User’s Guide

Version 3 Release 5
User’s Guide

Version 3 Release 5
Third Edition (September, 2013)

This book applies to EREP Version 3 Release 5 until otherwise indicated in new editions.

The following paragraph does not apply to any country where such provisions are inconsistent with local law.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not
apply to you.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this document, or
you may address your comments to the following address:

 International Business Machines Corporation
 MHVRCFS, Mail Station P181
 2455 South Road
 Poughkeepsie, NY 12601-5400
 United States of America

 FAX (United States and Canada): 1+845+432-9405
 FAX (Other Countries):
 Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
 Internet e-mail: mhvrcfs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

• Title and order number of this document
• Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.
Step 6: Generating CCH and MCH Detail Reports 57
Step 7: Generating MDR and OBR Detail Reports for Controllers .. 57
Step 8: Generating Detail Summaries for I/O Errors ... 58
Step 9: Generating Detail Reports for Software Records .. 58
Step 10: Updating the History Tape ... 59
Step 11: Generating a Trends Report ... 59
VM SP System Controls .. 60
 Defining Files for CPEREPXA .. 60
 Overriding Input and Output FILEDEFs for CPEREPXA .. 62
Using the CPEREPXA EXEC ... 62
 CPEREPXA Operands Syntax and Coding .. 63
 Unique CPEREPXA Operands .. 64
 Using EREP Controls as CPEREPXA Operands .. 64
 Entering CPEREPXA Operands ... 65
 Prompting Method .. 65
 File Entry Method .. 66
 Stacked Entry Method .. 67
 Mixed Entry Method ... 68
Information about the Error Recording Area (ERDS) .. 69
 Clearing the ERDS when Near Full on VM ... 70
 Initialization of the Error Recording Area (ERDS) in VM .. 70
 Error Record Recording and Retrieval on XA and ESA ... 70
 ERDS Form on XA and ESA .. 71
 ERDS Handling on XA and ESA ... 71
 General Procedure Flow on XA and ESA .. 72
VM SP Error Recording with Guest Systems ... 72
 Capturing All the Data for EREP ... 73
 Automating the Running of EREP .. 73

Chapter 6. Running EREP under VSE 75
Step 1: Creating a History Data Set ... 76
Step 2: Generating a System Summary Report .. 76
Step 3: Generating System Exception Reports .. 77
Step 4: Generating Event History Reports .. 77
Step 5: Generating Threshold Summary Reports ... 78
Step 6: Generating MCH, CCH and CRW Detail Reports .. 78
Step 7: Generating MDR and OBR Detail Reports for Controllers ... 78
Step 8: Generating Detail Summary reports for I/O Errors .. 79
Step 9: Generating Detail Reports for Software Records .. 80
Step 10: Updating the History Tape .. 80
Step 11: Generating Trends Reports ... 81
VSE System Controls ... 81
 Provide with Each EREP Run .. 81
 Assignments at Initialization .. 82
 To Execute EREP .. 82
Special Considerations for EREP Parameters and Controls .. 82
VSE Storage Requirements ... 82
 Increasing Partition Size ... 83
 Access Methods .. 84
 Creation and Processing of Software Records ... 84
 Initialization of the Error Recording Data Set (ERDS) in VSE .. 84
 Clearing the ERDS when Near Full on VSE .. 85
 Statistical and Usage Data Written to SYSREC .. 86
 VSE History File (IJSYSHF) ... 86
 Running EREP in a Multisystem Environment ... 86
 Automating the Running of EREP ... 86

Notices ... 89
Policy for unsupported hardware .. 90
Minimum supported hardware .. 91
Trademarks .. 91

Glossary ... 93

Index ... 101
Figures

1. The Record Building and Reporting Process 2
Tables

1. EREP Selection, Processing, and Report Parameter Combinations 11
2. Combining Multisystem Error Records .. 14
3. The Order of Product Groups in the Reports ... 19
4. Error Record Types and Sources for Reports ... 24
5. Contents of EREP.CONTROLS ... 33
6. How to Define Inputs to EREP ... 44
7. JCL Examples for Running EREP on MVS ... 45
8. MVS Region Size Increases for EREP .. 47
9. VSE Partition Size Increases for EREP .. 83
Preface

The following operating systems can run EREP:
- DOS/VS, DOS/VSE, VSE/ESA, and VSE/Advanced Functions—known collectively in this book as VSE systems.
- VS2, MVS/370, MVS/XA, MVS/ESA, and OS/390—known collectively in this book as MVS systems.
- VM/370, VM/SP, VM/SP/HPO, VM/XA, and VM/ESA—known collectively in this book as VM systems.

If EREP 3.5 is not installed on your system, some of the information in this book may not apply. You can find out which level of EREP your system supports by checking the release number of the EREP tape last installed; the release number is in the System Control Programming Specifications, which accompany the EREP tape.

Note: New releases of EREP are always downward compatible. That is, the latest version of EREP always runs on your system. They also include new functions that you can only use if you have the latest version of your operating system; but generally old functions, are not eliminated. The same is true of this book, although some very old versions of EREP (for example, IFCEREPO) are no longer supported.

Who Should Read This Publication

This publication is for people who manage and maintain data processing equipment in a system installation.

<table>
<thead>
<tr>
<th>USER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>System programmers</td>
<td>Who set up and run EREP</td>
</tr>
<tr>
<td>IBM service representatives</td>
<td>Who use the EREP reports to diagnose problems in the installation’s hardware devices</td>
</tr>
<tr>
<td>IBM systems engineers (SE)</td>
<td>Who are called when there is a problem with the running of EREP</td>
</tr>
</tbody>
</table>

Note: It is also for anyone who wants to find out what EREP is and how it works.

When reading this publication, you will find a working knowledge of the operating system EREP runs under very helpful; familiarity with the system job control and entry language is also helpful, but not necessary.

Organization and Contents

The information on EREP is divided into two manuals:

<table>
<thead>
<tr>
<th>MANUAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EREP User's Guide</td>
<td>Introductory and explanatory information about EREP and detailed process information for the person who may not know how to set up a job to run EREP.</td>
</tr>
</tbody>
</table>
Organization and Contents

<table>
<thead>
<tr>
<th>MANUAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EREP Reference</td>
<td>Reference information in quick-look-up format—for the person who is familiar with EREP and the process of setting it up, but who wants to check out syntax, message wording, or coding rules.</td>
</tr>
</tbody>
</table>

The information in this manual is divided into the following chapters:

- **Chapter 1, “Introducing EREP,” on page 1,** is the introduction to EREP. This chapter contains an explanation of what EREP is and what it does.
- **Chapter 2, “Setting Up and Running EREP,” on page 7,** describes how to define the procedures and files required to make an EREP run.
- **Chapter 3, “Creating EREP Reports,” on page 17,** provides instructions on how to create each type of EREP report.
- **Chapter 4, “Running EREP under MVS,” on page 31,** presents sample procedures for running EREP under an MVS system control program, followed by descriptions of the required system controls and usage notes.
- **Chapter 5, “Running EREP under VM,” on page 53,** presents sample procedures for running EREP under a VM system control program, followed by descriptions of the required system controls and usage notes.
- **Chapter 6, “Running EREP under VSE,” on page 75,** presents sample procedures for running EREP under a VSE system control program, followed by descriptions of the required system controls and usage notes.

z/OS information

This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross-document links that go directly to the topic in reference using shortened versions of the document title. For complete titles and order numbers of the documents for all products that are part of z/OS®, see [z/OS Information Roadmap](http://www.ibm.com/systems/z/os/zos/bkserv/).

To find the complete z/OS library, including the z/OS Information Center, see [z/OS Internet Library](http://www.ibm.com/systems/z/os/zos/bkserv/).
Summary of Changes

Third Edition

This book includes new information about “Running EREP in a Multisystem Environment” on page 50.

Second Edition

This book includes information about EREP reports and controls for the following new supported devices:
- 3590 all models

First Edition

This book includes information about EREP reports and controls for the following new supported devices:
- 3990 model 006
- 9343 model CC2
- 9343 model CC4
- 9343 model DC4
- 9392 model 001
- 9392 model 002
- 9392 model 003
- 9394
- 9395 model 001
- 9395 model 002
- 9696
Chapter 1. Introducing EREP

The Environmental Record Editing and Printing Program (EREP) is a diagnostic application program that runs under the MVS, VM, and VSE operating systems. The purpose of EREP is to help IBM service representatives maintain your data processing installation.

EREP edits and prints reports from the records placed in the error recording data set (ERDS) by the error recovery program (ERP) of your operating system. Some of these records are the result of device or system errors, while others are informational or statistical data. The service representative analyzes information in the EREP reports to determine if a problem exists, what the problem is, and where the problem is located.

What EREP Does

EREP processes the error records from your operating system to produce formatted reports. These EREP reports can show the status of the entire installation, an I/O subsystem, or an individual device depending upon which report you request. EREP reports vary in format depending on type:

<table>
<thead>
<tr>
<th>REPORT TYPE</th>
<th>FORMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>System summary</td>
<td>Error data in summary form</td>
</tr>
<tr>
<td>Trends</td>
<td>Error data by daily totals</td>
</tr>
<tr>
<td>Event history</td>
<td>Error data in a time sequence by occurrence</td>
</tr>
</tbody>
</table>

Important:
1. EREP edits and prints records that already exist; it does not create the error records.
2. EREP is not designed to automate media maintenance or library management. It is a service tool that shows statistical data that helps your IBM service representative determine whether a problem is media related or hardware related.

Figure 1 on page 2 shows how records are built from the device sense data and then what EREP does with those records.
Where Records Come From

Your operating system with its hardware and software captures statistical and error data, such as:

- A read error on a direct access device or tape volume
- A machine check on a processor
- An IPL of the operating system

How Data is Processed and Records Built

The system procedure executing EREP issues commands to write the buffered statistical data from the system-attached devices to the ERDS. The system ERP builds the records in the following stages:

<table>
<thead>
<tr>
<th>STAGE</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The devices attached to the operating system generate sense data for the events encountered during the day. The sense data can be informational, error-related, or statistical.</td>
</tr>
<tr>
<td>2</td>
<td>The ERP of the operating system looks at the sense data. If the sense data indicates that a record should be built, the ERP takes the sense data and places it after the standard header information. The combination of the header information and the sense data becomes the error record.</td>
</tr>
<tr>
<td>3</td>
<td>The operating system ERP writes the records onto the system ERDS.</td>
</tr>
</tbody>
</table>
If any of the devices do not respond to the system commands, EREP stops and does not continue until the device that does not respond is brought back online. System diagnostics can be used to determine which device is causing the problem.

Where the Records are Stored
The records are stored in the ERDS of the operating system. The ERDS goes by a different name in each operating system:

<table>
<thead>
<tr>
<th>OP. SYSTEM</th>
<th>ERDS NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVS</td>
<td>ERDS (1)</td>
</tr>
<tr>
<td>VM/SP*</td>
<td>error recording area</td>
</tr>
<tr>
<td>VSE</td>
<td>SYSREC (IJSYSRC)</td>
</tr>
</tbody>
</table>

Note:
1. In MVS, the default name of the ERDS is SYS1.LOGREC; but for MVS release 5.1 and later, it can be installation modified.

What EREP Does with the Records
When you run EREP, it reads records directly from the ERDS and processes them to produce the report you have requested. EREP processing includes:

- Filtering the records through the selection parameters set up for the report
- Checking records for validity
- Reviewing records to see if they belong in the reports

Note: IFCEREP1 always opens the ERDS for update mode. Users with only read authority will not be able to produce reports or copy the ERDS to a temporary history data set.

Note: With the exception of system summary report, IFCEREP1 opens the ERDS in read mode if ZERO=N is specified or defaulted. Users with only read authority can produce reports or copy the ERDS to a temporary history data set when ZERO=N is specified or defaulted. This update is available in PTF UO01597.

How EREP Filtering is Done
EREP filters through the records it read from the ERDS to determine:

- Which records satisfy the selection parameters
- The record length
- Whether the first byte of data is a valid record type
- Whether the record has been truncated by the operating system

EREP then relays the following standard message to the EREP messages file:
where xxx is the number of valid records EREP saw. If the message indicates 0 records passed filtering.

IFC122I xxx records ignored because truncated bit on.

records passed filtering, the file may be missing or there may be invalid data in the file.

You may also receive the following message:
IFC122I xxx records ignored because truncated bit on.

where xxx is the number of valid records ignored.
This indicates that a number of records were truncated as they were placed in the ERDS or history file.

Note: The operating system, not EREP, truncates the records and does not indicate which records were not processed.

See “Messages Files” on page 5 for a description of messages in the EREP messages file.

How EREP Checks Records for Validity

To check all DASD OBR, MDR or A3 records for validity, EREP:
• Uses a device product specification table to check each record
• Reviews the content of certain bytes within the records

EREP accepts only records that are built to the specifications of each device.

If a record is invalid, EREP puts an IFC264I or IFC265I message and a hex dump of the record in the EREP messages file. Invalid records may be the result of:
• Invalid data, missing data, or conflicting data within the records
• Down level microcode patch to the hardware
• Program temporary fix (PTF) missing on the operating system
• PTF missing on the EREP system maintenance

See “Messages Files” on page 5 for a description of messages in the EREP messages file.

How EREP Selects Records When Building Reports

After records have been filtered and validity checked, EREP reviews each record to see whether to include it in the requested reports. Since each report has its specific criteria, not all records appear in all reports.

If you do not see a record that you feel should be in the report, check the EREP messages file to see if the record is listed. If it is not, consider the following:
• The sense data can cause a record to be excluded from a report. If sense byte 26, bit 6 is turned off in a 3390 record, the record is not included in the system exception series (SYSEXN) reports.
• The record could be a type that is not normally processed by the particular report. SIM-producing device records do not appear on a TRENDS report.
• The record may have been rejected. Records that have not passed through the previous checks are not included in the report.

How the ERDS Header Record is Reset

If the Accumulate (ACC) and the Zero ERDS (ZERO) processing parameters are set to “Y”, EREP resets the ERDS header record. The header record contains pointers that locate the start and end of the error records within the ERDS. MVS and VSE use the header record to control the overwriting of previous records in the ERDS. VM/XA* and VM/ESA* erase the ERDS.

If the ERDS header record is unreadable, EREP will not be able to process the records and the operating system may not be able to write new records to the ERDS. If the header record gets overlaid or otherwise damaged, there will be no way to recover the error records within the ERDS.
Note: Using the IFCDIP00 program or rewriting the entire recorder file fixes the header record problem, but it does not allow you to read the records. Records are physically present in the file, but are still inaccessible due to the new header pointers.

Types of EREP Output

You can receive three different kinds of output in each EREP run:
- Messages files
- Report files
- History files

Messages Files

EREP puts messages and processing information about the statements it executes into the messages (TOURIST) file. The EREP messages file shows:
- Which parameters, including defaults, have been applied to the input records
- The number of records passing filtering
- The number of records processed
- How EREP has interpreted the control statements you set up
- The messages issued during processing. (For detailed descriptions of each message, refer to EREP Messages in the EREP Reference)

For an example of the EREP message output, refer to Using the EREP Messages File (TOURIST Output) in the EREP Reference.

Report Files

EREP formats information about the recorded errors into the reports that you request. You need to run EREP reports daily in large installations and weekly in smaller installations. Use your EREP reports to look for indications of system or device problems.

Important: Because there is no way to show you all the possible variations caused by different devices and different parameter combinations, your reports will not look exactly like the reports in this manual.

Your operating system, the hardware devices installed, and the version of EREP that you are running determine the reports you can print. The examples in the maintenance documentation for your specific devices show information on the types of reports available and details of the various parts of the reports.

The following table lists and categorizes the different EREP reports to help you decide which ones to include in your EREP runs:

<table>
<thead>
<tr>
<th>REPORT TYPE</th>
<th>CATEGORY</th>
<th>TELLS YOU</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>System summary</td>
<td>Overview</td>
<td>If there are problems</td>
<td>“System Summary Report” on page 17</td>
</tr>
<tr>
<td>Trends report</td>
<td>Overview</td>
<td>If there are problems</td>
<td>“Trends Report” on page 21</td>
</tr>
<tr>
<td>Event history</td>
<td>Overview</td>
<td>If there are problems</td>
<td>“Event History Report” on page 22</td>
</tr>
<tr>
<td>System exception series</td>
<td>Analysis</td>
<td>Where the problems are</td>
<td>“System Exception Report Series” on page 24</td>
</tr>
</tbody>
</table>
Introduction

<table>
<thead>
<tr>
<th>REPORT TYPE</th>
<th>CATEGORY</th>
<th>TELLS YOU</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold reports</td>
<td>Detail</td>
<td>What the problems are</td>
<td>"Threshold Summary Report" on page 26</td>
</tr>
<tr>
<td>Detail print reports</td>
<td>Detail</td>
<td>What the problems are</td>
<td>"Detail Edit and Summary Reports" on page 27</td>
</tr>
</tbody>
</table>

Note: Some of the reports, such as the system exception series, have several parts; be aware that a lot of output can be generated.

For examples of statements used to generate reports for each operating system, see one of the following chapters:

- Chapter 4, “Running EREP under MVS,” on page 31
- Chapter 5, “Running EREP under VM,” on page 53
- Chapter 6, “Running EREP under VSE,” on page 75

Important: Use the maintenance documentation for your device to find detailed directions about interpreting EREP reports for your specific hardware, the significance of particular fields within reports that can be device specific, and variations within reports due to hardware specifics.

History Files

You should always create a history file before running EREP reports. By creating a history file and then running all the reports against that file, you ensure that all of the reports are using the same set of records.

Examples of statements used to generate history files are in the following sections:

<table>
<thead>
<tr>
<th>OP. SYSTEM</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVS</td>
<td>"Step 1: Creating a History Data Set" on page 33</td>
</tr>
<tr>
<td>VM</td>
<td>"Step 1: Creating a History File" on page 54</td>
</tr>
<tr>
<td>VSE</td>
<td>"Step 1: Creating a History Data Set" on page 76</td>
</tr>
</tbody>
</table>
Chapter 2. Setting Up and Running EREP

This chapter gives you the general guidelines you will need for invoking and running EREP. It includes the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Invoking EREP”</td>
</tr>
<tr>
<td>“Defining Files and Storage Requirements for EREP” on page 8</td>
</tr>
<tr>
<td>“Parameters and Control Statements” on page 8</td>
</tr>
<tr>
<td>“Maintaining ERDS Data Integrity” on page 13</td>
</tr>
<tr>
<td>“Clearing the ERDS” on page 13</td>
</tr>
<tr>
<td>“Multisystem Installations” on page 14</td>
</tr>
<tr>
<td>“A Planning Checklist” on page 14</td>
</tr>
</tbody>
</table>

Invoking EREP

You run EREP by executing a procedure containing the operating system EREP command and its associated parameter and control statements. You can only request one type of report each time you execute the EREP command for your system. You may produce any number of different type reports by including additional EREP commands with the associated parameters and control statements.

The following table contains descriptions of how to execute EREP under each operating system and the page numbers where you can find detailed instructions.

<table>
<thead>
<tr>
<th>OP. SYSTEM</th>
<th>PROCESS</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVS</td>
<td>Define the input and output data sets using JCL DD statements. The JCL submits the job as a batch job or interactively via TSO. Put the IFCEREP1 program in the JCL EXEC statement. Include the EREP parameters on the EXEC statement or as part of SYSIN in-stream data with the EREP control statements.</td>
<td>Chapter 4, “Running EREP under MVS,” on page 31</td>
</tr>
<tr>
<td>VM/SP</td>
<td>Define the input and output files using FILEDEFs and then issue the CPEREPXA EXEC. Enter the CPEREPXA and EREP operands using one of the methods shown in “Entering CPEREPXA Operands” on page 65. The EREP parameters and control statements are included in the EREP operands.</td>
<td>Chapter 5, “Running EREP under VM,” on page 53</td>
</tr>
<tr>
<td>VSE</td>
<td>Define the input and output data sets using JCS TLBL or DLBL statements, and the necessary logical units using ASSGN statements. The JCS submits the job as a batch job or interactively via ICCF. Put the IFCEREP1 program in the JCS EXEC statement. List your EREP parameter and control statements as in-stream data to be read from the SYSIPT logical unit.</td>
<td>Chapter 6, “Running EREP under VSE,” on page 75</td>
</tr>
</tbody>
</table>
Defining Files and Storage Requirements for EREP

You must provide system controls that create the interface between EREP and the operating system’s data management functions. The following table shows where to find instructions for setting up system controls and defining files for each operating system:

<table>
<thead>
<tr>
<th>OP. SYSTEM</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVS</td>
<td>“MVS System Controls” on page 43</td>
</tr>
<tr>
<td>VM</td>
<td>“Defining Files for CPEREPXA” on page 60</td>
</tr>
<tr>
<td>VSE</td>
<td>“VSE System Controls” on page 81</td>
</tr>
</tbody>
</table>

Parameters and Control Statements

All of the operating systems use the same parameters and control statements to tell EREP what specific information to print in the reports.

The parameters and control statements can be grouped according to the kinds of information they convey to the EREP program as shown in the following table:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>INFORMATION CONVEYED</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report parameters</td>
<td>Which report to produce</td>
<td>“EREPE Report Parameters”</td>
</tr>
<tr>
<td>Selection parameters</td>
<td>Which records to select for the requested report</td>
<td>“EREPE Selection Parameters” on page 9</td>
</tr>
<tr>
<td>Processing parameters</td>
<td>How to control the processing of error records and report output</td>
<td>“EREPE Processing Parameters” on page 10</td>
</tr>
<tr>
<td>Control statements</td>
<td>How to:</td>
<td>“EREPE Control Statements” on page 11</td>
</tr>
<tr>
<td></td>
<td>• Direct EREP processing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Supply more information about the system’s configuration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Provide organization to the requested reports</td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. “EREPE Report Parameters” through “EREPE Control Statements” on page 11 describe all the EREP parameters and control statements.
2. Table 1 on page 11 shows parameters that cannot be used together.
3. For the syntax of each parameter and control statement, refer to Introduction to EREP Controls in the EREP Reference.

EREPE Report Parameters

Use the report parameters in the following table to request reports from EREP.

<table>
<thead>
<tr>
<th>REPORT PARAMETERS</th>
<th>WHAT THEY DO</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVENT</td>
<td>Produces a three-part event history report that lists errors in chronological order. Shows how often errors occur and in what order. Used to establish a pattern and identify problems.</td>
</tr>
</tbody>
</table>
Report Parameters

<table>
<thead>
<tr>
<th>REPORT PARAMETERS</th>
<th>WHAT THEY DO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT</td>
<td>Produces a series of detail edit or summary reports, or both, for the selected record types. The number of reports depends on the input and selection parameters. Note: PRINT=SD is the default report parameter. The other options are shown in the syntax for the print parameter: PRINT={AL</td>
</tr>
<tr>
<td>SYSEXN</td>
<td>Produces a system exception report series covering processors, channels, DASD, optical, and tape subsystems.</td>
</tr>
<tr>
<td>SYSUM</td>
<td>Produces a condensed two-part system summary report of all errors for the principal system elements: CPU, channels, storage, SCP, and the I/O subsystem</td>
</tr>
<tr>
<td>THRESHOLD</td>
<td>Produces a summary of a 3410, 3420, and 8809 tape subsystem, including media statistics and permanent errors that exceed the limits set on the parameter.</td>
</tr>
<tr>
<td>TRENDS</td>
<td>Produces a two-part trends report that presents error records logged for the various system elements during a maximum of 30 days. This report presents the errors in chronological order by Julian date.</td>
</tr>
</tbody>
</table>

Note:
1. [Table 1 on page 11](#) shows parameters that cannot be used together.
2. For the syntax of each parameter, refer to [Parameter Descriptions](#) in the EREP Reference

EREP Selection Parameters

Use the selection parameters in the following table to select the records for EREP to use.

<table>
<thead>
<tr>
<th>SELECTION PARAMETERS</th>
<th>TELLS EREP TO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU (Processor serial and machine type numbers)</td>
<td>Use only the records associated with this particular processor.</td>
</tr>
<tr>
<td>CPUCUA (Processor serial number and channel unit address)</td>
<td>Use only the records associated with this channel unit attached to this processor.</td>
</tr>
<tr>
<td>CUA (channel unit address or number)</td>
<td>Use only the records associated with this particular channel unit address or channel unit number.</td>
</tr>
<tr>
<td>DATE</td>
<td>Use only the records created during this date range.</td>
</tr>
<tr>
<td>DEV (Device type)</td>
<td>Use only the records associated with this particular device type; or, conversely, do not use the records associated with this device type.</td>
</tr>
<tr>
<td>DEVSER (Device serial number)</td>
<td>Use only the OBR records associated with this tape device serial number. (Use only for the THRESHOLD report and only with the 3410, 3420, and 8809 tape OBR records.)</td>
</tr>
<tr>
<td>ERRORID (Error identifier)</td>
<td>Use only the MCH and MVS software records containing this particular error identifier.</td>
</tr>
<tr>
<td>LIA/LIBADR (Line interface [base] address)</td>
<td>Use only the 3705, 3720, 3725 or 3745 communication controller records containing this line interface address.</td>
</tr>
</tbody>
</table>
Selection Parameters

<table>
<thead>
<tr>
<th>SELECTION PARAMETERS</th>
<th>TELLS EREP TO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD (Processor model)</td>
<td>Use only the records containing this processor machine type (number).</td>
</tr>
<tr>
<td>MODE (370 or 370XA)</td>
<td>Use only the records created in this operating mode.</td>
</tr>
<tr>
<td>SYMCDE (Fault symptom code)</td>
<td>Use only the 33XX DASD records containing this particular fault symptom code.</td>
</tr>
<tr>
<td>TERMN (Terminal name)</td>
<td>Use only the VTAM OBR records containing this terminal name.</td>
</tr>
<tr>
<td>TIME</td>
<td>Use only the records created during this time range.</td>
</tr>
<tr>
<td>TYPE (Record type)</td>
<td>Use only the records of the specified types.</td>
</tr>
<tr>
<td>VOLID (Volume serial number)</td>
<td>Use only the 33XX DASD or 34XX tape records containing this volume serial number.</td>
</tr>
</tbody>
</table>

Note:
1. Table 1 on page 11 shows parameters that cannot be used together.
2. For the syntax of each parameter, refer to Parameter Descriptions in the EREP Reference.

EREP Processing Parameters

Use the processing parameters in the following table to control the way EREP processes the records you selected.

<table>
<thead>
<tr>
<th>PROCESSING PARAMETERS</th>
<th>WHAT THEY DO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC (Accumulate)</td>
<td>Tells EREP to copy the records used for the report into an output history file.</td>
</tr>
<tr>
<td>HIST (History)</td>
<td>Tells EREP that its input consists of records in history files.</td>
</tr>
<tr>
<td>LINECT (Line count)</td>
<td>Tells EREP that each page of the report output must contain this number of lines.</td>
</tr>
<tr>
<td>LINELEN (Line length)</td>
<td>Tells EREP that each line of the system summary report output may contain up to this number of characters.</td>
</tr>
<tr>
<td>MERGE (Merge)</td>
<td>Tells EREP that its input consists of records from both the ERDS and history files.</td>
</tr>
<tr>
<td>SHORT (Short OBR)</td>
<td>Tells EREP to print out short-form OBR records in detail edit report output.</td>
</tr>
<tr>
<td>TABSIZE (Table size)</td>
<td>Tells EREP that the sort table it uses for internal processing must be this size.</td>
</tr>
<tr>
<td>ZERO (Zero ERDS)</td>
<td>Tells EREP that when this report is complete, to change the header pointer to allow the ERDS to be overwritten with newly collected errors.</td>
</tr>
</tbody>
</table>

Note:
1. Table 1 on page 11 shows parameters that cannot be used together.
2. For the syntax of each parameter, refer to Parameter Descriptions in the EREP Reference.
EREP Control Statements

Use the control statements in the following table to give EREP information about your configuration and set up the overall criteria for the way EREP creates the report.

<table>
<thead>
<tr>
<th>CONTROL STATEMENTS</th>
<th>WHAT THEY DO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROLLER</td>
<td>Tells EREP to combine the error records associated with this particular control unit and its attached devices.</td>
</tr>
<tr>
<td>DASDID</td>
<td>Tells EREP that this is the configuration of the 33XX DASDs within each subsystem; identifies those that do not provide physical IDs for the system exception report series. This control statement applies only to the system exception report series.</td>
</tr>
<tr>
<td>ENDPARM</td>
<td>Tells EREP that this is the end of the in-stream EREP parameters; the in-stream data that follows consists of EREP control statements.</td>
</tr>
<tr>
<td>LIMIT</td>
<td>Tells EREP to produce output for the system exception reports only when the number of megabytes processed per error is less than the megabytes specified by the error frequency value and the number of times the error occurs is greater than or equal to the number specified by the count value. This control statement applies only to the system exception report series.</td>
</tr>
<tr>
<td>SHARE</td>
<td>Tells EREP to combine the records for these devices that are shared between systems. This control statement applies to all the reports that generate I/O device summaries.</td>
</tr>
<tr>
<td>SYSIMG</td>
<td>Tells EREP to modify the CPU serial numbers for n-way processors so that those processors operating in the same system image are reported under the same CPU serial number.</td>
</tr>
</tbody>
</table>

Note: For more information on using control statements, refer to EREP Control Statements in the EREP Reference.

EREP Parameter Combinations

To help you to avoid using invalid parameter combinations, Table 1 shows the parameters that cannot be used together. An X in a column indicates which two parameters cannot be used together; for example the ACC and the threshold parameters cannot be used together. Numbers in the column are identified in the notes following the table.

<table>
<thead>
<tr>
<th>Processing Parameters</th>
<th>Selection Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A B C D E F G H I J K</td>
</tr>
<tr>
<td>REPORT</td>
<td></td>
</tr>
<tr>
<td>EVENT</td>
<td>X</td>
</tr>
</tbody>
</table>
Parameter Combinations

Table 1. EREP Selection, Processing, and Report Parameter Combinations (continued)

<table>
<thead>
<tr>
<th>Processing Parameters</th>
<th>Selection Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT</td>
<td>1 2 X</td>
</tr>
<tr>
<td>SYSEXN</td>
<td>X</td>
</tr>
<tr>
<td>SYSUM</td>
<td>X</td>
</tr>
<tr>
<td>THRESHOLD</td>
<td>X X X X X 3 X X X X X</td>
</tr>
<tr>
<td>TRENDS</td>
<td>X</td>
</tr>
</tbody>
</table>

Processing

<table>
<thead>
<tr>
<th>ACC</th>
<th>HIST</th>
<th>LINELEN</th>
<th>MERGE</th>
<th>SHORT</th>
<th>TABSIZE</th>
<th>ZERO</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X X X</td>
<td>X X X</td>
</tr>
</tbody>
</table>

Selection

<table>
<thead>
<tr>
<th>CPU</th>
<th>CPU/CUA</th>
<th>CUA 14</th>
<th>DATE</th>
<th>DEV</th>
<th>DEVSER</th>
<th>ERRORID</th>
</tr>
</thead>
<tbody>
<tr>
<td>X X X</td>
<td>X X X</td>
<td>X X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIA/LIBADR</th>
<th>MOD</th>
<th>MODE</th>
<th>SYMCDE</th>
<th>TERMN</th>
<th>TIME</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

| VOLID 15 | 1 2 X | 6 6 9 11 12 11 11 | 13 X |

Note:

1. Invalid when PRINT=NO.
2. Invalid when PRINT=DR, NO, SD, or SU.
3. Invalid except for DEV=(34XX, 3410, 3420, or 8809).
4. Invalid for ZERO=Y if ACC=N.
5. Invalid except when you code or default MODE=ALL, which indicates no record selection.
6. Only affects the selection of record types that contain a CUA: CCH(C), DDR(D), MDR(T), MIH(H), and OBR(O).
7. DEVSER is only used for the threshold report summary, so the following are the only devices allowed: 3410, 3420, 8809, and 34XX.
8. LIA/LIBADR applies only to TP communication controllers, so the following are the only valid devices: 3705, 3720, 3725, and 3745.
9. DEV is valid with only the following record types: DDR(D) MIH(H), OBR(O), MDR(T), and A3(A).
10. VOLID applies only to 33XX DASD and 34XX tape devices.
11. Only affects the selection of record types that contain a symptom code: OBR(O).
12. Only affects the selection of record types that contain an error ID: MCH(M) and SFT(S).
13. Only affects the selection of record types that contain a volume ID: OBR(O) and MDR(T).
14. The CUA parameter is not supported for A2 and A3 records.
15. The VOLID parameter is not supported for A3 records, even if they contain a volume ID.

Maintaining ERDS Data Integrity

Whenever you offload data from a file, you run the risk of losing, duplicating, or otherwise ruining the data. Some of the potential problems are:

<table>
<thead>
<tr>
<th>IF...</th>
<th>THEN...</th>
</tr>
</thead>
<tbody>
<tr>
<td>The ERDS fills too quickly, it can overflow.</td>
<td>Transfer the contents of the ERDS to a history file. See “Clearing the ERDS” for instructions.</td>
</tr>
<tr>
<td>One or more I/O devices are not able to complete the transfer of data from buffered-log when requested by EREP. EREP can go into a wait mode, the job will not complete, and reports will not be produced.</td>
<td>Transfer the contents of the ERDS to a history file, and then use the history file to produce EREP reports. See “Clearing the ERDS” for instructions.</td>
</tr>
</tbody>
</table>

If the step or job fails and you subsequently rerun it, be aware that you may duplicate some of the records already on the output.

If the step does not fail, but no records are copied to the output, subsequent steps can be using an empty input file for the EREP reports.

Clearing the ERDS

When ERDS is almost full, the recording routines sense it and issue a message.

Run EREP with the parameters required to clear the ERDS (only MVS and VSE use IFCOFFLD).

Important: This EREP run may request a system summary; but it should always include ACC=Y and ZERO=Y, to write the contents of the ERDS to another file and to clear the ERDS so the recording routines can write more records to it.

For information on your operating system’s procedures, see the topics shown in the following table:

<table>
<thead>
<tr>
<th>OP. SYSTEM</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVS</td>
<td>“Clearing the ERDS When Near Full on MVS” on page 49</td>
</tr>
<tr>
<td>VM</td>
<td>“Clearing the ERDS when Near Full on VM” on page 70</td>
</tr>
<tr>
<td>VSE</td>
<td>“Clearing the ERDS when Near Full on VSE” on page 85</td>
</tr>
</tbody>
</table>
Multisystem Installations

If your MVS, VM, or VSE installation has multiple processors running under the same or different operating systems, it may be possible to combine all of your error records into one history file.

Use the steps shown in Table 2 to combine the error records.

Table 2. Combining Multisystem Error Records

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unload the ERDS on each machine according to the appropriate method for that operating system. See “History Files” on page 6 for information on creating a history file.</td>
</tr>
<tr>
<td>2</td>
<td>Choose one machine on which to run the EREP reports.</td>
</tr>
<tr>
<td>3</td>
<td>Transfer the history files from each of the other machines to the one chosen in step 2. Use the method of transfer provided by the operating system.</td>
</tr>
<tr>
<td>4</td>
<td>Combine the history files from all of the machines. Use the method of combining files provided by the operating system.</td>
</tr>
<tr>
<td>5</td>
<td>Run the EREP reports appropriate for your installation. Use the combined file as the history file.</td>
</tr>
</tbody>
</table>

Note: If you merge VSE with VM or MVS records into a single file, that input file must be defined as a standard label file.

For details on setting up job streams within your operating system, see one of the following sections:

<table>
<thead>
<tr>
<th>OP. SYSTEM</th>
<th>SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVS</td>
<td>“Running EREP in a Multisystem Environment” on page 50</td>
</tr>
<tr>
<td>VM/SP</td>
<td>“VM SP Error Recording with Guest Systems” on page 72</td>
</tr>
<tr>
<td>VSE</td>
<td>“Running EREP in a Multisystem Environment” on page 86</td>
</tr>
</tbody>
</table>

A Planning Checklist

The following checklist contains questions to ask as you set up EREP for your installation:

1. Does the IBM service representative agree with the report content and sequence?
2. Has the ERDS been copied to a history file? See “History Files” on page 6.
3. Are the DASDID statements ready for System Exception reports? Refer to DASDID Control Statements in the EREP Reference.
4. Are the LIMIT statements ready for System Exception reports? Refer to LIMIT Control Statement in the EREP Reference.
5. Are the SHARE and CONTROLLER statements ready? Refer to SHARE Control Statements and CONTROLLER Control Statements in the EREP Reference.
6. Is the storage available for EREP adequate?
7. Is EREP set up to run automatically? For information on automating your EREP run in each operating system see the following topics:

<table>
<thead>
<tr>
<th>OP. SYSTEM</th>
<th>HEADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVS</td>
<td>“Automating the Running of EREP” on page 51</td>
</tr>
</tbody>
</table>
Planning Checklist

<table>
<thead>
<tr>
<th>OP. SYSTEM</th>
<th>HEADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM</td>
<td>"Automating the Running of EREP" on page 73</td>
</tr>
<tr>
<td>VSE</td>
<td>"Automating the Running of EREP" on page 86</td>
</tr>
</tbody>
</table>

8. Is the report distribution set up to include:
 a. the IBM service representative
 b. the system programmer or administrator
Planning Checklist
Chapter 3. Creating EREP Reports

This chapter provides instructions on how to create each type of EREP report. Descriptions of each report are provided to help you select the reports you need to adequately monitor your installation.

EREP reports are designed to give you a variety of views of the data being processed. EREP produces:

- Overview reports, from which you can determine *if* there are problems
- Analysis reports, from which you can determine *where* there are problems
- Detail reports, from which you can determine *what* the problems are

In order to decide which report to run at which time, you need to understand what each one is telling you. The following reports are described in this chapter:

<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>“System Summary Report”</td>
</tr>
<tr>
<td>“Trends Report” on page 21</td>
</tr>
<tr>
<td>“Event History Report” on page 22</td>
</tr>
<tr>
<td>“System Exception Report Series” on page 24</td>
</tr>
<tr>
<td>“Threshold Summary Report” on page 26</td>
</tr>
<tr>
<td>“Detail Edit and Summary Reports” on page 27</td>
</tr>
</tbody>
</table>

Note:

The reports are listed from most general to most specific, because the most effective way to use EREP reports is to start with the most general and work toward the most specific.

The [EREPE Reference](#) contains examples of each report described in this chapter.

System Summary Report

The system summary report provides an overview of errors for each of your installation’s principal parts, or subsystems:

- Processors (CPU)
- Channels
- Subchannels
- Storage
- Operating system control programs (SCPs)
- I/O subsystems.

Important: The system summary report does not go into detail; it shows how many errors and exceptions are recorded overall. It is a good place to start when evaluating the performance of your system.

Refer to [System Summary Report](#) in the [EREPE Reference](#) for a set of sample reports.
System Summary

Description of the System Summary Report

The system summary report has two parts:

<table>
<thead>
<tr>
<th>PART</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summarizes errors by CPUs from all but the I/O subsystem.</td>
</tr>
<tr>
<td>2</td>
<td>Summarizes errors recorded in the I/O subsystem.</td>
</tr>
</tbody>
</table>

Note:
1. The record counts are listed by CPU. Refer to [How EREP Assigns Numbers to CPUs](EREP Reference) for an explanation of the way the number identifiers are assigned.
 EREP can report information from a variable number of CPUs depending upon your operating system, type of printer and what parameters you specify. Information from the remaining CPUs are grouped together under serial number X'FFFFFF'.
 It is also possible to have multiple internal CPUs reported under one serial number. Refer to [SYSIMG Control Statement](EREP Reference) in the EREP Reference for more information.
2. DASD and tape are listed by strings in the system summary.
3. A field with all 9’s means that the number was larger than the print position allowed.
4. A dash (–) in part 2 of the system summary means there are no records for this DEVNO/CUA on this processor (CPU).
5. It is most useful to address the permanent errors first.

System Summary Part 1

The first part of the system summary report varies according to the mode of the records it summarizes as shown in the following table:

<table>
<thead>
<tr>
<th>RECORD MODE</th>
<th>CONTAINS</th>
</tr>
</thead>
</table>
| 370 | • Counts of machine checks (MCH records)
 | • Channel checks (CCH records) by channel |
| 370XA | • Machine-check totals
 | • Counts of subchannel logouts (SLH records) by channel path ID
 | • Channel report words (CRW records) created by both hardware and software |

Note:
1. For MVS only, actual software error records are included in the report.
2. Counts of software events that may or may not be associated with errors (IPLs and system termination) are shown in the first part of the system summary.

System Summary Part 2

The second part of the system summary is a condensed report of every permanent and temporary error recorded for the I/O devices in your installation, listed under the CPU associated with the error.

When your CPUs share I/O devices, you must use SHARE control statements for the system summary if you want to see I/O errors combined for all the possible
paths to a device that is common to different systems. Refer to SHARE Control Statements in the EREP Reference for details.

The temporary errors appearing in part 2 of this report are totals of temporary read/write errors and statistical data.

The temporary and permanent I/O errors are listed by product or device groups. Table 3 shows the product groups in the order they appear in part 2 of the system summary and the trends reports.

Table 3. The Order of Product Groups in the Reports

<table>
<thead>
<tr>
<th>ORDER</th>
<th>PRODUCT GROUP</th>
</tr>
</thead>
</table>
| 1 | Console and unit record devices:
| | 1. Operator’s console
| | 2. Card reader
| | 3. Card punch
| | 4. Printer
| | 5. OCR/MICR
| 2 | Direct-access storage devices:
| | 1. Disk
| | 2. Drum/fixed-head file
| | 3. Mass storage system
| | 4. Optical
| 3 | Tape devices
| 4 | Displays (channel-attached)
| 5 | Teleprocessing (TP) communications controllers
| 6 | Terminals
| 7 | Other devices:
| | 1. Channel-to-channel adapter
| | 2. Cryptographic unit
| | 3. Dynamic pathing availability (DPA)
| 8 | Unknown/unrecognized devices

Errors are presented by control unit or device address for each device type as shown in the following table:

For 370 records	The device address is the CUA.
For 370XA records	The device address is the device number.
For both 370 and 370XA records	The errors are combined.

DASD is presented as follows:
- DASD with serial numbers or DASDIDs show only total counts since hardware error conditions are not caused by CPU.
- DASD with serial numbers in the sense records (for example, 3990 and 9343) indicate subsystems by type and SSID value (as set in the control unit).
System Summary

- DASD with DASDID indicate the subsystem by the control unit ID (first byte of the DASDID).

The I/O error data is summarized by the control unit/device address or number of the device reporting each error.

Physical ID identifiers appear in the combination format of SCUID-CTLID-DEVID.

Generating System Summary Reports

Turn to the headings shown in the following table for examples of statements used to generate the system summary reports in each operating system:

<table>
<thead>
<tr>
<th>OP. SYSTEM</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVS</td>
<td>“Step 2: Generating a System Summary Report” on page 34</td>
</tr>
<tr>
<td>VM</td>
<td>“Step 2: Generating a System Summary Report” on page 55</td>
</tr>
<tr>
<td>VSE</td>
<td>“Step 2: Generating a System Summary Report” on page 76</td>
</tr>
</tbody>
</table>

Note:
1. Refer to SYSUM System Summary (Report Parameter) in the EREP Reference for details about the system summary report parameter.
2. When you code ACC=Y with SYSUM, EREP always clears the ERDS, even if you code ZERO=N.

Use the following selection parameters to customize your system summary report:
- DATE
- LINELEN
- MODE
- TIME

Note: Specifying parameters other than these may result in misleading reports. See Table 1 on page 11 for restrictions on using parameter combinations.

The following table shows the type of error records and their source in the system summary report.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCH</td>
<td>CPUs, channels</td>
</tr>
<tr>
<td>CRW</td>
<td>CPUs, channels</td>
</tr>
<tr>
<td>EOD</td>
<td>operating systems</td>
</tr>
<tr>
<td>IPL</td>
<td>Operating systems</td>
</tr>
<tr>
<td>MCH</td>
<td>CPUs</td>
</tr>
<tr>
<td>MDR</td>
<td>I/O devices; including SCUs, controllers</td>
</tr>
<tr>
<td>OBR</td>
<td>I/O devices; including SCUs, controllers</td>
</tr>
<tr>
<td>SFT</td>
<td>MVS operating system</td>
</tr>
<tr>
<td>SLH</td>
<td>CPUs, channels</td>
</tr>
</tbody>
</table>
The trends report is a two-part report that presents error records logged for the various system elements during a maximum of 30 days. Trends reports present the pattern and frequency of errors on a daily basis. You can use these reports to see when the errors began, their pattern, and when they end.

Refer to Trends Report in the EREP Reference for a set of sample reports.

Description of the Trends Report

The trends report presents error data in chronological order, by the Julian day (1 through 365) and consists of the two parts shown in the following table:

<table>
<thead>
<tr>
<th>PART</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Presents errors by type of failure: CPU, channel, storage, and SCP. It contains IPL, MCH, CCH/SLH/CRW, and program error (software) records for each processor (CPU).</td>
</tr>
<tr>
<td>2</td>
<td>Presents permanent and temporary I/O errors for the product groups in the order shown in Table 3 on page 19</td>
</tr>
</tbody>
</table>

Note:
1. The trends report does not report on SIM producing devices such as 3990/3390 DASD.
2. The 9340 direct access storage subsystems are not shown in the trends report.
3. Within product groups, the errors are presented by device address or number or physical ID within generic device or product types.
4. The CPU associated with the record appears on the line with the device address or number. Devices that provide physical IDs are associated with the control unit and not with a CPU.
5. DASD and tape devices are listed by DEVNO or CUA.

Generating Trends Reports

Turn to the headings shown in the following table for examples of statements used to generate the trends report in each operating system:

<table>
<thead>
<tr>
<th>OP. SYSTEM</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVS</td>
<td>“Step 11: Generating a Trends Report” on page 42</td>
</tr>
<tr>
<td>VM</td>
<td>“Step 11: Generating a Trends Report” on page 59</td>
</tr>
<tr>
<td>VSE</td>
<td>“Step 11: Generating Trends Reports” on page 81</td>
</tr>
</tbody>
</table>

Note:
2. The last 30 days of error data is displayed unless you use the DATE selection parameter to specify another set of dates.
3. 30 consecutive days is the maximum number of days that can be requested.
4. Use SHARE control statements to combine all the errors reported by an I/O device that is connected to more than one system. Refer to SHARE Control Statements in the EREP Reference for more information.
Trends Report

5. If your installation has more than 16 CPUs, EREP produces the report using records from the first 15 processors (CPU)s it encounters. Information from the remaining CPU is grouped together under serial number X'FFFFFF'.

6. It is possible to have multiple internal processors (CPUs) reported under one serial number and thus increase EREP's capabilities. Refer to SYSIMG Control Statement in the EREP Reference for more information.

Use the following parameters to customize your system summary report:

CUA MODE
DATE TIME
DEV TYPE

Note:
1. Specifying parameters other than these may result in misleading reports.
2. See Table 1 on page 11 for restrictions on using parameter combinations.
3. Refer to DEV Device Type (Selection Parameter) in the EREP Reference for some restrictions on the record types you can select.

The following table shows the type of error records and their source in the trends report.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCH</td>
<td>CPUs, channels</td>
</tr>
<tr>
<td>CRW</td>
<td>CPUs, channels</td>
</tr>
<tr>
<td>IPL</td>
<td>Operating systems</td>
</tr>
<tr>
<td>MCH</td>
<td>CPUs</td>
</tr>
<tr>
<td>MDR</td>
<td>I/O devices</td>
</tr>
<tr>
<td>OBR</td>
<td>I/O devices</td>
</tr>
<tr>
<td>SFT</td>
<td>MVS operating system</td>
</tr>
<tr>
<td>SLH</td>
<td>CPUs, channels</td>
</tr>
</tbody>
</table>

Event History Report

The event history report consists of one-line abstracts of selected information from each record. The event history report shows errors in a time sequence that allows you to see how often and in what order errors occur. It also allows you to establish a pattern and diagnose problems.

Refer to Event History Report in the EREP Reference for a set of sample reports.
Description of the Event History Report

The event history is divided into the three parts shown in the following table:

<table>
<thead>
<tr>
<th>PART</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
| 1 | Is a template showing the headings used for the record-dependent data from each type of record. It does the following:
• Guides in the interpretation of information in the other sections of the report
• Explains terms
• Provides one set of heading templates for 370 and another for 370XA reports |
| 2 | Is the event history. It provides information for up to 256 processors (CPUs). |
| 3 | Is a summary, by CPU identifier, of all the records presented in the report, with totals for each record type.
It provides information for up to 16 CPUs. If your installation has more than 16 CPUs, EREP produces the report using records from the first 15 CPUs it encounters. Information from the remaining CPUs is grouped together under column heading CPU$>$.E. Refer to SYSIMG Control Statement in the EREP Reference for an explanation of the identifiers. |

It is possible to have multiple internal CPUs reported under one serial number and thus increase EREP’s capabilities. Refer to SYSIMG Control Statement in the EREP Reference for details.

Generating Event History Reports

Turn to the headings shown in the following table for examples of statements used to generate the event history reports in each operating system:

<table>
<thead>
<tr>
<th>OP. SYSTEM</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVS</td>
<td>“Step 4: Generating an Event History Report” on page 36</td>
</tr>
<tr>
<td>VM</td>
<td>“Step 4: Generating Event History Reports” on page 56</td>
</tr>
<tr>
<td>VSE</td>
<td>“Step 4: Generating Event History Reports” on page 77</td>
</tr>
</tbody>
</table>

Refer to EVENT Event History (Report Parameter) in the EREP Reference for details about the event history report parameter.

Use the following selection parameters to customize your event history report:

CPU
CUA
DATE
DEV
MODE
TERMN
TIME
TYPE
VOLID

Note: Specifying parameters other than these may result in misleading reports. See Table 1 on page 11 for restrictions on using parameter combinations.
Event History Report

Important: The CONTROLLER control statement is not appropriate for the event history because the report is a *chronological* presentation of errors.

Table 4 shows the type of error records and their source in the event history report.

Table 4. Error Record Types and Sources for Reports

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>External time reference</td>
</tr>
<tr>
<td>A2</td>
<td>Serial link</td>
</tr>
<tr>
<td>A3</td>
<td>I/O devices</td>
</tr>
<tr>
<td>CCH</td>
<td>CPUs, channels</td>
</tr>
<tr>
<td>CRW</td>
<td>CPUs, channels</td>
</tr>
<tr>
<td>DDR</td>
<td>I/O devices</td>
</tr>
<tr>
<td>EOD</td>
<td>operating systems</td>
</tr>
<tr>
<td>IPL</td>
<td>Operating systems</td>
</tr>
<tr>
<td>MCH</td>
<td>CPUs, non-TP devices</td>
</tr>
<tr>
<td>MDR</td>
<td>I/O devices</td>
</tr>
<tr>
<td>MIH</td>
<td>Missing interrupt handler</td>
</tr>
<tr>
<td>OBR</td>
<td>I/O devices</td>
</tr>
<tr>
<td>SFT</td>
<td>MVS operating system</td>
</tr>
<tr>
<td>SLH</td>
<td>CPUs, channels</td>
</tr>
</tbody>
</table>

System Exception Report Series

The system exception series is a series of reports that list software and hardware error data in a variety of ways to help you identify problems within your subsystems.

Refer to [System Exception Report Series](#) in the *EREP Reference* for a set of sample reports.

Description of the System Exception Series

The system exception report series contains a two-part system error summary and a series of subsystem exception reports. EREP accumulates error data and usage statistics on subsystem components then summarizes the information by component for the subsystem exception reports. These reports are produced for some hardware subsystems, but not all of them. To find which subsystems generate system exception reports refer to [Product-Dependent Information](#) in the *EREP Reference*.

System Error Summary

The system error summary presents data in chronological order. The report has two parts as shown in the following table:

<table>
<thead>
<tr>
<th>PART</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• Presents CPU errors and channel checks
• Prints a summary of IPL, EOD, and restart records
• Prints one page of output for each supported CPU in the installation</td>
</tr>
<tr>
<td>2</td>
<td>• Combines the I/O errors for all supported subsystems, DASD, optical, and tape
• Includes physical IDs, error descriptions, and probable failing units</td>
</tr>
</tbody>
</table>
The probable failing unit (PFU) is the component on which the error most likely occurred and is shown for:

- CPU errors
- Channel errors
- DASD errors
- Tape errors

The following table shows the type of error records and their source in parts 1 and 2 of the system error summary.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCH</td>
<td>CPUs, channels</td>
</tr>
<tr>
<td>DDR</td>
<td>I/O devices; including channels, SCUs, controllers, volumes EOD operating systems</td>
</tr>
<tr>
<td>IPL</td>
<td>Operating systems</td>
</tr>
<tr>
<td>MCH</td>
<td>CPUs</td>
</tr>
<tr>
<td>OBR</td>
<td>I/O devices; including channels, SCUs, controllers, volumes</td>
</tr>
</tbody>
</table>

Subsystem Exception Report Series

EREP formats each of the reports in the subsystem exception report series according to the requirements of the hardware involved.

EREP produces a different series of subsystem exception reports for each type of hardware.

The following table shows the type of error records and their source in the subsystem exception report series.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>33XX DASD, 34XX Tape</td>
</tr>
<tr>
<td>CCH</td>
<td>CPUs, channels</td>
</tr>
<tr>
<td>MCH</td>
<td>CPUs</td>
</tr>
<tr>
<td>MDR</td>
<td>33XX DASD, 34XX Tape, 3995 Optical</td>
</tr>
<tr>
<td>OBR</td>
<td>33XX DASD, 34XX Tape, 3995 Optical, 9246 Optical, 9247 Optical</td>
</tr>
</tbody>
</table>

Generating System Exception Reports

Turn to the headings shown in the following table for examples of statements used to generate the system exception reports in each operating system:

<table>
<thead>
<tr>
<th>OP. SYSTEM</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVS</td>
<td>“Step 3: Generating a System Exception Report” on page 35</td>
</tr>
<tr>
<td>VM</td>
<td>“Step 3: Generating System Exception Reports” on page 56</td>
</tr>
<tr>
<td>VSE</td>
<td>“Step 3: Generating System Exception Reports” on page 77</td>
</tr>
</tbody>
</table>

Note:

1. Refer to SYSEXN System Exception Reports (Report Parameter) in the EREP Reference for details about the SYSEXN report parameter.
System Exception Report

2. Set up additional controls for the system exception reports, using the DASDID, LIMIT and SHARE control statements, before you request the report series. Refer to EREP Parameters and EREP ControlStatements in the EREP Reference for detailed descriptions.

3. Specifying report parameters other than DATE and TIME may result in misleading reports.

4. Run the system exception report series every day to avoid reworking the same errors and to make sure that the probable failing unit analysis is accurate.

Threshold Summary Report

The threshold summary report shows all the permanent read/write errors, temporary read/write errors, and media statistics for each volume mounted, using the OBR and MDR records, for 3410, 3420, and 8809 tape devices.

Note: The system exception series is a replacement for the threshold summary. Consider switching to the system exception series.

Refer to Threshold Summary Report in the EREP Reference for a set of sample reports.

Description of the Threshold Summary Report

The data in the threshold summary report is grouped by tape subsystem. The report has four sections as shown in the following table:

<table>
<thead>
<tr>
<th>SECTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEV(ice) STATISTICS</td>
<td>Shows one line of statistical and error data for every demount record whose</td>
</tr>
<tr>
<td></td>
<td>error count exceeds the read or write threshold you coded on the report parameter.</td>
</tr>
<tr>
<td>PERMANENT ERROR SUMMARY</td>
<td>Shows a one-line entry for every permanent error. A permanent error can be a</td>
</tr>
<tr>
<td></td>
<td>read error, a write error, or an equipment check. This section ignores</td>
</tr>
<tr>
<td></td>
<td>threshold settings so there are no limits.</td>
</tr>
<tr>
<td>TEMPORARY ERROR SUMMARY</td>
<td>Shows a summary of all temporary errors recorded for each device number or</td>
</tr>
<tr>
<td></td>
<td>CUA, whether they exceeded your threshold or not.</td>
</tr>
<tr>
<td>VOLUME STATISTICS</td>
<td>Shows the errors and usage statistics by volume serial number using each</td>
</tr>
<tr>
<td></td>
<td>MDR and OBR record from the first three sections of the report. This section</td>
</tr>
<tr>
<td></td>
<td>also ignores threshold settings so there are no limits.</td>
</tr>
</tbody>
</table>

Note:
- The first three sections appear once for each processor in your installation.
- The columns in the fourth section of the report are titled differently depending on the device type involved.

Note:
1. Refer to Threshold Summary Report Information in the EREP Reference for how the columns differ and for the device types supported by the threshold summary reports.
2. Information for up to 256 CPUs can be provided in the threshold summary.
Threshold Summary Report

3. It is possible to have multiple internal processors reported under one serial number and thus increase EREP’s capabilities. Refer to SYSIMG Control Statement in the EREP Reference for details.

Generating Threshold Summary Reports

Turn to the headings shown in the following table for examples of statements used to generate the system summary reports in each operating system:

<table>
<thead>
<tr>
<th>OP. SYSTEM</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVS</td>
<td>“Step 5: Generating a Threshold Summary Report” on page 37</td>
</tr>
<tr>
<td>VM</td>
<td>“Step 5: Generating Threshold Summary Reports” on page 56</td>
</tr>
<tr>
<td>VSE</td>
<td>“Step 5: Generating Threshold Summary Reports” on page 78</td>
</tr>
</tbody>
</table>

Note: Refer to THRESHOLD Threshold Summary (Report Parameter) in the EREP Reference for details about the threshold summary report parameter.

Use the parameters shown in the following table to customize your threshold summary report:

<table>
<thead>
<tr>
<th>CUA</th>
<th>DEV</th>
<th>MODE</th>
<th>VOLID</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>DEVSER</td>
<td>TIME</td>
<td></td>
</tr>
</tbody>
</table>

Note: Specifying parameters other than these may result in misleading reports. See Table 1 on page 11 for restrictions on using parameter combinations.

The following table shows the type of error records and their source in the threshold summary.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDR</td>
<td>3410, 8809 tape devices</td>
</tr>
<tr>
<td>OBR</td>
<td>3410, 3420, 8809 tape devices</td>
</tr>
</tbody>
</table>

Detail Edit and Summary Reports

The detail edit and summary reports provide environmental information, hexadecimal dumps and summaries of errors to determine their nature and causes.

Refer to Detail Edit and Summary Reports in the EREP Reference for a set of sample reports.

Description of the Detail Edit and Summary Reports

The detail edit and summary reports allow you to look at the error records on the two levels shown in the following table:

<table>
<thead>
<tr>
<th>REPORT TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detail edits</td>
<td>Format every record you have selected on a separate page, including a hexadecimal dump of the record</td>
</tr>
</tbody>
</table>
REPORT TYPE | DESCRIPTION
--- | ---
Detail summaries | Summarize selected data from the record and total the number of records that meet your selection criteria; some detail summaries show only the total number of selected records. EREP produces one detail summary per processor (CPU) for each record type selected.

Note:
1. The format and content of the detail edits and summaries vary according to the type of record and the device or product involved.
2. These reports cover all products and devices and all record types except DASD CCH.
3. DASD does not use the combined outboard record/miscellaneous data record (OBR/MDR) detail summary (PRINT=PS|SD|SU,TYPE=OT) or the MDR detail edit and summary reports, because the DASD subsystem exception report summarizes the DASD devices.
4. VTAM OBRs do not appear on the print summary reports.

Generating Detail Edit and Summary Reports

Turn to the headings shown in the following table for examples of statements used to generate the detail edit and summary reports in each operating system:

<table>
<thead>
<tr>
<th>OP. SYSTEM</th>
<th>REFER TO</th>
</tr>
</thead>
</table>
| MVS | “Step 6: Generating a CCH and MCH Detail Edit Report” on page 38
 “Step 7: Generating an MDR and OBR Detail Report for Controllers” on page 38
 “Step 8: Generating a Detail Summary for I/O Errors” on page 39
 “Step 9: Generating a Detail Edit Report for Software Records” on page 40 |
| VM | “Step 6: Generating CCH and MCH Detail Reports” on page 57
 “Step 7: Generating MDR and OBR Detail Reports for Controllers” on page 57
 “Step 8: Generating Detail Summaries for I/O Errors” on page 58
 “Step 9: Generating Detail Reports for Software Records” on page 58 |
| VSE | “Step 6: Generating MCH, CCH and CRW Detail Reports” on page 78
 “Step 7: Generating MDR and OBR Detail Reports for Controllers” on page 78
 “Step 8: Generating Detail Summary reports for I/O Errors” on page 79
 “Step 9: Generating Detail Reports for Software Records” on page 80 |

Note:
1. Refer to PRINT Print reports (report parameter) in the EREP Reference for details about the PRINT report parameter.
2. Every selection parameter except DEVSER is valid with the PRINT report parameter.
3. The PRINT parameter can produce data reduction reports for some devices that format and summarize environmental data gathered by the device. See Data Reduction Report for an example of this report.
4. Use selection parameters to limit the PRINT reports, if you do not want to see
detailed reports for every error record on your ERDS or history file.
 An EREP run in which you request PRINT reports can generate a large
 quantity of printed output. When you code PRINT=PT without using the date,
time and type selection parameters, EREP produces a detail edit of every
available record. Coding PRINT=PS produces those same detail edits, plus
detail summaries of every type of record EREP found in the input file.
5. The PRINT report can provide information for up to 256 CPUs, except for
PRINT=PT, which can report on an unlimited number of CPUs.
6. It is possible to have multiple internal processors reported under one serial
 number. Refer to SYSIMG Control Statement in the EREP Reference
 for details.
7. Table 4 on page 24 shows the types of error records and their sources for the
detail edit and summary reports.

Detail Edit and Summary Report

Chapter 3. Creating EREP Reports
Detail Edit and Summary Report
Chapter 4. Running EREP under MVS

MVS systems require system controls that create the interface between EREP and the operating system. This chapter contains information needed to run EREP on the MVS operating system. The following table shows where to find the subjects and examples in this chapter:

<table>
<thead>
<tr>
<th>HEADING</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example Descriptions</td>
<td></td>
</tr>
<tr>
<td>“Step 1: Creating a History Data Set” on page 33</td>
<td></td>
</tr>
<tr>
<td>“Step 2: Generating a System Summary Report” on page 34</td>
<td></td>
</tr>
<tr>
<td>“Step 3: Generating a System Exception Report” on page 35</td>
<td></td>
</tr>
<tr>
<td>“Step 4: Generating an Event History Report” on page 36</td>
<td></td>
</tr>
<tr>
<td>“Step 5: Generating a Threshold Summary Report” on page 37</td>
<td></td>
</tr>
<tr>
<td>“Step 6: Generating a CCH and MCH Detail Edit Report” on page 38</td>
<td></td>
</tr>
<tr>
<td>“Step 7: Generating an MDR and OBR Detail Report for Controllers” on page 38</td>
<td></td>
</tr>
<tr>
<td>“Step 8: Generating a Detail Summary for I/O Errors” on page 39</td>
<td></td>
</tr>
<tr>
<td>“Step 9: Generating a Detail Edit Report for Software Records” on page 40</td>
<td></td>
</tr>
<tr>
<td>“Step 10: Updating a History Tape” on page 41</td>
<td></td>
</tr>
<tr>
<td>“Step 11: Generating a Trends Report” on page 42</td>
<td></td>
</tr>
<tr>
<td>MVS System Controls</td>
<td></td>
</tr>
<tr>
<td>Coding the JCL</td>
<td></td>
</tr>
<tr>
<td>MVS Storage Requirements</td>
<td></td>
</tr>
<tr>
<td>Information about the MVS System Control Program (SCP)</td>
<td></td>
</tr>
<tr>
<td>Information about the ERDS</td>
<td></td>
</tr>
<tr>
<td>Running EREP in a Multisystem Environment</td>
<td></td>
</tr>
<tr>
<td>Automating the Running of EREP</td>
<td></td>
</tr>
</tbody>
</table>

Example Descriptions

Use the examples in this chapter as models for your EREP runs. The detailed explanations in later sections are provided to help you understand the examples.

The following is an example of job control language (JCL) to execute a series of EREP reports as it would appear in a file without the annotation of the more detailed example provided on pages “Step 1: Creating a History Data Set” on page 33 through “Step 10: Updating a History Tape” on page 41.
The JCL in pages “Step 1: Creating a History Data Set” on page 33 through “Step 10: Updating a History Tape” on page 41 is an example of one way to set up an EREP run with several steps.

This is only an example: You must decide which reports are relevant to your installation, in what order they should be generated, and how often they should be run.
Important: Jobs coded to invoke EREP upon receipt of messages indicating that LOGREC is near-full must be coded with the correct message number. An IFB060E is issued when LOGREC is near full on an MVS 4.2 system. An IFB080E is issued when LOGREC is near full on an MVS 5.2 or OS/390 R1 and above system.

“Step 1: Creating a History Data Set” creates a history data set that is used in the other reports. By creating a history file and then running all the reports against that file, you ensure that all of the reports are using the same set of records.

The parameters and control statements for this example are shown in the data sets listed on the SYSIN (DD) statements. The data sets containing the EREP parameters (EREP.PARMS) are included with each step of the example.

Table 5 shows some of the EREP control statements that could be in the EREP.CONTROLS data set used in each step of the example.

<table>
<thead>
<tr>
<th>EREP CONTROL STATEMENTS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIMIT 3830,EQUCHK=5,OVRN=10</td>
<td>To limit the number of records appearing on the reports. The DASD subsystem exception report shows temporary equipment checks and overrun errors for a 3830 control unit only if there are 5 or more equipment checks or 10 or more overruns recorded against the device.</td>
</tr>
<tr>
<td>SHARE=(011111.01BX,022222.02BX)</td>
<td>Causes the records from DASD drive 0 (device addresses 01B0 and 02B0) to be combined and presented as data for 01B0 on CPU 011111.</td>
</tr>
</tbody>
</table>

Note:
- The control statements are specific to the installation and the reports requested.
- “EREP Control Statements” on page 11 describes what each of the control statements does.
- EREP Control Statements in the EREP Reference provides the information to code the control statements.

“Parameters and Control Statements” on page 8 describes how to use the EREP parameters and EREP control statements. The EREP parameters and control statements are described in greater detail in Introduction to EREP Controls in the EREP Reference.

Step 1: Creating a History Data Set

Use the following example to:
- Initiate an EREP job with several steps.
- Create a history data set to use in later report generation.
- Copy the records from the ERDS to another disk data set.
- Zero the ERDS.

<table>
<thead>
<tr>
<th>EXAMPLE JCL</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>//EREPDAY JOB [accounting information]...MSGLEVEL=1</td>
<td>Initiate EREPDAY, an EREP job with several steps.</td>
</tr>
<tr>
<td>//STEP1 EXEC PGM=IFCEREP1,PARM='CARD'</td>
<td>Execute IFCEREP1 with the parameters in the SYSIN DD statement, see Table 7 on page 45</td>
</tr>
<tr>
<td>//SERLOG DD DSN=SYS1.LOGREC,DISP=OLD</td>
<td>Define the system error recording data set (ERDS) as the input data set. (The default name of the ERDS is SYS1.LOGREC, but for MVS release 5.1 and later, it can be installation modified.)</td>
</tr>
</tbody>
</table>
Sample MVS EREP Run

EXAMPLE JCL

<table>
<thead>
<tr>
<th>DD</th>
<th>Definition</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>//ACCD</td>
<td>UNIT=SYSDA, DSN=EHISTORY,</td>
<td>Define and allocate space for the output history data set.</td>
</tr>
<tr>
<td></td>
<td>DISP=(NEW,PASS,CATLG),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPACE=(CYL,(10,5)),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DCB=(RECFM=VB, BLKSIZE=4000)</td>
<td></td>
</tr>
<tr>
<td>//EREPT</td>
<td>SYSOUT=A, DCB=BLKSIZE=133</td>
<td>Define and allocate space for the output data set that holds the EREP report.</td>
</tr>
<tr>
<td>//TOURIST</td>
<td>SYSOUT=A, DCB=BLKSIZE=133</td>
<td>Define and allocate space for the output data set that holds EREP messages and processing information.</td>
</tr>
<tr>
<td>//SYGIN</td>
<td>DSN=EREPE.PARMS(STEP1), DISP=(OLD,PASS)</td>
<td>Define the data set containing the EREP parameters needed for this step. The contents of the parameter data set, EREP.PARMS(STEP1), are listed below.</td>
</tr>
<tr>
<td></td>
<td>DSN=EREPE.CONTROLS, DISP=(OLD,PASS)</td>
<td>Define the data set containing the EREP control statements needed for all the reports, see Table 5 on page 33. EREP uses only those that apply to the report requested in this step.</td>
</tr>
<tr>
<td>/*</td>
<td></td>
<td>This delimiter is optional; refer to the JCL manual for your MVS system.</td>
</tr>
</tbody>
</table>

EREP.PARMS(STEP1) contains the following EREP parameters:

EREP PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT=NO</td>
<td>Do not format any reports yet</td>
</tr>
<tr>
<td>ACC=Y</td>
<td>Direct EREP to copy the records from the ERDS to EHIStory.</td>
</tr>
<tr>
<td>ZERO=Y</td>
<td>Direct EREP to clear the ERDS.</td>
</tr>
<tr>
<td>ENDPARM</td>
<td>End of EREP parameters. ENDPARM must begin on column 1. Parameters may be indented.</td>
</tr>
</tbody>
</table>

Step 2: Generating a System Summary Report

Use the following example to generate a system summary report from the records on the working history data set:

EXAMPLE JCL

<table>
<thead>
<tr>
<th>DD</th>
<th>Definition</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>//STEP2</td>
<td>EXEC PGM=IFCEREPE1, PARM='CARD'</td>
<td>Execute IFCEREPE1 with the parameters in the SYSIN DD statement, see Table 7 on page 45.</td>
</tr>
<tr>
<td>//ACCIN</td>
<td>DSN=EHISTORY, DISP=(OLD,PASS)</td>
<td>Define the history input data set. EHISTORY is the data set created in Step 1: Creating a History Data Set on page 33. Multiple history data sets can be concatenated on this DD statement.</td>
</tr>
<tr>
<td>//DIRECTWK</td>
<td>UNIT=SYSDA, SPACE=(CYL,(10,10))</td>
<td>Define and allocate DASD space for the temporary work data set needed to process history (ACCIN) input records.</td>
</tr>
<tr>
<td>//EREPT</td>
<td>SYSOUT=A, DCB=BLKSIZE=133</td>
<td>Define and allocate space for the output data set that holds the EREP report.</td>
</tr>
<tr>
<td>//TOURIST</td>
<td>SYSOUT=A, DCB=BLKSIZE=133</td>
<td>Define and allocate space for the output data set that holds EREP messages and processing information.</td>
</tr>
<tr>
<td>//SYGIN</td>
<td>DSN=EREPE.PARMS(STEP2), DISP=(OLD,PASS)</td>
<td>Define the data set containing the EREP parameters needed for this step. The contents of the parameter data set, EREP.PARMS(STEP2), are listed below.</td>
</tr>
</tbody>
</table>
Example JCL

// DD DSN=EREP.CONTROLS, DISP=(OLD,PASS)
/DD DSN=EREP.CONTROLS, DISP=(OLD,PASS)
/*

This delimiter is optional; refer to the JCL manual for your MVS system.

EREP.PARMS(STEP2) contains the following EREP parameters:

<table>
<thead>
<tr>
<th>EREP PARAMETERS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSUM</td>
<td>Request the system summary.</td>
</tr>
<tr>
<td>TYPE=MC</td>
<td>Select the records by type:</td>
</tr>
<tr>
<td>C</td>
<td>CCH/CRW/SLH: Channel check/channel report word/subchannel logout records</td>
</tr>
<tr>
<td>M</td>
<td>MCH: Machine check records</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history data set.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history data set generated. When you code ACC=Y with SYSUM, EREP always clears the ERDS, even if you code ZERO=N.</td>
</tr>
<tr>
<td>ENDPARM</td>
<td>End of parameters. ENDPARM must begin on column 1. Parameters may be indented.</td>
</tr>
</tbody>
</table>

Step 3: Generating a System Exception Report

Use the following example to produce a series of system exception reports:

Example JCL

//STEP3 EXEC PGM=IFCEREP1,REGION=4M, PARM='CARD'
//STEP3 EXEC PGM=IFCEREP1,REGION=4M, PARM='CARD'
//ACCIN DD DSN=EHISTORY,DISP=(OLD,PASS)
//DIRECTWK DD UNIT=SYSDA, SPACE=(CYL,(10,10))
//EREPPT DD SYSOUT=A,DCB=BLKSIZE=133
//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133
//SYSIN DD DSN=EREP.PARMS(STEP3), DISP=(OLD,PASS)
//SYSIN DD DSN=EREP.PARMS(STEP3), DISP=(OLD,PASS)

Execute IFCEREP1 with the parameters in the SYSIN DD statement, see Table 7 on page 45 and increase the amount of virtual storage (region size). The system exception series requires a large sort table (TABSIZE), and needs more virtual storage (REGION). “MVS Storage Requirements” on page 47 describes the virtual storage requirements, and “Increasing Region Size” on page 47 describes how to increase the region size.

Define the history input data set. EHISTORY is the data set created in “Step 1: Creating a History Data Set” on page 33. Multiple history data sets can be concatenated on this DD statement.

Define and allocate DASD space for the temporary work data set needed to process history (ACCIN) input records.

Define and allocate space for the output data set that holds the EREP report.

Define and allocate space for the output data set that holds EREP messages and processing information.

Define the data set containing the EREP parameters needed for this step. The contents of the parameter data set, EREPPARMS(STEP3), are listed below.
Sample MVS EREP Run

EXAMPLE JCL

```
// DD DSN=ERE.PARMS(STEP3),
// DISP=(OLD,PASS)
/
```

EXPLANATION

Define the data set containing the EREP control statements needed for all the reports, see Table 5 on page 33. EREP uses only those that apply to the report requested in this step.

This delimiter is optional; refer to the JCL manual for your MVS system.

EREP.PARMS(STEP3) contains the following EREP parameters:

<table>
<thead>
<tr>
<th>EREP PARAMETERS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSEXN</td>
<td>Request the system exception series.</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history data set.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history file generated.</td>
</tr>
<tr>
<td>TABSIZE=512K</td>
<td>System exception processing requires a large sort table.</td>
</tr>
<tr>
<td>ENDPARM</td>
<td>End of parameters. ENDPARM must begin on column 1. Parameters may be indented.</td>
</tr>
</tbody>
</table>

Step 4: Generating an Event History Report

Use the following example to generate an event history report:

```
//STEP4 EXEC PGM=IFCEREP1,PARM='CARD'
//ACCIN DD DSN=EHISTORY,DISP=(OLD,PASS)
//DIRECTWK DD UNIT=SYSDA,
// SPACE=(CYL,(10,10))
//EREPPRT DD SYSOUT=A,DCB=BLKSIZE=133
//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133
//SYSIN DD DSN=ERE.PARMS(STEP4),
// DISP=(OLD,PASS)
/
```

EXPLANATION

Execute IFCEREP1 with the parameters in the SYSIN DD statement, see Table 7 on page 45.

Define the history input data set. EHISTORY is the data set created in “Step 1: Creating a History Data Set” on page 33. Multiple history data sets can be concatenated on this DD statement.

Define and allocate DASD space for the temporary work data set needed to process history (ACCIN) input records.

Define and allocate space for the output data set that holds the EREP report.

Define and allocate space for the output data set that holds EREP messages and processing information.

Define the data set containing the EREP parameters needed for this step. The contents of the parameter data set, EREP.PARMS(STEP4), are listed below. EREP control statements do not apply to the event history report, so the EREP.CONTROLS data set is not needed.

This delimiter is optional; refer to the JCL manual for your MVS system.

EREP.PARMS(STEP4) contains the following EREP parameters:

<table>
<thead>
<tr>
<th>EREP PARAMETERS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVENT</td>
<td>Request an event history report. Note the absence of selection parameters; the report is to include every record.</td>
</tr>
</tbody>
</table>
Sample MVS EREP Run

<table>
<thead>
<tr>
<th>EREP PARAMETERS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST</td>
<td>Input records are in the history data set.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history data set generated.</td>
</tr>
</tbody>
</table>

Step 5: Generating a Threshold Summary Report

Use the following example to produce threshold summary reports:

```
<table>
<thead>
<tr>
<th>EXAMPLE JCL</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>//STEP5 EXEC PGM=IFCEREP1,PARM='CARD'</td>
<td>Execute IFCEREP1 with the parameters in the SYSIN DD statement, see Table 7 on page 45.</td>
</tr>
<tr>
<td>//ACCIN DD DSN=EHISTORY,DISP=(OLD,PASS)</td>
<td>Define the history input data set. EHISTORY is the data set created in Step 1: Creating a History Data Set on page 33. Multiple history data sets can be concatenated on this DD statement.</td>
</tr>
<tr>
<td>//DIRECTWK DD UNIT=SYSDA, SPACE=(CYL,(10,10))</td>
<td>Define and allocate DASD space for the temporary work data set needed to process history (ACCIN) input records.</td>
</tr>
<tr>
<td>//EREPPRT DD SYSOUT=A,DCB=BLKSIZE=133</td>
<td>Define and allocate space for the output data set that holds the EREP report.</td>
</tr>
<tr>
<td>//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133</td>
<td>Define and allocate space for the output data set that holds EREP messages and processing information.</td>
</tr>
<tr>
<td>//SYSIN DD DSN=EREP.PARMS(STEP5), DISP=(OLD,PASS)</td>
<td>Define the data set containing the EREP parameters needed for this step. The contents of the parameter data set, EREP.PARMS(STEP5), are listed below.</td>
</tr>
<tr>
<td>// DD DSN=EREP.CONTROLS, DISP=(OLD,PASS)</td>
<td>Define the data set containing the EREP control statements needed for all reports, see Table 5 on page 33. EREP uses only those that apply to the report requested in this step.</td>
</tr>
<tr>
<td>/*</td>
<td>This delimiter is optional; refer to the JCL manual for your MVS system.</td>
</tr>
</tbody>
</table>
```

EREP.PARMS(STEP5) contains the following EREP parameters:

```
<table>
<thead>
<tr>
<th>EREP PARAMETERS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRESHOLD=(001,015)</td>
<td>Request a threshold summary.</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history data set.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history data set generated. The default value for ACC with THRESHOLD is N—an exception to the rule—but it is wise to code the parameter anyway.</td>
</tr>
<tr>
<td>ENDPARM</td>
<td>End of parameters. ENDPARM must begin on column 1. Parameters may be indented.</td>
</tr>
</tbody>
</table>
```

Important: The system exception series is a replacement for the threshold summary. Consider switching to the system exception series.
Step 6: Generating a CCH and MCH Detail Edit Report

Use the following example to generate a set of detail edit and summary reports of all machine and channel checks:

```
//STEP6 EXEC PGM=IFCEREP1,PARM='CARD'
//ACCIN DD DSN=EHISTORY,DISP=(OLD,PASS)
//DIRECTWK DD UNIT=SYSDA,
// SPACE=(CYL,(10,10))
//EREPPT DD SYSOUT=A,DCB=BLKSIZE=133
//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133
//SYSIN DD DSN=EREP.PARMS(STEP6),
// DISP=(OLD,PASS)
// DD DSN=EREP.CONTROLS,
// DISP=(OLD,PASS)
/*
```

EREPPARMS(STEP6) contains the following EREP parameters:

<table>
<thead>
<tr>
<th>EREP PARAMETERS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT=PS</td>
<td>Request detail edits and summaries of the input records. Select the records by type:</td>
</tr>
<tr>
<td>TYPE=MC</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>M</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history data set. No history data set generated. End of parameters. ENDPARM must begin on column 1. Parameters may be indented.</td>
</tr>
<tr>
<td>ACC=N</td>
<td></td>
</tr>
<tr>
<td>ENDPARM</td>
<td></td>
</tr>
</tbody>
</table>

Step 7: Generating an MDR and OBR Detail Report for Controllers

Use the following example to generate a set of detail summary reports of all errors for the following communications controllers:

```
3704 3720 3745
3705 3725
```

```
//STEP7 EXEC PGM=IFCEREP1,PARM='CARD'
```
Sample MVS EREP Run

EXAMPLE JCL

```plaintext
//ACCIN DD DSN=EHiSTORY,DISP=(OLD,PASS)  
//DIRECTWK DD UNIT=SYSDA,  
//         SPACE=(CYL,(10,10))  
//EREPPDT DD SYSOUT=A,DCB=BLKSIZE=133  
//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133  
//SYSIN DD DSN=EREP.PARMS(STEP7),  
//         DISP=(OLD,PASS)  
//         DD DSN=EREP.CONTROLS,  
//         DISP=(OLD,PASS)  
/* 
 This delimiter is optional; refer to the JCL manual for 
 your MVS system. 
*/
```

ERE.PARMS(STEP7) contains the following EREP parameters:

<table>
<thead>
<tr>
<th>EREP PARAMETERS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT=SU</td>
<td>Request only detail summaries.</td>
</tr>
<tr>
<td>TYPE=OT</td>
<td>Select the records by type.</td>
</tr>
<tr>
<td>O</td>
<td>OBR: Outboard records; unit checks</td>
</tr>
<tr>
<td>T</td>
<td>MDR (formerly TPR): Miscellaneous data records</td>
</tr>
<tr>
<td>DEV=(3704,3705,3720,3725,3745)</td>
<td>Select by device type.</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history data set.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history data set generated.</td>
</tr>
<tr>
<td>ENDPARM</td>
<td>End of parameters. ENDPARM must begin on column 1.</td>
</tr>
</tbody>
</table>

Step 8: Generating a Detail Summary for I/O Errors

Use the following example to generate a set of detail summary reports of all I/O errors not already covered in the preceding reports:

```plaintext
//STEP8 EXEC PGM=IFCEREP1,PARM='CARD'  
//ACCIN DD DSN=EHiSTORY,DISP=(OLD,PASS)  
//DIRECTWK DD UNIT=SYSDA,  
//         SPACE=(CYL,(10,10))
```

EXPLANATION

- **ERE.PARMS(STEP7)** contains the following EREP parameters:
 - **PRINT=SU**: Request only detail summaries.
 - **TYPE=OT**: Select the records by type.
 - **O**: OBR: Outboard records; unit checks
 - **T**: MDR (formerly TPR): Miscellaneous data records
 - **DEV=(3704,3705,3720,3725,3745)**: Select by device type.
 - **HIST**: Input records are in the history data set.
 - **ACC=N**: No history data set generated.
 - **ENDPARM**: End of parameters. ENDPARM must begin on column 1. Parameters may be indented.

- **Step 8: Generating a Detail Summary for I/O Errors**

 Use the following example to generate a set of detail summary reports of all I/O errors not already covered in the preceding reports:

- **EXAMPLE JCL**

  ```plaintext
  //STEP8 EXEC PGM=IFCEREP1,PARM='CARD'  
  //ACCIN DD DSN=EHiSTORY,DISP=(OLD,PASS)  
  //DIRECTWK DD UNIT=SYSDA,  
  //         SPACE=(CYL,(10,10))
  ```

 EXPLANATION

 - **EXEC PGM=IFCEREP1,PARM='CARD'**: Execute IFCEREP1 with the parameters in the SYSIN DD statement, see Table 7 on page 45.
 - **ACCIN DD DSN=EHiSTORY,DISP=(OLD,PASS)**: Define the history input data set. EHiSTORY is the data set created in Step 1: Creating a History Data Set on page 33. Multiple history data sets can be concatenated on this DD statement.
 - **DIRECTWK DD UNIT=SYSDA, SPACE=(CYL,(10,10))**: Define and allocate DASD space for the temporary work data set needed to process history (ACCIN) input records.
Sample MVS EREP Run

Example JCL

<table>
<thead>
<tr>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>//EREPPPT DD SYSOUT=A,DCB=BLKSIZE=133</td>
</tr>
<tr>
<td>Define and allocate space for the output data set that holds the EREP report.</td>
</tr>
<tr>
<td>//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133</td>
</tr>
<tr>
<td>Define and allocate space for the output data set that holds EREP messages and processing information.</td>
</tr>
<tr>
<td>//SYSIN DD DSN=EREP.PARMS(STEP8), DISP=(OLD,PASS)</td>
</tr>
<tr>
<td>Define the data set containing the EREP parameters needed for this step. The contents of the parameter data set, EREPPARMS(STEP8), are listed below.</td>
</tr>
<tr>
<td>// DD DSN=EREP.CONTROLS, DISP=(OLD,PASS)</td>
</tr>
<tr>
<td>Define the data set containing the EREP control statements needed for all the reports, see Table 5 on page 33. EREP uses only those that apply to the report requested in this step.</td>
</tr>
<tr>
<td>/* This delimiter is optional; refer to the JCL manual for your MVS system.</td>
</tr>
</tbody>
</table>

EREP.PARMS(STEP8) contains the following EREP parameters:

<table>
<thead>
<tr>
<th>EREP PARAMETERS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT=SU</td>
<td>Request only detail summaries.</td>
</tr>
<tr>
<td>TYPE=DOOTH</td>
<td>Select the records by type:</td>
</tr>
<tr>
<td>D</td>
<td>DDR: Dynamic device reconfiguration records</td>
</tr>
<tr>
<td>O</td>
<td>OBR: Outboard records; unit checks</td>
</tr>
<tr>
<td>T</td>
<td>MDR (formerly TPR): Miscellaneous data records</td>
</tr>
<tr>
<td>H</td>
<td>MIH: Missing interrupt records</td>
</tr>
<tr>
<td>DEV=(N34XX,N3704,N3705,N3720,N3725,N3745)</td>
<td>Select by device type; excluding those already covered.</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history data set.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history data set generated.</td>
</tr>
<tr>
<td>ENDPARM</td>
<td>End of parameters. ENDPARM must begin on column 1. Parameters may be indented.</td>
</tr>
</tbody>
</table>

Step 9: Generating a Detail Edit Report for Software Records

Use the following example to generate a set of detail edit and summary reports of all software and operational records:

<table>
<thead>
<tr>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>//STEP9 EXEC PGM=IFCEREP1,PARM='CARD'</td>
</tr>
<tr>
<td>Execute IFCEREP1 with the parameters in the SYSIN DD statement, see Table 7 on page 45.</td>
</tr>
<tr>
<td>//ACCIN DD DSN=EHISTORY,DISP=(OLD,PASS)</td>
</tr>
<tr>
<td>Define the history input data set. EHISTORY is the data set created in Step 1: Creating a History Data Set on page 33. Multiple history data sets can be concatenated on this DD statement.</td>
</tr>
<tr>
<td>//DIRECTWK DD UNIT=SYSDA, SPACE=(CYL,(10,10))</td>
</tr>
<tr>
<td>Define and allocate DASD space for the temporary work data set needed to process history (ACCIN) input records.</td>
</tr>
<tr>
<td>//EREPPPT DD SYSOUT=A,DCB=BLKSIZE=133</td>
</tr>
<tr>
<td>Define and allocate space for the output data set that holds the EREP report.</td>
</tr>
<tr>
<td>//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133</td>
</tr>
<tr>
<td>Define and allocate space for the output data set that holds EREP messages and processing information.</td>
</tr>
</tbody>
</table>
EXAMPLE JCL EXPLANATION

//SYSIN DD DSN=EREPPARMS(STEP9) DISP=(OLD,PASS) Define the data set containing the EREP parameters needed for this step. The contents of the parameter data set, EREP.PARMS(STEP9), are listed below.

EREPPARMS(STEP9) contains the following EREP parameters:

<table>
<thead>
<tr>
<th>EREP PARAMETERS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT=PS</td>
<td>Request both detail edits and summaries.</td>
</tr>
<tr>
<td>TYPE=SIE</td>
<td>Select the records by type:</td>
</tr>
<tr>
<td></td>
<td>S Software (SFT): System abends and other software events</td>
</tr>
<tr>
<td></td>
<td>I System initialization (IPL): Initial program load</td>
</tr>
<tr>
<td></td>
<td>E System termination (EOD): End of day and other terminating events</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history data set.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history data set generated.</td>
</tr>
<tr>
<td>ENDPARM</td>
<td>End of parameters. ENDPARM must begin on column 1. Parameters may be indented.</td>
</tr>
</tbody>
</table>

Step 10: Updating a History Tape

Use the following example to:
- Copy the records on the input data set (EHISTORY) to the history tape (EREP.HIST.TAPE).
- Delete the old history data set (EHISTORY).
- Use the updated history tape as the input for the final step, “Step 11: Generating a Trends Report” on page 42.

EXAMPLE JCL EXPLANATION

//STEP10 EXEC PGM=IFCEREP1,PARM='CARD' Execute IFCEREP1 with the parameters in the SYSIN DD statement, see Table 7 on page 45

//ACCIN DD DSN=EHISTORY,DISP=(OLD,PASS) Define the history input data set. EHISTORY is the data set created in "Step 1: Creating a History Data Set" on page 33. Multiple history data sets can be concatenated on this DD statement.

//ACCDAY DD DSN=EREPHIST.TAPE, DISP=(MOD,PASS), VOL=(,RETTAIN), DCB=(RECFM=VB, BLKSIZE=12000) EREP.HIST.TAPE receives the records. If EREP.HIST.TAPE does not exist, use DISP=(NEW,PASS) to create it.

//DIRECTWK DD UNIT=SYSDA, SPACE=(CYL,(10,10)) Define and allocate DASD space for the temporary work data set needed to process history (ACCIN) input records.

//EREPPRT DD DUMMY Dummy statement since no report is to be formatted.

//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133 Define and allocate space for the output data set that holds EREP messages and processing information.
Sample MVS EREP Run

Example JCL

```jcl
//SYSIN DD DSN=EREP.PARMS(STEP10), DISP=(OLD,PASS)
/*
EREPPARMS(STEP10) contains the following EREP parameters:

<table>
<thead>
<tr>
<th>EREP PARAMETERS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT=NO</td>
<td>Request no report output.</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history data set.</td>
</tr>
<tr>
<td>ACC=Y</td>
<td>The records are to be copied from the working data set to the output data set named on the ACCDEV DD statement.</td>
</tr>
</tbody>
</table>

Step 11: Generating a Trends Report

Use the following example to generate a trends report covering a maximum of 30 days of records from the newly updated history tape:

```jcl
//STEP11 EXEC PGM=IFCEREP1,PARM='CARD'
//ACCIN DD DSN=EREP.HIST.TAPE, DISP=(OLD,KEEP)
//DIRECTWK DD UNIT=SYSDA, SPACE=(CYL,(10,10))
//EREPPPT DD SYSOUT=A,DCB=BLKSIZE=133
//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133
//SYSIN DD DSN=EREP.PARMS(STEP11), DISP=(OLD,PASS)
// DD DSN=EREP CONTROLS, DISP=(OLD,PASS)
/*
EREPPARMS(STEP11) contains the following parameters:

<table>
<thead>
<tr>
<th>EREP PARAMETERS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRENDS</td>
<td>Request the trends report. Without the DATE parameter, trends uses the last 30 days of records.</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are still in a history data set rather than the ERDS. The history data set referred to here is the one updated or created in Step 10.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history data set generated.</td>
</tr>
</tbody>
</table>
MVS System Controls

MVS systems require system controls that create the interface between EREP and the operating system’s data management functions. You provide these system controls as part of the EREP run, as follows:

//JOB statement
Required; initiates the job.

//EXEC statement
Required; executes the EREP program.

The following table shows where to find information about the coding options for the EREP parameters on the EXEC statement:

<table>
<thead>
<tr>
<th>TO CODE THE PARAMETERS</th>
<th>SEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>As in-stream data</td>
<td>Table 7 on page 45 and the SYSIN DD statement in page 44</td>
</tr>
<tr>
<td>Or on the JCL EXEC statement</td>
<td>Table 7 on page 45</td>
</tr>
</tbody>
</table>

Important: The EXEC statement is one place to request more storage to accommodate EREP using the REGION parameter. See “Increasing Region Size” on page 47 for more information.

//ACCIN DD statement
Optional; defines the history input data set.

Important: ACCIN file MUST have been created from an EREP ACC=Y statement. Files built with system utilities may cause unpredictable results.

The history input can be in more than one data set. You can concatenate the DD statements, making sure the record formats (RECFM) are either blocked or unblocked but not both.

The data set with the largest blocksize must be first in the concatenation, so that the system allocates a device suitable for all the data sets.

You may use the ERDS or a history data set for input. See “Data Control Block (DCB) Requirements” on page 46 for information about the DCB requirements.

//DIRECTWK DD statement
Optional; defines and allocates DASD space for the temporary work data set needed to process history (ACCIN) input records.

//SERLOG DD statement
Optional; defines the system error recording data set (ERDS) as the input data set. (The default name of the ERDS is SYS1.LOGREC; but for MVS release 5.1 and later, it can be installation modified.)
Note: The SERLOG statement only defines the ERDS. You cannot use the SERLOG statement to define a data set copied from the ERDS.

When you include history data sets as input for your report you must define them on the ACCIN statement. Table 6 shows some ways to combine input from ERDS and history data sets.

Table 6. How to Define Inputs to EREP

<table>
<thead>
<tr>
<th>WHEN INPUT IS</th>
<th>PARAMETER REQUIRED</th>
<th>DD REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only ERDS</td>
<td>Neither HIST nor MERGE</td>
<td>SERLOG</td>
</tr>
<tr>
<td>Only History files</td>
<td>HIST, not MERGE</td>
<td>ACCIN</td>
</tr>
<tr>
<td>Both History and ERDS</td>
<td>MERGE, not HIST</td>
<td>ACCIN and SERLOG</td>
</tr>
</tbody>
</table>

See “Information about the ERDS” on page 49 for information about the ERDS processing.

//ACCEDEV DD statement
Optional; defines and allocates space for the output history data set. You need this statement if you want EREP to accumulate the records to an output data set after completing the report.

The following is an example of the ACCDEV statement:

```
//ACCEDEV DD DSN=C961231.EREP.OUTPUT.DATA,DCB=(BLKSIZE=6000,
// RECFM=VB),UNIT=SYSDA,DISP=(NEW,CATLG),
// SPACE=(CYL,(50,10),RLSE)
```

See “Data Control Block (DCB) Requirements” on page 46 for information about the DCB requirements.

//EREPPT DD statement
Optional; defines and allocates space for the output data set that holds the EREP report.

You must code this DD statement whenever you request a report. The blksize should be a multiple of 133 for a 132 character line length. See SYSOUT in the examples in Table 7 on page 45. You may view the report at a terminal by specifying the SYSOUT class for online display.

The following example shows how to define this data set:

```
//EREPPT DD DSN=C961231.EREP.EREPP30,DCB=(BLKSIZE=13300,
// RECFM=FBM,LRECL=133),UNIT=SYSDA,
// SPACE=(CYL,(10,10),RLSE)
```

See examples in Table 7 on page 45

//TOURIST DD statement
Required; defines and allocates space for the output data set that holds EREP messages and processing information.

The blksize should be a multiple of 133 for a 132 character line length. See SYSOUT in the examples in Table 7 on page 45. You can send the TOURIST output to the SYSOUT class, let it default to the message class for the job, or spool it to a JES device.

//SYSIN DD statement
Required; defines the data set you use to enter EREP controls as in-stream data.

You must supply a SYSIN DD statement as follows:
You can include EREP parameters, if you code PARM='CARD' on the EXEC statement. The parameters must precede the control statements with ENDPARM separating them. See Table 7 for more detailed information.

You must code EREP control statements as SYSIN data.

You must use a dummy statement when you have no control statements or parameters to enter. Code it as:

```
//SYSIN DD DUMMY
```

“Parameters and Control Statements” on page 8 describes how to use the EREP parameters and EREP control statements. The EREP parameters and control statements are described in greater detail in Introduction to EREP Controls in the EREP Reference.

Coding the JCL

Table 7 contains examples that illustrate several ways to code the JCL statements for your EREP run. Consult the JCL manual for your MVS system for further information.

<table>
<thead>
<tr>
<th>TABLE 7. JCL Examples for Running EREP on MVS</th>
</tr>
</thead>
</table>

METHOD | **EXAMPLE** |
---|---|
To code PARM='CARD' and enter the parameters and the control statements on the SYSIN statement: |
```
//STEP EXEC PGM=IFCEREP1,PARM='CARD'
//ACCIN DD DSN=EREP.HISTORY,DISP=(OLD,PASS)
//DIRECTWK DD UNIT=SYSDA,SPACE=(CYL,(10,10))
//EREPPRT DD SYSOUT=A,DCB=BLKSIZE=133
//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133
//SYSIN DD *
PRINT=PS
HIST
ACC=N
TYPE=OT
ENDPARM
SHARE ...
LIMIT ...
DASDID ...
CONTROLLER ...
/*
```

Note: ENDPARM must begin on column 1. Parameters may be indented.
Coding the JCL

Table 7. JCL Examples for Running EREP on MVS (continued)

<table>
<thead>
<tr>
<th>METHOD</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>To code the parameters on the EXEC statement when the control statements are in the data set specified on the SYSIN statement:</td>
<td><code>//STEP EXEC PGM=IFCEREP1,PARM=('PRINT=PS,HIST,ACC=N')</code>
<code>//ACCIN DD DSN=EREP.HISTORY,DISP=(OLD,PASS)</code>
<code>//DIRECTWK DD UNIT=SYSDA,SPACE=(CYL,(10,10))</code>
<code>//EREPPT DD SYSOUT=A,DCB=BLKSIZE=133</code>
<code>//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133</code>
<code>//SYSIN DD DSN=EREP.CNTRL,DISP=(OLD,PASS)</code></td>
</tr>
</tbody>
</table>

The EXEC statement may be coded with or without the parentheses and with a single set of quotes only if all of the parameters fit on one line.

`//STEP EXEC PGM=IFCEREP1,PARM='PRINT=PS,HIST,ACC=N'`
`:`

Parentheses and the individual quotes is the preferred method.

`//STEP EXEC PGM=IFCEREP1,PARM=('PRINT=PS',HIST,'ACC=N')`
`:`

If the parameters do not fit on one line, then parentheses and individual quotes are required.

`//STEP EXEC PGM=IFCEREP1,PARM=('PRINT=PS',HIST,'ACC=N','TYPE=OT')`
`:`

To code the parameters and the control statements in data sets specified on the SYSIN statement:

`//STEP EXEC PGM=IFCEREP1,PARM='CARD'`
`//ACCIN DD DSN=EREP.HISTORY,DISP=(OLD,PASS)`
`//DIRECTWK DD UNIT=SYSDA,SPACE=(CYL,(10,10))`
`//EREPPT DD SYSOUT=A,DCB=BLKSIZE=133`
`//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133`
`//SYSIN DD DSN=EREP.PARMS,DISP=(OLD,PASS)`

Note: This is the method used in the examples shown in pages "Step 1: Creating a History Data Set" on page 33 through "Step 10: Updating a History Tape" on page 41.

"Parameters and Control Statements" on page 8 describes how to use the EREP parameters and EREP control statements. The EREP parameters and control statements are described in greater detail in [Introduction to EREP Controls](#) in the EREP Reference.

Data Control Block (DCB) Requirements

The DD statements you code in the JCL for an EREP run define and allocate storage for the data sets EREP uses.

The input (ACCIN) and output (ACCDEV) data sets have special DCB requirements as shown in the following table:

| ACCIN | If the data set resides on an unlabeled tape volume or is not included in a data set control block (DSCB) you must supply the RECFM and BLKSIZE values. |
DCB Requirements

<table>
<thead>
<tr>
<th>ACCDEV</th>
<th>If your ACCDEV data set is not specified via your System Managed Storage ACS routines, refer to the JCL Reference Manual, values are provided here for example.</th>
</tr>
</thead>
</table>

Note:

1. The blocksize for a tape data set must be at least 2004.
2. A blocksize of 6144 for a DASD data set allows for the various blocking factors among DASD and improves performance.
3. Refer to the JCL manual for your system for more information.

MVS Storage Requirements

EREP requires at least 100KB of virtual storage (region size) for its internal sort table. The recommended region size is 4MB.

The following table shows the relationship between virtual storage size and the number of records that can be processed.

<table>
<thead>
<tr>
<th>FOR</th>
<th>ENTRIES AND RECORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>All reports except the system exception series</td>
<td>Each 1KB (1024 bytes) of table size holds approximately 100 entries, so that EREP can process approximately 2400 records in a 24KB sort table. The MVS TABSIZE default, 100KB, provides for a 24KB sort table.</td>
</tr>
<tr>
<td>The system exception series</td>
<td>Each 1KB of table size holds approximately 20 entries, so the recommended value for TABSIZE when requesting SYSEXN is 512KB.</td>
</tr>
</tbody>
</table>

Increasing Region Size

EREP can use two different sorting algorithms for its reports; the faster one requires additional storage equal to TABSIZE.

EREP always tries to obtain the additional storage, and uses the faster sort routine if the storage is available.

You can significantly improve EREP’s performance, if you increase your region size by the value of TABSIZE over the requirements outlined in Table 8.

Several conditions can require you to increase the region size when running EREP. Table 8 shows these conditions and recommended amounts of region increase for each.

Table 8. MVS Region Size Increases for EREP

<table>
<thead>
<tr>
<th>INFLUENCING FACTOR</th>
<th>INCREASE REGION SIZE BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>You are using the TABSIZE parameter</td>
<td>The specified value of TABSIZE minus 4KB</td>
</tr>
<tr>
<td>You are using EREP control statements</td>
<td>The specified or default value of TABSIZE</td>
</tr>
<tr>
<td>You are requesting the system exception report series</td>
<td>6 times the specified or default value of TABSIZE</td>
</tr>
</tbody>
</table>
MVS Storage Requirements

Table 8. MVS Region Size Increases for EREP (continued)

<table>
<thead>
<tr>
<th>INFLUENCING FACTOR</th>
<th>INCREASE REGION SIZE BY</th>
</tr>
</thead>
</table>
| You are using any of the following selection parameters:
 CPU
 CPUCUA
 CUA
 DEV
 DEVSER
 LIA/LIBADR
 MOD
 SYMCDE
 VOLID | 4KB for any or all |
| You are requesting detail edit reports
 (PRINT=PT, PS or AL) | 4KB for each processor |

Use the REGION parameter on either the JOB or EXEC statement to increase the virtual storage (region) size. Refer to the JCL manual for your MVS system for information on how to change the region size.

DASD Storage for DIRECTWK

MVS requires DASD space for EREP’s temporary work data set whenever your input includes records on a history data set. You request this storage using the SPACE parameter on the DIRECTWK DD statement. Table 7 on page 45 shows examples of coding for the SPACE parameter.

The amount of storage depends on the device type and the number of records to be processed. For the capacities of different types of DASD, refer to your DASD publications and your system’s hardware manuals.

Information about the MVS System Control Program (SCP)

The following information can help you avoid potential problems as you create the interface between EREP and your system control program (SCP).

Access Methods

EREP retrieves error records from the ERDS both:
- Sequentially, through the QSAM access method
- Randomly, through the MVS system macro EXCP (execute channel program)

It writes records to an output data set or buffer sequentially, through QSAM. If you request specific devices for EREP’s output data, they must be supported by QSAM.

Creation and Processing of Software (SFT) Records

IBM system components’ recovery routines create SFT records whenever IBM code is known or suspected to be the cause of a failure. The records contain data about:
- SCP failures
- Operator-initiated restarts
- Program damage caused by machine checks
The software records contain the system diagnostic work area (SDWA) control block and its extensions for the failing task or request block. VS1 VTAM and MVS software records reflect software abends of both application and system programs.

Information about the ERDS

The following section contains information about the ERDS on MVS. (The default name of the ERDS is SYS1.LOGREC; but for MVS release 5.1 and later, it can be installation modified.)

Important: EREP edits records that already exist; it does not create the error records.

Initialization of the Error Recording Data Set (ERDS) in MVS

The ERDS is created and initialized at system generation by the disk initialization program, IFCDIP00. In MVS/370* systems, the ERDS must reside on the system residence volume.

The ERDS consists of a header record followed by a time-stamp record for use in IPL records and by space for error and environmental records. Refer to EREP Reference for an example of the ERDS header record.

You can run the IFCDIP00 service aid to reinitialize the ERDS. You can use IFCDIP00, with the IEHPROGM utility, to reallocate the ERDS data set.

Moving or Altering the ERDS

If you move or change the size of the ERDS data set, you *must* re-IPL your system.

Clearing the ERDS When Near Full on MVS

If the ERDS is filling up too quickly or EREP goes into a wait mode because some of the I/O devices are not able to complete the transfer of data from buffered-log, you can use the EREP procedure IFCOFFLD to offload the records to another data set. IFCOFFLD preserves the data on the ERDS and gives you a summary report to help you find the problem.

The following table shows what IFCOFFLD does and gives a JCL example.

<table>
<thead>
<tr>
<th>IFCOFFLD</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Generates a system summary without dumping the buffered and in-storage statistical data to the ERDS</td>
<td>//OFFLD JOB accounting/programmer information //STEP1 EXEC PGM=IFCOFFLD //SERLOG DD DSN=SYS1.LOGREC,DISP=OLD //ACCDEV DD UNIT=unit,DSN=name,DISP={status,disposition}, DCB=(RECFM=VB,BLKSIZE=size) //TOURIST DD SYSOUT=A,DCB=BLKSIZE=133 //EREPPRT DD SYSOUT=A,DCB=BLKSIZE=133 //SYSIN DD DUMMY /*</td>
</tr>
<tr>
<td>2. Copies the records from the ERDS to the ACCDEV data set</td>
<td></td>
</tr>
<tr>
<td>3. Clears the ERDS</td>
<td></td>
</tr>
</tbody>
</table>

Note: You must replace the words in lower case letters on the ACCDEV statement to define the data set to store the off-loaded records. You can set up the emergency off-load job so it writes the ERDS records to either a new data set or to an existing data set, depending on how you want to handle the input to your regular EREP run.
ERDS

Statistical Data on the ERDS

EREP forces the MVS system to write statistical and usage data about your I/O devices to the ERDS when you request the following reports:

- System summary
- System exception series
- Threshold summary
- Trends report
- Any report for which you have specified a device type (DEV) or ZERO=Y

The data comes from counters that are associated with the devices. The operating system dumps this data to the ERDS in the form of MDR and OBR records.

You can see the usage statistics for I/O devices by running a detail edit report and specifying the device type (DEV parameter in "EREP Selection Parameters" on page 9).

Running EREP in a Multisystem Environment

EREP will invoke formatters for MVS constructs. The formatters invoked are downward compatible. In an environment where different releases of MVS are running, the newest release of those formatters should be invoked by either of the following methods:

- Formatting reports under the highest release system.
- Using steplib to access the highest levels of formatters in the corresponding SYS1.MIGLIB.

You can combine history data sets as input to EREP by concatenating DD statements for them on the ACCIN statement. You will need to make sure the space allocated for the DIRECTWK data set is large enough to hold all the input records, since EREP copies the records to DIRECTWK before starting its selection processing.

In a multisystem environment, where I/O devices are shared between processor systems, take special care to make sure you get complete and accurate reports about the shared devices.

The following table presents suggested procedures for running EREP in a multisystem environment.

<table>
<thead>
<tr>
<th>ACTIONS</th>
<th>STEPS AND EXAMPLES</th>
</tr>
</thead>
</table>
| Put all DASDID, LIMIT and SHARE statements into a separate data set. | - Specify the data set name on the SYSIN DD statement for:
 - System summary
 - System exception series
 - Threshold summary
 - Trends report
 - PRINT reports for shared I/O devices
 - Code the EREP parameters on the EXEC statement; do not use PARM='CARD' in these steps. See Table 7 on page 45 for an example. |
Multisystem Environment

<table>
<thead>
<tr>
<th>ACTIONS</th>
<th>STEPS AND EXAMPLES</th>
</tr>
</thead>
</table>
| Reorder the EREP job steps shown in the sample EREP job in pages "Step 1: Creating a History Data Set" on page 33 through "Step 10: Updating a History Tape" on page 41 to run the processor and SCP detail reports before the system-level reports. | 1. Create a history data set without requesting a report.
2. Run MCH and CCH detail edit reports.
3. Run software detail edit reports.
4. Run detail edit reports for dedicated I/O devices (for example, 2305).
5. Run event history against the working data set.
6. Concatenate the history data sets from each system on the ACCIN DD statement, then run the following reports:
 a. System summary
 b. System exception
 c. Detail edit reports for shared I/O devices
7. Add the records from the concatenated data sets to an existing permanent history data set.
 Note: You may not want to run all of these reports every time. |

Recommendations:
1. Develop a technique to make sure that each system’s ERDS has been copied before the first step that uses concatenated input runs. For example, include a step that creates a named data set, then test for that data set before requesting the first system-level report.
2. Install this procedure on each system in the complex, so reports can be run from any one of them at any time.

Automating the Running of EREP

EREP should be run regularly and frequently. You can set up a series of jobs in cataloged procedures, that can be started by the operator or by a timer at set intervals. You can create several procedures to cover various situations.

The sample EREP run in pages "Step 1: Creating a History Data Set" on page 33 through "Step 10: Updating a History Tape" on page 41, with the steps concatenated in a cataloged procedure, is an example with all the kinds of reports you may want to include.
Chapter 5. Running EREP under VM

This chapter contains information needed to run EREP on the VM SP operating system. The following table shows where to find the topics and examples in this chapter:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Example Descriptions"</td>
<td></td>
</tr>
<tr>
<td>"Step 1: Creating a History File" on page 54</td>
<td></td>
</tr>
<tr>
<td>"Step 2: Generating a System Summary Report" on page 55</td>
<td></td>
</tr>
<tr>
<td>"Step 3: Generating System Exception Reports" on page 56</td>
<td></td>
</tr>
<tr>
<td>"Step 5: Generating Threshold Summary Reports" on page 56</td>
<td></td>
</tr>
<tr>
<td>"Step 6: Generating CCH and MCH Detail Reports" on page 57</td>
<td></td>
</tr>
<tr>
<td>"Step 7: Generating MDR and OBR Detail Reports for Controllers" on page 57</td>
<td></td>
</tr>
<tr>
<td>"Step 8: Generating Detail Summaries for I/O Errors" on page 58</td>
<td></td>
</tr>
<tr>
<td>"Step 9: Generating Detail Reports for Software Records" on page 58</td>
<td></td>
</tr>
<tr>
<td>"Step 11: Generating a Trends Report" on page 59</td>
<td></td>
</tr>
<tr>
<td>"Step 4: Generating Event History Reports" on page 56</td>
<td></td>
</tr>
<tr>
<td>"Step 10: Updating the History Tape" on page 59</td>
<td></td>
</tr>
<tr>
<td>"VM SP System Controls" on page 60</td>
<td></td>
</tr>
<tr>
<td>"Using the CPEREPXA EXEC" on page 62</td>
<td></td>
</tr>
<tr>
<td>"Entering CPEREPXA Operands" on page 65</td>
<td></td>
</tr>
<tr>
<td>"Information about the Error Recording Area (ERDS)" on page 69</td>
<td></td>
</tr>
<tr>
<td>"VM SP Error Recording with Guest Systems" on page 72</td>
<td></td>
</tr>
<tr>
<td>"Automating the Running of EREP" on page 73</td>
<td></td>
</tr>
</tbody>
</table>

Important: Error record handling is different in VM/XA and VM/ESA than for VM SP. See the XA and ESA sections in "Information about the Error Recording Area (ERDS)" on page 69. Also, the EREP userid on a VM machine is **NOT** the same as the EREP product that generates reports. Problems with the EREP userid should be dealt with by VM support, not EREP product support.

Example Descriptions

Use the examples in this chapter as models for your EREP runs. The detailed explanations in later sections are provided to help you understand the examples.

The following is an example of an EXEC to run a system summary report, a system exception report, and a detail edit report as it would appear in a file without the annotation of the more detailed example provided in pages "Step 1: Creating a History File" on page 54 through "Step 10: Updating the History Tape" on page 59.
Important: CPEREPXA is the current version of CPEREP.

The EREP run shown in pages "Step 1: Creating a History File" through "Step 10: Updating the History Tape" on page 59 is presented as steps in an EXEC with multiple executions of the CPEREPXA EXEC using different sets of operands. The operands in the examples have been put in files named on each CPEREPXA EXEC. The contents of the files are included in each step of the example.

This is only an example: You must decide which reports are relevant to your installation, in what order they should be generated, and how often they should be run.

The first step of the EXEC defines the input and output files needed for EREP and creates a history file to use in the steps that follow. EREP automatically sends its output to the devices named on the EREPPT and TOURIST file definition statements. The execution of the CPEREPXA EXEC includes the writing and routing of the output.

"Parameters and Control Statements" on page 8 describes how to use the EREP parameters and EREP control statements. The EREP parameters and control statements are described in greater detail in Introduction to EREP Controls in the EREP Reference.

Step 1: Creating a History File

Use the following example to:
- Create a history file to use in later report generation.
- Copy the records from the error recording area to the working history file.
- Clear the error recording area.

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILEDEF DIRECTWK DISK DIRECTWK EREPWORK *</td>
<td>Workspace for EREP; required when there is history input. This file is for later steps. In this first step, the input is in the file defined by CPEREPXA as SERLOG; see "Defining Files for CPEREPXA" on page 60.</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>DET 181</th>
<th>You want to keep the records on disk, so you must detach (or redefine) TAPE 181. CPEREPXA expects the ACCDEV file to be on TAPE 181, already defined by the system. See “Overriding Input and Output FILEDEFs for CPEREPXA” on page 62.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILEDEF ACCDEV DISK EHISTORY DAILY * (RECFM VB BLKSIZE 12000)</td>
<td>Output history file.</td>
</tr>
<tr>
<td>FILEDEF EREPPT PRINTER (NOCHANGE BLKSIZE 133)</td>
<td>Send the reports to the printer. Note that EREP requires a 132-position printer.</td>
</tr>
<tr>
<td>FILEDEF TOURIST TERMINAL (BLKSIZE 133)</td>
<td>EREP informational messages will appear on the screen, instead of being printed with the report.</td>
</tr>
<tr>
<td>EXEC CPEREPXA FILE1 INPUT A</td>
<td>Execute CPEREPXA with FILE1 INPUT A, the file containing the parameters.</td>
</tr>
</tbody>
</table>

FILE1 INPUT A contains the following CPEREPXA operands:

<table>
<thead>
<tr>
<th>Parameters and Control Statements</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT=NO</td>
<td>Do not format any reports yet. Want no printed reports yet.</td>
</tr>
<tr>
<td>ACC=Y</td>
<td>Direct EREP to copy the records from the ERDS to EHISTORY DAILY.</td>
</tr>
<tr>
<td>ZERO=Y</td>
<td>Direct EREP to clear the ERDS.</td>
</tr>
<tr>
<td>ENDPARM</td>
<td>End of EREP parameters; EREP control statements follow.</td>
</tr>
</tbody>
</table>

Important: The syntax of the FILEDEF command may differ from the examples, depending upon the version of VM you are running. Refer to the Command Reference manual for your operating system to be sure you are using this command correctly.

Step 2: Generating a System Summary Report

Use the following example to produce system summary reports:

<table>
<thead>
<tr>
<th>Example</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILEDEF ACCIN DISK EHISTORY DAILY *</td>
<td>Redefine EHISTORY DAILY as ACCIN; this the file created in “Step 1: Creating a History File” on page 54. This file is used as input for the remaining reports.</td>
</tr>
<tr>
<td>EXEC CPEREPXA FILE2 INPUT A</td>
<td>Execute CPEREPXA with FILE2 INPUT A, the file containing the parameters.</td>
</tr>
</tbody>
</table>

FILE2 INPUT A contains the following CPEREPXA operands:

<table>
<thead>
<tr>
<th>Parameters and Control Statements</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSUM</td>
<td>Request the system summary report.</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history file.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history file generated. When you code ACC=Y with SYSUM, EREP always clears the ERDS, even if you code ZERO=N.</td>
</tr>
<tr>
<td>ENDPARM</td>
<td>End of parameters; control statements follow.</td>
</tr>
</tbody>
</table>
Sample VM EREP Run

Step 3: Generating System Exception Reports

Use the following example to produce system exception reports:

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXEC CPEREPA FILE3 INPUT A</td>
<td>Execute CPEREPA with FILE3 INPUT A, the file containing the parameters.</td>
</tr>
</tbody>
</table>

FILE3 INPUT A contains the following CPEREPA operands:

<table>
<thead>
<tr>
<th>PARAMETERS AND CONTROL STATEMENTS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSEXN</td>
<td>Request the system exception series.</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history file.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history file generated.</td>
</tr>
<tr>
<td>TABSIZE=512K</td>
<td>System exception processing requires a large sort table.</td>
</tr>
<tr>
<td>ENDPARM</td>
<td>End of parameters; control statements follow.</td>
</tr>
</tbody>
</table>

Step 4: Generating Event History Reports

Use the following example to generate an event history report:

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXEC CPEREPA FILE10 INPUT A</td>
<td>Execute CPEREPA with FILE10 INPUT A, the file containing the parameters.</td>
</tr>
</tbody>
</table>

FILE10 INPUT A contains the following CPEREPA operands:

<table>
<thead>
<tr>
<th>PARAMETERS AND CONTROL STATEMENTS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVENT</td>
<td>Request an event history report. Note the absence of selection parameters; the report is to include every record.</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history file.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history file generated.</td>
</tr>
</tbody>
</table>

Step 5: Generating Threshold Summary Reports

Use the following example to produce a threshold summary report:

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXEC CPEREPA FILE4 INPUT A</td>
<td>Execute CPEREPA with FILE4 INPUT A, the file containing the parameters.</td>
</tr>
</tbody>
</table>

FILE4 INPUT A contains the following CPEREPA operands:

<table>
<thead>
<tr>
<th>PARAMETERS AND CONTROL STATEMENTS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRESHOLD=(001,015)</td>
<td>Request a threshold summary.</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history file.</td>
</tr>
</tbody>
</table>
Sample VM EREP Run

<table>
<thead>
<tr>
<th>PARAMETERS AND CONTROL STATEMENTS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC=N</td>
<td>No history file generated.</td>
</tr>
<tr>
<td>ENDPARM</td>
<td>End of parameters; control statements follow.</td>
</tr>
</tbody>
</table>

Important: The system exception series is a replacement for the threshold summary. Consider switching to the system exception series.

Step 6: Generating CCH and MCH Detail Reports

Use the following example to generate detail edit and summary reports of all machine and channel checks:

EXAMPLE

```
EXEC CP EREREPXA FILE5 INPUT A
```

FILE5 INPUT A contains the following CP EREREPXA operands:

<table>
<thead>
<tr>
<th>PARAMETERS AND CONTROL STATEMENTS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT=PS</td>
<td>Request detail edits and summaries of the input records.</td>
</tr>
<tr>
<td>TYPE=MC</td>
<td>Select the records by type:</td>
</tr>
<tr>
<td></td>
<td>C CCH/CRW/SLH: Channel check/channel report word/subchannel logout records</td>
</tr>
<tr>
<td></td>
<td>M MCH: Machine check records</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history file.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history file generated.</td>
</tr>
<tr>
<td>ENDPARM</td>
<td>End of parameters; control statements follow.</td>
</tr>
</tbody>
</table>

Step 7: Generating MDR and OBR Detail Reports for Controllers

Use the following example to generate detail summary reports of all errors for the following communications controllers:

```
3704
3705
3720
3725
3745
```

EXAMPLE

```
EXEC CP EREREPXA FILE6 INPUT A
```

FILE6 INPUT A contains the following CP EREREPXA operands:

<table>
<thead>
<tr>
<th>PARAMETERS AND CONTROL STATEMENTS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT=SU</td>
<td>Request only detail summaries.</td>
</tr>
</tbody>
</table>
Sample VM EREP Run

<table>
<thead>
<tr>
<th>PARAMETERS AND CONTROL STATEMENTS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE=OT</td>
<td>Select the records by type:</td>
</tr>
<tr>
<td>O</td>
<td>OBR: Outboard records; unit checks</td>
</tr>
<tr>
<td>T</td>
<td>MDR (formerly TPR): Miscellaneous data records</td>
</tr>
<tr>
<td>DEV=(3704,3705,3720,3725,3745)</td>
<td>Select by device type:</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history file.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history file generated.</td>
</tr>
<tr>
<td>ENDPARM</td>
<td>End of parameters; control statements follow.</td>
</tr>
</tbody>
</table>

Step 8: Generating Detail Summaries for I/O Errors

Use the following example to generate detail summary reports of I/O errors not already covered in the preceding reports:

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXEC CPEREPXA FILE7 INPUT A</td>
<td>Execute CPEREPXA with FILE7 INPUT A, the file containing the parameters.</td>
</tr>
</tbody>
</table>

FILE7 INPUT A contains the following CPEREPXA operands:

<table>
<thead>
<tr>
<th>PARAMETERS AND CONTROL STATEMENTS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT=SU</td>
<td>Request only detail summaries.</td>
</tr>
<tr>
<td>TYPE=DOTH</td>
<td>Select the records by type:</td>
</tr>
<tr>
<td>D</td>
<td>DDR: Dynamic device reconfiguration records</td>
</tr>
<tr>
<td>O</td>
<td>OBR: Outboard records; unit checks</td>
</tr>
<tr>
<td>T</td>
<td>MDR (formerly TPR): Miscellaneous data records</td>
</tr>
<tr>
<td>H</td>
<td>MIH: Missing interrupt records</td>
</tr>
<tr>
<td>DEV=(N34XX,N3704,N3705,N3720,N3725,N3745)</td>
<td>Select by device type; excluding those already covered.</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history file.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history file generated.</td>
</tr>
<tr>
<td>ENDPARM</td>
<td>End of parameters; control statements follow.</td>
</tr>
</tbody>
</table>

Step 9: Generating Detail Reports for Software Records

Use the following example to generate detail edit and summary reports of all software and operational records:

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXEC CPEREPXA FILE8 INPUT A</td>
<td>Execute CPEREPXA with FILE8 INPUT A, the file containing the parameters.</td>
</tr>
</tbody>
</table>

FILE8 INPUT A contains the following CPEREPXA operands.
Step 10: Updating the History Tape

To update the history tape:

1. Copy the records from the input history file to the permanent history tape.
2. Delete the input history file.

Use the following example to update a history tape:

EXAMPLE

| FILEDEF ACCDEV TAP1
| (RECFM VB BLKSIZE 12000 |

EXEC CPEREPXA FILE11 INPUT A

FILE11 INPUT A contains the following CPEREPXA operands:

<table>
<thead>
<tr>
<th>PARAMETERS AND CONTROL STATEMENTS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT=NO</td>
<td>Request no report output.</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history file.</td>
</tr>
<tr>
<td>ACC=Y</td>
<td>Create a history file.</td>
</tr>
</tbody>
</table>

Step 11: Generating a Trends Report

Use the following example to generate a trends report covering a maximum of 30 days of records from the newly updated history tape:

EXAMPLE

| FILEDEF ACCIN TAP2
| (RECFM VB BLKSIZE 12000 |

EXEC CPEREPXA FILE9 INPUT A

FILE9 INPUT A contains the following CPEREPXA operands:

<table>
<thead>
<tr>
<th>PARAMETERS AND CONTROL STATEMENTS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT=NO</td>
<td>Request no report output.</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history file.</td>
</tr>
<tr>
<td>ACC=Y</td>
<td>Create a history file.</td>
</tr>
</tbody>
</table>
Sample VM EREP Run

FILE9 INPUT A contains the following CPEREPXA operands.

<table>
<thead>
<tr>
<th>PARAMETERS AND CONTROL STATEMENTS</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRENDS</td>
<td>Request the trends report. Without the DATE parameter, trends uses the last 30 days of records.</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are still in a history file rather than the ERDS.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history file generated.</td>
</tr>
<tr>
<td>ENDPARM</td>
<td>End of parameters; control statements follow.</td>
</tr>
</tbody>
</table>

VM SP System Controls

Enter the CPEREPXA EXEC to execute the EREP program from the CMS environment, using the following procedure:

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Log on to a virtual machine that has been established for the CE (normally, a Class F user ID).</td>
</tr>
<tr>
<td>2</td>
<td>IPL CMS.</td>
</tr>
<tr>
<td>3</td>
<td>Issue FILEDEF statements for the files required by EREP. See “Defining Files for CPEREPXA.”</td>
</tr>
<tr>
<td>4</td>
<td>Have the system operator mount any required tape volumes for use as input and output files.</td>
</tr>
<tr>
<td>5</td>
<td>Issue the CPEREPXA EXEC. See “CPEREPXA Operands Syntax and Coding” on page 63 and “Using the CPEREPXA EXEC” on page 62.</td>
</tr>
<tr>
<td>6</td>
<td>Enter CPEREPXA operands via one of the methods detailed in “Using the CPEREPXA EXEC” on page 62 and “Entering CPEREPXA Operands” on page 65.</td>
</tr>
</tbody>
</table>

Defining Files for CPEREPXA

The CPEREPXA EXEC processor invokes IFCEREP1. The command processor defines the files necessary for running EREP. You can change the FILEDEFs before executing the CPEREPXA EXEC and override the definitions the command processor would use. The following default file definitions are set up by CPEREPXA:

```
FILEDEF EREPPT PRINTER (NOCHANGE BLKSIZE 133
FILEDEF SYSIN DISK SYSIN EREPWORK X3
FILEDEF SERLOG DISK SERLOG EREPWORK (BLOCK 4096
FILEDEF TOURIST TERMINAL (BLKSIZE 133
FILEDEF DIRECTWK DISK DIRECTWK EREPWORK X4
FILEDEF ACCDEV TAP1 (NOCHANGE RECFM VB BLKSIZE 12000
FILEDEF ACCIN TAP2 (NOCHANGE RECFM VB BLKSIZE 12000
```

EREPP

Is EREP’s printer file, to which it sends the report output. You can override this FILEDEF with one of your own before issuing the CPEREPXA EXEC. See the following example to change the destination to TERMINAL:

```
FILEDEF EREPPT TERMINAL (NOCHANGE BLKSIZE 133
```
CPEREPXA leaves the FILEDEF for EREPPT intact at the end of the run, in case you supplied it.

SYSIN

Is the file where CPEREPXA puts your parameters and control statements. It is put on the read/write disk having the most available space, and is automatically erased at the end of the run. If there is no data for SYSIN, CPEREPXA issues:

```
FILEDEF SYSIN DUMMY
```

When you are entering operands by the file entry method, make sure the name of the file on this FILEDEF statement is the same as the file you name on the CPEREPXA EXEC line:

```
FILEDEF SYSIN DISK EREP PARMS A (RECFM F
EXEC CPEREPXA EREP PARMS A
```

SERLOG

Is a simulation of the ERDS data set, required by the OPEN and CLOSE macros that EREP issues during its processing. When SERLOG is the input file, the records are read from the VM SP error recording area; no SERLOG file exists on any disk. See “Information about the Error Recording Area (ERDS)” on page 69 for more information about VM’s error recording.

TOURIST

Is the message data, which is directed to the file you defined or your terminal screen. The messages and diagnostic information EREP writes to this file include printer control characters, which might appear on the display screen as unknown characters.

DIRECTWK

Is a work file EREP uses when there is history input. This file can be quite large, because it contains all the input error records selected from the history tape. DIRECTWK is put on the read/write disk having the most available space, and is erased at the end of the run.

ACCDEV

Is the output history file, used if you specify ACC=Y. CPEREPXA puts this file on tape drive 181, but you can override that definition with your own FILEDEF prior to issuing the CPEREPXA EXEC. If you define ACCDEV to any device other than tape 181 you must detach tape 181 and issue the alternate tape or disk commands and options; see “Overriding Input and Output FILEDEFS for CPEREPXA” on page 62 for details.

CPEREPXA leaves the FILEDEF for ACCDEV intact at the end of the run.

ACCIN

Is the input history file, used if you specify HIST=Y or MERGE=Y.

Important: ACCIN file MUST have been created from an EREP ACC=Y statement. Files built with system utilities may cause unpredictable results. ACCIN must NEVER point to the XAEREPIO RECORD or XAEREPMC RECORD files. When accessing those files, the SERLOG statement as it appears in the manual is used. DO NOT address the XAEREPIO RECORD or
XAEREPMC RECORD files directly in any FILEDEF. CPEREPXA puts this file on tape drive 182, but you can override that definition with your own FILEDEF prior to issuing the CPEREPXA EXEC. If you define ACCIN to any device other than tape 182 you must detach tape 182 and issue the alternate tape or disk commands and options; see “Overriding Input and Output FILEDEFs for CPEREPXA” for details.

CPEREPXA leaves the FILEDEF for ACCIN intact at the end of the run.

Overriding Input and Output FILEDEFs for CPEREPXA

CPEREPXA puts the input history file (ACCIN) on tape drive 182 and the output history file (ACCDEV) on tape drive 181. Use the FILEDEF command to redefine the ACCDEV and ACCIN files and designate other devices when you want to do the following:

- Use a history tape from another system as input
- Accumulate the data to another tape drive
- Accumulate the data to a disk file

CPEREPXA may not use the devices you defined in your FILEDEFs if you specify the one or more of the following parameters:

- ACC=Y
- HIST=Y
- MERGE=Y

To override the CPEREPXA defaults and use the devices you defined take the following actions:

<table>
<thead>
<tr>
<th>FILE</th>
<th>ACTION</th>
</tr>
</thead>
</table>
| For ACCDEV | Detach tape 181 before running CPEREPXA and do one of the following:
 - Issue CMS TAPE commands to position the tape you defined
 - Define the file to a disk |
| For ACCIN | Detach tape 182 before running CPEREPXA and do one of the following:
 - Issue CMS TAPE commands to rewind the ACCIN tape you defined
 - Define the file to a disk |

Using the CPEREPXA EXEC

You have the following options for entering and executing the CPEREPXA command:

<table>
<thead>
<tr>
<th>METHOD</th>
<th>DESCRIPTION</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompting</td>
<td>Enter CPEREPXA by itself and the system prompts you for the individual operands.</td>
<td>“Prompting Method” on page 65</td>
</tr>
</tbody>
</table>
CPEREPXA Operands

<table>
<thead>
<tr>
<th>METHOD</th>
<th>DESCRIPTION</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Entry</td>
<td>Create a file that contains the operands for this execution of CPEREPXA.</td>
<td>"File Entry Method" on page 66</td>
</tr>
<tr>
<td></td>
<td>Include the name, type and mode of the file on the CPEREPXA EXEC. This</td>
<td></td>
</tr>
<tr>
<td></td>
<td>is the method used in the examples in pages "Step 1: Creating a History File"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>through "Step 10: Updating the History Tape" on page 59.</td>
<td></td>
</tr>
<tr>
<td>Stacked Entry</td>
<td>Create a CMS EXEC with &STACK control statements to enter the operands as</td>
<td>"Stacked Entry Method" on page 67</td>
</tr>
<tr>
<td></td>
<td>in-stream data before the EXEC statement.</td>
<td></td>
</tr>
<tr>
<td>Mixed Entry</td>
<td>Combine the above methods in various ways.</td>
<td>"Mixed Entry Method" on page 68</td>
</tr>
</tbody>
</table>

Note: Refer to the user’s guide for your version of CMS for more information on coding CMS EXECs and executing CMS commands.

CPEREPXA Operands Syntax and Coding

To run the CMS CPEREPXA EXEC use the following syntax:

```
CPEREPXA [filename filetype {filemode | *}]
```

In order to use the CPEREPXA EXEC, you must be in the CMS environment and have a user privilege class that allows access to the records in the error recording area.

Important: With the latest releases of VM, it is possible for an installation to redefine the privilege classes overriding those set by IBM. The privilege class for EREP is usually class F.

You control EREP under VM SP using the same parameters and control statements that you use for running EREP under MVS. Those parameters and controls are **operands** for the CPEREPXA EXEC.

Coding Rules

You must follow these rules when entering operands:

- Separate a keyword and its associated values from a following keyword operand by one or more blanks, or by a comma.

  ```
  PRINT=PS,TYPE=MC,HIST,ACC=N
  ENDPARM
  ```

- You can put each parameter or control statement on a separate line. The sample input operand files at the beginning of this chapter in pages "Step 1: Creating a History File" on page 54 through "Step 10: Updating the History Tape" on page 59 use this method.

- You may enter operands in any sequence.

- When the allowed values of an operand where are Y and N,
CPEREPXA Operands

For more details see EREP Parameters and Coding Control Statements in the EREP Reference.

Unique CPEREPXA Operands

In addition to the regular EREP parameters and control statements, you need two other operands for running EREP via CPEREPXA. These are the CLEAR operand and the TERMINAL operand, both of which act as processing controls.

CLEAR operand

CClears (zeros) and reinitializes the error recording area (ERDS).

The syntax is CLEAR.

```plaintext
C
```

Important: You must have the proper user privilege class to erase and reinitialize the error recording area. In most VM SP installations, this is privilege class F.

TERMINAL operand

Instructs CPEREPXA to stop reading EREP parameters and control statements from a separate file and to prompt the user for them instead. You use this CPEREPXA operand to change your EREP controls dynamically. Having set up an input file containing CPEREPXA operands, you have the choice of using those operands or overriding them with others entered from the terminal.

The syntax is TERMINAL[=Y | =N].

```plaintext
: TERMINAL
```

See “Mixed Entry Method” on page 68 for more information.

Using EREP Controls as CPEREPXA Operands

The same rules and restrictions apply to EREP controls regardless of the system they are being used for. However, when you enter them as CPEREPXA operands, you must also follow the rules imposed by the VM SP facility. Entering CPEREPXA Operands” on page 65 lists those rules along with several possible ways to present the operands to CPEREPXA.
Entering CPEREPXA Operands

This section covers the following methods of entering operands for CPEREPXA:

<table>
<thead>
<tr>
<th>METHOD OF ENTERING OPERANDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Prompting Method”</td>
</tr>
<tr>
<td>“File Entry Method” on page 66</td>
</tr>
<tr>
<td>“Stacked Entry Method” on page 67</td>
</tr>
<tr>
<td>“Mixed Entry Method” on page 68</td>
</tr>
</tbody>
</table>

Prompting Method

Type CPEREPXA on the command line and press the Enter key, the system prompts you with:

```
ENTER PARAMETER STATEMENTS OR NULL TO PROCESS
You then type in your CPEREPXA operands.
If you fill up the entire command line before all the operands are
entered, press the Enter key again for another prompting message and a clear
command line.
You can continue in this way until all your operands for that report are
entered.
When finished, press the Enter key to signal with a null command line the end of
the string of operands.
```

To invoke CPEREPXA using only EREP’s default values, respond to the first prompting message by pressing the Enter key, to enter a null line. The following table shows a complete CPEREPXA operation as initiated from the virtual machine console by entering CPEREPXA operands.

<table>
<thead>
<tr>
<th>CONSOLE ACTION BY SYSTEM AND USER</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>logon ...</td>
<td>User logs on to the CE userID.</td>
</tr>
<tr>
<td>ipl cms</td>
<td>User IPLs CMS.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>R;</td>
<td>The system indicates successful initialization of CMS.</td>
</tr>
</tbody>
</table>
| mount accum 181 please put ring in. | User requests a tape for CPEREPXA use. 181 is the virtual address of the default
| | ACCDEV tape. |
| TAPE 181 ATTACHED | The records used for the report will be copied onto the file at virtual address TAPE
| | 181 as part of this EREP run. If the HIST function is to be used, you must also request that the history tape be attached at address
| | 182. |
| fi tourist terminal fi directwk disk erep| User defines the files needed to run EREP from VM. You can allow these to default to
| cmsut1 a fi ereppt print fi accdev tape sl| VM SP system FILEDEFs. See “Defining Files for CPEREPXA” on page 60. |
| (recfm vb blksize 12000 fi accin disk erep| |
| hist a (recfm vb | |
| cperepxa | Invokes CPEREPXA, without naming a control file. The operation defaults to the
| | prompting method of operand entry. |
Prompting Method

<table>
<thead>
<tr>
<th>CONSOLE ACTION BY SYSTEM AND USER</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER PARAMETER STATEMENTS OR NULL TO PROCESS</td>
<td>The system prompts the user for EREP parameters and control statements as operands for the CPEREPXA EXEC.</td>
</tr>
<tr>
<td>print=ps hist acc=y dev=(3480)</td>
<td>User enters CPEREPXA operands. The requested report consists of detail edits and summaries of all records containing the device type code for the 3480 tape device.</td>
</tr>
<tr>
<td>ENTER PARAMETER STATEMENTS OR NULL TO PROCESS</td>
<td>The system prompts again for operand input.</td>
</tr>
<tr>
<td>endparm share=XA.cpuser.ccuX,share=XA.cpuser.ccuX</td>
<td>User ends parameter operand input and begins entering control statement operands.</td>
</tr>
<tr>
<td>ENTER PARAMETER STATEMENTS OR NULL TO PROCESS</td>
<td>The system prompts again for operand input.</td>
</tr>
<tr>
<td></td>
<td>User enters a null line to start processing.</td>
</tr>
<tr>
<td>PRT FILE 2546 FROM user ID SENT TO printaddr NOHOLD</td>
<td>The end of EREP processing is signalled by the CMS PRINT message. Any TOURIST messages generated by the EREP program or CMS will appear on the terminal, unless you request another output class in FILEDEF TOURIST.</td>
</tr>
</tbody>
</table>

Note:
- Lowercase letters indicate entries by the terminal user; uppercase letters indicate system responses.
- Any IFCxxxI messages in the TOURIST output are from EREP; all the EREP messages are documented in [EREP Messages](#) in the [EREP Reference](#).
- CMS may also issue messages in the course of EREP processing, prefixed with DMSIFC or DMSREA. These can be found in the VM messages manual.

File Entry Method

Create a file that contains the operands you want in effect for this execution of CPEREPXA. Execute the CPEREPXA EXEC with the name, type and mode of the file as operands. There must be a FILEDEF in effect for SYSIN with the same file name as your operand file. The operands are arranged in the file according to the rules listed under "Coding Rules" on page 63. Note that input records are truncated at column 71.

To invoke CPEREPXA using only EREP’s default values, issue the SYSIN FILEDEF for an empty file.

In practice, you will probably want to have several different files containing the various operand combinations needed to run CPEREPXA for your installation. See the user’s guide for your system editor for information on how to create a file for the operands.

The following EXEC illustrates the use of a separate file to enter CPEREPXA operands:
Procedure for Entering Operands

When you use EXECs for your system, you can code operands into the EXECs. You can code these operands into the EXECs in a file or as in-stream data.

File Entry Method

The file named EREP PARMS A contains:

```
HIST
ACC=N
TABSIZE=500K
SYSEXN
ENDPARM
SHARE=(020402.0736,220402.0736)
SHARE=(020402.0735,220402.0735)
LIMIT 33XX,ALL=15
LIMIT 3420,HR1600=025(1),HW1600=010(15)
LIMIT 3420,VR1600=025(1),VW1600=010(15)
DASDID CPU=020402,CH=07,SCU=14,STR=0238
```

In this example:
- The system exception report output (EREPPPT) and the message output (TOURIST) both go to the printer.
- The records for EREP to process are in a history file (ACCIN) on disk.

The series of sample EXECs earlier in this chapter in pages “Step 1: Creating a History File” on page 54 through “Step 10: Updating the History Tape” on page 59 use this method of entering operands.

Stacked Entry Method

The CMS EXEC &STACK control statement allows you to enter commands or operands as in-stream data before coding the CPEREPXA EXEC. It is another way to avoid having to recode parameters and control statements each time you run EREP.

Precede each operand by &STACK, one to each input record. CPEREPXA reads the operands in the order in which you have stacked them.

To invoke CPEREPXA from an EXEC using only EREP’s default values, code only a null &STACK statement in the EXEC.

The following example illustrates the use of the &STACK control statement within a CMS EXEC to enter operands for the CPEREPXA EXEC:
In this example, the EREP controls are in line, to be read by CPEREPXA in the order they are listed. Note the null &STACK statement following the DASDID statement. Without it, CPEREPXA prompts the terminal user for more EREP control statements.

The report output produced by this example is sent to the printer, but the TOURIST output appears on the terminal screen.

See the user’s guide for your version of CMS for information about coding and using EXECs.

Mixed Entry Method

You can combine the previous methods of entering CPEREPXA operands to make the process more efficient and flexible. See the procedure in the following table:

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enter the CPEREPXA EXEC followed by the name of a file containing operands, one of which is the TERMINAL operand.</td>
</tr>
<tr>
<td>2</td>
<td>CPEREPXA reads the operands from the named file until it reaches TERMINAL.</td>
</tr>
<tr>
<td>3</td>
<td>Then it prompts the terminal user for operands.</td>
</tr>
</tbody>
</table>

This allows you to enter operands at the time of EREP’s execution to dynamically tailor a report to your immediate requirements.

The following examples show two ways to enter operands using the mixed entry method.

1. With the TERMINAL operand in an input file:
This EXEC invokes CPEREPXA to produce detail edit reports of all the MCH records in the history file (HIST RECORDS A). The reports (EREPPT) and the messages (TOURIST) output are being sent to the printer.

The file named EREP PARMS A contains:

```
PRINT=PT
HIST
ACC=N
TYPE=M
TERMINAL
```

The TERMINAL operand causes CPEREPXA to prompt the user for more input. For example you could:
- Enter a DATE parameter
- Enter the CPU parameter, to narrow the selection of records from the history file
- Enter ENDPARM, followed by SHARE or CONTROLLER control statements

2. With no null &STACK statement in a CMS EXEC:

```
&TRACE ERR
FILEDEF EREPPT PRINTER (NOCHANGE BLOCK 133 PERM
FILEDEF TOURIST PRINTER (NOCHANGE BLOCK 133 PERM
FILEDEF DIRECTWK DISK EREP CMSUT1 &DISK?
FILEDEF ACCIN DISK HIST RECORDS A (RECFM VB
&STACK PRINT=PT HIST ACC=N
EXEC CPEREPXA
&EXIT
```

This EXEC produces detail edit reports of all the records on input file HIST RECORDS A. In the absence of a null &STACK statement following the &STACK statement with parameters, CPEREPXA prompts for more input. Then, you may specify the following:
- TYPE, DATE, TIME, or DEV parameter, to limit the records EREP processes
- ENDPARM Followed by SHARE or CONTROLLER statements

In this example, the report and tourist output are being sent to the printer. To change the destination of output, you must change the FILEDEFs for the output files. See Defining Files for CPEREPXA on page 60 for more information.

Information about the Error Recording Area (ERDS)

This section covers the following topics:

<table>
<thead>
<tr>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Clearing the ERDS when Near Full on VM” on page 70</td>
</tr>
<tr>
<td>“Initialization of the Error Recording Area (ERDS) in VM” on page 70</td>
</tr>
<tr>
<td>“Error Record Recording and Retrieval on XA and ESA” on page 70</td>
</tr>
<tr>
<td>“ERDS Form on XA and ESA” on page 71</td>
</tr>
<tr>
<td>“ERDS Handling on XA and ESA” on page 71</td>
</tr>
<tr>
<td>“General Procedure Flow on XA and ESA” on page 72</td>
</tr>
</tbody>
</table>
Clearing the ERDS when Near Full on VM

Set up an EXEC for the operator to run when the page-full message appears on the console. See “Step 1: Creating a History File” on page 54 for an example. See “Entering CPEREPXA Operands” on page 65 for more about running EREP under VM.

Important: The records in the error recording area can only be off-loaded by a normal EREP run that includes ACC=Y and ZERO=Y. IFCOFFLD is not used with VM systems.

Initialization of the Error Recording Area (ERDS) in VM

The following table describes the ERDS initialization:

<table>
<thead>
<tr>
<th>TO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize the ERDS</td>
<td>Use the CP routines that format each of the recording cylinders and set up the logical pages to receive error records. Each recording cylinder has a header followed by the space for error records.</td>
</tr>
<tr>
<td>Reinitialize the error recording area</td>
<td>Issue the CPEREPXA EXEC specifying CLEAR as the only operand. CLEAR creates a new header and re-formats each cylinder. For details about CLEAR see “Unique CPEREPXA Operands” on page 64.</td>
</tr>
</tbody>
</table>

The following table describes the VM SP ERDS when it is on a count-key-data device or a fixed-block-architecture device:

<table>
<thead>
<tr>
<th>DEVICE ARCHITECTURE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count-key-data device</td>
<td>It consists of at least two adjacent cylinders allocated on the system residence pack. The VM ESP RDS are referred to as the “error recording cylinders.”</td>
</tr>
<tr>
<td>Fixed-block-architecture device</td>
<td>It consists of any number of adjacent pages assigned on the system residence volume. The VM SP error recording routines see the ERDS as a series of logical pages.</td>
</tr>
</tbody>
</table>

Error Record Recording and Retrieval on XA and ESA

In the XA and ESA environments you can control whether or not the operating system:

- Builds error records
- Builds the ERDS

The following table describes error recording and retrieval on XA and ESA.

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the recording function in VM is set off</td>
<td>No error records are built. Problems with the data processing environment will not be reflected in any records being passed to the ERDS.</td>
</tr>
<tr>
<td>When the recording function in VM is set on</td>
<td>Records are built by the operating system error recording program.</td>
</tr>
</tbody>
</table>
Error Recording Area (ERDS)

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the retrieval function in VM is set off</td>
<td>The records are placed in a storage buffer. The size of the storage buffer is controlled by the user. A message is issued when the storage buffer fills.</td>
</tr>
<tr>
<td>When the retrieval function in VM is set on</td>
<td>The records are pulled from the storage buffer and appended to the existing ERDS or used to build a new ERDS.</td>
</tr>
</tbody>
</table>

ERDS Form on XA and ESA

The following table describes the form of ERDS on the VM SP, XA and ESA.

<table>
<thead>
<tr>
<th>VM SP</th>
<th>XA AND ESA</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the VM/SP environment records are built and placed in the ERDS by the operating system. There is no method for you to locate or access the system-owned ERDS.</td>
<td>In XA and ESA ERDS files are built on the EREP user ID A-disk. The ERDS consists of two files:</td>
</tr>
<tr>
<td></td>
<td>• XAEREPIO RECORD</td>
</tr>
<tr>
<td></td>
<td>• XAEREPMC RECORD</td>
</tr>
<tr>
<td></td>
<td>These two physical files are treated by EREP the same way the ERDS on VM/SP is treated.</td>
</tr>
</tbody>
</table>

ERDS Handling on XA and ESA

Be very cautious when doing any file manipulations to XAEREPIO RECORD or XAEREPMC RECORD, the two files that XA and ESA build onto the EREP user ID’s A-disk. You may prevent EREP from properly accessing these files. To EREP, there is no difference between these two files and the system-owned ERDS of VM SP. But these are files on a disk and the normal file handling operations can be performed upon them.

The following are some of the commonly attempted file manipulations:

• Changing the FILEDEF statements for ACCIN to point to the XAEREPIO or XAEREPMC RECORD files
• Changing the name of the XAEREPIO or XAEREPMC files to another name and accessing the files as ACCIN
• Copying the records from XAEREPIO or XAEREPMC directly to tape without running EREP against the data first
• Doing a SENDFILE of the XAEREPIO or XAEREPMC files to another system and trying to concatenate them with the other system’s history data

The VM system will allow these manipulations, but the resulting problems will only occur when you try to run EREP reports using the files.

There is a two byte length indicator in the first two bytes of each of the records in ERDS. EREP processing strips the length indicator bytes off each record, and places the remaining bytes in the ACCDEV file. EREP expects the records to be in this modified format when the file is designated as the ACCIN. If you bypass the EREP file processing and do not make the required modifications EREP issues a IFC1201 message indicating that no records passed filtering in the TOURIST output.
General Procedure Flow on XA and ESA

The recommended procedural flow for an EREP run is:

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Log on to the EREP user ID.</td>
</tr>
<tr>
<td>2</td>
<td>Issue the #cp external command.</td>
</tr>
<tr>
<td>3</td>
<td>When you receive the message HCPRET592A ENTER END OR SUMMARY, enter END.</td>
</tr>
<tr>
<td>4</td>
<td>Run CPEREPXA to create the reports and any output files.</td>
</tr>
<tr>
<td>5</td>
<td>Restart record retrieval by entering RETRIEVE EREP.</td>
</tr>
<tr>
<td>6</td>
<td>Disconnect from the EREP machine.</td>
</tr>
</tbody>
</table>

Note:

1. The EREP user ID is a VM system ID that is known to the operating system. The EREP user ID is not part of the EREP product. If any service issues arise, be sure to speak with the correct service organization for the specific problem you have.

2. For more specific information on the recording and retrieval functions, refer to VM/XA SP Real System Operation or VM/ESA System Operation. These functions are a part of the operating system, not of EREP.

Stopping retrieval keeps new records from being written to the ERDS while EREP is reading. The records built during this time go to the storage buffer until the retrieval function is restarted.

The example job step shown in “Step 1: Creating a History File” on page 54 creates a working history file with the records from ERDS.

To minimize the time your operating system has to store records, restart the retrieval function after the working copy of ERDS is made.

VM SP Error Recording with Guest Systems

The input to EREP through VM SP can be quite different from the input used by the other systems because VM SP creates records differently.

Both the VSE and MVS systems write records to their ERDS via SVC 76. When a VSE or MVS system is running as a guest in a virtual machine, VM SP can tell when the guest system issues an SVC 76 and can divert the record to its own error recording area. In the process, VM SP translates the virtual address of the device originating the record to a real address, so the records are meaningful to a user.

VM SP does not divert every record created by a guest system to the error recording area. Records from devices dedicated to the virtual machine, of certain types, or containing an error are reflected back to the virtual machine and recorded on the guest system’s ERDS.

When VM SP reflects a record back to the virtual machine, the addresses in the record remain virtual. This means that sense data logged for I/O error conditions is associated with a logical device rather than the actual device. Such sense data is of little use in identifying problem devices.
Capturing All the Data for EREP

EREP uses the records in the VM SP error recording area as the only input (unless you use the HIST or MERGE operand). The SERLOG FILEDEF, which implies VSE or MVS guest input (ERDS), is only a simulation of that file, required because of format differences between the error recording area and the system ERDS.

The result of this can be misleading reports, because the VM SP error recording area did not contain the records that would have been on a guest system ERDS. This can be a problem especially with OBR records for your TP devices. If you only run EREP under VM, you might be missing some errors.

One way to make sure you get reports about all the possible errors in your system is to run EREP under VM SP and then run it again under each guest operating system.

Another way to make sure you are seeing all your error records in the EREP reports is to combine the data from your system’s ERDS and the error recording area before requesting any reports. Then run EREP under either system using the combined records as history input.

Automating the Running of EREP

EREP should be run regularly and frequently. You can set up a procedure or series of EXECS that can be started by the operator or automatically by a timer.

The sample EREP runs at the beginning of this chapter in pages "Step 1: Creating a History File" on page 54 through "Step 10: Updating the History Tape" on page 59 cover all the kinds of reports you would want to see from an EREP run. Add the system controls to make the series of EXECS into a single EXEC to run the whole series of reports; or you can name each of the EXECS and run each report separately.
VM SP Error Recording with Guest Systems
Chapter 6. Running EREP under VSE

This chapter contains information needed to run EREP on the VSE operating system. The following table shows where to find the topics and examples in this chapter.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Step 1: Creating a History Data Set”</td>
<td>76</td>
</tr>
<tr>
<td>“Step 2: Generating a System Summary Report”</td>
<td>76</td>
</tr>
<tr>
<td>“Step 3: Generating System Exception Reports”</td>
<td>77</td>
</tr>
<tr>
<td>“Step 5: Generating Threshold Summary Reports”</td>
<td>78</td>
</tr>
<tr>
<td>“Step 6: Generating MCH, CCH and CRW Detail Reports”</td>
<td>78</td>
</tr>
<tr>
<td>“Step 7: Generating MDR and OBR Detail Reports for Controllers”</td>
<td>78</td>
</tr>
<tr>
<td>“Step 8: Generating Detail Summary reports for I/O Errors”</td>
<td>79</td>
</tr>
<tr>
<td>“Step 9: Generating Detail Reports for Software Records”</td>
<td>80</td>
</tr>
<tr>
<td>“Step 11: Generating Trends Reports”</td>
<td>81</td>
</tr>
<tr>
<td>“Step 4: Generating Event History Reports”</td>
<td>77</td>
</tr>
<tr>
<td>“Step 10: Updating the History Tape”</td>
<td>80</td>
</tr>
<tr>
<td>“VSE System Controls”</td>
<td>81</td>
</tr>
<tr>
<td>“Special Considerations for EREP Parameters and Controls”</td>
<td>82</td>
</tr>
<tr>
<td>“VSE Storage Requirements”</td>
<td>82</td>
</tr>
<tr>
<td>“Information about the VSE System Control Program (SCP)”</td>
<td>84</td>
</tr>
<tr>
<td>“Initialization of the Error Recording Data Set (ERDS) in VSE”</td>
<td>84</td>
</tr>
<tr>
<td>“Clearing the ERDS when Near Full on VSE”</td>
<td>85</td>
</tr>
<tr>
<td>“VSE History File (IJSYSHF)”</td>
<td>86</td>
</tr>
<tr>
<td>“Running EREP in a Multisystem Environment”</td>
<td>86</td>
</tr>
<tr>
<td>“Automating the Running of EREP”</td>
<td>86</td>
</tr>
</tbody>
</table>

The JCS in pages “Step 1: Creating a History Data Set” through “Step 11: Generating Trends Reports” shows a VSE job with several steps. The first step creates a history data set which is used in the remainder of the steps.

This is only an example: You must decide which reports are relevant to your installation, in what order they should be generated, and how often they should be run.

All of the EREP parameters and control statements are described in Introduction to EREP Controls in the EREP Reference.
Sample VSE EREP Run

Step 1: Creating a History Data Set

Use the following example to:

- Create a history set
- Copy SYSREC (error recording data set) to a tape data set:

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>// JOB EREPJOB</td>
<td></td>
</tr>
<tr>
<td>// TLBL HISTOT</td>
<td></td>
</tr>
<tr>
<td>// PAUSE ASSIGN SYS009 TO A SCRATCH TAPE</td>
<td></td>
</tr>
<tr>
<td>// PAUSE ISSUE ROD COMMAND</td>
<td></td>
</tr>
<tr>
<td>// EXEC IFCEREPI</td>
<td></td>
</tr>
</tbody>
</table>

Create the tape label for the output (ACCDEV) data set.

Instructions to the operator. Before EREP begins copying the records, the operator must mount a scratch tape for use in creating the working history tape and must issue the ROD command to force the recording of statistical data on SYSREC.

// EXEC IFCEREPI

Statement to execute EREP.

Important: Partition size must be large enough to accommodate EREP and a sort table as indicated by TABSIZE. See "VSE Storage Requirements" on page 82.

EREP parameters and control statements are entered as in-stream data.

PRINT=NO

Do not format any reports yet.

ACC=Y

Copy the records from SYSREC to SYS009 (output history data set).

ZERO=N

Want to preserve SYSREC so it can be merged with the monthly history tape in the job in page "Step 11: Generating Trends Reports" on page 81.

/*
End of in-stream data.

// MTC REW,SYS009

Rewind the ACCDEV (now history) tape.

Step 2: Generating a System Summary Report

Use the following example to generate a system summary report from the records on the working history data set:

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>// TLBL HISTINT</td>
<td></td>
</tr>
<tr>
<td>// ASSGN SYS008,SYS009</td>
<td></td>
</tr>
<tr>
<td>// ASSGN SYS009,UA</td>
<td></td>
</tr>
<tr>
<td>// EXEC IFCEREPI</td>
<td></td>
</tr>
</tbody>
</table>

Create a tape label for the input history data set (ACCIN).

Assign the ACCDEV data set to the input (ACCIN) logical unit.

Release the logical unit used for ACCDEV.

Statement to execute EREP.

Important: Partition size must be large enough to accommodate EREP and a sort table as indicated by TABSIZE. See "VSE Storage Requirements" on page 82.

SYSUM

Request the system summary.

HIST

The input records are on the working history data set, rather than SYSREC.

ACC=N

No history file generated. When you code ACC=Y with SYSUM, EREP always clears the ERDS, even if you code ZERO=N.

TABSIZE=50K

The default value for TABSIZE is 4K; judge the need for a larger sort table by the number of records on SYSREC and the kind of report being requested.

ENDPARM

End of parameters; control statements follow.
Step 3: Generating System Exception Reports

Use the following example to produce system exception reports:

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>// EXEC IFCEREP1</td>
<td>Statement to execute EREP.</td>
</tr>
<tr>
<td></td>
<td>Important: Partition size must be large enough to accommodate EREP and a sort table as indicated by TABSIZE. See “VSE Storage Requirements” on page 82.</td>
</tr>
<tr>
<td>SYSEXN</td>
<td>Request the system exception report series.</td>
</tr>
<tr>
<td>HIST</td>
<td>The input records are on the working history data set, rather than SYSREC.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history file generated.</td>
</tr>
<tr>
<td>TABSIZE=100K</td>
<td>The system exception series requires a larger sort table than other reports; see “VSE Storage Requirements” on page 82.</td>
</tr>
<tr>
<td>ENDPARM</td>
<td>End of parameters; control statements follow.</td>
</tr>
<tr>
<td>DASDID ...</td>
<td>For DASD without physical IDs.</td>
</tr>
<tr>
<td>LIMIT ...</td>
<td>Limiting the number of records in the report.</td>
</tr>
<tr>
<td>SHARE ...</td>
<td>For tape drives shared between processors.</td>
</tr>
<tr>
<td>/*</td>
<td>End of in-stream data.</td>
</tr>
<tr>
<td>// MTC REW,SYS008</td>
<td>Rewind the tape holding the history data set.</td>
</tr>
</tbody>
</table>

Step 4: Generating Event History Reports

The event history report contains one-line abstracts of all records, in chronological order. Use the following example to generate this report:

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>// EXEC IFCEREP1</td>
<td>Statement to execute EREP.</td>
</tr>
<tr>
<td></td>
<td>Important: Partition size must be large enough to accommodate EREP and a sort table as indicated by TABSIZE. See “VSE Storage Requirements” on page 82.</td>
</tr>
<tr>
<td>EVENT</td>
<td>Request an event history. Note the absence of selection parameters; the report is to include every record.</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history data set.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history file generated.</td>
</tr>
<tr>
<td>TABSIZE=50K</td>
<td>Default is 4K.</td>
</tr>
<tr>
<td>/*</td>
<td>End of in-stream data. Event history uses no control statements.</td>
</tr>
<tr>
<td>// MTC RUN,SYS008</td>
<td>Rewind and unload the tape holding the history data set.</td>
</tr>
</tbody>
</table>
Step 5: Generating Threshold Summary Reports

Use the following example to produce a threshold summary report:

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>// EXEC IFCEREPI</td>
<td>Statement to execute EREP.</td>
</tr>
<tr>
<td>THRESHOLD=(001,015)</td>
<td>Request a threshold summary.</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history data set.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history file generated.</td>
</tr>
<tr>
<td>TABSIZE=50K</td>
<td>Default is 4K.</td>
</tr>
<tr>
<td>ENDPARM</td>
<td>End of parameters; control statements follow.</td>
</tr>
<tr>
<td>SHARE ...</td>
<td>For devices shared between processors.</td>
</tr>
<tr>
<td>/*</td>
<td>End of in-stream data.</td>
</tr>
<tr>
<td>// MTC REW,SYS008</td>
<td>Rewind the tape holding the history data set.</td>
</tr>
</tbody>
</table>

Important: The system exception series is a replacement for the threshold summary. Consider switching to the system exception series.

Step 6: Generating MCH, CCH and CRW Detail Reports

Use the following example to generate detail edit and summary reports of all machine and channel checks, and all channel report words:

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>// EXEC IFCEREPI</td>
<td>Statement to execute EREP.</td>
</tr>
<tr>
<td>PRINT=PS</td>
<td>Requesting detail edits and summaries of the input records.</td>
</tr>
<tr>
<td>TYPE=MC</td>
<td>Selecting the records by type:</td>
</tr>
<tr>
<td>C</td>
<td>CCH/CRW/SLH: Channel check/channel report word/subchannel logout records</td>
</tr>
<tr>
<td>M</td>
<td>MCH: Machine check records</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history data set.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history file generated.</td>
</tr>
<tr>
<td>TABSIZE=50K</td>
<td>Default is 4K; not enough for detail processing of specific record types.</td>
</tr>
<tr>
<td>/*</td>
<td>End of in-stream data.</td>
</tr>
<tr>
<td>// MTC REW,SYS008</td>
<td>Rewind the tape holding the history data set.</td>
</tr>
</tbody>
</table>

Step 7: Generating MDR and OBR Detail Reports for Controllers

Use the following example to generate MDR and OBR detail summary reports of all errors for the following communications controllers:

3704
3705
3720
3725
Step 8: Generating Detail Summary reports for I/O Errors

Use the following example to generate detail summary reports of all I/O errors not already covered in the preceding reports.

```plaintext
// EXEC IFCEREP1

Statement to execute EREP.

**Important:** Partition size must be large enough to accommodate EREP and a sort table as indicated by TABSIZE. See "VSE Storage Requirements" on page 82.

**EXPLANATION**

Request only detail summaries.

Select the records by type:

- **O** OBR: Outboard records; unit checks
- **T** MDR (formerly TPR): Miscellaneous data records

Select by device type.

- **N** 34XX, 3704, 3705, 3720, 3725, 3745

Note the absence of N33XX; EREP does not produce detail summaries for 33XX DASD anyway, so they need not be excluded.

Input records are in the history data set.

No history file generated.

Default is 4K.

End of in-stream data.

Rewind the tape holding the history data set.

---

**EXAMPLE**

// EXEC IFCEREP1

PRINT=SU

TYPE=DOTH

DEV=(N34XX,N3704,N3705,N3720,N3725,N3745)

HIST

ACC=N

TABSIZE=50K

ENDPARM

SHARE ...

/>

//-- MTC REW, SYS008

---

**EXPLANATION**

Input records are in the history data set.

No history file generated.

Default is 4K.

End of in-stream data.

Rewind the tape holding the history data set.
Sample VSE EREP Run

Step 9: Generating Detail Reports for Software Records

Use the following example to generate detail edit and summary reports of all software and operational records:

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>// EXEC IFCEREP1</td>
<td>Statement to execute EREP. Important: Partition size must be large enough to accommodate EREP and a sort table as indicated by TABSIZE. See &quot;VSE Storage Requirements&quot; on page 82.</td>
</tr>
<tr>
<td>PRINT=PS</td>
<td>Request both detail edits and summaries.</td>
</tr>
<tr>
<td>TYPE=SIE</td>
<td>Select the records by type:</td>
</tr>
<tr>
<td>HIST</td>
<td>Input records are in the history data set.</td>
</tr>
<tr>
<td>ACC=N</td>
<td>No history file generated.</td>
</tr>
<tr>
<td>TABSIZE=50K</td>
<td>Default is 4K.</td>
</tr>
<tr>
<td>/*</td>
<td>End of in-stream data.</td>
</tr>
<tr>
<td>// MTC REW,SYS008</td>
<td>Rewind the tape holding the history data set.</td>
</tr>
</tbody>
</table>

Step 10: Updating the History Tape

To update the history tape, copy the records on the input history tape (SYS008) to the permanent history tape (SYS009, as EREP.HIST.TAPE) either creating or updating it.

Use the following example to update a history tape:

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>// TLBL HISTOT,'EREP.HIST.TAPE',nnn</td>
<td>The output (ACCDEV) data set.</td>
</tr>
<tr>
<td>// TLBL HISTINT,'EREP.HIST.TAPE',nnn</td>
<td>The input (ACCIN) data set.</td>
</tr>
<tr>
<td>// PAUSE MOUNT SCRATCH TAPE AND ASSGN SYS009</td>
<td>Instructions for the operator; assigning the ACCDEV logical unit.</td>
</tr>
<tr>
<td>// PAUSE MOUNT EREP.HISTORY.TAPE AND ASSGN SYS008</td>
<td>Instructions for the operator; assigning the ACCIN logical unit.</td>
</tr>
<tr>
<td>// EXEC IFCEREP1</td>
<td>Statement to execute EREP. Important: Partition size must be large enough to accommodate EREP and a sort table as indicated by TABSIZE. See &quot;VSE Storage Requirements&quot; on page 82.</td>
</tr>
<tr>
<td>PRINT=NO</td>
<td>Request no report output.</td>
</tr>
<tr>
<td>MERGE</td>
<td>Merge the records from the old history data set and SYSREC, which contains the latest data because it was updated while the first 8 steps were being run.</td>
</tr>
<tr>
<td>ACC=Y</td>
<td>Write the combined records to the ACCDEV tape.</td>
</tr>
<tr>
<td>ZERO=Y</td>
<td>Clear SYSREC.</td>
</tr>
<tr>
<td>/*</td>
<td>End of in-stream data.</td>
</tr>
<tr>
<td>// MTC REW,SYS009</td>
<td>Rewind the ACCDEV tape; it is the input for the final step.</td>
</tr>
<tr>
<td>// MTC RUN,SYS008</td>
<td>Rewind and unload the old history (ACCIN) tape.</td>
</tr>
</tbody>
</table>
Step 11: Generating Trends Reports

Use the following example to generate a trends report covering a maximum of 30 days of records from the newly updated history tape:

**EXAMPLE**

```plaintext
// TLBL HISTINT,'EREPR.HIST.TAPE',nnn
// ASSGN SYS008,SY009
// EXEC IFCEREP1

TRENDS
HIST

ACC=N
TABSIZE=50K
ENDPARM

SHARE ...

// MTC RUN,SY008
/&
```

**EXPLANATION**

- Define the former ACCDEV data set as ACCIN; the updated history tape is now being used as input.
- Statement to execute EREP. **Important**: Partition size must be large enough to accommodate EREP and a sort table as indicated by TABSIZE. See "VSE Storage Requirements" on page 82.
- Request the trends report. Without the DATE parameter, trends uses the last 30 days of records.
- Input records are still in a history data set rather than SYSREC.
- No history file generated. Default is 4K.
- End of parameters; control statements follow.
- For devices shared between processors.
- End of in-stream data.
- Rewind and unload the monthly history tape.

VSE System Controls

VSE requires system controls to create the interface between EREP and the operating system's data management functions.

Provide with Each EREP Run

Provide the following as part of the EREP run:

```plaintext
// JOB JOBNAME
 This statement notifies the operating system of the EREP job.

// TLBL HISTINT or // DLBL HISTIND
 (// EXTENT SYS008,xxxx,1,,xxxx,x, for DASD)
 Defines the tape (TLBL) or DASD (DLBL) input history data set.
 The EXTENT statement is only required if the history data set resides on DASD. Refer to the appropriate VSE publications for information on coding EXTENT statements.
 Important: The input history tape must have a standard label, and the blocksize for the input history data set cannot exceed 4000.
 You must use either the history data set or SYSREC, or both as input to EREP.

// ASSGN SYS008, cuu
 Assign the history data set to a logical unit, which is at address cuu (one-digit channel, two-digit unit address). You must code this statement if you use the history data set.
 The history input is always assigned to SYS008.

// TLBL HISTOT or DLBL HISTOD
 (// EXTENT SYS009,xxxx,1,,xxxx,xx, for DASD)
 Defines the tape (TLBL) or DASD (DLBL) output history data set: the
ACCDEV data set. If you code ACC=Y, you must code this label statement and the following ASSGN statement, so EREP knows where to put the records it accumulates.

The output history tape must have a standard label.

// ASSGN SYS009,cuu
Assign the output (ACCDEV) data set to logical unit SYS009.

Assignments at Initialization

The following assignments should have been made when the partition was first initialized. If they were not, you must re-IPL in order to make the assignments.

// ASSGN SYSIPT,cuu
Code EREP parameters and control statements, following the EXEC statement, as in-stream data. The system reads the data from the SYSIPT logical unit, so this ASSGN statement is always required.

// ASSGN SYSLST,cuu
Assign the data set for EREP (TOURIST) messages and EREP reports output to system logical unit SYSLST. Refer to Using the EREP Messages File (TOURIST Output) in the EREP Reference for information about TOURIST output.

// ASSGN SYSLOG,cuu
Assign the system log data set, required in case SYSLST is not available, to system logical unit SYSLOG.

To Execute EREP

Use the following system controls to execute the program:

// EXEC PGM=IFCEREP1,SIZE=xxxK or SIZE=AUTO
Executes the EREP program. You may need to use the SIZE parameter to make sure there is enough storage to hold the EREP program and its sort tables. See VSE Storage Requirements.

Important: The input and output files should be assigned to different EXTENTs.

Special Considerations for EREP Parameters and Controls

Consider the following as you prepare the JCS for your EREP run:

• You may only specify EREP parameters and control statements on input statements (as in-stream data which is read from SYSIPT).

• If you want the latest statistical and usage data included in the reports, the operator must issue the record on demand (ROD) command before running EREP against SYSREC, to force the system to dump the in-core and buffer counters to SYSREC before EREP begins its processing.

• If VSE message OP77I appears after an EREP job is submitted, increase the SIZE parameter value on the EXEC card. It might also be necessary to increase the partition size. See VSE Storage Requirements.

VSE Storage Requirements

EREP requires at least 100KB of virtual storage. This provides for a sort table of 4KB, the VSE TABSIZE default.

The 4KB sort table permits the processing of approximately 400 records for a report.
VSE Storage Requirements

EREP issues the GETVIS macro to obtain storage. GETVIS requires 1KB for each 100 records over 400.

Increasing Partition Size

If you have to increase the size of the sort table using the TABSIZE parameter, you also must increase the size of your virtual partition by the amount you specify for the TABSIZE value minus 4KB.

EREP can use two different sorting algorithms for its reports; the faster one requires additional storage equal to TABSIZE.

If you increase your partition size by the value of TABSIZE over the requirements outlined in Table 9, you will significantly enhance EREP’s performance.

EREP always tries to obtain the extra storage, and can use the faster sort routine if the storage is available.

Several cases require you to increase the partition size when running EREP. Table 9 shows these cases and recommended amounts of partition increase for each.

Table 9. VSE Partition Size Increases for EREP

<table>
<thead>
<tr>
<th>INFLUENCING FACTOR</th>
<th>AMOUNT OF PARTITION INCREASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>You are using the TABSIZE parameter</td>
<td>The specified value of TABSIZE minus 4KB</td>
</tr>
<tr>
<td>You are including EREP control statements</td>
<td>The specified or default value of TABSIZE</td>
</tr>
<tr>
<td>You are using any of the following selection parameters:</td>
<td>4KB for any or all</td>
</tr>
<tr>
<td>CPU</td>
<td></td>
</tr>
<tr>
<td>CPUCUA</td>
<td></td>
</tr>
<tr>
<td>CUA</td>
<td></td>
</tr>
<tr>
<td>DEV</td>
<td></td>
</tr>
<tr>
<td>DEVSER</td>
<td></td>
</tr>
<tr>
<td>LIA/LIBADR</td>
<td></td>
</tr>
<tr>
<td>MOD</td>
<td></td>
</tr>
<tr>
<td>SYMCDE</td>
<td></td>
</tr>
<tr>
<td>VOLID</td>
<td></td>
</tr>
<tr>
<td>You are requesting detail edit reports (PRINT=PT, PS or AL)</td>
<td>4KB for each processor</td>
</tr>
<tr>
<td>You are requesting a detail summary of 33XX records (not available in EREP 2.3 and later releases)</td>
<td>7KB</td>
</tr>
<tr>
<td>A processor requires frames for detail edit output (3L3X only)</td>
<td>150KB</td>
</tr>
<tr>
<td>You are requesting the system exception report series</td>
<td>6 times the specified or default value of TABSIZE</td>
</tr>
</tbody>
</table>

Because you might not know how many input records to expect and these partition size increases are generous, you may want to code SIZE=AUTO on the EXEC statement for the cases that require a lot of virtual storage.

In rare instances, this may create a storage problem. The following are ways to correct this problem:
VSE Storage Requirements

- Increase the partition size to 1.7M or larger
- Code SIZE=xxxK instead of SIZE=AUTO, where xxx is 100 plus 1 for each 100 records over 400. For example, for 900 records you would code SIZE=105K.
- Do not code the SIZE parameter at all.

Information about the VSE System Control Program (SCP)

The VSE and VSE/Advanced Functions systems are currently packaged with EREP Version 3 Release 5.0.

Access Methods

EREP retrieves error records from SYSREC both:
- Sequentially, using the Sequential Access Method (SAM)
- Randomly, using the execute channel program (EXCP) system macro

It writes records to an output data set or buffer sequentially, through SAM. If you request specific devices for EREP’s output data, they must be supported by SAM.

Creation and Processing of Software Records

The VSE systems record events associated with system operation in the following record types:

<table>
<thead>
<tr>
<th>RECORD TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>System initialization (IPL) records</td>
<td>The IPL record includes a reason code and a subsystem code, supplied by the operator as part of the interactive IPL process. These two codes help identify the reason for the IPL and the device or program (if any) that failed.</td>
</tr>
<tr>
<td>Termination (EOD) records</td>
<td>The EOD record is written in response to a ROD (record on demand) command issued before shutting down the system for the day. The ROD command forces the dumping of statistical data counters and buffered logs to SYSREC, thus preserving the latest environmental data about your hardware systems. It also causes RDE to write the end-of-day record to SYSREC.</td>
</tr>
</tbody>
</table>

The VSE systems do not create type X'4X' software (SFT) records in response to abnormal termination.

EREP processes these records for:
- The system summary and trends reports, grouping them among PROGRAM ERRORs.
- The system error summary report of the system exception series, under IPL/RESTART/TERMINATION.

Initialization of the Error Recording Data Set (ERDS) in VSE

The VSE error-recording data set is called the system recorder file, or SYSREC(IJSYSRC), and is assigned the logical name IJSYSRC. SYSREC is created on the SYSRES volume during the first IPL following system generation. The SYSRES volume also contains:
- The hard copy file (IJSYSHC)
- The system history file (IFSYSHF)
In this book, SYSREC refers only to the system recorder file, or ERDS.

The operator creates and initializes SYSREC by issuing the IPL command SET RF=CREATE right after IPL and before the first //JOB statement.

Important: SYSREC is permanently assigned during IPL. The JCS ASSGN statement ignores any existing SYSREC assignments.

SYSREC consists of a header record after it is initialized. **EREP Reference** contain examples of the SYSREC header record.

You cannot reinitialize SYSREC without re-IPLing the system and reissuing the SET RF=CREATE command.

The EREP control parameter ZERO and the special EREP program IFCOFFLD merely zero out the data set; they do not remove the header.

Clearing the ERDS when Near Full on VSE

If the ERDS is filling up too quickly you can use the special EREP procedure named IFCOFFLD to off-load the records to another data set. IFCOFFLD preserves the data on the ERDS and gives you a summary report that can help you find the problem that caused the ERDS to fill up.

IFCOFFLD does essentially the same thing a normal ERDS off-load procedure does:

- It produces a system summary using the records on the ERDS.
- It copies the records to an output data set and clears the ERDS.

The only difference between the two procedures is that IFCOFFLD does not cause the dumping of statistical data to the ERDS prior to reading records for the system summary. This difference is significant because it:

- Prevents the loss of statistical data
- Saves time

The following table shows what IFCOFFLD does and gives a JCS example.

<table>
<thead>
<tr>
<th>IFCOFFLD</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Generates a system summary report without dumping the buffered and in-storage statistical data to SYSREC</td>
<td><code>// TLBL HISTOT // ASSGN SYS009,TAPE // EXEC IFCOFFLD /* /&</code></td>
</tr>
<tr>
<td>2. Copies the records from SYSREC to the output data set (SYS009)</td>
<td></td>
</tr>
<tr>
<td>3. Zeros out SYSREC</td>
<td></td>
</tr>
</tbody>
</table>

Note: It would be advantageous to assign your regular permanent EREP history data set to SYS009 for IFCOFFLD. You should also set up an IFCOFFLD procedure to be started from the console as needed. See "Automating the Running of EREP" on page 86.
Statistical and Usage Data Written to SYSREC

Statistical and usage data are written to SYSREC when the operator issues the record on demand (ROD) command before running an EREP report. The data comes from counters that are associated with the devices and that are located either in buffers or in storage, depending on the device. The operating system dumps this data to the ERDS in the form of MDR and OBR records.

VSE History File (IJSYSHF)

Do not confuse the EREP history data set with the VSE history file named IJSYSHF.

The VSE history file contains information about the components of the system and the program fixes applied to those components. It is updated by MSHP (maintain system history program) and reflects the change level of your system.

The EREP history data set contains error records, either copied directly from SYSREC or accumulated after a report is run. It can be a cumulative data set, updated daily or weekly. It can be used as input to the EREP program, either by itself or in combination with SYSREC.

The EREP history data set is not created by the system; it is created when you specifically request it during an EREP run, see “Step 1: Creating a History Data Set” on page 76.

Running EREP in a Multisystem Environment

If your MVS, VM, or VSE installation has multiple processors running under the same or different operating systems, it may be possible to combine all of your error records into one history file. Use the steps shown in Table 2 on page 14 to combine the error records.

For details on setting up job streams with your other operating systems see:

<table>
<thead>
<tr>
<th>HEADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Multisystem Installations” on page 14</td>
</tr>
<tr>
<td>“Running EREP in a Multisystem Environment” on page 50</td>
</tr>
<tr>
<td>“VM SP Error Recording with Guest Systems” on page 72</td>
</tr>
</tbody>
</table>

Automating the Running of EREP

EREP should be run regularly and frequently. You can set up a procedure or series of EXECs that can be started by the operator or automatically by a timer.

The sample EREP runs at the beginning of this chapter in pages “Step 1: Creating a History Data Set” on page 76 through “Step 10: Updating the History Tape” on page 80 cover all the kinds of reports you would want to see from an EREP run. Add the system controls needed to make a run into a cataloged procedure and you will have your basic EREP setup.

You can set up two procedures that will create and update a monthly history tape:

1. One for the first run of the month
2. The other for subsequent weeks
The operator chooses and runs the appropriate procedure once a week.
Notices

This information was developed for products and services offered in the U.S.A. or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware

Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS™, contain code that supports specific hardware servers or devices. In some cases, this device-related element support remains in the product even after the hardware devices pass their announced End of Service date. z/OS may continue to service element code; however, it will not provide service related to unsupported hardware devices. Software problems related to these devices will not be accepted
for service, and current service activity will cease if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware

The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently change when service for particular servers or devices is withdrawn. Likewise, the levels of other software products supported on a particular release of z/OS are subject to the service support lifecycle of those products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and product documentation) can include references to hardware and software that is no longer supported.

- For information about software support lifecycle, see: [IBM Lifecycle Support for z/OS](http://www.ibm.com/software/support/systemsz/lifecycle/)
- For information about currently-supported IBM hardware, contact your IBM representative.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle, its affiliates, or both.
This glossary contains a list of terms used within the Environmental Record Editing and Printing Program library.

A

AFP Advanced Function Printing.

B

BPI Bits per inch.

BTAM Basic telecommunications access method.

BUFE Buffer error.

BYTES RD/SRCHD Megabytes read/searched.

C

CAT Channel availability table.

CCF Channel-check frame.

CCH Channel-check handler.

CCHCRH CCH channel reconfiguration hardware.

CCHINC CCH incomplete record.

CCU Channel control unit.

CCW Channel control word.

CDDA Command data.

CE IBM customer engineer (changed to IBM service representative).

central processor (CP)

One of the internal processors that is part of a central processing complex.

channel

The physical connector between a processor and an input/output device, usually via a control unit of some kind. In the case of the extended architecture (System 370/XA), the hardware channels are replaced by subchannels, which are capable of dynamic variation controlled by microcode in the processor complex.

While this book refers to “subchannels” when discussing fields in 370XA report output, it uses “channel” in the general sense to mean the connection between controller and device.

channel-check frame (CCF)

The record on the ERDS that EREP uses to format channel-check records from the 303X group of processors.

channel-check handler (CCH)

A S/370 hardware feature that, when a channel error occurs, records information about the error and issues a message to the operator. In VSE, machine check analysis and recording performs a similar function. The records created in both cases are called CCH records.

channel-report word (CRW)

In S/370XA, a part of the channel-subchannel recovery mechanism. It contains information about channel incidents reported through machine checks, specifying the error environment and the severity of the error. MVS/XA builds a CRW record that, in combination with the subchannel logout handler record, replaces the CCH record.

CHK Check.

CHNL Channel.

CHP Channel path ID.

CHPID Channel path ID.

CHR Channel reporting (error).

CK Check.

CKD Count key data.

CLNACT Cleaner action.

CMD Command.

CMND Command.

CMS Conversational monitor system.

CNT Count.

CNTRL Control.

CNTRLR Controller.
code The programming-language instructions that make up a computer program. As a verb, “to code” is the same as “to write code”.

COMP Component.

CONS+UR Console plus unit record.

controller A single unit that provides an interface between one or more storage control units and a group of devices. Controllers usually reside within the same unit as the lowest drive addresses.

CORR Correctable.

COR Corrected.

CP Central processor.

CPC Central processing complex.

CPU serial number A 6-digit hexadecimal number. The first digit identifies the central processor within the central processing complex. The second digit identifies the plant where the CPU was manufactured. The remaining digits identify the sequence number. For example, 120003 is CP 1 of the third CPC manufactured at plant two.

CRH Channel reconfiguration hardware.

CRW Channel-report word.

CSCH Clear subchannel.

CSECTID Control section (CSECT) identification.

CSID Channel set ID.

CSW Channel status word.

CT Controller; count.

CTCA Channel-to-channel adapter.

CTLID Controller ID.

CTRL Controller.

CU Control unit.

CUA Channel-control unit-device address.

CUD Control unit detecting (error).

CUR Control unit reporting (error).

DATAXFR Data transfer.

DATA CKS CORR/RTRY Data checks correctable/retry.

DCB Data control block.

DCI Dedicated connection interface.

DDR Dynamic device reconfiguration.

DDROPR DDR operator requested.

DDRSYS DDR system requested.

DEV Device number.

DEVNO Device number.

DEVNUM Device number.

DEVT Device type.

DLBL DASD label.

DNO Device number.

DOS (VS) Disk Operating System. An obsolete name, replaced by VSE, Virtual Storage Extended. In this book, “VSE” includes and implies all releases of this operating system, from DOS to VSE/ESA.

DPA Dynamic pathing availability.

DRCT Storage director.

DTE Date.

dynamic device reconfiguration A facility that allows a demountable volume to be moved, and repositioned if necessary, without abnormally terminating the job or repeating the IPL procedure. The MVS operating systems create DDR records to provide information about operator-assisted recovery involving the relocation of tape and movable DASD volumes.

E Extended binary code decimal interchange code.

ECC Error correction code.

ECW Extended control word.

EOD End of day.
EQUCHK
 Equipment check.

EQUIP
 Equipment.

ERDS
 Error-recording dataset.

EREPI
 Environmental record editing and printing program.

ERP
 Error-recovery program/processing.

ERROPS
 Error operations.

error-recovery dataset
 Input to the IFCEREP1 program. In MVS systems, the ERDS is SYS1.LOGREC; in VSE systems, it is SYSREC; in VM, its the error-recording area or cylinders.

error-recovery program/processing
 System routines that detect and process errors, writing records to the ERDS.

ERSGAP
 Erase gap.

ESIO
 I/O devices on ESCON link.

ESW
 Extended status word.

EXCP
 Execute channel program.

EXTD
 External damage.

FBA
 Fixed block access.

FCF
 Function control flag.

FCG
 Floating channel group.

FLG
 Flag.

FMT
 Format.

FRF
 Function request flag.

FRR
 Function recovery routines.

FTA
 File tape adapter.

H

hard machine check or error
 A hardware error that disables the processor or other unit.

HDR SER
 Header (tape)/serial number of drive that created tape.

HIRS
 Hardware instruction retry (successful).

HSCH
 Halt subchannel.

IC
 Incident code.

ICHPT
 Installation channel path table.

ID
 Identification.

initial program load (IPL)
 The process by which an operating system is initialized at the beginning of the day or session. At IPL, the system operator enters the installation-specific information the operating system must have in order to manage the installation’s computing system and handle the installation’s application programs. This information includes system parameters, system dataset definitions, and other information needed so the operating system can begin operating.

installation
 A data processing system location; for example, a computer center housing processors, I/O devices, other hardware devices, the software that controls the machines, and the people who control the computer center.

INV
 Invalid.

INVK
 Invoked.

IOB
 Input output block.

IPL
 Initial program load.

IRB
 Interrupt response block.

J

JCL
 Job control language.

JCS
 Job control statement.

K

KB
 Kilobyte.

L

LEN
 Length.

LMAT
 Load-module-address table.

LSQA
 Local system queue area.

M

machine-check frame (MCF)
 The record, on the ERDS, that EREP uses to format machine-check records from the 303X group of processors.

machine-check handler (MCH)
 A S/370 hardware feature that analyzes
errors and attempts recovery by retrying the failing instruction. If unsuccessful, it causes an interrupt that triggers the creation of an error record. In VSE systems, machine check analysis and recording performs similar functions. The records created in either case are called MCH records.

MB Megabyte.
MCF Machine-check frame.
MCH Machine-check handler.
MCHTRM MCH System terminated.
MCIC Machine check interrupt code.
MCK Machine check.
MDC Maintenance device code.
MDR Miscellaneous data record.
MDRDAS DASD MDR record.
MI Maintenance information.
MICR Magnetic ink character recognition.
MIH Missing-interrupt handler.
miscellaneous data record (MDR)
A record type that records error and usage information from buffered control units or communications controllers, and device failures on TP devices connected to 3705/3725 communications controllers. The record is created when there is an overflow of statistical counters; its purpose is to provide more information about the accompanying failure.

missing-interrupt handler (MIH)
An MVS and MVS/XA facility that keeps track of I/O interrupts, informing the operator and creating a record whenever an expected interrupt fails to occur in a preset time interval.

MIX The XA version of the missing-interrupt handler.
MOD Module.
MSHP Maintain system history program.
MVS, MVS/ESA, MVS/XA
Multiple Virtual Storage, Multiple Virtual Storage/Enterprise Systems Architecture, and Multiple Virtual Storage/Extended Architecture, two versions of the System/370 operating system that are extensions of OS/VS2.
This manual uses “MVS” to refer to a family of operating systems that controls System/370 computing systems. “MVS” includes MVS/370, MVS/XA and MVS/ESA.

N
NCP Network control program.
network management vector transport (NMVT)
An SNA management services request unit that flows over an active session between a device implementing an SNA physical unit and a device implementing an SNA control point.

NMVT Network management vector transport.

O
OBR Outboard recorder.
OBRDMT OBR demount record.
OBRDPA OBR dynamic pathing availability.
OBRDPS OBR dynamic pathing validation analysis.
OBREOD OBR End-of-day.
OBRPRM OBR Permanent error record.
OBRPTH OBR Permanent path error record.
OBRSHT OBR Short record.
OBRTMP OBR Temporary error.
OCR Optical character recognition.

Operating System/Virtual Storage (OS/VS)
A family of operating systems that control IBM System/370 computing systems. OS/VS includes VS2, MVS/370, MVS/XA and MVS/ESA. This book refers to these operating systems by the general term “MVS”.

OS/VS Operating System/Virtual Storage.
OS/VS2
Virtual Storage 2 (MVS, Version 1).
MVS/370; one of the MVS operating systems.

outboard recorder (OBR)
In VSE systems, the outboard recorder is a feature that records pertinent data about an unrecoverable I/O error. MVS systems create a similar record from information recorded when an I/O device is in *unit-check* status. The resulting record in both cases is called an OBR record.

OVERRN
Overrun.

OVERRUN CDDA
Overrun command data.

OVRN
Overrun.

P

PCCA
Physical configuration communications area.

PCT
Product control table.

PCUA
Primary channel-control unit-device address.

PDAR
Program damage assessment and repair.

PERM
Permanent.

PFU
Probable failing unit.

PR/SM
Program resource/system manager.

PRG/M INT
Program-initiated.

PRI
Primary.

PRM
Permanent.

product control table (PCT)
The internal table that contains data EREP needs in order to identify and process records from a particular IBM device or product.

PROG-EC
Program-extended control mode.

PSF
Print Services Facility.

PSW
Program status word.

PUB
Physical unit block.

QSAM
Queued sequential access method.

R

RCT
Record control table.

RCVRYXIT
Recovery exit module.

RD
Read error.

RDE
Reliability data extractor.

REC-TYP
Record type.

ROD
Record on demand.

RPA
Return point address.

RSM
Real storage manager.

RTM
Recovery termination manager.

RTN
Routine.

RTRY
Retry.

R/W
Read/write.

S

S/370 and S/370XA
Computing systems built around large IBM processors. XA stands for Extended Architecture, the architecture basis for the 3081 and later processors, characterized by 31-bit addresses. S/370 implies not only the processor but also the many other data processing devices that can be connected to it to make a 370 (or 370XA) data processing system.

SCD
System control data.

SCP
System control program.

SCSW
Subchannel status word.

SCU
Storage control unit.

SCUA
Secondary channel-control unit-device address.

SCUID
Storage control unit ID.

SD
Storage director.

SDR
Statistical data recorder.

SDWA
System diagnostic work area.

SE
Systems Engineer.

SEC
Secondary.
SEEKS CNTR/HH
Seek errors cylinder track/head

SFT Software record. A record that is produced as part of the system error recovery process. It includes such software-specific information as the ERRORID and the system diagnostic work area control block and its extensions for the failing task or request block. MVS and AIX/ESA ® build software records.

SFTABN SFT ABEND record.

SFTLST SFT lost record.

SFTMCH SFT machine error, recoverable.

SFTPI SFT program interrupt.

SFTRST SFT restart.

SIM Service information messages.

SIO Start I/O.

SKS Seeks; data access errors.

SLH Subchannel-logout handler.

SNA Systems network architecture.

SNID Sense path group ID (DPA).

Soft machine check or error A hardware error that is not disabling.

SPIID Set path group ID (DPA).

SQA System queue area.

SRC System reference code.

SRCHD Searched.

SRF Service record file.

SSYS ID Subsystem identifier.

STOR Storage error.

storage control unit A functional unit which resides between channels and controllers.

STSCCH Store subchannel.

SSCH Start subchannel.

subchannel The extended architecture version of “channel”. See also channel.

subchannel-logout handler A S/370XA feature that provides detailed model-independent information relating to a subchannel; the subchannel logout describes equipment errors detected by the channel subsystem. MVS/XA and MVS/ESA build an SLH record that, in combination with the CRW record, replaces the CCH record.

subsystem In hardware terms, a group of devices that function together to perform I/O operations. An I/O subsystem can consist of a control unit (controller) and its associated drives—either disk or tape; or it can consist of all the DASD or tape storage—including drives and controllers—in an installation. In the case of newer DASD, the I/O subsystem also includes storage control units and storage directors, within the controller.

SVC Supervisor call.

syntax The relationships among the elements and characters in a parameter or language statement. For our purposes, the way you have to code something in order for the program to understand and accept it.

SYSGEN System generation.

system control program The minimum software package that will make your operating system work.

system generation The process of selecting optional parts of an operating system and of creating a particular operating system tailored to the requirements of a data processing installation. Can also include I/OGEN, which is the time when the system programmer defines the installation’s computing system configuration to the operating system.

Systems Engineer The person responsible for helping you maintain the IBM software in your installation.

T

TCO Triple capacity option.
TEM Temporary.
TERM Terminal.
TBL Tape label.
TMP Temporary.
TP Teleprocessing.
TPF Transaction processing facility.

transaction processing facility (TPF)
A high performance, real-time operating system designed for message-driven applications that require high availability and rapid response time at high message volumes.

TSCH Test subchannel.
U
UCB Unit control block.
V

virtual machine (VM)
A time-sharing system control program that manages the resources of an IBM System/370 computing system so that multiple remote terminal users have a functional simulation of the computing system (a virtual machine) at their disposal. This book uses “VM” to mean all versions of the Virtual Machine system control program, including VM/370, VM/System Product, VM/SP/High Performance Option, VM/ESA, and VM/XA.

Virtual Storage Extended (VSE)
A family of disk operating systems that controls IBM System/360 and System/370 computing systems and includes VSE and VSE/Advanced Functions.

VM Virtual machine.

VOLID
Volume serial number.

VS2 Virtual Storage 2 (MVS, Version 1). MVS/370; one of the OS/VS operating systems.

VSAT Virtual storage address table.

VSE Virtual Storage Extended.

VSE/AF
Virtual Storage Extended/Advanced Functions.

W
Index

Numerics
370 or 370XA operating system 2
device address for system summary 19
ERDS on MVS system residence 49
MODE selection parameter 10
system summary record in 370 or 370XA mode 18

ACC processing parameter
 clearing the ERDS 13
 conflicting EREP parameters 11
 description 11
 MVS examples 34, 43
 VM examples 55, 60
 VSE examples 76, 81
ACCDEV output data set
 under MVS
 DCB requirements 47
 DD statement 44
 in JCL for IFCOFFLD 49
 in JCL for reports 33, 41
 in sample JCL 32
 under VM
 defining files for CPEREPXA 61
 in creating a history file 54
 in sample EXEC 53
 in updating the history tape 59
 overriding input and output FILEDEFs 62
 under VSE
 in creating a history data set 76
 in generating a system summary report 76
 in generating trends reports 81
 in updating the history tape 80
 input history tape or disk 81
ASSGN statements required for EREP 81, 82
 automating the EREP run
 MVS 51
 VM 73
 VSE 86

ACCIN input data set (continued)
 under VM (continued)
 overriding input and output FILEDEFs 62
 to point to the XAEREPIO or XAEREPMC RECORD files 71
 under VSE
 in generating a summary report 76
 in generating trends reports 81
 in updating the history tape 80
DD statements required for EREP 43, 45
 defining files 8
 detail edit and summary reports
 description 27
 how to generate 28
 under MVS 38, 40
 under VM SP 57, 59
 under VSE 78, 80
 PRINT report parameter 9
 purpose 27
 selection parameters 28
 DEV selection parameter 9
 DEV selection parameter example 39
 DEVSER selection parameter 9
DIRECWK data set
 under MVS
 DASD space required for 48
 DD statement 43
 examples under mvs 34, 43
 in multisystem environment 50
 under VM
 defining files for CPEREPXA 61
 in creating a history file 54
 dynamic pathing availability facility 19

ENDPARM—parameter delimiter 11

ERC processing parameter
 clearing the ERDS when near full general information (IFCOFFLD) 13
 under MVS 49
 under VM (IFCOFFLD) 49
 under VM SP 70
 under VSE (IFCOFFLD) 85
 conflicting EREP parameters (chart) 11
 control statements
 introduction 8
 to request reports (chart) 11
 CONTROLLER control statement 11
 controls for EREP, introducing 8
CPPREPX command
 defining files for 60
 entering operands
 coding rules 63
 file entry method 66
 mixed entry method 68
 prompting method 65
 examples
 in sample EREP runs 54, 60
 of entering operands 65, 69
 invocation sequence 60
 operands, EREP controls 63
 running EREP 65
 syntax 63
 CPU selection parameter 9
 CUA selection parameter 9
 CPU selection parameter 9

EREP control statements
 introduction 8
 to request reports (chart) 11
EREP parameters
 introduction 8
 invalid combinations of (chart) 11
 to control EREP processing 10
 to select records for reports 9
EREP reports
 detail reports 27
 event history 22
 how to get a report 5
 interpreting, in general 6
 one type report per EREP run 7
 system exception series 24
 trends 21

© Copyright IBM Corp. 1983, 2013
EREPT output data set
under MVS
DD statement 44
in JCL for reports 33, 43
in sample JCL 32
under VM
defining files for CPEREPXA 61
in creating a history file 54
in sample EXEC 53
under VM
defining files for CPEREPXA 61
in creating a history file 54
in sample EXEC 53
error record recording and retrieval on
XA and ESA 70
error recording area
clearing the ERDS 13
ERDS in each operating system 3
how VM SP records error records 72
input for EREP 73
error records
how data is processed and records
built 2
how EREP checks records for validity 4
how EREP filtering is done 3
how EREP selects records when building reports 4
how the ERDS header record is reset 4
on the ERDS 3
processed by EREP 1
types of EREP output 5
what EREP does with records 3
where records come from 2
where they are stored 3
error-recording data set (ERDS)
clearing 13
clearing, when near full (IFCOFFLD) 49, 85
clearing, when near full (VM) 70
general information 1, 3
header record 4
initializing 49, 70, 84
on XA and ESA (VM) 71
statistical data on MVS 50
ERRORID selection parameter 9
event history report
description 22
EVENT parameter 8
how to generate 23, 41
for MVS 36
for VM 56
for VSE 77
purpose 22
record type and source 24
selection parameters for 23
examples of code to run EREP reports of EXECs for running EREP under
VM SP 53, 60
of JCL for running EREP under
MVS 31, 43
of JCS for running EREP under
VSE 75, 81
files needed to run EREP under VM
DIRECTWK 61
EREPPIT 60
SERLOG 61
SYSIN 61
TOURIST 61
filtering EREP records 3
files needed to run EREP under VM (continued)
HERED—error recording data set 3
ERDS for MVS systems 3
G
general information about EREP 1, 6
generating EREP reports
under MVS 31, 43
under VM SP 53, 60
under VSE 75, 81
generating a report from EREP 6
how data is processed and records
built 2
how EREP checks records for validity 4
how EREP filtering is done 3
how EREP selects records when building reports 4
how EREP works 1
how the ERDS header record is reset 4
how you run it 7
input, the error records 3
output from the program 5
accumulated records 6
descriptions and examples 5
printed report 5
overview 1, 6
purpose of EREP 1
report output 5
types of EREP output 5
what EREP does 1
what EREP does with records 3
what EREP requires of you
data sets 8
parameters and control statements 8
system controls 7
where records come from 2
invalid parameter combinations (chart) 11
invoking EREP 7
H
HIST processing parameter
conflicting EREP parameters (chart) 11
description 10
MVS examples 35, 43
VM examples 55, 60
VSE examples 76, 81
history file
copying records from and to 80
create under MVS 33
create under VM 54
create under VSE 76
introduction to 6
not the VSE history file 86
how data is processed and records
built 2
how EREP checks records for validity 4
how EREP filtering is done 3
how EREP selects records when building reports 4
how EREP works 1
how the ERDS header record is reset 4
how to get an EREP report 6
how to run EREP 7
I
IFCEREPEP1, EREP program name 7
IFCOFFLD
only for MVS and VSE 13
under MVS 49
under VSE 85
IFCxxx messages 66
IJSYSHE, VSE system history file 86
incorrect EREP parameters (chart) 11
increasing storage to run EREP
for MVS 47
for VSE 83
initializing SYSREC 84
initializing the ERDS 49
initializing the error recording area 70
interpreting EREP reports, introduction to 6
introduction to EREP
ERDS—the error recording data set
after VM systems 3
ERDS for MVS systems 3
learning about EREP 1, 6
LIA/LIBADR selection parameter 9
LIMIT control statement
description 11
LIMIT control statement example 33
LINECT processing parameter 10
LINELEN processing parameter 10
FILEDEFs for CPEREPXA 60, 62
files needed to run EREP under VM
ACCDEV 61
ACCIN 62
FILEDEFs for CPEREPXA (continued)
files needed to run EREP under VM
ACCDEV 61
ACCIN 62
J
JCL examples
generating MVS EREP reports 31, 43
near full offload of the ERDS 49
sample MVS EREP runs 31, 43
JCS examples
near full off-load of SYSREC 85
sample VSE EREP runs 75, 81
job control language (JCL) to run EREP under MVS 45, 47
job control statements (JCS) to run EREP under VSE 81, 82
L
learning about EREP 1, 6
LIA/LIBADR selection parameter 9
LIMIT control statement
description 11
LIMIT control statement example 33
LINECT processing parameter 10
LINELEN processing parameter 10
maintaining ERDS data integrity 13
 clearing the ERDS when near full (IFCOFFLD) 13
 integrity of data on the ERDS 13
 statistical data on the ERDS 50
 transferring data to another file 13
MERGE processing parameter 10
messages files 5
MOD selection parameter 10
MODE selection parameter 10
multisystem complex and EREP 14
 general information 14
 procedures for an MVS installation 50
 procedures for an VM installation 72
 procedures for an VSE installation 86
mutually exclusive EREP parameters (chart) 11
MVS storage requirements 47
MVS system
 access method used by EREP 48
 automating the running of EREP 51
 combining input history data sets 50
 DCB requirements 46
 emergency offload of the ERDS 49
 generating EREP reports 31, 43
 increasing region size for EREP 47
 sample EREP run 32, 43
 sense data dumped to the ERDS 50
 software records 48
 storage requirements for EREP 47, 48
 system controls for EREP (JCL) 43, 48
 writing sense data to the ERDS 50

Notices 89
OP77I, VSE message 82
 operating systems and EREP
 how EREP runs under 7
 increasing partition size, for VSE 83
 increasing region size, for MVS 47
 introduction 7
 storage requirements
 for MVS 47
 for VSE 82
 output from the EREP program
 EREP messages file (TOURIST) 5
 EREP report files 5
 history data set 6

parameter delimiter (ENDPARM) 11
parameters
 introduction 8
 invalid combinations of (chart) 11
 to control EREP processing 10
 to select records for reports 9
planning checklist for running EREP 14
planning for EREP (continued)
 under VSE 75
SHARE control statement
 description 11
 example 33
 shared I/O: the multisystem environment 50
SHORT processing parameter 10
 special VSE considerations for EREP controls 82
Stacking CPEREPXA operands 67
statistical data on the ERDS 50
storage requirements
 for MVS 47
 for VM 60
 for VSE 82
 overview 8
SVC 76, to write records to an ERDS 72
SYMCDE selection parameter 10
SYS.ILOGREC
 clearing, when near full 49
 definition 3
 reading records from 43
 reinitializing 49
 statistical data on 50
SYSEXN report parameter 9
SYSIMG control statement 11
SYSIN output data set
 under MVS
 DD statement 44
 in history data set 33, 43
 in sample JCL 32
 under VM
 defining files for CPEREPXA 61
 in file entry method 66
 under VM
 defining files for CPEREPXA 61
 in JCL for reports 33, 43
 under VM
 defining files for CPEREPXA 61
 under VSE
 defining files for CPEREPXA 61
system controls for EREP 7
system error log 3
system exception reports
 description 24
 how to generate 25
 under MVS 35
 under VM 56
 under VSE 77
system error summary 24
system summary report
 description 18
 how to generate 20
 under MVS 34
 under VM 55
 under VSE 76
order of product groups in the reports 19
purpose 17
record type and source 20
selection parameters for 20
system summary part 1 18
system summary report (continued)

system summary part 2 18
SYSUM report parameter 9
SYSUM report parameter 9

T

TABSIZE parameter example 36
TABSIZE processing parameter 10, 47, 82
TERMINAL operand for CPEREPXA 64
TERMN selection parameter 10
threshold summary report
description 26
how to generate 27
for MVS 37
for VM 57
for VSE 78
purpose 26
record type and source 27
selection parameters for 27
THRESHOLD parameter 9
Threshold Print Parameter example 37
TIME selection parameter 10
TOURIST output data set
overview 5
required system controls
for MVS 44
for VM SP 66
for VSE 82
trademarks 91
transferring data to another file 13
trends report
description 21
purpose 21
sample code 42, 60, 81
selection parameters for 22
TYPE selection parameter 10
types of EREP output 5

V

valid selection parameters for EREP reports (chart) 11
validity checking EREP records 4
VM SP system controls and notes 60, 62
VM system
automating the running of EREP 73
CPEREPXA 64
defining files 62
emergency offload of the ERDS 70
error recording 72
generating EREP reports 53, 60
initializing the error recording area 70
reinitializing the ERDS 70
sample EREP run 53, 60
sense data dumped to the ERDS 50
source of input records 73
system controls 60
VOLID selection parameter 10
VSE notes (continued)
special considerations for EREP controls 82
VSE storage requirements for EREP 82
VSE system
automating the running of EREP 86
generating EREP reports 75, 81
initializing SYSREC 84
near full off-load of the ERDS 85
reinitializing SYSREC 85
sample EREP run 75, 81
software records 84
storage requirements 82
system controls 81, 84
VSE system controls 81, 84
access methods 84
general information 86
SCP information 86

W

what EREP does with records 3
where error records are stored 3
where records come from 2

X

XA and ESA error record recording and retrieval 70

Z

ZERO processing parameter
definition 10
header record 4
to clear the ERDS 13

V

valid selection parameters for EREP reports (chart) 11
validity checking EREP records 4
VM SP system controls and notes 60, 62
VM system
automating the running of EREP 73
CPEREPXA 64
defining files 62
emergency offload of the ERDS 70
error recording 72
generating EREP reports 53, 60
initializing the error recording area 70
reinitializing the ERDS 70
sample EREP run 53, 60
sense data dumped to the ERDS 50
source of input records 73
system controls 60
VOLID selection parameter 10
VSE notes
initializing the ERDS 84
software records 84

104 EREP V3R5 User’s Guide