
This edition, SA22-7990-01, refers to the IBM Open Systems Adapter-Express Integrated Console Controller for the following operating systems: z/OS Version 1 Release 2 or higher (5694-A01), and z/OS.e Version 1 Release 3 or higher (5655-G52), Open Systems Adapter Support Facility for z/Virtual Machine/Enterprise (z/VM) Version 3 Release 1, Version 4 Release 2 (Program Number 5654-A17), and Version 4 Release 3 or higher (Program Number 5739-A03), OSA/SF for VSE Version 2 Release 2 (part of VSE Central Functions 6.1.1, 5686-066) in VSE/ESA Version 2 Release 2.6 (5690-VSE) or higher, and to all subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.

There may be a newer version of this document in PDF format available on Resource Link. Go to https://www.ibm.com/servers/resourcelink

and click on Library on the navigation bar. A newer version is indicated by a lower case, alphabetic letter following the form number suffix (for example: 00a, 00b, 01a, 01b).

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your comments to:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):
 Your International Access Code +1+845+432-9405

IBMLink (United States Customers only): IBMUSM10 (MHVRCFS)

Internet e-mail: mhvrnces@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2004, 2005. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

Figures .. v

Tables ... vii

About This Publication ... ix

Who Should Use This Publication ix

What Is Included in This Publication ix

Related Publications .. ix

A Note on Terminology ... ix

Summary of Changes ... xi

Summary of Changes for SA22-7990-01 xi

Summary of Changes for SA22-7990-00 xi

Chapter 1. Open Systems Adapter-Express Integrated Console Controller

Overview ... 1

OSA–ICC Introduction ... 1

Planning Considerations ... 1

 Security Concerns .. 1

Chapter 2. Defining your OSA-ICC configuration 3

Defining an OSC CHPID via IOCP 3

Steps for defining an OSC CHPID via HCD 4

 IOCP statements .. 7

Chapter 3. Controlling and Configuring an OSA-ICC 9

Hardware Management Console and Support Element console . 9

Structure of the OSA-ICC control panels 9

Steps for accessing the Advanced Facilities panel 10

Advanced Facilities OSA-ICC control panels 14

 View port parameters ... 15

 Run port diagnostics .. 17

 Set card mode ... 17

 Display client connections 18

 Display active session configuration 20

 Display active server configuration 21

 Configuring via panel entry 22

 Configuring via manual editing 28

 Activate configuration ... 43

 Display activate configuration errors 44

 Debug utilities .. 44

Chapter 4. OSA-ICC Programming Considerations 49

Differences Between 3174 and OSA-ICC 49

 3270 Client Support ... 49

Chapter 5. eNetwork Personal Communications Configuration 51

Steps for customizing a PCOMM session 51

Chapter 6. Connection rules 55

Chapter 7. Error and warning messages 57
Figures

1. Hardware configuration main menu .. 4
2. The structure of the control panels .. 9
3. Hardware Management Console workspace panel 11
4. OSA advanced facilities panel .. 12
5. Standard channel advanced facilities .. 13
6. Advanced facilities panel ... 14
7. View port parameters panel ... 16
8. Run port diagnostics panel .. 17
9. Set card mode panel .. 18
10. Display client connections panel ... 19
11. Display active session configuration panel 20
12. Display active server configuration panel 22
13. Panel configuration options panel .. 23
14. Edit session configuration panel .. 24
15. Edit session configuration panel .. 26
16. Edit server configuration panel ... 27
17. Validate panel values panel .. 28
18. Display validate panel errors panel ... 28
19. Manual configuration panel ... 29
20. Import source file panel ... 30
21. Export source file panel ... 31
22. Import source file panel via FTP .. 32
23. Export source file via FTP panel ... 33
24. Validate source code error ... 43
25. Successful validate source file ... 43
26. Activate configuration panel ... 44
27. Display activate configuration errors panel 44
28. Debug utilities panel ... 45
29. Ping utility ... 45
30. Trace route utility ... 46
31. Drop session utility ... 47
32. Cancel command panel ... 48
33. Customize communication screen .. 51
34. Telnet3270 screen ... 52
35. E - Capture — [24x80] ... 53
Tables

1. Connection rules matrix .. 56
2. Errors from validate source file 57
3. Warnings from validate source file 61
4. Errors from validate panels 61
About This Publication

This document describes the configuration process for the Open Systems Adapter-Express Integrated Console Controller.

Who Should Use This Publication

This document is intended for the technical staff who will configure the Open Systems Adapter-Express Integrated Console Controller.

What Is Included in This Publication

This publication contains the following chapters and appendixes:

- **Chapter 1, “Open Systems Adapter-Express Integrated Console Controller Overview,” on page 1** is an introduction to the Open Systems Adapter-Express Integrated Console Controller.
- **Chapter 4, “OSA-ICC Programming Considerations,” on page 49** describes the differences between the 3174 and the 2074.
- **“Notices” on page 63** contains the trademarks, services marks, and information about the use of online books.

Related Publications

Important

Please ensure that you are using the most recent version of all related documentation.

Other IBM publications that you will find helpful and that you should use along with this publication include:

- 2074 Usage Tips, GM13–0316.
- IOCP User’s Guide for ICP IOCP, SB10–7037

A Note on Terminology

Throughout this publication, certain equipment terms and short versions of product names are used to make the information more easily understood. These are:

- **CS** Communications Server
- **1000Base-T** 1000Base-T Ethernet feature capable of 10, 100, or 1000 Mbps
- **GbE** Gigabit Ethernet feature
- **OSA** Abbreviation for Open Systems Adapter. This document deals exclusively with the OSA-Express features and may refer to OSA-Express as OSA.
- **OSA-Express** Abbreviation for Open Systems Adapter-Express features.
OSA-ICC
Abbreviation for Open Systems Adapter-Express Integrated Console Controller features.

OSC
The channel type name for OSA-Express features that are configured as Open Systems Adapter-Express Integrated Console Controller.

OSD
The channel type name for OSA-Express features that run under Queued Direct Input/Output architecture (QDIO).

OSE
The channel type name for OSA-Express features that do not use QDIO architecture (typically SNA/APPN/HPR applications).

OSN
The channel type name for OSA-Express2 features that use QDIO architecture and CDLC protocol.

PCOMM
The Host Access Client Package which includes the eNetwork Personal Communications V5.6 emulator.
Summary of Changes

Summary of Changes for SA22-7990-01

This document has been updated to include the System z9 Open Systems Adapter-Express Integrated Console Controller configuration panels.

Summary of Changes for SA22-7990-00

This is the initial release of the document.
Chapter 1. Open Systems Adapter-Express Integrated Console Controller Overview

The IBM® Open Systems Adapter-Express Integrated Console Controller (OSA-ICC) is the replacement for 2074 Console Support Controller and local, non-SNA DFT 3174 Control Units. Its primary application is to provide 3270 sessions so you can IPL your logical partitions within any channel subsystem (CSS) and to provide System Operator/Master consoles for z/OS®, z/OS.e, z/VM®, TPF, and VSE. These sessions can also be used by TSO, VM, or VSE system programmers.

The OSA–ICC is one port on an Open Systems Adapter-Express (OSA-Express) 1000Base-T Ethernet feature. An OSA-Express 1000Base-T feature has 2 ports and either or both can be configured as an OSA-ICC. OSA-ICC function is included with your OSA-Express 1000Base-T feature as Licensed Internal Code and you can enable it by defining the channel path type as OSC.

Throughout this document OSA-Express may be referred to as OSA.

Each OSA-ICC is capable of handling 120 sessions. The OSA-ICC uses TCP/IP connections over Ethernet LAN to attach to personal computers (PCs) which are running an RFC 2355 compliant TN3270E emulator.

IBM has tested the Host Access Client Package which includes the eNetwork Personal Communications V5.6 emulator (PCOMM) in CSD3 running under Microsoft Windows XP + for compatibility, however there is no reason to believe that other RFC 2355 compatible emulators may not work. Please contact the emulator product vendor directly for terms, conditions, prices and other product details related to such vendor’s emulator.

OSA–ICC Introduction

Your system can have one or more OSA-ICC features defined. Before you can use an OSA–ICC as a 3270 control unit, you must configure it. OSA-ICC configuration panels are accessible on your Hardware Management Console and your Support Element (SE) console. These panels allow you, the system programmer, to customize each OSA-ICC on your system. This document will describe what is on each of the configuration panels and how to perform specific tasks using these panels.

Planning Considerations

OSA-ICC offers significant consolidation of console support. Consequently, it is STRONGLY RECOMMENDED that production environments use redundant configurations where operator consoles are defined through two different OSA-ICC LANs on two different OSA cards to prevent the loss of console control in the unlikely event of a failure. The OSA-ICC documentation and support material assumes this is the case and shows appropriate configuration information for one OSA-ICC feature.

Security Concerns

Depending on how you connect your TN3270E client systems, you may or may not have security concerns. An alternative to physically local LANs is the use of one or more Virtual Private Networks (VPNs). The use of an external device or software is necessary to provide additional security for clients attaching to a host via OSA-ICC.
Chapter 2. Defining your OSA-ICC configuration

There are four different possible Channel Path ID (CHPID) types for OSA-Express channels. An OSA-Express channel may be defined as an OSE, OSD, OSN, or an OSC CHPID. An OSA-ICC is an OSC CHPID. In order for your system to recognize an OSC CHPID, you must define the CHPID as such in your Input/Output Configuration Dataset (IOCDS) via the Hardware Configuration Definition (HCD), or the Input/Output Configuration Program (IOCP).

You must define in the IOCDS each OSA-Express 1000Base-T port you wish to use. Each OSA-ICC function requires a unique CHPID, control unit, and device definition. These definitions are made using HCD or IOCP, which defines the OSA-Express feature to the I/O hardware configuration.

A TN3270E session is associated with a single device in one logical partition. You may configure a maximum of 120 sessions to be used. However, the IOCDS can contain more than 120 configurable devices.

Defining an OSC CHPID via IOCP

You can define each OSA-Express 1000Base-T port you wish to use in the IOCDS via IOCP or HCD. The following is a sample IOCP configuration for defining an OSA-ICC channel. For instructions on defining an OSA-ICC channel via HCD, see "Steps for defining an OSC CHPID via HCD" on page 4.

```
RESOURCE PART=((CSS(0),(LP01,1),(LP02,2),(LP05,5)),
        *                         *
        (CSS(1),(MVS1,3),(VM2,5)),
        *                         *
        (CSS(2),(VSE,8),(LP34,4),(LP3A,A)))
CHPID PCHID=1C0,PATH=(CSS(0,1,2),80),TYPE=OSC
CNTLUNIT CUNUMBR=1000,PATH=((CSS(0),80),(CSS(1),80),(CSS(2),80)),
        *                 UNIT=OSC
IODEVICE ADDRESS=(2400,96),CUNUMBR=1000,UNIT=3270,MODEL=X
```

RESOURCE PART: The RESOURCE statement defines all of the logical partitions and the logical channel subsystems (LCSSs) in the configuration. It also assigns a MIF image ID to each logical partition (for example, logical partition MVS1 has MIF ID 3 in LCSS 1).

CHPID PCHID: The CHPID statement defines a single OSC channel path. The OSA-Express port is associated with PCHID 1C0. The channel path is defined to have CHPID 80 in logical channel subsystems (LCSSs) 0, 1, and 2 and, because the PART keyword is not used, to each logical partition in the LCSSs.

CNTLUNIT: The control unit definition is assigned control unit number 1000 and has access to all 3 LCSSs. Since you can only assign a single control unit to an OSC channel path, be sure to include every CSS for which you want to have TN3270E sessions.

IODEVICE ADDRESS: Device numbers 2400-245F are defined and available to every logical partition in each of the LCSSs. A total of 768 devices (8 logical partitions * 96 devices) are available in the configuration but only a maximum of 120 can be configured for use.

Note: If you are using HCD to define your configuration it is important that you select control unit type OSC and device type 3270-X for OSA-ICC.
Recommendation: If you define multiple IOCDSs with different OSA configurations respectively, before Power-On-Reset, please export the OSA-ICC configuration file to a diskette. In addition, after Power-On-Reset, please import a new customized OSA-ICC configuration file from a diskette. For more information on importing and exporting your definitions, see "Import source file" on page 29 and "Export source file" on page 30.

Steps for defining an OSC CHPID via HCD

You can define each OSA-Express 1000Base-T port you wish to use in the IOCDS via IOCP or HCD. The following is an example HCD configuration for defining an OSA-ICC channel. For instructions on defining an OSA-ICC channel via IOCP, see "Defining an OSC CHPID via IOCP" on page 3. The OSA-ICC function requires a unique CHPID, control unit, and device definition.

Note: You can only dynamically delete console devices after first removing them with IEAVG730 or IEARELCN. For more information, see z/OS HCD Planning, GA22–7525 or z/OS MVS Planning: Operations, SA22–7601.

Channel path definition

1. From the HCD main menu, Select option 1, and press Enter. The Define, Modify, or View Configuration Data menu is displayed.

2. Select Option 3 “Processors”, and press Enter. The Processor List is displayed.

3. Select the processor to update, and press Enter. The Actions on Selected Processors screen is displayed. The screen selection options are identified here by the action code entered, rather than the screen item number, to avoid confusion when a particular HCD menu changes.
4. On the Actions on Selected Processors screen, select S “Work with attached channel paths”, and press Enter. The Channel Subsystem List is displayed.

5. On the Channel Subsystem List, select the required CSSID, and press enter. The Actions on Selected Channel Subsystems screen is displayed.

6. On the Actions on Selected Channel Subsystems screen, select S “Work with attached channel paths”, and press Enter. The Channel Path List is displayed.

7. On the Channel Path List, press F11 to add a channel path. The Add Channel Path screen is displayed.

8. On the Channel Path List, enter the:
 • Channel path ID
 • PCHID
 • Channel path type OSC (to define the OSA-ICC function)
 • Operation mode SHR (to share this channel path among logical partitions)
 • Description

9. Complete the channel path definitions on the screen, press Enter. The Define Access List is displayed.

10. Complete the Access List for the partitions sharing the channel, and press Enter. The Candidate List Definition screen is displayed.

11. On the Candidate List Definition screen, select the partitions to include in the candidate list and press Enter, or simply press Enter if you do not want any additional partitions in the candidate list. The Channel Path List screen is displayed.

Control unit definition

1. Select the CHPID just defined (CHPID 04, in our configuration), and press Enter. The Actions on selected channel paths screen is displayed.

2. On the Actions on selected channel paths screen, select S “Work with attached control units”, and press Enter. The Control Unit List is displayed.

3. On the Control Unit List, press F11 to add a control unit. The Add Control Unit screen is displayed.

4. On the Add Control Unit screen, enter the:
 • Control unit number
 • Control unit type OSC
 • Description
5. Complete the channel path definitions on the screen, and press Enter. The Select Processor / CU screen is displayed.

6. On the Select Processor / CU screen, select the processor for the control unit, and press Enter. The Actions on Selected Processors screen is displayed.

7. On the Actions on Selected Processors screen, select S for Select (connect, change), and press Enter. The Add Control Unit screen is displayed. The Add Control Unit screen shows the OSC control unit information just entered. Note the unit address is set to 00 and the number of units must be 254.

8. Confirm the control unit definitions on the screen are correct, and press Enter. The Select Processor / CU screen is displayed again.

9. Press Enter again to return to the Control Unit List screen.

Device definition

1. From the Control Unit List screen select the control unit, and press Enter. The Actions on Selected Control Units screen is displayed.

2. On the Actions on Selected Control Units screen, select S “Work with attached devices”, and press Enter. The I/O Device List is displayed.

4. On the Add Device screen, enter the:
 - Device number
 - Number of devices
 - Device type 3270-X. Device type 3270-X is the only valid device type for the OSA-ICC function. The HCD configuration process will not allow any other device type to be defined.
 - Description

5. Complete the device definitions on the screen, and press Enter. The Update Serial Number, Description and VOLSER screen is displayed, press Enter. The Device / Processor Definition screen is displayed.

6. On the Device / Processor Definition screen, select the required processor, and press Enter. The Define Device / Processor screen is displayed.

7. On the Define Device / Processor screen, you have the option of changing the starting unit address. Verify the value and press Enter. The Device / Processor Definition screen is again displayed.

8. On the Device / Processor Definition screen, press Enter. The Define Device to Operating System Configuration screen is displayed.
9. On the Define Device to Operating System Configuration screen, select the operating system to which you want to connect the devices, and press Enter. The Actions on selected Operating Systems screen is displayed.

11. On the Define Device Parameter / Features screen make appropriate changes based on your environment, then press Enter. The Assign / Unassign Device to Esoteric screen will appear.

12. On the Assign / Unassign Device to Esoteric screen make appropriate changes based on your environment, then press Enter.

13. Repeat the process for each operating system as needed, then exit from the Define Device to Operating System Configuration screen, by pressing F3 or F12.

14. You should now be at the Device List panel. Press F3 multiple times to return to the main HCD screen (Hardware Configuration), for activating or processing the configuration data you just defined.

Notes:
1. You can only dynamically delete console devices after first removing them with IEAVG730 or IEARELCN. For more information, see z/OS HCD Planning, GA22–7525 or z/OS MVS Planning: Operations, SA22–7601.

2. If any of the Console addresses defined are going to be used as MVS NIP consoles, then additional steps are needed:
 - Select 1 Operating system configuration
 - Select config ID with /
 - Option 6, work with consoles
 - F11 to add console addresses to the NIP CONSOLE LIST
 - Continue with the Production IODF step

You have defined the CHPID, CU, and Devices. Now complete the creation of a new production IODF and write a new IOCDS. Dynamic I/O Activation for OSC is restricted, so a POR is required to activate the configuration.

Recommendation: If you define multiple IOCDSs with different OSA configurations respectively, before Power-On-Reset, please export the OSA-ICC configuration file to a diskette. In addition, after Power-On-Reset, please import a new customized OSA-ICC configuration file from a diskette. For more information on importing and exporting your definitions, see "Import source file” on page 29 and "Export source file” on page 30.

IOCP statements

The example above converted CHPID 07 in LCSS 1 assigned to PCHID 381 from OSD to OSC, and defined control unit E300 and devices E300-E377. The following
is an example of the IOCP statements generated by HCD for the configuration of
the logical partitions, both OSC CHPIDs, and the associated control unit and device
definitions.

RES PARTITION=((CSS(0),(A0A,A),(A0B,B),(A0C,C),(A0D,D),(A0E,E),(A0F,F),(A01,1),(A02,2),(A03,3),(A04,4),(A05,5),(A06,6), (A1A,A),(A1B,B),(A1C,C),(A1D,D),(A1E,E),(A1F,F),(A11,1),(A12,2),(A13,3),(A14,4),(A15,5),(A16,6),(A17,7),(A18,8),(A19,9)), * MAXDEV=((CSS(0),64512),(CSS(1),64512))

CHPID PATH=(CSS(0),07),SHARED,
PARTITION=((A0A,A0B,A0C,A0D,A01,A02,A03,A04,A05,A06,A07,A08,=)),PCHID=380,TYP=OSC

CHPID PATH=(CSS(1),07),SHARED,

CNTLUNIT CUNUMBR=E200,PATH=((CSS(0),07)),UNIT=OSC
MODE=X,CUNUMBR=E200,UNIT=OSC

CNTLUNIT CUNUMBR=E300,PATH=((CSS(1),07)),UNIT=OSC
MODE=X,CUNUMBR=E300,UNIT=3270

IODEVICE ADDRESS=(E200,120),MODEL=X,CUNUMBR=E200

IODEVICE ADDRESS=(E300,120),MODEL=X,CUNUMBR=E300

Refer to Input/Output Configuration Program User’s Guide for ICP IOCP, SB10-7037 for further information about IOCP and IOCDSs.
Chapter 3. Controlling and Configuring an OSA-ICC

Before you can start any TN3270E sessions, you must install an OSA-Express 1000Base-T card and be online to the Hardware Management Console or the Support Element (SE). In order for that to happen, you must first configure your OSA-ICC by entering data in the IOCDS and then further configure your OSA-ICC via panel entry, manual entry, or a combination of both. This chapter discusses these configuration options in detail, as well as functions to control and display information about the OSA-ICC card.

Hardware Management Console and Support Element console

You can control and configure your OSA-ICC from the Card Specific Advanced Facilities panel which is accessible from either your Hardware Management Console or your SE console. These two consoles are the only way you can access the OSA-ICC control panels. For more information on these consoles, see eServer Hardware Management Console Operations Guide, SC28-6830 and eServer zSeries 890 and 990 Support Element Operations Guide, SC28-6831.

Structure of the OSA-ICC control panels

The diagram below shows the relationship of the panels which are accessed from the Card Specific Advanced Facilities panel.

![Diagram showing the structure of the control panels]

Figure 2. The structure of the control panels

All OSA-ICC control operations are selected from the Advanced Facilities panel as shown in Figure 6 on page 14.

The following is a brief explanation of what tasks you can perform from each of these panels:

<table>
<thead>
<tr>
<th>Task Description</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run port diagnostics</td>
<td>This panel allows you to run diagnostics on the OSC channel.</td>
</tr>
<tr>
<td>View port parameters</td>
<td>This panel allows you to view Network Interface Card statistics.</td>
</tr>
<tr>
<td>Set card mode</td>
<td>This panel is used to set the speed and mode of the OSC.</td>
</tr>
<tr>
<td>Panel Name</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Display client connections</td>
<td>This panel is used to view client connection parameters.</td>
</tr>
<tr>
<td>Display active session configuration</td>
<td>This panel is used to display the active session configuration for a given OSC.</td>
</tr>
<tr>
<td>Display active server configuration</td>
<td>This panel is used to display the active server configuration for a given OSC.</td>
</tr>
<tr>
<td>Panel configuration options</td>
<td>This panel allows you to edit session configurations, edit server configurations, validate panel values, and view any errors which occurred during validation.</td>
</tr>
<tr>
<td>Manual configuration options</td>
<td>This panel allows you to import a source file, export a source file, edit a source file, and validate a source file.</td>
</tr>
<tr>
<td>Activate configuration</td>
<td>This panel allows you to activate a configuration.</td>
</tr>
<tr>
<td>Display activate configuration errors</td>
<td>This panel allows you to view errors from configuration activation.</td>
</tr>
<tr>
<td>Debug utilities</td>
<td>This panel allows you to ping a client workstation, trace the route of a packet of data to a client workstation, and drop a session.</td>
</tr>
<tr>
<td>Cancel command</td>
<td>This panel allows you to cancel a command which is executing on an OSC.</td>
</tr>
</tbody>
</table>

For a complete description of the panels and the meaning of their entry fields, see "Advanced Facilities OSA-ICC control panels" on page 14.

Steps for accessing the Advanced Facilities panel

Perform the following steps to get to the Advance Facilities panel. This example is using the Hardware Management Console. If you are using the SE, the initial panels to select the CHPID will be different.

1. From the Defined CPCs Work Area, drag the selected processor to OSA Advanced Facilities.
2. The OSA Advanced Facilities screen will open. Select the PCHID you wish to configure and select OK.

Figure 3. Hardware Management Console workspace panel
3. The **Standard Channel Advanced Facilities** panel will be displayed. Select **Card Specific Advanced Facilities** and click OK.

 Note: The **View code level** and **Card trace/log/dump facilities**... panels are not described in this document.
You should now see the Advanced Facilities panel.

Figure 5. Standard channel advanced facilities
Advanced Facilities OSA-ICC control panels

This section describes the following OSA–ICC Advanced Facilities control panels:
• View port parameters, see观 “View port parameters” on page 15
• Run port diagnostics, see “Run port diagnostics” on page 17
• Set card mode, see设 “Set card mode” on page 17
• Display client connections, see “Display client connections” on page 18
• Display active session configuration, see “Display active session configuration” on page 20
• Display active server configuration, see “Display active server configuration” on page 21

Figure 6. Advanced facilities panel
• Panel configuration option, see “Panel configuration options” on page 23
 – Edit session configuration, see “Edit session configuration” on page 23
 – Edit server configuration, see “Edit server configuration” on page 27
 – Validate panel values, see “Validate panel values” on page 27
 – Display validate panel errors, see “Display validate panel errors” on page 28
• Manual configuration options, see “Manual configuration options” on page 28
 – Import source file, see “Import source file” on page 29
 – Export source file, see “Export source file” on page 30
 – Edit source file, see “Edit source file” on page 33
 – Validate source file, see “Validate source file” on page 42
• Activate configuration, see “Activate configuration” on page 43
 • Display activate configuration errors, see “Display activate configuration errors” on page 44
• Debug utilities, see “Debug utilities” on page 44
 – Ping utility, see “Ping Utility” on page 45
 – Trace route utility, see “Trace route utility” on page 46
 – Drop session, see “Drop session” on page 47
• Cancel command, see “Cancel” on page 47

View port parameters

The View port parameters panel allows you to view Network Interface Card statistics. When enabled, it gives you statistical information and setting information on your OSA-ICC. This panel is enabled after activating your server configuration.
Figure 7. View port parameters panel
Run port diagnostics

The Run port diagnostics panel is used to run diagnostics. The purpose of running these diagnostics is to check if everything is correct in the hardware. Running port diagnostics will stop regular traffic on the card.

![Run port diagnostics panel](image)

Figure 8. Run port diagnostics panel

Port identifier: Identifies the port you want to run diagnostics on. Since there is only one port in OSA-ICC, the entry field default is 0. This field is not used.

Set card mode

The Set card mode panel is used to set the speed and mode of the OSA-ICC.

Note: This panel does NOT show the way the card is currently set. It is NOT a display card mode panel. This panel shows options to set the card. See "View port parameters" on page 15 to see HOW the card is set.
Port identifier: Since there is only one port in OSA-ICC, the entry field default is blank.

Speed/Mode: The default is Auto Negotiate. If auto-negotiate fails, the default is 100 Mb, half duplex. The speed/mode can be changed dynamically, but it is recommended that you do not make this change while sessions are active and connected.

Display client connections

The Display client connections panel allows you to view currently connected clients. This information is queried at the time you open this panel. To refresh the information, exit the panel and reopen it.
Session Index specifies the session number. The valid range is from 1–120.

Status specifies whether the session is not configured, available, connected, active, or has a definition error:

- Not configured: the session has not yet been configured.
- Available: the session has been configured and the client can connect to it.
- Connected: the session has been configured and the client is connected to it.
- Active: the session has been configured, the client is connected to it, and the client is connected to the host.
- DHD Pending: the client has been disconnected. However, since DHD was enabled, OSA-ICC has not notified the host operating system yet.
- Definition error: the session is not a valid session and the client cannot connect. The session CSS, MIFID, or Device Number does not exist or was dynamically deleted during dynamic I/O.

MAC specifies the address of the client that is being connected if the client is on the local end. Otherwise, the MAC address of the router is displayed.

Client’s IP specifies the IP address of the attached client.

Port specifies the port number of the attached client.

Socket Numbers specifies the Local TCP socket number that uniquely defines the connection. This parameter is only useful to the OSA-ICC PE.

LT Index specifies the index in the LT table. A valid range is from 1–120. This parameter is only useful to the OSA-ICC PE.

Connect rule can be IP only, LU only, IP & LU, unknown. For more information on connection rules, see Chapter 6, “Connection rules,” on page 55.
Display active session configuration

The *Display active session configuration* panel is used to display the active session configuration for a given OSC. This includes a list of the sessions that are configured for the OSC and configuration information about each session.

<table>
<thead>
<tr>
<th>Index</th>
<th>State</th>
<th>CSS</th>
<th>MIFID</th>
<th>Device Number</th>
<th>LU Name</th>
<th>Client's IP</th>
<th>Session Type</th>
<th>Type</th>
<th>IP Address</th>
<th>Type</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Available</td>
<td>0</td>
<td>01</td>
<td>1600</td>
<td>Linda</td>
<td>0.0.0.0</td>
<td>MIF Image ID</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Not configured</td>
<td>0</td>
<td>00</td>
<td>0000</td>
<td>Unknown</td>
<td>0.0.0.0</td>
<td>MIF Image ID</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Not configured</td>
<td>0</td>
<td>00</td>
<td>0000</td>
<td>Unknown</td>
<td>0.0.0.0</td>
<td>MIF Image ID</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Not configured</td>
<td>0</td>
<td>00</td>
<td>0000</td>
<td>Unknown</td>
<td>0.0.0.0</td>
<td>MIF Image ID</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Not configured</td>
<td>0</td>
<td>00</td>
<td>0000</td>
<td>Unknown</td>
<td>0.0.0.0</td>
<td>MIF Image ID</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Not configured</td>
<td>0</td>
<td>00</td>
<td>0000</td>
<td>Unknown</td>
<td>0.0.0.0</td>
<td>MIF Image ID</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Not configured</td>
<td>0</td>
<td>00</td>
<td>0000</td>
<td>Unknown</td>
<td>0.0.0.0</td>
<td>MIF Image ID</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Not configured</td>
<td>0</td>
<td>00</td>
<td>0000</td>
<td>Unknown</td>
<td>0.0.0.0</td>
<td>MIF Image ID</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Not configured</td>
<td>0</td>
<td>00</td>
<td>0000</td>
<td>Unknown</td>
<td>0.0.0.0</td>
<td>MIF Image ID</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Not configured</td>
<td>0</td>
<td>00</td>
<td>0000</td>
<td>Unknown</td>
<td>0.0.0.0</td>
<td>MIF Image ID</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Not configured</td>
<td>0</td>
<td>00</td>
<td>0000</td>
<td>Unknown</td>
<td>0.0.0.0</td>
<td>MIF Image ID</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Not configured</td>
<td>0</td>
<td>00</td>
<td>0000</td>
<td>Unknown</td>
<td>0.0.0.0</td>
<td>MIF Image ID</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Not configured</td>
<td>0</td>
<td>00</td>
<td>0000</td>
<td>Unknown</td>
<td>0.0.0.0</td>
<td>MIF Image ID</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Not configured</td>
<td>0</td>
<td>00</td>
<td>0000</td>
<td>Unknown</td>
<td>0.0.0.0</td>
<td>MIF Image ID</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Not configured</td>
<td>0</td>
<td>00</td>
<td>0000</td>
<td>Unknown</td>
<td>0.0.0.0</td>
<td>MIF Image ID</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 11. Display active session configuration panel

Index specifies the session number.

State specifies whether the session is not configured, available, or has a definition error:
- Not configured: the session has not yet been configured.
- Available: the session has been configured and the client can connect to it.
- Definition error: the session is not a valid session and the client cannot connect. The session CSS, MIFID, or Device Number does not exist or was dynamically deleted during dynamic I/O.

CSS specifies the logical channel subsystem ID. The valid range for CSS is 0–3.

MIFID is the logical partition MIF image ID. A valid range for the image ID is 1–F.

Device Number is a number assigned for each device that was defined in the IOCDS.

LU Name defines a group pool of devices which identifies what session you are going to connect to.

Client’s IP (optional) specifies the IP address that a client will use to connect to the session. The client’s IP address can remain 0.0.0.0 or empty in order to allow any client to connect to a specific session. If a non-zero IP is specified, any client with a non-matching IP will be rejected.

Session Type can be console, operating system console, or printer.
DHD (Defer Host Disconnect): indicates the amount of time to wait (in seconds) until OSA-ICC tells the host that the client session has disconnected.

RSP (Response Mode): indicates whether response mode is enabled or disabled. If enabled, the host waits for the client to send an acknowledgement on the Telnet level for every packet that is transmitted. This enables the user to check for bad LANs, poor performance, or other issues.

RTO (Response Time Out): specifies how long to wait (in seconds) for a response from the client before performing a client disconnect. The default RTO is 60.

Notes:
1. The phrase Response Time Out and Read Time Out are synonymous for OSA-ICC
2. If no RTO is specified, the Missing Interrupt Handler (MIH) should be disabled. If an RTO value is specified, MIH should be set to at least 50% greater than the RTO value. MIH is set via the operating system.

Display active server configuration

The *Display active server configuration* panel is used to display the active TCP/IP connection configuration information about the OSC channel.
Server Name specifies the name of the server that a client is connected to.

Host IP Address specifies your IP address.

TCP Port specifies the port that server will use to connect with the client.

Default Gateway specifies IP address gateway to any machines out of network.

Subnet Mask specifies a mask used to determine what subnet an IP address belongs to.

Frame type specifies the Ethernet standards that you want the network to follow. Every host in a network must have the same frame type.

MTU Size(B) specifies the maximum size to be transferred in one frame.

Configuring via panel entry

Configuring your OSA-ICC results in the creation of one file containing session and server configuration information. You can create this by entering data via panel entry or by manually editing the file. Panel entry requires that you move through a
series of data entry panels and enter configuration data on those panels. Panel entry is especially convenient if you want to make a small number of changes to your configuration file.

Once the configuration file is created, regardless of whether it was created via panel or manual entry, either interface can be used to update the file.

Panel configuration options
The *Panel configuration options* panel is the high level selection panel for the configuration options that are used for editing a session or server configuration, validating panel values, and/or viewing validate panel values errors. To choose a panel configuration option, select a utility option and click OK.

![Panel configuration options panel](image)

Edit session configuration
The *Edit session configuration* panel is used to edit the session configuration for a given OSC. This includes a list of the sessions that are configured for the OSC and configuration information about each session. The display is the same as the *Display active session configuration* panel except the fields may be edited.

Note: In order to make your edited session the active configuration, you must validate then activate it. For more information about validating, and activating see "Validate panel values" on page 27 and "Activate configuration" on page 43. In addition, you may want to export your source file as a backup. For more information on exporting, see "Export source file" on page 30.
Index specifies the session number.

State specifies whether the session is not configured, available, or has a definition error:
- Not configured: the session has not yet been configured.
- Available: the session has been configured and the client can connect to it.
- Definition error: the session is not a valid session and the client cannot connect.

The session CSS, MIFID, or Device Number does not exist or was dynamically deleted during dynamic I/O.

CSS specifies the logical channel subsystem ID number. The valid range for CSS is 0–3.

MIFID is the logical partition MIF image ID. It specifies the logical partition within the LCSS with which the device will communicate. The valid range for the image ID is 1–F.

Device Number is a number assigned for each device. A valid range for the device number is 1-65535.

LU Name defines a group pool of devices which identifies what session you are going to connect to. This field is not case sensitive.

Client’s IP (optional) specifies the IP address that client will use to connect to the session. The client’s IP address can remain 0.0.0.0 or empty in order to allow any client to connect to a specific session.

Session Type can be TN3270, operating system console, or printer. The default is the operating system console.
DHD (Defer Host Disconnect): indicates the amount of time to wait (in seconds) until OSA-ICC tells the host that the client session has disconnected. For example, if you wanted to turn your PC off without the host knowing you left, you would click on the radio button for "enable with no timeout for deferment." This option specifies that the host will never be informed that you have logged off. A valid range for DHD is 1-86400 (24 hours in seconds).

RSP (Response Mode): indicates whether response mode is enabled or disabled. If enabled, the host waits for the client to send an acknowledgement on the Telenet level for every read, write, or packet it receives. This enables the user to check for bad LANs, poor performance, or other issues.

RTO (Response Time Out): specifies how long to wait (in seconds) for a response from the client before performing a client disconnect. The default RTO is 60. The valid range for RTO is 1-300.

Notes:
1. The phrase Response Time Out and Read Time Out are synonymous for OSA-ICC
2. If no RTO is specified, Missing Interrupt Handler (MIH) should be disabled. If an RTO value is specified, MIH should be set to at least 50% greater than the RTO value. MIH is set via the operating system.

To edit a field:
1. Highlight the entry you want to edit
2. Double click the change button at the bottom of the screen
3. Make any desired changes. Be sure to scroll down to view all the fields that you can edit. For a description of the fields, see the field descriptions above.

4. Click OK to save the updated session information or the information will be lost.

5. Validate and activate your changes. For more information on validating and activating see, "Validate panel values" on page 27, and "Activate configuration" on page 43. In addition, you may want to export your configuration as backup. For more information on exporting, see "Export source file" on page 30.
Edit server configuration

The *Edit server configuration* panel is used to edit the server configuration for a given OSC.

![Edit server configuration panel](image)

Figure 16. Edit server configuration panel

The *Edit server configuration* panel requires the following input:

Server name Used for display only.

Host IP Address specifies your IP address.

TCP Port Port that server will use to connect with the client. A valid range is 1–65536.

Default Gateway specifies IP address gateway to any machines out of network.

Subnet Mask A mask used to determine what subnet an IP address belongs to.

Frame type specifies the Ethernet standards that you want the network to follow. Every host in a network must have the same frame type. It is **strongly recommended** that you use DIX as your frame type. SNAP refers to IEEE 802.3 framing, but most traffic on Ethernet is usually carried on DIX frames. Please contact your network administrator to see what you are using.

MTU Size(B) specifies the maximum size to be transferred in one frame. A valid range is from 256–1492. The default is 576. Speak to your network administrator to see if you need the MTU size to be different from the default.

Validate panel values

The *Validate panel values* panel is used to authenticate any values entered in the configuration panels.

Notes:

1. In order to make your validated session the active configuration, you must activate it. For more information about activating see “Activate configuration” on page 43.
In addition, you may want to export your source file as a backup. For more information on exporting, see “Export source file” on page 30.

2. For a list of errors and warnings that you might receive after validating, see Chapter 7, “Error and warning messages,” on page 57.

If you receive errors during your validation, you must fix them before you can activate the configuration. If you receive warnings during your validation, you may still activate your configuration. However, it is suggested that you address these warnings and re-validate before you activate your configuration.

![Figure 17. Validate panel values panel](image)

Display validate panel errors

The Display validate panel errors panel is used to view any errors you might have received while validating. For a list of errors and warnings that you might receive, see Chapter 7, “Error and warning messages,” on page 57.

![Figure 18. Display validate panel errors panel](image)

Configuring via manual editing

Configuring your OSA-ICC results in the creation of a session and server configuration file. You can create this file by entering data via panel entry or by manually editing the file. Panel entry requires that you move through a series of data entry panels and enter configuration data on those panels. Your other option is to edit your configuration manually using your favorite editor. Manual editing is much faster for multiple data entries because of the powerful editing capabilities of most editors.

You can edit the configuration file on your Hardware Management Console or SE console or you can export the configuration file via FTP or to a diskette, edit it using the editor of your choice, and import back to the SE. You can also edit the configuration file directly on the SE console by selecting the Edit source file panel under the Manual configuration options panel.

Once the configuration file is created, regardless of whether is was created via panel or manual entry, either interface can be used to update the file.

Manual configuration options

The Manual configuration options panel is the high level selection panel for the manual configuration options that are used for importing a source file, exporting a
source file, editing a source file, and validating a source file. Manual configuration is the most efficient way to create a configuration file because it allows you to create and modify a configuration file with the editor of your choice. Many editors allow you to copy and paste sections of the file and to find and replace data items quickly and easily.

To choose a manual configuration option, select an option and click OK.

![T60HMC: Manual Configuration Options](image)

Figure 19. Manual configuration panel

Import source file

If you exported a configuration file for editing you must import it in order to use it. Here are the steps for importing a session configuration file from a diskette.

Note: In order to make the imported source file the active configuration, you must edit the source file (optional), validate the source file and then activate it. For more information about editing, validating, and activating source files see, "Edit source file" on page 33, "Validate source file" on page 42 and "Activate configuration" on page 43. In addition, if you update the file you may want to export your source file as a backup. For more information on exporting, see "Export source file" on page 30.

Steps for importing a configuration file: Before you begin: You must be aware of the naming requirements for a configuration file. These requirements are:

- The filename has a maximum of eight characters. The first four characters should be iqzc.
- The file extension is .trm.

1. Insert diskette containing the source file into your floppy disk drive. If you are working from the SE, your import will be from the SE. If you are working from the Hardware Management Console, the import will be from the Hardware Management Console.
Management Console. If your Hardware Management Console is in single object operation, you must insert the diskette in the SE.

2. From the Manual configuration options panel select Import source file. The Import source file panel will appear with a list of all the files on the disk. For example:

![Image of Import source file panel]

Figure 20. Import source file panel

3. Highlight the file you would like to import and click OK. The file you specified will be imported.

 Warning: Although you can import any file listed, trying to validate and activate a file that is not a configuration file will fail.

4. Edit (optional), validate your imported source file, and activate the configuration.

For an example of a source file, see “An example of a correct configuration file” on page 34.

Export source file

The Export source file panel is used to export a session configuration file to a diskette so you can edit the configuration file with your editor. You can also use this panel to export your configuration options as a backup. Here are the steps for exporting the session configuration file to a diskette.

Steps for exporting a configuration file: Before you begin: You must be aware of the naming requirements for a configuration file. These requirements are:

- The filename has a maximum of eight characters. The first four characters should be iqzc.
- The file extension is .trm.

1. Insert diskette you wish to save the source file on into your floppy disk drive. If you are working from the SE, your export will be from the SE. If you are working from the Hardware Management Console, the export will be from the Hardware Management Console. If your Hardware Management Console is in single object operation, you must insert the diskette in the SE.

2. From the Manual configuration options panel select Export source file. The Export source file will appear.
For example:

![Export Source File Panel](image)

Figure 21. Export source file panel

3. Type in the name to be given to the exported configuration file in the Export source file name field and click "OK". The panel is going to export the configuration file for the PCHID selected.

Import source file by FTP

If you exported a configuration file for editing you must import it in order to use it. Here are the steps for importing a session configuration file via FTP.

Note: In order to make the imported source file the active configuration, you must edit the source file (optional), validate the source file and then activate it. For more information about editing, validating, and activating source files see, "Edit source file" on page 33, "Validate source file" on page 42, and "Activate configuration" on page 43. In addition, if you update the file you may want to export your source file as a backup. For more information on exporting, see "Export source file via FTP" on page 32.

Steps for importing a configuration file via FTP: Before you begin: You must be aware of the naming requirements for a configuration file. These requirements are:

- The filename has a maximum of eight characters. The first four characters should be iqzc.
- The file extension is .trm.

1. From the Manual configuration options panel select Import source file via FTP. The Import source file via FTP panel will appear.
Enter the IP address, user identification, password, and fully qualified file name and click "OK". The file you specified will be imported. **Warning:** Although you can import any file listed, trying to validate and activate a file that is not a configuration file will fail.

<table>
<thead>
<tr>
<th>Target configuration data set</th>
<th>OSC Pchid:01C1 Configuration Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target configuration data set name</td>
<td>{1}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IP address</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>User identification</td>
<td></td>
</tr>
<tr>
<td>Password</td>
<td></td>
</tr>
<tr>
<td>Fully qualified file name</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 22. Import source file panel via FTP

2. Enter the IP address, user identification, password, and fully qualified file name and click OK. The file you specified will be imported.

Warning: Although you can import any file listed, trying to validate and activate a file that is not a configuration file will fail.

3. Edit (optional), validate your imported source file, and activate the configuration.

For an example of a source file, see “An example of a correct configuration file” on page 34.

Export source file via FTP

The **Export source file via FTP** panel is used to export a session configuration file via FTP so you can edit the configuration file with your editor. You can also use this panel to export your configuration options as a backup. Here are the steps for exporting the session configuration file via FTP and editing it on your workstation of choice.

Steps for exporting a configuration file via FTP: Before you begin: You must be aware of the naming requirements for a configuration file. These requirements are:

- The filename has a maximum of eight characters. The first four characters should be iqzc.
- The file extension is .trm.

1. From the **Manual configuration options** panel select **Export source file via FTP**. The **Export source file via FTP** panel will appear.

 For example:
2. Type in the IP address, user identification, password, and fully qualified file name to be given to the exported configuration file and click "OK". The panel is going to export the configuration file for the PCHID selected.

Edit source file

If you have exported your configuration file, you can use an editor of your choice. Otherwise you can edit the file from the Edit source file panel. Here are the steps for editing a configuration file via the Edit source file panel.

Note: In order to make the edited source file the active configuration, you must import the source file (only if you are using a workstation editor and not the edit source file panel), validate the source file, and then activate it. In addition, you may want to export your source file as a backup. For more information about exporting, validating, and activating source files see, "Import source file" on page 29, "Validate source file" on page 42 and "Activate configuration" on page 43.

Steps for editing a source file:

1. From the OSC manual configuration panel select Edit source file. Your source file will be displayed.

2. Make any necessary changes and save. For an example of a source file see, "An example of a correct configuration file" on page 34.

3. Validate your source file to check for any errors. If the file did not validate error free, the errors messages will appear directly in your source file. For an example of a source file with errors in it see, "An example of a configuration file with a warning" on page 35.

Sections of the configuration file: There are 2 sections to the session configuration file:

- The first section is called the session section and includes parameters about the OSC as they relate to the OSA-Express card. In the file, the first line of the
session section is the <OSC_SERVER> tag and the last line of the the card parameters is the <OSC_SERVER> tag.

- The second section includes parameters about the TN3270E sessions you want to configure for your OSA-ICC. You can configure up to 120 sessions on an OSA-ICC. In the file, the first line of the session parameters is the <CONFIG_SESSION> tag and the last line of the card parameters is the <CONFIG_SESSION> tag.

Within the <CONFIG_SESSION> section of the file are the individual session configuration parameters. Each set of session parameters begins with the <SESSION> tag and ends with the </SESSION> tag where x is the index number of the TN3270 session within the configuration.

An example of a correct configuration file: Following is an example of a configuration file. This example matches the IOCP example given in this document.

```xml
<OSC_SERVER>
  HOST_IP= 10.10.10.160
  DEFAULT_GATEWAY= 10.10.10.2
  SUBNET_MASK= 255.255.255.0
  PORT= 9003
  ETHERNET_FRAME= DIX
  MTU= 1492
  NAME= Server1
</OSC_SERVER>

<CONFIG_SESSION>
  <SESSION1>
    CLIENT_IP= 10.10.10.15
    CSS= 00 MIFID= 01 DEVICE= 2400
    GROUP= "OSA01"
    CONSOLE_TYPE= 2 RESPONSE= ON READ_TIMEOUT= 60
  </SESSION1>
  <SESSION2>
    CLIENT_IP= 10.10.10.15
    CSS= 00 MIFID= 01 DEVICE= 2401
    DEFER_HOST_DISCONNECT= 80
    GROUP= "OSA01"
    CONSOLE_TYPE= 1 RESPONSE= ON READ_TIMEOUT= 60
  </SESSION2>
  <SESSION3>
    CLIENT_IP= 10.10.10.15
    CSS= 00 MIFID= 02 DEVICE= 2400
    GROUP= "OSA02"
    CONSOLE_TYPE= 1 RESPONSE= ON READ_TIMEOUT= 60
  </SESSION3>
  <SESSION4>
    CLIENT_IP= 10.10.10.16
    CSS= 00 MIFID= 02 DEVICE= 2401
    GROUP= "OSA02"
    CONSOLE_TYPE= 1 RESPONSE= ON READ_TIMEOUT= 60
  </SESSION4>
  <SESSION9>
    CLIENT_IP= 10.10.10.17
    CSS= 01 MIFID= 03 DEVICE= 2400
    GROUP= "OSA01"
    CONSOLE_TYPE= 1 RESPONSE= ON READ_TIMEOUT= 60
  </SESSION9>
  <SESSION10>
    CLIENT_IP= 10.10.10.18
    CSS= 01 MIFID= 03 DEVICE= 2401
  </SESSION10>
</CONFIG_SESSION>
```
An example of a configuration file with a warning: The following is another example of a configuration file. This example matches the configuration shown in the panels. The configuration file also includes a sample warning message that you would see after validating a file and receiving a warning.

```xml
<OSC_SERVER>
    HOST_IP= 10.37.69.2
    DEFAULT_GATEWAY= 10.37.69.15
    SUBNET_MASK= 255.255.255.0
    PORT= 9004
    ETHERNET_FRAME= DIX
    MTU= 1492
    NAME= 1C1OSC
</OSC_SERVER>

<CONFIG_SESSION>
    <SESSION1>
        CSS= 00 IID= 01 DEVICE= 0160
        GROUP= "1B1LP1"
        CONSOLE_TYPE= 2 RESPONSE= ON READ_TIMEOUT= 10
    </SESSION1>

    // Warning: This session is in Definition Error state
  <SESSION2>
    CSS= 01 IID= 01 DEVICE= 0161
    GROUP= "1B1LP1"
    CONSOLE_TYPE= 1 RESPONSE= ON READ_TIMEOUT= 10
  </SESSION2>

  <SESSION4>
    CSS= 00 IID= 01 DEVICE= 0163
    GROUP= "1B1LP1"
    CONSOLE_TYPE= 1 RESPONSE= ON READ_TIMEOUT= 10
  </SESSION4>

  <SESSION5>
    CSS= 00 IID= 01 DEVICE= 0164
    GROUP= "1B1LP1"
    CONSOLE_TYPE= 1 RESPONSE= ON READ_TIMEOUT= 10
  </SESSION5>

  <SESSION6>
    CSS= 00 IID= 02 DEVICE= 0160
    GROUP= "1B1LP2"
    CONSOLE_TYPE= 2 RESPONSE= ON READ_TIMEOUT= 10
  </SESSION6>

  <SESSION7>
    CSS= 00 IID= 02 DEVICE= 0161
    GROUP= "1B1LP2"
    CONSOLE_TYPE= 1 RESPONSE= ON READ_TIMEOUT= 10
  </SESSION7>

  <SESSION8>
    CSS= 00 IID= 02 DEVICE= 0162
</CONFIG_SESSION>
```
Syntax of a configuration file: Below is a table of tags and their descriptions that you can include in your syntax file.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>//</td>
</tr>
</tbody>
</table>

This indicates that any text to the end of the line is treated as a comment. **Note:** Any user entered comment will be erased during activation.
<table>
<thead>
<tr>
<th></th>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td><code><OSC_SERVER></code></td>
<td>This tag indicates the beginning of the server configuration data. There can be only one such tag in the configuration file. It must be followed by <code><OSC_SERVER></code> tag, otherwise a syntax error will be produced.</td>
</tr>
<tr>
<td>3</td>
<td><code></OSC_SERVER></code></td>
<td>This tag is the delimeter for the server configuration section. There can be only one such tag in the configuration file. It must be preceded by the <code><OSC_SERVER></code> tag, otherwise a syntax error will be produced.</td>
</tr>
<tr>
<td>4</td>
<td><code>HOST_IP=</code></td>
<td>This tag is used to label the Host's IP address; a value that follows it should be an IP address in dotted format (for example, 10.10.12.43). This address is assigned to the OSA3270 server, and this is the address that TN3270E clients will be connecting to. The following is an example of using this tag: <code>HOST_IP=</code> 10.10.121.44. There is no default.</td>
</tr>
<tr>
<td>5</td>
<td><code>PORT=</code></td>
<td>The value is the port number on which the OSA3270 server will be listening (accepting) clients. For example, <code>PORT=3271</code>. The default value is <code>PORT=3270</code>.</td>
</tr>
<tr>
<td>6</td>
<td><code>DEFAULT_GATEWAY=</code></td>
<td>The value is the IP address in dotted decimal format for the default gateway. For example, <code>DEFAULT_GATEWAY=10.10.121.48</code>. There is no default.</td>
</tr>
<tr>
<td>7</td>
<td><code>SUBNET_MASK=</code></td>
<td>The value is the IP address in dotted decimal format for subnet mask. For example, <code>SUBNET_MASK=225.225.225.0</code>. There is no default.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>ETHERNET_FRAME=</td>
<td>Specifies the Ethernet standards that you want the network to follow. Every host in a network must have the same frame type. The value can be DIX or SNAP. It is strongly recommended that you use DIX as your frame type. SNAP refers to IEEE 802.3 framing, but most traffic on Ethernet is usually carried on DIX frames. Please contact your network administrator to see what you are using. Below is an example of specifying a frame type: ETHERNET_FRAME= DIX or ETHERNET_FRAME= SNAP. Default value: ETHERNET_FRAME= DIX.</td>
</tr>
<tr>
<td>9</td>
<td>NAME=</td>
<td>The name can be up to 15 characters and is not case sensitive.</td>
</tr>
<tr>
<td>10</td>
<td>MTU=</td>
<td>Specifies the maximum size to be transferred in one frame. A valid range is from 256–1492. A user would use an MTU size of less than 1492 when the routing equipment does not support anything above 576.</td>
</tr>
<tr>
<td>11</td>
<td><CONFIG_SESSION></td>
<td>Marks the beginning of the session configuration.</td>
</tr>
<tr>
<td>12</td>
<td></CONFIG_SESSION></td>
<td>Marks the end of the session configuration.</td>
</tr>
</tbody>
</table>

Tags 4-8 can be abbreviated up to first 4 letters.
<table>
<thead>
<tr>
<th></th>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td><code><SESSION#></code></td>
<td>Marks the beginning of the individual session configuration. It must be followed by <code></SESSION#></code> tag. Everything between the <code><SESSION#></code> and <code></SESSION#></code> tags is treated as configuration data for one session. # is replaced by the corresponding index of the session. This number is in the range 1-120. Each number can be used only once, since a session can be configured only once.</td>
</tr>
<tr>
<td>14</td>
<td><code></SESSION#></code></td>
<td>Marks the ending of the individual session configuration. It must be preceded by the <code><SESSION#></code> tag.</td>
</tr>
<tr>
<td>15</td>
<td>CSS=</td>
<td>This is the channel subsystem number. The valid range is 0-3. This number will be compared with IOCDS to make sure that it is defined.</td>
</tr>
<tr>
<td>16</td>
<td>MIFID= or IID=</td>
<td>This is the image ID for the session. The valid range is 1-F. This number will be compared with IOCDS to make sure that it is defined.</td>
</tr>
<tr>
<td>17</td>
<td>DEVICE=</td>
<td>This is the device number associated to the session. This hexadecimal number will be compared with IOCDS to make sure that it is defined. The valid range is 1-65535.</td>
</tr>
</tbody>
</table>

Tags 15-17 can be abbreviated up to first 3 letters.
<table>
<thead>
<tr>
<th>Page</th>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>GROUP=</td>
<td>Group can be any valid ASCII characters except double quotes. The name must be included in double quotes.</td>
</tr>
<tr>
<td>19</td>
<td>CLIENT_IP=</td>
<td>This is the IP address that the client will use to connect to this session. IP address should be in dotted decimal format. For example, 10.10.23.23. Specifying a client's IP is optional. Omitting this tag will allow any client to connect to a specific session.</td>
</tr>
<tr>
<td>20</td>
<td>CONSOLE_TYPE=</td>
<td>Specifies the session type: 1 (TN3270), 2 (master system operator console) or 3 (printer). The default configuration file should contain number descriptions in the comments next to the line with this tag. The default value is 1.</td>
</tr>
</tbody>
</table>
DEFER_HOST_DISCONNECT=

Indicates the amount of time to wait (in seconds) until the session tells the host you have disconnected. For example, if you wanted to turn your PC off without the host knowing you left, you would specify a value of 0. Then, `DEFER_HOST_DISCONNECT` will be enabled, but timeout for deferment will be infinity. The host will never be informed that you have logged off. For example,

```
DEFER_HOST_DISCONNECT = 0
```

If this tag is not used, then Defer Host Disconnect will be disabled for particular session.

If value is specified, then it will be used as a deferment timeout parameter. For example,

```
DEFER_HOST_DISCONNECT = 120
```

The valid range for this parameter is 1-86400. By default there is no DHD.

RESPONSE=

Response mode can be ON or OFF, i.e. enabled or disabled. The default value is OFF.
Validate source file

Once you have edited a configuration file you must validate it in order to ensure that the file is valid before activating it. Here are the steps for validating a configuration file.

Warning: In order to make the validated source file the active configuration, you must activate it. Activating a configuration makes any changes you made effective immediately. This could result in active sessions being dropped. For more information about activating source files see, “Activate configuration” on page 43.

Validating a manual configuration file:

1. From the **OSC manual configuration** panel select **Validate source file**.
2. If the source file you are validating has errors or warnings, they will be included in comments in the source file. Only the first error will be detected. Therefore, you must fix that error and validate the source file again to determine if there are any additional errors. For an example of a source file with warnings in it, see “An example of a configuration file with a warning” on page 35. For a list of errors that you might receive, see Chapter 7, “Error and warning messages,” on page 57. Here is the screen you will see if your source file has errors:

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ_TIMEOUT=</td>
<td>Read timeout (RTO) is defaulted to 60 seconds, but if user wishes to customize this parameter, they can do so by assigning number n to read timeout, as in READ_TIMEOUT= n. The valid range for n is 1-300 seconds.</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. The phrase Response Time Out and Read Time Out are synonymous for OSA-ICC
2. If no RTO is specified, Missing Interrupt Handler (MIH) should be disabled. If an RTO value is specified, MIH should be set to at least 50% greater than the RTO value. MIH is set via the operating system.

Tags 18-23 can be abbreviated up to first 4 letters
You must fix all errors before activating your configuration. If you don't, you will receive the same errors while attempting to activate and your valid source file will be lost.

3. If the validate was successful, you will receive a message stating that validation of your source file was successful. Click OK.

Activate configuration

The **Activate configuration** panel is used to activate a valid session and server configuration file. If you choose to activate a configuration file, your sessions will disconnect and then reconnect with the new configuration file option in effect.

Warning: You must validate the source file before you activate the configuration. Activating a configuration makes any changes made effective immediately. This could result in active sessions being dropped.

Note: You may want to export the configuration to save it as backup. For more information on exporting, see "Export source file" on page 30.
Display activate configuration errors

The Display activate configuration errors panel is used to view the file which contains configuration error messages if any exist. If a configuration validated successfully, there will be no activate configuration errors.

Figure 26. Activate configuration panel

For a list of possible errors and warnings, see Chapter 7, “Error and warning messages,” on page 57.

Debug utilities

The Debug utilities panel is the high level selection panel for the debug utilities that are used for debugging a problem with a session on an OSC.

To choose an OSC debug utility option, select a utility option and click OK.
Ping Utility

The **Ping Utility** panel is used to ping a client workstation to verify the status of the connection. A user can also ping the server's own IP address to verify the server's connection.

![Ping Utility Panel](image)

Figure 28. Debug utilities panel

![Ping Utility Configuration Panel](image)

Figure 29. Ping utility
The Ping utility requires the following input:

- Client’s IP address: Specifies the IP address of the client you want to ping.
- Length: You can select the default length of 256 bytes or enter a custom length of between 8 and 32000 bytes.
- Count: You can select the default count of 1 or enter a custom count of between 1 and 10.
- Timeout: You can select the default timeout value of 10 seconds or enter a custom timeout value.

Trace route utility

The *Trace route utility* panel is used to trace the route to the client interface specified by the IP address. The results of the trace route will give you every hop from OSA-ICC to the interface specified by the client’s IP address.

![Trace Route Utility Panel](image-url)

Figure 30. Trace route utility

The trace route utility requires the following input:

- Client’s IP address: The IP address of the client you want to ping.
- Max TTL: You can select the default maximum of 30 or enter a custom value of between 1 and 255.
- Attempts: You can select the default number of attempts of 3 or enter a custom number of between 1 and 20.
- Port: You can select the default port of 4096 or enter a custom port value of between 2048 and 60000.
- Wait time in seconds: Specifies how long to wait for a trace route operation to complete.
- Extra Debug messages: If you select yes, extra debug messages will be included in the result of the trace route.

Drop session
The *Drop session* panel is used to drop a session from an OSA-ICC. You can use this panel if you need to drop a session because you can’t get to a PC or you have a bad connection.

If you selected auto-reconnect during the customization of your session, the option will automatically reconnect your session after you drop it.

![Figure 31. Drop session utility](image)

The drop utility requires a session index from the session table number to identify which session to drop.

The drop session panel requires the following input:
- Session index: The index from the session table.

Cancel
The *Cancel* panel allows you to cancel a command which is executing on an OSC.
Figure 32. Cancel command panel
Chapter 4. OSA-ICC Programming Considerations

Differences Between 3174 and OSA-ICC

The IBM OSA-ICC is an entirely new implementation of a 3270 terminal control unit. Its purpose is to provide IPL and control consoles for the z/OS Operating System (for example, the System Operator console for VM/ESA®, or the Master Console for z/OS). An older 3174 control unit, such as the 3174-12L which the OSA-ICC replaces, has more capabilities in some areas, and fewer capabilities in other areas.

3270 Client Support

The OSA-ICC only supports TCP/IP RFC 2355 compliant Telnet TN3270E emulator programs, such as IBM eNetwork Personal Communications. These clients appear to the z/OS Operating System as non-SNA, DFT terminals. It does not support COAX attached clients. The OSA-ICC is essentially a control unit on a port of an OSA 1000BaseT Ethernet cards which controls up to 120 devices. In this document an OSA-ICC is referred to an OSC CHPID and each OSC can provide console support for any logical partition in any CSS on your z890 or z990 processor. The OSA-ICC configuration panels allow you to specify which logical partition on your processor each device is attached to using the CSS ID, MIF image ID, and device number.

The 3174 supports both COAX and LAN-attached, SNA and non-SNA, CUT and DFT mode terminals. It does not support TCP/IP attached clients. When configured in non-SNA, DFT mode, the 3174’s 32 devices must all be assigned to a single logical partition on one specific S/390 or zSeries processor.
Chapter 5. eNetwork Personal Communications Configuration

Below is an example of defining a PCOMM 3270 session. The example uses PCOMM version 5.6 for Windows. If you are using a different version, your panels may look a little different.

Steps for customizing a PCOMM session

1. To Define an Ethernet attached session to the host, click on 'Link Parameters.'

2. Define the connection from the workstation to the OSA-ICC server.
Enter the Host name or IP Address. The values in Host Name or IP Address
and Port Number were specified when defining the OSA-ICC server
configuration. For more information on defining your OSA-ICC server
Configuration see, "Edit server configuration" on page 27.

3. Enter the LU or Pool Name. The value in LU or Pool Name was specified when
defining the group name in the session configuration.

4. Enter the Port Number.

5. Click OK on the Telnet3270 panel.

Note: It is recommended that you select auto-reconnect. However, understand
that the drop session option for configuring an OSA-ICC will not work.
The auto-reconnect option will automatically reconnect your session
after you drop it. For more information on the drop session option, see
"Drop session" on page 47.

If you wish, use the Session Parameters option in Customize Communication to set
a screen size other than 24 by 80. It is recommended that your screen size
matches the operating system screen size.
Clicking OK on the Customize Configuration panel causes PCOMM to initiate the connection to the host.

If the host session is not ready for communication, the screen displayed will show your connection information for this session. For example:

```
OSA Index 00 connected to OSAE000 via IP Addr 9.12.6.18:1024
LT Index=99 CSSID=00 LPAR=6A CU=0 UA=90 LUName=SCZPE000
Type=28E4-R08 Hfg=IBM SN=00000026938A DHCPID=04 Status=Active
```

Figure 35. E - Capture — [24x80]

Line 1: OSAE000 is the defined server name; 9.12.6.18:1024 shows the defined server address and port number.

Line 2: session index; LCSS number; LPAR number (this is NOT the MIF image ID we specified for the session, but it is related); logical CU number (always 0); unit address for this device; LU name.

Line 3: information for the connected processor.

When using IBM eNetwork Personal Communications (PCOMM) for client TN3270E display sessions, the following statement must be present in the PCOMM profile files (xxx.WS) to ensure that printer WCC controls are ignored if sent by the host:

```
[LT]
IgnoreWCCStartPrint=Y
```

If this statement is not present in your PCOMM profile files you will have to edit the xxx.WS files on your client PC with a PC text editor to add the statement lines.
Chapter 6. Connection rules

When the client is connecting to the OSA-ICC, the client will get assigned a session based on what is in the client session table. If the client does not meet the criteria described below, or there are no more free sessions, that client’s connection will be refused. Connection rules deal with the criteria that is issued for a client’s assignment to sessions.

Connection criteria is based on two rules:

- What can be defined in the session table
- How a client will be assigned to a session

There are 2 elements that rules deal with:

- Client’s IP
- LU name (also called group name)

This is what can be defined in the session table (via panels or via source file):

- Each session has to have at least one element; for example, either LU name or an IP address
- A session can have both client’s IP and LU name
- A session may have only an LU name or only a client’s IP
- The same LU name cannot be specified in multiple images (CSS/IIDs). It may, however, be used multiple times within the same image.

If a session has the LU name and IP defined, then another session can not have that same LU name without also specifying an IP address. However, it is okay if LU is reused with the same or different IP address. If you attempt to use the LU name by itself, you will get return code 1223 or 1224, depending on what session was defined first (one with both LU name and IP address, or one with just LU name). For example:

```
session1: CSS= 1 MIFID= 1 GROUP= "LU1"  CLIENT_IP= 10.10.10.1
session2: CSS= 1 MIFID= 1 GROUP= "LU1"  -
```

These 2 sessions are in conflict - this would be an error.

Example 2:

```
session1: CSS= 1 MIFID= 1 GROUP= "LU1"  CLIENT_IP= 10.10.10.1
session2: CSS= 1 MIFID= 1 GROUP= "LU1"  CLIENT_IP= 10.10.10.2
```

These 2 sessions are NOT in conflict.

Example 3:

```
session1: CSS= 1 MIFID= 1 GROUP= "LU1"  CLIENT_IP= 10.10.10.1
session2: CSS= 1 MIFID=1  GROUP= "LU2"   -
```

These 2 sessions are NOT in conflict - because session 2 uses different LU.

- IP has to be unique per partition when no LU is specified.

This is how clients are assigned to a session:

- If the client has specified an LU name, then the first available session with that LU name will be considered. Furthermore, if that session entry has a client’s IP address specified, the address of the incoming client must also match.
- If the client has specified an LU name, then first available session with that LU name will be considered. Furthermore, if that session entry has NO client's IP address specified, the address of the incoming client does not have to match.
- If the client has not specified an LU name, the first available session without an LU name will be considered. Furthermore, the IP address of the incoming client must match that session's client IP address.

Table 1. Connection rules matrix

<table>
<thead>
<tr>
<th>Rule</th>
<th>Session configuration</th>
<th>Client's configuration</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No LU name, and no IP</td>
<td>not allowed</td>
<td>No Connection</td>
</tr>
<tr>
<td>2</td>
<td>Unique LU name specified</td>
<td>Defined LU</td>
<td>OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No/mismatch LU</td>
<td>No Connection</td>
</tr>
<tr>
<td>3</td>
<td>LU name specified Multiple times and unique to this partition</td>
<td>Defined LU</td>
<td>OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No/mismatch LU or defined in multiple CSS/images</td>
<td>No Connection</td>
</tr>
<tr>
<td>4</td>
<td>LU name and client's IP specified</td>
<td>Good LU, good IP</td>
<td>OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Good LU, bad IP</td>
<td>No Connection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No LU, good IP</td>
<td>No Connection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No LU, bad IP</td>
<td>No Connection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bad LU, good IP</td>
<td>No Connection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bad LU, bad IP</td>
<td>No Connection</td>
</tr>
<tr>
<td>5</td>
<td>Unique client IP specified</td>
<td>IP good</td>
<td>OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP bad or defined in multiple CSS/images</td>
<td>No Connection</td>
</tr>
<tr>
<td>6</td>
<td>Client IP specified multiple times and unique to this partition</td>
<td>Defined IP</td>
<td>OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No/mismatch IP or defined in multiple CSS/images</td>
<td>No Connection</td>
</tr>
</tbody>
</table>
Chapter 7. Error and warning messages

By validating your configuration file, either by the Validate panel values panel or the Validate Source File panel, you are checking for any errors in your configuration. Any errors or warning you receive can be viewed in either the Display Validate panel values panel or in the source file as comments. Below is a list of errors and warnings that you could receive:

Table 2. Errors from validate source file

<table>
<thead>
<tr>
<th>Code</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010</td>
<td>// @@@ error: Sessions X and Y are defining same device; i.e. same css/mfid/device</td>
</tr>
<tr>
<td>1020</td>
<td>// @@@ error: Can’t have multiple <OSC_SERVER> tags</td>
</tr>
<tr>
<td>1021</td>
<td>// @@@ error: Can’t have <OCS_SERVER> tag within session configuration</td>
</tr>
<tr>
<td>1022</td>
<td>// @@@ error: Card configuration already done</td>
</tr>
<tr>
<td>1030</td>
<td>// @@@ error: Illegal </OSC_SERVER> position</td>
</tr>
<tr>
<td>1031</td>
<td>// @@@ error: Server configuration section has to be closed by </OSC_SERVER></td>
</tr>
<tr>
<td>1032</td>
<td>// @@@ error: Missing HOST_IP tag</td>
</tr>
<tr>
<td>1033</td>
<td>// @@@ error: Missing PORT tag</td>
</tr>
<tr>
<td>1034</td>
<td>// @@@ error: Missing DEFAULT_GATEWAY tag</td>
</tr>
<tr>
<td>1035</td>
<td>// @@@ error: Missing SUBNET_MASK tag</td>
</tr>
<tr>
<td>1036</td>
<td>// @@@ error: Missing ETHERNET tag</td>
</tr>
<tr>
<td>1037</td>
<td>// @@@ error: Missing NAME tag</td>
</tr>
<tr>
<td>1038</td>
<td>// @@@ error: Missing MTU tag</td>
</tr>
<tr>
<td>1040</td>
<td>// @@@ error: No host IP value</td>
</tr>
<tr>
<td>1041</td>
<td>// @@@ error: Can’t have host IP outside of card configuration area</td>
</tr>
<tr>
<td>1042</td>
<td>// @@@ error: Host IP value is in bad format</td>
</tr>
<tr>
<td>1044</td>
<td>// @@@ error: Host name value is too long - 15 char is Max.</td>
</tr>
<tr>
<td>1045</td>
<td>// @@@ error: No host name value</td>
</tr>
<tr>
<td>1047</td>
<td>// @@@ error: Can’t have name outside of card configuration area</td>
</tr>
<tr>
<td>1050</td>
<td>// @@@ error: No host port value</td>
</tr>
<tr>
<td>1051</td>
<td>// @@@ error: Can’t have host port outside of card configuration area</td>
</tr>
<tr>
<td>1052</td>
<td>// @@@ error: Out of range port value</td>
</tr>
<tr>
<td>1060</td>
<td>// @@@ error: No gateway router value</td>
</tr>
<tr>
<td>1061</td>
<td>// @@@ error: Can’t define gateway outside of the card configuration area</td>
</tr>
</tbody>
</table>
Table 2. Errors from validate source file (continued)

<table>
<thead>
<tr>
<th>Line</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1062</td>
<td>// @@@ error: Invalid gateway address value or format</td>
</tr>
<tr>
<td>1070</td>
<td>// @@@ error: No subnet mask value</td>
</tr>
<tr>
<td>1071</td>
<td>// @@@ error: Can’t define subnet mask outside of the card configuration area</td>
</tr>
<tr>
<td>1072</td>
<td>// @@@ error: Invalid subnet address value or format</td>
</tr>
<tr>
<td>1080</td>
<td>// @@@ error: No value for Ethernet standard</td>
</tr>
<tr>
<td>1081</td>
<td>// @@@ error: Can’t define Ethernet standard outside of card configuration</td>
</tr>
<tr>
<td>1082</td>
<td>// @@@ error: Unknown Ethernet standard value or format</td>
</tr>
<tr>
<td>1090</td>
<td>// @@@ error: No value for MTU</td>
</tr>
<tr>
<td>1091</td>
<td>// @@@ error: Can’t define MTU outside of card configuration</td>
</tr>
<tr>
<td>1092</td>
<td>// @@@ error: MTU value outside of 256-1492 range</td>
</tr>
<tr>
<td>1093</td>
<td>// @@@ error: MTU value has to be a decimal number</td>
</tr>
<tr>
<td>1100</td>
<td>// @@@ error: Can’t have <CONFIG_SESSION> tag within card configuration area</td>
</tr>
<tr>
<td>1101</td>
<td>// @@@ error: Can’t have multiple <CONFIG_SESSION> tags</td>
</tr>
<tr>
<td>1102</td>
<td>// @@@ error: Sessions configuration already done</td>
</tr>
<tr>
<td>1110</td>
<td>// @@@ error: Illegal </CONFIG_SESSION> position</td>
</tr>
<tr>
<td>1120</td>
<td>// @@@ error: <SESSION# needs to end with >, i.e.<SESSION#></td>
</tr>
<tr>
<td>1121</td>
<td>// @@@ error: Trying to configure session outside of session configuration area</td>
</tr>
<tr>
<td>1122</td>
<td>// @@@ error: Session # is not between [1 and 120]</td>
</tr>
<tr>
<td>1123</td>
<td>// @@@ error: Overlapping configuration for different session</td>
</tr>
<tr>
<td>1124</td>
<td>// @@@ error: <SESSION# needs to end with >, i.e.<SESSION#></td>
</tr>
<tr>
<td>1125</td>
<td>// @@@ error: Wrong session # in a </SESSION#> tag</td>
</tr>
<tr>
<td>1126</td>
<td>// @@@ error: This Session # has already been configured</td>
</tr>
<tr>
<td>1127</td>
<td>// @@@ error: Session # has to be a decimal number</td>
</tr>
<tr>
<td>1128</td>
<td>// @@@ error: This session is missing one of the mandatory tags : css, iid or device</td>
</tr>
</tbody>
</table>
Table 2. Errors from validate source file (continued)

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1130</td>
<td>// @@ @ error: Can’t define CSS outside of session configuration area</td>
</tr>
<tr>
<td>1131</td>
<td>// @@ @ error: Have to define CSS between <SESSION#> and </SESSION#> tags</td>
</tr>
<tr>
<td>1132</td>
<td>// @@ @ error: Unsupported CSS value</td>
</tr>
<tr>
<td>1133</td>
<td>// @@ @ error: CSS value is not present</td>
</tr>
<tr>
<td>1140</td>
<td>// @@ @ error: Can’t define MIFID (IID) outside of session configuration area</td>
</tr>
<tr>
<td>1141</td>
<td>// @@ @ error: Have to define MIFID (IID) between <SESSION#> and </SESSION#> tags</td>
</tr>
<tr>
<td>1142</td>
<td>// @@ @ error: Unsupported MIFID (IID) value. Range is [01 - 0F].</td>
</tr>
<tr>
<td>1143</td>
<td>// @@ @ error: MIFID (IID)value not present</td>
</tr>
<tr>
<td>1150</td>
<td>// @@ @ error: Can’t define device outside of session configuration area</td>
</tr>
<tr>
<td>1151</td>
<td>// @@ @ error: Have to define device between <SESSION#> and </SESSION#> tags</td>
</tr>
<tr>
<td>1152</td>
<td>// @@ @ error: Unsupported device value</td>
</tr>
<tr>
<td>1153</td>
<td>// @@ @ error: Device value not present</td>
</tr>
<tr>
<td>1160</td>
<td>// @@ @ error: Can’t define group name outside of session configuration area</td>
</tr>
<tr>
<td>1161</td>
<td>// @@ @ error: Have to define group name between <SESSION#> and </SESSION#> tags</td>
</tr>
<tr>
<td>1162</td>
<td>// @@ @ error: Unsupported group length</td>
</tr>
<tr>
<td>1163</td>
<td>// @@ @ error: Group name value not present</td>
</tr>
<tr>
<td>1164</td>
<td>// @@ @ error: Group name value not present or no quotes</td>
</tr>
<tr>
<td>1170</td>
<td>// @@ @ error: Can’t define client’s IP outside of session configuration area</td>
</tr>
<tr>
<td>1171</td>
<td>// @@ @ error: Have to define client IP between <SESSION#> and </SESSION#> tags</td>
</tr>
<tr>
<td>1172</td>
<td>// @@ @ error: Client IP value in bad format</td>
</tr>
<tr>
<td>1173</td>
<td>// @@ @ error: Client IP value not present</td>
</tr>
<tr>
<td>1180</td>
<td>// @@ @ error: Can’t define type outside of session configuration area</td>
</tr>
<tr>
<td>1181</td>
<td>// @@ @ error: Have to define console type between <SESSION#> and </SESSION#> tags</td>
</tr>
<tr>
<td>1182</td>
<td>// @@ @ error: Undefined console type value</td>
</tr>
<tr>
<td>1183</td>
<td>// @@ @ error: Console type value not present</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>1190</td>
<td>//@@@ error: Can’t define Defer Host Disconnect outside of session configuration area</td>
</tr>
<tr>
<td>1191</td>
<td>//@@@ error: Have to define Defer Host Disconnect between <SESSION#> and </SESSION#> tags</td>
</tr>
<tr>
<td>1192</td>
<td>//@@@ error: Value for a Defer Host Disconnect has to be a whole decimal number</td>
</tr>
<tr>
<td>1193</td>
<td>//@@@ error: Defer Host Disconnect value either too small or too large.</td>
</tr>
<tr>
<td>1194</td>
<td>//@@@ error: Defer Host Disconnect value not present</td>
</tr>
<tr>
<td>1200</td>
<td>//@@@ error: Can’t define Response outside of session configuration area</td>
</tr>
<tr>
<td>1201</td>
<td>//@@@ error: Have to define Response between <SESSION#> and </SESSION#> tags</td>
</tr>
<tr>
<td>1202</td>
<td>//@@@ error: Unsupported value of Response</td>
</tr>
<tr>
<td>1203</td>
<td>//@@@ error: Response value not present</td>
</tr>
<tr>
<td>1210</td>
<td>//@@@ error: Can’t define Read timeout outside of session configuration area</td>
</tr>
<tr>
<td>1211</td>
<td>//@@@ error: Have to define Read timeout between <SESSION#> and </SESSION#> tags</td>
</tr>
<tr>
<td>1212</td>
<td>//@@@ error: Read timeout value is too small. Range is (0-300]</td>
</tr>
<tr>
<td>1213</td>
<td>//@@@ error: Read timeout value is too large. Range is (0-300]</td>
</tr>
<tr>
<td>1214</td>
<td>//@@@ error: Read timeout value is not present</td>
</tr>
<tr>
<td>1215</td>
<td>//@@@ error: Read timeout value should be a whole decimal number</td>
</tr>
<tr>
<td>1221</td>
<td>//@@@ error: 1221 LU (group) name has to be unique per partition (CSS.IID). LU names in sessions X and Y are in conflict.</td>
</tr>
<tr>
<td>1222</td>
<td>//@@@ error: 1222: Session IP has to be unique per partition (CSS.IID) when is used without Group (LU) name. IPs in sessions X and Y are in conflict.</td>
</tr>
<tr>
<td>1223</td>
<td>//@@@ error: 1223: When used in combination with the IP, LU name can’t be used again, if it was already used in other session by it self. Sessions X and Y are in conflict.</td>
</tr>
<tr>
<td>1224</td>
<td>//@@@ error: 1224: Same LU name can’t be used again, if it was already used in other session together with IP. Sessions X and Y are in conflict.</td>
</tr>
</tbody>
</table>
Table 2. Errors from validate source file (continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1225</td>
<td>// @@ error: 1225: Neither group (LU) name nor IP is specified for session # X. At least one has to be specified</td>
</tr>
</tbody>
</table>

Table 3. Warnings from validate source file

<table>
<thead>
<tr>
<th>Code</th>
<th>Warning Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>505</td>
<td>// @@ warning: 505 This session is in Definition Error state because CSS is not defined in IOCDS</td>
</tr>
<tr>
<td>506</td>
<td>// @@ warning: 506 This session is in Definition Error state because CSS is not defined in IOCDS</td>
</tr>
<tr>
<td>507</td>
<td>// @@ warning: 507 This session is in Definition Error state because IID is not defined for CSS in IOCDS</td>
</tr>
<tr>
<td>508</td>
<td>// @@ warning: 508 This session is in Definition Error state because Device is not defined for IID in IOCDS</td>
</tr>
<tr>
<td>509</td>
<td>// @@ warning: 509 This session is in Definition Error state because device is not defined in IOCDS</td>
</tr>
</tbody>
</table>

Table 4. Errors from validate panels

<table>
<thead>
<tr>
<th>Code</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010</td>
<td>// @@ Error 1010: Session # X and session # Y are defining same device; i.e. same css/mifid/device</td>
</tr>
<tr>
<td>1042</td>
<td>// @@ Error 1042: Invalid server IP value:</td>
</tr>
<tr>
<td>1052</td>
<td>// @@ Error 1052: Invalid server port value: XXXXX</td>
</tr>
<tr>
<td>1082</td>
<td>// @@ Error 1082: Invalid server LAN PARM value: XXXXX</td>
</tr>
<tr>
<td>1092</td>
<td>// @@ Error 1092: Invalid server MTU value: XXXXX</td>
</tr>
<tr>
<td>1132</td>
<td>// @@ Error 1032 :Session # X has out of range CSS value.</td>
</tr>
<tr>
<td>1142</td>
<td>// @@ Error 1042 :Session # X has out of range IID value.</td>
</tr>
<tr>
<td>1152</td>
<td>// @@ Error 1052 :Session # X has out of range deviceNumber value.</td>
</tr>
<tr>
<td>1182</td>
<td>// @@ Error 1082 :Session # X has invalid Type.</td>
</tr>
<tr>
<td>1202</td>
<td>// @@ Error 1202 :Session # X has invalid RSP value.</td>
</tr>
<tr>
<td>1212</td>
<td>// @@ Error 1212 :Session # X has invalid RTO value.</td>
</tr>
<tr>
<td>1221</td>
<td>// @@ Error 1221 : LU (group) name has to be unique per partition (CSS.IID). LU names in sessions X and " Y are in conflict.</td>
</tr>
<tr>
<td>Error Code</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1222</td>
<td>// @@ @ Error 1222 : Session IP has to be unique per partition (CSS.IID) when is used without Group (LU) name. IPs in sessions X and Y are in conflict.</td>
</tr>
<tr>
<td>1223</td>
<td>// @@ @ Error 1223 : When used in combination with the IP, LU name can’t be used again, if it was already used in other session by itself. Sessions X and Y are in conflict.</td>
</tr>
<tr>
<td>1224</td>
<td>// @@ @ Error 1224: Same LU name can’t be used again, if it was already used in other session together with IP. Sessions X and Y are in conflict.</td>
</tr>
<tr>
<td>1225</td>
<td>// @@ @ Error 1225: Neither group (LU) name nor IP is specified for session # X. At least one has to be specified.</td>
</tr>
<tr>
<td>62</td>
<td>// @@ @ Warning 62 : Invalid server gateway value: XXXXX</td>
</tr>
<tr>
<td>72</td>
<td>// @@ @ Warning 72: Invalid server subnetMask value: XXXXX</td>
</tr>
<tr>
<td>505</td>
<td>// @@ @ warning: Session X is in Definition Error state because CSS is not defined in IOCDS for this CHPID</td>
</tr>
<tr>
<td>506</td>
<td>// @@ @ warning: Session X is in Definition Error state because CSS is not defined in IOCDS</td>
</tr>
<tr>
<td>507</td>
<td>// @@ @ warning: Session X is in Definition Error state because IID is not defined for CSS in IOCDS</td>
</tr>
<tr>
<td>508</td>
<td>// @@ @ warning: Session X is in Definition Error state because device is not defined for IID in IOCDS</td>
</tr>
<tr>
<td>509</td>
<td>// @@ @ warning: Session X is in Definition Error state because device is not defined in IOCDS</td>
</tr>
</tbody>
</table>
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local laws:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks and Service Marks

The following terms, denoted by a registered trademark (®) in this publication, are registered trademarks of the International Business Machines Corporation in the United States or other countries:

<table>
<thead>
<tr>
<th>Term</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCON</td>
<td>IBM</td>
</tr>
<tr>
<td>MVS</td>
<td>OS/2</td>
</tr>
<tr>
<td>OS/390</td>
<td>S/390</td>
</tr>
<tr>
<td>VM/ESA</td>
<td>z/OS</td>
</tr>
<tr>
<td>z/VM</td>
<td>Resource Link</td>
</tr>
</tbody>
</table>
Index

A
Activate configuration 43

C
Cancel 47

D
Debug utilities 44
Display activate configuration errors 44
Display active server configuration 21
Display active session configuration 20
Display client connections 18
Display validate panel errors 28
Drop session 47

E
Edit server configuration 27
Edit session configuration 23
Edit source file 33
Editing a configuration file, steps for 33
Export source file 30
Export source file via FTP 32
Exporting a configuration file, steps for 30, 32

I
Import a configuration file, steps for 29, 31
Import source file 29
Import source file by FTP 31

M
Manual configuration 28
Manual configuration options 28

P
Panel configuration options 23
Ping utility 45

R
Run port diagnostics 17

S
Set card mode 17

T
tasks (continued)
 customizing a PCOMM session
 steps for 51
defining an OSC CHPID via HCD
 steps for 4
Trace route utility 46

V
Validate panel values 27
Validate source file 42
View port parameters 15

© Copyright IBM Corp. 2004, 2005