is not placed in these fields, subsequent presses of the NRETRIEV key will retrieve the next library concatenation from the list.

When the cursor is in the Other Data Set Name field, the Volume Serial field, or the Workstation File Name field, and the NRETRIEV key is pressed, the data set name, z/OS UNIX file name, or workstation name is filled in from the current data set list. ISPF attempts to determine if the name in the list is a workstation z/OS UNIX file name, or data set name. As long as the cursor is placed in these fields, subsequent presses of the NRETRIEV key will retrieve the next data set name, z/OS UNIX file name, or workstation name from the list.

Use the personal list settings panel to force the NRETRIEV command to verify the existence of a data set before retrieving it. If verification is active, then a check is made to see if a data set name exists before a retrieval attempt. If a volume name is not in the personal list entry, then the catalog is checked to see if the data set name is cataloged. If a volume name exists, an OBTAIN macro is used to check the volume for the data set. Verification does not check ISPF library names, z/OS UNIX file names, or workstation names, and does not check for the existence of PDSE members. In the data set list Dsname Level field, verification is inactive and workstation names are never retrieved.

NRETRIEV is enabled on the following options:

- View, including extended move, copy, create, and replace panels
- Edit, including extended move, copy, create, and replace panels
- Library Utility (Option 3.1)
- Data Set Utility (Option 3.2)
- Move/Copy Utility (Option 3.3)
- Data Set List (Option 3.4)
- Reset ISPF Statistics (Option 3.5)
- Hardcopy Utility (Option 3.6)
- Workstation Transfer (Option 3.7.2)
- SuperC (Options 3.12 and 3.14)
- ISPF Table Utility (Option 3.16)
- z/OS UNIX Directory List Utility (Option 3.17)
- SCLM Options:
  - View (Option 1)
Name retrieval with the NRETRIEV command

- Edit (Option 2)
- Member list (Option 3.1)
- Migration (Option 3.3)
- Unit of Work (Option 3.11)
- Build (Option 4)
- Promote (Option 5)
- Easy Cmds (Option 6A)

SCLM considerations for NRETRIEV

The NRETRIEV command is enabled to work in several of the SCLM options. There are certain restrictions and considerations to keep in mind when you choose to use NRETRIEV in SCLM.

SCLM restrictions

- The NRETRIEV key within SCLM does not use the standard reference list or personal lists. Instead, it uses a stack that is stored internally. The stack is not editable. The stack is saved from session to session as a single-line table called ISRSLIST.

  Note: In the SCLM View option, the Other Data Set Name field does use the standard reference list because the Other Data Set Name field has no particular meaning to SCLM.

- In SCLM, there is no validation of saved or retrieved names. That means that if you type in a library name and press Enter, it is added to the list of saved names, even if SCLM does not process it. This contrasts with the standard reference list processing, which does not add a data set or library name until the data set or library is successfully allocated.

- On name retrieval (when the NRETRIEV key is pressed) there is no validation of the existence of data sets or libraries.

- The regular NRETRIEV command is screen independent (it uses a separate list indicator for each screen in split screen mode). There is only 1 position locator for SCLM lists. This means that split screens with SCLM NRETRIEV will use the same pointer into the list. An NRETRIEV on screen 1 followed by an NRETRIEV on screen 2 will get list entries 1 and 2 respectively.

Stack management for SCLM

A library name (or concatenation) is added to the list of saved library names by pressing Enter on a panel that supports saving names. If the library or concatenation exists in the list already, it is moved to the top of the list. Where the Project field or the first Group field is an output field (SCLM options 2, 3, 4, and 5), the output fields are not used in the comparison between what was typed on the panel and what is already in the list. This enables you to work in different but similar projects.

In other words, on the edit screen that has both the Project and Group1 as output fields, the concatenation:

```
SCLM Library:
  Project....: PDFTDEV
  Group .....: DGN ....STG .....INT .....SVT
  Type ......: ARCHDEF
  Member ...:
```

would match:
Similarly, where groups 2, 3, and 4 are not used, those groups are not used when checking to see if the name already exists.

If a match is found, the existing entry in the list is moved to the top of the list.

Command interface (fast path) to the personal list function

You can use these commands to access the referral list function rather than using the action bar pull-down menus:

**REFLISTD xx**
Start the personal data set list dialog with the reference data set list and retrieve the data set in position xx. The xx parameter is optional. This sets the current data set list to the reference list (REFLIST).

**REFLISTL xx**
Start the personal library list dialog with the reference library list and retrieve the data set in position xx. The xx parameter is optional. This sets the current library list to the reference list (REFLIST).

**REFACTD nnnnnnnn xx**
Start the personal data set list named nnnnnnnn and retrieve the data set in position xx. For example, enter

*REFACTD MYLIST 2*

to retrieve the second data set from the personal data set list named MYLIST and place it in the Data Set Name field. The nnnnnnnn and xx parameters are optional.

**REFACTL nnnnnnnn xx**
Start the personal library list named nnnnnnnn and retrieve the library in position xx. For example, enter

*REFACTL MYLIB 1*

to retrieve the first library from the personal library list named MYLIB and place it in the Library field. The nnnnnnnn and xx parameters are optional.

**REFOPEND**
Start the personal data set open dialog.

**REFOPENL**
Start the personal library open dialog.

**REFADDD nnnnnnnn**
Update the personal data set list named nnnnnnnn with the most recently referenced data set. For example, enter

*REFADDD NEWLIST*

to add the most recently referenced data set to the personal data set list named NEWLIST.
Name retrieval with the NRETRIEV command

**REFADDL nnnnnnn**
Update the personal library list named nnnnnnn with the most recently referenced library. For example, enter

```
REFADDL NEWLIB
```

to add the most recently referenced library to the personal library list named NEWLIB.

**NRETRIEV**
Retrieve a name from the current library or data set list on panels which support NRETRIEV commands. This command is normally assigned to a program function (PF) key. NRETRIEV uses the position of the cursor to determine what type of personal list to use and what fields on the panel to fill in. See “Name retrieval with the NRETRIEV command” on page 67 for more information about NRETRIEV.

Using function keys with personal lists

You can set function keys to process any of the fast path commands, as shown in Figure 27.

```
Keylist Utility

File

SHARED  ISR Keylist ISRSAB Change  Row 1 to 10 of 24

Make changes and then select File action bar.

Keylist Help Panel Name ... ISRSABH

Key  Definition                   Format  Label
F1... HELP                        SHORT  Help
F2... SPLIT                      LONG   Split
F3... EXIT                       SHORT  Exit
F4... REFACTD MYLIST 2           SHORT  Refd2
F5... REFACTL MYLIB 1            SHORT  Refl1
F6... REFACTD MYLIST             SHORT  Refd
F7... BACKWARD                   LONG   Backward
F8... FORWARD                    LONG   Forward
F9... SWAP                       LONG   Swap
F10... ACTIONS                   SHORT  Actions

Command ===> Scroll ===> PAGE

F1=Help  F3=Exit  F10=Actions  F12=Cancel
```

Figure 27. Defining Function Keys to Issue Referral List Commands

If you used these function key settings, you could:
- Press F4 to place the second data set name on the personal data set list named MYLIST in the Data Set Name field.
- Press F5 to place the first library name on the personal library list named MYLIB in the Library field.
- Press F6 to display the personal data set list named MYLIST so that you can select a data set to process.

**Note:** You could also type a number on the command line and press F6 to place the data set name in the specified position on the personal data set list named
Name retrieval with the NRETRIEV command

MYLIST in the Data Set Name field; for example, if you type 6 on the command line and press F6, the sixth data set on MYLIST would be placed in the Data Set Name field.

Example of an ISPF panel that uses a referral list

Here is the panel definition for a panel that uses a referral list.

```plaintext
)PANEL KEYLIST(ISRSAB,ISR)
)ATTR DEFAULT(...) FORMAT(MIX)
08 TYPE(AB)
04 TYPE(ABSL)
05 TYPE(PT)
09 TYPE(FP)
0A TYPE(NT)
0C TYPE(NT) SKIP(ON)
11 TYPE(SAC)
12 TYPE(CEF) PADC(USER)
13 TYPE(NEF) PADC(USER)
19 TYPE(DT)
22 TYPE(WASL) SKIP(ON)
08 TYPE(CH)
10 TYPE(ET)
)ABC DESC('RefList')
PDC DESC('Reference Data Set List')
ACTION RUN(ISRRLIST) PARM('RL1')
PDC DESC('Reference Library List')
ACTION RUN(ISRRLIST) PARM('LR1')
PDC DESC('Personal Data Set List')
ACTION RUN(ISRRLIST) PARM('PL1')
PDC DESC('Personal Data Set List Open')
ACTION RUN(ISRRLIST) PARM('PL2')
PDC DESC('Personal Library List')
ACTION RUN(ISRRLIST) PARM('LL1')
PDC DESC('Personal Library List Open')
ACTION RUN(ISRRLIST) PARM('LL2')
)ABCINIT
.ZVARS=REFLIST
)ABC DESC('RefMode')
PDC DESC('List Execute') UNAVAIL(ZRME1)
ACTION RUN(ISRRLIST) PARM('EEX')
PDC DESC('List Retrieve') UNAVAIL(ZRME2)
ACTION RUN(ISRRLIST) PARM('ERT')
)ABCINIT
.ZVARS=LISTFILE
VGET (ZELIST) PROFILE
IF (&ZELIST = 'EXECUTE')
  &zrme1 = 1
  &zrme2 = 0
  &listfile = 2
ELSE
  &zrme1 = 0
  &zrme2 = 1
  &listfile = 1
)BODY CMD(ZCMD)
...
)INIT...
)REINIT
REFRESH (PRJ1,LIB1,LIB2,LIB3,LIB4,TYP1,MEM,DSN) /*refresh panel vars*/
)PROC
/* the following is the logic for reference or personal data set list*/
VGET (ZRDSN) SHARED /* get data set reflist key var */
IF (&ZRDSN ^= '') /* if reflist has set dsname var */
  &DSN = &ZRDSN /* set panel other dsname to zrdsn */
VGET (ZREFVOLM) PROFILE /* get volume retrieve mode */
```

Chapter 3. Using personal data set lists and library lists  71
Name retrieval with the NRETRIEV command

```isplang
IF (&ZREFVOLM = 'ON') /* if volume retrieve on */
  &VOL = &ZRVOL /* set panel volume to zrvol */
&ZRD SN = '' /* blank zrsdn */
&ZRVOL = '' /* blank zrvol */
VPUT (ZRD SN ZRVOL) SHARED /* return blank reflist vars */
.CURSOR = DSN /* set cursor to panel dsname field */
VGET (ZEL IST) PROFILE /* get edit execute/retrieve mode */
IF (&ZELIST ^= 'EXECUTE') /* determine if retrieve or execute */
  .MSG = ISRDS003 /* force redisplay if retrieve mode */
/* End of logic for reference or personal data set list */
/* the following is the logic for reference or personal library list */
VGET (DSALSEL) SHARED /* get library reflist key var */
IF (&DSALSEL ^= ' ') /* if reflist has set lib indicator */
  VGET (DSA1,DSA2,DSA3,DSA4,DSA5,DSA6,DSA7) SHARED /* get vars */
&PRJ1 = &DSA1 /* set panel project */
&LIB1 = &DSA2 /* set panel library 1 */
&LIB2 = &DSA3 /* set panel library 2 */
&LIB3 = &DSA4 /* set panel library 3 */
&LIB4 = &DSA5 /* set panel library 4 */
&TYP1 = &DSA6 /* set panel type */
&MEM = &DSA7 /* set panel member */
&DSN = '' /* blank panel other dsname */
&DSALSEL = '' /* blank reflist lib indicator */
VPUT (DSALSEL) SHARED /* return to shared pool */
.CURSOR = MEM /* set cursor to panel member field */
VGET (ZEL IST) PROFILE /* get edit execute/retrieve ind */
IF (&ZELIST ^= 'EXECUTE') /* determine if retrieve or execute */
  .MSG = ISRDS003 /* setmsg if retrieve mode */
/* End of logic for reference or personal library list */
)END
```

Example of an ISPF panel that enables NRETRIEV

Figure 28 on page 73 shows the panel definition for a panel that uses a referral list.
Figure 28. Example Panel Definition Enabling NRETRIEV
Chapter 4. Using commands, function keys, and light pen or cursor selection

This topic explains how to use the ISPF system commands, the function keys and their default assignments, and the light pen and cursor-select facilities.

You can use commands to request processing functions. These are the levels of commands:

System commands
  Provided by the DM component and always available to a user, unless explicitly overridden by an application, a user, or a site.

User or Site commands
  Defined by the site administrator (in the ISPF Configuration table) and available to a user, in addition to the system commands.

Application commands
  Available to a user throughout the processing of an application.

Function commands
  Meaningful only while using a particular function within an application.

System, user, site, and application commands are defined by using command tables. The DM component processes these commands. System, user, site, and application command processing is generally transparent to the dialog functions. For example, HELP is a system command.

Function commands include all commands that are processed by a dialog function. For example, the NUMBER command within the ISPF Editor (option 2) is a function command.

You can enter a command by:

- Typing the information on the command line, or in the command field, and pressing the Enter key. This includes the command field in View, Browse, Edit, and Table Displays, as well as the command field on a panel.
- Pressing the function key set to the desired command.
- Selecting an Attention field by using the light pen or the cursor-select key. The cursor-select key is a hardware feature on 3179, 3179G, 3180, 3278, 3279, and 3290 terminals.

ISPF intercepts all commands, regardless of whether the command is typed in the command field or entered with a function key, light pen, or cursor-select key. The DM component performs the command if it matches an entry in the application, user, or system command table. Otherwise, it is assumed to be a function command and is passed to the dialog function.

You can pass commands to the operating system by entering the appropriate ISPF-provided command (TSO) followed by the actual TSO command. For example:

```plaintext
===> TSO LISTC LEVEL(Z77PHJ)
```

You can stack commands to be run by entering a special delimiter between the commands. For example, entering:
causes the UPDATE command to run first. When it completes, the MENU command starts. The default delimiter is a semicolon (;), which you can change with the ISPF SETTING option (see the Settings (Option 0) topic of the z/OS ISPF User’s Guide Vol II).

Commands cannot be stacked following the:
• HELP command. HELP processing deletes any remaining commands in the stack.
• RETRIEVE command.

ISPF system commands
This section describes the ISPF system commands in alphabetical order.

ACTIONS

Moves the cursor between the action bar and the panel body.

AUTOTYPE

Allows you to type a partial data set or member name, then press a function key and have ISPF complete the name.

Note: AUTOTYPE is not a true ISPF system command because it is not built into the base code of ISPF and it works only on panels that are written to understand it.

BACKWARD

Alias for the UP command. Scrolls toward the top of the data.

BOTTOM

Alias for the DOWN MAX command. Scrolls to the bottom of the data.

CANCEL
If CANCEL is requested from an action bar pull-down, the action taken depends on whether you are running in host or GUI mode:

- In host mode, the pull-down is removed and the cursor is positioned on the first action bar choice.
- In GUI mode, the CANCEL command is returned to the dialog.

If CANCEL is requested from a panel displayed using the DISPLAY, TBDISPL, or SELECT service calls, the DM component places the command in ZCMD and sets a return code of 0 from the display screen.

If CANCEL is requested from a panel displayed using the DISPLAY or TBDISPL service calls and the panel was defined with a PANEL tag (DTL) or a )PANEL statement, the DM component returns the command in ZVERB and sets a return code of 8 from the display screen.

CMDE

If CMDE is entered on any command line, a pop-up panel (ISPCMDE) with a 234-character command input field is displayed.

You can enter up to 234 characters using the entry field provided. ISPF allows TSO commands, CLISTS, and REXX execs and parameters to be entered in the input field. This panel is processed much like the PDF Option 6 panel. Data passed to this panel is translated to uppercase characters. Data passed from this panel remains as it appears on the panel.

If input has been entered on the panel from which CMDE was called, it is saved and displayed when the pop-up panel ISPCMDE is displayed.

COLOR

Changes the default colors on seven-color display devices.

CRETRIEV

The actions of the CRETRIEV (conditional retrieve) command are based on the position of the cursor when you enter the command:

- If the cursor is within the primary input field when you enter the CRETRIEV command, the command does the same processing as the RETRIEVE command; the DM component places the previous command entered, if any, in the command input field.
- If the cursor is not within the primary input field, the CRETRIEV command does the same processing as a CURSOR command; the DM component places the cursor at the beginning of the first input field on the panel, which is usually the option or command field.
CUAATTR

Changes the default values of panel colors, intensities, and highlights for CUA panel element attributes.

CURSOR

Moves the cursor to the first input field on the panel being displayed, generally the option or command field, or moves the cursor to the alternate command field if one has been designated on the )BODY statement. If invoked a second time on a panel with scrollable data, this command causes the cursor to be moved to the second input field. Scrollable data panels include a View, Browse, Edit, or table display panel or a panel with a scrollable dynamic area.

DOWN

Scrolls toward the bottom of the data.

DSLIST

Enables you to build a data set list from any command line. You can specify either a personal data set list name or a data set list name level on the command. If you do not put quotation marks around the dsname level, the TSO prefix is used as the first qualifier in the dsname level.

By issuing the command with no parameters, you cause a list of available personal data set lists to be displayed.

The DLIST command, which invokes ISRDSLST, accepts system symbols in the parameter. For example:

DSLIST 'SYS2.*&SYSplex'

DTEST

Enables you to start, or change the conditions of, a dialog test. Specifying a parameter number is required, and different conditions of dialog test result. For example, if you enter DTEST 8 while running an application under Dialog Test, the
7.8 Breakpoints panel is displayed. After setting the breakpoints, you return to your application with the new breakpoints activated. The panels that you can call up with DTEST are:

1. Invoke Functions panel
2. Invoke Display Panel panel
3. Invoke Variables panel
4. Invoke Tables panel
5. Display Browse log panel
6. Invoke Dialog Services panel
7. Invoke Traces selection panel
8. Invoke Breakpoint panel

END

Stops the current operation and returns to the previous menu. If the ISPF Primary Option Menu is displayed, this command ends ISPF. See “Log and list data set processing at the end of a session” on page 161 for a description of the processing that occurs when the END command is entered from the ISPF Primary Option Menu.

When entered on a selection panel displayed by the SELECT service, the END command causes a redisplay of the next higher menu in the hierarchy. When entered on a panel displayed by the tutorial program, it stops the tutorial and causes a redisplay of the menu from which the tutorial was started or the panel from which HELP was requested.

When the END command is entered on a panel displayed by a dialog function through the DISPLAY or TBDISPL service, the dialog function must take whatever action is appropriate to terminate and return control. Entry of the END command is signaled by a return code of 8 from the DISPLAY or TBDISPL service.

ENVIRON

Allows you to reduce service time by gathering data that can be helpful in diagnosing problems. Functions provided include:
- Enabling Abend dumps when ISPF is not in TEST mode
- Tracing and dumping ISPF terminal input and output data and errors
- Collecting terminal characteristic information.
The EPDF command is a REXX exec. Consequently it substitutes dialog variables specified with the parameter. For example, this command edits the current ISPF Temporary Control Data Set:

```
EPDF '&ZTEMPF'
```

The EPDF command also processes system symbols within the data set name before passing to the Edit, View, or Browse service. A return code 4 from VSYM indicates that one or more system symbols were not recognised and these remain unchanged within the data set name. The ISPF service routine can then resolve them as dialog variables.

Here are some examples:

This command entered in the command line of an ISPF panel edits the data set defined by the current dialog variable, ZTEMPF:

```
EPDF '&ZTEMPF'
```
This command entered in the command line of an ISPF panel edits the data set SYS2.CLIST.SYSPLEX1 when executed on a system that is a member of a sysplex named SYSPLEX1:

   EPDF 'SYS2.CLIST.&SYSPLEX'

EXHELP

Provides general information about the contents of a panel.

EXIT

Requests that the current function be ended. When entered on a panel displayed by the tutorial program, EXIT stops the tutorial and causes a redisplay of the menu from which the tutorial was started or the panel from which HELP was requested.

- If EXIT is requested from a panel displayed using the DISPLAY, TBDISPL, or SELECT service calls, the DM component returns the command in ZCMD and sets a return code of 0 from the display screen.
- If EXIT is requested from a panel displayed using the DISPLAY or TBDISPL service calls and the panel was defined using a PANEL tag (DTL) or a )PANEL statement, the DM component returns the command in ZVERB and sets a return code of 8 from the display screen.

EXPAND

Displays a variable in a dynamic area in a pop-up expand window. This only applies if the cursor is within a scrollable field. If the scrollable field is input, you will be able to update the variable in the expand window.

FKA

Toggles through the different forms of the function key area. The first time you enter the FKA command (without parameters), the long form of the function key area is displayed. The long form includes the keys that have a format specified as either long or short in the keylist. If you enter the command again, the short form is displayed. The short form displays only those keys that have the short format.
ISPF System Commands

specified in the keylist. If you enter the command once again, the keys are removed from the display. Therefore, if you continue to enter the command, the different choices are toggled:

- Long form (default)
- Short form
- No display.

The form that you select affects all panels displayed in the session. The DM component updates the system variable ZFKA to represent the current state of the function key area form and saves the value in the system profile.

FKA ON displays the long form of the function key area.

FKA SHORT displays the short form of the function key area.

FKA OFF specifies that the function key area will not be displayed.

If you are running in GUI mode, FKA PREFIX displays the F= prefix on the push button.

If you are running in GUI mode, FKA NOPREFIX removes the F= prefix from the push button.

FORWARD

Alias for the DOWN command. Scrolls toward the bottom of the data.

HELP

Displays additional information about an error message, or provides tutorial/help information for panels, fields on panels, commands, and options.

INT

Starts the ISPF Workstation Tool Integration dialog. Use the dialog to configure workstation tools and file extensions for ISPF actions and services for Edit and View when used in conjunction with workstation edit and view. For more information, see the information about Workstation Tool Integration in the Settings (Option 0) topic of the z/OS ISPF User’s Guide Vol II.

ISPDPRTRC
In the panel trace utility, which allows you to trace both the execution of panel service calls (DISPLAY, TBDISPL, and TBQUERY) and the processing that occurs within the Dialog Manager panel code. For more information, refer to the topic about diagnostic tools and information in z/OS ISPF Dialog Developer’s Guide and Reference.

**ISPDTLC**

Invokes the ISPF DTL Conversion Utility. See the z/OS ISPF Dialog Tag Language Guide and Reference for additional parameters and calling options.

**ISPFTTTRC**
**ISPF System Commands**

Invokes the file tailoring trace utility, which allows you to trace both the execution of file tailoring service calls (FTOPEN, FTINCL, FTCLOSE, and FTERASE) and the processing that occurs within the file tailoring code and processing of each statement. For more information, refer to the topic about diagnostic tools and information in [z/OS ISPF Dialog Developer’s Guide and Reference](#).

**ISPFVAR**

Sets these system variables:
- **LMSG**
  - Display long message in pop-up
- **ABTAB**
  - Tab to action bar choices
- **PSTAB**
  - Tab to point-and-shoot fields
- **SESM**
  - Select Session Manager mode
- **JUMP**
  - Jump from leader dots
- **EDPRT**
  - Edit the PRINTDS command
- **EURO**
  - Enable the EURO currency symbol
- **SPLTLINE**
  - Always show split line
- **SCRML**
  - Scroll member list

**ISPFWORK**

Starts the ISPF Workplace.
**ISPLIBD**

```
ISPLIBD [libtype]
```

Invokes the LIBDEF Display Utility. The optional parameter, libtype, identifies a specific LIBDEF library definition to be displayed. All LIBDEF definitions for the current logical screen are displayed if the parameter is omitted, if the parameter is longer than eight characters, or if the parameter specifies ISPPROF as the library name. See the z/OS ISPF Services Guide for more information about LIBDEF and the ISPLIBD command.

**ISPPREP**

```
ISPPREP
```

Allows you to create preprocessed panels, those for which ISPF has partially processed the panel definition before it is stored in the panel data set, either interactively or in batch mode.

**ISRRLIST**

```
ISRRLIST
```

The action bar interface into referral lists.

**ISRROUTE**

```
ISRROUTE
```

The action bar interface into the ISPF command stacking routing. ISRROUTE also provides an interface to the SELECT service from the ACTION/RUN statement within a pull-down choice. The parameters are the same as the ISPEXEC interface to the SELECT service.

**KEYLIST**

```
KEYLIST
```

The parameters on this command determine where, or if, ISPF looks for keylists. The default setting for KEYLIST is equivalent to issuing the KEYLIST PRIVATE command, which means that the program looks in the user's profile table for the keylist specified on a panel before looking in the xxxxKEYS table allocated in ISPTLIB.
The KEYLIST SHARED command means that ISPF looks only in the xxxxKEYS table allocated in ISPTLIB for the keylist.

Using either the PRIVATE or SHARED parameter performs an implicit KEYLIST ON command. Both of the parameters are local to each application, so setting PRIVATE for application X does not affect application Y, which might be using SHARED.

By specifying KEYLIST OFF, you cause ISPF to ignore the keylist on all logical screens and use the ZPF variables for controlling function keys. This is in effect only for the application for which you enter the command.

The KEYLIST ON command causes ISPF to recognize keylists again, with the parameter (SHARED or PRIVATE) that was in effect immediately before the KEYLIST OFF command. KEYLIST ON and OFF are equivalent to the Enable and Disable keylist choices on the Function keys pull-down. Keylist Settings are discussed in the Settings (Option 0) topic of the z/OS ISPF User's Guide Vol II. SHARED and PRIVATE also appear on the Function keys pull-down in "Keylist Settings".

The KEYLIST command with no parameters causes the Keylist utility to start.

**KEYS**

Displays the PF Key Definitions and Labels panel, which allows you to change the ZPF variable settings (ZPFVARS), as in previous versions of ISPF. However, if the KEYS command is issued from a panel with an active keylist, the associated Keylist Utility panel Change pop-up window is displayed.

**Note:** If the KEYLIST SHARED command has been issued, or the SYSTEM parameter has been specified on the KEYLIST keyword on the )PANEL statement, this action causes only a BROWSE of the keylist. See the z/OS ISPF Dialog Developer’s Guide and Reference for more information about the SYSTEM parameter in the )PANEL statement.

**KEYSHELP**

If KEYSHELP is defined, KEYSHELP provides you with a brief description of each key defined for a panel.

**LEFT**

Scrolls left. If your cursor is in a scrollable field, this scrolls towards the beginning of the field.
LIST

Allows you to process the list data set without exiting ISPF. See “Processing the log and list data sets” on page 158 for a description of using the LIST command.

LOG

Allows you to process the log data set without exiting ISPF. See “Processing the log and list data sets” on page 158 for a description of using the LOG command.

MSGID

With no parameters, displays a message indicating the message ID of the last message displayed. With a parameter of ON or OFF, indicates whether a message number is to be added to the beginning of interactive long message text. During entry to ISPF, the mode is initialized to OFF, and the message ID is not displayed as part of the long message text on interactive displays. If the addition of the message ID would cause long message text to be truncated, the message is displayed in a pop-up window.

Messages that have the message number included in the long message text will continue to display the message number, even when MSGID OFF is in effect. Also, the message number will appear twice when MSGID ON is in effect.

The MSGID ON/OFF command affects only the current logical screen, so when you are running in split screen, one screen can have MSGID ON and the other MSGID OFF. The MSGID command will return only the MSGID of a message for its own logical screen.

An option on the Log Data Set Defaults and List Data Set Defaults panels, which are choices on the Log/List pull-down on the ISPF Settings panel,

Log Message ID . . . _ (/_ = Yes)

allows you to select whether the message ID is written to the log data set as part of the long message text. The initial default is deselected. Note that not all lines in the log data set originate from a message member. Therefore, not every line in the log data set will have a message number associated with it.
Note: This facility does not affect long message text returned by the GETMSG service, messages displayed in the Error Box, or messages displayed by TRACEX.

NOP

The classic no operation command.

NRETRIEV

Data set and library name retrieved. See "Name retrieval with the NRETRIEV command" on page 67 for more information.

PANELID

Indicates whether the panel identifier (ID) is to be displayed. If you enter PANELID without any parameters, the command toggles the display of the panel ID immediately below the action bar. If an action bar is not present, the ID is displayed in line 1 on the panel. In GUI mode, the panel ID is placed on the title bar.

During initial entry to ISPF, the PANELID is set to OFF. The ID is displayed only if the panel contains a protected-field attribute byte in row 1 column 1 (relative to the action bar) and is padded with one blank.

The commands SYSNAME, USERID, PANELID, and SCRNAME share the same 17-character area at the start of the Title line. If more than one of these commands are specified, ISPF displays as many as will fit, in this order of priority: SYSNAME, if specified, is always displayed. Then, as long as there is enough room, USERID is displayed, then PANELID, then SCRNAME.

PFSHOW

Toggles through the different forms of the function key area. The first time you enter the PFSHOW command (without parameters), the long form of the function key area is displayed. If you enter the command again, the short form is displayed. If you enter the command once again, the keys are removed from the display. Therefore, if you continue to enter the command, the different choices are toggled:
• Long form (default)
The form that you select affects all panels displayed in the session. The DM component updates the system variable ZPFSHOW to represent the current state of the function key area form and saves the value in the system profile.

PFSHOW ON displays the long form of the function key area.

PFSHOW OFF specifies that the function key area will not be displayed.

PFSHOW TAILOR displays a panel that lets you specify the set of function keys (primary, alternate, or all) for which definitions are to be displayed and the number of keys per line to display in each function key definition line.

**PRINT**

Records a snapshot of the physical screen image in the list data set for subsequent printing.

For the PRINT, PRINT-HI, PRINTL, and PRINTLHI commands, a screen image can exceed 121 characters. When it does, the line must be split when the output is being directed to a printer other than a 3800. The line length is obtained from a user-modifiable specification on the ISPF Settings panel for the list data set. The default length for printing is 121 characters.

**Note:** The PRINT command is disabled if you are running in GUI mode.

**Using PRINT commands with DBCS**
The PRINT commands are affected in the DBCS environment as follows:

- **DBCS character printing**
  Because shift-out and shift-in characters do not occupy positions on a printer, ISPF inserts a blank character before each shift-out and after each shift-in.

- **Fields affected by the OUTLINE keyword**
  Field-outlining information is embedded in the record as a set-attribute (SA) order. Each SA order occupies three bytes. One SA is required to start field-outlining, one to end field-outlining, and one to change field-outlining.
  Therefore, each affected field normally takes six additional bytes.

Thus, the record-length of print command output is larger than the screen width. The LIST file should be large enough to contain the expanded records. If not, the output might not print correctly.

**PRINTG**

Allows you to send the information on the current logical screen to a Graphical Data Display Manager (GDDM) graphics printer.

**Note:**
ISPF System Commands

1. In split-screen mode, ISPF adds the split line to the top logical screen. If you issue the PRINTG command from the top screen, the split line is printed along with the logical screen.

2. Also, in split-screen mode, PRINTG prints all data in the visible portion of the logical screen, but only the graphics area data in the nonvisible portion of the logical screen.

If you use the other print commands (PRINT, PRINT-HI, PRINTL, and PRINTLHI) to print screen images containing a graphics area, the part of the screen containing the graphics area prints as blanks.

If you issue the PRINTG command as a COMMAND option on a DISPLAY service request, only data already defined to GDDM at the time the service request is issued will be printed. Any GDDM fields defined by the dialog (using GDDM commands) before issuing the DISPLAY service request will be printed.

Before issuing the PRINTG command from a command line you must first have initialized the GDDM graphic interface using the GRINIT service.

PRINTG does not provide return codes to a dialog; however, it does display completion or error messages.

For information about how to specify parameters related to using the PRINTG command, see the information about Print Graphics Parms in the Settings (Option 0) topic of the z/OS ISPF User's Guide Vol II.

Note: The PRINTG command is disabled if you are running in GUI mode.

PRINT-HI

Same as PRINT, except that high-intensity characters on the screen are printed with overstrikes to simulate the dual-intensity display.

See “Using PRINT commands with DBCS” on page 89 for more information.

Note: The PRINT-HI command is disabled if you are running in GUI mode.

PRINTL

Causes a snapshot of the logical screen image to be recorded in the ISPF list file for subsequent printing. In split-screen mode, the PRINTL command prints what would be seen if split-screen were not in effect.

See “Using PRINT commands with DBCS” on page 89 for more information.

Note: The PRINTL command is disabled if you are running in GUI mode.
PRINTLHI

Same as PRINTL, except that high-intensity characters on the logical screen are printed with overstrikes to simulate the dual-intensity display.

See "Using PRINT commands with DBCS" on page 89 for more information.

Note: The PRINTLHI command is disabled if you are running in GUI mode.

PSCOLOR

Globally alters the color, intensity, and highlighting of point-and-shoot fields through a pop-up dialog. Valid choices include:

<table>
<thead>
<tr>
<th>Color</th>
<th>Intensity</th>
<th>Highlight</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED</td>
<td>HIGH</td>
<td>NONE</td>
</tr>
<tr>
<td>PINK</td>
<td>LOW</td>
<td>BLINK</td>
</tr>
<tr>
<td>GREEN</td>
<td></td>
<td>REVERSE</td>
</tr>
<tr>
<td>YELLOW</td>
<td></td>
<td>USCORE</td>
</tr>
<tr>
<td>BLUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURQ (Turquoise)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHITE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To restore the ISPF default values, delete any new values you have entered (leaving the entry fields blank) and press Enter, or select the **Defaults** field.

RCHANGE

Repeats the action of the previous CHANGE command (change one character string to another) (Edit and View only).

REFACTD

Calls the personal data set list named `nnnnnnn` and retrieves the data set in position `xx`. See "Command interface (fast path) to the personal list function" on page 69 for additional information.

REFACTL
ISPF System Commands

Calls the personal library list named nnnnnnnn and retrieves the data set in position xx. See "Command interface (fast path) to the personal list function" on page 69 for additional information.

REFADDD

Ale—REFADDD—nnnnnnn

Updates the personal data set list named nnnnnnnn with the most recently referenced data set. See "Command interface (fast path) to the personal list function" on page 69 for additional information.

REFADDL

Ale—REFADDL—nnnnnnn

Updates the personal library list named nnnnnnnn with the most recently referenced library. See "Command interface (fast path) to the personal list function" on page 69 for additional information.

REFLISTD

Ale—REFLISTD—xx

Calls the reference data set list dialog and retrieves the data set in position xx. See "Command interface (fast path) to the personal list function" on page 69 for additional information.

REFLISTL

Ale—REFLISTL—xx

Calls the reference library list dialog and retrieves the library in position xx. See "Command interface (fast path) to the personal list function" on page 69 for additional information.

REFOPEND

Ale—REFOPEND

Calls the personal data set open dialog. See "Command interface (fast path) to the personal list function" on page 69 for additional information.

REFOPENL

Ale—REFOPENL
Calls the personal library list open dialog. See "Command interface (fast path) to the personal list function" on page 69 for additional information.

**RESIZE**

```plaintext
RESIZE
```

Increases the size of a pop-up window to fill the entire 3270 physical display area. The initial RESIZE command increases the pop-up window to its maximum size, and the following RESIZE reduces the window to its original size.

**RETF**

```plaintext
RETF
```

Retrieves commands from the command stack moving in the direction from the oldest command in the command stack toward the most recent commands in the command stack. Forward retrieve (RETF) retrieves the oldest command on the command stack, if RETF is entered immediately after a command is executed, before performing a RETRIEVE. See "RETF command" on page 104 for more information.

**RETP**

```plaintext
RETP
```

Causes a pop-up panel to be displayed with a list of the last 20 commands in the retrieve stack. Retrieve pop-up (RETP) enables you to select by number the command to be retrieved. The command selected is retrieved to the command line, as it is when using other retrieve commands. You will not be able to change the commands in the retrieve pop-up until the command is selected and retrieved to the command line.

The RETP pop-up panel has an OPTIONS action bar choice that allows you to set the minimum number of characters required to save a command in the retrieve stack and to choose whether to position the cursor at the beginning or end of the retrieved command when the command is retrieved to the command line. RETP displays the pop-up panel if the retrieve stack is empty, which allows the user to change the retrieve options. See "RETP command" on page 104 for more information.

**RETRIEVE**

```plaintext
RETRIEVE
```

Repeatedly entering RETRIEVE causes the commands most recently entered from the primary input field, usually the ZCMD field, to be displayed on the command line. The commands are displayed one at a time, in the reverse sequence to which they were entered (last-in, first-out). This allows you to easily recall a command for
resubmission from the command line. You can edit the command before entering it if you wish. See "RETRIEVE command" on page 102 for more information.

**RETURN**

```
RETURN
```

Causes an immediate return to a primary option menu or to the display from which you entered a nested dialog. The RETURN command simulates repeated END commands, up to some appropriate stopping point, without displaying intervening panels. See "Using the RETURN command" on page 105 for more information.

**RFIND**

```
RFIND
```

Repeats the action of the previous FIND command (find one or more occurrences of a specified character string) or the FIND part of the most recent CHANGE command (Browse, Edit, and View only).

**RIGHT**

```
RIGHT
```

Scrolls right. If your cursor is in a scrollable field, this scrolls towards the end of the field.

**SAREA**

```
SAREA
```

Displays the Status Area pop-up window.

**SCRNAME**

```
SCRNAME—screen name
```

Causes the logical screen in which the command is entered to be given the *screen name* specified. The name can be any set of 2 to 8 characters that conform to member naming rules, except NEXT, PREV, LIST, ON, and OFF.

PERM is an optional parameter to indicate that ISPF does not allow the SCRNAME parameter on a SELECT statement, or the setting of the modifiable system variable ZSCRNAME, to override the value being assigned by this SCRNAME command.
The PERM setting lasts for the duration of the logical screen. After you end the logical screen, the setting is no longer active.

SCRNAME ON causes the name that you specify for the screen to be displayed in the panelid area of the screen. SCRNAME OFF removes the screen name from the visible display.

The commands SYSNAME, USERID, PANELID, and SCRNAME share the same 17-character area at the start of the Title line. If more than one of these commands are specified, ISPF displays as many as will fit, in this order of priority: SYSNAME, if specified, is always displayed. Then, as long as there is enough room, USERID is displayed, then PANELID, then SCRNAME.

**SETTINGS**

Displays the ISPF Settings panel.

**SPLIT**

Causes the screen to be divided into two logical screens separated by a horizontal line or changes the location of the horizontal line. If you have de-selected the *Always show split line* option in Settings, there is no split line in 3270 mode. In GUI mode, each screen is shown as a separate physical window. See “Splitting the screen horizontally or vertically” on page 48 for more information.

**SPLITV**

On 3290 terminals, causes the screen to be separated into two vertical logical screens.

The SPLITV function is not active if the actual screen data display is more than 80 characters wide.

**START**

Starts a dialog in a new logical screen. If a logical screen does not exist, it will be created.

You can use the START command to:
- Issue a command from the ISPF command table; for example, START KEYLIST
**ISPF System Commands**

- Issue a command with parameters (in single quotes; for example, START 'ISRROUTE BRI'
- Start a dialog; for example, START PANEL(ISRUTIL)

**Note:**
1. If you are running in GUI mode, issuing the START command creates a new window.
2. If you are running on the host and invoke START from a pull-down choice, the screen will be split where your cursor is located within the pull-down.
3. This function does not change the limitation number of logical screens. If ISPF already has the maximum number of screens when the START command is issued, the screen is re-split; that is, the split line might move on the host, or a window is reused if you are running in GUI mode.

---

**SWAP**

When no parameters are given (in 3270 mode), moves the cursor to where it was previously positioned on the other logical screen of a split-screen pair.

When operating in split-screen mode, pressing the SWAP key (F9) causes ISPF to ignore any entry on the command line.

When no parameters are given (in GUI mode) and there are more than two screens present, defaults to SWAP LIST.

Entering SWAP LIST displays the ISPF task list. The task list displays this information about all of the active logical screens:
- Screen ID (ZSCREEN)
- Screen name
- Panel ID
- Application ID
- Session type (GUI or 3270)

You can select from this list the screen you want to display or start a new screen or application. The screen you select replaces the screen from which you issued the command.

Using a listed parameter changes the focus (in GUI mode) or display (in 3270 mode) to the PREVious, NEXT, or specified logical screen.

PREV changes the focus or display to the next lower screen number until reaching 1, then wraps back to 32 or the last number used.

NEXT displays the next highest screen number until the last number used is reached (ISPF maximum 32, your installation might vary), then will wrap back to number 1.
SWAP screen name changes the display or focus to the screen called screen name, if it is active. See the SCRNAME command for more information about screen names.

SWAP n, where n is a number, changes the display or focus to the specified screen number, if it is active.

**SWAPBAR**

The list of logical sessions can be activated by entering the SWAPBAR or SWAPBAR ON command on the command line. The list is displayed on the last line of the physical screen.

The entry for each logical session is the screen name if assigned or, if a screen name is not available, it is the panel name of the current panel displayed for the logical session. The entry for the active logical session has an asterisk (*) in the first character position and, if the name is 8 bytes long, the last character is not displayed. Also, the alternate logical session has a "-" in the first position and the 8th character is not displayed.

The list remains active until you enter the SWAPBAR or SWAPBAR OFF command. The setting for the SWAPBAR is maintained in the system profile member and applies across logons.

If the list is longer than the width of the screen, a ">" appears at the right of the list to indicate there are more entries and you can scroll right by either positioning the cursor on the ">" and pressing Enter, or by positioning the cursor on an entry and pressing PF11 which scrolls to the entry indicated. When the start of the list is not displayed, a "<" is displayed at the left of the visible part of the list to indicate that you can scroll left on the list by positioning the cursor on the "<" and Pressing Enter or by positioning the cursor on an entry and pressing PF10.

The active logical session can be changed by positioning the cursor on an entry and pressing Enter. This logical session then becomes the active logical session. The SWAPBAR entries use the same physical attribute as the action bar choices and, if in the options settings Tab to action bar choices is selected, then tabbing to swapbar entries also occurs.

If the cursor is positioned on the swapbar entry for the currently active session and Enter is pressed, this is treated the same as Enter being pressed within the active logical session panel. When the SWAPBAR is activated, the Always show split line option is deactivated and you are not able to reactivate it until the SWAPBAR is deactivated.

You are able to customize the SWAPBAR settings. You can:
- Choose to have a separator line between the logical screen and the SWAPBAR.
- Set the colour of the SWAPBAR.
- Set the highlighting of all the fields within the SWAPBAR (for example, reverse video, underscore or blinking attribute).
- Set the colour and highlighting attributes of an individual entry (a logical session) with the SWAPBAR.
- Save the settings that apply to the SWAPBAR as a whole in your system profile, so that these settings apply to future ISPF sessions (until you modify them).
ISPF System Commands

To set the SWAPBAR customization settings, entering the command SWAPBAR / on the command line. The panel ISPTLCPN is displayed. You can now set the customization attributes. The changes take effect once you exit the panel. The setting for a separator line and the colour and highlighting settings for the SWAPBAR as a whole are saved in your system profile and apply to future ISPF sessions. Any changes to individual entries in the SWAPBAR only apply to the current ISPF session (that is, the session where the SWAPBAR / command was entered), and are also lost if the logical session should terminate and recover.

To clear the settings for a logical screen swap to that screen, enter the SWAPBAR / command and enter D in the option field to clear the current session.

SWITCH

Switches the mode of screen display between GUI and 3270.

SYSNAME

SYSNAME ON causes the name that you specify for the screen to be displayed in the panelid area of the screen. SYSNAME OFF removes the system name from the visible display.

The commands SYSNAME, USERID, PANELID, and SCRNAME share the same 17-character area at the start of the Title line. If more than one of these commands are specified, ISPF displays as many as will fit, in this order of priority: SYSNAME, if specified, is always displayed. Then, as long as there is enough room, USERID is displayed, then PANELID, then SCRNAME.

TOP

Alias for the UP MAX command. Scrolls to the top of the data.

TSO

Allows the user to enter a TSO command, CLIST, or REXX command procedure.

Do not enter these commands after the TSO command:
- LOGON, LOGOFF
- ISPF, PDF, ISPSTART, and SPF
- TEST
ISPF System Commands

• Commands that are restricted by TSO

You can enter a CLIST or REXX name after the TSO command, but these restrictions apply:
• The CLIST or REXX command procedure cannot invoke the restricted commands shown in the preceding list.
• Restrictions that apply to CLIST attention exits are described in z/OS ISPF Dialog Developer’s Guide and Reference.
• TERMIN command procedure statements cause unpredictable results.

TSOCMD

Displays the ISPF Command Shell panel.

TSOGUI

ON specifies that the ISPF/TSO window is resumed and all TSO line mode output and input is directed to the ISPF/TSO window.
OFF specifies that the ISPF/TSO window is suspended and all full-screen and line mode data appears in the 3270 window until TSOGUI ON command is issued.

TUTOR

Calls the ISPTUTOR program to display specified tutorial panels.

To display a particular tutorial panel, enter the TUTOR command along with the panel identifier of the desired tutorial panel as a parameter.

If you issue the TUTOR command without a parameter, the general tutorial help panel (ISP00000) is displayed.

UDLIST

Enables you to build a z/OS UNIX directory list from any command line. You can specify either a personal data set list name or a pathname for a z/OS UNIX directory. When a personal data set list name is specified, the pathname entries in the list are used to build the displayed directory list.
By issuing the command with no parameters, you cause a list of available personal data set lists to be displayed. You can then select the personal data set list to be used to build the displayed directory list. This panel also provides a field to enter the pathname of the directory you want to list.

**Note:** z/OS UNIX pathnames are case sensitive. In general, ISPF command line fields are defined with the CAPS(ON) attribute which causes data entered in the command line to be converted to uppercase. Consequently, pathnames specified as a parameter on the command line are, in general, converted to uppercase before being passed to the UDLIST command. This can result in the requested directory not being found. If this occurs ISPF converts the specified pathname to lower case and re-issues the find for the directory. If the requested directory is still not found, enter the UDLIST command without a parameter and specify the case-sensitive directory pathname in the field on the personal lists selection panel.

---

**UP**

Scrolls toward the top of the data.

**USERID**

USERID ON displays your user ID in the panelid area of the screen. USERID OFF removes your user ID from the visible display.

The commands SYSNAME, USERID, PANELID, and SCRNAME share the same 17-character area at the start of the Title line. If more than one of these commands are specified, ISPF displays as many as will fit, in this order of priority: SYSNAME, if specified, is always displayed. Then, as long as there is enough room, USERID is displayed, then PANELID, then SCRNAME.

**WINDOW**

Moves a pop-up that is currently displayed.

If more than one pop-up is displayed on your logical screen, only the active (or most recent) pop-up will move.

A pop-up can only be moved within the logical screen from which it originated.

**Note:** The WINDOW command is disabled if you are running in GUI mode.
ISPFF System Commands

WS

Modelessly starts the command you specify, providing a seamless interface between host and workstation applications. For example, when running in GUI mode, you can enter this command to invoke a workstation editor on a file named test.fil: `WS e.exe test.fil`

WSCON

Displays the Initiate Workstation Connection panel. Using this panel, you can start a workstation connection. There are some restrictions to consider if you choose to start a workstation connection with this command:

- At the completion of ISPF command processing, or program, CLIST, or REXX exec execution, ISPF does not reprocess the panel from which the command was invoked. The panel is simply relaunched to the screen without processing, for example, the panel's )INIT section. So, if certain constructs are defined within the panel sections based on the ZGUI variable (nonblank indicating connection in GUI mode), these constructs are not defined properly until after the Enter key is pressed following the WSCON command.

- When connecting to the workstation in GUI mode, the first panel displayed in GUI mode might not contain group boxes and images that are defined on the panel. After you press the Enter key, causing the panel to be reprocessed, these constructs are visible in GUI mode.

WSDISCON

Disconnects your workstation connection. There are some restrictions to consider if you choose to disconnect from a workstation with this command:

- At the completion of ISPF command processing, or program, CLIST, or REXX exec execution, ISPF does not reprocess the panel from which the command was invoked. The panel is simply relaunched to the screen without processing, for example, the panel's )INIT section. So, if certain constructs are defined within the panel sections based on the ZGUI variable (nonblank indicating connection in GUI mode), these constructs are not defined properly until after the Enter key is pressed following the WSDISCON command.

- When disconnecting from GUI mode, the name of any group boxes defined on the panel from which you issued WSDISCON, will display on the screen in 3270 mode. After you press the Enter key, causing the panel to be reprocessed, these names disappear and any panel text under the names reappears.

- If in GUI mode and in split screen mode when you invoke the WSDISCON command, you are disconnected from the workstation and the screen from which you issued WSDISCON is displayed in the full 3270 emulator session without a split line, regardless of how “Always show split line” is set. The other ISPF sessions are hidden and available for display after the swap command is entered. Additional split requests cause the split line to be redisplayed, provided the “Always show split line” setting is selected.
If pop-up windows are displayed in GUI mode when the WSDISCON command is issued, those pop-up windows are suspended on the 3270 session and the panels display as full-screen panels. If new addpops are then invoked, these new panels display as pop-up windows.

You **cannot** disconnect using the WSDISCON command when running in batch GUI mode.

If the CODEPAGE and CHARSET parameters were specified (on the WSCON service, the Initiate Workstation Connection panel, or the ISPSTART GUI statement) when your workstation connection was made, these values might no longer be the host code page and character set in 3270 mode following a WSDISCON command. The values returned from the terminal query are restored as the active code page and character set. If your emulator does not support code pages, the CODEPAGE and CHARSET parameter values originally specified on your ISPSTART statement are used. If these ISPSTART parameters were not specified, ENGLISH is the default specification.

**ZCLRSFLD**

If the cursor is on a scrollable input field, that field is cleared to blanks. If the field is part of a TABLE DISPLAY operation a row select will occur when ENTER is next pressed. If the field is not scrollable the command is passed to the application.

**ZKEYS**

Displays a panel that lets you view and change the current function key variables. This command is equivalent to selecting the Global PF Key settings choice from the Function keys pull-down on the ISPF Settings panel.

**Using the RETRIEVE, RETF, and RETP commands**

This topic describes how to use the RETRIEVE, RETF, and RETP commands.

**RETRIEVE command**

The RETRIEVE command causes the most recently entered command to be displayed on the command line. If the command recalled by RETRIEVE is longer than the current primary input field, ISPF truncates the command to the size of the primary input field for display purposes. Only the data displayed in the primary input field is processed and stored in the command retrieval stack when you press Enter or a function key. However, the original command retains its full length in the retrieval stack.

If the current panel has no input fields, then the size of the primary input field is zero and the retrieved command is not displayed. Normal stack processing occurs, however, and the internal pointer is incremented to the next saved command. This can result in an unexpected command being recalled when RETRIEVE is issued on a subsequent panel that has input fields.
If you issue the RETRIEVE command when the stack is empty, ISPF presents you with a blank command line with the cursor in the first position. If the stack is not empty, ISPF places the cursor immediately following the retrieved command.

If you are in the process of recalling a string of commands by issuing successive RETRIEVE commands, you can cause ISPF to recycle to the top of the command retrieval stack by pressing Enter when the primary input field (normally the command line) is blank.

When you are operating in split-screen mode, one stack retains commands for all logical screens.

There are five cases for which ISPF does not retain an entered command for retrieval:

- Commands entered using attention fields, such as light pen-selectable fields or cursor-select fields.
- Commands entered through the use of function keys. This includes any portion of a compound command that results from pressing a function key. For example, if you key PAGE into the primary input field and then press the function key set to the DOWN command, only the PAGE portion of the DOWN PAGE command is retained as a single element in the retrieval stack. The entire character string entered from the primary input field in conjunction with a function key is always retained, whereas any portion of the command resulting from the function key value is not retained.
- The RETRIEVE command, if entered as a single command. If RETRIEVE is one of the commands of a chain being processed by ISPF, the entire chain is placed on the retrieval stack. However, processing of the command chain ends when ISPF interprets the RETRIEVE command and displays the next command in the stack. Any commands following RETRIEVE in the chain are not processed.
  RETRIEVE can be part of a stack element as a parameter of another command. For example, you might enter FIND RETRIEVE as a command.
- Commands entered on the COMMAND option of the DISPLAY service.
- Jump function (extended return) commands entered from a nondisplay field.

You can issue any retrieved command, as is, while it is being displayed, or you can edit the command line and then issue the modified version.

Command retrieval works on a last-in, first-out basis. For example, assume that the last three commands you have issued are PRINT, DOWN, and RIGHT, in that order. Now suppose that you want to again issue the PRINT command. Assuming that F12 is set to RETRIEVE, the sequence of operations is:

1. Press F12. RIGHT displays on the command line.
2. Press F12 again. DOWN displays on the command line.
3. Press F12 a third time. PRINT displays on the command line.
4. Press Enter.

You can also use the RETRIEVE command to check and correct errors made in keying commands. For example, suppose that you mistakenly enter PFSHOW TAYLOR. When ISPF advises you that TAYLOR is not a valid parameter, you would:

1. Press F12. PFSHOW TAYLOR displays on the command line.
2. Type over the Y with an I.
3. Press Enter.
Each ISPF session supports only one command retrieval stack, to be shared by all logical screens. The number of commands that ISPF saves for retrieval depends on:

- The size of the stack area allocated for this purpose by the installation. See z/OS ISPF Planning and Customizing for information on changing the size of the stack area allocated for RETRIEVE command processing.
- The lengths of the individual command lines that are saved.

As a command is entered, it goes to the top of the stack, pushing all other commands down. If there is not enough room at the bottom of the stack to hold the entire bottom command, it is dropped from the stack.

Duplicate commands are allowed in the stack, except when the command being entered is a duplicate of the command at the top of the stack. All command lines (except the RETRIEVE command) are placed in the stack as entered, regardless of validity. Actually, these commands can be any character string, up to 255 bytes each, entered from the screen's primary input field (not necessarily the ZCMD field).

Jump function commands are stored in the stack unless they are entered from a nondisplay field, regardless of whether the field is the primary input field or not.

If the RETRIEVE command is repeatedly entered until the bottom command in the stack displays, issuing the RETRIEVE command once more causes the command at the top of the stack to be displayed again. To force a return to the top of the stack, clear the command field and press Enter. Then, the next RETRIEVE command causes the command line to be set to the command at the top of the stack.

**RETF command**

The forward retrieve (RETF) command recalls commands from the command retrieval stack from the oldest command in the stack towards the most recent commands in the stack. This is useful when you RETRIEVE too many times in an attempt to retrieve a specific command. RETF enables you to return to the desired command without having to cycle through the entire retrieval stack.

**RETP command**

The retrieve pop-up (RETP) command causes a pop-up panel to be displayed with the last 20 commands in the command retrieval stack listed. You can select the command you want to retrieve by number. The selected command is retrieved to the command line. When using the RETP command, these considerations apply:

1. If a command in the command retrieval stack is too long to fit in the retrieve pop-up, the last visible character of the command is changed to a > to show that some characters are not displayed. However, the entire command is retrieved to the command line when it is selected to be retrieved.

2. The default for the minimum number of characters is one, so any command entered is saved on the retrieval stack. The user has the option of setting the value from 1-99 for the minimum number of characters to save. Therefore, if you select three characters for the minimum number to be saved in the retrieval stack and a one- or two-character command is entered, it is not added to the retrieval stack. This prevents short commands that can be easily retyped from taking up space in the retrieval stack. Changing the minimum number of characters to save in the retrieval stack does not affect commands already in the retrieval stack. This setting is saved in the variable ZRETMINL, which is saved in the user's ISPF system profile table ISPSPROF and across ISPF invocations.
3. The default for the cursor position when a command is retrieved is at the end of the command. The cursor position setting is saved in the variable ZRETPOSC, which is saved in the user's ISP system profile table ISPSPROF and across ISP invocations.

**Using the RETURN command**

The RETURN command causes the immediate return to a primary option menu or to the display from which you entered a nested dialog. When a RETURN command is entered, the DM component takes this action:

1. It simulates the END command on the panel that is currently displayed; that is, the DISPLAY or TBDISPL service returns a code of 8.
2. For subsequent requests, made through the DISPLAY or TBDISPL service, for display of a different panel, the panel is not displayed, and a return code of 8 is issued by the service.
3. However, when two consecutive display requests name the same panel, normal operation of the DISPLAY and TBDISPL services is restored and processing proceeds as though RETURN had not been entered. The DM component decides whether to proceed. Generally, because RETURN signals the application user's desire to end the current processing, a developer can limit processing after the RETURN is received to clean up and do final processing before returning control to the dialog element from which the function was started.
4. If two consecutive requests do not specify the same panel, processing continues in the mode described in item 2 until control is returned to a primary option menu or a nested dialog completes. Then, normal operation of the DISPLAY and TBDISPL services is restored.

It might be necessary to suspend processing of a panel temporarily so that other panels can be displayed. Issue a CONTROL DISPLAY SAVE request to save the contents and control information of the panel whose processing is to be suspended. Before resuming the processing of this panel, issue CONTROL DISPLAY RESTORE to reinstate the contents and control information for the panel. If non-ISPF screens have been displayed, issue CONTROL DISPLAY REFRESH to clear the screen.

This mode of operation continues until either a primary option menu is encountered or a nested dialog completes. If a primary option menu is encountered, it is displayed. If a nested dialog completes, the panel from which it was invoked is redisplayed. This panel is exactly as you last saw it, except that the command field is blank. In either case, this completes the action of the RETURN command.

**Note:** A nested dialog is one invoked from any panel by a SELECT action command. The HELP and KEYS commands invoke nested dialogs. In addition, the TSO system commands invoke nested dialogs when they are used to execute a CLIST procedure that displays panels through ISPF services.

If a dialog function needs to distinguish between END and RETURN, it can do so in one of these ways:

- If the panel was defined using the panel definition statements, upon return from the DISPLAY or TBDISPL service, with a return code of 8, the function can examine variable ZVERB in the shared pool. It contains either END or RETURN.
- If the panel was defined using the DTL, upon return from the DISPLAY or TBDISPL service, with a return code of 8, the function can examine variable ZVERB in the shared pool. It contains either EXIT or CANCEL.
Upon return from the SELECT service when the PANEL keyword was specified, the dialog function can examine the return code from SELECT. Return code 0 indicates that the END command was entered on the selected menu panel. Return code 4 indicates that the RETURN command was entered on the selected menu panel or on some lower-level menu.

### Using the jump function

The jump function allows you to go directly to any valid option from the primary option menu currently in effect. See [z/OS ISPF Dialog Developer’s Guide and Reference](#) for information about coding primary option menus. To use the jump function, enter the option on the command line or in the command field of any panel, preceded by an equal sign and followed by a blank. For example:

**Command ===> =3.1**

takes you directly to the first suboption of option 3 on the primary option menu in effect.

The action is as follows:

- If not entered on a primary option menu, the jump function causes repeated END commands to be simulated until a primary option menu is encountered. What follows the equal sign is then used on the primary option menu, and pressing of the Enter key is simulated. The primary option menu is not displayed.
- If entered on a primary option menu, the jump function equal sign is ignored and the specified option is selected.

Unlike the RETURN command, the jump function is not affected by nested dialogs. For example, from the ISPF Edit option, you enter a HELP command to enter the tutorial. Then from the tutorial, you enter =1. This causes the tutorial to end, Edit to end, and primary option 1 to be started.

For convenience, you can enter a jump function in two other places:

- Any field that is preceded by an arrow. The arrow must consist of at least two equal signs followed by a greater-than sign (==>). Also, the arrow must immediately precede the input attribute byte.
- Any field preceded by leader dots (that is, ... or . ..). ISPF looks at the three characters preceding the field; they must be either three consecutive dots or two dots separated by a blank.

The command field is the only field that can be initialized to \*n by the dialog and have the jump function recognize it. Modifying the ZCMD field in the )PROC or )INIT section can affect jump function operation.

If ISPF encounters an error during jump function processing, the processing stops with the jump function in error displayed on the command line, unless that function was entered from a nondisplay field.

Because a jump request generally signals a user’s desire to end the current processing, the dialog developer must limit processing to cleaning up and completing processing before returning control to the selection in the jump request. Otherwise, the dialog developer can cancel the jump request/return mode by providing two consecutive displays with the same panel name.
The jump function can be entered with the RETURN command or RETURN function key. For example, you type =2 and then press the RETURN function key rather than pressing Enter. The result is the same as if you had typed =2 and pressed Enter.

**Using the scrolling commands**

You can use the scrolling commands if the dialog function invokes the DISPLAY service for panels with scrollable areas or scrollable dynamic areas, the table display service (TBDISPL), or the interfaces to the PDF component VIEW, BROWSE, and EDIT services. During processing of the tutorial, ISPF interprets these commands as follows:

- **UP (F7/19)**
  - Same as the UP command

- **DOWN (F8/20)**
  - Same as the SKIP command

- **LEFT (F10/22)**
  - Same as the BACK command

- **RIGHT (F11/23)**
  - Same as the Enter key (display the next page).

When scrollable data is displayed, scrolling enables you to move the screen window up, down, left, or right across the information. When the cursor is within a scrollable field, scrolling enables you to move left or right within the variable data.

Only up and down scrolling is allowed for table displays and scrollable areas.

When scrolling is allowed, a scroll amount is commonly displayed at the top of the screen (line 2). This amount determines the number of lines, or columns, scrolled with each use of a scroll command. To change the scroll amount, move the cursor to the scroll field and type over the displayed amount. Valid scroll amounts are:

- **ZXSMIN-ZXSMAX**
  - A value between ZXSMIN and ZXSMAX where ZXSMIN and ZXSMAX are system profile variables containing the minimum and maximum scroll values as defined in the configuration table. Can be in the range of 0 to 9999999. When the value is entered in the scroll field the user is limited to entering a 4-digit value but when the value is entered in the command field it can be any value between ZXSMIN and ZXSMAX (inclusive).

**Note:** If you specify a scroll amount of 0, no scrolling occurs.

- **PAGE**
  - Specifies scrolling by one page.
    - For scrolling purposes, a page is defined as the amount of information currently visible on the logical screen. Function key definition lines are not a part of the page. In split-screen mode, for example, a Browse display might have 12 lines by 80 columns of scrollable data. In this case, a scroll amount of PAGE moves the text up or down by 12 lines, or right or left by 80 columns. If the cursor is within a scrollable field, PAGE will move the text right or left the equivalent of the display field length.

- **DATA**
  - For up and down scrolling, specifies scrolling by one line less than a page. For left and right scrolling, it is one column less than a page. Within a scrollable field, it is one column less than the display field length.

- **HALF**
  - Specifies scrolling by half a page. Within a scrollable field, it is half the display field length.

- **MAX**
  - Specifies scrolling to the top, bottom, left margin, right margin, beginning
of field or end of field, depending upon which scrolling command is used and the current cursor position. For scrollable fields, the maximum right position is the field length minus the display length and the maximum left position is 1.

**CSR** Specifies scrolling based on the current position of the cursor. The line or column indicated by the cursor is moved to the top, bottom, left margin, or right margin of the screen, depending upon which scrolling command is used. If the cursor is not in the body of the data or if it is already positioned at the top, bottom, left margin, or right margin, a full-page scroll occurs.

**Note:** Scroll amount is not used for scrollable areas.

The current scroll amount is saved in the application profile. There are three scroll amount values: one for Browse (ZSCBR), one for Edit and View (ZSCED), and one for member lists (ZSCML). When you type over the scroll amount, the new value remains in effect until you change it again. The value MAX is an exception. Following a MAX scroll, the scroll amount reverts to its previous value.

The scroll amount field is optional. If the input field following the command field in the panel body is exactly four characters long, it is assumed to be the scroll amount field. If there Otherwise, the system variable ZSCROLLD, which can be set by the dialog, is used to determine the default scroll amount. is no scroll amount field and ZSCROLLD has not been set, the default is PAGE.

When you enter a scroll request, variables ZSCROLLA, ZSCROLLN, and ZSCOLNL are set. ZSCROLLA contains the value of the scroll amount field (MAX or CSR, for example). ZSCROLLN and ZSCOLNL contain the number of lines or columns to scroll, computed from the value in the scroll amount field or entered as a scroll number. For example, if a dialog is in split-screen mode and if 12 lines are currently visible and a user requests DOWN HALF, ZSCROLLN and ZSCOLNL each contain a value of 6. ZSCROLLN can support values up to 9999. If a scroll number greater than 9999 is specified, ZSCROLLN is set to a value of 9999. ZSCOLNL can support values up to 9999999. The system variable ZVERB contains the scroll direction, DOWN in this case. If ZSCROLLA has a value of MAX, the values of ZSCROLLN and ZSCOLNL are not meaningful.

You can also use any valid scroll amount as part of the scroll command. For example, type:

```
Command ===> UP 3
```

and press Enter, or type:

```
Command ===> 3
```

and press the UP function key. Either form results in a temporary, one-time override of the scroll amount.

If ISPF does not recognize the value specified on the command line as a valid scroll amount, such as PAGE, DATA, HALF, MAX, CSR, or a positive integer, the value is interpreted as a command and passed to the function in control.
Using the EXPAND command

The expand panel displays the variable in a scrollable dynamic area. Standard up and down scrolling is supported. You can display the variable in character and hexadecimal using the primary command shown. The setting will be remembered for subsequent expand processing.

HEX ON/OFF

Turn hexadecimal display on and off.

Using command tables to define commands

ISPF implements system, user, site and application commands through the use of command tables.

A system command table (ISPCMDS) is distributed with ISPF in the table input library. An application can provide an application command table by including a table named xxxxCMDS in its table input library, where xxxx is a 1- to 4-character application ID. You can also add up to 3 user command tables and up to 3 site command tables to the ISPF Configuration table. This is a permanent place for your set of user-defined commands. When IBM updates the ISPF command table, you do not need to re-add your commands. By setting the Before or After option, you can search the site command tables either before or after the ISP command table. The default option is Before. If the application’s table input library is defined with the LIBDEF service, the LIBDEF must be active when the SELECT service call that invokes the application is issued, and the PASSLIB parameter must be specified.

You can define an application command table using either:

• The command table utility described in the Command Table Utility (Option 3.9) section of the z/OS ISPF User’s Guide Vol II
• The Dialog Tag Language (DTL) and ISPF conversion utility. See the z/OS ISPF Dialog Tag Language Guide and Reference for the tags you must use.

When a user enters a command, the DM component searches the application command table (if any), then the user command tables (if any), then the site command tables (if any), and finally the system command table, ISPCMDS. This is the default search order, which assumes the option Before for the site command tables. If you choose the option After for these tables, they are searched after ISPCMDS. If it finds the command, action is taken immediately. If it does not find the command in the application or system tables, the command is passed to the dialog, unaltered, in the command field. The dialog must then take appropriate action.

Command table format

A command table is an ISPF table in which each row contains the specification for one command. Each column contains a variable for the command. The variables are:

ZCTVERB

Specifies the name of the command. A command name must be from 2-8 characters long and must begin with an alphabetic character. Note that the terms command name and command verb are synonymous and are used interchangeably.

ZCTTRUNC

Specifies the minimum number of characters that you must enter to find a match with the command name. If this number is zero or equal to the
length of the name, you must enter the entire name. This number must not
be one, or be greater than the length of the name.

**ZCTACT**
Specifies the action to be performed when the command specified in
ZCTVERB is entered. Can be up to 240 characters.

**ZCTDESC**
Contains a brief description of the purpose of the command. This variable
is optional. It is not used by the DM component in processing the
command, but it is displayed by the command table utility. The description
is limited to 80 characters.

The dialog manager treats ZCTVERB, ZCTRUNC, ZCTACT, and ZCTDESC as
defined function variables. They are not accessible to dialogs.

The valid actions that can be performed (ZCTACT) are:

**SELECT**
Followed by selection keywords causes the selected dialog (command,
program, or menu) to be given control immediately.

**ALIAS**
Followed by another command and any parameters allows specification of
command aliases.

**PASSTHRU**
Causes the command to be passed to the dialog instead of continuing to
search the system table.

**SETVERB**
Causes the command to be passed to the dialog with the command verb
stored in ZVERB separately from the parameters. The ISPF system
commands distributed with the product that have SETVERB as an action
are not always passed through to the dialog. See [“Passing commands to a
dialog function” on page 114](#) for further discussion.

**NOP**
Causes the command to be inactive. ISPF displays an inactive command
message in this case.

**Blank (no action)**
Causes the table entry to be ignored. Scanning continues, searching for
additional entries with the same name.

**A variable name**
The name begins with an ampersand and can be one of the actions
described in this list. This allows dynamic specification of command action.

Additional action keywords are used to indicate system commands for which
special processing is required. These are CURSOR, PRINT, PRINTG, PRINT-HI,
PRINTL, PRINTLHI, SPLIT, SPLITV, SWAP, and RETRIEVE. Although these are
valid actions, they are intended for use only in the system command table
distributed with ISPF and are intended to be used only with the associated
command verb. They are not intended for use in application command tables.

**Customizing the ISPCMDS command table**
Use these steps to customize your ISPCMDS command table:

1. Copy the ISPCMDS into a data set concatenated before the ".SISPTENU" data
   set in the ISPTLIB DD statement.
**ISPF System Commands**

- Name the new member using a unique prefix of up to 4 characters, for example: RSMCMDS or MOD1CMDS.
- Allocate the copied-to data set to the ISPTABL DD card. You can use this CLIST to do a LIBDEF against ISPTABL if you have a ISPTABL DD allocated:
  ```unix
  PROC 0
  ISPEXEC LIBDEF ISPTABL DATASET ID(the_dataset_name)
  WRITE &LASTCC
  END
  ```
  If your logon procedure does not allocate an ISPTABL DD card:
  ```unix
  PROC 0
  ALLOC F(ISPTABL) DA(the_dataset_name)
  END
  ```

2. Using option 3.9, customize this member with your new commands.
   - Option 3.9 will search the ISPTLIB DD for this member.
   - Option 3.9 will save (UPDATE) this customized member to the output data set pointed to by ISPTABL.

3. After you have customized this member, you can use option 3.1 or 3.4 member list to rename this member to ISPCMDS.

4. Exit ISPF.
   - This will nullify the LIBDEF on ISPTABL.

5. Re-invoke ISPF.
   - When ISPF searches the ISPTLIB DD concatenation, your customized ISPCMDS will be found first.

**SELECT action commands temporarily invoke a new dialog**

A SELECT action command can be specified in a command table. The action is coded exactly the same as for the SELECT service. All SELECT keywords are valid, including NEWAPPL.

The selected dialog is started immediately when a SELECT action command is entered on the command line of any panel. This temporarily suspends the current dialog. When the selected dialog completes, the screen is refreshed and the suspended dialog resumes.

<table>
<thead>
<tr>
<th>ZCTVERB</th>
<th>ZCTTRUNC</th>
<th>ZCTACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE</td>
<td>0</td>
<td>SELECT PGM(PQRUPDT) PARM(&amp;ZPARM)</td>
</tr>
<tr>
<td>PREPARE</td>
<td>4</td>
<td>SELECT CMD(XPREP &amp;ZPARM) NEWPOOL</td>
</tr>
<tr>
<td>MENU</td>
<td>4</td>
<td>SELECT PANEL(&amp;ZPARM)</td>
</tr>
</tbody>
</table>

In the example, the ZCTTRUNC variable indicates that the UPDATE and MENU command names cannot be truncated. PREPARE, however, can be truncated to PREPAR, PREPA, or PREP. The functions and keywords in the ZCTACT field indicate the actions that the commands perform.

The ZPARM variable that appears in the SELECT keywords indicates that command parameters are to be substituted at that point. For example, if these commands were entered:

```plaintext
===> UPDATE BLDG DEPT NAME
===> PREPA LOG LISTING
===> MENU PQRMENU1
```
these SELECT actions would result:

```
SELECT PGM(PQRUPDT) PARM(BLDG DEPT NAME)
SELECT CMD(XPREP LOG LISTING) NEWPOOL
SELECT PANEL(PQRMENU1)
```

ZPARM, a dummy variable, is used only to substitute user-entered parameters into SELECT action commands. It is not stored in a variable pool and is not accessible to dialogs.

Note:
1. Take care with ACTIONs that use ZPARM, as the ISPF parser will add a matching parenthesis if one appears to be missing. Consider an entry of
   "SELECT CMD(%CMD &ZPARM) NEWAPPL(ISR)". If "(XYZ" is passed then
   the command will receive "(XYZ) NEWAPPL(ISR)" as a parameter.
2. Use of SELECT action commands can cause recursive entry into dialog functions, which the DM component allows. The dialog developer should either design functions for recursive use or display a message if a user attempts to reenter a nonrecursive function.

The ISPF DISPLAY and TBDISPL services can be used recursively. The current display environment is automatically saved whenever a SELECT action command is entered and is restored upon completion of the command.

Assigning command aliases
A command alias is an alternate way of expressing a command. For example, you might assign to the command UP MAX an alias of TOP to make it easier to remember and to issue. In the case of a command that includes lengthy parameters, using an alias can be a much more efficient way of entering the command. Also, using aliases can be helpful for writing dialogs in languages for which single words can meaningfully replace multiword command-parameter expressions. Normally, alias entries are used in an application command table to refer to system commands, which might or might not include parameter fields. Issuing the command or its alias causes the same result.

An alias must precede, in the command table, any reference to the command to which it refers. You can establish an alias by setting values in two command table variables. Set:

- ZCTVERB to the value you wish to use as the alias for an existing command
- ZCTACT to the keyword ALIAS followed by the command, including any parameters, for which you are establishing the alias. Thus, the value of the ZCTACT variable can be either a single-word command, such as HELP, or it can be a multipart command, such as UP MAX.

You can set the value of ZCOTTTRUNC in the command table to the minimum number of characters of the alias name that must be entered. For example, for the alias FORWARD, if you set ZCOTTTRUNC to a value of 3, issuing the first three characters (or more) has the same effect as issuing FORWARD. If you assign a value of 0 in the ZCOTTTRUNC field, the complete alias name must be issued.

The maximum length of the value you can specify in ZCTACT, including the keyword ALIAS, followed by a blank, and the command verb plus any parameters, is 240 characters. This leaves a maximum of 234 characters for the command, at least one blank following the command, and any parameters. ISPF interprets up to the first 8 characters in the command name. ISPF issues an error message for command names that do not contain from 2-8 characters.
Any parameters included in the ZCTACT command table field take precedence over any parameters included with that command's alias issued from a command line. Thus, if you issue a command alias that includes parameters, ISPF:

- Recognizes the command alias verb
- Ignores the parameters you specified with the alias
- Substitutes the parameters included with the command verb in ZCTACT.

If the command verb in ZCTACT does not include parameters, ISPF accepts parameters specified with the command's alias from a command line. This can be useful when a command's parameters do not fit into the 240 character spaces available in ZCTACT.

You can create a chain of command-parameter aliases in a command table as long as the result is a valid executable action. The last command verb and parameter values that ISPF encounters in the alias chain within the command table are the ones that are executed. The command verb and the parameter values do not necessarily come from the same table entry.

**Table 6. Examples of a chain of command-parameter aliases**

<table>
<thead>
<tr>
<th>ZCTVERB</th>
<th>ZCTTRUNC</th>
<th>ZCTACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASYKEY</td>
<td>0</td>
<td>ALIAS CMD PARM1 PARM2</td>
</tr>
<tr>
<td>CMD</td>
<td>0</td>
<td>ALIAS CMD1 PARM3</td>
</tr>
<tr>
<td>CMD1</td>
<td>0</td>
<td>ALIAS CMD2</td>
</tr>
</tbody>
</table>

In this example, if you entered EASYKEY from a command line, the command that would ultimately be executed would be CMD2 PARM3.

**Table 7. Some more examples of defining alias values**

<table>
<thead>
<tr>
<th>ZCTVERB</th>
<th>ZCTTRUNC</th>
<th>ZCTACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUIT</td>
<td>0</td>
<td>ALIAS END</td>
</tr>
<tr>
<td>FORWARD</td>
<td>3</td>
<td>ALIAS DOWN</td>
</tr>
<tr>
<td>*TOP</td>
<td>0</td>
<td>ALIAS BACKWARD MAX</td>
</tr>
<tr>
<td>*BACKWARD</td>
<td>0</td>
<td>ALIAS UP</td>
</tr>
<tr>
<td>*ENDFILE</td>
<td>4</td>
<td>ALIAS LOW</td>
</tr>
<tr>
<td>*LOW</td>
<td>0</td>
<td>ALIAS DOWN MAX</td>
</tr>
</tbody>
</table>

*These four entries represent two-level chaining.*

This example defines QUIT as an alias of END, FORWARD as an alias of DOWN, and so on. For example, if you enter QUIT, the system responds as though you had entered END.

Looking at the two-level chaining examples, if you enter TOP, ISPF responds as though you had entered UP MAX. This is because, at the second level when BACKWARD is replaced with UP, there is no second-level parameter to replace MAX. In the case of ENDFILE, ISPF responds as though you had entered DOWN MAX. ISPF replaces the verb LOW with DOWN and the blank parameter value with MAX.

**Note:** Command aliases included with ISPF in table ISPCMDS include TOP (UP MAX), BOTTOM (DOWN MAX), BACKWARD (UP), and FORWARD (DOWN).

**Overriding system commands**

An application can override any system command simply by including the same command name in the application command table.
Table 8. Examples of overriding a system command

<table>
<thead>
<tr>
<th>ZCTVERB</th>
<th>ZCTTRUNC</th>
<th>ZCTACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELP</td>
<td>0</td>
<td>PASSTHRU</td>
</tr>
<tr>
<td>TSO</td>
<td>0</td>
<td>NOP</td>
</tr>
</tbody>
</table>

In this example, the dialog has overridden both the HELP and TSO commands. During ISPF processing, if you enter HELP, the command is passed to the dialog function in control, which determines the action to be taken. The action specified for the TSO command is NOP, which disables the TSO command. ISPF displays an inactive command message when a NOP action command has been processed.

**Passing commands to a dialog function**

Any command that is not found in the application or system command table is passed, unaltered in the command field, to the dialog. This occurs regardless of whether the command was typed in the command field or entered by use of a function key or the attention field.

You can force a command to be passed to the dialog, even if the command exists in the command table, by typing a greater-than symbol (>) in front of the command.

Any command in the command table that has an action of PASSTHRU is processed as though the command were not found in the table. It is passed in the command field to the dialog.

Commands can also be passed to the dialog using the SETVERB action. This action causes the dialog manager to separate the name from the command parameters, if any. The command is stored in variable ZVERB, which is in the shared pool. The left-justified command parameters are passed in the command field to the dialog.

Table 9. Examples of passing commands to the dialog

<table>
<thead>
<tr>
<th>ZCTVERB</th>
<th>ZCTTRUNC</th>
<th>ZCTACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY</td>
<td>0</td>
<td>SETVERB</td>
</tr>
</tbody>
</table>

The verb QUERY is stored in variable ZVERB and the character string, such as DEPT 877 in the examples shown, is passed in the command field.

These actions produce the same results:

- Typing QUERY DEPT 877 in the command field and pressing Enter.
- Typing DEPT 877 in the command field and pressing a function key that has been equated to the character string QUERY.
- Pressing a function key that has been equated to the character string QUERY DEPT 877.
- Using the light pen or cursor-select key to select an attention field that contains the character string QUERY DEPT 877.

These system commands, distributed with the DM component, are defined as SETVERB action commands:

```
END
UP
RETURN
DOWN
RFIND
LEFT
RCHANGE
RIGHT
```
The ZVERB variable can be used to distinguish between END and RETURN. The effect of END and RETURN on the DISPLAY service is the same because RETURN is used to simulate repeated END commands, until a primary option menu is reached.

RFIND and RCHANGE are used only by ISPF View, Browse, and Edit. Thus, these commands are not passed back to a user dialog in ZVERB.

The commands UP, DOWN, LEFT, and RIGHT are only active when a scrollable panel is displayed. Use of these commands from a nonscrollable panel results in a command is not active message.

**Specifying command actions dynamically**

You can specify a command action dynamically (as part of function processing) by the use of a dialog variable. A variable action can be used to share commands, such as UP, DOWN, LEFT, and RIGHT, with the DM component. It can also be used to enable or disable commands during certain points in the dialog. Suppose, for example, an application command table includes these entries:

<table>
<thead>
<tr>
<th>Table 10. Examples of entries in an application command table</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZCTVERB</td>
</tr>
<tr>
<td>-------------------------------------------------------------</td>
</tr>
<tr>
<td>UP</td>
</tr>
<tr>
<td>DOWN</td>
</tr>
</tbody>
</table>

You can use the variable SCRVERT to dynamically control the action of the UP and DOWN vertical scroll commands as follows:

- If SCRVERT is set to NOP, the commands are not available.
- If SCRVERT is set to PASSTHRU, the commands are passed to the dialog.
- If SCRVERT is set to blank, command scanning continues. In this case, the system definitions for UP and DOWN in the system command table take effect.
- If SCRVERT is set to an action that is not valid, the commands are not available, as in NOP.

For this particular example, setting SCRVERT to SETVERB would have the same effect as setting it to blank, because UP and DOWN are defined in the system command table as SETVERB action commands.

If the dialog overrides or shares the use of the scroll commands, it becomes that dialog’s responsibility to ensure that the commands have been redefined with an action of blank, or with SETVERB. This must be done before starting any ISPF function that requires View, Browse, Edit, and Table Display. The same rule applies to the RFIND command used by Browse and Edit and the RCHANGE command used by Edit.

**Using function keys**

Under ISPF, function keys are not automatically assigned to special functions. You equate each function key to a character string. When you press a function key, it simulates command entry. The processing is the same as if you had typed the character string in the command field and pressed the Enter key.

**Note:** On a 3270 display, the horizontal divider line that separates the logical screens is not considered part of either logical screen. If the cursor is placed on this
horizontal divider line and a function key is pressed, the result is the same as if the ENTER key was pressed and the cursor is positioned on the active logical screen’s command line.

A dialog function cannot distinguish the difference between a command entered by a function key and a command entered by typing in the command field. If the character string with which the function key is equated is longer than the screen’s command field, the string is truncated without warning.

If you type information on the command line and then press a function key, the function key definition, followed by a blank, is concatenated ahead of the contents of the command field. For example, suppose F7 is equated to the character string UP. If you type 4 in the command field and then press F7, the results are exactly the same as if you had typed UP 4 in the command field and pressed the Enter key.

ISPF does not require function keys for its operation. Commands can be entered in the command field of any display, including View, Browse, Edit, and Table Display. However, for ease of use, function keys are strongly recommended.

The default function key assignments distributed with ISPF for the 3x4 key pad on the right side of the keyboard are shown in the next table. These are function keys 1-12 on a 12-key terminal or keys 13-24 on a 24-key terminal.

Table 11. Function key arrangement

<table>
<thead>
<tr>
<th>Function key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>HELP</td>
</tr>
<tr>
<td>F2</td>
<td>SPLIT</td>
</tr>
<tr>
<td>F3</td>
<td>END</td>
</tr>
<tr>
<td>F4</td>
<td>RETURN</td>
</tr>
<tr>
<td>F5</td>
<td>RFIND</td>
</tr>
<tr>
<td>F6</td>
<td>RCHANGE</td>
</tr>
<tr>
<td>F7</td>
<td>UP</td>
</tr>
<tr>
<td>F8</td>
<td>DOWN</td>
</tr>
<tr>
<td>F9</td>
<td>SWAP</td>
</tr>
<tr>
<td>F10</td>
<td>LEFT</td>
</tr>
<tr>
<td>F11</td>
<td>RIGHT</td>
</tr>
<tr>
<td>F12</td>
<td>RETRIEVE</td>
</tr>
</tbody>
</table>

Function keys can be displayed at the bottom of a panel. Using the FKA or PFSHOW command, you can display either the long or short form of the keys, or remove the keys from the panel. See “ISPF system commands” on page 76 for a complete description of how to display or remove the function keys.

For panels defined without the )PANEL section, the long and short form of the function key area is the same. If you use a )PANEL section, you can use the KEYLIST command or the “Keylist settings” choice from the Function keys pull-down on the ISPF Settings panel to determine which keys appear in each form. For more information on Keylist settings, see the Settings (Option 0) topic of the z/OS ISPF User’s Guide Vol II.

Long Displays the keys that appear in the short form along with all other keys you indicated should appear for the long form. The long form is the default. An example of the long form follows:
Display the keys that appear in the short form. An example of the short form follows:

**Short** Displays the keys that appear in the short form. An example of the short form follows:

```
Option ===>
F1=Help   F2=Split   F3=Exit   F7=Backward   F8=Forward   F9=Swap
F10=Actions F12=Cancel
```

**No** Removes the function key area, making the space available for the application. The keys are still active but are not displayed.

**Defining function key values**

You can define function key values three ways:

- Use the KEYS command to display the Keylist Utility panel or the PF Key Definitions and Labels panel, then change the function keys for the panel you are on.

- Use the ZKEYS command or select the “Non-Keylist PF Key settings” choice from the Function keys pull-down on the ISPF Settings panel. Use this method to define the function keys when the )PANEL statement has been coded on the panel. All DTL-generated panels have a )PANEL statement. For more information on working with Function Keys and Keylists, see the ‘Settings (Option 0)’ topic of the z/OS ISPF User’s Guide Vol II.

- Use the KEYLIST command or select the “Keylist settings” choice from the Function keys pull-down on the ISPF Settings panel. Use this method to define the function keys when the application panels are defined with the DTL. For more information on Keylist settings, see the ‘Settings (Option 0)’ topic of the z/OS ISPF User’s Guide Vol II.

**Changing the format of the function key area**

The FKA and PFSHOW commands let you change the visual display of the function keys on a panel. You can display the keys in long form or short form, or remove them completely. You can also use the PFSHOW command with the TAILOR parameter or the “Tailor function key display” choice from the Function keys pull-down on the ISPF Settings panel to display the Tailor Function Key Definition Display panel shown in Figure 29 on page 118.
Using Function Keys

This panel lets you select:

- The number of function keys available for display.
  See the information about 'Tailor Function Key Definition Display' in the Settings (Option 0) topic of z/OS ISPF User's Guide Vol II for a discussion of the rules governing the number of keys available for display.
- The number of keys per line to display in each function key definition line. System variable ZPFFMT holds the value selected.

Table 12. ZPFFMT system variable on PFSHOW

<table>
<thead>
<tr>
<th>Choice</th>
<th>Description</th>
<th>ZPFFMT value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Six</td>
<td>Always displays six keys per line</td>
<td>SIX</td>
</tr>
<tr>
<td>Maximum possible</td>
<td>Displays as many keys as will fit</td>
<td>MAX</td>
</tr>
</tbody>
</table>

**Note:** The Maximum possible option is forced when you select the Panel display CUA mode option on the ISPF Settings panel.
- The set of function keys that are to be the primary and alternate keys. System variable ZPRIKEYS holds the value selected.

Table 13. ZPRIKEYS values

<table>
<thead>
<tr>
<th>Choice</th>
<th>Description</th>
<th>ZPRIKEYS value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower - 1 to 12</td>
<td>Primary keys 1-12</td>
<td>LOW</td>
</tr>
<tr>
<td>Upper - 13 to 24</td>
<td>Primary keys 13-24</td>
<td>UPP</td>
</tr>
</tbody>
</table>

The default value is Lower - 1 to 12.
- The set of function keys on terminals with 24 function keys for which definitions are to be displayed. System variable ZPFSET holds the value selected.

Table 14. ZPFSET system variable, on PFSHOW

<table>
<thead>
<tr>
<th>Choice</th>
<th>Description</th>
<th>ZPFSET value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary - display keys 1 to 12</td>
<td>Primary set (1-12)</td>
<td>PRI</td>
</tr>
</tbody>
</table>
Table 14. ZPFSET system variable, on PFSHOW (continued)

<table>
<thead>
<tr>
<th>Choice</th>
<th>Description</th>
<th>ZPFSET value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate</td>
<td>Alternate - display</td>
<td>ALT</td>
</tr>
<tr>
<td></td>
<td>keys 13 to 24</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>All - display all</td>
<td>ALL</td>
</tr>
<tr>
<td></td>
<td>keys 1 to 24</td>
<td></td>
</tr>
</tbody>
</table>

ISPF ignores these values for terminals with only 12 function keys.

Variables ZPFFMT, ZPRIKEYS, and ZPFSET are stored in the application profile pool. Dialogs can set these values directly by using the VPUT statement in a panel definition, or by using the VPUT service in a dialog function.

Dialog developers can control how the PFSHOW command behaves by using the ZPFCTL system variable. ZPFCTL is also stored in the application profile pool. Its possible values are:

**USER**  
The user can control the display of function key definition lines by using the PFSHOW command. This is the default value.

**ON**  
ISPF unconditionally displays function key definitions on all panels. Issuing PFSHOW OFF, FKA OFF, or toggling to the *no display* setting causes ISPF to issue an error message.

**OFF**  
ISPF does not display function key definition lines. If PFSHOW ON, PFSHOW TAILOR, FKA ON, or toggling to the long or short form setting of either command is issued, ISPF displays an error message.

Applications can set the ZPFCTL variable value to either USER, ON, or OFF by using the VPUT service or by using a VPUT statement with the PROFILE keyword.

**Note:** The ZPFCTL variable is ignored if the PFSHOW/FKA command is invoked from a panel containing a )PANEL statement or if the panel was created using DTL.

Similarly, keylists can be controlled to some degree by the application.

The ZKLUSE can be set to Y or N. If KEYLIST is ON, the value in ZKLUSE in the application profile is Y. If KEYLIST is OFF, it is N. If an application VPUTs the variable to the application profile, the keylist setting is altered.

These variables can be used by an application to determine what keylist is being used, and where it comes from.

- **ZKLNAMES** - If KEYLIST is ON and it is a panel with the )PANEL statement, ZKLNAMES contains the name of the keylist currently being used. Otherwise it is blank.

- **ZKLAPPL** - If KEYLIST is ON and it is a panel with the )PANEL statement, ZKLAPPL contains the application ID that the keylist currently being used came from. Otherwise it is blank.

- **ZKLTYPES** - If KEYLIST is ON and it is a panel with the )PANEL statement, ZKLTYPES contains either P (private) or S (shared), depending on the keylist currently being used. Otherwise it is blank.

Function key definitions appear at the bottom of each logical screen. There can be more than one logical screen, such as when you are using the split-screen function. If the application has not issued an ADDPOP service call, ISPF displays no more than four function key definition lines on one panel. If the application has issued an ADDPOP service call and the set of keys to be displayed is primary or
Using Function Keys

alternate, ISPF displays no more than two lines. If all of the keys are to be displayed, no more than four lines appear. If all of the keys will not fit on the lines, ISPF wraps the keys and truncates the last keys.

Saving function key definitions

This topic applies only if you created your application panels using the ISPF panel definition statements and used the ZKEYS command or selected the “Global PF Key settings” choice from the Function keys pull-down on the ISPF Settings panel. It does not apply for keys defined with the KEYLIST command or through the “Keylist settings” choice from the Function keys pull-down on the ISPF Settings panel.

Function key definitions are kept in a set of system variables named ZPF01, ZPF02, ... ZPF24. Labels are kept in a set of system variables named ZPFL01, ZPFL02, ... ZPFL24.

When you set the “Primary range” field on the Tailor Function Key Definition Display panel to Upper - 13 to 24, variables ZPF13-ZPF24 and ZPFL13-ZPFL24 contain the primary PF key definitions and labels. For 24-key terminals, these definitions correspond to physical keys 13-24. For 12-key terminals, these definitions correspond to physical keys 1-12. Variables ZPF01-ZPF12 contain the alternate key definitions, and are meaningful only for terminals with 24 function keys.

When you set the “Primary range” field on the Tailor Function Key Definition Display panel to Lower - 1 to 12, variables ZPF01-ZPF12 and ZPFL01-ZPFL12 contain the primary PF key definitions and labels. For 24-key terminals, these definitions correspond to physical keys 1-12. For 12-key terminals, these definitions correspond to physical keys 1-12. Variables ZPF13-ZPF24 contain the alternate key definitions and are meaningful only for terminals with 24 function keys.

Current values for all 24 keys (variables ZPF01-ZPF24 and ZPFL01-ZPFL24) are kept in the application profile. Hence, unique function key definitions can be associated with different applications.

An application can provide default function key settings for a new user by providing a default profile. An application can prevent the user from changing the default function key settings by overriding the ZKEYS command. It does this by assigning the command to NOP in the application command table.

Using the light pen and cursor-select key

ISPF permits fields on a panel to be detected with a light pen or the cursor-select key. The cursor-select key is a hardware feature on 3179, 3179G, 3180, 3278, 3279, and 3290 terminals. Only the attention mode of light pen selection is used.

Panel fields that are detectable by light pen or cursor selection can simulate a command entry, or give you an alternate means of selecting options from a menu. Each field must be defined as an attention field. Use an attribute character that has been defined with the ATTN(ON) keyword. The panel designer must provide the number of blank characters that are required by the terminal hardware before and after the attention attribute character.

Processing of light pen or cursor-selected fields is handled in much the same way as function key processing. The entire contents of the selected field are treated as a
Using the light pen and cursor select key

command and processed as though they had been typed into the command field. If the command is found in the tables, it is performed immediately. If the command is not found in the tables, it is inserted into the command field, and the entire command field is passed to the dialog. But unlike function keys, information in the command field is not concatenated with the contents of the attention field. They should not be used on data entry panels, because any information that is typed in an input field, including command fields, is lost when the attention occurs.

Attention fields can be used on a menu to simulate option selection. The panel designer must truncate any unwanted characters resulting from an attention entry into the command field. Here is an example:

)`ATTR
  $ TYPE(TEXT) ATTN(ON)
)`BODY
%------------------------------- SOME MENU -------------------------------
%SELECT OPTION ===>_ZCMD   +
%                                
% $ 1 - BROWSE +DISPLAY SOURCE DATA OR LISTINGS
% $ 2 - QUERY +FIND OUT INFORMATION ABOUT SOMETHING
:
)
)`PROC
 &ZCMD = TRUNC (&ZCMD, ' ')
 &ZSEL = TRANS (TRUNC (&ZCMD, ' '))
  1, 'PGM(ISPBRO)'
  2, 'PANEL(XYZ)'
:

Figure 30. Use of Light Pen Attribute

In the example, a light pen or cursor-selection of the first option would place the character string 1 - BROWSE in the ZCMD field and simulate the Enter key. In the )PROC section, the contents of the ZCMD field are truncated at the first blank before the ZSEL variable is set, based on a translation of the ZCMD field.

Panels that are included with the ISPF product do not contain the ATTN(ON) keyword in the attribute section. If light pen or cursor selection is used, it is the user’s responsibility to add the ATTN(ON) keyword to the attribute section of the desired panel. See the z/OS ISPF Dialog Developer’s Guide and Reference for complete descriptions of the various panel sections.

How Program Access (PA) keys affect ISPF operation

The two Program Access (PA) keys are defined as follows. These definitions cannot be changed.

ATTENTION (PA1)

Normally, you should not use this key while you are in ISPF full-screen mode. The text following discusses exceptions.

RESHOW (PA2)

Redisplays the contents of the screen. PA2 can be useful if you have pressed the ERASE INPUT or CLEAR key accidentally or have typed unwanted information but not yet pressed the Enter key or a function key.
Using the light pen and cursor select key

Generally, PA1 is used to terminate TSO commands or CLISTs running under ISPF. However, some TSO commands and CLISTs process PA1 in their own way.

Note:
1. If you are running in GUI mode, you must switch back to your host session to process PA1.
2. If you are running in GUI mode, you must press Alt-Home (that is, hold down the Alt key and press the Home key) to process PA2 from the GUI display.

Restrictions that apply to CLIST attention exits are described in the z/OS ISPF Dialog Developer’s Guide and Reference. Also, ISPF should not be started from a CLIST that contains an attention exit because results are unpredictable.

If PA1 is pressed while ISPF is in full-screen mode after the keyboard has been unlocked, it is treated as a RESHOW request. If PA1 is pressed again, the current function is terminated and either the primary option menu or a top-level selection panel supplied by the dialog developer is displayed.

When an ISPF function is running, if the RESET key is pressed to unlock the keyboard and PA1 is pressed, ISPF attempts to terminate the current function and redisplay the primary option menu. The attempt might not always be successful; for example, if there is an error in MVS allocation, the attempt fails. A failure might cause unpredictable results such as waits, loops, abends, or incorrect and unrelated error messages.

The AUTOTYPE function, for automatic data set name and member name completion

The AUTOTYPE function is not available on all ISPF panels. It works only on panels that are specifically written to understand it.

If you assign the value of AUTOTYPE to a function key, you can type a partial name into a library, member, or data set name field, then press the function key to have ISPF complete the name for you.

AUTOTYPE automatically searches the catalog or PDS directory to find names that match what you entered. You can even type a pattern to limit the names that AUTOTYPE will return. AUTOTYPE works only on panels that have been enabled to use the function. You can also enable your own applications to use AUTOTYPE (see “Enabling applications to use AUTOTYPE” on page 124).

If you are using a terminal emulator, you can assign an easily reachable key to the function key that invokes AUTOTYPE. For example, you can use a control key combination or any other key or combination that is within easy reach. You can also use the function key directly.

Within ISPF, AUTOTYPE is enabled for these panels:
- Edit, Browse, and View (options 1 and 2, including recursive edit/browse/view, copy, replace and move panels).
- Library Utility panels (option 3.1)
- Data Set Utility panels (option 3.2, including Rename)
- Move/Copy (option 3.3)
- Data Set List entry panel (option 3.4)
AUTOTYPE function, for Data Set Name Completion

- Reset ISPF Statistics (option 3.5)
- Hardcopy Utility (option 3.6)
- Download/Upload Data Set To/From Workstation (option 3.7.2)
- SuperC Compare (options 3.12 and 3.13 in all fields)
- SuperC Search (options 3.14 and 3.15, all fields)
- SCLM View and Edit (options 10.1 and 10.2)
- SCLM Library Utility (option 10.3.1)
- Sublibrary Management (option 10.3.2)
- SCLM Migration Utility (option 10.3.3)
- SCLM Delete from Group Utility (option 10.3.9)
- SCLM Build and Promote (options 10.4 and 10.5)
- Preprocessed panel utility (ISPPREP)
- Dialog tag language compiler (ISPDTLC)

On panels that are not enabled for AUTOTYPE, pressing the AUTOTYPE key is the same as pressing ENTER. The variable ZVERB is set to the value 'AUTOTYPE'.

How to use AUTOTYPE

1. Type a partial name (zero or more characters) into a Library field (project, group, type, or member) or the Other Data Set Name field.
2. Press the function key that has been set to AUTOTYPE. ISPF sets the field to the correct value.
3. If you immediately press the function key again, ISPF retrieves the next data set or member name. Up to 100 data set names and 700 member names can be retrieved.

Rules for specifying the 'Other Data Set Name' field

The prefix or pattern you specify is that which is to the left of the cursor. For example, if the field is 'CLIST(ABC)', with the cursor under the letter ‘S’, then the pattern used is ‘CLI’. For more information, see “Cursor position sensitivity” on page 124.

- If the content of the Data Set Name field does not begin with a quote, your TSO prefix is added. If the field does begin with a quote, no prefix is added. Unquoted data set names are not processed if you do not have a TSO prefix (except for on the Data Set List Utility panel).
- The pattern can be any pattern similar to what you use in your data set list (except that you don’t have to specify your TSP prefix). Trailing wildcards are automatically added. For example, in a Data Set Name field, typing 'CHR' will result in a pattern of prefix.CHRT.* when searching the catalog.
- If you include a left parenthesis, followed optionally by a member name or pattern, the data set is assumed to be a PDS and the member name is returned. For example 'CLIST(XY' would search prefix.CLIST for members matching the pattern XY*. A trailing * is always added to the member name to create a pattern.

Rules for Library fields - Project, Group, Type, Member

- If the cursor is in the Project field, the other fields are not used as part of the data set name search and are erased.
- If the cursor is in a Group field, the project name and type name (if any) are added to create the search pattern. Each group name is used only once, even if
AUTOTYPE function, for Data Set Name Completion

there are many types in that group. As each group name is displayed, the first type name found for that project.group combination is also retrieved. The member name, if any, is not used and is erased.

- If the cursor is in the Type field, the project and first group name are used to create the pattern. The Type field is updated and the member name is erased.
- If the cursor is in the Member field, the project, first group, and type are used as the data set name. The second, third, and fourth groups are not used.

Cursor position sensitivity

The pattern or prefix used to search for names is only that which is to the left of the cursor. In this way you can refine your search simply by moving the cursor.

For example; suppose you have one hundred data sets called 'SYS1.A234.RGG.*' and you plan to use one named 'SYS1.A234.RGG.DBD0231.L422.FEB0299.TERRA'. You could type 'SYS1.A234.RGG' and press the AUTOTYPE key. That might return 'SYS1.A234.RGG.DBD0211.X331.AUG0599.FIRMA'. You can refine the next value returned by typing a '2' over the first '1' in 'DB0211' and then pressing the AUTOTYPE key again. This will use the new pattern and get you closer to the desired value.

Restrictions

AUTOTYPE only retrieves cataloged alias names. It will not retrieve generation data group or generation data set names. AUTOTYPE does not use the Volume field on any panel. It sets the Volume field associated with the current data set name field to blank.

AUTOTYPE does not use any ISPF name change exits or data set list retrieval exits.

AUTOTYPE retrieves a maximum of 100 data sets and 700 member names before cycling through the list from the beginning.

Enabling applications to use AUTOTYPE

You can enable applications to use AUTOTYPE by making some minor panel modifications as follows:

1. At the beginning of the )REINIT section, add the lines shown. Make sure the subsequent line in the )REINIT section starts in column 1 so that it does not become part of the IF clause you have inserted.

   IF (&ZNXTMSG='ISRT') .CSRPOS = &ZCSRP
   .CURSOR = &ZCSRV

2. At the end of the )REINIT section add this line in column 1.

   REFRESH (+)

3. At the beginning of the )PROC section add the lines shown. Make sure the subsequent line in the )PROC section starts in column 1 so that it does not become part of the IF clause you have inserted. If there is a line that says: .RET = OFF in the )PROC section, it should go before these lines.

   &ZCSRV = .CURSOR
   &ZCSRPOS = .CSRPOS
   &ZNAMES=’ZCSRV ZCSRPOS PRJ1 LIB1 LIB2 LIB3 LIB4 TYP1 MEM DSN ZCMD
   PANEXIT ( (ZNAMES) , LOAD,ISRAUTOT)
   IF (&ZNXTMSG='ISRT') EXIT
AUTOTYPE function, for Data Set Name Completion

Modify the line that assigns the variable &ZNAMES. This assignment contains
a list of variable names on the panel. They must all be specified in order. Use
an asterisk (*) for names that are not relevant for your panel.

The values in the &ZNAMES variable are:
1. The variable containing the Cursor field name
2. The variable containing the cursor offset
3. The name of the Project variable on the panel
4. The name of the first Group variable.
5. The name of the second Group variable
6. The name of the third Group variable
7. The name of the fourth Group variable
8. The name of the Type variable
9. The name of the Member variable
10. The name of the Other Data Set Name variable
11. The name of the command line variable (clears the command line)

The cursor and name variables (described here as ZCSRV, ZCSR, and ZNAMES)
can have any names you choose but they must match the names used in the INIT
section and the PANEXIT statement in the PROC section.

If a name references a read-only field, add a dash to the end of the name. If you
need to limit the size of the returned name, you can append the maximum length,
after a period, to the name; for example, 00SN.44. You can disable member searches
for a data set name field by adding a percent sign to the end of the field name; for
example, 00SN.44% or 00SN%.

Panels defined in Dialog Tag Language (DTL) can be enabled for AUTOTYPE
through DTL keywords. See the z/OS ISPF Dialog Tag Language Guide and Reference
for more information.
AUTOTYPE function, for Data Set Name Completion
Chapter 5. ISPF libraries and data sets

ISPF enables you to work with ISPF libraries, other partitioned data sets, and sequential data sets. This topic describes how to allocate, create, and use libraries and data sets.

ISPF also provides some facilities for working with z/OS UNIX files and workstation files.

- For more information about working with z/OS UNIX files, see “z/OS UNIX Directory List Utility (Option 3.17)” in the z/OS ISPF User’s Guide Vol II.
- For more information about working with workstation files, see “Download Data Set to Workstation Utility (Option 3.7)” in the z/OS ISPF User’s Guide Vol II and the sections on distributed editing in the “Edit (Option 2)” topic of the z/OS ISPF User’s Guide Vol II and the EDIT service in the z/OS ISPF Services Guide.

An ISPF library is a cataloged partitioned data set (PDS) or a partitioned data set extended (PDSE). For more information about PDSE, see “Partitioned Data Set Extended (PDSE)” on page 157.

The ISPF library has a three-level name consisting of a project, group, and type. An optional library member name can also be included. A member consists of programming code, data, or text.

ISPF displays library names on line 1 of a data display, such as the member list shown in Figure 33 on page 136. Each library generally contains members with the same type of information.

Before you can create and use a new ISPF library or data set, you must allocate it using option A of the Data Set utility. See the topic about “Data Set Utility (Option 3.2)” in the z/OS ISPF User’s Guide Vol II for instructions on allocating data sets.

Naming ISPF libraries and data sets

On data entry panels that require a library or other data set name, such as the Data Set Utility (option 3.2) and Edit Entry (option 2) panels, two groups of fields are provided: one for entering an ISPF library name and one for entering another partitioned or sequential data set name.

ISPF library names

To name an ISPF library, you must specify at least a project, group, and type. For example:

Project . . ISPFPROJ
Group . . TEST
Type . . . PLI

Project
The common identifier for all ISPF libraries belonging to the same programming project. This name must be your user ID unless you are using a specific project name that has been predefined in the MVS master catalog.

Group
The identifier for a particular set of ISPF libraries, that is, the level of the libraries within the library hierarchy. For example, the group name of your
Naming ISPF libraries and data sets

private library could be PRIVATE or perhaps your first name, such as Joe in the example in Figure 31 on page 132.

Type  The identifier for the type of information in the ISPF library, such as PL/I, SCRIPT, or PANELS.

Standard ISPF naming conventions
Each component of the library name can be up to 8 alphanumeric or national characters; the first one must be alphabetic. This conforms to standard TSO data set naming conventions. For convenience, any cataloged data set (sequential or partitioned) with a three-level name can be entered in the Project, Group, and Type fields, with one level of the name in each field. If a cataloged data set with four or more levels is to be entered, multiple levels of the name may be entered in each field, with each level being separated by a period.

If both a library and a data set name are specified on the same panel, the data set name takes priority. Therefore, to specify a library, leave the Data Set Name field blank.

When the library identification appears in a title line or message, the project name, group name, and type name are separated with periods. A member name, if applicable, is enclosed in parentheses. For example:

PROJECT.GROUP.TYPE(MEMBER)

On most data entry panels that allow a library name to be specified, a Member field is available:

Member . . . PROJ1

Member
The name of an ISPF library or other partitioned data set member. Leaving this field blank or entering a pattern causes ISPF to display a member list. See “Displaying member lists” on page 133 for more information.

A pattern is a partial member name that uses either an * (asterisk) or % (percent sign) as place holders:

- A * symbol represents a string of characters
- A % symbol represents only 1 character

ISPF matches the pattern to any like member names in the specified data set.

The ISPF library’s project, group, and type must always accompany the member name, if entered. If you try to edit a member that does not exist, ISPF provides an Edit display screen with a blank data area.

Member names entered in the Member field or those enclosed in parentheses and entered in the Data Set Name field must follow standard ISPF naming conventions.

If you have a partitioned data set with members whose names do not follow ISPF naming conventions, ISPF allows limited processing, as follows:

- View (option 1) allows any character string as a member name in either the Member or Data Set Name field and attempts to View or Browse the specified member.
- Edit (option 2) allows an existing member with a nonstandard member name to be edited. You cannot create a member with a nonstandard member name.
ISPF cannot process member names that begin with a blank or have embedded blanks which can cause unpredictable results. Also, ISPF cannot process member names that include special characters, such as an ampersand (&). CLIST processing in both Foreground (option 4) and Batch (option 5) can result in a runtime error.

Other partitioned, sequential or VSAM data set, or z/OS UNIX file names

You can use this field to specify any partitioned or sequential data set, or z/OS UNIX file path name:

Other Partitioned, Sequential or VSAM Data Set, or z/OS UNIX file:

Name . . . . +

Note: The + at the end of the field indicates a scrollable field. The + indicates that the field may contain more data than is able to be displayed on the current screen. It is commonly used to enter long UNIX file path names but may appear on panels other than those associated with data set names.

See the descriptions of the ZEXPAND ("EXPAND" on page 81) and ZCLRSFLD ("ZCLRSFLD" on page 102) commands which operate on scrollable fields.

Specifying a data set name

Type any fully-qualified partitioned, sequential, or VSAM data set name, such as:

Name . . . . 'USERID.SYS1.ASM' +

You can include either a TSO user prefix or user ID as the first-level qualifier of the data set name. If you omit the single quotes and if you have created a TSO user prefix, that prefix is automatically added to the beginning of the data set name. If you omit the single quotes and if you do not have a TSO user prefix, no prefix is added, and the name is used exactly as it appears.

If you include your user prefix or user ID, enclose the data set name with apostrophes. If you include the apostrophe at the beginning of the data set name but omit the one at the end, ISPF inserts it for you.

Note: ISPF does not support multivolume data sets or partitioned data sets with record format FBS or VBS.

For partitioned data sets, a member name enclosed in parentheses can follow the data set name. For example:

Name . . . . 'SYS1.PROCLIB(ASMHC)' +

If you include the parenthesis at the beginning of the member name but omit the one at the end, ISPF inserts it for you.

When you omit the member name and parentheses or use a pattern ISPF displays a member list. See "Displaying member lists" on page 134 for more information.

You can refer to generation data sets by using a signed or unsigned number in place of a member name in the Data Set Name field only. For example:

Name . . . . 'gds.test(0)' +

This example refers to the most recently allocated data set in the generation data group. Minus numbers refer to previously allocated data sets; positive refer to unallocated.
Note: For Edit, Browse, and View, a VSAM data set can be specified if the ISPF Configuration Table enables VSAM processing.

**Specifying a z/OS UNIX file path name**

Type a z/OS UNIX file path name, such as:

```
Name . . . /u/jsmith/test/tst1.sh
```

The Name field is a scrollable field allowing you to enter an absolute pathname up to 1023 characters in length.

Note: If you often enter long pathnames (greater than 56 characters), consider using the KEYLIST utility to update the keylist for the panel and assign the ZEXPAND command to a function key. The ZEXPAND command displays the scrollable input field in a scrollable dynamic area in a pop-up window, making the task of entering a long pathname easier.

When you enter a z/OS UNIX file path name, a z/OS UNIX directory selection list is displayed.

When you enter a z/OS UNIX file path name containing glob characters, ISPF uses the C/C++ glob function to search the UNIX file system for files and directories that match the mask. Unicode Conversion services are used to internally convert the path name from the terminal codepage to codepage 1047 for use by the search function.

ISPF assumes a z/OS UNIX path name when the first character entered in the Name field is one of these characters:

- `/` (Forward slash) Identifies an absolute path name.
- `~` (Tilde) The path name for your home directory.
- `.` (Period) The path name for your current working directory.
- `..` (Double period) The path name of the parent directory of your current working directory.

Glob characters and their meaning are:

- `?` Match any single character.
- `. (period)` Match multiple characters.
- `[` Open a set of single characters.
- `]` Close the set of single characters. Each character in the set can match a single character at the position specified.

Examples:

```
~/test/tst1.sh
```

Equivalent to specifying the absolute pathname
```
/u/jsmith/test/tst1.sh
```

when your home directory is defined as `/u/jsmith`.

```
./pgma.c
```

Equivalent to specifying the absolute pathname
```
/u/proj1/dev/pgma.c
```
Naming ISPF libraries and data sets

When your current working directory is set to /u/proj1/dev.

```
../test/pgma.c
```

Equivalent to specifying the absolute pathname
```
/u/proj1/test/pgma.c
```

When your current working directory is set to /u/proj1/dev.

```
u/*/*/t?st[123]*
```

Can match /u/harry/test1do and /u/henry/tost2nok.

**Volume serials**

Along with a data set name, you can optionally specify a volume serial. If you do, the system catalog is not used. For example:

```
Volume Serial . . . ______ (If not cataloged)
```

**Volume Serial**

A real DASD volume or a virtual volume residing on an IBM 3850 Mass Storage System. To access 3850 virtual volumes, you need MOUNT authority, which is acquired through the TSO ACCOUNT command or the RACF® TSO AUTH CLASS command.

**Library concatenation**

Whenever the first Group field is accompanied by three additional fields horizontally across the screen, you can enter a library concatenation sequence, which is a series of group names chained together. ISPF searches these groups in the sequence that you enter them.

You can concatenate libraries of the same type, but only libraries that belong to the same project. You will usually concatenate the lowest-level library ahead of the next higher-level library, and so on, in bottom-to-top order. Therefore, concatenation is usually most effective if this search sequence is the same as the library hierarchy.

For example, new library members or members undergoing changes generally reside in libraries used by program developers. A test library may contain members that have been unit tested and are ready for integration test. A master library might contain fully tested members that correspond to a previously released version of the program.

Concatenated libraries must have consistent record formats and logical record lengths. You can use concatenation with these ISPF functions:

- Viewing
- Browsing
- Editing
- Selecting Library Utility (option 3.1) functions:
  - Print index or complete data set
  - Browse, delete, edit, print, rename, or view members
  - Compress data set.
- Copying data sets or members
- Compiling
- Assembling
- link-editing
- SCRIPT/VS processing.

**Note:** You can also use additional input libraries for compilations and assemblies.
Figure 31 shows a sample three-level hierarchy consisting of a set of master libraries, a set of test libraries, and three sets of private development libraries identified by user ID. Using this hierarchy, a typical concatenation sequence for a project of ISPFPROJ, a type of DATA, and a member PGM1 is:

ISPF Library:
- **Project**: ISPFPROJ
- **Group**: JOE
- **Type**: DATA
- **Member**: PGM1

**Concatenation during editing**

Using concatenation during editing provides a way to copy members to your development library. Use the concatenation sequence to search the libraries for the member to edit. The edited member is saved in your development library, the first library in the concatenation sequence, while the unchanged version remains in the:

```plaintext
Library Concatenation
```

```plaintext
Figure 31. Hierarchy of ISPF Libraries
```

In this example, the search for member PGM1 goes through libraries:

- ISPFPROJ.JOE.DATA
- ISPFPROJ.TEST.DATA
- ISPFPROJ.MASTER.DATA
Library Concatenation

test or master library. When the new version is fully tested, you can use the Move/Copy utility (option 3.3) to move the new version to a higher-level library.

**Concatenation during language processing**
The purpose of concatenation during language processing is to:
- Help you include source segments in their proper order when using INCLUDE or COPY statements or when using SCRIPT imbed controls
- Allow debugging of new or changed programs without altering the contents of the test or master libraries.

The output from a compilation or assembly (an object module) or from a link-edit (a load module) is stored in the lowest-level OBJ or LOAD library, the first library in the concatenation sequence.

**Using member selection lists**

A member selection list, also called a member list, is initially an alphabetic list of the members of an ISPF library or TSO partitioned data set. Table 15 provides a quick reference to the primary options that display member lists and their differences. In the Type of Selection column, “Single” means that ISPF processes only the line command that is the closest to the top of the list, ignoring all others. “Multiple” means that you can enter more than one line command simultaneously. The numbers in parentheses refer to notes following the table. See “Member selection list commands” on page 142 for more information about the line commands shown in the table.

<table>
<thead>
<tr>
<th>Primary Options</th>
<th>Type of Selection</th>
<th>Valid Line Commands</th>
<th>Prompt Field Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>View (1)</td>
<td>Single</td>
<td>S,V (4)</td>
<td>No</td>
</tr>
<tr>
<td>Browse (1)</td>
<td>Single</td>
<td>S,B (4)</td>
<td>No</td>
</tr>
<tr>
<td>Edit (2)</td>
<td>Single</td>
<td>S,E (4)</td>
<td>No</td>
</tr>
<tr>
<td>Library (3.1)</td>
<td>Multiple</td>
<td>B,C,D,E,G,M,P,R T,V,W</td>
<td>Yes</td>
</tr>
<tr>
<td>Move/Copy (3.3)</td>
<td>Multiple</td>
<td>B,S (1)</td>
<td>Yes</td>
</tr>
<tr>
<td>Data Set List (3.4)</td>
<td>Multiple</td>
<td>B,C,D,E,G,M,P,R T,V,W (2)</td>
<td>Yes</td>
</tr>
<tr>
<td>Reset (3.5)</td>
<td>Multiple</td>
<td>S</td>
<td>No</td>
</tr>
<tr>
<td>SuperC (3.12)</td>
<td>Multiple</td>
<td>S</td>
<td>No (3)</td>
</tr>
<tr>
<td>SuperCE (3.13)</td>
<td>Multiple</td>
<td>S</td>
<td>No (3)</td>
</tr>
<tr>
<td>Search-For (3.14)</td>
<td>Multiple</td>
<td>S</td>
<td>No</td>
</tr>
<tr>
<td>Foreground (4)</td>
<td>Single</td>
<td>S</td>
<td>No</td>
</tr>
<tr>
<td>Batch (5)</td>
<td>Single</td>
<td>S</td>
<td>No</td>
</tr>
<tr>
<td>Workplace (11)</td>
<td>Multiple</td>
<td>B,C,D,E,G,P MO,R,S,T,V,W</td>
<td>No</td>
</tr>
</tbody>
</table>

**Note:**
1. For the Move/Copy utility, B (browse member) enables you to browse members of an ISPF library or another partitioned data set before moving or copying them without having to use browse on another panel. Then, use S (select) to select the member or members to move or copy. See “Line commands for the move/copy utility” on page 151 for more information.
Using member selection lists

2. When you select M (display member list) line command on a data set list, you can use B (browse member), D (delete member), E (edit member), P (print member), R (rename member), and V (view member). You can also enter TSO commands, CLISTs, and REXX EXECs.

   S (select) is valid also, but only when the B, CO, E, MO, RS, or V line commands are used on a data set list.

3. Instead of a Prompt field, this member list has an OLDMEM field, which you can use to enter the name of a member in the old data set. For more information about this field, see the topic on SuperC Member Lists in the SuperC Utility (Option 3.12) section of the z/OS ISPF User’s Guide Vol III.

4. For your convenience ISPF supports E as a select character from Edit member lists in addition to S and point-and-shoot selection. Similarly, V is supported from View member lists, and B is supported from Browse member lists.

5. When multiple members are selected from a member list that supports multiple selection and all members have been processed, the member list is scrolled such that the last member processed is positioned to the top of the member list display.

Displaying member lists

For each of the primary options listed in the preceding table, except Data Set List (option 3.4), you can display a member list by:

- Leaving the Member field blank for an ISPF library
- Omitting the member name from the name of another partitioned data set
- Entering a pattern as the member name.

   You can use a combination of asterisks and percent signs in the same pattern. However, the pattern, including the asterisks and percent signs, can contain no more than 8 characters. For example, entering this pattern in the Member field:

   Member . . . *prof___

   could display this member list:

   ISFPROF
   ISPPROF
   ISPSPROF
   ISSPRTF
   LOCPRF
   SUCPRF

When using the Data Set List utility (option 3.4), you can display a member list by:

- Entering the M (display member list) line command
- Entering the V (view), B (browse), or E (edit) line command and then using one of the methods described in the preceding list. This applies only if you are editing or browsing members of a partitioned data set.
- Entering the CO (copy) line command
- Entering the MO (move) line command
- Entering the RS (reset) line command.

On any member list, PF10 and PF11 toggle between two different views of the member list data.

Note:

1. The column headers on a member list display (with the exception of Prompt) are point-and-shoot sort fields.
Using member selection lists

2. If you enter a slash in the line command field, the Member List Commands pop-up window shown in the next figure is displayed so that you can select the command you want to use.

3. The line command field is a point-and-shoot field. If you select the line command field beside a member name, the Member List Commands pop-up window shown in the next figure is displayed so that you can select the command you want to use.

4. Member list count fields show an accurate count when the number of members in a PDS or PDSE is less than 100,000. The row value will be truncated after member 99,999 and the total value will be truncated on display of the list if more than 99,999 members exist.

5. The Info command displays the same information as the member list. When the Extended PDS statistics function has been enabled, the extended line counts fields contain data.

Ending member lists

With two exceptions, you can end a member list by entering END (F15) or using = (the jump function) to go to another option. For the two exceptions, SuperC and Search-For member lists, enter RETURN (F16), CANCEL, or =. On these member lists, the END command processes your selections.

ISPF member statistics

On member lists, column headings appear in the national language. The information shown under the column headings contains the ISPF statistics generated for each member. You can print these statistics using option X (print index listing) of the Library utility (option 3.1) or option P (print data set list) of the Data Set List utility (option 3.4). You can also use the SAVE command to write a member list or data set list to the ISPF list data set or to a sequential data set. The statistics are displayed next to each member name.
Using member selection lists

Figure 33 shows an example of a member list with statistics and the 1-character line command field to the left of the member names.

<table>
<thead>
<tr>
<th>Name</th>
<th>Prompt</th>
<th>Size</th>
<th>Created</th>
<th>Changed</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMBLIST</td>
<td>7</td>
<td>2001/01/04</td>
<td>2001/09/11 12:02:41</td>
<td>USERID</td>
<td></td>
</tr>
<tr>
<td>AOPST</td>
<td>10</td>
<td>2002/05/27</td>
<td>2002/05/27 10:38:15</td>
<td>USERID</td>
<td></td>
</tr>
<tr>
<td>APCTOOLS</td>
<td>20</td>
<td>2002/11/29</td>
<td>2003/01/21 09:59:50</td>
<td>USERID</td>
<td></td>
</tr>
<tr>
<td>APPLT1</td>
<td>4</td>
<td>2002/05/22</td>
<td>2002/05/22 09:32:20</td>
<td>USERID</td>
<td></td>
</tr>
<tr>
<td>APPLT2</td>
<td>8</td>
<td>2002/05/22</td>
<td>2002/05/22 09:32:49</td>
<td>USERID</td>
<td></td>
</tr>
<tr>
<td>APPLT3</td>
<td>4</td>
<td>2002/05/22</td>
<td>2002/05/22 09:28:59</td>
<td>USERID</td>
<td></td>
</tr>
<tr>
<td>ASMPROG1</td>
<td>3</td>
<td>2002/01/23</td>
<td>2002/01/23 12:41:02</td>
<td>USERID</td>
<td></td>
</tr>
<tr>
<td>BATCHCMP</td>
<td>4</td>
<td>2002/02/21</td>
<td>2002/02/21 13:04:48</td>
<td>USERID</td>
<td></td>
</tr>
<tr>
<td>CLEDIT</td>
<td>3</td>
<td>2002/06/11</td>
<td>2002/06/11 09:31:02</td>
<td>USERID</td>
<td></td>
</tr>
<tr>
<td>CMSED</td>
<td>39</td>
<td>2002/12/06</td>
<td>2002/12/06 14:10:55</td>
<td>USERID</td>
<td></td>
</tr>
<tr>
<td>COMP</td>
<td>10</td>
<td>2002/10/09</td>
<td>2002/10/09 15:14:44</td>
<td>USERID</td>
<td></td>
</tr>
<tr>
<td>CRZDISP</td>
<td>14</td>
<td>2002/11/14</td>
<td>2002/11/14 15:02:03</td>
<td>USERID</td>
<td></td>
</tr>
</tbody>
</table>

Members that have extended statistics appear highlighted in the member list when highlighting is available. However, the member list does not currently support display of these values. If you want to see all of the statistics, you can scroll the screen either right or left by using PF keys 10 and 11. If you scroll right in this example, the screen looks like the one shown in Figure 34 on page 137. Pressing either key repeatedly results in recycling of the screens.
Member list display panel action bar

The Member List Display panel action bar choices function as follows:

Menu
See the topic about the Primary Option Menu in the z/OS ISPF User's Guide [Vol II] for information about the Menu pull-down.

Functions
The Functions pull-down offers these choices:

1. **Save List** Saves the member list into the list data set.

2. **Change Colors** Displays the Member List Color Change Utility panel (Figure 35 on page 138) to allow you to change one or more of the Member List Field Attributes and press Enter to see the effect immediately. Clearing a field or selecting the Defaults field restores defaults.

Note: You can also display this panel by entering MLC on the Command line.
Using member selection lists

3 Initial Sort View Displays the Enhanced Member List Initial Sort panel (Figure 36 on page 139). This panel enables you to select the field to be sorted on, before the display of an enhanced member list. Member Name is the default View. Some other sort views that you can choose are:

- RECFM=BLK sets the initial view for blocked data set formats such as FB and VB.
- RECFM=U sets the initial view for unformatted data set formats such as Load.
- Any of these conditions result in a default sort view on member name:
  - Library field selected as initial sort view and member list is based on a single data set.
  - Created or Alias selected as initial sort view and extended command member list.
  - A member name is given as input to member list action.

---

Figure 35. Member List Color Change Utility Panel (ISRMLCP)
Note:
1. You can also display this panel by entering MLS on the Command line.
2. When using LLA in FREEZE mode, member lists might appear to be out of SORT order because ISPF uses direct reads of the data set directory for initial member list build and SORT, and uses BLDL for the displayed statistics.

Confirm
Select 1 to set delete confirmation ON. Select 2 to set delete confirmation OFF.

Utilities
See the topic about the Primary Option Menu in the z/OS ISPF User's Guide [Vol II] for details on the Utilities pull-down.

Help
The Help pull-down provides general information about member list topics such as scrolling, pattern matching, and member list statistics, as well as information about supported primary commands and the S line command.

Member list display panel fields
ISPF generates statistics each time you edit a member, unless your edit profile is set to STATS OFF. The fields shown identify the statistics in a member list:

Note: The column headers on a member list display (with the exception of Prompt) are point-and-shoot sort fields.

Name
Name of the member.

Prompt
The Prompt field serves a variety of purposes. You can rename a member by typing the new name to the right of the member name. You can type a slash character (/) in the first position of the Prompt field so you can define additional behaviors for a given action.
Using member selection lists

Also, the Prompt field acts as a status field, showing information about the last action taken for a member. If you run an edit macro or TSO command against a member, the 7-character informational status that is returned in the dialog variable ZPROMPT at the completion of the service is shown in this field.

Lib  Library number. The Lib field appears only if you specify a concatenated sequence of libraries. It shows the library that contains the member. In this example, if the member resides in the second library in the sequence, a 2 appears in the Lib field.

VV.MM  Version number and modification level. The version number is set to 1 and the modification level is set to 0 when the member is created. The modification level is the number of times this version has been modified. For example, 02.15 means version 2, modification 15.

If a member name is just an alternate name for another member, ALIAS appears in this field.

Created  Date this version was created. The format used depends on your national format. For example, 90/06/27 means June 27, 1990 to some, but so does 06/27/90 and 27/06/90 mean it for others.

Changed  Date and time this version was last modified; date is shown in the national format. Time is shown using a 24-hour format. For example, 17:20 means 5:20 p.m..

Size  Current number of lines. The largest number this field can display is 65 535.

Init  Number of lines when the member was first saved. The largest number this field can display is 65 535.

Mod  Number of lines in the current member that have been added or changed. If the data is unnumbered, this number is zero. The largest number this field can display is 65 535.

ID  The user ID of the person who created or last updated this version.

When you use View, Browse, and Edit, the current version and modification level are displayed in the title area, line 1, following the library and member name. You can change the version number, the user ID, or both, with the Reset ISPF Statistics utility (option 3.5) or with the LEVEL and VERSION Edit primary commands. Changing the version number updates most of the other statistics.

If you use the ISPF editor to delete all lines in a member of an ISPF library and then save the member, the statistics show that the member still exists but has a length of zero. To delete a member, including its statistics, use the Library utility (3.1).

Load module library member statistics

Figure 37 on page 141 shows that the ISPF library statistics displayed in a member list have a different format for load module libraries. See “Member list display panel action bar” on page 137 for a description of the action bar choices on this panel.
If you want to see all of the statistics, you can scroll the screen either right or left by using PF keys 10 and 11. Pressing either key repeatedly results in recycling of the screens.

The fields on a member list display for a load module library are:

**Note:** The column headers on a member list display (with the exception of Prompt) are point-and-shoot sort fields.

<table>
<thead>
<tr>
<th>Name</th>
<th>Prompt</th>
<th>Alias-of</th>
<th>Size</th>
<th>TTR</th>
<th>AC</th>
<th>AM</th>
<th>RM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLM$CP</td>
<td>FLM1024</td>
<td>0000A938</td>
<td>01E70E</td>
<td>00</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>FLM$CPI</td>
<td></td>
<td>000000EB</td>
<td>01B20C</td>
<td>00</td>
<td>31</td>
<td>ANY</td>
<td></td>
</tr>
<tr>
<td>FLM$DE</td>
<td>FLM1024</td>
<td>0000A938</td>
<td>01E70E</td>
<td>00</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>FLM$DT</td>
<td>FLM1024</td>
<td>0000A938</td>
<td>01E70E</td>
<td>00</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>FLM$99</td>
<td>FLM1024</td>
<td>0000A938</td>
<td>01E70E</td>
<td>00</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>FLM$</td>
<td></td>
<td>000A9970</td>
<td>01EF16</td>
<td>00</td>
<td>31</td>
<td>ANY</td>
<td></td>
</tr>
<tr>
<td>FLMB</td>
<td>FLMDDL</td>
<td>00122360</td>
<td>029008</td>
<td>00</td>
<td>31</td>
<td>ANY</td>
<td></td>
</tr>
<tr>
<td>FLMCMD</td>
<td>FLMDDL</td>
<td>00122360</td>
<td>029008</td>
<td>00</td>
<td>31</td>
<td>ANY</td>
<td></td>
</tr>
<tr>
<td>FLMCMD</td>
<td>FLM57C</td>
<td>000E6288</td>
<td>02AE13</td>
<td>00</td>
<td>31</td>
<td>ANY</td>
<td></td>
</tr>
<tr>
<td>FLMCNTGN</td>
<td>0001E838</td>
<td>02B81D</td>
<td>00</td>
<td>31</td>
<td>ANY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLMPCSC</td>
<td>00000150</td>
<td>01B22A</td>
<td>00</td>
<td>31</td>
<td>ANY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLMCSLNK</td>
<td>FLM1024</td>
<td>0000A938</td>
<td>01E70E</td>
<td>00</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>FLMCSPOB</td>
<td>00001940</td>
<td>01B20A</td>
<td>00</td>
<td>31</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLMCSPC</td>
<td>FLM1024</td>
<td>0000A938</td>
<td>01E70E</td>
<td>00</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>FLMCPD</td>
<td>FLM1024</td>
<td>0000A938</td>
<td>01E70E</td>
<td>00</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>FLMCPM</td>
<td>FLM1024</td>
<td>0000A938</td>
<td>01E70E</td>
<td>00</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>FLMCCPT</td>
<td>FLM1024</td>
<td>0000A938</td>
<td>01E70E</td>
<td>00</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>FLMXCN</td>
<td>FLM1024</td>
<td>0000A938</td>
<td>01E70E</td>
<td>00</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

**Figure 37. Load Module Library Display (ISRUDMM)**

If you want to see all of the statistics, you can scroll the screen either right or left by using PF keys 10 and 11. Pressing either key repeatedly results in recycling of the screens.

The fields on a member list display for a load module library are:

**Note:** The column headers on a member list display (with the exception of Prompt) are point-and-shoot sort fields.

**Name** Name of the member.

**Prompt** The Prompt field serves a variety of purposes. You can rename a member by typing the new name to the right of the member name. You can type a slash character (/) in the first position of the Prompt field so you can define additional behaviors for a given action. Also, the Prompt field acts as a status field, showing information about the last action taken for a member.

**Lib** Library number. The Lib field appears only if you specify a concatenated sequence of libraries. It shows the library that contains the member. In this example, the member resides in the second library in the sequence.

**Size** Size of the member in hexadecimal. The largest number this field can display is 'FFFFFF'X.

**TTR** Relative block address.

**Alias-of** Name of the member for which this member is an alias. See following note.

**AC** Authorization code.

**AM** Addressing mode.

**RM** Residency mode.
Using member selection lists

Attributes
The member’s attributes:

NX  Not executable
DATA Can be loaded only
OVLY In overlay structure
RF  Refreshable
RN  Can be reentered
RU  Reusable
TEST Module to be tested.

SSI  System Status Index

Note: Question marks (?) are placed in the member list of a load module library for members that have load module directory fields that are not valid. For example, module 14, shown in Figure 37 on page 141 contains alias and authorization code information that is not valid.

Load module library lists displayed using the Data Set List utility (option 3.4) contain an extended line command field and do not display the created date.

Member selection list commands
If the member list is too large for the screen, you can see other parts of the list by using the UP and DOWN scroll commands. These commands are valid for all member list displays. However, because a member list display can be no wider than 80 characters, you cannot use the LEFT and RIGHT scroll commands. See the z/OS ISPF Dialog Developer’s Guide and Reference for more information about scroll commands.

These primary commands can be entered on the Command line in all member list displays:

- **CONFIRM**
- **FILTER**  
  [fieldoperatorvalue]
- **FIND**
- **RFIND**
- **RFIND**
- **LOCATE**  
  [string]
- **RESET**
- **SAVE**  
  [list-id]
These line commands can be used with member lists. These are 1-character commands that are entered to the left of the member name. The option you are using determines:

- Whether you can enter more than one line command simultaneously
- Which line commands are valid
- Whether a Prompt or OLDMEM field is available.

Table 15 on page 133 provides a quick reference to the differences between member lists and the line commands available on each one. The line commands are:

- B (browse member)
- C (copy member)
- D (delete member)
- E (edit member)
- G (reset member)
- M (move member)
- P (print member)
- R (rename member)
- S (select member)
- T (TSO command)
- V (view member)
- W (WS command)
- = (repeat last command).

The S line command is available for all member list displays except the Library and Data Set List utilities. See "S Line Command" on page 147 for more information.

The B line command is available only for the Library, Move/Copy, and Data Set List utilities. The D, E, P, R, and V line commands are available only for the Library and Data Set List utilities.
Using member selection lists

Note: For the Data Set List utility, these line commands are valid only after you enter the M (display member list) line command. See "Library and data set list utility line commands" on page 151 for information.

ISPF ignores any unprocessed member list commands when you leave a member list.

Primary commands

See:

- "Require delete commands to be confirmed (CONFIRM)"
- "Display a subset of members (FILTER)"
- "Find a character string (FIND and RFIND)" on page 145
- "Locate a data string (LOCATE)" on page 145
- "Remove unwanted line commands and messages (RESET)" on page 146
- "Write a member list to a sequential data set (SAVE)" on page 146
- "Select a member (SELECT)" on page 147
- "Sort a member list (SORT)" on page 147
- "Search for members (SRCHFOR)" on page 149
- "Change member list field attributes (MLC)" on page 150
- "Change the default sort order for member lists (MLS)" on page 150
- "Refresh the member lists (REFRESH)" on page 150

Require delete commands to be confirmed (CONFIRM): The CONFIRM primary command controls display of the Confirm Delete panel. Use the format:

```
>>>CONFIRM [ON|OFF]
```

You can use these operands with the CONFIRM command:

ON Tells ISPF to display the Confirm Delete panel when you enter the D (delete data set) line command or TSO DELETE command. This is the default setting.

OFF Tells ISPF not to display the Confirm Delete panel.

For example, this command would tell ISPF not to display the Confirm Delete panel:

```
CONFIRM OFF
```

Note: Confirm is forced ON from the workplace member list with a default action of "D".

Display a subset of members (FILTER): Use the FILTER command to display only the subset of members whose attributes match the supplied comparison argument. You specify the comparison argument in this format:

```
>>>FILTER-field [EQ|NE|LE|LT|GE|GT]-value
```

Note:
1. It is possible to filter the member list using any of the fields on the member list panel except for Prompt.
2. If a member has no value for the specified field, the member will be considered a match for the LT and NE operators.
3. If no members match the filter criteria, the member list remains unchanged.
4. Entering the FILTER command with no parameters displays a panel in which you can select the field and operator and enter the value.
5. The FILTER command can be applied repeatedly to drill down to the subset of members that match a particular combination of attributes.
   For example, to display all the members whose modification level is greater than 02, enter: FILTER MM GT 02
   To further subset this list to display only the members in which more than 200 lines have been modified, enter: FILTER MOD GT 200
6. Enter the REFRESH command to restore the full member list.
7. EQ and NE are the only operators that can be used to filter the fields AM, RM, and ATTR.
8. The value must be specified in the appropriate format for the field type. For example, version number must be specified as a 1-digit or 2-digit number, creation date must be specified in date format, and load module size must be specified as a hex string:

   FILTER VV EQ 02
   FILTER CRE LT 2000/01/01
   FILTER SIZE GT FFFFFF

Find a character string (FIND and RFIND): To find a character string within the specified field use the FIND or the RFIND command. Only one of the fields on the member list can be specified at a time for the search. Use this format:

```
FIND string field
```

NAME is the default field. NEXT is the default operand. For example, this command tells ISPF to find the last occurrence of the character string XLC in the NAME field:

```
FIND XLC NAME LAST
```

ISPF automatically scrolls to bring the line containing the character string to the top of the list.

Use RFIND to repeat the search without reentering the character string.

Locate a data string (LOCATE): To find a data string, you can enter a LOCATE command in the Command field on any member list display. The format of the command is:
Using member selection lists

\[\text{LOCATE}\ string\]

where:

\text{string}  \\
A data string that is used to find an entry based on how the member list is sorted.

ISPF searches the field by which the member list was sorted for an entry equal to string. Either the entry, if found, or else the entry that immediately precedes the entry that you are searching for is scrolled to the top of the list.

For example, if the member list shown in Figure 37 on page 141 is sorted by name, this command causes member MODULE12 to scroll to the top of the list:

\text{LOCATE}\ MODULE12

Remove unwanted line commands and messages (RESET):  The RESET command removes unprocessed line commands and messages that show the result of line command processing.

\[\text{RESET}\]

Write a member list to a sequential data set (SAVE):  The SAVE primary command writes a member selection list to a sequential data set. The format of the SAVE command is:

\[\text{SAVE}\ list-id \ [\text{LONG}]\]

where:

\text{list-id}  \\
Optional. A user-specified qualifier of the sequential data set to which the member list is written.

\text{LONG}  \\
Optional. LONG formats all dates in yyyy/mm/dd format for the member. Additionally, for PDS data sets not containing load libraries, the untranslated member name is written after the member name.

ISPF names the data set:

\text{prefix.userid.list-id.MEMBERS}

\text{prefix}  \\
Your data set prefix, as specified in your TSO user profile. If you have no prefix set, or if your prefix is the same as your user ID, the prefix is omitted and the data set name is \text{userid.list-id.MEMBERS}.

\text{userid}  \\
Your TSO user ID.

The data set is created if it does not exist, or written over if it exists and has compatible attributes.

ISPF writes the member list in the current sort order and as it appears on the display, except for the column headings, line command fields, and anything you have typed on the display.
Using member selection lists

If you omit the list ID, ISPF writes the member selection list in the current sort order, including column headings, to the ISPF list data set. Processing is the same as using option X of the Library utility (primary option 3.1), except that data set information is not printed.

Select a member (SELECT): You can use the SELECT, or S, command as either a primary command or a line command.

SELECT primary command: The SELECT primary command allows you to select one or more members in a member list, whether they are displayed or not. When you enter it on a member list displayed using the Edit option, this command even creates a member if you specify the complete member name of a member that does not exist.

The SELECT command optionally provides a quick method of calling the same line command for one or more members. The format of the SELECT command is:

```
SELECT pattern
```

where:

**pattern**

Either a complete member name or a partial member name that contains one or more asterisks (*), percent signs (%), or both as place holders. See "Displaying member lists" on page 134 for more information about using patterns.

* An asterisk, which means you want to select all members in a member list.

**lcmd**

One of these optional line commands: S (select), B (browse), V (view), D (delete), E (edit), or P (print). On a member list that has an expanded line command field, such as one generated by the M (member list) line command in the Data Set List utility (option 3.4), you can also enter a TSO command, CLIST, or REXX exec. If you do not enter a line command, S is the default.

The member list shown in [Figure 33 on page 136](#) contains members INT and INTTOOL. This command selects these members for printing:

```
SELECT INT* P
```

**S Line Command:** You can enter the S line command at the beginning of a line, ahead of one or more member names. For example, in [Figure 37 on page 141](#), you could select member MODULE9 by moving the cursor to the left of the member name, typing S, and pressing Enter.

**Note:** On member lists displayed with the View, Browse, Edit, Foreground, and Batch options, ISPF processes only the first S entered, ignoring all others.

With the Move/Copy utility and the Convert utility, you can rename members by entering new member names in the Prompt field to the right of the member name.

Sort a member list (SORT): The SORT primary command arranges a member list according to the fields you specify. The sort sequence, ascending or descending, is determined by the fields you choose and is maintained between member list displays.
Using member selection lists

The format of this command is:

```
SORT field1
```

where:

- **field1**
  - The primary field by which the member list is sorted.

- **field2**
  - The secondary field by which the member list is sorted.

- **A|D**
  - The direction in which values are sorted for this field (A=ascending, D=descending).

Table 16 and Table 17 show:
- Valid values for field1 and field2
- The default sort sequence used for each field
- A description of each field name.

**Note:** When multicultural support is enabled, the field names listed in Table 16 and Table 17 may be displayed in the national language. If they are then the SORT command will expect field1 or field2 to be entered in the national language, or the standard abbreviation to be used.

Table 16. Sort Fields for Source Libraries

<table>
<thead>
<tr>
<th>Field</th>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Ascending</td>
<td>Member name</td>
</tr>
<tr>
<td>Lib</td>
<td>Ascending</td>
<td>Library in concatenation sequence</td>
</tr>
<tr>
<td>VV</td>
<td>Ascending</td>
<td>ISPF version number</td>
</tr>
<tr>
<td>MM</td>
<td>Ascending</td>
<td>ISPF modification level</td>
</tr>
<tr>
<td>Created</td>
<td>Descending</td>
<td>Creation date</td>
</tr>
<tr>
<td>Changed</td>
<td>Descending</td>
<td>Date and time last changed</td>
</tr>
<tr>
<td>Size</td>
<td>Descending</td>
<td>Current number of records</td>
</tr>
<tr>
<td>Init</td>
<td>Descending</td>
<td>Initial number of records</td>
</tr>
<tr>
<td>Mod</td>
<td>Descending</td>
<td>Number of modified records</td>
</tr>
<tr>
<td>ID</td>
<td>Ascending</td>
<td>Last user</td>
</tr>
<tr>
<td>Prompt</td>
<td>Descending</td>
<td>Prompt field</td>
</tr>
</tbody>
</table>

Table 17. Sort Fields for Load Libraries

<table>
<thead>
<tr>
<th>Field</th>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Ascending</td>
<td>Member name</td>
</tr>
<tr>
<td>Lib</td>
<td>Ascending</td>
<td>Library in concatenation sequence</td>
</tr>
<tr>
<td>Size</td>
<td>Descending</td>
<td>Load module size</td>
</tr>
<tr>
<td>TTR</td>
<td>Ascending</td>
<td>TTRN of beginning of load module</td>
</tr>
</tbody>
</table>
Table 17. Sort Fields for Load Libraries (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias-Of</td>
<td>Ascending</td>
<td>Member this is an alias of</td>
</tr>
<tr>
<td>AC</td>
<td>Ascending</td>
<td>Authorization code</td>
</tr>
<tr>
<td>AM</td>
<td>Descending</td>
<td>Addressing mode</td>
</tr>
<tr>
<td>RM</td>
<td>Descending</td>
<td>Residency mode</td>
</tr>
<tr>
<td>Attributes</td>
<td>Descending</td>
<td>Load module attributes</td>
</tr>
<tr>
<td>SSI</td>
<td>Ascending</td>
<td>System Status Index</td>
</tr>
<tr>
<td>Prompt</td>
<td>Descending</td>
<td>Prompt field</td>
</tr>
</tbody>
</table>

For example, to sort a member list by size and then by track record, enter:
SORT SIZE TTR

To sort a member list by creation date in ascending order, enter:
SORT CREATED A

**Search for members (SRCHFOR):** Use the SRCHFOR primary command to search the members in the member list for one or more strings of data using the SuperC Utility (see Option 3.14). You may limit the search to excluded or non-excluded members, and control whether migrated members are recalled and searched or not. Use this format:

```
>> SRCHFOR string
```

The `string` parameter is optional but always converted to uppercase. If `string` is specified, the search is performed using the current settings in the MEMBER LIST Srchfor Options panel. For example, if “Any case” is not selected and “Filter list” is selected, the command `SRCHFOR LBLBOX` will list members that contain the string “LBLBOX”. A member that contained “lblbox” but not “LBLBOX” would not be listed.

If `string` is not specified, the MEMBER LIST Srchfor Options panel is displayed. You can use this panel to specify multiple search strings, process options, and output options.

The operands WORD, SUFFIX, and PREFIX can be specified after each search string. Note that the search strings are case sensitive and must match exactly as specified. If you want to disregard case, use the “Any case” process option.

Select the “ASCII” process option to cause ISPF to process the data in the member as ASCII. The data read from the members is converted from ASCII to EBCDIC.

Any search string given in hexadecimal notation is assumed to be in ASCII, matching the original input data. The ASCII code page is assumed to be ISO 8859-1 (CCSID 819). The terminal code page is used as the EBCDIC code page. If the terminal code page cannot be determined code page 1047 is used.

---

2. For the AM and RM columns, the value ANY is considered to be the largest value and will therefore sort to the top of the list.
Using member selection lists

You can use the C (continuation) operand to specify that both the current and previous string must be found on the same line to constitute a match. Otherwise, lines with either string are treated as matching.

You can use the process options “Set EDIT FIND string” and “Set BROWSE FIND string” to initialize the FIND string in Edit and Browse from the first SRCHFOR string. Use the output option “Filter list” to list only the subset of members that contain one of the search strings.

<table>
<thead>
<tr>
<th>Search strings</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>==&gt;&gt; ABC</td>
<td>Either string ABC or EFG may be found in the search members.</td>
</tr>
<tr>
<td>==&gt;&gt; EFG</td>
<td>Either string ABC or EFG may be found in the search members.</td>
</tr>
<tr>
<td>==&gt;&gt; ABC WORD</td>
<td>The two strings (ABC and EFG) must be found on the same line. ABC must be a complete word, while EFG (a continuation definition) can be part of any word.</td>
</tr>
<tr>
<td>==&gt;&gt; EFG C</td>
<td>The two strings (ABC and EFG) must be found on the same line. ABC must be a complete word, while EFG (a continuation definition) can be part of any word.</td>
</tr>
<tr>
<td>==&gt;&gt; ABcD prefix</td>
<td>The string (ABcD) is detected if the case of each letter matches and it is a prefix of a word.</td>
</tr>
<tr>
<td>==&gt;&gt; X'7b00'</td>
<td>The hex string is specified as the search string. The listing must be browsed with 'HEX ON'.</td>
</tr>
<tr>
<td>==&gt;&gt; 'AB C'D'</td>
<td>The string (AB C'D) is specified.</td>
</tr>
</tbody>
</table>

To start the search from the MEMBER LIST Srchfor Options panel, press Enter. To cancel the request and return to the Member List, enter END or CANCEL.

Output is in the listing DSN you specify and in the MESSAGE field in the DSLIST. Sort on this field to consolidate results.

**Change member list field attributes (MLC):** The MLC command displays the Member List Color Change Utility. Use this panel to change one or more of the member list field attributes and to see the change immediately. Clearing a field restores the field's default setting. Use the Defaults point-and-shoot field to restore all field attributes to ISPF default settings.

You can also change the member selection field to use the ISPF Settings input field padding character instead of the member list field default padding character. The member list default padding character for single command selection lists is a period (.), and for multiple command selection lists it is an underscore (_).

**Change the default sort order for member lists (MLS):** The MLS command displays the Enhanced Member List Initial Sort panel. Use this panel to change the default sort order for all ISPF enhanced member lists. You can specify separate sort orders for Load and non-Load data sets.

**Refresh the member lists (REFRESH):** The REFRESH command refreshes the member list, adding new members, adding renamed members under their new names, and deleting members that have been removed from the list. It also resets...
Using member selection lists

the line command field and prompt field on the member list. Unprocessed line commands and input or messages in the prompt fields are erased by the REFRESH command.

--- REFRESH ---

**Line commands**

See:
- “Line commands for the move/copy utility”
- “Library and data set list utility line commands”

**Line commands for the move/copy utility:** On member list displays for the Move/Copy utility (option 3.3), you can enter these line commands at the beginning of a line, ahead of one or more member names:

- **B** Browse the member
- **S** Select the member

The B (browse) line command allows you to browse a member or members to determine whether you really want to move or copy them. You can enter the B line command beside as many members as you want to. The first member that has a B line command beside it is browsed when you press Enter. When you finish browsing each member, the member list is redisplayed along with the unprocessed line commands. Press Enter again to browse the next member.

Once you have decided which members to move or copy, use the S (select) line command to select those members.

**Library and data set list utility line commands:** On member list displays for the Library utility (option 3.1) and the Data Set List utility (option 3.4), you can enter these line commands at the beginning of a line, ahead of one or more member names:

- **B** Browse the member
- **C** Copy the member
- **D** Delete the member
- **E** Edit the member
- **I** Data set information
- **G** Reset the member
- **J** Submit the member
- **M** Move the member
- **P** Print the member
- **R** Rename the member
- **T** TSO command
- **V** View the member
- **W** WS command
- **=** Repeat last command

**Note:**

1. Member lists displayed with the M line command have a 9-character line command field to accommodate TSO commands, CLISTs, and REXX EXECs. For more information, see the topics “M-Display Member List” and “TSO Commands, CLISTs, and REXX EXECs” in the Data Set List Utility (Option 3.4) section of the [z/OS ISPF User’s Guide Vol II](https://www.ibm.com/support/docview.ws/docuid/ibm1077-5801-00). Any data in the prompt field is passed as an argument to any TSO command, CLIST or REXX EXEC. When the ‘=’ command is used the previous prompt data is also passed. Any prompt data that starts with ‘*’ is ignored.
Using member selection lists

2. Where the member to be deleted by the D line command is the name of a primary member, the primary name and all associated alias names are deleted. Where the member is an alias member, only the alias name and its directory entry are deleted.

3. When you use the R line command, enter the new member name in the Prompt field to the right of the member name.

4. Where the data set refers to a partitioned data set load library (RECFM=U), and the member to be renamed is the name of an primary member, the user data component of any associated alias names will be updated to refer to the renamed primary name.

5. The Info command displays the same information as the member list. When extended line counts are available, this panel can be used to display the values. Otherwise these panel fields are blank.

When you press Enter, each member preceded by a line command is processed unless:

- The V (view), B (browse), or E (edit) line command is followed by another line command. When you return to the member list after viewing, browsing, or editing a member, you must press Enter again to call any remaining line commands.
- You enter a line command for a member that was deleted. The names of deleted members are not removed from the member list until it is updated. Remove the line command that precedes the deleted member, and press Enter again. See “Updating a member list” on page 153 for more information.
- You enter an R (rename) line command, but do not put a new name in the Prompt field. Enter a new member name, and press Enter again.

You can then perform one of these actions:

- Enter additional primary or line commands
- Scroll, if necessary, to bring additional members into view
- Enter the END command to return to the previous panel.

The next two figures show before and after examples that print members TEST and TEST1, delete member TEST8, and rename member TEST4 to OLDTEST.
Using member selection lists

Updating a member list

When a member list is redisplayed after the completion of a function or command, it does not include these types of member:

- For View, Browse, and Edit:
  - New members created by recursive Edit calls.
Using member selection lists

- New members created using the CREATE command in EDIT. These do not display in an Enhanced Member List display, but do display when using the traditional member list processing.
- Members created by another user.
- In split-screen mode, members created on another logical screen.
- For Library, Move/Copy, Data Set List, and Convert:
  - New names of members that have been renamed.
  - Fewer member names when members are deleted (Library and Data Set List) or moved (Move/Copy).

To display an up-to-date list, return to the previous panel, leave the member name blank or enter a pattern. See "Displaying member lists" on page 134 for more information about displaying member lists.

To set your system to display a traditional member list when using the E, V, or B commands (Edit, View, Browse) specifically, see the topic about DSLIST Settings in the z/OS ISPF User's Guide Vol II. This can be found in the Utilities (Option 3) topic, in the information about Data Set List Utility Options.

Member list positioning

After selected members have been processed, the member list is redisplayed and positioned based on the members selected and the setting of the Scroll Member List option.

When the Scroll Member List option is selected:
- If a single member is selected, the member list is redisplayed with the selected member scrolled to the top of the display. However, if the CANCEL command is used to exit the selected member, the member list is not scrolled.
- If multiple members are selected and some selections are contained in the last screen displayed before the Enter key was pressed, the first selected member on that screen is scrolled to the top of the display.
- If multiple members are selected and none of the selections are contained in the last screen displayed before the Enter key was pressed, the first selected member in the member list is scrolled to the top of the display.

When the Scroll Member List option is not selected:
- If only single selections are allowed and the selection is contained in the last screen displayed before the Enter key was pressed, the member list is not scrolled. The cursor is positioned in front of the selected member.
- If only single selections are allowed and the selection is not contained in the last screen displayed before the Enter key was pressed, the member list is redisplayed showing the last screen containing the selected member. The cursor is positioned in front of the selected member.
- If multiple selections are allowed and the last selected member is contained in the last screen displayed before the Enter key was pressed, the member list is not scrolled. The cursor is positioned in front of the last selected member.
- If multiple selections are allowed and the last selection is not contained in the last screen displayed before the Enter key was pressed, the member list is redisplayed with the last selected member scrolled to the top. The cursor is positioned in front of the last selected member.
z/OS UNIX directory selection lists

A z/OS UNIX directory selection list is displayed when you specify the pathname for a directory:

- On the View and Edit entry panels (ISPF options 1 and 2).
- On a call to the BROWSE, EDIT, and VIEW services.
- With the edit and view MOVE and COPY primary commands.
- On the EDIT, VIEW, and BROWSE command entry panels displayed when using these primary commands within the browse, view, or edit function.

The directory selection list is almost identical to the list displayed from the z/OS UNIX Directory List Utility (PDF option 3.17). The selection list supports the S (select) line command, allowing you to select the file to be processed with the function that invoked the list.

For the directory list displayed by the edit MOVE and COPY commands, the only valid line commands are S (Select), B (Browse), and L (List subdirectory). For all other directory selection lists, all the line commands supported by the z/OS UNIX Directory List Utility are also supported.

Data set passwords

A Data Set Password field is included on library and data set entry panels:

Data Set Password . . (If password protected)

The Data Set Password field contains the password for OS password-protected data sets. By assigning more than one password to the same data set, you can give some users read-only access while giving others read/write access.

Nondisplay input fields are used so that the passwords do not appear on the screen. When you specify a concatenated sequence of libraries, the password applies to all data sets in the sequence.

If you replace a long password with a shorter password, blank out the remaining spaces of the Data Set Password field.

You can use ISPF with the Resource Access Control Facility (RACF). RACF provides extensive facilities for data set security. However, when using RACF, do not enter a password on the ISPF panels, because RACF relies on your TSO user ID and logon password to identify you and check for proper authorization.

Format definitions

A Format Name field is included on the View Entry Panel and on the Edit Entry Panel:

Format Name . . ________

The Format Name field contains the name of a format definition, which is used to view, browse, or edit a formatted data set. A formatted data set contains records that consist of subfields. The locations and lengths of these subfields are fixed throughout the data set. The formatted data set support in View, Browse, and Edit is particularly useful for data that contains double-byte character (DBCS) data but does not contain shift-out (SO) and shift-in (SI) characters.
Format Definitions

The format name can consist of up to eight alphanumeric characters; the first one must be alphabetic.

A format definition can include Extended Binary Coded Decimal Interchange Code (EBCDIC) fields, DBCS fields, and mixed fields. If the specified format includes a mixed field definition, the Mixed Mode field is ignored, even if you select it. See “Mixed mode” for information. For information about defining formats for formatted data sets, see the topic about the Format Specifications Utility (Option 3.11) in the z/OS ISPF User's Guide Vol II. The Format Specifications utility is provided to support the IBM 5550 terminal that uses DBCS.

When formatted data is displayed, an attribute character that does not reside in the data set and is not stored in the data set precedes each field. Therefore, the column position on the display is different from the column position in the data set.

The allowable maximum length is decreased two bytes per field definition from the standard View, Browse, and Edit allowable maximum length.

Mixed mode

A Mixed Mode field is included on the View Entry Panel and the Edit Entry Panel:

Mixed Mode

The Mixed Mode field specifies whether you want to view, browse, or edit unformatted mixed data that contains both EBCDIC (single-byte) and DBCS (double-byte) characters. Use a slash to select mixed mode. If your terminal does not support DBCS, the value in this field is ignored.

DBCS strings are enclosed with SO (X'0E') and SI (X'0F') characters in unformatted mixed data. The SO character precedes the DBCS character string and the SI character follows the string.

If the view, browse, or edit line contains mixed data that are not valid, ISPF assumes the line can contain only EBCDIC characters. Examples of mixed data that are not valid include:

- Unpaired SO and SI characters
- Incorrect DBCS characters between SO and SI characters
- An odd number of bytes between SO and SI characters.

If you call View, Browse, or Edit from the Library utility (option 3.1) or the Data Set List utility (option 3.4), ISPF assumes that you want to use mixed mode.

If you want to view, browse, or edit DBCS data as EBCDIC data, you must do so in non-mixed mode. You can do this by operating from a terminal that does not support DBCS or by deselecting the Mixed Mode field.

In non-mixed mode, SO and SI characters are not treated as special characters; instead, they are treated as characters that cannot be displayed. Thus, you can view, browse, or edit the data in the conventional way.

You can also view, browse, or edit DBCS data in hexadecimal format, just as you would EBCDIC data. For information about specifying hexadecimal display, see the information about “HEX-Displaying Data in Hexadecimal Format” in the View (Option 1) topic in the z/OS ISPF User’s Guide Vol II.
Mixed Mode

Note: Do not edit a record in hexadecimal format when a DBCS string encroaches on the display boundary.

DBCS data that is not valid is not supported. If DBCS fields or DBCS strings in a mixed field contain any bytes with hexadecimal code ranging from \(X'00'\) to \(X'3F'\), you may get unwanted results.

Partitioned Data Set Extended (PDSE)

Partitioned Data Set Extended (PDSE) is a data set type that is managed by DFSMS. Externally, a PDSE is very similar to a PDS. Internally, the PDSE has a different directory structure, member format, and record format. A PDSE is indistinguishable from a PDS through most interfaces used to access a PDS directory or member. All ISPF functions support the PDSE.

You can concatenate a PDSE library with a PDS library if they have consistent record formats and logical record lengths. All functions in the Library Utility (option 3.1) support PDSEs with the exception of the compress function.

Packed data sets

The packed data set format allows you to use direct access storage devices (DASD) more efficiently. In this format, ISPF replaces any repeating characters with a sequence showing how many times the character is repeated. Before you can properly use data stored in this format as input to processing programs, such as compilers, you must first tell ISPF to unpack and expand the data.

The two requirements for using packed data sets are:

- To store data in packed format:
  - Enter the PACK ON Edit primary command while editing a data set or PDS member.
  - Select the Pack Option field (under To Data Set Options:) when copying or moving members using the Move/Copy utility (option 3.3).

- To unpack and expand packed data for processing, select the Source Data Packed field on the Foreground Selection panel or the Batch Selection panel. You must select this field if any of the input data, including that referred to in COPY or INCLUDE statements, is in packed format.

List and log data sets

ISPF helps you get hardcopy listings of source modules, and maintains a log of significant user activities. These items are kept in data sets called the list data set and the log data set, respectively.

When needed, the two data sets are allocated automatically. They are temporary data sets named:

- prefix.userid.SPFlIST
- prefix.userid.SPFlOGn.LIST

Note: The data set name used can be modified under the operation of site-defined options. See the section "Temporary data set names" in ISPF Planning and Customizing Guide.

prefix The data set prefix in your TSO profile. Used only if it is different from your user ID.
List and Log Data Sets

userid  Your user ID.

n       A number from 0 to 9.

If you have specified in your TSO profile a data set prefix that differs from your user ID, the data set names begin with your data set prefix, followed by your user ID. Once generated, these data sets remain open throughout your ISPF session. However, even though they are open, you can still process them by using the ISPF LIST and LOG commands.

List data set

The list data set is used for temporary storage for data to be printed at a later time. This data includes, for example, data written as a result of:

- Using the LIST service
- Issuing the PRINT, PRINT-HI, PRINTL, or PRINTLHI commands (but not PRINTG)
- Using Option 3 utilities.

To avoid generating an ISPF list data set, do not request any print functions.

Log data set

The log data set is used to capture data that can be useful for such things as diagnosing problems. This data includes, for example, data written as a result of:

- Using the LOG service
- Test and trace data such as:
  - ISPF TRACE mode data
  - Dialog Test option 7.7 dialog trace data.

Use the Log/List pull-down from the ISPF Settings panel action bar to prevent generating the ISPF log data set. However, if you use the Dialog Test option (7), allow generating the log data set because Dialog Test writes trace data to the log when you request it. Also, if Dialog Test finds an unexpected condition, problem data and error messages are written to the log.

Processing the log and list data sets

You can process the log and list data sets either:

- During an ISPF session, using the LOG and LIST commands
- At the end of a session.

ISPF processes (prints, keeps, deletes) only data sets that it has allocated. Any attempt to process a log or list data set that has been preallocated by the user results in an appropriate ISPF message. Any references to ISPF processing of log or list data sets refer to data sets that ISPF has allocated. Users can supply routines to process preallocated data sets after ISPF has terminated.

How to specify log and list data set processing options

The log and list data set processing options can be specified through any of these:

- Use of the LOG and LIST commands during an ISPF session.
- Use of the Log/List pull-down on the ISPF Settings panel for setting default options.
- The ISPF termination panel, which can display when you exit from ISPF. See "Log and list data set processing at the end of a session" on page 161 to find out under what conditions ISPF will display this panel.
Processing the log and list data sets during an ISPF session

The LOG and LIST commands allow you to process the log and list data sets, respectively, at any time during an ISPF session. The log and list data sets must have been allocated. You control the data set processing by specifying on the LOG or LIST command one of the three keyword options: PRINT, DELETE, or KEEP.

If you issue the LOG or LIST command with no parameter specified, ISPF displays a panel that allows you to select the data set processing options. The panels for the LOG and LIST commands are shown in Figure 40 and Figure 41 on page 160, respectively.

Figure 40. Log Data Set Defaults Panel (ISPLLP01)
With the appropriate panel displayed, type in the process option of your choice. If you specify Print data set and delete, you must also specify a Batch SYSOUT class, or local printer ID or writer name. After you have typed in all information that you wish to specify, press Enter to pass the input to ISPF. ISPF takes the specified action for the data set and then returns you to the panel from which you issued the LOG or LIST command. ISPF issues a message indicating whether the action requested was successful.

If you issue the END command from the Log or List Data Set Defaults panel, ISPF returns you to the panel from which you issued the LOG or LIST command without processing the data set.

ISPF initializes the Log or List Data Set Defaults panel fields with the default values specified with the Log/List pull-down on the ISPF Settings panel. If a default disposition of Keep data set has been specified, ISPF translates the value to Keep data set and allocate new data set before displaying the panel. If you modify the process option field, the new value is used to process the data set; however, it is not saved in the system profile. All other fields modified on the panel are saved in the system profile and become the default values the next time the data set is processed.

If you issue the LOG or LIST command with the PRINT, DELETE, or KEEP option, ISPF does not display a panel. Specifying PRINT, DELETE, or KEEP on the command causes data set processing equivalent to specifying Print data set and delete, Delete data set, and Keep data set and allocate new data set, respectively, on the Log or List Data Set Defaults panel.

Two system variables, ZLOGNAME and ZLSTNAME, contain the fully qualified names of the log and list data sets, respectively. If either data set is not allocated or has not been used in the session, the corresponding system variable value is blank.
List and Log Data Sets

Note: The values of ZLOGNAME and ZLISTNAME are set to blank immediately
after the log and list data sets have been processed because the data sets are freed
by the LOG/LIST command processing. A new data set will not be allocated until
it is written to. If you intend to use the log or list data set name for your
processing, be sure to retrieve it before issuing the LOG or LIST command.

The system variables are summarized in [z/OS ISPF Dialog Developer’s Guide and
Reference].

Conditions for using the LOG and LIST commands
You can issue the LOG or LIST command from any command line except in these
situations:
• The command panel for the related log or list data set is active in any logical
  screen.
• The ISPF termination panel is active.
• The data set to be processed is not allocated or was preallocated.
• Dialog Test option 7.5 (Browse ISPF log) is active, and you are attempting to
  process the log data set.

Log and list data set processing at the end of a session
[Figure 42 on page 162] shows the panel that ISPF displays at the end of a session if
one of these is true:
• The initial dialog began with the display of a menu, and the dialog is ended
  with the END command issued from that menu.
• The initial dialog began with the performance of a function, and the function
  ends with a return code of 0.
• The log and list data set processing defaults have not been specified, or the
default values are not valid.

If the application ends with a nonzero return code, the termination panel is not
displayed.

If the termination panel does not display for one of these reasons, the log and list
data sets are processed using the default options.
Data set processing options

For each term defined here, the first value shown is the processing option that you can specify on the Log/List pull-down from the ISPF Settings panel, on the Specify Disposition of Log and List Data Sets panel, or on the Log or List Data Set Defaults panel. The value in parentheses is the corresponding LOG or LIST command parameter.

1. Print data set and delete (PRINT)
   Print the data set, then delete it. You must specify a Batch SYSOUT class or local printer ID or writer name.
   - If the Batch SYSOUT class is specified, ISPF submits a background job to print and deletes the data set or sets.
   - If a local printer ID or writer name is specified, ISPF uses the TSO PRINTDS command to route the data set to the specified printer or external writer program and then deletes the data set.

   **Note:** If you have selected Edit PRINTDS Command on the ISPF Settings panel (option 0), ISPF displays the Local Print Command Edit panel to allow you to intercept and edit the PRINTDS command before it processes. See “Editing the PRINTDS command” on page 163 for additional information.

   ISPF uses file tailoring services to print data on a system printer. Therefore, if this option is specified during an ISPF session, along with a Batch SYSOUT class, file tailoring must not be active on the logical screen from which the LOG or LIST command is issued. If an FTOPEN or FTINCL has been issued without a subsequent FTCLOSE, ISPF issues an appropriate message.

2. Delete data set without printing (DELETE)
   Delete the data set.
List and Log Data Sets

3. Keep data set - Same
   Not applicable to LOG or LIST command. Close and free the data set. For the
   LOG or LIST data set, allocate the same data set at the beginning of the next
   session. If the data set does not exist, ISPF creates one with the same name.

4. Keep data set - New (KEEP)
   Close and free the data set. Allocate a different data set for the next time log or
   list information is generated in this session or in the next session.

Editing the PRINTDS command
If you have selected Edit PRINTDS Command on the ISPF Settings panel (option
0) and you specify a local printer ID or writer name on either the Log and List
Data Set Termination Options panel or the Hardcopy Utility panel, ISPF displays
the Local Print Command Edit panel shown in Figure 43 to allow you to edit the
PRINTDS command before it processes.

The fields on this panel function as follows:

Function to perform
   Specify the print function you want ISPF to perform:
   1   Exit ISPF and issue the PRINTDS command (as edited)
   2   Exit ISPF without printing.

   Note: If you arrive at this panel from ISPF termination processing,
   you will continue with termination and exit the product after your
   print request is issued or canceled.

PRINTDS Header
   This field cannot be edited. It contains the PRINTDS command, the data
   set name, the printer ID or writer name, and the CCHAR operand, if
   appropriate.
List and Log Data Sets

Configuration table PRINTDS operands
These operands operate at a system level and can be altered only in the
ISPF Configuration table.

User PRINTDS operands
Enter additional operands (for example, COPIES or FORMS). These
operands can be edited and are saved in the application command table.

If you enter CANCEL (or select Cancel), the PRINTDS command is not issued. If
you enter END or RETURN or use a jump function, the PRINTDS command is
issued and you receive a completion message.

Foreground and batch output listings
These additional listing data sets are allocated as needed for foreground or batch
processing:

prefix.userid.list-id.LIST
prefix.userid.list-id.LINKLIST
prefix.userid.list-id.TERM
prefix.userid.list-id.TESTLIST

prefix  The data set prefix in your TSO profile. Use it only if you have one and it
          is different from your user ID.

userid  Your user ID.

list-id  The name specified in the List ID field on the foreground or batch data
          entry panel. This name is required for sequential data sets. However, for
          partitioned data sets, the member name becomes the default list-id if the
          List ID field is blank.

The particular data set names you use depend on the foreground or batch
processing option chosen.

For batch processing, the output can either be directed to a list data set or printed
as part of the batch job. When batch processing is finished, you can browse the list
data set, and then use the Hardcopy utility (option 3.6) to print it. Using this
utility, show whether you want to keep the data set or delete it after printing. ISPF
does not delete these data sets when you end ISPF.

For the foreground option, the output listing is directed to a list data set and
automatically displayed for browsing. When you end the browse function, ISPF
displays a selection panel that allows you to choose whether to print, keep, or
delete the list data set. Again, ISPF does not delete this data set when you end
ISPF.

Other temporary data sets
If you are using virtual I/O (VIO), you can allocate space for temporary data sets,
and then VIO assigns them system-generated names. Otherwise, ISPF allocates
temporary control and listing data sets, as needed, for its own internal use. You are
usually not aware of their existence. They are assigned these names:

prefix.userid.SPFTEMPn.CNTL
prefix.userid.SPFTEMPn.LIST
prefix.userid.SPFTEMPn.WORK
prefix.userid.app1-idzzzz.BACKUP
prefix.userid.app1-idzzzz.BACKUPI
prefix.userid.SPFnnn.OUTLIST
Other temporary data sets

Note: The data set name used can be modified under the operation of site-defined options. See the section “Temporary data set names” in ISPF Planning and Customizing Guide.

prefix The data set prefix in your TSO profile. It is used only if you have one and it is different from your user ID.

userid Your user ID.

n A number that corresponds to the logical screen that is active. n can be between 0-9 and A-W for CNTL data sets and between 1-9 and A-W for LIST and WORK data sets, where 1 is the first logical screen, 9 is the ninth logical screen, A is the tenth logical screen, and so on.

appl-id The application ID.

zzzz A number from 0001-0008, or higher if customized, controlled by the edit recovery table (appl-id EDRT for the EDREC service and appl-id EIRT for the EDIREC service) and the number of concurrent edit calls that are active.

nnn A number generated by ISPF, which has a range of 100-999.

These data sets are deleted:
  • By edit recovery when the data sets are no longer needed
  • When you specifically request that they be deleted.
  • By Move/Copy when no IEBCOPY errors are encountered.

Job statement information

ISPF allows you to submit Batch jobs for printing and language processing. However, before submitting a Batch job, you must supply job statement information. For this purpose, four lines are provided on each job submission panel.

You can use the lines that contain //*:
  • As continuation lines by removing the asterisk (*)
  • To enter other JCL statements, such as JOBLIB DD.

If you do not need these lines, you can blank them out. Blank lines are not submitted to the job stream.
Chapter 6. Getting ready to run on MVS

This topic helps you prepare to use ISPF data-element libraries. ISPF data elements include such things as panels and messages. Libraries to be accessed during processing of a dialog must be defined to ISPF. This topic describes the kinds of data-element libraries required when ISPF is active. It also describes and provides examples of how to define library data sets to ISPF, both before starting a session, and dynamically during a session.

Setting up ISPF libraries

To set up libraries for developing and testing dialogs, follow these steps:

1. Set up the panel, message, skeleton, table, and program libraries for the application. Allocate new partitioned data sets.

2. Create a CLIST or REXX command procedure that contains the necessary ALLOCATE statements to allocate the libraries. Concatenate the application libraries ahead of the libraries required by ISPF, as described in "Library concatenation" on page 131.

   Note: You can use the LIBDEF service to dynamically allocate libraries instead of allocating them before invoking ISPF. For more information see the z/OS ISPF Services Guide.

3. Create the panels, messages, and skeletons by editing directly into the application libraries.

4. Create the dialog functions and ensure that the load modules are in libraries accessible to ISPF.

   Functions coded as program modules must be link-edited. When a function is link-edited, the ISPLINK subroutine must be included (explicitly or by automatic call) in the load module. ISPLINK is distributed in load module format and can be placed in a system library for automatic call during link-edit.

5. Invoke the application. To do this, add an ISPSTART command to the command procedure created in step 2. The ISPSTART command should start the application using the appropriate PANEL, CMD, or PGM parameter. Users can start the application by using this command procedure or by selecting the application from the master menu or another menu.

Allocating required ISPF libraries

The libraries described in Table 19 are partitioned data sets required for operation of ISPF in the MVS/TSO environment:

Table 19. Required Partitioned Data Sets

<table>
<thead>
<tr>
<th>DDNAME</th>
<th>Description</th>
<th>RECFM</th>
<th>LRECL</th>
<th>BLKSIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISPPLIB</td>
<td>Panel Library</td>
<td>FB</td>
<td>80</td>
<td>3120</td>
</tr>
<tr>
<td>ISPMLIB</td>
<td>Message Library</td>
<td>FB</td>
<td>80</td>
<td>3120</td>
</tr>
<tr>
<td>ISPSLIB</td>
<td>Skeleton Library</td>
<td>FB</td>
<td>80</td>
<td>3120</td>
</tr>
<tr>
<td>ISPTRLIB</td>
<td>Table Input Library</td>
<td>FB</td>
<td>80</td>
<td>3120</td>
</tr>
<tr>
<td>ISPZLIB</td>
<td>User Profile Library</td>
<td>FB</td>
<td>80</td>
<td>(see note)</td>
</tr>
<tr>
<td>SYSPROC</td>
<td>Command Procedures Lib</td>
<td>FB</td>
<td>80</td>
<td>3120</td>
</tr>
</tbody>
</table>
Note: The block size must be a multiple of 80. You can specify BLKSIZE=0 to use a system determined block size.

The panel, message, skeleton, and table input libraries are distributed with ISPF. As distributed, the libraries have the characteristics listed. These libraries can be reblocked by the installation to a larger block size. In addition, the panel, message, and skeleton libraries can be copied into a variable record format. The maximum length records supported are 160 for panels, 80 for messages, and 255 for skeletons. If data sets having unequal record lengths are to be concatenated, the record format must be variable. If you have preprocessed any panels in the panel library, they must be reprocessed using the ISPFPREP utility after changing the panel library's record size or record format. Preprocessed panels will not function correctly if copied directly to a data set with a different record size or format.

Table 20 contains the LRECL limits which are enforced during ISPF initialization:

<table>
<thead>
<tr>
<th>DDNAME</th>
<th>Description</th>
<th>RECFM</th>
<th>Minimum LRECL</th>
<th>Maximum LRECL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISPPLIB</td>
<td>Panel Library</td>
<td>FB VB</td>
<td>80 84</td>
<td>160 164</td>
</tr>
<tr>
<td>ISPMLIB</td>
<td>Message Library</td>
<td>FB VB</td>
<td>80 84</td>
<td>80 84</td>
</tr>
<tr>
<td>ISPSLIB</td>
<td>Skeleton Library</td>
<td>FB VB</td>
<td>80 84</td>
<td>255 259</td>
</tr>
</tbody>
</table>

The VB libraries require the LRECL to contain 4 extra bytes for the record descriptor word.

Note: Use of the BUFNO parameter on allocation of ISPF libraries is not supported.

Problems can occur when using file tailoring services together with other services (EDIT, COPY, ...) that result in modifying the data set members in the ISPSLIB concatenation. ISPSLIB is the input skeleton library, and it is assumed to be a static library. FTINCL obtains existing DCB/DEB information based on the last OPEN done against ISPSLIB by ISPF.

It is recommended that applications that use file tailoring and that also modify members of ISPSLIB use the LIBDEF service for ISPSLIB to point to the application's skeleton library. Additionally, the application should check for any changes to the data set information (DCB/DEB) before invoking file tailoring services. If there has been a change, then the application should issue a NULL LIBDEF for ISPSLIB and then re-issue the original LIBDEF for ISPSLIB. This forces the ISPSLIB library to close and then re-open.

ISPF assumes that ISPSLIB is a static library. When you make allocations, consider limiting the possibility of extents by allocating the skeleton with the largest optimal block size.

There is a separate profile library for each end user. Its contents are dynamically generated and updated while ISPF is running. There is also a unique profile library for each national language version.
The recommended data set names for these libraries are shown here. Check with your ISPF system administrator to determine if these are the actual data set names used at your installation.

**DDNAME**

**DSNAME**

<table>
<thead>
<tr>
<th>DDNAME</th>
<th>DSNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISPPLIB</td>
<td>ISP.SISPP.xxx</td>
</tr>
<tr>
<td>ISPMLIB</td>
<td>ISP.SISPM.xxx</td>
</tr>
<tr>
<td>ISPSLIB</td>
<td>ISP.SISPS.xxx ISP.SISPSLIB</td>
</tr>
<tr>
<td>ISPTLIB</td>
<td>ISP.SISPT.xxx</td>
</tr>
<tr>
<td>ISPPROF</td>
<td>User-selected. Unique for each national language used.</td>
</tr>
<tr>
<td>SYSPROC</td>
<td>ISP.SISPEXEC ISP.SISPCLIB</td>
</tr>
</tbody>
</table>

`xxx` is a placeholder that represents the specific language you are using:

<table>
<thead>
<tr>
<th><code>xxx</code></th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENU</td>
<td>US English</td>
</tr>
<tr>
<td>DES</td>
<td>Swiss German</td>
</tr>
<tr>
<td>DEU</td>
<td>German</td>
</tr>
<tr>
<td>JPN</td>
<td>Japanese</td>
</tr>
<tr>
<td>ENP</td>
<td>Uppercase English</td>
</tr>
</tbody>
</table>

You should concatenate application libraries for panels, messages, skeletons, and tables ahead of the corresponding ISPF libraries using the ddnames shown. The application libraries must have the same data set characteristics as the required libraries, as described. For example, assume that application XYZ uses these partitioned data sets for panels, messages, skeletons, and tables:

- XYZ.PANELS
- XYZ.MSGS
- XYZ.SKELS
- XYZ.TABLES

You would issue these allocations:

```plaintext
//ISPPLIB DD DSN=XYZ.PANELS,DISP=SHR
// DD DSN=ISP.SISPPxxx,DISP=SHR
//ISPMLIB DD DSN=XYZ.MSGS,DISP=SHR
// DD DSN=ISP.SISPMxxx,DISP=SHR
//ISPSLIB DD DSN=XYZ.SKELS,DISP=SHR
// DD DSN=ISP.SISPSxxx,DISP=SHR
// DD DSN=ISP.SISPSLIB,DISP=SHR
//ISPTLIB DD DSN=XYZ.TABLES,DISP=SHR
// DD DSN=ISP.SISPTENU,DISP=SHR
//ISPPROF DD DSN=USERAA.ISPF.PROFILE,DISP=OLD
//SYSPROC DD DSN=ISP.SISPEXEC,DISP=SHR
// DD DSN=ISP.SISPCLIB,DISP=SHR
```
These allocations must be performed before you start ISPF. They can be done in the user's TSO LOGON procedure by using DD statements, as shown, or in a CLIST or REXX command procedure by using the corresponding TSO ALLOCATE commands.

## Allocating optional ISPF table libraries

The data set described in [Table 21](#) is optional. You must allocate it only if an application uses table services.

**Table 21. Table Data Sets**

<table>
<thead>
<tr>
<th>DDNAME</th>
<th>Description</th>
<th>RECFM</th>
<th>LRECL</th>
<th>BLKSIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISPTABL</td>
<td>Table Output Library</td>
<td>FB</td>
<td>80</td>
<td>(See note)</td>
</tr>
</tbody>
</table>

**Note**: The block size must be a multiple of 80. You can specify BLKSIZE=0 to use a system determined block size.

The table output library must be a partitioned data set. The ISPTABL ddname that defines the table output library can specify the same data set as the table input library, ddname ISPTLIB. The first data set in the ISPTLIB concatenation should be the same as the data set used for ISPTABL. This ensures predictable behavior of dialogs that use table services without specifying the LIBRARY keyword. The output and input data sets must be the same if the updated version of a table is to be reprocessed by the same dialog that updated it.

You must allocate the table output library to ddname ISPTABL before using table services. ISPF includes ENQ logic to prevent simultaneous updates. ISPTABL must not specify a concatenated sequence of data sets. It is possible to have the dialog dynamically allocate ISPTABL and free it upon completion. However, in an environment in which multiple dialogs can be executing, it is more practical to permanently allocate ISPTABL. ISPTABL should be allocated with DISP=SHR, even though it specifies an output data set. An application can use the ISPTABL allocation if it already exists or use a LIBDEF for ISPTABL so that only this application is affected.

For more information about table locking and allocation, see the “Protecting Table Resources” topic in [z/OS ISPF Dialog Developer’s Guide and Reference](#).

## Allocating optional file tailoring ISPF libraries

The data set described in [Table 22](#) is optional. You must allocate it only if an application uses file-tailoring services.

**Table 22. File-Tailoring Data Sets**

<table>
<thead>
<tr>
<th>DDNAME</th>
<th>Description</th>
<th>RECFM</th>
<th>LRECL</th>
<th>BLKSIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISPFILE</td>
<td>File-Tailoring Output</td>
<td>FB/VB</td>
<td>255 max.</td>
<td></td>
</tr>
</tbody>
</table>

File-tailoring output can be written to a temporary sequential data set provided by ISPF. The temporary data set is allocated automatically, so there is no need for the dialog to allocate a data set. The fully qualified name of the temporary data set is available in system variable ZTEMPF. The ddname is available in ZTEMPN. This temporary data set always uses 80-character fixed-length records.
If the temporary data set is not used, file-tailoring output can be written to either a partitioned or a sequential data set. Both fixed-length and variable-length records are permitted. The maximum logical record length is 255 bytes. A data set must be allocated to ddname ISPFILE before starting file-tailoring services. The dialog can dynamically allocate the output library, and can free it upon completion.

For a sequential data set, ISPFILE must be allocated with DISP=OLD. For a partitioned data set, ISPFILE can be allocated with DISP=SHR. ISPFILE must not specify a concatenated sequence of data sets.

### Allocating optional image ISPF library

The data set described in Table 23 is not a required ISPF library. You must allocate it only if an application in GUI mode uses images.

<table>
<thead>
<tr>
<th>DDNAME</th>
<th>Description</th>
<th>RECFM</th>
<th>LRECL</th>
<th>BLKSIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISPILIB</td>
<td>Image Input Library</td>
<td>FB</td>
<td>80</td>
<td>(See note)</td>
</tr>
</tbody>
</table>

**Note:** The block size must be a multiple of 80. You can specify BLKSIZE=0 to use a system determined block size.

If you plan to use ISPF's image support, you must allocate the image input data set to ddname ISPILIB before using the images. You can accomplish this by allocating the image input data set before you invoke ISPF. Image files in Graphics Interchange Format (GIF) should reside in this input data set. This data set must be a partitioned data set. It can be allocated with DISP=SHR.

**Note:** The LIBDEF service does not result in the allocation of ISPILIB.

ISPF ships sample image files in the SISPSAMP library. The ISPF panel ISR@PRIM uses the sample image files ISPFGIFL, ISPFGIFS, and ISPEXIT. You can copy the sample image files to your own image input data set allocated to ddname ISPILIB.

### Allocating CLIST, REXX, and program libraries

Dialog functions that are coded as CLIST or REXX command procedures can be in a procedure library that has been allocated to ddname SYSPROC before starting ISPF. A REXX command procedure can also be allocated to the SYSEXEC ddname. The SYSEXEC ddname is described in [z/OS TSO/E REXX User’s Guide](#).

You must link-edit dialog functions that have been coded as programs. The load module can reside in a step library, a system link library (such as SYS1.LINKLIB), or the link pack area. Alternatively, it can be in a partitioned data set (RECFM=U) allocated to ddname ISPLLIB(DISP=SHR). This library (the ISPF Link Library) can be used for testing new dialogs that contain program-coded functions. If used, it must be allocated prior to starting ISPF. ISPLLIB can specify a concatenated sequence of partitioned data sets.

ISPLLIB is used as a task library when fetching load modules. It is searched before the system link libraries and the link pack area. If ISPF product modules are kept in a step library and a task library (ISPLLIB) is used, the data sets containing the ISPF product modules should be included in the ISPLLIB concatenation sequence as well as the step library concatenation. If a program is to be used in split-screen mode it should be linked as reentrant or nonreusable.
If you are using the ISPF client/server (ISPF C/S) feature or the z/OS UNIX Directory List Utility, the Language Environment® run-time library data sets SCEERUN and SCEERUN2 must be in STEPLIB or LNKLST. The modules in these data sets are not searched for in ISPLLIB.

### Allocating DBCS libraries

DBCS users can use alternate message, panel, and skeleton libraries. To do so, the DBCS versions of the libraries must have been allocated using these ddnames:

- **ISPMALT**
  - Alternate message library
- **ISPPALT**
  - Alternate panel library
- **ISPSALT**
  - Alternate skeleton library.

You can allocate these libraries when you allocate the distributed ISPF libraries. If the alternate libraries are allocated and the terminal has DBCS capability, ISPF uses the alternate libraries. If either of these two conditions is not satisfied, ISPF uses the distributed libraries.

### Selecting the National Language for ISPF sessions

An ISPF session can be run in any installation-supported national language. Before starting ISPF with the ISPSTART command, a user must perform the necessary allocations. For example, command procedure ISPFE might be issued for an English session or ISPFG for a German session.

The same set of ddnames (ISPPLIB, ISPLMLIB, ISPSLIB, ISPLTLIB, and ISPPROF) must be allocated regardless of the command procedure used. At logon time, the necessary allocations for the national language at an installation can be performed by a CLIST or REXX logon procedure.

The language in which a session runs reflects the value (not always the full language name) in the read-only system variable ZLANG, which is available to dialogs running under ISPF. The default value for session languages is specified when ISPF is installed, and is discussed in [z/OS ISPF Planning and Customizing](#). You can override the default session language with an alternate language keyword on the ISPSTART command. See the [z/OS ISPF Dialog Developer’s Guide and Reference](#) for the exact syntax to use.

By specifying a default session language, the installation can ensure that both ISPF initialization messages and the normal session messages are in the default language. Even if you override the session default language with an alternate language using an ISPSTART language keyword, some of the first initialization messages, issued before the command scan, are in the default session language. However, any messages issued after processing of the ISPSTART parameters are in the language specified by the keyword.

If the terminal does not support DBCS, and the default language (or the alternate language selected by the language keyword) requires DBCS, ISPF uses English as the session language.

In cases where the session language requires DBCS, certain messages are always issued in English. These messages are:

- ISPF Main task abend.
Getting ready to run on MVS

- ISPF Subtask abend.
- The following required module for the selected language could not be loaded.
- ISPF command not allowed. You are already under ISPF.
- Invalid environment; TSO/E version 2.1 or later required.
Appendix A. Installing the Client/Server component

The Client/Server component of ISPF takes the form of an application called the ISPF Workstation Agent (WSA). The WSA runs on your local workstation and maintains a connection between the workstation and the ISPF host. The WSA provides:

- The ability to display the ISPF panels using the display function of your workstation operating system (known as running in GUI mode).
- The ability to edit host data on your workstation and workstation data on the host (known as distributed editing).

The WSA installation file is supplied with ISPF and must be downloaded from the host to the local workstation and then installed and initialized before these functions are available.

Installation considerations for the Client/Server component

This topic provides information on these topics that you need to be aware of before you install the WSA component on your workstation:

- Assumptions
- Required hardware and software
- Configuration parameters

Assumptions

The Workstation Agent assumes that you have already established one of these environments:

- A TCP/IP connection exists between your workstation and the host, and your workstation is running under one of these supported operating systems:
  - Microsoft Windows 2000/NT
  - AIX
  - HP-UX
  - Solaris (SUN)
- An APPC connection exists between your Windows workstation and the host

All necessary APPC or TCP/IP communications software must be initialized fully before starting the WSA. The WSA does not attempt to initialize the communications protocol again after it receives the first initialization error.

For information about installation and customization of the APPC or TCP/IP software used on your workstation, consult the documentation supplied by your software vendor. Additional information can be found in Appendix B, "Configuring communications for the ISPF Client/Server," on page 187.

The WSA installation file is downloaded using the ISPF C/S Component Install Utility. This utility provides three ways of obtaining the file:

1. Using File Transfer Protocol (FTP): This option assumes that you have a TCP/IP connection (not APPC), that the TCP/IP on your workstation supports the File Transfer Protocol (FTP) and that FTP is operational at your workstation. An operational FTP requires that:
   - FTP be configured and started on the workstation.
Installing the Client/Server component

- The workstation FTP server (FTPD), or “Daemon,” be active.
- The users have the authority to transfer files. Users are authorized through entries in the FTP Daemon access protection file. See "Configuration parameters" for additional information.

2. Using an existing WSA connection to get a new or updated version: This option assumes that you have already downloaded and installed a previous version of the WSA and is suitable for use by those with TCP/IP or APPC connections.

3. Using a manual method: If your workstation does not support FTP, or you do not have an established connection, it is assumed that you have a means of transferring the ISPF C/S workstation programs down from the host files to the workstation. Although the ISPF C/S Install Utility does not provide an automated download procedure for all users, it does provide information that can assist in the download process.

Required hardware and software

For the hardware and software requirements for ISPF, refer to z/OS Planning for Installation.

Configuration parameters

Before you run the ISPF C/S Install Utility, gather these installation-unique parameters:

IP Address

The TCP/IP address, Internet address, workstation ID, or Internet address alias. Required for download options 1 (FTP) or 2 (existing WSA connection).

Note: for information about how to obtain your IP Address, see “TCP/IP requirements detail” on page 187.

User ID

This is the FTP user name that must have write access to the directory where the workstation ISPF Workstation Agent code is to be installed. Required for download option 1 (FTP) only.

Note: The user authorization is granted through an entry in the FTP Daemon access protection file. If you do not have an entry in this file, you will need to create one. See the TCP/IP documentation for details on creating a user entry in the FTPD Access Protection file.

Password

Password for the FTP User ID specified. Required for download option 1 (FTP) only.

Directory

The workstation directory where you want the utility to install the programmable workstation programs. The user must have write access to this directory. Required for all download options.

Downloading the Workstation Agent

This topic provides a step-by-step method for downloading and installing the Workstation Agent for the first time. For additional information about the ISPF panels used in the process, see the "Download Data Set to Workstation Utility (Option 3.7)" section of the z/OS ISPF User’s Guide Vol II.
Installing the Client/Server component

1. From the Primary Option Menu panel, enter 3.7 (Utilities/Download Data Set to Workstation).

2. On the Download Data Set to Workstation panel, enter option 1 (ISPF C/S Download ISPF C/S component).

3. On the Client/Server Component Download panel, choose your download method.
   - 1. FTP (requires workstation FTP server).
     Download using FTP. ISPF invokes the host FTP client to connect with the FTP server on your workstation and transfer the WSA installation program.
   - 2. ISPF C/S (requires workstation connection).
     Download using ISPF Client/Server. If you already have a workstation agent installed on your workstation, you can use the built-in file transfer services to download a new WSA installation program. This process is described in detail in the 'Download Data Set to Workstation Utility (Option 3.7)' section of the z/OS ISPF User’s Guide Vol II.
     ISPF tells you the name of the file you need to copy. You can copy it with any method you prefer as long as you maintain the data integrity of the WSA installation program. For example, you could use the File Transfer facility in your terminal emulator software. The file must be downloaded as "binary".

4. Specify the type of workstation environment in which you want to use the WSA.
   You must indicate which workstation operating system you want the WSA to run in, by typing the appropriate number in the Workstation Type entry field.

5. In the “Directory to copy file to:” field, specify a directory on your workstation where you want to store the WSA installation program. You can specify a full path name or a relative directory, or leave this field blank. If you leave it blank, the download is made to your home directory (in the case of FTP downloads) or the current directory (in the case of client/server downloads). If you specify a relative directory (one that does not start with a drive letter or slash character) the directory is relative to the FTP home directory or the client/server current directory.

6. You can download into an existing directory, or you can have ISPF create the directory you specify on the panel. If you want ISPF to create the directory on your workstation before copying the WSA installation program, select the Create directory to which the file is to be copied field.

7. By default, the Data set to copy file from: entry field displays the name of the host data set that contains the WSA installation program. This field value varies depending on the naming convention that was used when ISPF was installed. If the WSA installation program has been moved or copied elsewhere, you can change the name of this data set.

8. Press Enter. The remaining steps will differ according to the download method selected.

File Transfer Protocol (FTP) download

When you select choice 1 FTP (requires workstation FTP server) under Download methods on the ISPF Client/Server Component Download panel, ISPF displays the ISPF Client/Server Installation Notice panel shown in Figure 44 on page 178.
Installing the Client/Server component

This panel is a reminder to you that certain conditions must be present for you to use the FTP download method. Aside from the two specific conditions mentioned on the panel, you must also ensure that:

- The path specified in step 5 on page 177 has write access (review your TRUSERS file);
- you have read access to the MVS data base where the ISPF Client/Server Component is stored; and
- The directory where you want to copy the component exists, OR you have selected the Create directory option on the previous panel.

To complete the download:
1. Press Enter. ISPF displays the panel shown in Figure 45 on page 179.
2. Complete the fields on this panel with the appropriate information:

**IP Address or Host Name to OPEN**  
The dotted IP address or name of the workstation ID to which you want to copy the ISPF Workstation Agent installation program.

**User to login**  
The file transfer protocol (FTP) user name. This name must have write access to the directory where the ISPF Workstation Agent code will be installed and is case sensitive.

**Password for login**  
The password for the user ID you want to use at the FTP server. You can leave this field blank if the user id is "anonymous", but be aware that most FTP servers expect a password, even if only an e-mail address.

**Browse FTP output only if an error occurs**  
You can choose to display FTP output only if something wrong happens. Enter "/" in this field to have the option active. If you do not choose this option, ISPF displays all output from the FTP transfer.

3. Press Enter to process this panel.

If you chose not to override the ISPF default concerning display of FTP output, your screen will now show that output. Press Enter to proceed to the next download panel.

If you chose to browse the FTP output only if an error occurs, and there is an error, the error information is displayed. If no error occurred, you proceed to the next download panel.

After a successful FTP download, this panel appears on your screen, telling you to complete the installation from your workstation:
Installing the Client/Server component

The ISPF Client/Server Component workstation install program has been copied to workstation:

in directory:
C:\\TEMP

Run the ISPFINST program to complete the install on your workstation in the directory specified. The program is a self extracting executable that will result in additional files being generated on your workstation.

Command ==> ispfinst.exe

Figure 46. ISPF Client/Server Component Install Program Panel (ISPWSD07)

Manual download

When you select choice 3 Manual under Download methods on the ISPF Client/Server Component Download panel, you are choosing to use your own preferred download method. ISPF displays a panel of instructions necessary for you to do this, as shown in Figure 47.

In order to install the ISPF Client/Server Component workstation code you will need to download (Binary) from the MVS data set where the ISPF Client/Server Component install executable resides to a directory on your workstation.

Complete the install by running the install program on your workstation. The program is a self extracting executable and will result in files being generated on your workstation.

Copy member . : ISPGUINX
From data set : 'ISP.SISPGUI'
To file . . . : ispfinst.exe

Figure 47. Client/Server Component Download Panel (ISPWSD05)
Installing the Client/Server component

The non-editable fields on this panel are:

**Copy member**

The name of the data set member that contains the appropriate installation executable for the selected workstation type.

**From data set**

The name of the MVS data set in which the installation members reside.

**To file**

The name of the file to be created on the selected workstation type.

Running the installation program

After you have downloaded the Workstation Agent Installation program, resume the installation by running the program called ISPFINST.EXE (ispinst on UNIX platforms). This is a self-extracting executable program that generates additional necessary files on your workstation. Follow this procedure:

1. Go to a command line.
2. Change to the directory to which you downloaded the ISPF C/S workstation code. (For AIX, Solaris, and HP UX, use the `chmod` command to give the file execute permission).
3. Enter ISPFINST.
4. A dialog box called Workstation Agent Install Program is displayed.

![Workstation Agent Install Program](image)

**Figure 48. Workstation Agent Install Program**

A Base Install Directory and a national language (such as English) are displayed in this box. Be sure this is the Base Install Directory and the national language that you want to use for the installation of ISPFINST. If the directory is incorrect, type in the correct directory name. If the language is incorrect, scroll down the list of languages and pick the one that is correct.

5. Press Enter or select the Install push button.
6. WSA.EXE, along with several other files, is created in the Base Install Directory that you specified. (For AIX and HP UX, the executable file, called wsa, is created.)
Installing the Client/Server component

7. A final dialog box will appear, instructing you to be sure that the name of the Base Install Directory is in your libpath (or for AIX and HP UX, the PATH environment variable). Select OK to close the dialog box.

8. If the Workstation Agent Install Program dialog box still appears on your screen, select Quit to remove it from your display.

The Workstation Agent window

The Workstation Agent (WSA) window is displayed when you have prepared your workstation to make a connection to the host, by downloading and executing the workstation portion of the Client/Server software.

![Workstation Agent window](image)

Figure 49. The Workstation Agent window

The functions available from the Options pull-down menu on the Workstation Agent window are:

**Information**
Displays the ISPF WSA Information dialog window. The Information dialog shows you the number of active sessions. Each active session represents a connection between the ISPF Client/Server workstation agent and an ISPF host. The dialog also indicates which communications interfaces (such as TCP/IP or APPC) have been initialized on the workstation, and the TCP/IP Port Number, or APPC Transaction Program (TP) Name. Additionally, the WINSOCK Path, if required, is shown in this dialog. The WINSOCK Path is applicable to Windows environments only.

**Enable TCP/IP**
This selection toggles between active and inactive when you click it. The change does not take affect until you restart the Workstation agent.

**Enable APPC**
This selection toggles between active and inactive when you click it. The change does not take affect until you restart the Workstation agent.

**Set TCP/IP Port**
Displays the Workstation Agent Configuration dialog. The Configuration dialog enables you to change the TCP/IP port number. From a TCP/IP perspective, the port number represents the Workstation Agent. If a port number is not specified in the Configuration dialog, the default Workstation Agent port number (see note) is used.

If you specify a port number, the change takes effect after the Workstation Agent is closed and restarted. The change remains in effect for subsequent invocations of the Workstation Agent. If you later decide to change back to the Workstation Agent default port number (see note), delete the port number in the Configuration dialog and restart the Workstation Agent.

If you change the port number, you must also change the port number specified in the ISPF GUI initialization.
Installing the Client/Server component

Note: The default port number is 15339.

Set SNA TP Name
Displays the Workstation Agent Configuration dialog. The Configuration dialog enables you to change the SNA Transaction Program name. From an SNA APPC perspective, the TP name represents the ISPF Client/Server Workstation Agent.

If specified, the name is used to construct the names of the two transaction programs required to support an ISPF Client/Server connection. The ISPF Client/Server function appends different single letters to the supplied name to form the actual names of the two APPC transaction programs. The letter S is appended to the name selected to indicate the send conversation TP name used on the workstation and host. The letter R is appended to the name to indicate the receive conversation TP name.

This option is available if your workstation operating system is Windows APPC. For all other operating systems this option is disabled.

If a TP name is not specified in the Configuration dialog, the default ISPF Client/Server TP name is used. If you specify a TP name, the change takes effect after the ISPF Workstation Agent is closed and restarted. The change remains in effect for subsequent invocations of the ISPF Workstation Agent. If you later decide to change back to the ISPF Client/Server default TP name, delete the TP name in the Configuration dialog and restart the ISPF Workstation Agent.

If you change the TP name, you must also change the TP name specified in the ISPF GUI initialization.

Set WINSOCK Path
This option enables you to specify an explicit path to the socket DLL used by the active TCP/IP subsystem in a Microsoft Windows workstation environment. The specification of an explicit path overrides the default DLL search order for Windows.

For example, if the desired DLL is located in directory D:\TCPDOS\BIN then the path would be specified as follows:

D:\TCPDOS\BIN

The setting takes effect after the ISPF Client/Server workstation agent is closed and restarted. The setting remains in effect for subsequent invocations of the ISPF workstation agent.

This option is only available in a Microsoft Windows environment. For other operating systems this option is disabled.

Set Font
This option enables you to specify the font of your connection through the Workstation Agent window. When you choose “Set font” from the Options pull-down, the Font dialog window appears. Choose from one of the available fonts and sizes that appear in the list. The list of fonts shows the fonts that are registered with your operating system. The change takes place after you re-start the agent, and affects all text in the interface windows except the menu bar and title bar text.

Because the layout of the data in a workstation panel is based on row and column positions, you should use a non-proportional (that is, fixed width or monospaced) font. Using a non-proportional font ensures that the data within the panels lines up correctly. If you use a proportional font, data within columns might not align correctly.
**Installing the Client/Server component**

Note: If you are using an AIX platform, you can change the font of the Workstation Agent by entering this in your .Xdefaults file:

```
DtProcess*dtFont: <font name>
```

For example:

```
DtProcess*dtFont: fixed
```

gives you a fixed font for the Workstation Agent application. However, this setting is overridden when you use the Set Font option on the Workstation Agent window.

**System Register**

This option enables you to bypass the Workstation Agent connection panel when you make a client/server connection. Choosing this function on the Options pull-down on the Workstation Agent window displays the System Register panel.

**The System Register panel**

Figure 50 shows the System Register panel, which is displayed when you select System Register from the Options pull-down on the Workstation Agent panel. The main panel is divided into four parts.

![System Register Panel Diagram]

**Figure 50. System Register Panel**

The Systems section of the panel is where you name the system you want to connect from. Click the Add pushbutton to add a new entry to the systems list. A pop-up dialog box like the one shown in Figure 51 on page 185 appears.
There are entry fields for the system name and an IP or SNA address. If you do not know the system address, you can get it from the WSA connection panel. Until you set up the system register to bypass that panel, it will show you the address of the system that you are connecting from. Simply make your client/server connection, and before accepting the connection, note the address of the system.

After filling in the appropriate information, click OK. After you finish your session with the System Register panel, this system will be available to the users you select without it being necessary for them to see the Workstation Agent connection panel.

You can update or delete system information in the same area of this panel. To update a system, first highlight it in the list by clicking on it. Then click the Update pushbutton. A Change System pop-up dialog box, similar to the Add System window, appears on your screen with the system name and its IP or SNA address already filled in. Modify the information, then click OK.

To delete a system from the System Register files, first highlight the desired system in the list by clicking on it. Then, click the Delete pushbutton. The system and any user IDs associated with it in the System Register files are deleted.

The Connections part of the panel enables you to define how to set the connections that you want to make. The Connections choices are:

**No Auto Connect**
Selecting this choice means that no one connecting to the Workstation Agent can bypass the WSA connection panel for the specified system. In other words, everyone connecting to the WSA must use the connection panel to accept the connection from that system before continuing.

**Auto Connect All**
Everyone connecting to the WSA from the specified system will bypass the connection panel.

**Auto Connect List**
Selecting this choice activates the User IDs section of the System Register panel. When you make this selection, you must enter the ID of at least one user you want to be able to bypass the WSA connection panel when connecting from the specified system. Enter user IDs by clicking on the Add button in the User IDs section of the panel. A pop-up dialog like the

---

*Figure 51. Add System Pop-up Dialog*
Installing the Client/Server component

one shown here is displayed.

![Add User](image)

**Figure 52. Add User Pop-up Dialog**

Enter the user ID of each user you want to automatically connect from the highlighted system. If you are entering only one user ID at this time, click **OK** to update the list and return to the System Register panel. If you are entering a list of IDs, click **Apply** after each entry, then click **OK** after the last one. As you enter IDs, they are added to the list appearing in this section of the System Register panel.

To delete IDs from the list, highlight the line in the list, then click on the **Delete** button located next to the list.

The System Information section of the System Register panel shows the name of the system highlighted in the Systems section of the panel, and its IP or SNA address. This is the system that you are currently working with on the System Register panel. You cannot change the information in the System Information section.

When you are finished working with the System Register panel, you can dismiss it by clicking the **OK** button at the bottom of the panel. During long sessions where you are making many entries, it is recommended that you occasionally click **Apply** to save your entries.
Appendix B. Configuring communications for the ISPF Client/Server

Either a TCP/IP or an SNA APPC connection must be enabled to support ISPF Client/Server (C/S) communication between an MVS host and a workstation. Subsequent topics describe what must be configured at the host and at a workstation for both TCP/IP and SNA APPC connections. Configuration of 3270 terminal type connections that support user logon to MVS TSO is not described here. A configuration fast path is provided at the beginning of the discussion of each type of connection.

Although a few elements of ISPF C/S configuration must be coordinated between a workstation and the MVS host, ISPF users will generally be more concerned with workstation requirements. MVS system or network support personnel will generally be more concerned with MVS host requirements.

Note: All necessary TCP/IP or APPC communications software must be initialized fully before starting the ISPF Workstation Agent component. The WSA does not attempt to initialize the communications protocol again after it receives the first initialization error.

Configuring TCP/IP connections

The table shown in “TCP/IP requirements fast path” provides a fast path for configuring TCP/IP communications to support ISPF C/S.

TCP/IP requirements fast path

Table 24. TCP/IP workstation and host requirements

<table>
<thead>
<tr>
<th>Workstation</th>
<th>MVS host</th>
</tr>
</thead>
<tbody>
<tr>
<td>A numeric internet address must be defined for TCP/IP on the workstation (such as, 9.67.224.96).</td>
<td>The numeric internet address defined for TCP/IP on the workstation must be specified on the ISPSTART command or from the GUI settings panel to invoke ISPF WSA.</td>
</tr>
<tr>
<td>No workstation requirement matching this host requirement</td>
<td>It must be possible for ISPF to locate the TCP/IP configuration data set containing the TCP/IP started task name. See z/OS Communications Server: IP Configuration Guide for a description of the search order for the TCP/IP configuration data set.</td>
</tr>
</tbody>
</table>

TCP/IP requirements detail

An internet address is the 32-bit address assigned to a TCP/IP host and usually represented in dotted decimal form. For example: 9.67.224.96. The address identifies both a physical network within the internet and an individual host within that network.

A TCP/IP host can be an MVS system or a Windows or UNIX workstation. To configure ISPF C/S communications you need to know the dotted decimal internet address associated with the workstation on which the ISPF WSA graphical user interface is to be displayed. In many enterprises the workstation internet address is obtained from a network administrator and assigned to the workstation during
installation and customization of the TCP/IP workstation software. For information about installing and customizing the TCP/IP software used on your workstation, consult the documentation supplied by your TCP/IP software vendor. If you have already installed TCP/IP on your workstation and you do not know your TCP/IP internet address, but you do know your TCP/IP workstation host name (such as JSMITH, ACCT23), you can determine the internet address as follows:

### Table 25. Determining the Internet address

<table>
<thead>
<tr>
<th>If you have this TCP/IP workstation software</th>
<th>do this on the workstation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Windows TCP/IP</td>
<td>From a Windows command prompt enter <code>ipconfig</code> (or <code>winipcfg</code> in some systems). The numeric internet address of the workstation should display in the IP Configuration panel.</td>
</tr>
<tr>
<td>• AIX TCP/IP</td>
<td>From the AIX command prompt enter <code>host &lt;hostname&gt;</code>. The numeric internet address of the workstation identified by <code>&lt;hostname&gt;</code> should appear in the reply.</td>
</tr>
<tr>
<td>• HP-UX TCP/IP</td>
<td>From the HP-UX command prompt enter <code>ping &lt;hostname&gt;</code>. The numeric internet address should appear in the output of the command. Use <code>&lt;Ctrl-c&gt;</code> to end the command.</td>
</tr>
<tr>
<td>• Solaris TCP/IP</td>
<td>From the Solaris command prompt enter <code>ping -s &lt;hostname&gt;</code>. The numeric internet address of the workstation identified by <code>&lt;hostname&gt;</code> should appear in the reply.</td>
</tr>
</tbody>
</table>

UNIX users might need to specify a unique port on the workstation to be used for communication, in addition to the internet address. This is necessary because multiple ISPF WSA components can run on any one UNIX workstation at the same time. The port is specified by appending `:<port#>` to the end of the internet address. By default, all of the TCP/IP protocols are defined in the `/etc/services` file. This file can be viewed so you can choose a port that is not currently reserved by another application. Ports 0 through 1024 are reserved for system use. The port number must also be specified in the ISPF WSA graphical user interface. Do this through the Options pull-down menu, Set TCP/IP Port choice. The port number specified on the host must be the same as the port entered in the ISPF WSA graphical user interface.

The ISPF C/S component uses the C-socket interface for TCP/IP communications and supports z/OS Communications Server: IP. ISPF C/S does not support IPV6 connections.

See [z/OS Communications Server: IP Configuration Guide](#) for a description of how the TCP/IP started task procedure name is resolved from the TCPIPJOBNAME statement in the TCPIP.DATA configuration data set.

### TCP/IP additional tips

The ISPF Workstation Agent is not linked with the application programming interface (API) modules provided by any specific communications software vendor.

The default behavior for accessing a TCP/IP subsystem in Microsoft Windows environments is for the ISPF WSA to try to locate WINSOCK.DLL. In the Microsoft Windows environment, many different vendors supply a winsock.dll so it is critical that the first winsock.dll located by the ISPF WSA contains the TCP/IP API modules actually used by the active TCP/IP subsystem on the workstation. The difficulty of managing multiple winsock.dll files in a given workstation environment is compounded by the fact that the search order used by Windows to
locate a dynamic link library is not constrained by something equivalent to the
CONFIG.SYS LIBPATH statement in OS/2. The Windows search order is as
follows:
1. current directory
2. WINDOWS directory
3. WINDOWS\SYSTEM directory
4. directory containing the executable file for the current task
5. directories listed in the PATH environment variable
6. list of directories mapped in a network

If the dynamic link library cannot be located or if the TCP/IP API modules cannot
be loaded successfully from the selected library then TCP/IP communication will
be inoperative.

You can specify an explicit path to the socket DLL used by the active TCP/IP
subsystem in a Microsoft Windows workstation environment. Specifying an explicit
path overrides the default DLL search order for Windows. The directory defined
by the explicit path is searched for WINSOCK.DLL. The explicit path to the
TCP/IP socket DLL is specified by using the Set WINSOCK Path function available
from the Options pull-down found on the Client/Server Agent Window (see “The
Workstation Agent window” on page 182). This function is useful in environments
such as those using LAN operating systems, in which the directories containing
software from several TCP/IP vendors can be accessed by a workstation.

The Client/Server feature of ISPF (ISPF WSA) takes advantage of the TCP/IP
keepalive socket option to enable ISPF on the host to detect an abnormal end to a
session with the ISPF Workstation Agent on the workstation. Abnormal endings
include such events as powering off or rebooting the workstation before closing the
session with the ISPF WSA agent. The behavior of the keepalive facility differs for
each workstation platform and TCP/IP product supported by ISPF:

Workstation Platform
  Keepalive behavior

Windows
  Reboot (CTRL-ALT-DELETE), power off, and Program Manager close are
detected.

AIX
  Reboot, power off, and shutdown of an AIX host are detected. Reboot
  (CTRL-ALT-BACKSPACE) of an X-station client is detected, but power off
  of an X-station client is detected only when the X-station is powered on
  again.

HP-UX
  Reboot, power off, and shutdown of an HP-UX host are detected.

Solaris
  Reboot, power off, and shutdown of a Solaris host are detected.

If no transmissions have been received over a socket connection to the workstation
during the specified timer interval, TCP/IP sends a keepalive packet to the
workstation. If there is no response on the socket connection or if the socket
connection has been reset, an error is returned and the ISPF C/S session ends on
MVS.

The keepalive timer value for z/OS Communications Server: IP is controlled by the
KEEPALIVEOPTIONS statement in the TCP/IP configuration data set. The
INTERVAL parameter specifies the number of minutes that TCP/IP waits after the last transmission from the workstation before sending a keepalive packet. The SENDGARBAGE parameter specifies whether the packet contains any data. ISPF C/S was tested with the INTERVAL value set to 1 and the SENDGARBAGE value set to TRUE.

Enabling the z/OS Communications Server: IP interface

The TCP/IP started task must be active for you to use ISPF Client/Server.

The TSO/ISPF userid must be authorized to use z/OS UNIX services. Failure to obtain proper authorization will result in message ISPPO22 when an ISPF Client/Server connection is attempted. The "network data" portion of this message will show a TCP/IP socket error code of 156 (EMVSINITIAL).

Authorization status for basic z/OS UNIX services can be determined by entering the OMVS command from the TSO READY prompt. This example indicates that the TSO user is not authorized to use z/OS UNIX services:

```
READY
omvs
FSUM2057I No session was started. This TSO/E user ID does not have access to OpenMVS.
READY
```

It is not necessary to run the z/OS UNIX shell to use the z/OS UNIX socket implementation with ISPF.

Understanding socket TCP/IP error codes

ISPF returns a TCP/IP error code in the "network data" portion of ISPF messages indicating a TCP/IP communication failure. The TCP/IP error codes returned for failing socket calls are documented in z/OS Communications Server: IP Sockets Application Programming Interface Guide and Reference.

Configuring APPC connections

The table shown in "APPC requirements fast path" provides a fast path for configuring APPC communications to support ISPF C/S.

APPC requirements fast path

```
<table>
<thead>
<tr>
<th>Workstation</th>
<th>MVS host</th>
</tr>
</thead>
<tbody>
<tr>
<td>A fully qualified network name must be defined for an SNA-independent LU type 6.2 on the workstation (for example, USIBMNR.NRI41G00).</td>
<td>The fully qualified network name defined for an SNA-independent LU type 6.2 on the workstation must be included in an MVS VTAM® definition for the workstation node and must be specified on the ISPSTART command or from the GUI settings panel to invoke ISPF WSA.</td>
</tr>
<tr>
<td>No workstation requirement matching this host requirement</td>
<td>Either a NOSCHED LU defined with the BASE option or a LU defined with the BASE and SCHED(ASCH) options in the MVS parmib member APPCPMxx is required to support outbound conversation requests from ISPF to the workstation.</td>
</tr>
</tbody>
</table>
```
Table 26. APPC workstation and host requirements (continued)

<table>
<thead>
<tr>
<th>Workstation</th>
<th>MVS host</th>
</tr>
</thead>
<tbody>
<tr>
<td>No workstation requirement matching this host requirement</td>
<td>A VTAM application LU must be defined such that the label of the APPL definition statement and its ACBNAME parameter value match the ACBNAME of the APPC LU defined in MVS parmlib member APPCPMxx.</td>
</tr>
<tr>
<td>The mode #INTER must be defined on the workstation.</td>
<td>The mode #INTER must be defined as an entry in a MVS VTAM mode table associated with the VTAM definition of the workstation node.</td>
</tr>
<tr>
<td>No workstation requirement matching this host requirement</td>
<td>The SYS1.CSSLIB data set containing the APPC callable system services modules must be accessible by ISPF.</td>
</tr>
</tbody>
</table>

**APPC requirements detail**

A fully qualified SNA network name is an identifier up to 17 bytes in length assigned to a SNA logical unit (LU) and represented as two symbols, each up to 8 bytes in length, separated by a period. For example:

`USIBMNR.NRI41G00`

The symbol preceding the period specifies the name of an SNA network and the symbol following the period specifies the name of an LU within that network. For ISPF C/S communications you need to know the fully qualified network name of an independent SNA LU type 6.2 associated with the workstation on which the ISPF WSA graphical user interface is to be displayed. The LU type 6.2 is required by the SNA communications software to support APPC connections to the workstation. For information about installation and customization of the SNA APPC software used on your workstation consult the documentation supplied by your software vendor. If you have already installed SNA APPC communications software on your workstation and you do not know the fully qualified network name of an independent SNA LU type 6.2 you can identify a candidate name as follows:

Table 27. Identifying a candidate name

<table>
<thead>
<tr>
<th>If you have this SNA APPC workstation software</th>
<th>do this on the workstation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• IBM APPC Networking Services for Windows 1.00.02 (base product with CSD #2).</td>
<td>From the &quot;IBM APPC Networking Services&quot; program group select the icon for the Configure program item. Select the Step 1 pushbutton from the Networking Services Configuration window. The fully qualified local LU name for APPC communications will appear in the General Configuration window.</td>
</tr>
</tbody>
</table>

The fully qualified name of the independent LU selected for the ISPF WSA connection on the workstation must also be identified to VTAM on the MVS system on which the ISPF C/S host agent will be invoked. The workstation independent LU can be identified to VTAM by one of these methods:

• by dynamic definition by VTAM during session establishment
• by CDRSC definition statements
• by standard LU definition statements with LOCADDR=0 coded

The VTAM Network Implementation Guide and the VTAM Resource Definition Reference provide details on each method.
An LU definition must also be associated with the ISPF C/S agent on the MVS host to enable the connection to an ISPF WSA agent on a workstation. This LU must be made available to ISPF C/S by an APPC/MVS definition of a base LU to handle outbound connection requests from MVS to the workstation. The LU can be defined in one of two ways in the APPCPMxx member of the MVS parmlib data set by using a LUADD statement that includes one of these combinations of parameters:

- The NOSCHED and BASE parameters
- The SCHED(ASCH) and BASE parameters

If neither LU option is defined outbound session requests from the ISPF C/S agent on the MVS host will be rejected.

A VTAM application LU must be defined in VTAMLST to match the definition in APPCPMxx. Both the label of the APPL statement and the ACBNAME= parameter value must be identical to the value specified for the ACBNAME parameter on the LUADD statement for the APPC/MVS LU defined in MVS parmlib member APPCPMxx.

A logical connection called a session must exist between the LU associated with the ISPF C/S agent on the MVS host and the LU associated with the ISPF WSA agent on the workstation to support APPC communication. To establish a session the LU on the MVS host must send a set of session control parameters called a bind to the LU on the workstation. The parameters are selected based on a mode definition. The ISPF C/S agent on MVS uses the #INTER definition, which is located in the IBM-supplied default VTAM mode table ISTINCLM. The #INTER mode definition is also included among the default definitions supplied by the supported APPC communications software for workstations.

The VTAM node definition for the independent LU used by APPC Networking services for Windows cannot be the same VTAM node definition used for your native or emulated 3270 terminal support. A single node definition cannot be shared by APPC Networking Services for Windows and your 3270 terminal support. Likewise, if you are using a 3270 emulator on the Windows system on which you intend to use APPC Networking Services for Windows you must ensure that different local SNA service access point (SAP) addresses are used by the 3270 emulator and by APPC Networking Services for Windows.

To change the local SAP address for APPC Networking Services for Windows, select the icon for the Configure program item from the IBM APPC Networking Services program group. Select the Step 2 pushbutton from the Networking Services Configuration window, then select Advanced from the LAN Configuration window. The local SAP can be changed on the Advanced LAN Configuration window.

**APPC additional tips**

To activate APPC Networking Services for Windows and Personal Communications/3270 in any order in that environment it was necessary to increase the values of the MINSAP and MINLINK parameters for the IEEE 802.2 protocol driver for NDIS in the CONFIG.SYS file as follows:

```
DEVICEHIGH = C:\LSP\DXME0MOD.SYS N,,2,2
```

where C:\LSP specifies the LAN Support Program directory in which the IEEE 802.2 protocol driver (DXME0MOD.SYS) was installed.
The final two positional parameters specify the minimum service access point and minimum link station values required to support activation of an independent LU 6.2 for APPC Networking Services for Windows and activation of a dependent LU 2 for Personal Communications/3270. If additional LUs are required, for example to support additional dependent LU 2 connections, the minimum service access point and minimum link station values might need to be increased.

Configuration of network support for SNA APPC communications is somewhat more complex than configuration for TCP/IP owing largely to the transition that SNA has made from an essentially static hierarchical networking model to a dynamic peer-to-peer networking model. Recognizing the difficulty that this transition presents to customers trying to configure APPC application support and APPN network support, networking specialists at IBM have produced the Multi-platform APPC Configuration Guide (GG24-4485). This guide is a valuable aid for anyone who wants to understand how to configure APPC and APPN communications in any of the environments in which the ISPF C/S capability can be enabled. It is available from S/390 Redbooks (http://www.ibm.com/redbooks).

One way to simplify APPC configuration is to use the fully qualified network name of the SNA control point defined for your workstation as the independent SNA LU type 6.2 that will support ISPF C/S connections. The control point for your workstation represents various subsystem functions associated with your communications software. The fully qualified network name for the control point can be used not only to identify that set of subsystem capabilities but also to support applications such as the ISPF workstation agent that use an independent SNA LU type 6.2. If you do not know, or cannot remember, the fully qualified name associated with your workstation control point you can determine the name as follows:

**Table 28. Determining the full qualified name**

<table>
<thead>
<tr>
<th>If you have this SNA APPC workstation software</th>
<th>do this on the workstation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• IBM APPC Networking Services for Windows 1.00.02 (base product with CSD #2).</td>
<td>From the &quot;IBM APPC Networking Services&quot; program group select the icon for the Configure program item. Select the <strong>Step 1</strong> pushbutton from the Networking Services Configuration window. The fully qualified local LU name for APPC communications will appear in the General Configuration window.</td>
</tr>
</tbody>
</table>
Appendix C. Listing formats

This topic describes and displays the kinds of listings you can produce using ISPF. The sample listings shown are for illustration purposes only. They are not intended to be exact replicas, because printouts of ISPF listings vary according to the kind of printer you are using.

Source and index listings

If autolist mode is on, the ISPF editor automatically generates a source listing when you finish editing. You can also get source listings and index listings by using these utility options:

Library (3.1)
  P - Print member

Move/Copy (3.3)
  CP - Copy and print
  MP - Move and print

Data Set List (3.4)
  P - Print data set list
  PV - Print VTOC entries

Hardcopy (3.6)
  PK - Print and keep data set
  PD - Print and delete data set

Outlist (3.8)
  P - Print job output

Source listings

Figure 53 on page 196 shows a sample source listing.
Source and index listings

Information at the top of the page includes project, group, type, and member name, current version and modification level, user ID, date and time that the listing was produced, and page number.

A column-positioning line is printed following the heading and preceding the actual data. The start column is printed to the left of each line, indicating the position of the first character in each line that is not a blank.

For ISPF library members with statistics, asterisks are either printed or not printed to the right of each line according to the setting of the modification flag, as follows:
- If the modification flag (columns 79-80) in the line is 00, no asterisks are printed.
- If the modification flag is nonzero but differs from the current modification level of the member, a single asterisk (*) is printed.
- If the modification flag is nonzero and has the same value as the current modification level of the member, two asterisks (**) are printed.

The asterisks allow you to scan the listing quickly for lines that were added or changed since the version was created (*) and for lines that were added or changed during the last update (**).

Index listings

ISPF provides index listings at your request through the X (Print index listing) option of the Library utility (3.1), or the X or PX options of the Data Set List utility (3.4).

Index listings for source libraries

Figure 53 on page 197 shows a sample index listing for an ISPF library.
The sample index listing shown here is for a source library that is managed by the Storage Management Subsystem.

Note: This index listing format is available only when DFSMSdfp is installed and available, and when Storage Management Subsystem is active.

The heading information includes:
- Project, group (library), and type
- Date and time the listing was produced
- Page number.

This is followed by general information about the data set, including current space allocation and utilization. The only differences between this index listing and one for a non-managed source library are:
- Management, storage, and data classes are shown under the GENERAL DATA heading.
- The 1st extent size, secondary quantity, current allocation, and current utilization sizes can be shown in bytes, kilobytes, or megabytes, in addition to tracks, blocks, or cylinders.

The 1st extent quantity, secondary quantity, current allocation, and current utilization sizes are shown in tracks for data sets that are allocated in bytes, kilobytes, or megabytes on a non-managed volume. Following this, the member name and statistics are printed for each member in the data set, arranged in alphabetical order. For sequential data sets, the index listing contains only the general information.

Index listings for load libraries
An index listing for an OBJ library is similar to an index listing for a source library, except that no statistics are maintained. A sample index listing for a LOAD library that is managed by the Storage Management Subsystem is shown in Figure 55 on page 198.
Source and index listings

**Note:** This index listing format is available only when DFSMSdfp is installed and available, and when Storage Management Subsystem is active.

Here, the module attributes are printed to the right of each member name.

---

**Figure 55. Sample Index Listing - Managed Load Library**

The only differences between this index listing and one for a non-managed LOAD library are:

- Management, storage, and data classes are shown under the GENERAL DATA heading.
- The 1st extent size, secondary quantity, current allocation, and current utilization sizes can be shown in bytes, kilobytes, or megabytes, in addition to tracks, blocks, or cylinders.

As in the source library index listing, the 1st extent quantity, secondary quantity, current allocation, and current utilization sizes are shown in tracks for data sets that are allocated in bytes, kilobytes, or megabytes on a non-managed volume.

**ISPF log listings**

**Figure 56 on page 199** shows a sample ISPF log listing. The log contains a message for each significant user action, such as saving edited data, moving members from one data set to another, or submitting a batch job.
Member List Listings

Member list listings

This topic shows samples of member list listings created by the SAVE command. With this command, you can create listings for both source and load libraries.

The sample listings show the format used when you do not specify a list ID.

Member list listings for source libraries

Figure 57 on page 200 shows a sample member list listing for a source library.

These listings contain the relative block address of each member, shown in hexadecimal format, and other characteristics when available.
Figure 57. Sample Member List Listing for a Source Library

Figure 58 shows a sample member list listing for a source library. These listings contain the size of each load module, shown in hexadecimal format, and other characteristics when available.

Member list listings for load libraries

Figure 58 shows a sample member list listing for a source library. These listings contain the size of each load module, shown in hexadecimal format, and other characteristics when available.

200  z/OS V2R1.0 ISPF User's Guide Vol I
Formats for member list listings

Shown here is the format used by the SAVE command to create a member list listing for a source library. The members of a source library have formatted records (RECFM=U).

Table 29. Format of Source Library Member List Listing

<table>
<thead>
<tr>
<th>Starting Column</th>
<th>Length in Characters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
<td>Member name</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>Relative block address in hexadecimal format</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>Version number</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>Modification level</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>Creation date</td>
</tr>
<tr>
<td>40</td>
<td>8</td>
<td>Date last modified</td>
</tr>
<tr>
<td>49</td>
<td>5</td>
<td>Time last modified</td>
</tr>
<tr>
<td>55</td>
<td>5</td>
<td>Current number of lines</td>
</tr>
<tr>
<td>61</td>
<td>5</td>
<td>Initial number of lines</td>
</tr>
<tr>
<td>67</td>
<td>5</td>
<td>Number of modified lines</td>
</tr>
<tr>
<td>73</td>
<td>7</td>
<td>User ID</td>
</tr>
</tbody>
</table>

Shown here is the format used by the SAVE command to create a member list listing for a load library. The members of a load library have unformatted records (RECFM=U).

Table 30. Format of Load Library Member List Listing

<table>
<thead>
<tr>
<th>Starting Column</th>
<th>Length in Characters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
<td>Member name</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>Load module size in hexadecimal format</td>
</tr>
<tr>
<td>33</td>
<td>6</td>
<td>Load module relative block address in hexadecimal format</td>
</tr>
<tr>
<td>40</td>
<td>8</td>
<td>Alias</td>
</tr>
<tr>
<td>49</td>
<td>2</td>
<td>Authorization code</td>
</tr>
<tr>
<td>53</td>
<td>3</td>
<td>Addressing mode</td>
</tr>
<tr>
<td>56</td>
<td>3</td>
<td>Residency mode</td>
</tr>
<tr>
<td>61</td>
<td>18</td>
<td>Load module attributes</td>
</tr>
</tbody>
</table>

Data set list listings

The sample listing in Figure 59 on page 202 shows the format used when you do not specify a data set list ID.
Table 31 shows the format of the data set list written by the SAVE command when a data set list ID is specified.

Table 31. Format of Data Set List Listing

<table>
<thead>
<tr>
<th>Starting Column</th>
<th>Length in Characters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44</td>
<td>Data set name</td>
</tr>
<tr>
<td>46</td>
<td>7</td>
<td>Volume and volume indicator</td>
</tr>
<tr>
<td>53</td>
<td>4</td>
<td>Data set organization</td>
</tr>
<tr>
<td>58</td>
<td>5</td>
<td>Data set record format</td>
</tr>
<tr>
<td>64</td>
<td>5</td>
<td>Data set logical record length</td>
</tr>
<tr>
<td>70</td>
<td>5</td>
<td>Data set block size</td>
</tr>
<tr>
<td>76</td>
<td>6</td>
<td>Data set size in tracks</td>
</tr>
<tr>
<td>83</td>
<td>3</td>
<td>Percentage of used tracks or pages (PDSE)</td>
</tr>
<tr>
<td>87</td>
<td>3</td>
<td>Number of extents used</td>
</tr>
<tr>
<td>91</td>
<td>8</td>
<td>Device type</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>Creation date</td>
</tr>
<tr>
<td>111</td>
<td>10</td>
<td>Expiration date</td>
</tr>
<tr>
<td>122</td>
<td>10</td>
<td>Last reference date</td>
</tr>
</tbody>
</table>
Appendix D. APL and TEXT character conversion

You can use APL keyboards for all models of 3270 terminals, and TEXT keyboards for 3278 and 3279 terminals with ISPF. Figure 60 and Figure 61 on page 204 show that the 2-byte transmission codes for APL and TEXT characters are converted by ISPF into 1-byte codes for internal storage.

![Character conversion diagram](image)

Figure 60. Internal Character Representations for APL Keyboards

© Copyright IBM Corp. 1980, 2013
Figure 61. Internal Character Representations for Text Keyboards
Appendix E. Abbreviations for commands and other values

The list shown in [“Command abbreviations”] includes the commands, field values, keywords/operands, and scroll amounts that can be abbreviated, followed by the allowable abbreviations. To improve readability, avoid using abbreviations in edit macros.

### Command abbreviations

<table>
<thead>
<tr>
<th>Command</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACK</td>
<td>B</td>
</tr>
<tr>
<td>BROWSE</td>
<td>BRO</td>
</tr>
<tr>
<td>CANCEL</td>
<td>CAN</td>
</tr>
<tr>
<td>COLUMNS</td>
<td>COLS, COL</td>
</tr>
<tr>
<td>CONFIRM</td>
<td>CON, C</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>DISPL, DISP, DIS</td>
</tr>
<tr>
<td>FIND</td>
<td>F</td>
</tr>
<tr>
<td>INDEX</td>
<td>I</td>
</tr>
<tr>
<td>LOCATE</td>
<td>LOC, L</td>
</tr>
<tr>
<td>RESUME</td>
<td>RES</td>
</tr>
<tr>
<td>SELECT</td>
<td>SEL, S</td>
</tr>
<tr>
<td>SHOWCMD</td>
<td>SHOW</td>
</tr>
<tr>
<td>SKIP</td>
<td>S</td>
</tr>
<tr>
<td>TOP</td>
<td>T</td>
</tr>
<tr>
<td>UP</td>
<td>U</td>
</tr>
</tbody>
</table>

### Field value abbreviations

<table>
<thead>
<tr>
<th>Field Value</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>%USED</td>
<td>%</td>
</tr>
<tr>
<td>AFTER</td>
<td>AFT, A</td>
</tr>
<tr>
<td>ALIAS-OF</td>
<td>ALIAS</td>
</tr>
<tr>
<td>ATTRIBUTES</td>
<td>ATTR</td>
</tr>
<tr>
<td>BEFORE</td>
<td>BEF, B</td>
</tr>
<tr>
<td>BLOCK</td>
<td>BLKS</td>
</tr>
<tr>
<td>BOTTOM</td>
<td>BOT, B</td>
</tr>
<tr>
<td>CHANGED</td>
<td>CHA, CHG, C</td>
</tr>
<tr>
<td>CREATED</td>
<td>CRE</td>
</tr>
<tr>
<td>CYLINDER</td>
<td>CYLS</td>
</tr>
<tr>
<td>DEVICE</td>
<td>DEV</td>
</tr>
<tr>
<td>EXPIRES</td>
<td>EXP</td>
</tr>
<tr>
<td>GET</td>
<td>G</td>
</tr>
<tr>
<td>MESSAGE</td>
<td>MES</td>
</tr>
<tr>
<td>NO</td>
<td>N</td>
</tr>
<tr>
<td>PUT</td>
<td>P</td>
</tr>
<tr>
<td>REFERRED</td>
<td>REF</td>
</tr>
<tr>
<td>TOP</td>
<td>T, 0</td>
</tr>
<tr>
<td>TRACK</td>
<td>TRKS</td>
</tr>
<tr>
<td>VOLUME</td>
<td>VOL</td>
</tr>
<tr>
<td>YES</td>
<td>Y</td>
</tr>
</tbody>
</table>

### Keyword/Operand, Scroll Amount, and Programming Language Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Abbreviation</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHANGE</td>
<td>CHA, CHG, C</td>
<td></td>
</tr>
<tr>
<td>CHAR</td>
<td>CHARS, CHAR</td>
<td></td>
</tr>
<tr>
<td>COBOL</td>
<td>COB</td>
<td></td>
</tr>
<tr>
<td>DISPLAY</td>
<td>DISPL, DIS</td>
<td></td>
</tr>
</tbody>
</table>
Keyword/Operand Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERROR</td>
<td>ERR</td>
</tr>
<tr>
<td>LABELS</td>
<td>LABEL LAB</td>
</tr>
<tr>
<td>PREFIX</td>
<td>PRE</td>
</tr>
<tr>
<td>SPECIAL</td>
<td>SPE</td>
</tr>
<tr>
<td>STANDARD</td>
<td>STD</td>
</tr>
<tr>
<td>SUFFIX</td>
<td>SUF</td>
</tr>
<tr>
<td>VERTICAL</td>
<td>VERT</td>
</tr>
<tr>
<td>VOLUME</td>
<td>VOL</td>
</tr>
</tbody>
</table>

Scroll amount abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUR</td>
<td>CSR C</td>
</tr>
<tr>
<td>DATA</td>
<td>D</td>
</tr>
<tr>
<td>HALF</td>
<td>H</td>
</tr>
<tr>
<td>MAX</td>
<td>M</td>
</tr>
<tr>
<td>PAGE</td>
<td>P</td>
</tr>
</tbody>
</table>

Programming language abbreviations

<table>
<thead>
<tr>
<th>Language</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSEMBLER</td>
<td>ASSEMBLE ASSEM ASM</td>
</tr>
<tr>
<td>COBOL</td>
<td>COB</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>FORT FOR FTN</td>
</tr>
<tr>
<td>PASCAL</td>
<td>PAS</td>
</tr>
<tr>
<td>PLI</td>
<td>PLIOPT PL1</td>
</tr>
<tr>
<td>SCRIPT</td>
<td>SCR TEXT</td>
</tr>
</tbody>
</table>
Appendix F. Allocation data sets

ISPF issues ALLOC commands based on the ISPF libraries, data set names, list IDs, options, and additional input libraries you enter on the Foreground Assembler H and Foreground VS COBOL II Compile panels. All allocations are done before Assembler H and the VS COBOL II compiler are called.

Because Assembler H and VS COBOL II do not provide a language prompter, ISPF allocates the required data sets for you. Subsequent topics describe the data sets ISPF allocates when you use Assembler H or the VS COBOL II compiler.

**SYSIN data set**

The SYSIN data set is the main input into Assembler H and VS COBOL II. It contains the ISPF libraries or other partitioned or sequential data sets that you enter on the Foreground Assembler H and VS COBOL II Compile panels. This data set is used to find the member that contains the program to be assembled or compiled. For a PDS, the ALLOC command would be:

```
ALLOC FI(SYSIN) DA('proj.lib.type(mem)')
```

For a sequential data set, the ALLOC command would be:

```
ALLOC FI(SYSIN) DA('proj.lib.type')
```

In both commands, lib is the library in which the member or data set was found.

**SYSLIB data set**

The SYSLIB data set contains the ISPF library concatenation sequence used to resolve any copy statements specified in your program. It contains the ISPF libraries or other partitioned or sequential data sets and the additional input libraries you specify on the Foreground Assembler H and VS COBOL II Compile panels. For example:

```
ALLOC FI(SYSLIB) DA('SYS1.MACLIB','proj.lib1.type',...,'proj.lib4.type','additional lib1','additional lib2')
```

**SYSPRINT data set**

The SYSPRINT data set contains the generated output listing. The entry in the List ID field determines the destination of the output listing. If you enter a name in the List ID field, the output listing is stored in a sequential data set:

```
ALLOC FI(SYSPRINT) DA('prefix.listid.LIST')
```

where listid is the name entered in the List ID field. However, if you leave the List ID field blank, ISPF uses the name of the member being assembled or compiled instead of the list ID:

```
ALLOC FI(SYSPRINT) DA('prefix.member.LIST')
```

If you enter an asterisk (*) in the List ID field, ISPF displays the output listing at your terminal, using this command:

```
ALLOC FI(SYSPRINT) DA(*)
```
SYSPRINT data set

See the information about list data sets in the Foreground (Option 4) topic in the z/OS ISPF User’s Guide Vol II for more information.

SYSTEM data set

The SYSTEM data set contains a summary of the information in the listing data set (SYSPRINT). It is displayed at the terminal if the TERM option is used:
ALLOC FI(SYSTEM) DA(*)

SYSLIN data set

The SYSLIN data set must be preallocated before running Foreground (option 4) or Batch (option 5). The SYSLIN data set contains the object module. This object module will be the input when you link-edit. For a PDS, the ALLOC command would be:
ALLOC FI(SYSLIN) DA('proj.lib1.OBJ(mem)')

For a sequential data set, the ALLOC command would be:
ALLOC FI(SYSLIN) DA('proj.lib1.OBJ')

SYSPUNCH data set

The SYSPUNCH data set is the same as the SYSLIN data set. ISPF does not use this data set. The DUMMY parameter on the ALLOC statement means it should not be used:
ALLOC FI(SYSPUNCH) DUMMY

SYSUT1 data set

The SYSUT1 data set is a temporary utility data set used during processing. It is deleted after it is used.

For Assembler H, the format is:
ALLOC FI(SYSUT1) UNIT(SYSDA) NEW DELETE

For VS COBOL II, the format is:
ALLOC FI(SYSUT1) UNIT(SYSDA) NEW DELETE SPACE(1,1) CYLINDER

SYSUT2 to SYSUT7 data sets

The SYSUT2, SYSUT3, ..., SYSUT7 data sets are temporary utility data sets used by VS COBOL II only during processing. They are deleted after they are used:
ALLOC FI(SYSUT2) UNIT(SYSDA) NEW DELETE SPACE(1,1) CYLINDER
ALLOC FI(SYSUT3) UNIT(SYSDA) NEW DELETE SPACE(1,1) CYLINDER
ALLOC FI(SYSUT4) UNIT(SYSDA) NEW DELETE SPACE(1,1) CYLINDER
ALLOC FI(SYSUT5) UNIT(SYSDA) NEW DELETE SPACE(1,1) CYLINDER
ALLOC FI(SYSUT6) UNIT(SYSDA) NEW DELETE SPACE(1,1) CYLINDER
ALLOC FI(SYSUT7) UNIT(SYSDA) NEW DELETE SPACE(1,1) CYLINDER

Note: SYSUT6 and SYSUT7 are required only if VS COBOL II Version 1, Release 3 is being used.
Appendix G. ISRDDN diagnostic utility

ISRDDN is a utility that assists IBM support in evaluating and solving problems. It provides a list of allocated ddnames, a list of system ENQs, a list of data sets causing system ENQ contention, and a means of viewing storage within a TSO user's address space. ISRDDN also provides some facilities for gathering information about your system environment.

You can start ISRDDN by issuing the commands TSO ISRDDN or DDLIST from any ISPF command line.

The allocated ddname list shows you all of the ddnames allocated to your TSO session. From the list you can perform functions such as Edit or Compress against individual data sets, ddnames, or sets of ddnames. You can also perform actions against the entire list of displayed ddnames.

The ENQ list, available by typing ENQ on the allocation list command line, shows you ENQs on your system. You can limit the size of the list by specifying the QNAME, RNAME, job, user or address space name, and system name.

The ENQ contention list, available by typing CON on the allocation list command line, shows you ENQ contentions on your system for data sets (QNAME SYSDSN).

You can Browse storage using the BROWSE primary command from the allocation list. You can only browse storage which an unauthorized program can see (private and common).

ISRDDN can be used to manipulate the data sets that are allocated, but it also provides the ability to answer questions like:

- Where did a module the user has loaded come from?
- What data sets contain a specific member?
- Are the I/O errors and ABENDs the user is getting due to mixed record format allocations?
- Who is currently allocated to "SYS1.BRODCAST"?
- What member names or LPA load modules are duplicated in the user's current allocations?
- How many members are in the allocated libraries and which libraries are empty?
- Is the user running ISPF out of LPA or from STEPLIB?

To invoke the ISRDDN program, type TSO ISRDDN on any ISPF command line.

The Current Data Set Allocations list

When you start ISRDDN, the Current Data Set Allocations list displays, as shown in Figure 62 on page 210.
On the right side of the display is a list of ddnames and their associated data sets. The list of data sets can also contain indicators of DUMMY allocations, subsystem files, or allocations to the terminal. The ddname is shown in white, unless the first data set in the concatenation is scrolled off the top of the screen. If the first data set in a concatenation is not on the screen, the ddname is shown in yellow.

In the center of the display is a column of 1-character input fields, preceded by greater-than signs (>). These input fields are used for line commands such as E for Edit and I for Information. For data set with an XTIOT, this input field may be unavailable if XTIOT support is not enabled in the ISPF configuration table. Data sets with an XTIOT have the data set name displayed in yellow. A column with a heading of X is displayed next to the ENQW column. A value of Y is displayed in this column if the data set has an XTIOT. This column is shown in Figure 64 on page 212.

The left side of the display contains columns of information about individual data sets. When you scroll right or left, the left side of the screen changes. Initially, the left side of the screen contains the volume name and disposition. If the disposition is red, there are other jobs waiting to use this data set as shown. You can use the Q line command to see what jobs are waiting. You can view the VTOC information for a volume by placing the cursor on the volume name and pressing the Enter key.

ISRDDN automatically checks for mixed concatenations when it is started. If you have concatenations of mixed data set types or formats, you are shown a message to that effect when you press the Enter key or scroll the first time. ISRDDN also checks for mixed concatenations when you use the RESET command.

If you scroll right once, you see the attributes of each data set, as shown in Figure 63 on page 211.
For some types of allocations, such as subsystem allocations, you might see different information. If you have mixed concatenations, a message with this information appears when you press the Enter key or scroll the first time. You can suppress this message for future innovations of ISRDDN by using the CHECK OFF command.

If you scroll right a second time, you see information that includes whether the ddname is open and if so, by how many active DCBs, as shown in Figure 64 on page 212.

<table>
<thead>
<tr>
<th>Blksz</th>
<th>Lrecl</th>
<th>RCFM</th>
<th>Org</th>
<th>Act</th>
<th>DDname</th>
<th>Data Set Name</th>
<th>Actions: B E V M F C I Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>27920</td>
<td>80</td>
<td>FB</td>
<td>PO</td>
<td>&gt;</td>
<td>ALLOCPOS</td>
<td>SYS2.SYSPLEXD ALLOCLIB</td>
<td></td>
</tr>
<tr>
<td>27998</td>
<td>1017</td>
<td>VB</td>
<td>PO</td>
<td>&gt;</td>
<td>ASMLANGX</td>
<td>PDFTDEV.COMMON.WDBLANGX</td>
<td></td>
</tr>
<tr>
<td>4096</td>
<td>4096</td>
<td>F</td>
<td>PS</td>
<td>&gt;</td>
<td>HASPIDX</td>
<td>SYS2.ISD1.HASPINDEX</td>
<td></td>
</tr>
<tr>
<td>27920</td>
<td>80</td>
<td>FB</td>
<td>LIB</td>
<td>&gt;</td>
<td>ISPILLIB</td>
<td>PDFTDEV.STG.GIF</td>
<td></td>
</tr>
<tr>
<td>27920</td>
<td>80</td>
<td>FB</td>
<td>LIB</td>
<td>&gt;</td>
<td>PDFTDEV.INT.GIF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27920</td>
<td>80</td>
<td>FB</td>
<td>LIB</td>
<td>&gt;</td>
<td>PDFTDEV.FVT.GIF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6144</td>
<td>**</td>
<td>U</td>
<td>PO</td>
<td>&gt;</td>
<td>ISPLLIB</td>
<td>WDB.WDBDEV.LOAD</td>
<td></td>
</tr>
<tr>
<td>6144</td>
<td>**</td>
<td>U</td>
<td>PO</td>
<td>&gt;</td>
<td>PDFTDEV.USERID.LOAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6144</td>
<td>**</td>
<td>U</td>
<td>PO</td>
<td>&gt;</td>
<td>PDFTDEV.COMMON.LOAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6144</td>
<td>**</td>
<td>U</td>
<td>LIB</td>
<td>&gt;</td>
<td>PDFTDEV.STG.LOAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6144</td>
<td>**</td>
<td>U</td>
<td>LIB</td>
<td>&gt;</td>
<td>PDFTDEV.INT.LOAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6144</td>
<td>**</td>
<td>U</td>
<td>LIB</td>
<td>&gt;</td>
<td>PDFTDEV.FVT.LOAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32760</td>
<td>**</td>
<td>U</td>
<td>PO</td>
<td>&gt;</td>
<td>ISPFTEST.LOAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32760</td>
<td>**</td>
<td>U</td>
<td>PO</td>
<td>&gt;</td>
<td>SYSL.DFQLLIB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32760</td>
<td>**</td>
<td>U</td>
<td>PO</td>
<td>&gt;</td>
<td>SYSL.DGTLLIB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Command ===> Scroll ===> PAGE

F1=Help   F2=Split   F3=Exit   F5=Rfind   F7=Up   F8=Down   F9=Swap
F10=Left   F11=Right   F12=Cancel

Figure 63. Data Set Attributes in ISRDDN
You also see the indicator \*SMS\* if the data set is SMS-managed, and information about jobs waiting on the resource. For JES files you might see additional information such as the class and the writer name.

Some primary commands, MEMBER and COUNT, for example, put messages in a fourth status screen [Figure 65].

### Figure 64. Additional DD Information

You also see the indicator \*SMS\* if the data set is SMS-managed, and information about jobs waiting on the resource. For JES files you might see additional information such as the class and the writer name.

Some primary commands, MEMBER and COUNT, for example, put messages in a fourth status screen [Figure 65].

### Figure 65. Additional DD Information
If messages exist and you scroll right again, you see the messages. The message screen is only shown if messages exist. If messages do not exist, a third scroll to the right returns you to the initial screen.

**Using commands on the displayed list**

The Current Data Set Allocations list supports both primary commands and line commands. The *displayed list* is the list of ddnames that you can see by scrolling up and down. You can use primary commands to limit what is displayed in the list. Many of the primary commands work only on the contents of the displayed list.

ISRDDN can also create pseudo-ddnames that show useful data set names. For example, the LPA command adds two pseudo-ddnames, LINKLIST and LPALIB, which contain lists of the current link list and LPA libraries.

### Allocation list primary commands

Primary commands are used to limit the contents of the displayed list, to add pseudo-ddnames, to operate on all the contents of the displayed list and to invoke other ISRDDN options.

All primary commands can be invoked with their minimum unique names. For example, MEMBER can be abbreviated as M, while CLIST can be abbreviated as CL. The allocation list primary commands follow.

You can specify an initial primary command when you start ISRDDN. For example, if you enter `DDLISTB 10.??` on an ISPF command line, you will immediately browse the storage containing the TCB control block. When you exit the Browse screen, you are not returned to the DD allocation list. This feature is useful for calling ISRDDN from within a program when, for example, you want to limit the list to specific dd names, view ENQs, save the current allocations, or browse storage.

#### Only (O) and Exclude (EX, X)

ONLY and EXCLUDE are used to limit the ddnames in the displayed list. They take one operand: a whole or partial ddname. For example, the command `O PLI` causes the list to contain only ddnames that contain the string "PLI", such as STEPLIB and ISPPLIB.

The ONLY and EXCLUDE commands are useful when you want to limit the ddnames or pseudo-ddnames that are operated on by commands like MEMBER and DUPLICATES. They are also helpful in reducing the size of the displayed list for easier viewing.

#### Find (F) and Locate (L)

FIND and LOCATE search the list for a string. LOCATE looks only at ddnames and always locates the first matching ddname. FIND looks at everything currently in the displayed list and finds the next occurrence of the string following the current cursor position. You can repeat a FIND operation by pressing the RFIND key.

When a string is found by FIND, the string is highlighted and the cursor is placed on the string. When a string is found by LOCATE, the string is highlighted and the cursor is placed in the line command area next to the located ddname.

#### Reset (R)

The RESET command rebuilds the list. In most screen formats the list is automatically rebuilt when you press Enter. However, if you have used the
COUNT command or the MEMBER command and have messages showing in the list, you might need to use the RESET command to refresh the list.

Short (S) and Long (LON)

The SHORT and LONG commands alter the format of the list. The SHORT command places the ddname of a concatenation next to the first data set (as shown in Figure 62 on page 210). The LONG command formats the list with ddnames of concatenations placed on a separate line before the data set names (as shown in Figure 66).

<table>
<thead>
<tr>
<th>Volume</th>
<th>Disposition</th>
<th>Act</th>
<th>DDname</th>
<th>Data Set Name</th>
<th>Actions: B E V M F C I Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>D$SY01</td>
<td>SHR,KEEP &gt;-</td>
<td>-</td>
<td>ALLOCPDS</td>
<td>SYSPLEXD.ALCOLIB</td>
<td></td>
</tr>
<tr>
<td>D$I02</td>
<td>SHR,KEEP &gt;-</td>
<td>-</td>
<td>ASMLANGX</td>
<td>PDFDDEV.COMMON.WDBLANGX</td>
<td></td>
</tr>
<tr>
<td>D$I01</td>
<td>SHR,KEEP &gt;-</td>
<td>-</td>
<td>HASPINDEX</td>
<td>SYSPLEXD.ALCOLIB.HASPINDEX</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASMLANGX</td>
<td>PDFDDEV.COMMON.WDBLANGX</td>
</tr>
<tr>
<td>D$I04</td>
<td>SHR,KEEP &gt;-</td>
<td>-</td>
<td>PDFTDEV.STG.GIF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D$I03</td>
<td>SHR,KEEP &gt;-</td>
<td>-</td>
<td>PDFTDEV.IN.T.GIF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D$I03</td>
<td>SHR,KEEP &gt;-</td>
<td>-</td>
<td>PDFTDEV.FVT.GIF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D$I04</td>
<td>SHR,KEEP &gt;-</td>
<td>-</td>
<td>PDFTDEV.FVT.GIF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D$I04</td>
<td>SHR,KEEP &gt;-</td>
<td>-</td>
<td>PDFTDEV.STG.GIF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D$PP02</td>
<td>SHR,KEEP &gt;-</td>
<td>-</td>
<td>WDB.WBDEV.LOAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D$I04</td>
<td>SHR,KEEP &gt;-</td>
<td>-</td>
<td>PDFTDEV.USERID.LOAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D$I03</td>
<td>SHR,KEEP &gt;-</td>
<td>-</td>
<td>PDFTDEV.COMMON.LOAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D$I02</td>
<td>SHR,KEEP &gt;-</td>
<td>-</td>
<td>PDFTDEV.STG.LOAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D$I02</td>
<td>SHR,KEEP &gt;-</td>
<td>-</td>
<td>PDFTDEV.IN.T.LOAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D$I02</td>
<td>SHR,KEEP &gt;-</td>
<td>-</td>
<td>PDFTDEV.FVT.LOAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D$I04</td>
<td>SHR,KEEP &gt;-</td>
<td>-</td>
<td>PDFTDEV.FVT.LOAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D$I03</td>
<td>SHR,KEEP &gt;-</td>
<td>-</td>
<td><a href="mailto:PDFTOOL.FLM@SCAN.LOAD">PDFTOOL.FLM@SCAN.LOAD</a></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D$I05</td>
<td>SHR,KEEP &gt;-</td>
<td>-</td>
<td>ISPFTEST.LOAD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Command ===> Scroll ===> PAGE
F1=Help  F2=Split  F3=Exit  F5=Rfind  F7=Up  F8=Down  F9=Swap
F10=Left  F11=Right  F12=Cancel

Figure 66. Current Data Set Allocations List in LONG Format

The SHORT format shows more information on one screen. Use the LONG format when you want to use line commands that operate on whole concatenations, such as E and V, on only the first data set in a concatenation.

Member (M)

The MEMBER command is a very useful command in ISRDDN. MEMBER searches the displayed list (or just ddnames containing a given string) for a member whose name matches a pattern. For example, the command M ISRSUBS searches the data sets in the displayed list, the job pack area, and the link pack directory for members named ISRSUBS. Data sets that contain the member are flagged with a message on the left side of the list, as shown in Figure 67 on page 215.
If the name is the name of a loaded module in the job pack area or LPA, you also see a panel similar to the one in Figure 69 on page 218.

When a member name is used on the MEMBER command (such as, M ISRSUBS) and an E, V, or B line command is used next to a data set in which that member is found, ONLY that member is Edited, Viewed, or Browsed. When the M line command is used, the member list is shown with the selected member at the top of the list.

When a member name pattern is used on the member command (such as, M ISR*), the E, V, B, and M line commands display member lists with members that match the given pattern.

Use the MEMBER command in situations when you do not know from where a member is coming or when you suspect that you might be accessing the wrong copy of a member. For example, if you are developing ISPF panels and you do not see your version of the panel being displayed, you can issue the MEMBER command to search for other copies of the panel.

Usually the MEMBER command operates on the entire displayed list. You can add a second operand that is a partial ddname. For example, the command M ISRSUBS PL searches only ddnames containing the string PL, such as ISPLLIB and STEPLIB. This avoids having to use the ONLY command to limit the search.

Clist (CL) or Save (SA)

The CLIST command creates a CLIST that contains TSO ALLOCATE statements to reproduce the allocations in the displayed list. The CLIST is saved in a sequential data set named 'userid.ISRDDN.CLIST' or 'prefix.userid.ISRDDN.CLIST'. If the ISPF configuration table field USE_ADDITIONAL_QUAL_FOR_PDF_DATA_SETS is set to YES, an additional qualifier defined with the ISPF_TEMPORARY_DATA_SET_QUALIFIER field is included before the ISRDDN qualifier. You can use the command name SAVE instead of CLIST.
Use this command when you want to change allocations for testing purposes. For example, to add a panel library to your ISPPLIB concatenation:

- Enter ISRDDN
- Type O ISPPLIB to limit the displayed list to ddname ISPPLIB
- Type CLIST to create and edit the ISRDDN.CLIST data set
- Change the ALLOCATE statement to add your data set
- Exit ISPF
- Execute the CLIST (that is, EX ISRDDN)

Like the MEMBER command, you can add a whole or partial ddname to limit the number of ddnames that are included in the generated CLIST. For example, to create a CLIST that only contains allocation statements for ddnames containing the string ISP, type CLIST ISP or SAVE ISP.

Check (CH)
The CHECK command turns on or off automatic checking for mixed concatenations. CHECK or CHECK ON enables automatic checking, and CHECK OFF disables it. When checking for mixed concatenations is enabled, ISRDDN checks for concatenations with mixed record formats, mixed fixed record lengths, and mixed data set organizations. Because there are times when these concatenations are intended, you might want to turn off the warning generated by ISRDDN.

Count (C)
The COUNT command displays the number of members in a partitioned data set. The number of members is shown in the message area on the left side of the list.

COUNT can be used to find out if you have empty data sets in your concatenations. For example, if you want to find out if all members of an SCLM-controlled library system were successfully promoted, you can edit the hierarchy, invoke ISRDDN, and use the COUNT command to verify that all of the expected libraries in the concatenation are empty.

Like the MEMBER command, you can add a whole or partial ddname to limit the number of ddnames that are searched.

Duplicates (DUP)
The DUPLICATES command searches all of the partitioned data sets in the displayed list and the LPA and displays a list of duplicate names. From the duplicates list, you can use the E (edit), B (browse), and V (view) line commands to view the PDS member or LPA storage. Use the DUPLICATES command to see where you might have potential conflicts with old or modified versions of load modules, REXX or CLIST programs, ISPF panels, or other PDS members.

For module names found in the Link Pack directory, the address of the module and its size are shown on the left side of the screen. If the name is an alias of a different module, the real name (major name) is shown instead of the size.

The duplicates list is shown in Figure 68 on page 217. Like the MEMBER command, you can add a whole or partial ddname to limit the number of ddnames that are searched. For example, to search only ddnames that contain the string LLIB, enter DUP LLIB.
The SAVE command can be entered from the duplicate list display to have the duplicate member data written to a sequential data set named 'userid.ISRDDN.DUPLICAT' or 'prefix.userid.ISRDDN.DUPLICAT'. If the ISPF configuration table field USE_ADDITIONAL_QUAL_FOR_PDF_DATA_SETS is set to YES, an additional qualifier defined with the ISPF_TEMPORARY_DATA_SET_QUALIFIER field is included before the ISRDDN qualifier.

**APF, Linklist (LI), Parmlib, and Lpa (LP)**

The APF, LINKLIST, PARMLIB, and LPA commands add and remove pseudo-ddnames that show the defined APF libraries, link list libraries, PARMLIB libraries, and LPA libraries respectively. These pseudo-ddnames are shown as if they are allocated ddnames, but no actual allocation to the libraries is made. You can use most of the primary and line commands with these names, just as you would with real ddnames.

In the confirmation panel, you can type **YES** to process the libraries, or **SKIP** to process the libraries and avoid the confirmation panel in the future. Dynamic LPA, Link lists, PARMLIB, and APF lists are all supported.

The LINKLIST and LPA commands add both the LINKLIST and LPALIB pseudo-ddnames. To delete any pseudo-ddname, enter the appropriate command a second time. For example, to add APF libraries to the list, use the APF command. To remove the APF libraries from the list, enter the APF command a second time.

**Select (S) and Load (L)**

The SELECT command searches the job pack area (JPA) and link pack area (LPA) to see if a module is loaded. If the module is found, you see the CSVQUERY Results panel shown in Figure 69 on page 218.
The information shown in the CSVQUERY Results panel is mostly derived by issuing a CSVQUERY macro. The data set name from which the module was loaded is shown if it can be determined. However, because of the way this information is gathered, the data set name can be incorrect if the original ddname from which the data set was loaded has been reallocated since the module was loaded.

On the CSVQUERY Results panel, you can use the TAB key to place the cursor inside the boxes describing the load module. If you then press Enter, you can browse the load module in storage.

The SELECT command is useful in situations where you need to know where a loaded program came from, for example, when you think you might be running mixed levels of ISPF or of an application under ISPF. If a module is not loaded but you want to see its attributes, you can use the LOAD command instead of the SELECT command. LOAD uses the current tasklib such as ISPLLIB, but you should verify that the loaded module came from the source you were expecting it to come from. LOAD automatically browses the load module storage.

Custom (CU)
The CUSTOM command shows several settings about your ISPF installation. It shows the values that used to be set in the ISPDFTS CSECT but are now in the ISPF Configuration table, and it shows the values configured in module ISPTCM. This command is helpful when you are having trouble with the way certain programs are invoked. For more information about ISPTCM, refer to z/OS ISPF Planning and Customizing.

MList (ML)
The MLIST command displays the eyecatchers for some of the ISPF CSECTs contained in modules ISPSUBS and ISRSUBS. This command can sometimes be used to verify that you are running with a particular level of maintenance because the eyecatchers in most ISPF modules contain a release number or a PTF level.
**Browse (B)**

ISRDDN provides a method of browsing storage using ISPF BROWSE. The storage can be browsed as unformatted data, as minimally formatted data, or as a side-by-side hexadecimal and EBCDIC dump format. ISRDDN also enables you to automatically chain lists, view arrays, and view the data pointed to by control blocks that are mainly lists of pointers (such as CVT).

The BROWSE primary command accepts a storage address, module name, or TSO TEST address locator string.

*Table 32. Some examples invoking BROWSE*

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B ISRSUBS</td>
<td>Browse the already loaded module named ISRSUBS.</td>
</tr>
<tr>
<td>B 10.</td>
<td>Browse storage at hexadecimal location 10. To distinguish hexadecimal addresses from module names, absolute addresses must end with a period.</td>
</tr>
<tr>
<td>B 0.+21c?+b4?+108?+8</td>
<td>Browse storage based on a TSO TEST style string. In this case, the control block called the Protected Step Control Block or PSCB is shown.</td>
</tr>
<tr>
<td>B ISRSUBS+60?</td>
<td>Browse the address pointed to by the 4 bytes at offset hexadecimal 60 into module ISRSUBS.</td>
</tr>
<tr>
<td>B ? or B +0?</td>
<td>When executed from within the storage browser, this command uses the address 0 bytes from the beginning of the displayed storage as a pointer and starts a new browse session to show that storage.</td>
</tr>
</tbody>
</table>

**Enq (E)**

You can view ENQs on the system using the ENQ command. A display similar to the one shown in Figure 70 on page 220 appears. You can reduce the size of the list by specifying a QNAME, RNAME, address space name, and a system name. All entries are treated as prefixes, so you might not need to specify complete names.
The Major column shows the QNAME. The Minor field shows the RNAME and if the RNAME is 8 bytes or less, it shows the hexadecimal representation of the RNAME next to the EBCDIC representation.

In the System ENQ Status list, the Job Name field is color-coded to indicate the type of ENQ that the address space holds or is waiting for. Green indicates a shared ENQ. Red indicates an exclusive ENQ.

If an address space does not hold the ENQ but is waiting for it, the job name is shown highlighted in reverse video.

On narrow screens, you can scroll right or left for more information. By scrolling left and right you see the system name and ENQ options (SYS (system), SYSS (systems), STEP, G (global), and R (reserve)). On wide screens you see all of the information on one screen without scrolling left or right.

On the System ENQ Status display, press END to return to the Current Data Set Allocations list, or enter CON to view the System ENQ Contention display. You can also use the ALL command to view all ENQs or use the RESET command to see only the data set ENQs (QNAME SYSDSN) for your TSO user id.

Con (C)

You can view ENQ contention on the system by using the CON command. When ENQ contention exists, you see a screen similar to the one in Figure 70 but without the input fields. When no contention exists, a message displays instead of the list.

**Allocation list line commands**

Allocation list line commands are entered next to a ddname or data set. By default the allocation list is in short format. This means that for concatenations, the ddname is next to the first data set name in the concatenation.
When a line command is entered next to a ddname, the command is intended to work on the DD allocation rather than the data set name on that line. For example, an E command next to the ddname that refers to a concatenation edits the whole concatenation. If you want to edit just the first data set in a concatenation, use the LONG command to place the list in long format. In long format, the ddname for a concatenation is on a separate line so that you can place line commands next to the first data set name in the concatenation.

The Edit, Browse, View, and Member list commands are sensitive to the results of the MEMBER primary command. When the MEMBER primary command searches the displayed list for a member or members matching a name pattern, the member or pattern is shown in the list. Placing an E, B, V, or M next to a name in which the member or pattern was found displays either a member list with member names matching the pattern or the specific found member.

E - Edit
The E line command edits a data set or concatenation. It can be used on any data set or any ddname allocated to a data set (real or VIO). You might want to use the E line command for editing temporary files such as JCL that was created by file tailoring and written to the ISPCTLn ddname.

B - Browse
The B line command browses a data set or concatenation. It can be used on any data set or any ddname allocated to a data set (real or VIO). You can use the B line command for browsing allocated files. For example, the compress option in the PDF utilities, option 3.1, creates a listing data set that is sometimes allocated to the ISPCTL1. When you press the HELP key after compressing a data set in option 3.1, you might see that the listing was saved in a temporary data set. The B line command in ISRDDN is an easy way to browse that data set.

V - View
Use the V line command to view a data set or concatenation. This is similar to E (Edit) but there is no SAVE command. Use this when you want to view a data set and modify it for easier viewing without risking changes to the data set.

M - Member list
The M command displays an enhanced member list for a data set or concatenation. This gives you greater flexibility in working with allocated data sets. You might use this command when you have several different operations to perform on members.

F - Free
Use the FREE command to free an allocation. The Free command must be specified next to a ddname. F commands next to data sets in a concatenation with an F next to the ddname are ignored because those data sets are removed from the list before the F commands are processed.

The F command uses SVC 99 (dynamic allocation) to free the ddname. However, if SVC 99 cannot free the data set, ISRDDN invokes the TSO FREE command. The TSO FREE command might write a message to the screen with information on why the free failed. This command is useful when you need to free allocations such as those left by prematurely terminated or poorly behaved programs.

C or Z - Compress
Use the COMPRESS command to compress partitioned data sets. The
COMPRESS command can be used with data sets that are allocated as shared and can be used next to data set names or ddnames.

I - Information
The I command attempts to invoke the PDF data set information utility to display information about a data set. It can be used next to any real data set name. VIO data sets are not supported. This command can provide information such as the number of allocated directory blocks or a data set's SMS management class, or other information that is not shown by scrolling the Current Data Set Allocations list left or right.

Q - Query ENQs
The Q command shows all SYSDSN and SPFEDIT ENQs that exist for a data set. This command is useful when you want to see what other users or jobs are using a data set you have allocated. Using the Q command provides the same information as using the ENQ primary command and selecting an RNAME of the data set name.

T - Test Directory
The T line command reads the directory of a PDS directly, and performs a BLDL command on each member to see if the BLDL service returns accurate information for the directory. The results are displayed in a separate Browse session. The T command can be used to debug problems such as I/O errors or the need to refresh LLA or other directory caching systems.

K - VTOC Information
The K line command displays VTOC information for the first volume on which the data set resides. The information returned is the same as in the Data Set List utility (option 3.4, command V). You can also view VTOC information by placing the cursor on the volume name and pressing Enter. If the data set is not on a physical volume, the K command does not provide any information.

Browsing storage and loaded modules
You can use the BROWSE command within ISRDDN to view the contents of storage within your address space. When you are browsing storage, you can use any of the standard ISPF Browse primary commands. In addition, there are several commands you can use to format and move around in the storage list.

If you are not using one of the special display formats (CHAIN, ARRAY, or ARRAYP), you can scroll UP even when the “Top of Data” line is displayed so that you can see what data exists before your requested storage location. After you scroll up once, you can scroll up or down to the limits of the contiguous addressable storage.

ARRAY command

ARRAY

\[\text{dimension} \times \text{length}\]

where:

\textit{dimension}

The number of array elements in decimal.
The length of each element in hexadecimal.

When you are viewing an array, you can show the array elements as separate blocks of storage.

For example, the static link list table is an array. Assuming that each element is 45 bytes (hexadecimal 2D) and that you want the first 30 entries, enter ISRDDN and type:

```plaintext
B 10.+4DC?+8
ARRAY 30 2D
```

You see a screen similar to Figure 71.

In the ARRAY format display, the offsets on the left are the array element number followed by the address of the displayed line.

**ARRAYP command**

```plaintext
ARRAYP dim length
```

where:

- **dim**
  
The decimal number of pointers in the array.

- **length**
  
The hexadecimal length of each element pointed to by the pointer. The default for **length** is whatever fits on one line in the current display format.

---

**Figure 71. ARRAY Storage Format**

In the ARRAY format display, the offsets on the left are the array element number followed by the address of the displayed line.
Many control blocks are mainly list of pointers. For example, the Communications Vector Table (CVT) is an MVS control block that points to many other control blocks. The ARRAYP command shows the data pointed to by the pointers in a control block. Use the ARRAYP command when you are looking for the offset of a pointer to a particular storage location.

For example, to see what is pointed to by the elements of CVT, enter ISRDDN and type

```
B 10.? ARRAYP
```

You see a screen similar to Figure 72.

In the ARRAYP format display, the offsets on the left are the offsets within the array of pointers followed by the pointer itself. This is followed by the data to which the pointer refers.

![Figure 72. ARRAYP Storage Format](image)

**BROWSE command**

```
BROWSE modname address.
```

where:

- **modname**
  The name of the module you want to browse.

- **address**
  The address of the module you want to browse. The address must be terminated with a period.
The BROWSE command lets you browse a module that is already loaded. If it is not loaded, you can use the LOAD command to explicitly load and browse it.

You can also use the BROWSE command in “point and shoot” mode. Type BROWSE on the command line, place the cursor over an address within the display, and press Enter. A new browse session is started to view the storage pointed to by the cursor. If the cursor is not on a valid, accessible address, an error message is displayed.

When the BROWSE command is invoked within an existing browse session, a new browse session is started. The END command returns you to the previous browse session.

CANCEL command

The CANCEL command ends all browse sessions and returns to the Current Data Set Allocations list.

CHAIN command

where:

offset
A hexadecimal offset of the 4-byte pointer to the next link.

length
The length of each element in hexadecimal. The default for length is whatever fits on one line in the current display format.

When you are viewing a linked list, you can use the CHAIN command to view more than one link at a time.

The chain is considered terminated when one of these is found:
- A pointer of zero.
- A pointer to the first node.
- A pointer to unavailable storage.

Entering the CHAIN command a second time turns the chain formatting off.

For example, to see the current ASCB chain, enter ISRDDN and type

B 10.??+C?
CHAIN 4 20

You see a screen similar to Figure 73 on page 226.
In the CHAIN format display, the offsets on the left are the offsets within a particular link followed by the actual address of the start of the line.

**DATA command**

The DATA command displays the storage as an unformatted string of data with offsets shown on the left side of the screen. Use this format to give you a better context of the storage you are browsing.

**DISASM command**

where:

**ON**  
Disassembles the load module being browsed.

**OFF**  
Releases any resources acquired for the disassembly function and returns to the previous browse mode.

While browsing a load module in storage, you can enter the DISASM command (with either no parameter or the NO parameter) to disassemble the load module you are browsing being browsed and display the resulting instructions.

When you have finished browsing the disassembly, you should issue the DISASM command again (this time with the OFF parameter) to release the resources.
obtained to support the disassembly. If you terminate the browse without issuing the DISASM OFF command, the resources are not freed until you terminate the logical session.

**DUMP command**

The DUMP command lets you view storage in dump format.

*Note:* The DUMP command is analogous with the FORMAT command.

**FORMAT command**

The FORMAT command displays the storage in both hexadecimal and EBCDIC, the way you might see the format in a data dump (see Figure 74).

When data is displayed in wide format (see "WIDE command" on page 229), the format includes 16 bytes per line (8 sets of 4 bytes). When data is displayed in narrow format (see "NARROW command" on page 228), the format contains 8 bytes per line (4 sets of 4 bytes).

FORMAT is the default format that appears whenever a storage browse session is started.

---

Figure 74. Storage Viewed in FORMAT Mode
LIMIT command

The LIMIT command shows the address limits and size of the contiguous storage area being browsed and resets the currently browsed address to the lowest address in that storage.

LOAD command

```
LOAD modname
```

where:

modname

The name of the module you want to load and browse.

The LOAD command loads and browses a module.

NARROW command

The NARROW command switches the display from wide format to narrow format.

To return to wide format, issue the WIDE command.

The wide or narrow format, set by the WIDE and NARROW commands respectively:

- Is maintained from one session to the next by means of a profile variable.
- Applies to data when it is displayed with a type setting of FORMAT, DATA, DUMP, or RAW. When data is displayed with a type setting of DISASM, the WIDE and NARROW commands have no effect.

RAW command

The RAW command displays storage data as unformatted text. Storage is shown on the screen without any formatting. The data on a line is the data that immediately follows the data on the previous line. Because the FIND command is actually searching the screen image and not storage itself, it is best to search storage while in the RAW display format. Note that even in unformatted displays, if your search string would span lines, FIND does not locate the string. To avoid this, search for the string in RAW format, then enter the command `B +20` to find the string again. This shifts the display by 32 bytes (hexadecimal 20) and the line breaks occur in different places.
REFRESH command

Use the REFRESH command to scroll the display back to the +0 offset. REFRESH is useful if you have scrolled up past the initial "Top of Data" line and want to return to your original referenced storage location.

REFRESH is not available in CHAIN, ARRAY, or ARRAYP formatted displays.

SETDATA command

\[\text{OFFSET}\]

where:

\text{OFFSET}

The offset at which ISRDDN is to treat the code as data rather than as an instruction.

The SETDATA command lets you specify an offset at which you want ISRDDN to treat the code as data rather than as an instruction.

WIDE command

The WIDE command switches the display from narrow format to wide format.

If the screen is too narrow to handle the wide format, you must scroll right and left to see all of the data.

To return to narrow format, issue the NARROW command.

The wide or narrow format, set by the WIDE and NARROW commands respectively:

- Is maintained from one session to the next by means of a profile variable.
- Applies to data when it is displayed with a type setting of FORMAT, DATA, DUMP, or RAW. When data is displayed with a type setting of DISASM, the WIDE and NARROW commands have no effect.

Defining named storage locations

If you browse the same storage locations or control blocks frequently, you might want to set up a file that names those storage locations so that you can use a name in the BROWSE command.

To enable the BROWSE command to use a named reference to storage, you must allocate a sequential file to the ddname ISRDDN. Each line in that file is either a comment or a named storage location. Comments start with a semi-colon (;).
Location definitions have a name as the first word, followed by a TSO TEST style locator string. Anything after the locator string is ignored. The TSO TEST locator string can use another defined name as a starting point. If the locator string cannot be resolved because of syntax or other errors, the line is ignored.

For example, if you allocate a sequential file like the one shown in Figure 75 to ddbname ISRDDN, you could then browse your User Profile Table, which stores your TSO PROFILE settings, by typing B UPT on the command line.

```
CVT  10.7         Communications Vector Table
PSCB JSCB+108?   TSO Protected Step Control Block
JSCB  TCB+B4?    Job/Step Control Block
TCB  CVT??       Task Control Block
UPT  PSCB+34?    User Profile Table
```

*Figure 75. Sample ISRDDN Named Storage File*
Appendix H. Accessibility

Accessible publications for this product are offered through the z/OS Information Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please send a detailed message to mhvrcfs@us.ibm.com or to the following mailing address:

IBM Corporation  
Attention: MHVRCFS Reader Comments  
Department H6MA, Building 707  
2455 South Road  
Poughkeepsie, NY 12601-5400  
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision, to use software products successfully. The major accessibility features in z/OS enable users to:

- Use assistive technologies such as screen readers and screen magnifier software
- Operate specific or equivalent features using only the keyboard
- Customize display attributes such as color, contrast, and font size.

Using assistive technologies

Assistive technology products, such as screen readers, function with the user interfaces found in z/OS. Consult the assistive technology documentation for specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for information about accessing TSO/E and ISPF interfaces. These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their functions.

Dotted decimal syntax diagrams

Syntax diagrams are provided in dotted decimal format for users accessing the z/OS Information Center using a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or more syntax elements are always present together (or always absent together), they can appear on the same line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers correctly, make sure that your screen reader is set to read out punctuation. All the syntax elements that have the same dotted decimal number (for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the syntax elements. Occasionally, these words and symbols might occur at the beginning of the element itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the backslash (\) character. The * symbol can be used next to a dotted decimal number to indicate that the syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the format 3 \* FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* \* FILE indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the syntax just before the items they separate. These characters can appear on the same line as each item, or on a separate line with the same dotted decimal number as the relevant items. The line can also show another symbol giving information about the syntax elements. For example, the lines 5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax elements, the elements must be separated by a comma. If no separator is given, assume that you use a blank to separate each syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is defined elsewhere. The string following the % symbol is the name of a syntax fragment rather than a literal. For example, the line 2.1 %OP1 means that you should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

- ? means an optional syntax element. A dotted decimal number followed by the ? symbol indicates that all the syntax elements with a corresponding dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax elements NOTIFY and UPDATE are optional; that is, you can choose one or none of them. The ? symbol is equivalent to a bypass line in a railroad diagram.

- ! means a default syntax element. A dotted decimal number followed by the ! symbol and a syntax element indicates that the syntax element is the default option for all syntax elements that share the same dotted decimal number. Only one of the syntax elements that share the same dotted decimal number can specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword. In this example, if you include the FILE keyword but do not specify an option, default option KEEP will be applied. A default option also applies to the next higher dotted decimal number. In this example, if the FILE keyword is omitted, default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!
(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next higher dotted decimal number, 2.1 (which does not have an associated keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

- * means a syntax element that can be repeated 0 or more times. A dotted decimal number followed by the * symbol indicates that this syntax element can be used zero or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data area, you know that you can include one data area, more than one data area, or no data area. If you hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include HOST, STATE, both together, or nothing.

**Note:**

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal number, you can use more than one item from the list, but you cannot use the items more than once each. In the previous example, you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.

• + means a syntax element that must be included one or more times. A dotted decimal number followed by the + symbol indicates that this syntax element must be included one or more times; that is, it must be included at least once and can be repeated. For example, if you hear the line 6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the + symbol can only repeat a particular item if it is the only item with that dotted decimal number. The + symbol, like the * symbol, is equivalent to a loop-back line in a railroad syntax diagram.
Notices

This information was developed for products and services offered in the U.S.A. or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

Site Counsel  
IBM Corporation  
2455 South Road  
Poughkeepsie, NY 12601-5400  
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware

Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code that supports specific hardware servers or devices. In some cases, this device-related element support remains in the product even after the hardware devices pass their announced End of Service date. z/OS may continue to service element code; however, it will not provide service related to unsupported hardware devices. Software problems related to these devices will not be accepted.
for service, and current service activity will cease if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be issued.

### Minimum supported hardware

The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently change when service for particular servers or devices is withdrawn. Likewise, the levels of other software products supported on a particular release of z/OS are subject to the service support lifecycle of those products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and product documentation) can include references to hardware and software that is no longer supported.

- For information about software support lifecycle, see: [IBM Lifecycle Support for z/OS](http://www.ibm.com/software/support/systemsz/lifecycle/)
- For information about currently-supported IBM hardware, contact your IBM representative.

### Programming Interface Information

This publication primarily documents information that is NOT intended to be used as Programming Interfaces of ISPF.

This publication also documents intended Programming Interfaces that allow the customer to write programs to obtain the services of ISPF. This information is identified where it occurs, either by an introductory statement to a chapter or section or by the following marking:

```
+---------------------Programming Interface information---------------------+
```

```
+------------------End of Programming Interface information------------------+
```

### Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at [www.ibm.com/legal/copytrade.shtml](http://www.ibm.com/legal/copytrade.shtml)

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Trademarks
Index

Special characters
? (invalid load module directory fields) 142
// * lines, job statement information 165
* (in source listing) 196
> (greater than) using to pass a command to a dialog function 114
| (OR symbol) 30
= (equal sign), used to initiate jump function 106
= repeat command 151
{ } (one operand required) 30

Numerics
1 to 9999 parameter, Scroll field 17
3850 virtual volumes accessing 131

A
abbreviations for commands and other values
commands 205
field values 205
keywords/operands 205
programming languages 206
scroll amounts 206
AC field, load module library display 141
accelerator 37
accessibility 231
contact IBM 231
features 231
ACCOUNT command, TSO 131
action bar 26
ACTIONS system command 76
activities
nesting 31
ALIAS command action, specified by ZCTACT 110, 112
Alias-of field, load module library display 141
alias, as substitute for ISPF 20
aliases for commands 112
aliases for scrolling commands 113
allocating ISPF libraries 169
allocating libraries, defined 127
Allocation List Line Commands 220
Browse 221
Compress 221
Edit 221
Free 221
Information 222
Member list 221
Query ENQs 222
Test Directory 222
View 221
VTOC Information 222

Allocation List Primary Commands 213
APF 217
Browse 219
Check 216
Clist 215
Con 220
Count 216
Custom 218
Duplicates 216
Enq 219
Exclude 213
Find 213
Linklist 217
Load 217
Locate 213
Long 214
LPA 217
Member 214
Mlist 218
Only 213
Parmlib 217
Reset 213
Save 215
Select 217
Short 214

AUTOTYPE (continued)
cursor position sensitivity 124
enabling applications to use 124
function key for 122
restrictions 124

B
B (browse) line command
Data Set List utility (option 3.4) 151
Library utility (option 3.1) 151
Move/Copy utility (option 3.3) 151
BACKUP temporary data sets 164
BACKWARD scrolling command 76, 113
system command 76
Batch (option 5) output listings 164
overview 7
Bi-directional file transfer limitations 47
Bi-directional language support 46
blank options 18
block line command, defined 31
BOTTOM scrolling command 113
BOTTOM system command 76
Browse Mode
browsing DBCS data as EBCDIC data 156
mixed mode 156
overview 7
BROWSE, browsing storage command 224
BUFNO parameter 4
bypassing display using jump function 106
bypassing menus 20
bypassing the WSA connection panel 184

C
C-socket interface 188
CANCEL system command 77
CANCEL, browsing storage command 225
CHAIN, browsing storage command 225
Changed field, member list display 140
Changing Member List Field Attributes 150
Changing the Default Sort Order for Member Lists 150
candidate conversion for APL and TEXT keyboards 203
character sets, in a GUI display 39
check boxes, GUI mode 36
client/server communications, configuring 187
CLIST
allocating library 171

© Copyright IBM Corp. 1980, 2013
CLIST (continued)
restrictions 122
 CMDE system command 77
 CNTL temporary data sets 164
 Codepages, in a GUI display 39
 COLOR
 system command 77
 combination box 37
 Command (option 6)
 overview 7
 command abbreviations 205
 command alias 112
 command error processing 30
 command field
 entering commands 75
 use with jump function 106
 Command field, ISPF panels 17
 command line 30
 command retrieving 93
 command notation 30
 command stacking
 restriction with HELP command 76
 restriction with RETRIEVE command 76
 command tables
 action commands 109
 dynamically specified command actions 115
 format of 109
 ISPCMDs system command table 109
 used for assigning command aliases 112
 used for overriding system commands 113
 used for passing commands to a dialog function 75, 114
 Command, SWITCH 51
 commands
 aliases 112
 application 75
 entering 17
 error processing 30
 function 75
 how to enter 75
 interception by ISPF 75
 ISPF notation 30
 levels 75
 line 7, 29
 nesting 31
 passing to a dialog function 114
 PDF command
 using an alias 20
 using option parameter 20
 primary 7, 29
 processing, by ISPF 75
 reading syntax diagrams xii
 specifying action dynamically 115
 stacking for execution 75
 stacking with delimiter 30
 system 76
 commands, entering 30
 command error processing 30
 ISPF command notation 30
 commands, member selection list 142
 Common User Access (CUA) guidelines 15
 communications, configuring for client/server 187
 concatenation during editing 132
 during language processing 133
 of function key-entered value with command entry, restrict 116
 conditional retrieve 77
 Configuring APPC connections 190
 Configuring Communications for ISPF C/S 187
 Configuring TCP/IP connections 187
 CONFIRM command
 Data Set List utility (option 3.4) 144
 parameters
 OFF 144
 ON 144
 Control TSOGUI Query 46
 copy command 151
 Created field
 member list display 140
 CRETRIEV system command 77
 CSR (cursor) scrolling amount 108
 CUA (Common User Access) guidelines 15
 CUAATTR system command 78
 Current Data Set Allocations List 209
 line commands 220
 primary commands 213
 using commands 213
 current lists
 definition 56
 cursor control of scrolling 108
 CURSOR parameter, Scroll field 17
 Cursor position sensitivity, AUTOTYPE 124
 CURSOR system command 78
 cursor-select key
 processing of selected fields 120
 selection of attention field 120

D (delete lines)
Data Set List utility (option 3.4) 151
Library utility (option 3.1) 151
Data entry panels 19
DATA parameter
Scroll field 17
DATA scrolling amount 107
Data Set Allocations List, Current 209
data set information command 151
Data Set List utility (option 3.4)
data set list listings 201
member list line commands 151
primary commands
CONFIRM 144
source and index listings 195
data set lists
personal 55, 57
reference 55
Data Set Password field, library/data set entry panels 155
DATA, browsing storage command 226
DBCS
allocating alternate libraries 172
session messages in English 172
default function key assignments 116
default function key settings
ending ISPF or an ISPF function 10
getting help 9
default mode, defined 16
default operands 30
Default Sort Order for Member Lists, Changing 150
DELETE command, TSO 144
delimiters, used to stack commands 30
Diagnostic Utility, ISRDDN 209
dialog
development of 167
nested 105
recursive entry into 112
Dialog Test (option 7)
overview 7
dialog, defined 1
direct access data sets 3
direct access storage device, using with packed data 157
DISASM, browsing storage command 226
display format 16
double-byte character set (DBCS)
Browse or Edit DBCS data as EBCDIC data 156
Edit and Browse 156
formal definition 156
Format Specification utility (option 3.11) 156
formatted data, View, Edit, and Browse 155
hexadecimal format 156
invalid mixed data 156
Mixed Mode field 156
DOWN system command 78, 107
drop-down list 37
DSLIST displays 60
DSLIST system command 78
DTEST system command 78
dual command processing 30
dump, browsing storage command 227
dynamic status area 26

E
Edit (option 2)
editing DBCS data as EBCDIC data 156
mixed mode 156
overview 7
EDIT command 151
END
system command 79
END command
ISPF 10
ending a function or a dialog
END system command 79
RETURN system command 94
display, END system command 79
ending ISPF or an ISPF function, Exit option (X) 10
ending member lists 135
entering a command 75
entering a command, defined 28
ENVIRON system command 79
field selection
  using cursor position 120
  using light pen 120
field value abbreviations 205
field1 parameter, SORT command 148
field2 parameter, SORT command 148
file tailoring
  allocating 170, 171
  image library 171
  output libraries 170
  FKA system command 81
  Fonts, in a GUI display 39
  fonts, setting for WSA 183
Foreground (option 4)
  output listings 164
  overview 7
format definition 156
  Field Name field
  Edit Entry Panel 155
  View Entry Panel 155
Format Selection List panel 115
Format Specification utility (option 3.11)
  IBM 5550 terminal support 156
FORMAT, browsing storage command 227
  format, panel 16
FORWARD
  scrolling command 113
  system command 82
FORWARD system command 82
  fragments, syntax diagrams xii
FTP download 177
  full screen TSO data 45
function (F) keys
  See function keys
function commands 75
function key
  AUTOTYPE 122
  changing content and format (TAILOR) 88, 117
  command entry 115
  defining functions 117
  PPSHOW system command 88
  function keys (continued)
    providing default settings 120
    saving definitions 120
    used for command entry 75, 115
G
  generation data group (GDG) data sets 3
  generation data sets 129
  Group field, data entry panels 127
H
  HALF parameter, Scroll field 17
  HALF scrolling amount 107
  Hardcopy utility (option 3.6)
    source and index listings 195
  Hebrew language support 46
  HELP command
    ISPF 9
    HELP system command 76, 82
    horizontal split-screen mode 48
I
  IBM Products (option 9)
    overview 7
  ID field, member list display 140
  IKJEFT1 45
  image library, allocating 171
  Images, in a GUI display 39
  index listings
    for load libraries 197
    for source libraries 196
  Init field, member list display 140
Installation
  ISPF Client/Server (ISPF C/S)
    configuration parameters 176
    ISPF Workstation Agent (ISPF WSA)
      assumptions 175
  Installation program
    Workstation agent 181
  INT system command 82
  interactive application, defined 1
  internal character representations
    for APL keyboards 203
    for TEXT keyboards 204
  ISPCMDS system command table 109, 113
  ISPDPTRC system command 83
  ISPD TLC system command 83
  ISPF
    command notation 30
    command types 28
    ending 10
    entering commands 28
    functions 1
    getting help 9
    interacting with 5
    member name conventions 4
    option selection 19
    overview 1
    primary options, option selection 19
    starting 5
    supported data types 3
  ISPF (continued)
    understanding panels 16
    user profiles 9
  ISPF C/S download 180
  ISPF C/S Download Utility
    FTP method 177
    Manual method 180
  ISPF C/S Install Utility
    ISPsFINST.EXE 181
  the C/S agent window 182
  ISPF C/S installation, prerequisites
    configuration parameters 176
  ISPF client/server 189
  ISPF Client/Server Component
    check boxes
      fonts 39
      panel display CUA mode 37
      PRINT command 38
      WS command 38
    GUI mode, how it looks
      action bars 35
      APL/TEXT character sets 38
      color, intensity, and highlighting 38
      cursor movement 36
      Enter key 37
      Function keys 37
      graphic areas 38
      input fields 38
      long messages 36
      mnemonics 36
      pull-down menus 35
      push buttons 36
      sample screens 40
      short messages 36
      split screen 38
      title bars 35
    WINDOW command 38
Restrictions
  closing the ISPF C/S component 48
ISPF commands
  END 10
  HELP 9
  taking a screen snapshot 158
  ISPF library names 127
  ISPF library setup 167
  ISPF library, defined 127
  ISPF log listings 198
  ISPF member statistics 135
  ISPF Settings (option 0), overview 7
  ISPF Workstation Agent installation, prerequisites
    assumptions 175
  ISPFILE file tailoring output library 170
  ISPsFINST.EXE 181
  ISPFTTRC system command 84
  ISPWORK system command 84
  ISP LIB image input library 171
  ISP LIB link library 171
  ISP MAL alternate message library 172
  ISP MLIB message library 167
  ISPP ALT alternate panel library 172
  ISP PLIB panel library 167
  ISPPREP system command 85
ISPPROF default application profile
pool 167
ISPSALT alternate skeleton library 172
ISPSLIB skeleton library 167
ISPSTART command, session language
override 172
ISPTABL table output library 170
ISPTLIB table input library 167, 170
ISRDDN
allocation list primary
commands 213
ISRDDN Diagnostic Utility 209
Browsing storage commands
ARRAY 222
ARRAYP 223
BROWSE 224
CANCEL 225
CHAIN 225
DATA 226
DISASM 226
DUMP 227
FORMAT 227
LIMIT 228
LOAD 228
NARROW 228
RAW 228
REFRESH 229
SETDATA 229
WIDE 229
Browsing, storage, loaded
modules 222
ISRRLIST system command 85
ISRROUTE system command 85
J
JCL for allocating libraries for MVS 169
job statement information
parameters
"/* lines 165
jump function 31, 106
K
keepalive socket option 189
keyboard
navigation 231
PF keys 231
shortcut keys 231
KEYLIST system command 85
KEYS system command 86
KEYS system command, defining
function key functions 117
KEYSHELP system command 86
keyword/operand abbreviations 205
keywords, syntax diagrams xii
L
language for ISPF session,
specifying 172
lcmd parameter, SELECT command 147
LEFT system command 86, 107
levels of ISPF commands 75
LIB field
load module library display 141
list-id parameter
foreground and batch output
listings 164
SAVE command 146
List, Current Data Set Allocations 209
LIST, system command
conditions for using 161
description 159
using 159
listing formats
data set list listings 202
ISPF log listings 198
member list listings 201
source and index listings 195
load module library
invalid directory fields (?) 142
member statistics 140
load module library display
example 141
LOAD, browsing storage command 228
LOCATE command
member selection list 145
parameters
string 146
log data set
processing 158
LOG system command
conditions for using 161
description 87, 159
Log/List (option 0)
changing defaults 8
effect on Exit (X) option 10
logical screens (split-screen mode) 48
Long Message field, ISPF panels 18
M
managed data set
defined 157
Manual download 180
MAX parameter, Scroll field 17
MAX scrolling amount 107
Member field, data entry panels 128
member list display
example 136
Member List Field Attributes,
Changing 150
member list listings
formats 201
load libraries 200
source libraries 199
member list lists 199
Member List Positioning 154
member list primary commands
SRCBFOR 149
Member Lists, Refreshing 150
member name conventions 4
member selection list
defined 133
displaying member lists 134
ending member lists 135
fields
load module library 141
source library 139
ISPF member statistics 135
line commands
B (browse) 151
member selection list (continued)
line commands (continued)
  D (delete) 151
  E (edit) 151
  I (data set information) 151
  P (print) 151
  R (rename) 151
  S (select) 147, 151
  V (view) 151
list data set 146
load module library member
  statistics 140
primary commands
  LOCATE 145
  RESET 146
  SAVE 146
  SELECT 147
  SORT 147
table of differences 133
upgrading a member list 153
Member selection list commands 142
Member Selection List Primary
  Commands
    MLC 150
    MLS 150
    Refresh 150
menu 18
Menu pull-down 21
messages
  as means of communication 5
  conditions for display 30
  displayed by HELP command 9
  English for DBCS session 172
  failure to enter required value 19
  inconsistent values 19
  Long Message field 18
  Short Message field 17
mixed data
  assumed 156
  format definition 156
  invalid, examples of 156
  Mixed Mode field 156
  non-mixed mode 156
  unformatted 156
Mixed Mode field
  Edit Entry Panel 156
  View Entry Panel 156
MLC Command 150
MLS Command 150
mnemonics, GUI mode 36
Mod field, member list display 140
MOUNT authority 131
move members 133
move the member 151
Move/Copy utility (option 3.3)
  member list line commands 151
Move/Copy utility (option 3.3), source and index listings 195
MSGID system command 87
multicultural support 29, 148
multiple, defined for line commands 133
multivolume data sets 3
N
Name field
  load module library display 141
  member list display 139
  naming ISPF libraries and data sets 127
  ISPF library names 127
  Other Partitioned or Sequential Data
    Set Names 129
  volume serials 131
NARROW, browsing storage
  command 228
national language for ISPF session 172
National Language Support
  See multicultural support
  native mode, defined 16
  navigation
    keyboard 231
  nested commands 31
  nested dialogs 105
NLS
  See multicultural support
non-ISPF displays, using REFRESH 105
NOP action, specified using ZCTACT 110
NOP system command 88
notation conventions 30
Notices 235
NRETRIEV command 67
  SCLM considerations 68
NRETRIEV key 56
NRETRIEV system command 88
NX parameter, Attributes field 142
O
OFF parameter
  CONFIRM command 144
  OL parameter, Attributes field 142
ON parameter
  CONFIRM command 144
  operand notation
    lowercase 30
    one required( ] ) 30
    optional( [ ] ) 30
    OR symbol ( | ) 30
    stacked 30
    underscored defaults 30
    uppercase 30
operating system, passing commands 75
Option field, ISPF panels 17
option number 26
option selection
  0 - ISPF Settings 7
    1 - View 7
    10 - SCLM 8
    2 - Edit 7
    3 - Utilities 7
    4 - Foreground 7
    5 - Batch 7
    6 - Command 7
    7 - Dialog Test 7
    9 - IBM Products 7
    X - Exit 8
  optional ISPF libraries 170, 171
  Other Partitioned or Sequential Data Set
    Names 129
other temporary data sets 164
OUTLINE keyword
  fields affected by 89
  on PRINT system command 89
OUTLIST temporary data sets 164
Outlist utility (option 3.8), source and index listings 195
OV parameter, Attributes field 142
overriding, system commands 113
overview of ISPF
  commands, entering 28
  interacting with ISPF 5
  ISPF primary options 7
  starting ISPF 5
  understanding ISPF panels 16
  user profiles 9
P
P (print) line command
  Data Set List utility (option 3.4) 151
  Library utility (option 3.1) 151
PA keys
  definition 121
  PA1 121
  PA2 121
packed data
  format defined 157
  requirements for using 157
PAGE parameter, Scroll field 17
PAGE scrolling amount 107
panel format 16
  panel ID field, ISPF panels 17
  panel types
    data entry panels 19
    menus 18
    overview 18
PANELID system command 88
  panels
    as means of communication 5
    basic types 18
    default mode 16
    defined 16
    load module library display
      example 141
    member list display
      example 136
    menus 18
    native mode 16
    panel format 16
    retaining previous values 19
    what they display 5
parameter
  parenthesis added to 112
  parenthesis, added to command parameter 112
partitioned data set extended
  (PDSE) 157
partitioning the display, screen-split
  screen mode 48
passing commands
  to a dialog function 114
  to the operating system 75
PASSTHRU action
  specified using ZCTACT 110, 114
pattern parameter, SELECT
  command 147
Q
Query ENQs 222

R
R (rename) line command
Data Set List utility (option 3.4) 151
Library utility (option 3.1) 151
RACF (Resource Access Control Facility) 155
radio button 37
RAW, browsing storage command 228
RCHANGE system command 91
recursive entry into dialog functions 112
redisplaying contents of a screen using
PA key 122
REFACTD system command 91
REFACTL system command 92
REFADD system command 92
REFADDL system command 92
reference data set list 58
reference data set lists 55
reference library list 58
reference library lists 55
referral lists 55
example of ISPF panel using referral
list 71
REFLISTD system command 92
REFLISTL system command 92
RefMode 56
REFOPEN system command 92
REFOPENL system command 93
Refresh Command 150
REFRESH, browsing storage
command 229
Refreshing Member Lists 150
Rename field on member list
display 140, 141
repeatable items, syntax diagrams xii
repeating, commands (RETRIEVE) 93
required ISPF libraries 167
RESET command
member selection list 146
RESET key
description 122
reset the member 151
resetshow key (PA2) 121
RESIZE system command 93
Resource Access Control Facility
(RACF) 155
RETFT system command 93, 104
RETP system command 93, 104
RETRIEVE system command 93, 102
RETURN system command 94, 105
REXX - allocating library 171
RF parameter, Attributes field 142
RFIND system command 94
RIGHT system command 86, 94, 107
RN parameter, Attributes field 142
RU parameter, Attributes field 142
rules for AUTOTYPE 123
S
S (select) line command
member selection list 147
Move/Copy utility (option 3.3) 151
sample ISPF session 10
SAREA system command 94
SAVE command
Data Set List utility (option 3.4) 199
member selection list 146
parameters
asterisk (*) 147
lcmd 147
list-id 146
pattern 147
saving function key definitions 120
SCLM (option 10)
overview 8
SCRNAME system command 94
scroll amount abbreviations 206
Scroll field, ISPF panels 17
scrolling
commend aliases 113
commands to control 107
scroll amount 107
tutorial panels 107
SELECT action
commend 111
specified by ZCTACT 110
SELECT command
member selection list 147
sending comments to IBM xix
separat bar 37
SETDATA, browsing storage
command 229
Settings (option 0)
changing default delimiter 30
overriding mode switching 16
SETTING$ system command 95
SETVERB action
specified by ZCTACT 110
shared personal lists 66
shift-in characters
DBCS character strings 156
formatted data, Edit, View and
Browse 155
invalid mixed data, examples of 156
treatment in non-mixed mode 156
shift-out characters
DBCS character strings 156
formatted data Edit and Browse 155
invalid mixed data, examples of 156
treatment in non-mixed mode 156
Short Message field, ISPF panels 17
shortcut keys 231
single selection, defined for line
commands 133
Size field
load module library display 141
member list display 140
skipping panel display using jump
function 106
snapshot of a screen 158
sockets 188
SORT command
member selection list 147
parameters
field1 148
field2 148