MVS Programming: Workload Management Services

Version 1 Release 11
This edition applies to Version 1 Release 11 of z/OS (5694-A01), and to all subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SA22-7619-18.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the address below.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this publication, or you may address your comments to the following address:

IBM Deutschland Research & Development GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

FAX (Germany): 07031+16–3456
FAX (Other Countries): (+49)+7031–16–3456

Internet e-mail: s390id@de.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
• Title and order number of this book
• Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
<table>
<thead>
<tr>
<th>Chapter 15. IWMDEXTR – Extracting WLM Service Definition</th>
<th>173</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>174</td>
</tr>
<tr>
<td>Programming Requirements</td>
<td>174</td>
</tr>
<tr>
<td>Restrictions</td>
<td>174</td>
</tr>
<tr>
<td>Input Register Information</td>
<td>175</td>
</tr>
<tr>
<td>Output Register Information</td>
<td>175</td>
</tr>
<tr>
<td>Performance Implications</td>
<td>175</td>
</tr>
<tr>
<td>Syntax</td>
<td>175</td>
</tr>
<tr>
<td>Parameters</td>
<td>175</td>
</tr>
<tr>
<td>ABEND Codes</td>
<td>178</td>
</tr>
<tr>
<td>Return and Reason Codes</td>
<td>178</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 16. IWMDINST – Installing Service Definition</th>
<th>181</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>182</td>
</tr>
<tr>
<td>Programming Requirements</td>
<td>182</td>
</tr>
<tr>
<td>Restrictions</td>
<td>182</td>
</tr>
<tr>
<td>Input Register Information</td>
<td>183</td>
</tr>
<tr>
<td>Output Register Information</td>
<td>183</td>
</tr>
<tr>
<td>Performance Implications</td>
<td>183</td>
</tr>
<tr>
<td>Syntax</td>
<td>183</td>
</tr>
<tr>
<td>Parameters</td>
<td>184</td>
</tr>
<tr>
<td>ABEND Codes</td>
<td>187</td>
</tr>
<tr>
<td>Return and Reason Codes</td>
<td>187</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 17. IWMEBLK – Work Request Blocked</th>
<th>191</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>191</td>
</tr>
<tr>
<td>Programming Requirements</td>
<td>191</td>
</tr>
<tr>
<td>Restrictions</td>
<td>192</td>
</tr>
<tr>
<td>Input Register Information</td>
<td>192</td>
</tr>
<tr>
<td>Output Register Information</td>
<td>192</td>
</tr>
<tr>
<td>Performance Implications</td>
<td>192</td>
</tr>
<tr>
<td>Syntax</td>
<td>192</td>
</tr>
<tr>
<td>Parameters</td>
<td>193</td>
</tr>
<tr>
<td>ABEND Codes</td>
<td>195</td>
</tr>
<tr>
<td>Return and Reason Codes</td>
<td>195</td>
</tr>
<tr>
<td>Examples</td>
<td>197</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 18. IWMECQRY – Querying Enclave Classification Attributes</th>
<th>199</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>199</td>
</tr>
<tr>
<td>Programming Requirements</td>
<td>199</td>
</tr>
<tr>
<td>Restrictions</td>
<td>199</td>
</tr>
<tr>
<td>Input Register Information</td>
<td>200</td>
</tr>
<tr>
<td>Output Register Information</td>
<td>200</td>
</tr>
<tr>
<td>Performance Implications</td>
<td>200</td>
</tr>
<tr>
<td>Syntax</td>
<td>201</td>
</tr>
<tr>
<td>Parameters</td>
<td>201</td>
</tr>
<tr>
<td>ABEND Codes</td>
<td>203</td>
</tr>
<tr>
<td>Return and Reason Codes</td>
<td>203</td>
</tr>
</tbody>
</table>
Chapter 24. IWMEREG — Registering a WLM Enclave ... 239
Environment ... 239
Programming Requirements 239
Restrictions ... 239
Input Register Information 240
Output Register Information 240
Performance Implications 240
Syntax .. 240
Parameters .. 240
ABEND Codes .. 241
Return and Reason Codes 243
Example ... 244

Chapter 25. IWMERES — Changing an Enclave ... 245
Environment ... 245
Programming Requirements 245
Restrictions ... 245
Input Register Information 246
Output Register Information 246
Performance Implications 246
Syntax .. 246
Parameters .. 247
ABEND Codes .. 249
Return and Reason Codes 249
Example ... 252

Chapter 26. IWMESTOP — Stopping a Work Request ... 253
Environment ... 253
Programming Requirements 253
Restrictions ... 254
Input Register Information 254
Output Register Information 254
Performance Implications 254
Syntax .. 254
Parameters .. 255
ABEND Codes .. 257
Return and Reason Codes 257
Example ... 259

Chapter 27. IWMESTRT — Starting a Work Request ... 261
Environment ... 261
Programming Requirements 261
Restrictions ... 262
Input Register Information 262
Output Register Information 262
Performance Implications 262
Syntax .. 263
Parameters .. 263
Chapter 32. IWIMPT – Importing an Enclave

- Environment .. 295
- Programming Requirements 295
- Restrictions ... 295
- Input Register Information 295
- Output Register Information 295
- Performance Implications 296
- Syntax .. 296
- Parameters .. 296
- ABEND Codes ... 298
- Return and Reason Codes 299
- Example .. 301

Chapter 33. IWMMABNL – Recording Abnormal Event

- Environment ... 303
- Programming Requirements 303
- Restrictions ... 303
- Input Register Information 304
- Output Register Information 304
- Performance Implications 304
- Syntax .. 304
- Parameters .. 304
- ABEND Codes ... 306
- Return and Reason Codes 306
- Example .. 306

Chapter 34. IWMMDELE – Deleting the Monitoring Environment

- Environment ... 307
- Programming Requirements 307
- Restrictions ... 307
- Input Register Information 308
- Output Register Information 308
- Performance Implications 308
- Syntax .. 308
- Parameters .. 308
- ABEND Codes ... 309
- Return and Reason Codes 309
- Example .. 310

Chapter 35. IWMMEXTR – Monitor Environment Extract

- Environment ... 311
- Programming Requirements 311
- Restrictions ... 312
- Input Register Information 312
- Output Register Information 312
- Performance Implications 312
- Syntax .. 312
- Parameters .. 313
- ABEND Codes ... 316
- Return and Reason Codes 316

Chapter 36. IWMMNTFY – Notify of Work Execution Completion

- Environment ... 319
- Programming Requirements 319
- Restrictions ... 319
- Input Register Information 320
Example

Chapter 41. IWMMUPD – Updating Data of a Work Unit

- Environment .. 361
- Programming Requirements 361
- Restrictions .. 361
- Input Register Information 361
- Output Register Information 362
- Performance Implications 362
- Syntax ... 362
- Parameters .. 363
- ABEND Codes .. 365
- Return and Reason Codes 365

Chapter 42. IWMMXDC – Exit For Collecting Resource Data

- Environment .. 367
- Programming Requirements 367
- Restrictions .. 368
- Input Register Information 368
- Output Register Information 368
- Performance Implications 368
- Syntax ... 368
- Parameters .. 369
- ABEND Codes .. 371
- Return and Reason Codes 372
- Example .. 372

Chapter 43. IWMMXFER – Transfer Monitoring Environment

- Environment .. 373
- Programming Requirements 373
- Restrictions .. 374
- Input Register Information 374
- Output Register Information 374
- Performance Implications 375
- Syntax ... 375
- Parameters .. 375
- ABEND Codes .. 379
- Return and Reason Codes 379

Chapter 44. IWMMXRA – Exit For Adjusting Resources

- Environment .. 381
- Programming Requirements 381
- Restrictions .. 382
- Input Register Information 382
- Output Register Information 382
- Performance Implications 382
- Syntax ... 382
- Parameters .. 383
- ABEND Codes .. 385
- Return and Reason Codes 385
- Example .. 385

Chapter 45. IWMPACT – Activating Service Policy

- Environment .. 387
- Programming Requirements 387
- Restrictions .. 388
Chapter 50. IWMRQRY – Collecting Address Space Delay Information

Environment
Programming Requirements
Restrictions
Input Register Information
Output Register Information
Performance Implications
Syntax
Parameters
ABEND Codes
Return and Reason Codes

Chapter 51. IWMSCRORF – Setting Correlator Flags

Environment
Programming Requirements
Restrictions
Input Register Information
Output Register Information
Performance Implications
Syntax
Parameters
ABEND Codes
Return and Reason Codes

Chapter 52. IWMSEDES – Scheduling Environments Determine Execution

Service
Environment
Programming Requirements
Restrictions
Input Register Information
Output Register Information
Performance Implications
Syntax
Parameters
ABEND Codes
Return and Reason Codes
Example

Chapter 53. IWMSEQRY – Scheduling Environments Query Service

Environment
Programming Requirements
Restriction
Input Register Information
Output Register Information
Performance Implications
Syntax
Parameters
ABEND Codes
Return and Reason Codes
Example

Chapter 54. IWMSESET – Scheduling Environments Set Resource

Environment
Programming Requirements
<table>
<thead>
<tr>
<th>Chapter 59. IWMSRFSV – Finding a Sysplex Routing Server</th>
<th>485</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>480</td>
</tr>
<tr>
<td>ABEND Codes</td>
<td>482</td>
</tr>
<tr>
<td>Return and Reason Codes</td>
<td>482</td>
</tr>
<tr>
<td>Chapter 60. IWMSRSRG – Register a Server for Sysplex Routing</td>
<td>493</td>
</tr>
<tr>
<td>Parameters</td>
<td>495</td>
</tr>
<tr>
<td>ABEND Codes</td>
<td>498</td>
</tr>
<tr>
<td>Return and Reason Codes</td>
<td>498</td>
</tr>
<tr>
<td>Example</td>
<td>499</td>
</tr>
<tr>
<td>Chapter 61. IWMSRSRS – Determine Where to Route Work</td>
<td>501</td>
</tr>
<tr>
<td>Parameters</td>
<td>504</td>
</tr>
<tr>
<td>ABEND Codes</td>
<td>509</td>
</tr>
<tr>
<td>Return and Reason Codes</td>
<td>509</td>
</tr>
<tr>
<td>Example</td>
<td>511</td>
</tr>
<tr>
<td>Chapter 62. IWMUXEPT – WLM Undo Export Service</td>
<td>513</td>
</tr>
<tr>
<td>Parameters</td>
<td>514</td>
</tr>
<tr>
<td>ABEND Codes</td>
<td>516</td>
</tr>
<tr>
<td>Return and Reason Codes</td>
<td>516</td>
</tr>
<tr>
<td>Example</td>
<td>518</td>
</tr>
</tbody>
</table>
Chapter 68. IWM4EDF — Defining Dynamic Application Environments to Workload Management

Chapter 69. IWM4CON — Connecting to Workload Management

Chapter 70. IWM4DIS — Disconnecting from Workload Management

Chapter 71. IWM4ECRE — Creating an Enclave
Return and Reason Codes .. 744
Example ... 748

Appendix A. SMF Type 99 Action Codes 749

Appendix B. Application Validation Reason Codes 793

Appendix C. Structure of the XML Service Definition (DTD). 805

Appendix D. C Language Interfaces for Workload Management Services 811
Interfaces for Sysplex Routing Services 813
Interface for Querying a Virtual Server 813

Appendix E. WLM Services supporting 31–bit address space only 815
IWMAEDEF — Defining Dynamic Application Environments to Workload
 Management .. 815
 Environment ... 815
 Programming Requirements ... 815
 Restrictions ... 816
 Input Register Information ... 816
 Output Register Information 816
 Performance Implications .. 816
 Syntax .. 816
 Parameters .. 817
 ABEND Codes ... 820
 Return and Reason Codes .. 820
 Example .. 822
IWMCNVN – Connecting to Workload Management 823
 Environment ... 824
 Programming Requirements ... 824
 Restrictions ... 824
 Input Register Information ... 825
 Output Register Information 825
 Performance Implications .. 825
 Syntax .. 826
 Parameters .. 827
 ABEND Codes ... 835
 Return and Reason Codes .. 835
 Examples .. 841
IWMDISCC – Disconnecting from Workload Management 842
Environment .. 842
 Programming Requirements ... 843
 Restrictions ... 843
 Input Register Information ... 843
 Output Register Information 843
 Performance Implications .. 844
 Syntax .. 844
 Parameters .. 844
 ABEND Codes ... 845
 Return and Reason Codes .. 846
IWMECREA – Create an Enclave 848
Environment .. 848
 Programming Requirements ... 849
 Restrictions ... 850
 Input Register Information ... 850
 Output Register Information 850
IWMQINS – Inserting a Request Onto the Queue for An Execution Address
space .. 902
Environment 903
Programming Requirements 903
Restrictions 903
Input Register Information 903
Output Register Information 903
Performance Implications 904
Syntax 904
Parameters 905
ABEND Codes 908
Return and Reason Codes 909
Example 913
IWMSLIM – Application Environment Limit Service 914
Environment 914
Programming Requirements 914
Restrictions 915
Input Register Information 915
Output Register Information 915
Performance Implications 915
Syntax 915
Parameters 916
ABEND Codes 918
Return and Reason Codes 918
Example 920
IWMSSEL – Selecting a Request from a Caller’s Work Manager Queue 921
Environment 921
Programming Requirements 921
Restrictions 921
Input Register Information 922
Output Register Information 922
Performance Implications 922
Syntax 922
Parameters 923
ABEND Codes 925
Return and Reason Codes 925
Example 927
IWMSSEM – WLM Server Select Secondary Service 927
Environment 927
Programming Requirements 927
Restrictions 929
Input Register Information 929
Output Register Information 929
Performance Implications 929
Syntax 929
Parameters 929
ABEND Codes 931
Return and Reason Codes 931
Figures

1. Sequence of functions in a single address space transaction manager .. 20
2. Work manager services for a single address space transaction manager .. 21
3. Work manager and delay monitoring services for a single address space transaction manager 23
4. Services for a work manager that uses a database manager ... 24
5. Sequence of function in a multiple address space work manager .. 26
6. Example of services that monitor work across multiple address spaces .. 28
7. Creating an Independent Enclave and Scheduling an SRB ... 39
8. Creating an Enclave and Joining Tasks To It ... 42
9. Using Dependent Enclaves .. 44
10. Using a Multisystem Enclave ... 46
11. Typical synchronous application flow between applications (same z/OS system) 62
12. Sub-Buffer arm_subbuffer_zos_connect_t .. 64
13. Sub-Buffer arm_subbuffer_zos_classify ... 66
14. Sample JCL for Compiling an ARM-instrumented Application in MVS Batch 67
15. Sample JCL for Binding an ARM-instrumented Application in MVS Batch 68
16. Services for a queueing manager .. 70
17. Exploiting IWMSINF ... 75
18. Example of routing manager services .. 82
19. Obtaining Scheduling Environments .. 88
20. Manipulating Resource State Settings .. 89
21. Scheduling Environment Flow ... 90
22. Example of using sysplex routing services .. 95
23. Using states for presenting CICS delay information .. 103
24. Combining state information for a sysplex view .. 104
25. Combining state information for a service class .. 105
26. Combining state information across subsystems .. 105
27. Self-defining response time distributions .. 106
28. Mixed-class-indication timestamp in relation to the time interval .. 107
29. IWMSVDEF mapping for a service definition with workload extensions 111
Tables

1. Syntax examples... xxxvii
2. Work manager services.................................. 4
3. Execution delay monitoring services................... 5
4. Enclave services... 7
5. Queueing manager services................................ 9
6. Routing manager services................................ 10
7. Scheduling Environment Services.......................... 11
8. Sysplex routing services.................................. 12
9. Summary of workload reporting services.................. 13
10. Administrative application services...................... 15
11. Overview of WLM services supporting 64-bit and 31-bit address space........... 16
13. Starting and Stopping Work Requests..................... 57
14. WLM Enclave Services and ARM APIs..................... 60
15. Sample Commands for Compiling Applications under z/OS UNIX Systems Services......... 67
16. Sample Commands for Binding Applications............... 68
17. CPU consumption table.................................... 97
18. Using ENF event code 41 to guide data collection for policy changes............... 100
19. Using IWMRCOLL with the workload reporting services on a single system........ 101
20. Using IWMRQRY with the workload reporting services................ 108
21. SERVD validation reason codes.......................... 112
22. Return and Reason Codes for the IWMCLSFY Macro.............. 152
23. Work unit IDs... 158
24. Return and Reason Codes for the IWMCNTN Macro............. 161
25. Return and Reason Codes for the IWMCQRY Macro................ 169
26. Return and Reason Codes for the IWMDEXTR Macro............. 178
27. Return and Reason Codes for the IWMDESTOP Macro............ 187
28. Return and Reason Codes for the IWMEDBLK Macro............. 195
29. Return and Reason Codes for the IWMEDCQRY Macro............ 203
30. Return and Reason Codes for the IWMEDREG Macro............. 208
31. Return and Reason Codes for the IWMEGCOR Macro.............. 216
32. Return and Reason Codes for the IWMIMJOIN Macro................ 223
33. Return and Reason Codes for the IWMILEAV Macro............... 230
34. Return and Reason Codes for the IWMIEQTMTE Macro............ 237
35. Return and Reason Codes for the IWMIEREG Macro.............. 243
36. Return and Reason Codes for the IWMERES Macro.............. 250
37. Return and Reason Codes for the IWMDESTOP Macro............. 257
38. Return and Reason Codes for the IWMESTRT Macro................ 266
39. Return and Reason Codes for the IWMESQRY Macro............... 272
40. Return and Reason Codes for the IWMUBLK Macro.............. 279
41. Return and Reason Codes for the IWMEXPT Macro................ 287
42. Return and Reason Codes for the IWMIMPT Macro................ 299
43. Return and Reason Codes for the IWMEXTR Macro................ 316
44. Return and Reason Codes for the IWMNFTFY Macro................ 325
45. Return and Reason Codes for the IWMNHLA Macro................ 336
46. Return and Reason Codes for the IWMMSTOP Macro............... 344
47. Return and Reason Codes for the IWMSTRTR Macro................ 352
48. Return and Reason Codes for the IWMUPD Macro................ 365
49. Return and Reason Codes for the IWMXDC Macro................ 372
50. Return and Reason Codes for the IWMXFER Macro................ 379
51. Return and Reason Codes for the IWMXRA Macro................ 385
52. Return and Reason Codes for the IWMPCACT Macro................ 391
53. Return and Reason Codes for the IWMPQRY Macro................ 399

© Copyright IBM Corp. 1988, 2009

xxxi
About This Document

This document supports z/OS (5694-A01). This document describes the z/OS workload management services. The services are intended for programmers who write authorized programs.

This document is divided into two sections:

- Using the Workload Management Services
 This section provides an overview of the services, and how to use them.
- Workload Management Services Reference
 This section describes each service, its syntax, its parameters, and an example of how to issue it.

Who Should Use This Document

Programmers using assembler language can use the macros described in this document to invoke the services they need. This document includes some guidance information, and detailed information, such as the function, the syntax, and parameters needed to code the macros. To understand the information in this document, programmers should have read z/OS MVS Planning: Workload Management.

Where to Find More Information

Where necessary, this document references information in other documents, using shortened versions of the document title. For complete titles and order numbers of the documents for all products that are part of z/OS, see z/OS Information Roadmap.

<table>
<thead>
<tr>
<th>Softcopy Title Used in This Document</th>
<th>Title</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS MVS Planning: Workload Management</td>
<td>z/OS MVS Planning: Workload Management</td>
<td>SA22-7602</td>
</tr>
<tr>
<td>z/OS MVS Initialization and Tuning Guide</td>
<td>z/OS MVS Initialization and Tuning Guide</td>
<td>SA22-7591</td>
</tr>
<tr>
<td>z/OS MVS Initialization and Tuning Reference</td>
<td>z/OS MVS Initialization and Tuning Reference</td>
<td>SA22-7592</td>
</tr>
<tr>
<td>z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG</td>
<td>z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG</td>
<td>SA22-7610</td>
</tr>
<tr>
<td>z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO</td>
<td>z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO</td>
<td>SA22-7612</td>
</tr>
<tr>
<td>z/OS MVS System Management Facilities (SMF)</td>
<td>z/OS MVS System Management Facilities (SMF)</td>
<td>SA22-7630</td>
</tr>
<tr>
<td>z/OS MVS Data Areas, Vol 1 (ABEP-DALT)</td>
<td>z/OS MVS Data Areas, Vol 1 (ABEP-DALT)</td>
<td>GA22-7581</td>
</tr>
<tr>
<td>z/OS MVS Data Areas, Vol 2</td>
<td>z/OS MVS Data Areas, Vol 2</td>
<td>GA22-7582</td>
</tr>
<tr>
<td>z/OS MVS Data Areas, Vol 3 (IVT-RCWK)</td>
<td>z/OS MVS Data Areas, Vol 3 (IVT-RCWK)</td>
<td>GA22-7583</td>
</tr>
<tr>
<td>z/OS MVS Data Areas, Vol 4 (RD-SRRA)</td>
<td>z/OS MVS Data Areas, Vol 4 (RD-SRRA)</td>
<td>GA22-7584</td>
</tr>
<tr>
<td>z/OS MVS Data Areas, Vol 5 (SSAG-XTLST)</td>
<td>z/OS MVS Data Areas, Vol 5 (SSAG-XTLST)</td>
<td>GA22-7585</td>
</tr>
<tr>
<td>z/OS XL C/C++ Run-Time Library Reference</td>
<td>z/OS XL C/C++ Run-Time Library Reference</td>
<td>SA22-7821</td>
</tr>
</tbody>
</table>
The WLM/SRM Web Page

For the latest information, see the WLM/SRM web page at:

How to read syntax diagrams

This section describes how to read syntax diagrams. It defines syntax diagram symbols, items that may be contained within the diagrams (keywords, variables, delimiters, operators, fragment references, operands) and provides syntax examples that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that comprise a command statement. They are read from left to right and from top to bottom, following the main path of the horizontal line.

Symbols

The following symbols may be displayed in syntax diagrams:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>──────</td>
<td>Indicates the beginning of the syntax diagram.</td>
</tr>
<tr>
<td>──────</td>
<td>Indicates that the syntax diagram is continued to the next line.</td>
</tr>
<tr>
<td>──────</td>
<td>Indicates that the syntax is continued from the previous line.</td>
</tr>
<tr>
<td>──────</td>
<td>Indicates the end of the syntax diagram.</td>
</tr>
</tbody>
</table>

Syntax items

Syntax diagrams contain many different items. Syntax items include:

- Keywords - a command name or any other literal information.
- Variables - variables are italicized, appear in lowercase, and represent the name of values you can supply.
- Delimiters - delimiters indicate the start or end of keywords, variables, or operators. For example, a left parenthesis is a delimiter.
- Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal (=), and other mathematical operations that may need to be performed.
- Fragment references - a part of a syntax diagram, separated from the diagram to show greater detail.
- Separators - a separator separates keywords, variables or operators. For example, a comma (,) is a separator.

Note: If a syntax diagram shows a character that is not alphanumeric (for example, parentheses, periods, commas, equal signs, a blank space), enter the character as part of the syntax.

Keywords, variables, and operators may be displayed as required, optional, or default. Fragments, separators, and delimiters may be displayed as required or optional.

<table>
<thead>
<tr>
<th>Item type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>Required items are displayed on the main path of the horizontal line.</td>
</tr>
</tbody>
</table>
Syntax examples

The following table provides syntax examples.

<table>
<thead>
<tr>
<th>Item</th>
<th>Syntax example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required item.</td>
<td>Required items appear on the main path of the horizontal line. You must specify these items.</td>
</tr>
<tr>
<td>Required choice.</td>
<td>A required choice (two or more items) appears in a vertical stack on the main path of the horizontal line. You must choose one of the items in the stack.</td>
</tr>
<tr>
<td>Optional item.</td>
<td>Optional items appear below the main path of the horizontal line.</td>
</tr>
<tr>
<td>Optional choice.</td>
<td>An optional choice (two or more items) appears in a vertical stack below the main path of the horizontal line. You may choose one of the items in the stack.</td>
</tr>
<tr>
<td>Default.</td>
<td>Default items appear above the main path of the horizontal line. The remaining items (required or optional) appear on (required) or below (optional) the main path of the horizontal line. The following example displays a default with optional items.</td>
</tr>
<tr>
<td>Variable.</td>
<td>Variables appear in lowercase italics. They represent names or values.</td>
</tr>
<tr>
<td>Repeatable item.</td>
<td>An arrow returning to the left above the main path of the horizontal line indicates an item that can be repeated.</td>
</tr>
</tbody>
</table>

A character within the arrow means you must separate repeated items with that character.

An arrow returning to the left above a group of repeatable items indicates that one of the items can be selected, or a single item can be repeated.
Table 1. Syntax examples (continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Syntax example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragment.</td>
<td></td>
</tr>
</tbody>
</table>

The fragment symbol indicates that a labelled group is described below the main syntax diagram. Syntax is occasionally broken into fragments if the inclusion of the fragment would overly complicate the main syntax diagram.

![fragment_diagram]
Summary of Changes

Summary of Changes for SA22-7619-19
z/OS Version 1 Release 11

The document contains information previously presented in z/OS MVS Programming: Workload Management Services, SA22-7619-18 which supports z/OS Version 1 Release 10. Technical changes include:

- The descriptions of the IWMDINST, IWMERES, IWMDEXTR, IWMEXPT, IWMRELAX, IWMSRSRS, IWM4CON, IWM4ECRE, IWM4EDEL, IWM4MINI, IWM4SRSC, and IWM4TAF macros are updated.

This document has been enabled for the following types of advanced searches in the online z/OS Library Center: macros.

You may notice changes in the style and structure of some content in this document – for example, headings that use uppercase for the first letter of initial words only, and procedures that have a different look and format. The changes are ongoing improvements to the consistency and retrievability of information in our documents.

This document contains terminology, maintenance, and editorial changes. Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

Summary of Changes for SA22-7619-18
z/OS Version 1 Release 10

The document contains information previously presented in z/OS MVS Programming: Workload Management Services, SA22-7619-17 which supports z/OS Version 1 Release 10.

Summary of Changes for SA22-7619-17
z/OS Version 1 Release 10

The document contains information previously presented in z/OS MVS Programming: Workload Management Services, SA22-7619-16 which supports z/OS Version 1 Release 9. Technical changes include:

- A description of the following new macro is added: IWM4MGDD.
- The description of the IWMCPAFN macro was deleted, as part of the removal of CPU affinity support.
- The descriptions of the IWMCLSFY, IWMCNTN, IWMDINST, IWMEQTM, IWMEXTR, IWM4MCHS, IWM4MDRG, IWM4SRSC, IWM4TAF macros are updated.
- A description of the ARM Services enhancements which support the management of individual transactions. For further information refer to "Using the ARM Services for Instrumenting Applications and for Managing ARM Transactions on z/OS" on page 61.
Summary of Changes for SA22-7619-16
z/OS Version 1 Release 9

Summary of Changes for SA22-7619-15
z/OS Version 1 Release 9

The document contains information previously presented in z/OS MVS Programming: Workload Management Services, SA22-7619-14 which supports z/OS Version 1 Release 8. Technical changes include:

- Descriptions of the following new macros are added: IWMGCORF, IWMMSTOP, IWMMSTRRT, IWMMUPD, and IWMSCORF.

Summary of Changes for SA22-7619-14
z/OS Version 1 Release 8

The document contains information previously presented in z/OS MVS Programming: Workload Management Services, SA22-7619-13 which supports z/OS Version 1 Release 8.

Summary of Changes for SA22-7619-13
z/OS Version 1 Release 8

The document contains information previously presented in z/OS MVS Programming: Workload Management Services, SA22-7619-12 which supports z/OS Version 1 Release 7. Technical changes include:

- Descriptions of the following five new macros are added: IWMMXDC, IWMMXRA, IWMM4MDRG, IWMM4MREG, and IWMM4HLTH.
- The descriptions of the IWMCLSFY, IWMEQTIME, IWMMEXTR, IWMMNTFY, IWMM4MCHS, IWMM4MCRE, IWMM4EDEL, IWMM4MINI, and IWMM4SRSC macros are updated.
Part 1. Using the Workload Management Services
Chapter 1. Introducing the Workload Management Services

The workload management services enable MVS to cooperate with subsystem work managers to achieve installation-defined goals for work, to distribute work across a sysplex, to manage servers and to provide meaningful feedback on how well workload management has achieved those goals. They also allow programs to create an interface to define a service definition.

To change from resource-based performance management to goal-oriented workload management, many transaction managers, data managers, and performance monitors and reporters need to take advantage of the services MVS workload management provides.

This chapter describes the services available for subsystem work managers, performance monitors, and administrative application programs.

Services for Subsystem Work Managers

The workload management services for subsystem work managers allow an installation to process work towards performance goals defined in a service policy. Workload management uses the information provided by the subsystem work managers through the services to match system resources to work to meet goals.

A service policy contains performance goals for all kinds of MVS-managed work expressed in the same terms. A service level administrator identifies and categorizes all of an installation's work and assigns the work performance goals in the workload management service policy. For information about how to set up and use a service policy, see z/OS MVS Planning: Workload Management.

The services provide workload management with the information it needs to dynamically adapt to match resources to work to meet the performance goals.

Workload management matches system resources to meet the performance goal assigned to a service class. This management involves handling address space-related resources, such as processor storage, multi-programming level (MPL), dispatching, and I/O queueing.

The services for subsystem work managers can be grouped into the following categories:
- Work manager services
- Execution delay services
- Enclave services
- Queueing manager services
- Routing manager services
- Scheduling environment services
- Sysplex routing services
- Query system information service

Why Use the Work Manager Services

Work manager services allow MVS to recognize:
- A subsystem work manager and the transactions it processes.
- The service class goals associated with the transactions.
The address spaces that are processing the transactions.

Based on this information, workload management can determine whether goals are being met, and which work needs resources to meet the goals.

The work manager services allow:
- Your customers to define performance goals to your subsystem work manager’s transactions.
- MVS to recognize the goals, and match resources to the work to meet the goals.
- Your customers to get reports from performance monitors like RMF on how well work is executing and whether the goals are being met.

Using the work manager services in your product allows your customers to specify goals for your work the same way they specify them for MVS-managed work.

The work manager services allow workload management to associate incoming work with a service class. When the work is associated with a service class, MVS knows the performance goal and importance level associated with the work, as well as understanding which address spaces are involved in processing the work request.

If your work manager has a client-server structure and has additional objectives such as:
- Dynamic management of server address spaces, or
- Management of server work requests as part of the originating unit of work,
- Resource management and/or reporting of individual requests, or
- Balancing workload among servers across a sysplex,

then consider using either the queueing manager, the routing manager, or enclave services instead of the work manager services.

Table 2 shows a summary of the work manager services.

<table>
<thead>
<tr>
<th>Service</th>
<th>Purpose</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWMCLSFY</td>
<td>Associate an arriving work request with a</td>
<td>Chapter 12, “IWMCLSFY – Classifying Work,”</td>
</tr>
<tr>
<td></td>
<td>service class defined in a service policy.</td>
<td>on page 139</td>
</tr>
<tr>
<td>IWMWMCON</td>
<td>Override the subsystem name and type previously</td>
<td>Chapter 64, “IWMWMCON – Modify Connect Information,” on page 525</td>
</tr>
<tr>
<td></td>
<td>provided on IWM4CON.</td>
<td></td>
</tr>
<tr>
<td>IWMWQRY</td>
<td>Obtain a service class goal.</td>
<td>Chapter 65, “IWMWQRY – Query Service,” on page 533</td>
</tr>
<tr>
<td>IWM4CON</td>
<td>Obtain token that authorizes caller to use other</td>
<td>Chapter 69, “IWM4CON – Connecting to Workload Management,” on page 563</td>
</tr>
<tr>
<td></td>
<td>work manager services, and optionally, to supply</td>
<td></td>
</tr>
<tr>
<td></td>
<td>additional topology information.</td>
<td></td>
</tr>
<tr>
<td>IWM4DIS</td>
<td>Disconnect from workload management.</td>
<td>Chapter 70, “IWM4DIS – Disconnecting from Workload Management,” on page 583</td>
</tr>
</tbody>
</table>

Table 2. Work manager services

Why Use the Execution Delay Monitoring Services

From the execution delay monitoring services, workload management knows how well work is executing, and where any delays are occurring. The execution delay monitoring services are for complex work manager configurations that process across systems in a sysplex, but do not allow MVS to individually manage resource
consumption of the transactions. The services allow MVS to recognize additional address spaces that are processing transactions.

When the execution delay monitoring services are used, MVS can allocate resources for address spaces based on the behavior of the transactions being serviced by them. The services also provide execution delay information, so that your customers can determine where work is being delayed. They can then adjust the work manager configuration to consistently meet the goals. Only response time goals can be used with execution delay services. If you need to use velocity goals, discretionary goals, or period switch, consider using enclave services instead. Execution delay monitoring is mutually exclusive with enclaves in the same address space so you must choose whichever function best suits your needs. Enclave services provide more granular resource control and reporting than execution delay monitoring services, but do not provide the capability for the work manager to report its own view of transaction states.

The subsystem work manager uses the execution delay monitoring services to tell workload management about their view of the current state of a work request, such as ready state, idle state, or waiting state. The actual state may be different. For example, a work request may be active from the subsystem’s view, but might be delayed by a page fault, or for CPU access. The information is kept in performance blocks, also called monitoring environments.

The monitoring environments represent work wherever it executes: across multiple dispatchable units, address spaces, and systems.

Table 3 shows a summary of the execution delay monitoring services.

Table 3. Execution delay monitoring services

<table>
<thead>
<tr>
<th>Service</th>
<th>Purpose</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWMGCORF</td>
<td>Check whether or not certain Application Response Measurement (ARM) flags in a provided EWLM correlator are set.</td>
<td>Chapter 31, “IWMGCORF – Getting Correlator Flags,” on page 291</td>
</tr>
<tr>
<td>IWMMABNL</td>
<td>Record an abnormal event for work.</td>
<td>Chapter 33, “IWMMABNL – Recording Abnormal Event,” on page 303</td>
</tr>
<tr>
<td>IWMMEXTR</td>
<td>Extract information from the monitoring environment</td>
<td>Chapter 35, “IWMMEXTR – Monitor Environment Extract,” on page 311</td>
</tr>
<tr>
<td>IWMNNTFY</td>
<td>Record the completion of an execution phase of processing a work request.</td>
<td>Chapter 36, “IWMNNTFY – Notify of Work Execution Completion,” on page 319</td>
</tr>
<tr>
<td>IWMRELAE</td>
<td>Relate two monitoring environments that are associated with the same work request.</td>
<td>Chapter 37, “IWMRELAE – Relate Monitoring Environment Service,” on page 329</td>
</tr>
<tr>
<td>IWMMSWCH</td>
<td>Record that the information for a work request may be reflected in another monitoring environment.</td>
<td>Chapter 40, “IWMMSWCH – Switch Monitoring Environment,” on page 355</td>
</tr>
<tr>
<td>IWMXFERN</td>
<td>Record that information for a work request is reflected in another related monitoring environment.</td>
<td>Chapter 43, “IWMXFERN – Transfer Monitoring Environment,” on page 373</td>
</tr>
<tr>
<td>IWMSCORF</td>
<td>Set or clear certain Application Response Measurement (ARM) correlator flags in a provided EWLM correlator.</td>
<td>Chapter 51, “IWMSCORF – Setting Correlator Flags,” on page 437</td>
</tr>
</tbody>
</table>
Table 3. Execution delay monitoring services (continued)

<table>
<thead>
<tr>
<th>Service</th>
<th>Purpose</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWMWQWRK</td>
<td>Identify where transactions are executing.</td>
<td>Chapter 66, “IWMWQWRK – Query Work Service,” on page 537</td>
</tr>
<tr>
<td>IWM4EDEL</td>
<td>Delete the monitoring environment.</td>
<td>Chapter 72, “IWM4EDEL – Deleting an Enclave,” on page 603</td>
</tr>
<tr>
<td>IWM4MCHS</td>
<td>Record the state (such as ready, waiting, idle) of a work request.</td>
<td>Chapter 74, “IWM4MCHS – Monitoring Change State Of Work Unit,” on page 617</td>
</tr>
<tr>
<td>IWM4MCRE</td>
<td>Create a monitoring environment, also called performance block.</td>
<td>Chapter 75, “IWM4MCRE – Create Delay Monitoring Environment,” on page 627</td>
</tr>
<tr>
<td>IWM4MINI</td>
<td>Initialize monitoring environment with information about a work request.</td>
<td>Chapter 78, “IWM4MINI – Initialize Monitoring Environment,” on page 651</td>
</tr>
</tbody>
</table>

Why Use the Enclave Services

An enclave is an anchor for a transaction that can be spread across multiple dispatchable units in multiple address spaces. These multiple address spaces can even span across multiple systems in a parallel sysplex. The value of using an enclave to represent a transaction is that the resources used to process the transaction can be accounted to the transaction itself, rather than to the address space or spaces that the transaction runs in. In addition, you can assign a performance goal to the enclave, which means that as a transaction consumes system resources, it can switch periods to run with a new goal.

Any number of tasks and SRBs can be grouped together in an enclave:

- Enclave SRBs offer the advantage that they are preemptable and won’t tie up the system.
 SRBs in enclaves work well for higher volume, small requests, as SRBs have very little overhead compared to tasks. The subsystem can create an enclave using the IWM4ECRE macro, and then schedule SRBs to run in the enclave using the IEAMSCHD macro.

- Tasks in enclaves automatically associate the enclave with the address spaces where they are dispatched, so workload management can manage the storage of those address spaces to meet the goal of the enclave. The enclave can perform functions that require a task environment, such as supervisor calls. Tasks can dynamically leave and join an enclave as they finish one piece of work and begin another. The subsystem creates an enclave using the IWM4ECRE macro, and then the task joins the enclave using the IWMEJOIN macro.

Comparison to Other Services

Enclaves should not be run in the same address space with execution delay monitoring environments. Unpredictable workload management actions could result.

Although enclaves have some characteristics that are similar to those of execution delay monitoring, there are some important differences. These differences should be considered before choosing which set of services to use. Enclaves support all types of performance goals; delay monitoring supports only response time goals. Enclaves allow period switching; delay monitoring does not. Enclaves can span address spaces in multiple systems in a parallel sysplex; delay monitoring cannot. Enclaves allow the separate management of work units that run in the same address space but have different performance goals; a delay monitoring
Enclaves are required to be used with queueing manager services. For more information, see "Why Use the Queueing Manager Services" on page 8.

Table 4 shows a summary of the enclave services.

<table>
<thead>
<tr>
<th>Service</th>
<th>Purpose</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEAMSCHD</td>
<td>Schedule an SRB into the enclave.</td>
<td>z/OS MVS Programming: Authorized Assembler Services Guide</td>
</tr>
<tr>
<td>IWMECQRY</td>
<td>Query the classification information associated with an enclave.</td>
<td>Chapter 18, “IWMECQRY – Querying Enclave Classification Attributes,” on page 199</td>
</tr>
<tr>
<td>IWMEDREG</td>
<td>Deregister an enclave</td>
<td>Chapter 19, “IWMEDREG — Deregistering a WLM Enclave,” on page 205</td>
</tr>
<tr>
<td>IWMEJOIN</td>
<td>Join an enclave (task only). Once a task has joined an enclave, all future processing is on behalf of the transaction represented by the enclave.</td>
<td>Chapter 21, “IWMEJOIN – Joining a WLM Enclave,” on page 219</td>
</tr>
<tr>
<td>IWMELEAV</td>
<td>Leave an enclave (task only).</td>
<td>Chapter 22, “IWMELEAV – Leaving an Enclave,” on page 227</td>
</tr>
<tr>
<td>IWMEREG</td>
<td>Register an enclave</td>
<td>Chapter 24, “IWMEREG — Registering a WLM Enclave,” on page 239</td>
</tr>
<tr>
<td>IWMESQRY</td>
<td>Query whether or not the current dispatchable unit is associated with an enclave.</td>
<td>Chapter 28, “IWMESQRY – Querying Enclave State,” on page 269</td>
</tr>
<tr>
<td>IWMEXPT</td>
<td>Export an enclave to all systems in a parallel sysplex.</td>
<td>Chapter 30, “IWMEXPT – Exporting a WLM Enclave,” on page 283</td>
</tr>
<tr>
<td>IWMGCORF</td>
<td>Check whether or not certain Application Response Measurement (ARM) flags in a provided EWLM correlator are set.</td>
<td>Chapter 31, “IWMGCORF – Getting Correlator Flags,” on page 291</td>
</tr>
<tr>
<td>IWMIMPT</td>
<td>Import an enclave that has been exported to all systems in a parallel sysplex.</td>
<td>Chapter 32, “IWMIMPT – Importing an Enclave,” on page 295</td>
</tr>
<tr>
<td>IWMMSTOP</td>
<td>Stop a work unit which has been started by IWMMSTRT.</td>
<td>Chapter 38, “IWMMSTOP – Stopping a Work Unit,” on page 339</td>
</tr>
<tr>
<td>IWMMSTRT</td>
<td>Indicate that a work unit is beginning execution.</td>
<td>Chapter 39, “IWMMSTRT – Indicating the Start of a Work Unit,” on page 347</td>
</tr>
<tr>
<td>IWMUPD</td>
<td>Update data about a work unit which has been started by IWMMSTRT.</td>
<td>Chapter 41, “IWMUPD – Updating Data of a Work Unit,” on page 361</td>
</tr>
<tr>
<td>IWMRQRY</td>
<td>Obtain information about enclave resource consumption and delays.</td>
<td>Chapter 50, “IWMRQRY – Collecting Address Space Delay Information,” on page 429</td>
</tr>
<tr>
<td>IWMSCORF</td>
<td>Set or clear certain Application Response Measurement (ARM) correlator flags in a provided EWLM correlator.</td>
<td>Chapter 51, “IWMSCORF – Setting Correlator Flags,” on page 437</td>
</tr>
<tr>
<td>IWMUXPT</td>
<td>Undo an export of an enclave to all systems in a parallel sysplex.</td>
<td>Chapter 62, “IWMUXPT – WLM Undo Export Service,” on page 513</td>
</tr>
<tr>
<td>IWMUIIMPT</td>
<td>Undo an import of an enclave.</td>
<td>Chapter 63, “IWMUIIMPT – WLM Undo Import Service,” on page 519</td>
</tr>
</tbody>
</table>
Enterprise Workload Manager (EWLM)

With enclave services, work managers that use enclaves to manage and report individual business transactions can become Enterprise Workload Manager (EWLM) participants. EWLM allows you to define business-oriented performance goals for an entire domain of servers across a variety of platforms (z/OS, AIX, i5/OS, Windows, Solaris and Linux), and then get an end-to-end view of actual performance relative to those goals. You can use enclave services to:

- Connect a calling address space to WLM as an EWLM participant
- Classify work requests in order to assign an EWLM transaction class
- Indicate the start and end of an EWLM work request
- Block work requests while waiting for the completion of a work request in another application.

Why Use the Queueing Manager Services

A queueing manager is a subsystem or application that queues work requests to workload management for execution by one or more server address spaces.

Queueing manager services allow MVS to:

- Dynamically start and stop server address spaces based on workload.
- Control the number of server instances per server address space.
- Manage the work queues associated with the server address spaces to meet the performance goals set by the customer.

With the dynamic management of server address spaces, an installation does not need to calculate the proper number of address spaces to process work, nor do they have to monitor workload fluctuations that change the number of address spaces needed. Customers can segregate work requests into different server address spaces if this is important for security or integrity.

Enclaves are required to be used with the queueing manager services. This means that customers can define velocity and discretionary goals for work as well as response time goals. Multiple period control is also available for work running in enclaves.

Queueing manager services may provide incentive to subsystems who run with multiple tasks in one address space to switch to multiple address spaces. The queueing manager services make it easier for installations to isolate individual work
requests from each other, by running only one in each execution address space, with workload management managing the number of execution address spaces.

Table 5 shows a summary of the queueing manager services.

<table>
<thead>
<tr>
<th>Service</th>
<th>Purpose</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWM4AEDF</td>
<td>Define a dynamic application environment</td>
<td>Chapter 68, “IWM4AEDF — Defining Dynamic Application Environments to Workload Management,” on page 553</td>
</tr>
<tr>
<td>IWM4CON</td>
<td>With the QUEUE_MANAGER=YES parameter, establish the caller as a queueing manager so it can begin queueing work requests to its server address spaces.</td>
<td>Chapter 69, “IWM4CON — Connecting to Workload Management,” on page 563</td>
</tr>
<tr>
<td>IWM4CON</td>
<td>With the SERVER_MANAGER=YES parameter, establish the caller as a server address space so it can begin receiving work requests from the queueing manager.</td>
<td>Chapter 69, “IWM4CON — Connecting to Workload Management,” on page 563</td>
</tr>
<tr>
<td>IWM4DIS</td>
<td>Remove the caller as a queueing manager or server manager.</td>
<td>Chapter 70, “IWM4DIS — Disconnecting from Workload Management,” on page 583</td>
</tr>
<tr>
<td>IWM4ECRE</td>
<td>Create an enclave. This can be done by the queue manager itself or by its caller. It can be a dependent or independent enclave.</td>
<td>Chapter 71, “IWM4ECRE — Creating an Enclave,” on page 591</td>
</tr>
<tr>
<td>IWM4EDEL</td>
<td>Delete an enclave.</td>
<td>Chapter 72, “IWM4EDEL — Deleting an Enclave,” on page 603</td>
</tr>
<tr>
<td>IWMESSQRY</td>
<td>Query whether or not the current dispatchable unit is associated with an enclave.</td>
<td>Chapter 28, “IWMESSQRY — Querying Enclave State,” on page 269</td>
</tr>
<tr>
<td>IWM4QDE</td>
<td>Delete a work request from the queue for an execution address space.</td>
<td>“IWMQDEL – Deleting a Request from the Queue for An Execution Address Space” on page 896</td>
</tr>
<tr>
<td>IWM4QIN</td>
<td>Insert a work request onto workload management queues so its execution in a server address space can be managed by workload management. The enclave token obtained with the IWM4ECRE service is passed into workload management by IWM4QIN.</td>
<td>Chapter 81, “IWM4QIN — Inserting a Request Onto the Queue for an Execution Address Space,” on page 681</td>
</tr>
<tr>
<td>IWMSINF</td>
<td>Obtain the number of server instances to be started by workload management.</td>
<td>Chapter 56, “IWMSINF — WLM Server Manager Inform Service,” on page 465</td>
</tr>
<tr>
<td>IWM4SLI</td>
<td>Immediately after invoking IWM4CON, optionally establish a maximum and/or minimum number of server instances that can be started for a given application environment.</td>
<td>Chapter 82, “IWM4SLI — Application Environment Limit Service,” on page 693</td>
</tr>
<tr>
<td>IWM4SSL</td>
<td>Select a work request from workload management queues for execution in a server address space. This must be done under a task.</td>
<td>Chapter 84, “IWM4SSL — Selecting a Request from a Caller’s Work Manager Queue,” on page 713</td>
</tr>
<tr>
<td>IWM4SSM</td>
<td>Select the next secondary work request from the queue associated with the caller's server task.</td>
<td>Chapter 85, “IWM4SSM — WLM Server Select Secondary Service,” on page 721</td>
</tr>
</tbody>
</table>
Why Use the Routing Manager Services

A routing manager is a subsystem that establishes and manages connections between a client and a server address space.

Routing manager services perform two main functions:
- Automatically starting and maintaining server address spaces as needed by the workload across the sysplex.
- Balancing the workload among the servers in the sysplex by deciding on the best server and providing the server routing information when a server is requested by the routing manager.

Table 5 shows a summary of the queueing manager services.

Table 5. Queueing manager services (continued)

<table>
<thead>
<tr>
<th>Service</th>
<th>Purpose</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWM4STBG</td>
<td>Join the invoking task to the enclave associated with the work request represented by WUTOKEN (which was obtained on a prior call to IWM4SSL) and optionally check the authorization of the request. The server address space is beginning to process the work request. This must be done under a task.</td>
<td>Chapter 86, “IWM4STBG – Beginning a Request from a Caller’s Work Manager Queue,” on page 727</td>
</tr>
<tr>
<td>IWM4STEN</td>
<td>Leave the enclave that was joined in IWM4STBG. The server address space has completed its processing of the work request.</td>
<td>Chapter 87, “IWM4STEN – Ending a Request from a Caller’s Work Manager Queue,” on page 735</td>
</tr>
<tr>
<td>IWM4TAF</td>
<td>Tell workload management when a temporal affinity begins and when it ends.</td>
<td>Chapter 88, “IWM4TAF — WLM Temporal Affinity Service,” on page 741</td>
</tr>
</tbody>
</table>

Table 6 shows a summary of the routing manager services.

Table 6. Routing manager services

<table>
<thead>
<tr>
<th>Service</th>
<th>Purpose</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWM4CON</td>
<td>With the ROUTER= YES parameter, establish the caller as a routing manager so it can begin requesting server routing information through IWMSRFSV.</td>
<td>Chapter 69, “IWM4CON – Connecting to Workload Management,” on page 563</td>
</tr>
<tr>
<td>IWM4CON</td>
<td>With the SERVER_MANAGER= YES and SERVER_TYPE= ROUTING parameters, establish the caller as an eligible server for requests coming from a routing manager. Workload management will balance the workload among the eligible servers.</td>
<td>Chapter 69, “IWM4CON – Connecting to Workload Management,” on page 563</td>
</tr>
<tr>
<td>IWM4DIS</td>
<td>Remove the caller as a routing manager.</td>
<td>Chapter 70, “IWM4DIS – Disconnecting from Workload Management,” on page 563</td>
</tr>
<tr>
<td>IWM4ECRE</td>
<td>Create an enclave. This is done in a server address space.</td>
<td>Chapter 71, “IWM4ECRE – Creating an Enclave,” on page 591</td>
</tr>
<tr>
<td>IWM4EDEL</td>
<td>Delete an enclave.</td>
<td>Chapter 72, “IWM4EDEL – Deleting an Enclave,” on page 603</td>
</tr>
<tr>
<td>IWMSRFSV</td>
<td>Find the best server for a work request. If no server exists for a request, start one.</td>
<td>Chapter 59, “IWMSRFSV – Finding a Sysplex Routing Server,” on page 485</td>
</tr>
</tbody>
</table>
Why Use the Scheduling Environment Services

A scheduling environment is a list of resource requirements, allowing you to ensure that units of work are sent to systems that have the appropriate resources to handle them. Resources can represent actual physical entities, such as a data base or a peripheral device, or they can represent intangible qualities such as a certain period of time (like second shift or weekend).

These resources are listed in the scheduling environment according to whether they must be set to ON or set to OFF. A unit of work can be assigned to a specific system only when all of the required resource states are satisfied.

Table 7 shows a summary of the scheduling environment services.

<table>
<thead>
<tr>
<th>Service</th>
<th>Purpose</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWMSEDES</td>
<td>Determine if a scheduling environment is available on a specified system</td>
<td>Chapter 52, “IWMSEDES – Scheduling Environments Determine Execution Service,” on page 441</td>
</tr>
<tr>
<td>IWMSEQRY</td>
<td>Obtain scheduling environment definitions and status</td>
<td>Chapter 53, “IWMSEQRY – Scheduling Environments Query Service,” on page 447</td>
</tr>
<tr>
<td>IWMSESET</td>
<td>Modify the state setting of a resource</td>
<td>Chapter 54, “IWMSESET – Scheduling Environments Set Resource,” on page 453</td>
</tr>
<tr>
<td>IWMSEVAL</td>
<td>Validate a scheduling environment name</td>
<td>Chapter 55, “IWMSEVAL – Scheduling Environments Validate Service,” on page 459</td>
</tr>
</tbody>
</table>

Why Use the Sysplex Routing Services

The sysplex routing services allow work associated with a server to be distributed across a sysplex. They are intended for use by clients and servers when the incoming work requests have not been classified by workload management at the time the routing decision is being made.

The sysplex routing services enable distributed client/server environments to balance work among multiple servers. These services help distributed programs make the routing decisions, rather than having each installation make these decisions. Unlike the routing manager services described earlier, sysplex routing services do not automatically start server address spaces as needed.

A client is any subsystem work manager, application or product, in the network that requests a service. The service could be a request for data, a program to be run, or access to a database or application. In terms of the sysplex routing services, a client is any program routing work to a server. A server is any subsystem address space that provides a service on an MVS image.

The sysplex routing services provide information for more intelligent routing. They do not route or distribute work requests. The server must use its existing routing mechanisms.

Table 8 on page 12 shows a summary of the sysplex workload balancing services.
Table 8. Sysplex routing services

<table>
<thead>
<tr>
<th>Service</th>
<th>Purpose</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWMSRDNS</td>
<td>Provide the caller with list of location names for all registered servers known to the system on which the service is invoked.</td>
<td>Chapter 57, “IWMSRDNS – Get Sysplex Routing Location List,” on page 473</td>
</tr>
<tr>
<td>IWMRSRDRS</td>
<td>Deregister a server</td>
<td>Chapter 58, “IWMRSRDRS – Deregister a Server for Sysplex Routing,” on page 479</td>
</tr>
<tr>
<td>IWMRSRSRS</td>
<td>Provide the caller with a list of registered servers and the number of requests that should be routed to each server.</td>
<td>Chapter 61, “IWMRSRSRS – Determine Where to Route Work,” on page 501</td>
</tr>
<tr>
<td>IWM4SRSC</td>
<td>Provide the caller with server-specific routing information to allow for balanced routing decisions.</td>
<td>Chapter 83, “IWM4SRSC – Obtain Server-Specific Routing Information,” on page 701</td>
</tr>
</tbody>
</table>

Why Use the Query System Information Service

The Query System Information service, IWMW_SYSQ, returns a list of systems running in goal mode and information related to available CPU capacity and resource constraints. Applications that schedule work across multiple systems in an MVS sysplex can use this service to:

- Locate the “best” (fastest or most idle) system in a sysplex for scheduling specific work
- Avoid scheduling additional work to systems already critically overloaded
- Factor workload management business importance level information into scheduling decisions.

The output of this service is a data area mapped by the IWMW_SYSI macro, that provides a point-in-time snapshot of each system workload management is managing in the sysplex. A scheduling application can interpret and use this information to schedule one or more types of work to systems with specific operating characteristics.

Refer to Chapter 67, “IWMW_SYSQ – Querying System Information,” on page 545 for more information about this service.

Services for Performance Monitors

The workload reporting services are intended for use by monitoring or reporting products to collect performance data. These services replace some of the existing methods of collecting data, and provide as complete a picture of performance information as possible.

A workload management ISPF application contains an installation’s goals for work in a service policy. The reporting services access the service policy information, and report on how well the installation is doing in processing towards the goals in the policy. The services report information based on the service classes defined in the service policy. They also provide delay information on work managed by subsystems using the execution delay monitoring services.

Because the system collects performance data continually, there is no set reporting interval. So, unlike earlier releases of MVS, multiple performance monitors can request the services at the same time. And, performance monitors can collect the
data based on their own reporting intervals. When the performance monitor invokes a service to collect performance data, the data is provided in a cumulative fashion.

When a significant change occurs in workload management, such as a policy activation, the data collection is stopped and re-started. At such times, performance monitors should also stop and re-start their reporting intervals. For each time that data collection is stopped and re-started in workload management, an ENF signal notifies listeners of the change.

Why Use the Workload Reporting Services

The workload reporting services provide information for performance monitors to report on how well an installation is doing in meeting performance goals.

Prior to z/OS R3, workload reporting services were available to systems running in either goal or compatibility mode. Some of the collected data was different for each mode. The performance monitor should realize the system will now be running exclusively in goal mode, and be able to locate and use the collected performance data appropriately.

For goal mode, with the cooperation of subsystem work managers, the service can provide more performance data than previously reported. They provide information about work that is processed by many address spaces, and allow for a view of subsystem transactions, not just address spaces and enclaves. The data includes:

- Response time information
- Response time distributions
- Execution delay state information for transactions
- Information about service classes that different address spaces are serving.

The services allow a performance monitor to show the goal for a service class period, how well the system is doing to meet the goal, and if it is not meeting the goal, why it is delayed. The performance monitor can show this goal vs. actual data in terms that are consistent for all MVS-managed work.

Table 9 shows an overview of the workload reporting services, and where the information about them is documented.

Table 9. Summary of workload reporting services

<table>
<thead>
<tr>
<th>Service</th>
<th>Purpose</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWMQRY</td>
<td>Provides the active service policy. Use it with IWMRCOLL for goal vs. actual information</td>
<td>Chapter 46, “IWMQRY – Querying Active Service Policy,” on page 395</td>
</tr>
<tr>
<td>IWMRCOLL</td>
<td>Collects: • Workload activity information • Response time information • General delay information • Execution delay state information</td>
<td>Chapter 47, “IWMRCOLL – Collecting Workload Activity Data,” on page 401</td>
</tr>
<tr>
<td>IWMQRY</td>
<td>Provides address space related information: • Server information • Velocity information • General delay information – MPL delay – Swap-in – Resource group capping – CPU delay • Enclave information</td>
<td>Chapter 50, “IWMQRY – Collecting Address Space Delay Information,” on page 429</td>
</tr>
</tbody>
</table>
Table 9. Summary of workload reporting services (continued)

<table>
<thead>
<tr>
<th>Service</th>
<th>Purpose</th>
<th>Information</th>
</tr>
</thead>
</table>
| SYSEVENTs REQASD and REQFASD | Provide information about an address space:
• Whether it is a server
• Whether its goal is being honored
• Whether it was quiesced
• Service class, report class
• Performance group, report performance group | z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO |
| SYSEVENT REQSRMST | To quickly check:
• Active service policy
• Installed service definition | z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO |

Getting Information from SMF Type 99

SMF record type 99 provides detailed audit information. You can use the type 99 records for analyzing performance characteristics of work. The records contain performance data for each service class period, a trace of SRM actions, the data SRM used to decide which actions to take, and the internal controls SRM uses to manage work.

This can help you determine in detail what SRM is doing to meet your work's goals with respect to other work, and the types of delays the work is experiencing.

Attention:

Be aware that the SMF type 99 records are written frequently. The SMF type 99 records are for detailed audit information only. Before migrating to z/OS V1R3 and switching your systems into goal mode, you should make sure you do not write SMF type 99 records unless you want them.

[Chapter 11, “Using SMF Record Type 99,” on page 119](#) explains how to use the information provided in SMF type 99 records. For a mapping of the records, see [z/OS MVS System Management Facilities (SMF)](#).
Services for Application Programs

The administrative application services are intended for programs which provide a user interface to define and edit a workload management service definition.

Table 10 shows a summary of the administrative application services.

<table>
<thead>
<tr>
<th>Service</th>
<th>Purpose</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWMCQRY</td>
<td>Query the classification rules in effect.</td>
<td>Chapter 14, “IWMCQRY – Querying Classification Attributes,” on page 165</td>
</tr>
<tr>
<td>IWMDINST</td>
<td>Install a service definition on the WLM couple data set.</td>
<td>Chapter 16, “IWMDINST – Installing Service Definition,” on page 181</td>
</tr>
<tr>
<td>IWMDEXTR</td>
<td>Extract a service definition from the WLM couple data set.</td>
<td>Chapter 15, “IWMDEXTR – Extracting WLM Service Definition,” on page 173</td>
</tr>
<tr>
<td>IWMPACT</td>
<td>Activate a service policy.</td>
<td>Chapter 45, “IWMPACT – Activating Service Policy,” on page 387</td>
</tr>
</tbody>
</table>

WLM Services Supporting 64-bit Address Space

Several WLM services support 64-bit environments. These services run in both, 31-bit and 64-bit address mode.

To use 64-bit services, change the names of the services in your application, for example, change IWMCONN to IWM4CON. The prefix of all 64-bit services names is IWM4.

The services that run in 64-bit address mode in general support the same parameters as their equivalents for 31-bit address mode. Note that the only exception is the PLISTVER parameter, which has slightly changed. The 64-bit services only support PLISTVER=0, in case a PLIST Version is explicitly used. The following example shows how to use the PLISTVER keyword for 31-bit services:

```
... 12345678 SPACE 1 DS 0H
   IWMxxxx ETOKEN=ETOKEN
   RSCNCO=RSNCO, PLISTVER=2
...
```

where xxxxx is the name of the 31-bit service.

The following example shows how to use the PLISTVER keyword for 64-bit services:

```
... 12345678 SPACE 1 DS 0H
   IWM4xxxx ETOKEN=ETOKEN
   RSCNCO=RSNCO, PLISTVER=0
...
```

where xxxxx is the name of the 31-bit service.
where xxxx is the name of the 64-bit service.

Table 11 lists the WLM services supporting 64-bit address space and their equivalents for 31-bit address space only:

<table>
<thead>
<tr>
<th>WLM Service Name (31-bit only)</th>
<th>WLM Service Name (31-bit and 64-bit)</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWMAEDEF. For further information refer to</td>
<td>IWM4AEDF. For further information refer to</td>
<td>Defining a dynamic application environment to Workload Manager</td>
</tr>
<tr>
<td>"IWMAEDEF — Defining Dynamic Application Environments to Workload Management" on page 815.</td>
<td>Chapter 68, "IWM4AEDF — Defining Dynamic Application Environments to Workload Management," on page 553.</td>
<td></td>
</tr>
<tr>
<td>IWMCN. For further information refer to Appendix E, "WLM Services supporting 31–bit address space only," on page 815.</td>
<td>IWM4CN. For further information refer to Chapter 69, "IWM4CON – Connecting to Workload Management," on page 563.</td>
<td>Connecting to Workload Manager</td>
</tr>
<tr>
<td>IWMDISC. For further information refer to Appendix E, "WLM Services supporting 31–bit address space only," on page 815.</td>
<td>IWM4DIS. For further information refer to Chapter 70, "IWM4DIS – Disconnecting from Workload Management," on page 583.</td>
<td>Disconnecting from Workload Manager.</td>
</tr>
<tr>
<td>IWMECREA. For further information refer to Appendix E, "WLM Services supporting 31–bit address space only," on page 815.</td>
<td>IWM4ECRE. For further information refer to Chapter 71, "IWM4ECRE – Creating an Enclave," on page 591.</td>
<td>Creating an enclave</td>
</tr>
<tr>
<td>IWMEDELE. For further information refer to Appendix E, "WLM Services supporting 31–bit address space only," on page 815.</td>
<td>IWM4EDEL. For further information refer to Chapter 72, "IWM4EDEL – Deleting an Enclave," on page 603.</td>
<td>Deleting an enclave</td>
</tr>
<tr>
<td>IWMMCHST. For further information refer to Appendix E, "WLM Services supporting 31–bit address space only," on page 815.</td>
<td>IWM4MCHS. For further information refer to Chapter 74, "IWM4MCHS – Monitoring Change State Of Work Unit," on page 617.</td>
<td>Changing state of work request service</td>
</tr>
<tr>
<td>IWMMCREA. For further information refer to Appendix E, "WLM Services supporting 31–bit address space only," on page 815.</td>
<td>IWM4MCRE. For further information refer to Chapter 75, "IWM4MCRE – Create Delay Monitoring Environment," on page 627.</td>
<td>Create monitoring environment service</td>
</tr>
<tr>
<td>IWMMINIT. For further information refer to Appendix E, "WLM Services supporting 31–bit address space only," on page 815.</td>
<td>IWM4MINI. For further information refer to Chapter 78, "IWM4MINI – Initialize Monitoring Environment," on page 651.</td>
<td>Monitoring environment initialization</td>
</tr>
<tr>
<td>IWMQDEL. For further information refer to Appendix E, "WLM Services supporting 31–bit address space only," on page 815.</td>
<td>IWM4QDE. For further information refer to Chapter 80, "IWM4QDE – Deleting a Request from the Queue for An Execution Address Space," on page 675.</td>
<td>Deleting a request from the queue for an execution address space</td>
</tr>
<tr>
<td>IWMOINS. For further information refer to Appendix E, "WLM Services supporting 31–bit address space only," on page 815.</td>
<td>IWM4QIN. For further information refer to Chapter 81, "IWM4QIN – Inserting a Request Onto the Queue for An Execution Address Space," on page 681.</td>
<td>Inserting a request to the queue for an execution address space</td>
</tr>
<tr>
<td>IWMSLIM. For further information refer to Appendix E, "WLM Services supporting 31–bit address space only," on page 815.</td>
<td>IWM4SLI. For further information refer to Chapter 82, "IWM4SLI – Application Environment Limit Service," on page 693.</td>
<td>Application environment limit service</td>
</tr>
<tr>
<td>IWMSSEM. For further information refer to Appendix E, "WLM Services supporting 31–bit address space only," on page 815.</td>
<td>IWM4SSM. For further information refer to Chapter 85, "IWM4SSM – WLM Server Select Secondary Service," on page 721.</td>
<td>WLM server select secondary service</td>
</tr>
<tr>
<td>IWMSNBGN. For further information refer to Appendix E, "WLM Services supporting 31–bit address space only," on page 815.</td>
<td>IWM4STBG. For further information refer to Chapter 86, "IWM4STBG – Beginning a Request from a Caller’s Work Manager Queue," on page 727.</td>
<td>Beginning a request from a caller’s work manager queue</td>
</tr>
<tr>
<td>IWMSSTEND. For further information refer to Appendix E, "WLM Services supporting 31–bit address space only," on page 815.</td>
<td>IWM4STEN. For further information refer to Chapter 87, "IWM4STEN – Ending a Request from a Caller’s Work Manager Queue," on page 735.</td>
<td>End a request from a caller’s work manager queue</td>
</tr>
</tbody>
</table>
Table 11. Overview of WLM services supporting 64-bit and 31-bit address space (continued)

<table>
<thead>
<tr>
<th>WLM Service Name (31-bit only)</th>
<th>WLM Service Name (31-bit and 64-bit)</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWMTAFF. For further information refer to Appendix E, “WLM Services supporting 31-bit address space only,” on page 815.</td>
<td>IWM4TAF. For further information refer to Chapter 88, “IWM4TAF — WLM Temporal Affinity Service,” on page 741.</td>
<td>WLM temporal affinity service</td>
</tr>
</tbody>
</table>
Chapter 2. Using The Subsystem Work Manager Services

You can use many different combinations of the workload management services. Which ones and which combination you choose to use depends on the benefit you expect from using them, whether your programming environment allows you to use them, and the structure of the subsystem work manager using the services. The following section describes some suggested uses of the MVS workload management services.

If you need to manage a transaction separately from the address space in which it runs, or you want to use velocity goals, discretionary goals, or period control, use enclaves. For more information about using enclave services, see Chapter 3, “Creating and Using Enclaves,” on page 33.

Considerations Before Using the Services

Before you use the subsystem work manager and the execution delay monitoring services, you should consider the following:

- What “type” of subsystem work manager you are.
 - Transaction processing system
 - Data or resource manager

- What benefits do you expect to reap from using the WLM services?
 - Do you want your customers to be able to specify goals for your transactions?
 - Do you plan on getting reporting information on goals defined in the MVS workload management service definition?

- What kinds of address spaces does the subsystem work manager consist of?

- What is the definition of a transaction or work request, from your customer’s perspective?

- What kind of functions do the address spaces provide?
 - Control address spaces?
 - Transaction level dispatching?
 - Other execution regions?
 - Other supporting address spaces?

- What environments does the subsystem work manager run in?
 - Authorization, including PSW key
 - Dispatchable unit mode
 - Cross memory mode
 - AMODE
 - ASC mode
 - Interrupt status
 - Locks

- Does the subsystem work manager use other products, such as a data manager?

- Does the work cross MVS system (MVS image) boundaries?

- Does the work cross MVS sysplex boundaries?

Suggested Services for a Single Address Space Transaction Manager

A single address space subsystem work manager performs functions similar to those shown in Figure 1 on page 20. It goes through address space initialization and start-up routines. It receives a work request, processes the work request, receives another work request, and so on. At some point, it processes some
address space clean-up and termination routines.

Single Address Space Transaction Manager

```
Initialize and Start-up Subsystem Address Space

Receive a Work Request

Process the Request

Clean-up and Terminate Subsystem Address Space
```

Figure 1. Sequence of functions in a single address space transaction manager.

If you have a single address space transaction manager, and would like the following functions from workload management:
- Associate work coming into the subsystem with a service class.
- Have MVS match resources to the work to meet the service class goal.
- Provide goal vs. actual information for reporting
- Provide response time information for work requests

consider using the services shown in Figure 2 on page 21. They show when a single address space manager could invoke the appropriate workload management services. They are the minimum set of services a work manager can use to achieve the objectives listed above.

Note: You can instead use enclave services for a single address space transaction manager. For more information about using enclave services, see Chapter 3, “Creating and Using Enclaves,” on page 33.
You issue the IWM4CON service at address space initialization time. This connect service returns a token required by the IWMCLSFY and IWMRPT services. When the address space receives a work request, it should issue the classify (IWMCLSFY) macro to associate arriving work with a service class. The subsystem work manager can issue IWMCLSFY in either problem state or supervisor state, in any PSW key. The PSW key, however, must be compatible with the key specified when IWM4CON was issued.

IWMCLSFY passed WLM information identifying the work request. This information includes the following:

- Subsystem environment and name (used on IWM4CON)
- Transaction/job name
- Transaction/job class
- Userid
- Accounting information
- LU name
- Network id

These are called work **qualifiers**. IWMCLSFY also supports a product-specific parameter, called the subsystem parameter. If none of the qualifier types listed above define your subsystem work manager’s work requests, you can use the subsystem parameter.

The transaction manager should document which work qualifiers they use on the IWMCLSFY service, so that a customer knows how to define the **classification rules** defined in the workload management ISPF application. Also, since your transaction manager may not support all of the qualifier types, you should recommend that your customers customize the list of qualifiers for your subsystem type in the WLM ISPF application.

Figure 2. Work manager services for a single address space transaction manager.

CONNECT to WLM - IWM4CON

CLASSIFY work request - IWMCLSFY

REPORT completion - IWMRPT

DISCONNECT from WLM - IWM4DIS
After receiving the work request and classifying it, the transaction manager then processes the work request. When it completes the request, it should issue IWMRPT. The report service provides the arrival time and, optionally, completion information about the work request. Only normal completions are included in the response time information, so the information is not skewed by abnormal completions. The transaction manager should issue IWMRPT only once per work request.

Then, at address space clean up and termination time, the transaction manager should issue a IWM4DIS, to disconnect from workload management services.

Using the Execution Delay Monitoring Services

If you have a single address space subsystem work manager, and would like the following functions from workload management:

- Associate work coming into the subsystem with a service class
- Goals vs. actual information for reporting
- Response time information for work requests
- Execution delay information about work for reporting and for MVS management purposes

consider using the services shown in Figure 3 on page 23.

The execution delay monitoring services support response time goals only. If you want your customers to assign velocity or discretionary goals, or if you want to support period switching, consider using enclaves instead. For information about using enclave services, see Chapter 3, “Creating and Using Enclaves,” on page 33.

It is important to use the IWM4CHST service together with the IWMRPT service, otherwise the delay information is not meaningful.
At address space initialization, the address space issues the IWM4CON service to establish authorization for subsequent services. It then issues the IWM4MCRE (create) service. Create establishes a monitoring environment to keep track of the execution delays encountered by a work request. If the transaction manager sets up multiple tasks to process work, you should create one monitoring environment per task, assuming each task is dedicated to one work request. Similarly, if the task processes multiple work requests at the same time, then it should issue one IWM4MCRE for each work request that may be running under that task at one time. You can use the REQUEST=MULTIPLE parameter on the IWM4MCRE service to create a pool of monitoring environments at initialization time. This saves the repeated system overhead of issuing a single IWM4MCRE service for each monitoring environment needed.

The IWM4MCRE service also defines the PSW key in which the transaction manager is to run. Since monitoring environments are not initially associated with a work request, the IWM4MCRE sets the state of the monitoring environment to “free”.

When you create a monitoring environment, workload management establishes recovery at both the task and address space level. If the address space or the task that created the monitoring environment fails, workload management cleans up the resources associated with the monitoring environment.

When the transaction manager receives a work request, it should issue the IWMCLSFIGY service to associate an incoming work request with a service class. At that time, the transaction manager should issue an IWM4MINI to initialize the monitoring environment. The IWM4MINI service with the MODE=RESET parameter sets the state of the monitoring environment to “active”, and associates the monitoring environment with the work request.

Figure 3. Work manager and delay monitoring services for a single address space transaction manager.
Whenever that work request encounters a different state, such as waiting on a conversation, waiting on a lock, or for I/O, the transaction manager should issue the IWM4MCHS (change state of work request) service. Since IWM4MCHS is an inline expansion, there is very little overhead, and you can issue it frequently. Workload management can then update the monitoring environment to reflect these changes, and represent the execution delays the work request encountered.

When the transaction manager has completed processing the work request, it should issue the IWMRPT service. The transaction manager should delete all created monitoring environments at address space clean-up and termination, and disconnect from workload management services.

Suggested Services for a Work Manager Calling a Data Manager

If you have a work manager that calls a data manager, and you are on the same MVS image, you could use the combination of services suggested in this section. If you would like to do the following:

- Associate work coming into the subsystem with a service class
- Goals vs. actual information for reporting
- Response time information for work requests
- Execution delay information about work
- Track work from a work manager to a data manager

consider using the services shown in [Figure 4](#).

[Figure 4. Services for a work manager that uses a database manager.]
Since the transaction manager is using the work manager services, it must issue
the IWM4CON at address space initialization. In this example, the transaction
manager is using monitoring environments, so it issues an IWM4MCRE at address
space initialization time to create the monitoring environment. Similarly, the
database manager is also using monitoring environments, so it issues IWM4MCRE
at its address space initialization.

Assuming that the database manager uses a dedicated dispatchable unit, it should
also create one monitoring environment per task or SRB that it uses. The
transaction manager and the database manager could be running in different, or the
same tasks. The tasks in the figure (one in the work manager, and one in the
database manager) could be the same one.

However, the database manager, instead of using IWM4MINI, issues IWMMRELA
(relate monitoring environment) when it is called by the transaction manager task.
The relate monitoring environment service associates the database manager’s
monitoring environment for the work request to the transaction manager’s
monitoring environment for the same work request. Because the relate service
requires the token and key identifying the transaction manager’s monitoring
environment, the transaction manager should pass the token and key to the
database manager. In this example, the transaction manager monitoring
environment is called the parent environment, and the database manager that
issues the relate service is called the dependent environment.

After the database manager has related to the work manager, it can be called to
process a specific database request. Each such call should begin with a transfer
(IWMMXFER) service with a FUNCTION=CONTINUE parameter, and end with a
transfer (IWMMXFER) with a FUNCTION=RETURN parameter.

When the work manager issues a call to the database manager, the database
manager issues a IWMMXFER. The work manager state can be either active, or
waiting throughout the transfer. The IWMMXFER FUNCTION=CONTINUE indicates
that the real state for the work request now resides in the data manager monitoring
environment. From that point on, the database manager should use change state
(IWM4MCHS) as its view of the work request changes. You should issue
IWMMRELA and IWMMXFER in pairs for each database call or return.

The transfer with the FUNCTION=RETURN parameter resets the dependent
monitoring environment state to free. At this point, workload management
recognizes that the dependent monitoring environment no longer represents the
work request. The parent and dependent monitoring environments are still related,
for any future transfers, such as with a second call to the database manager. When
the database manager is done with any work requests that require related
monitoring environments between the parent and the dependent, it should issue the
IWMMRELA with the FUNCTION=DELETE parameter. This disassociates the parent
and dependent monitoring environments.

Services for Multiple Address Space Work Managers

The structure of the subsystem work manager dictates which workload
management services can be used. A multiple address space work manager
normally consists of three kinds of address spaces: router, execution, and
supporting. The router address space receives incoming work requests, and passes
them off to execution address spaces, which might use the services of supporting
address spaces. Figure 5 on page 26 shows the sequence of functions in a multiple
There are several groups of services that are useful to a multiple address space work manager:

- **Chapter 3, “Creating and Using Enclaves,” on page 33**
 The enclave services let you manage transactions across multiple address spaces in the same service class as the original request. The customer can assign a response time, discretionary, or a velocity goal to work, and can define period switching.

- **Chapter 5, “Using the Queueing Manager Services,” on page 69**
 The queueing manager services make it possible for the system to dynamically start and stop server address spaces based on the workload, and manage the work queues associated with the server address spaces to meet service class goals. The customer can assign a response time, discretionary, or a velocity goal to work, and can define period switching.

- **“Execution Delay Monitoring Services for Multiple Address Space Work Managers” on page 27**
 The execution delay monitoring services let you associate a service class with work, and the customer can assign a response time goal. You can also get
response time and delay information about how well the work did to meet the
goal. However, if you want to have the advantages of enclaves (such as having a
single transaction that spans multiple address spaces and is managed to the
goal of the originating address space), you should use enclave services rather
than execution delay monitoring services.

Execution Delay Monitoring Services for Multiple Address Space Work
Managers

The structure of the multiple address space subsystem work manager determines
which workload management services you can use to monitor work in multiple
address spaces across a sysplex. The relate (IWMMREL), transfer (IWMMXFER),
and switch (IWMMWSWCH) services provide a way for the work manager to indicate
that a transaction is continuing execution somewhere else.

Some questions to help determine which services are appropriate include:
• Are the router, execution, and support address spaces all on one MVS image, or
can they be distributed across MVS images?

How many MVS images are involved influences the choice of the relate/transfer
pair or switch service. IWMMXFER requires both monitor environments to be on
the same image, and knowledge of the parent monitoring environment.
IWMMWSWCH says the continuation of this work is “somewhere else,” either
waiting within the MVS image, or in the sysplex, or the network. In addition, it
indicates that the work request is waiting for the continuation to return.

• What are the addressability requirements?

Connect (IWM4CON) and create (IWM4MCRE) identify the key in which future
services are issued, and IWMMREL requires addressability to the parent
monitoring environment. IWMMXFER requires updating the dependent monitoring
environment, and requires addressability and key update access to the parent
monitoring environment.

• What are the dispatchable units in the servers and support address spaces?

You must specify the dispatchable unit type on the INIT and RELATE services.

• When are the “arrival time” and the work qualifiers (name, userid, etc.) known?

The arrival time for the work request is required for INIT, and the work qualifiers
are required for CLASSIFY.

• What is the current communication between the router, servers, and the support
address spaces, so that new data can be passed?

The participating subsystem work managers may want to pass the service class
token returned from the IWMCLSFY service, together with the work request using
their own communication methods.

Figure 6 on page 28 shows some suggested services for a multiple address space
work manager that take into account the previously discussed considerations.
In the figure, the router could be like a CICS TOR that routes the work off to an AOR, the execution address space, for processing. There may be some supporting address space involved that help process the work requests. The router would issue the IWM4CON macro to connect to workload management. It would also issue the IWMCLSFY service to associate the arriving work with a service class. Since it also receives the work request back once it has been processed, it also issues the IWMRPT service to report the completion, and the IWM4DIS at address space termination.

The execution address spaces would issue the IWM4MCRE to create the monitoring environments and record information about the work with the IWM4MCHS service. It would issue the IWMMNTFY to signify that the execution phase of work request execution has completed. Then, at address space termination, it would issue the IWMMDELE service to delete the monitoring environments.

The supporting address spaces would also use monitoring environments, so they would issue IWM4MCRE and IWMMDELE. To show that the information they are keeping in the performance block reflects the same work request as the monitoring environment created by the execution address spaces, they issue the IWMMRELA and IWMMXFER services.

IWMMRELA and IWMMXFER require the supporting address space to be on the same MVS image, and that the monitoring token be passed from the execution address space to the supporting address space.
Services for Work Managers that Distribute Work Requests

Some work managers distribute work across systems in a sysplex. Distributed work may originate from one subsystem work manager, and be processed by another. For example, a work manager may send work to a data base manager for processing. Other work managers may split up complex work into smaller pieces and distribute the pieces to other systems in the sysplex for processing.

Whether the work is distributed, or split and distributed, you may still want to keep the work classified according to the subsystem originating the work request. Not all classification information may be available to the receiving subsystem. For example, suppose JES has distributed a batch job to a data base system. The data base system issues IWMCLSFY when it receives the batch job. Because it is not the same subsystem environment, the batch job is now classified into a service class representing the data base work, and not to a service class representing batch jobs.

A work manager can use the IWMWMCON macro when it receives work and wants it to be classified using the originator’s subsystem environment, and not its own. The IWMWMCON macro lets a caller modify the subsystem type and subsystem name previously provided on the IWM4CON macro.

Once the receiving subsystem has issued the IWMWMCON macro, the subsystem can issue the IWMCLSFY macro. The work is then classified according to the modified environment. Note that any other macro that requires subsystem name, subsystem type, or service class name is affected by the change. Those macros are:

- **IWMCLSFY**, which returns a service class based on the modified subsystem environment attributes. See Chapter 12, “IWMCLSFY – Classifying Work,” on page 139 for a complete description.
- **IWM4ECRE**, which creates an enclave based on the parameter list from IWMCLSFY. See Chapter 3, “Creating and Using Enclaves,” on page 33.
- **IWMRPT**, which reports on the completion of the work associated with the service class received from IWMCLSFY. See Chapter 49, “IWMRPT – Report on Work Request Completion,” on page 417 for a complete description.

For details on the IWMWMCON macro, see Chapter 64, “IWMWMCON – Modify Connect Information,” on page 525.

Determining the Subsystem Name and Type

A caller must provide a subsystem name and type on the IWMWMCON macro. To determine the subsystem name or type, a caller can use the REQASCL SYSEVENT. The REQASCL SYSEVENT provides information about an address space’s classification information. The originating subsystem should issue REQASCL, and pass the information with the work request.

For information about how to use the REQASCL SYSEVENT, see z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

Using IWMWMCON When Distributing Work in a Sysplex

The expected use of the IWMWMCON service is in a multiple system work environment, where work is received by a work router and distributed to other systems in the sysplex. In this case, the enclave or address space transaction of the originator cannot be used to manage the work request, because a transaction has a single system scope. When a request or a part of a request is distributed to a
different system, it must run under a new transaction. The example below shows how IWMWMCON can be used in conjunction with the IWM4ECRE service to create an independent enclave on the system receiving the work request. For details on using enclaves, see Chapter 3, “Creating and Using Enclaves,” on page 33.

Example of Using IWMWMCON
Suppose a subsystem work manager called DISS splits complex work requests into pieces and distributes the split work to six data base manager address spaces, called DB1 through DB6, each running on a separate system in the sysplex. DISS might communicate with the data base address spaces through a shared queue on DASD or a coupling facility, or through sysplex services. The DISS subsystem does the following:

1. Receives a work request.
2. Determines the work requestor’s classification attributes using the SYSEVENT REQASCL macro.
3. Splits the request and distributes pieces to DB1 through DB6, passing the information returned by REQASCL.

Each data base subsystem, DB1 through DB6, does the following:

1. Receives the split work request along with its classification attributes.
2. Obtains a latch or lock prior to issuing IWMWMCON to serialize the use of the work manager connect environment.
3. Modifies the connect environment by issuing IWMWMCON with the subsystem name and type passed by DISS.
4. Builds a classification parameter list with the attributes passed by DISS using the modify form of the IWMCLSFY macro.
5. Creates an independent enclave using the IWM4ECRE macro to manage the split work request.
6. Restores the previous connect environment using the IWMWMCON macro with the previous subsystem type and name.
7. Releases the latch or lock being used to serialize the connect environment.
8. Processes the work by joining tasks to the enclave and/or scheduling SRBs into it.
9. When the work is finished, deletes the enclave using the IWM4EDEL macro.

Considerations for Mixed Releases
The example above assumes that all systems are running OS/390 R3 or later. If your subsystem needs to also support earlier levels of OS/390, then the data base address spaces running on the down-level systems may need to operate differently than shown above.

First, you need to be careful when passing classification information between systems at different levels. The subsystem issuing the IWMCLSFY macro needs to use a parameter list compatible with the level where it is running.

Also, there is a restriction on pre-OS/390 R3 systems. You need to run enclave transactions in a service class or performance group separate from address space transactions. So, if the work request is running under the originator’s address space transaction when it is received by DISS, the data base address space must ensure that the independent enclave it creates for the request is classified differently.
One way to force separate classification of the enclaves is to use a new subsystem type and name when invoking IWMWMCON from the data base address space. Extending the example above, assume DB7 is a data base address space running on a pre-OS/390 R3 system. When DB7 receives a request from DISS it does the following:

- Like steps 1 and 2 above for DB1 through DB6, receives a request and obtains a latch or lock.
- When calling IWMWMCON, passes in a new subsystem type, such as DBR, rather than the originator's subsystem type. DB7 preserves the originator's subsystem type, by putting it in the subsystem name field. The originator's subsystem name is not used. The subsystem type is preserved because it is a higher level attribute than subsystem name.
- Provides other classification attributes unchanged via the modify form of IWMCLSFY.
- Continues with steps 5 through 9 above.

This means that when DB7 creates an enclave, it is classified into a service class or performance group based on the classification rules defined for subsystem type DBR in the active service policy, rather than those defined for the originator's subsystem type.

A subsystem that makes use of a unique subsystem type to classify remote work as in this mixed release example, must explain this in the subsystem reference information so the installation knows how to properly define classification rules for the subsystem.
Chapter 3. Creating and Using Enclaves

An enclave is a transaction that can span multiple dispatchable units (SRBs and tasks) in one or more address spaces and is reported on and managed as a unit. The enclave is managed separately from the address spaces it runs in. CPU and I/O resources associated with processing the transaction are managed by the transaction’s performance goal, accounted to the transactions, and reported to the transaction. A program can create an enclave, schedule SRBs into it, or join tasks to it. A multisystem work manager can process a transaction on multiple systems by using a multisystem enclave.

Use the following services to work with enclaves:

- The IWM4ECRE macro allows you to create an enclave.
- The IWMEREG macro allows you to register an enclave to prevent it from premature deletion.
- The IWMEREG macro allows you to deregister an enclave.
- The IEAMSCHD macro allows you to schedule an SRB into the enclave.
 For information about using the IEAMSCHD macro, see z/OS MVS Programming: Authorized Assembler Services Guide
- The SYSEVENT ENCASSOC macro allows an enclave running SRBs to be associated with an address space so the server address space's storage-related resources can be managed to the enclave’s performance goal.
 For information about using the SYSEVENT ENCASSOC macro, see z/OS MVS Programming: Authorized Assembler Services Guide
- The SYSEVENT ENCSCHEDULE macro allows the creator of an enclave to notify SRM when the enclave is idle, so that its state is sampled correctly.
 For information about using the SYSEVENT ENCSCHEDULE macro, see z/OS MVS Programming: Authorized Assembler Services Guide
- The IWMEJOIN macro allows a task to join an enclave.
- The IWMELEAV macro allows a task to leave an enclave.
- The IWMEXPT macro allows you to export an enclave to all systems in a parallel sysplex.
- The IWMEXPT macro allows you to undo an export.
- The IWMIMPT macro allows you to import an enclave that has been exported.
- The IWMIMPT macro allows you to undo an import.
- The IWMECQRY macro allows a program to query the classification information associated with an enclave.
- The IWMECQRY macro provides a program with information about whether the current dispatchable unit is associated with an enclave.
- The IWMECQRY macro allows a program to delete a previously created enclave.

Why Would You Use an Enclave?

Use an enclave when you have a transaction that spans multiple tasks or SRBs in one or more address spaces, and you want to manage it as a unit. An enclave allows you to manage and report on resource consumption in the enclave based on a performance goal unrelated to the performance goal(s) of the address space(s) in which the enclave’s dispatchable units execute.
An independent enclave represents a complete transaction. Its performance goal is assigned based on the service class to which it is classified when the enclave is created. Each independent enclave starts in period 1 of its service class and switches periods based on the service consumed by the dispatchable units belonging to the enclave.

A work-dependent enclave represents a continuation of an existing independent enclave's transaction. It inherits its classification and performance goals from the independent enclave. Service consumed by a work-dependent enclave is treated as if it was consumed by the independent enclave, and can cause the independent enclave (including all associated work-dependent enclaves) to switch into later periods.

A dependent enclave represents the continuation of an existing address space transaction under a new set of dispatchable units. Its performance goal is inherited from the existing address space transaction based on the service class (or PGN) and period being used to manage the address space at the instant the dependent enclave is created. CPU service consumed by a dependent enclave is treated as if it were consumed by the address space transaction, and can cause the address space along with the dependent enclave to switch into later periods.

If your work manager does not use enclaves, work can only be managed on an address space basis, tied to the address space the work runs in. If you have a transaction that spans multiple address spaces, use an enclave to manage the transaction as a unit.

If you have an address space that executes multiple transactions, use enclaves to isolate the transactions so they can be reported on and managed individually.

SRBs in Enclaves

Enclave SRBs offer advantages over local and global SRBs in that they are preemptable, and can be run at a lower major dispatching priority than tasks in the same address space.

SRBs in enclaves work well for transactions having short durations, not issuing supervisor calls, and not otherwise requiring a task environment. SRBs have very little startup overhead compared to tasks. The subsystem can create an enclave using the IWM4ECRE macro, and then schedule SRBs to run in the enclave using the IEAMSCHD macro.

The SYSEVENT ENCASSOC macro is used to indicate that an enclave and an address space are related for storage management purposes. The ENCASSOC sysevent is necessary only when SRBs are used. A task that joins an enclave automatically associates the home address space with the enclave. See *MVS Programming: Authorized Assembler Services Reference, Volume 4* for more information about the SYSEVENT macro.

For more information about SRBs and how to use them, see *z/OS MVS Programming: Authorized Assembler Services Guide*. For more information about the IEAMSCHD macro, see *z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG*.
Tasks in Enclaves

Using tasks in enclaves offers all the advantages of enclaves and allows the enclave to perform functions that require a task environment, such as supervisor calls. Unlike SRBs, tasks can dynamically leave and join an enclave as they finish one piece of work and begin another.

A subsystem can create an enclave using the IWM4ECRE macro, join the task to the enclave using the IWMEJOIN macro, process the work request, and remove the task from the enclave using the IWMELEAV macro. If a task joins an enclave and subsequently attaches subtasks, the subtasks are automatically joined to the enclave. The interactions between enclaves and attach/detach are summarized as follows:

- Subtasks attached while the mother task belongs to an enclave inherit membership in the same enclave.
- Subtasks that already exist when the mother task joins an enclave are not automatically made part of the enclave although they may explicitly join and leave the enclave using IWMEJOIN and IWMELEAV.
- Tasks which inherit membership in an enclave can only leave the enclave by terminating or by deleting the entire enclave.
- Mother tasks with subtasks that inherited enclave membership cannot leave the enclave until all such subtasks terminate.

Comparison of Enclaves and Execution Delay Services

You cannot use tasks in enclaves and execution delay services in the same address space. This same restriction applies to SRBs in enclaves if you use the SYSEVENT ENCASSOC to associate the enclave with an address space. When deciding which set of services to use for a work manager, you should consider the following advantages of enclaves over execution delay services:

- Isolation of transactions
 Enclaves allow separate dispatching priorities to be assigned to work running in the same address space. Therefore, workload management can manage this work to different performance goals. Without enclaves, all work in an address space runs at the same major dispatching priority.
- Period control
 Enclaves can run in a service class with multiple periods. Because resource consumption is tracked for individual enclaves, the enclave can move from one period to the next as it consumes CPU resource. The goals for the periods can be chosen to favor short transactions over long ones within a single address space.
- Full goal support
 Enclaves support response time, velocity, and discretionary goals, whereas transactions reported using execution delay services can be managed only to response time goals.
- Server address space management
 Enclaves are independent from an address space, so a transaction that moves from the originating address space to one or more server address spaces can be managed as a single transaction.
- Multisystem scope
 Enclaves can span address spaces on multiple systems in a parallel sysplex, whereas transactions supported using execution delay services are constrained to a single system.
Creating an Enclave

A subsystem creates an enclave using the IWM4ECRE service. You can define independent, work-dependent, or dependent enclaves.

Comparison between Independent, Dependent and Work-dependent Enclaves

You use independent, dependent and work-dependent enclaves for different purposes, as follows:

- **Independent Enclaves**
 Use an independent enclave to represent a new transaction. The TYPE=INDEPENDENT parameter on IWM4ECRE is the default. An independent enclave must be classified into a service class or performance group when it is created, so the caller must provide classification qualifiers as input to IWM4ECRE. The home address space when IWM4ECRE is issued is the owner of an independent enclave. CPU service consumed by the enclave is accumulated in the SMF 30 record of the owning address space and the SMF 72 record of the enclave’s service class or performance group period.
 For examples showing how to use independent enclaves, see "Scheduling an SRB in an Independent Enclave" on page 39 and "Joining Tasks to an Independent Enclave" on page 41.

- **Dependent Enclaves**
 Use a dependent enclave when you have an existing address space defined with its own performance goal that you wish to extend to programs running under dispatchable units in other address spaces. For a dependent enclave that is created with TYPE=DEPENDENT specified on IWM4ECRE, the owner will become the home address space at the time the service is invoked. The owner address space of a dependent enclave, resulting from IWM4ECRE with TYPE=WORKDEPENDENT specified, will be the creating enclave’s (that is, the enclave the TCB/SRB was running in when it called IWM4ECRE) owner. A dependent enclave derives its performance goal from the owning address space, and all CPU service consumed by the enclave is accumulated in the SMF 30 record of the owning address space and the SMF 72 record of the owning address space’s service class or performance group period.
 The TYPE=MONENV parameter creates a dependent enclave owned by the address space of a specified monitoring environment. Note that this dependent enclave is managed to the goal established for the owning address space, not the response time goal that might have been established for the monitoring environment.
 For an example showing how to use dependent enclaves, see "Using Dependent Enclaves" on page 43.

- **Work-dependent Enclaves**
 Use a work-dependent enclave to extend an existing independent enclave’s transaction. A work-dependent enclave inherits its classification and its owner address space from the independent enclave it extends. CPU service consumed by the enclave is accumulated in the SMF 30 record of the owning address space and the SMF72 record of the enclave’s service class.
 For more specific differences between independent, work-dependent and dependent enclaves, see Table 12 on page 50.
Registering an Enclave

Enclave transactions do not only exist within a subsystem, but also across subsystems. Enclaves can be deleted by any subsystem at any time. So, it might happen that a subsystem deletes an enclave that is still used by another subsystem. To avoid premature deletion, you can register an enclave. The registration indicates to the system that an enclave must not be deleted until the registering subsystem deregisters it.

The new service, IWMEREG, allows an enclave to be registered in order to prevent it from premature deletion until the enclave is deregistered. The new service, IWMEDREG, allows the registration for an enclave to be undone and deleted.

The registration is owned by the job step task of the home address space at the time IWMEREG is invoked. If the job step task or the address space terminates, the system implicitly deregisters the enclave.

Only subsystems which utilize enclaves created by other subsystems need to register interest in an enclave while using it. If a subsystem only uses enclaves that it created itself, there is no need to register interest in the enclave.

Multisystem Enclaves

Note: The use of multisystem enclaves requires the definition of a coupling facility structure named SYSZWLM_WORKUNIT in the CFRM policy. Once the CFRM policy with this structure definition is activated, then WLM will automatically connect to the structure, enabling the use of multisystem enclaves. See z/OS MVS Planning: Workload Management for more information.

Some work managers split large transactions across multiple systems in a parallel sysplex, improving the transaction’s overall response time. These work managers can use multisystem enclaves to provide consistent management and reporting for these types of transactions.

Among the benefits of using multisystem enclaves:

- All parts of a split transaction are managed using the same service class. If the service class has multiple periods, the CPU usage of the entire transaction is used to switch periods.
- The enclave owner’s SMF 30 record includes CPU time accumulated by all of the multisystem enclaves it owns, for all systems on which they executed. Remote system service is reported by individual system within the SMF 30 record.

A multisystem enclave begins as either an independent or dependent enclave on a single system. This enclave is called the “original” enclave. Note that WLM does not allow you to export work-dependent enclaves. If the work manager decides to involve other systems in the processing of the work unit, it issues IWMEXPT to “export” the enclave to other systems in the parallel sysplex. The export token it receives back from IWMEXPT is a sysplex-wide unique name that it must now pass along with the work request to other systems.

Each work manager in the supporting address spaces on other systems can now issue IWMIMPT to “import” the enclave onto its system. It passes the export token and receives a special enclave token that is valid for its system only. This new, supporting enclave is called a “foreign” enclave. The original enclave and the foreign enclaves are all referred to as one unit called a multisystem enclave.
When work has completed in a foreign enclave, the supporting work manager issues IWMUIMPT to “unimport” the enclave, and then signals its completion to the original work manager. When all of the supporting work managers have unimported their enclave, the original work manager issues IWMUEXPT to “unexport” the original enclave. When all work is finished, the original work manager that created the original enclave deletes it.

If your subsystem uses an enclave that it did not create for its processing, then you should use the registration services (IWMEREG, IWMEDREG) to protect the enclave against deletion by its owner while your subsystem is using it. The IWMUIMPT service delays the physical deletion of an enclave as long as the enclave is registered by any subsystem.

Each work manager must first connect to WLM using the IWM4CON service, specifying EXPTIMPT=YES to enable exporting and importing. IWMEXPT, IWMIMPT, IWMUIMPT, and IWMUEXPT must all be invoked from the address space that connected.

WLM will automatically undo a work manager’s export and import requests when:
- The work manager disconnects from WLM
- The work manager’s connecting task or address space ends
- The work manager’s system fails

If an export is undone, whether by the original work manager’s request or due to WLM’s recovery action, before all of the supporting work managers have completed their work in the foreign enclaves, the outstanding imports are handled as follows:
- An outstanding import on the same system as the original enclave is automatically undone. (When a work manager on the same system as the original work manager attempts to import the original enclave, it receives the original enclave token. It's not really “exported” at all.) The only effect will be a warning return code when the work manager attempts to unimport the enclave.
- An outstanding import on a foreign system will remain in effect. WLM provides no notification to the supporting work manager that the export has ended. The supporting work manager must learn of the failure through its own mechanisms and then terminate the work on its own.
- New import requests are rejected. The supporting work manager should terminate any work being done on behalf of the original work manager.

As a transaction flows from one work manager to another, it is possible that more than one work manager will split its processing across multiple systems. In this way, an original enclave can be exported multiple times, both by the original work manager and by other work managers. Each export request is tracked separately, and requires a corresponding unexport request. Multiple concurrent exports all share the same export token.

If a work manager on the original system attempts to import the original enclave, it will receive the enclave token of the original enclave. The work manager can schedule SRBs into or join tasks to the original enclave just as it would any other enclave on the same system.

Just as an enclave can be exported multiple times, it can also be imported multiple times by one or more supporting work managers. Each import request is tracked separately, and requires a corresponding unimport request. Multiple concurrent imports on a single system all share a single foreign enclave.
A foreign enclave cannot be exported — in other words, once an enclave has been imported onto a foreign system, it cannot be exported again from that system. If a work manager invokes IWMEXPT for a foreign enclave, it will receive a warning code along with the existing export token for that enclave.

For an example showing how to use multisystem enclaves, see "Using a Multisystem Enclave" on page 45.

Scheduling an SRB in an Independent Enclave

Suppose an address space representing a subsystem uses the specialized processing services of a supporting address space to satisfy a work request. The subsystem creates an independent enclave that is used by an SRB executing in the supporting address space on behalf of the work request. Part of the work request executes under an SRB in the subsystem address space, so that SRB uses the same enclave.

Figure 7 shows the two address spaces.

Figure 7. Creating an Independent Enclave and Scheduling an SRB

- **Connect as a work manager**

 Subsystem address space A issues IWM4CON to connect to workload management with WORK_MANAGER=YES specified or defaulted. This makes work management services, including enclave services, available to the connecting address space.

- **Create enclave Z**

 IWM4CRE

- **Schedule SRB 1 into enclave Z**

 IEAMSCHD
 ENV=PRIMARY
 PRIORITY=ENCLAVE
 ENCLAVETOKEN=tokenZ

- **Schedule SRB 2 into enclave Z**

 IEAMSCHD
 ENV=STOKEN
 TARGETSTOKEN=tokenB
 PRIORITY=ENCLAVE
 ENCLAVETOKEN=tokenZ

- **SRB 1**

 Process part of work request

- **Process part of work request**

- **Wait for SRBs to complete**

- **Delete enclave Z**

 IWM4EDEL
 ETOKEN=tokenZ

- **Supporting Address Space B**
Subsystem address space A wants to manage multiple SRBs (SRBs 1 and 2) as a unit, so address space A creates an independent enclave Z by issuing IWM4ECRE. Subsystem address space A is the home address space, and is the owner of enclave Z. Any work that the subsystem and its supporting address space B process can be managed as an enclave. Classification information is passed in with IWM4ECRE so workload management can assign the enclave to a service class or performance group and manage to those goals.

Note: If enclave SRB 2 issues SYSEVENT ENCASSOC, no work consuming significant CPU resource should run in the supporting address space outside of the enclave. Similarly, if enclave SRB1 issues SYSEVENT ENCASSOC, no work consuming significant CPU resource should run in the subsystem address space outside of the enclave. For more information, see "Performance Management of Address Spaces with Enclaves" on page 48.
• **Schedule SRB 1 into enclave Z**

 The subsystem address space then schedules an SRB, SRB 1, to execute in its own address space and to be managed as part of enclave Z, using the IEAMSCHD macro:

  ```
  IEAMSCHD ENV=PRIMARY,
  EPADDR=entry_point_address,
  PRIORITY=ENCLAVE,
  ENCLAVETOKEN=tokenZ
  ```

 Where the subsystem address space has defined:

  ```
  tokenZ FL4 The enclave token for enclave Z
  ```

• **Schedule SRB 2 into enclave Z**

 The subsystem address space then schedules an SRB (SRB 2) to execute in supporting address space B and to be managed as part of enclave Z, using the IEAMSCHD macro:

  ```
  IEAMSCHD ENV=STOKEN,
  TARGETSTOKEN=tokenB,
  EPADDR=entry_point_address,
  PRIORITY=ENCLAVE,
  ENCLAVETOKEN=tokenZ
  ```

• **Wait for the SRBs to complete and delete enclave Z**

 The subsystem waits for the SRBs to complete the request, then deletes the enclave using the IWM4EDEL macro and returns to the caller.

Joining Tasks to an Independent Enclave

Again, an address space representing a subsystem is using a supporting address space for part of the processing for a unit of work. The subsystem address space creates an independent enclave, and a task in the supporting address space joins the enclave. A task in subsystem address space can also join the enclave when it is processing on behalf of the unit of work.

Figure 8 on page 42 shows how this works.
Connect as work manager

Subsystem address space A issues IWM4CON to connect to workload management with WORK_MANAGER=YES specified or defaulted. This makes work management services, including enclave services, available to the connecting address space.

Create enclave X

Subsystem address space A wants to manage work in multiple address spaces as a unit, so address space A creates independent enclave X by issuing IWM4ECRE. Subsystem address space A is the home address space, and is the owner of the enclave. IWM4ECRE passes back the enclave token tokenX to the subsystem. Any work that the subsystem and its supporting address space B process can be managed together as an enclave. Classification information is passed in with IWM4ECRE so workload management can assign the enclave to a service class or performance group and manage to those goals.

Note: No work consuming significant CPU service should run in either the subsystem or the supporting address space outside of an enclave. For more information, see "Performance Management of Address Spaces with Enclaves" on page 48.

Task 1: join enclave X

The subsystem passes the work to its supporting address space B along with the enclave token tokenX from IWM4ECRE. Before Task 1 in address space B runs the work passed in by the subsystem, it joins the enclave by issuing the IWMEJOIN service with enclave token tokenX. Now the work running under Task 1 is managed to the goal of the enclave.
Although this example shows only one enclave, the subsystem can create an enclave for each new unit of work that arrives. These enclaves can be running work simultaneously in the subsystem and the supporting address space, with each unit of work being managed to its own unique goal.

Task 1: attach subtask; detach subtask

In address space B, Task 1, which now belongs to enclave X, issues the ATTACH macro to create a subtask. This subtask will also, automatically, be part of enclave X and be managed to the enclave’s goal. When the subtask is detached, it automatically leaves the enclave. The subtask cannot use IWMELEAV to do this. Each subtask attached by Task 1 after it joins the enclave must be detached before Task 1 leaves the enclave.

Task 1: leave enclave X

Task 1 finishes its processing and leaves the enclave by issuing the IWMELEAV service with the enclave token \(\text{token}X\) specified. Any processing in Task 1 after it leaves the enclave is managed to the goal of the address space, not of the enclave.

Task 2: join enclave X

If the subsystem itself has work to do on behalf of the unit of work, it can join a task, Task 2, to the same enclave as the supporting address space used. It uses the same enclave token, \(\text{token}X\), on IWMEJOIN. The work in Task 2 is now managed to the enclave’s goal. Task 1 and 2 can be run concurrently or in sequence. At any point in time, an enclave can have multiple tasks and/or SRBs running in it across multiple address spaces, and they are all managed to the same enclave goal.

Task 2: leave enclave X

Task 2 finishes its processing for the transaction and leaves the enclave. The task is now managed to the address space goal.

Delete enclave X

The transaction is now complete, so the subsystem deletes the enclave using IWM4EDEL with enclave token \(\text{token}X\). Note that the address space that deletes the enclave need not be the same one that created it.

Using Dependent Enclaves

When a unit of work is processed in multiple address spaces, you can use dependent enclaves to tie the work done in a supporting (server) address space back to the originating client address space. The dependent enclave represents the continuation of an existing address space transaction under a new set of dispatchable units in another address space.

Figure 9 on page 44 shows how this works.
• **Request subsystem function**

The originating address space, address space A, sends a work request to subsystem address space B, for example, by issuing a space-switching PC.¹

Address space A could be a TSO, batch job, or started task. The address space's performance goal is used to manage the transaction while running in address space A and also when running in the dependent enclave.

• **Determine if an enclave exists**

Subsystem address space B uses IWMESQRY to determine whether the caller is already in an enclave. If it is in an enclave, it would use that enclave and schedule SRBs to the enclave, or join tasks to the enclave.

• **Create dependent enclave Y**

If the caller is not in an enclave, the subsystem creates a dependent enclave using IWM4ECRE with the TYPE=DEPENDENT parameter. The home space when IWM4ECRE is issued, in this example address space A, is the owner of the dependent enclave. No classification information is required on IWM4ECRE for a dependent enclave. The service class or performance group of the owning address space A is used to manage the work in the enclave. The subsystem does not need to connect to workload management (using IWM4CON) to create a dependent enclave.

¹ A space-switching PC isn’t required — it is used here only as an example. A nonspace-switching PC or other linkage can be used so long as the originating space remains the home space.
- **Pass enclave token**
 The subsystem posts Task 1 in the supporting address space, address space C, to join the enclave, passing it the enclave token \(token_Y\) passed back by IWM4ECRE. The subsystem can also schedule SRBs into the same enclave. The work running in the dependent enclave executes in address space C but is managed to the goal of the owning address space A.

- **Join enclave Y**
 Task 1 joins enclave Y using the enclave token passed from the subsystem. The work running under Task 1 is now managed to the goal of address space A.

 Note: No work consuming significant CPU service should run in the supporting address space outside of an enclave. The same restriction applies to the subsystem address space if it runs work in enclaves. For more information, see “Performance Management of Address Spaces with Enclaves” on page 48.

- **Attach subtask; detach subtask**
 Task 1 may attach one or more subtasks while it is joined to enclave Y. These subtasks are automatically joined to enclave Y and also managed to address space A’s goal.

- **Leave enclave Y**
 When Task 1 completes the work request, it leaves the enclave. It reverts back to being managed to address space C’s goal.

- **Delete the enclave**
 The subsystem waits for the tasks, and any SRBs, to complete the request, then deletes the enclave (if it created it) and returns to the caller.

Using a Multisystem Enclave

In this case, a work manager will process a work request using one or more supporting address spaces on different systems in a parallel sysplex.

Figure 10 on page 46 shows how this works.
- **Connect as work manager**
 The work manager issues IWM4CON, with WORK_MANAGER=YES specified or defaulted so that it can create independent enclaves, and EXPTIMPT=YES specified to allow for exporting the enclaves.

 Note: It is assumed here that the CFRM policy already contains the coupling facility structure SYSZWLM_WORKUNIT, which is required for the use of multisystem enclaves. If the coupling facility structure is not available, IWM4CON will succeed, but export and import requests will return errors. See [z/OS MVS Planning: Workload Management](https://www.ibm.com) for more information.

- **Create original enclave E**
 The work manager creates an independent enclave in address space A on system 1 by issuing IWM4ECRE. Address space A is the owner of the original enclave. Classification information is passed in with IWM4ECRE so workload management can assign the enclave to a service class or performance group. IWM4ECRE passes back the enclave token `tokenE` to the work manager.
• **Address Space A on System 1: Export enclave E**
 The work manager exports enclave E to all other systems in the parallel sysplex by issuing IWMEXPT with the enclave token tokenE. IWMEXPT passes back the export token tokenX. The work manager can now pass this sysplex-wide unique export token to supporting address spaces on other systems, using its own communication mechanism.

• **Address Space B on System 2: Import enclave E’**
 Once an enclave has been exported, a work manager in the supporting address space B can import the enclave by issuing IWMIMPT with the export token tokenX. A foreign enclave E’ is created. It receives back an enclave token tokenE’ that is valid on system 2 only.

 Although this example shows only one supporting address space on one separate system, the enclave can be imported by several address spaces on several different systems in the parallel sysplex. These foreign enclaves can all be running work simultaneously, with each unit of work being managed to the goals of the original enclave.

• **Task J: join foreign enclave E’**
 Task J in address space B on system 2 joins the foreign enclave by issuing IWMEJOIN with the enclave token tokenE’.

• **Task J: leave foreign enclave E’**
 Task J in address space B on system 2 leaves the foreign enclave by issuing IWMELEAV with the enclave token tokenE’. Any further processing in Task J after it leaves the enclave is now managed to the goal of the address space B, not of the enclave.

• **Task K: join original enclave E**
 If work is to be done in the original enclave at the same time that work is being done in the foreign enclaves, task J in address space A on system 1 can join the original enclave by issuing IWMEJOIN with the enclave token tokenE. The work in Task K is now managed to the goals of the original enclave. At any point in time, a multisystem enclave can have multiple tasks and/or SRBs running in it across multiple address spaces on multiple systems, and they are all managed to the original enclave’s goal.

• **Task K: leave original enclave E**
 Task K in address space A on system 1 leaves the original enclave by issuing IWMELEAV with the enclave token tokenE. Any further processing in Task K after it leaves the enclave is now managed to the goal of the address space A, not of the enclave.

• **Address Space B on System 2: Unimport enclave E’**
 Once the task has left the foreign enclave, the work manager in the supporting address space B unimports the enclave by issuing IWMUIMPT with the export token tokenX. This deletes the foreign enclave E’. The supporting work manager now reports its completion and any results to the original work manager using its own communication mechanism.

• **Address Space A on System 1: Unexport enclave E’**
 After every supporting work manager has reported its completion, the original work manager unexports the enclave by issuing IWMUEXPT with the export token tokenX.

• **Delete enclave X**
 The transaction is now complete, so the work manager deletes the enclave using IWM4EDEL with enclave token tokenE.
Performance Management of Address Spaces with Enclaves

How workload management manages an address space where an enclave (dependent, work-dependent or independent) is running depends on the characteristics of the enclave. Some address spaces with work running in enclaves are managed to the performance goal of the enclave. Other address spaces with work running in enclaves are managed to the performance goal of the address space transaction. In either case, workload management manages the dispatching priority of the enclave to meet the performance goal of the enclave.

An address space is managed (in terms of MPL level, paging, dispatching and I/O priorities) to the goal of the enclave if one of the following are true:

- The address space is running a task that has joined an enclave using the IWMEJOIN or IWM4STBG macro,
- OR -
- The address space is running an SRB that has issued the SYSEVENT ENCASSOC to associate the enclave with an address space.

Note: An address space must be non-swappable if it has enclave SRBs dispatched and SYSEVENT ENCASSOC has **not** been issued.

For an address space that is being managed to an enclave's goal, be aware of the following:

- It is assumed that no work consuming significant CPU service is running in the address space outside of an enclave. The CPU consumption of work running outside of enclaves is not included when workload management assesses the impact of CPU adjustments for the enclave work.
- A page fault incurred by a dispatchable unit (task or SRB) while running in the enclave is accounted for in the enclave's service class period as server private area page delay rather than as a cross-memory page delay.

Using ENQ/DEQ or Latch Manager Services with Enclaves

There are some considerations to be aware of when using enclaves for tasks or SRBs that serialize on resources using the ENQ macro or the latch manager callable services. A task cannot change its transaction status, that is, cannot join or leave an enclave, while holding a resource using ENQ or the latch manager; an SRB cannot issue SYSEVENT ENCASSOC while holding a resource using the latch manager. Otherwise, enqueue promotion processing may not work properly.

The recommended sequence is:

- Task: Join an enclave using IWMEJOIN or IWM4STBG. SRB: Associate enclave with an address space using SYSEVENT ENCASSOC.
- Obtain resource with ENQ or latch manager.
- Release resource.
- Task: Leave an enclave using IWMELEAV or IWM4STEN. SRB: Disassociate enclave from the address space using SYSEVENT ENCASSOC.

In addition, to ensure correct enqueue promotion processing, a task executing in an enclave should **not** make the following types of ENQ requests:

- Directed enqueues, that is, issuing the ENQ macro with the TCB= parameter
- Matching task enqueues, that is, issuing the ENQ macro with the MASID= and MTCB= parameters
Enclave Resource Accounting

The accounting for resources consumed by an enclave depends on whether it is an independent, work-dependent, dependent, or a foreign enclave.

A dependent enclave is a logical continuation of the transaction already active in a client's address space. Therefore, CPU and MSO service for a dependent enclave is included in the SMF 30 record of the owning address space, and in the SMF 72 record for the address space's transaction. MSO service for the enclave is calculated based on the frame count of the owning address space, not on frame usage in the address space(s) where the enclave is executing.

For an independent enclave and for work-dependent enclaves, CPU service is included in the SMF 30 record of the owning address space, and in the SMF 72 record for the enclave's service class or performance group period. MSO service is not calculated for either kind of enclave.

For dependent, work-dependent and independent enclaves, IOC service is included in the SMF 30 and 72 records associated with the address space where the enclave work is executing. SRB service for enclaves is always zero.

For a foreign enclave, CPU time is included in the SMF 30 record of the owning address space on the originating system. It is reported separately from local CPU time. CPU service is also included in the SMF 72 record on each system where the enclave executed.

Since CPU time used by foreign enclaves is included in the owner's SMF 30 record, it is not included in the SMF 30 records on the other systems where it actually executed. In order for those other systems to have some record of the CPU time used by foreign enclaves, an SMF 97 record is written for each SMF global recording interval. This SMF 97 record identifies the CPU time used by foreign enclaves during that interval, broken down by originating system. The installation can review the originating system's SMF 30 records to identify the specific jobs that consumed the CPU time in the foreign enclaves. Note that because data is collected asynchronously for the SMF 30 records, and because SMF intervals can vary from system to system, it may not be possible to exactly match SMF 30 times with SMF 97 times from one global interval to another.

Table 12 on page 50 compares control characteristics and resource accounting for independent, work-dependent, dependent and foreign enclaves.
Table 12. Enclave Characteristics and Resource Accounting. (a.s. = address space)

<table>
<thead>
<tr>
<th></th>
<th>Independent enclave</th>
<th>Dependent enclave</th>
<th>Foreign enclave</th>
<th>Work-dependent enclave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatchable unit</td>
<td>SRBs and/or tasks</td>
<td>SRBs and/or tasks</td>
<td>SRBs and/or tasks</td>
<td>SRBs and/or tasks</td>
</tr>
<tr>
<td>New transaction?</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
| Owner | Home space at the time IWM4ECRE is issued | Depends on the TYPE parameter passed to IWM4ECRE:
 - If TYPE=DEPENDENT, the home a.s. at the time the service was issued.
 - If TYPE=WORKDEPENDENT, the creating (dependent) enclave’s home a.s.
 - If TYPE=MONENV, the a.s. associated with the monitoring environment - see Note 1 | Owner of the original enclave | Owner a.s. of the creating independent enclave |
| Server | a.s. where enclave work is dispatched | | | |
| Service class/report class | Assigned based on attributes passed to IWM4ECRE (see Note 2) | Same as owner. | Same service & report class as original enclave. | Same as owning independent enclave’s |
| CPU time | Owner’s SMF30Cpt (total) owner’s SMF30Enc (independent and work-dependent enclaves only) | Owner’s SMF30Cpt (total) owner’s SMF30Det (dependent enclave only) | Owner’s SMF30MRI (for foreign ind. enclave) owner’s SMF30MRD (for foreign dependent enclave) | Owner’s SMF30Cpt (total) owner’s SMF30Enc (independent and work-dependent only) |
| CPU service by a.s.| Owner’s SMF30Csu (total) owner’s SMF30Ecu (independent and work-dependent enclaves only) | Owner’s SMF30Csu (total) | CPU time/SMF30MRA/256 * CPU coefficient (CPU coefficient can be obtained from SMF 72 record) | Owner’s SMF30Csu (total) owner’s SMF30Ecu (independent and work-dependent only) |
| CPU service by period | Enclave’s R723Ccpu | Owner’s R723Ccpu | Enclave’s R723Ccpu | Enclave’s R723Ccpu |
| DASD I/O connect time by a.s. (see Note 3) | Owner’s SMF30Eic (independent and work-dependent enclaves only) | Owner’s SMF30Aic (dependent enclave + a.s.) | n/a | Owner’s SMF30Eic (independent and work-dependent only) |
| DASD I/O connect time by period (see Note 3) | Enclave’s R723Cict | Owner’s R723Cict | Enclave’s R723Cict | Enclave’s R723Cict |
| DASD I/O counts by a.s. | Owner’s SMF30Eis (independent and work-dependent enclaves only) | Owner’s SMF30Eis (independent and work-dependent enclaves only) | n/a | Owner’s SMF30Eis (independent and work-dependent only) |
Table 12. Enclave Characteristics and Resource Accounting (continued). (a.s. = address space)

<table>
<thead>
<tr>
<th></th>
<th>Independent enclave</th>
<th>Dependent enclave</th>
<th>Foreign enclave</th>
<th>Work-dependent enclave</th>
</tr>
</thead>
<tbody>
<tr>
<td>DASD I/O counts by period</td>
<td>Enclave’s R723Circ</td>
<td>Owner’s R723Circ</td>
<td>Enclave’s R723Circ</td>
<td>Enclave’s R723Circ</td>
</tr>
<tr>
<td>Page delay samples, with storage mgt. (see Note 4)</td>
<td>Enclave’s R723Cspv</td>
<td>Owner’s R723Cspv</td>
<td>Enclave’s R723Cspv</td>
<td>Enclave’s R723Cspv</td>
</tr>
<tr>
<td>Page delay samples, without storage mgt. (see Note 4)</td>
<td>Enclave’s R723Caxm</td>
<td>Owner’s R723Caxm</td>
<td>Enclave’s R723Caxm</td>
<td>Enclave’s R723Caxm</td>
</tr>
<tr>
<td>IOC service</td>
<td>Server’s SMF 30 and 72 records</td>
</tr>
<tr>
<td>SRB service</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>MSO service</td>
<td>n/a</td>
<td>Owner’s SMF30Mso, based on owner’s frame count</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Notes:
1. The address space associated with the monitoring environment is one of the following:
 - The address space related to the monitoring environment via the IWMRELATE service
 - If there is no related space, the home space at the time IWM4MINI was issued
2. The attributes passed to IWM4ECRE are used with the classification rules in the active service policy to assign a service class and/or report class to the enclave.
3. Connect time is used as an example here. Other measures associated with I/O in the SMF records are:
 - DASD I/O disconnect time in fields SMF30EID, SMF30AID, R723CIDT, and SMF72IDT.
 - DASD I/O wait time in fields SMF30EIW, SMF30AIW, R723CIWT, and SMF72IWT.
4. Storage management is in effect for an enclave if either of the following is true:
 - The enclave includes one or more tasks.
 - The enclave includes at least one SRB which has issued the SYSEVENT ENCASSOC to associate itself with an address space.

Managing the Performance of Work in Enclaves

This section describes how to classify the work running in enclaves:
- Using Independent Enclaves
- Using Dependent Enclaves
- Using Work-dependent Enclaves

Using Independent Enclaves

You define a service class and a goal for work that is processed by the subsystem using the independent enclaves. Workload management then dynamically manages resource controls based on the goal.
For more information about defining performance characteristics for enclaves, see z/OS MVS Planning: Workload Management.

Example

Suppose your installation has a subsystem called DDF that uses enclaves for its distributed work requests. Your installation is running in goal mode with an active policy. To define the performance characteristics for the work scheduled to an enclave, you do the following:

- Define a workload and a service class for DDF work using the WLM ISPF application:

 Service Class: DDF_ALL
 Goal: 5 second response time
 Importance: 3

- Using the WLM ISPF application, define a classification rule for the DDF subsystem type where all work goes into the DDF_ALL service class.

 Subsystem Type: DDF

 ---------Class----------
 Service Report
 DEFAULTS: DDF_ALL

 --------Class---------
 Service Report
 DEFAULTS: DDF_ALL

- Install the service definition.
- Activate the service policy.

Using Dependent Enclaves

Dependent enclaves are managed to the performance goal of the owning address space, so there is no need to separately classify dependent enclaves, or to define separate service classes or performance groups for them.

Using Work-dependent Enclaves

Work-dependent enclaves inherit their classification from the owning independent enclave and are thus managed to the independent enclave’s performance goal.

Querying an Enclave’s Classification Information

A caller can use the IWMECQRY macro to determine the classification information about an enclave. The classification information is that information passed on the IWMCLSFY macro for an independent enclave or inherited from the owning address space for a dependent enclave. For details on IWMCLSFY, see Chapter 12, "IWMCLSFY – Classifying Work," on page 139.
Example

To determine the classification attributes associated with an enclave represented by ETOKEN, first issue IWMECQRY to determine the length of the storage required to contain the classification information. The length of the area is dependent on the MVS release. Specify:

IWMECQRY ETOKEN=etoken,
 ANSAREA=ansarea,
 ANSLEN=anslen,
 QUERYLEN=querylen

where the calling program has defined the following, and ansarea and anslen are set to zero:

etoken DS FL4 enclave token
ansarea DS A Area to contain address of classification
anslen DS A Length of the answer area
querylen DS A Length of storage required

Obtain the amount of storage passed back in querylen and set anslen equal to querylen. Set ansarea to point to the storage and issue IWMECQRY again for the enclave classification information:

IWMECQRY ETOKEN=etoken,
 ANSAREA=ansarea,
 ANSLEN=anslen,
 QUERYLEN=querylen

Querying a Dispatchable Unit’s Enclave Status

A caller can use the IWMESQRY macro to determine whether the current dispatchable unit is associated with an enclave. If the dispatchable unit is associated with an enclave, the service returns the enclave token.

Deleting an Enclave

A caller can delete an enclave using the IWM4EDEL macro. If the enclave is registered, it is only logically deleted. That is, it remains available until it is no longer registered by any subsystem.

When the enclave is deleted, the following occurs for each remaining dispatchable unit:

- SRBs:
 Each SRB belonging to the enclave is changed to a preemptable SRB and run at the dispatching priority of the current home address space (the address space into which the SRB was scheduled). The subsystem can purge SRBs using the PURGEDQ macro when the enclave still exists in the system. In most cases, this prevents the SRB from existing beyond the life of the enclave. For information on how to use PURGEDQ, see Z/OS MVS Programming: Authorized Assembler Services Guide.

- Tasks: If an enclave ends with tasks still joined to the enclave, the tasks revert back to ordinary non-enclave tasks.
A foreign enclave is deleted using the IWMUIMPT macro. Work-dependent enclaves are implicitly deleted when the owning independent enclaves get deleted.

For information about the IWM4EDEL macro, see Chapter 72, “IWM4EDEL – Deleting an Enclave,” on page 603.

Example

To delete an enclave, specify the following:

```
IWM4EDEL ETOKEN=etoken,
    RETCODE=retcode,
    RSNCODE=rsncode
```

where the calling program has defined the following:

```
etoken DS FL4 Enclave token
retcode DS CL4 Return code
rsncode DS CL4 Reason code
```
Chapter 4. Participating in Enterprise Workload Management

Enterprise Workload Manager (EWLM) is a systems service of the IBM Virtualization Engine™. Virtualization Engine is a set of technologies and systems services that allow system administrators to access and manage resources across multiple platforms (z/OS, AIX, i5/OS, Windows, Solaris and Linux). The EWLM systems service allows you to define business-oriented performance goals for an entire domain of servers across multiple platforms, and then provides an end-to-end view of actual performance relative to those goals.

For example, a multi-platform environment might include:

- A Web server tier running Windows
- An application server tier running AIX
- A database tier running z/OS

To ensure that work requests are performing as expected in this environment, you must be able to track the performance of those requests across server and subsystem boundaries. EWLM allows you to do that.

EWLM uses middleware that has been instrumented with the Open Group’s Application Response Measurement (ARM) 4.0 standard. ARM 4.0 provides a set of interfaces that an application calls; these are then used by EWLM to calculate the response time and status of work processed by the application.

In a multi-tiered environment, what is perceived as one transaction may be implemented as many sub-transactions across several different applications. To relate the sub-transactions with one another, ARM 4.0 uses correlators. Relationships are established by passing the correlator of a parent sub-transaction to its child sub-transactions. The correlator for a parent sub-transaction, that is, a correlator that is passed from the sending application tier, is called a parent correlator. A correlator for its child sub-transaction is called a current correlator.

Ordinarily, applications that participate in EWLM use standard instrumentation based on the ARM 4.0 Java, C or C++ language bindings. However, because applications that use the WLM enclave services are already instrumented, WLM provides support for EWLM through a set of new and enhanced enclave services.

The WLM support for EWLM is effective only if the ARM agent is enabled and an EWLM policy is installed. Operators can control the state of the ARM agent by disabling or enabling the function from an operator console at any time with the F WLM,AM command. Additionally, the current state of the ARM agent can be displayed by the operator command D WLM,AM. For more information, see z/OS MVS System Commands.

For more information on Virtualization Engine and EWLM, including using the ARM APIs to instrument an application, see the eServer Information Center on the Internet at http://publib.boulder.ibm.com/eserver/v1r1/en_US/index.htm?info/icmain.htm

For more information on enclaves, see Chapter 3, “Creating and Using Enclaves,” on page 33.
Enclave Services and EWLM

The enclave services related to EWLM are:

- **IWM4CON**. This service connects a calling address space to WLM and optionally indicates that this work manager will participate in EWLM.
- **IWM4DIS**. This service allows the caller to disconnect from WLM. If the caller is connected as an EWLM participant, participation with EWLM is terminated.
- **IWMCLSFY**. This service associates a service class and possibly a report class with an arriving work request. With respect to EWLM, this service allows you to specify the correlator of a parent work request to start a new sub-work request, either implicitly, when creating an enclave, or explicitly, with the use of the IWMESTRT service.
- **IWM4ECRE**. This service creates an enclave. An optional parameter indicates whether the work manager starts a new EWLM work request implicitly.
- **IWM4EDEL**. This service stops all existing work requests that are still active and then deletes an enclave.
- **IWMESTRT**. This service allows work managers that participate in EWLM to explicitly indicate the start of an EWLM work request.
- **IWMESTOP**. This service allows work managers that participate in EWLM to explicitly indicate the end of an EWLM work request and all of its sub-work requests.
- **IWMEBLK**. This service allows work managers that participate in EWLM to indicate that processing of a work request is blocked while it waits for a sub-work request in another application to complete.
- **IWMEUBLK**. This service allows work managers that participate in EWLM to indicate that processing of a work request is no longer blocked.
- **IWMEGCOR**. This service allows work managers that participate in EWLM to retrieve the correlator for a given work request handle or the maximum length of a correlator.

Modelling Your Business Transactions

With the introduction of support for EWLM, there are two ways of modelling your business transactions:

- Using enclaves without EWLM participation
- Mapping EWLM work requests, either closely or loosely, to enclaves

Using Enclaves without EWLM Participation

With this model, a business unit of work is represented by the lifetime of the enclave under which it will be processed, that is, from the time the enclave is created until it is deleted. At the time the enclave is created, the business unit of work is classified and assigned a WLM service class. The work manager does not further interact with EWLM to identify when such a business unit of work starts and stops, and the work manager is not an EWLM participant.

Mapping EWLM Work Requests to Enclaves

With the EWLM model, a business transaction is measured by the EWLM ARM agent and may be referred to as a *work request*. A work request lasts from the time it is started until the time that it is stopped. Only EWLM participants can start and stop work requests. Work requests are mapped to an enclave, as the enclave is the MVS means to manage (with SRM) transactions directly across address space boundaries.
Work requests may be started and stopped explicitly by the EWLM-participant application. In this case, the work requests can be said to be loosely mapped to enclaves. Alternatively, work requests may be started implicitly when the enclave is created, and stopped implicitly when the enclave is deleted. In this case, the work requests can be said to be closely mapped to enclaves. Note that such work requests do not differ from the non-EWLM model, except that:

- EWLM is notified about the work request’s start and stop time
- EWLM may optionally classify the work request based on its end-to-end policy

It is also possible to combine the explicit and implicit starting and stopping of work requests. For example, a work request may be started explicitly but stopped implicitly. The possibilities, along with the associated WLM services, are shown in Table 13.

Table 13. Starting and Stopping Work Requests

<table>
<thead>
<tr>
<th>Start</th>
<th>WLM Service</th>
<th>Stop</th>
<th>WLM Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit</td>
<td>IWM4ECRE</td>
<td>Implicit</td>
<td>Work request is stopped by IWM4EDEL</td>
</tr>
<tr>
<td></td>
<td>IWM4ECRE</td>
<td>Explicit</td>
<td>IWMESTOP</td>
</tr>
<tr>
<td>Explicit</td>
<td>IWM4ECRE with ESTRT=EXPLICIT and subsequent IWMESTRT</td>
<td>Implicit</td>
<td>Work request is stopped by IWM4EDEL</td>
</tr>
<tr>
<td></td>
<td>IWM4ECRE with ESTRT=EXPLICIT and subsequent IWMESTRT</td>
<td>Explicit</td>
<td>IWMESTOP</td>
</tr>
<tr>
<td>Explicit</td>
<td>IWM4ECRE with ESTRT=EXPLICIT_SINGLE and subsequent IWMESTRT</td>
<td>Implicit</td>
<td>Work request is stopped by IWM4EDEL</td>
</tr>
<tr>
<td></td>
<td>IWM4ECRE with ESTRT=EXPLICIT_SINGLE and subsequent IWMESTRT</td>
<td>Explicit</td>
<td>IWMESTOP</td>
</tr>
</tbody>
</table>

An EWLM participant can process multiple single work requests under the same enclave. The underlying assumption is that an enclave can only process one work request at a time. Within a work request, however, processing of sub-work requests is allowed. The ARM transaction model requires that nested sub-work requests be completed before the nesting work request completes. WLM enforces this requirement.

Connecting with WLM as an EWLM-Participant

A work manager becomes an EWLM participant when it connects to WLM through the IWM4CON service with the following options:

- WORK_MANAGER=YES
- EWLM=YES

An optional GROUPNM parameter specifies an application group to which the work manager belongs.

The IWM4CON service connects a subsystem to WLM so that workload manager services can be used. Note that the default for the EWLM parameter is NO, which indicates that:

- The work manager interacts only with WLM. No interaction with EWLM takes place.
The use of the IWMESTRT and IWMESTOP services, as well as the use of the
ESTRT parameter on the IWM4ECRE service, is not permitted.

For more information, see Chapter 69, “IWM4CON – Connecting to Workload
Management,” on page 563.

Disconnecting from WLM

The IWM4DIS service allows the caller to disconnect from the workload
management services, and thus also terminate EWLM participation. For more
information, see Chapter 70, “IWM4DIS – Disconnecting from Workload
Management,” on page 583.

Creating an Enclave

The IWM4ECRE service creates an enclave. An optional parameter indicates
whether the work manager implicitly starts an EWLM work request:

- ESTRT=IMPLIED specifies that a work request is started implicitly when the
 enclave is created.
- ESTRT=EXPLICIT specifies that the work manager explicitly indicates the start of
 an EWLM work request by invoking the IWMESTRT service.
- ESTRT=EXPLICIT_SINGLE specifies the same as option ESTRT=EXPLICIT and, in
 addition, the application ensures that only one work request is active. No
 nested calls to IWMESTRT are allowed.

If the ESTRT=EXPLICIT_SINGLE option is specified, the CPU consumption on
all EWLM enclave services (IWMEGCOR, IWMESTRT, IWMESTOP, IWMEBLK,
IWMEUBLK) will be reduced.

For further details refer to the corresponding macro descriptions.

- ESTRT=NEVER specifies that this enclave will never use any EWLM-related
 enclave services (IWMEGCOR, IWMESTRT, IWMESTOP, IWMEBLK,
 IWMEUBLK) after the enclave has been created, even if the work manager has
 registered (IWM4CON or IWMCONN) with EWLM=YES. Also, IWM4ECRE will
 not start an EWLM work request on the enclave and will not do any
 EWLM-related processing.

The use of the ESTRT parameter is allowed only when the work manager
previously connected to WLM with IWM4CON EWLM=YES.

An optional parameter, WORKREQ_HDL, allows the caller to get the work request
handle of an implicitly created work request. The handle can be used subsequently
with any of the other new services (IWMEBLK, IWMEUBLK, IWMESTOP and
IWMEGCOR). The WORKREQ_HDL parameter is valid only with ESTRT(IMPLIED).

For more information, see Chapter 71, “IWM4ECRE – Creating an Enclave,” on
page 591.

Deleting an Enclave

The IWM4EDEL service stops all existing work requests that are still active and
then deletes an enclave.

Classifying Work Requests

For WLM management and reporting purposes, classification is done when an
enclave is created. The resulting service class is assigned to the enclave and
remains until the enclave is deleted.
For EWLM purposes, classification for an EWLM-participant work request is always done at the first hop, that is, the first application tier in a domain that accepts a request. Subsequent tiers usually do not classify the work request again unless the domain border has been crossed or different EWLM policies are installed on the sending and receiving tier. However, each time a new work request is started, a new correlator is created that must be obtained and forwarded to each subsequent application tier, if any. To obtain the correlator, you use the IWMEGCOR service.

If the work manager represents the first hop, the classification structure mapped by the IWMCLSFY service is used to classify the work request. To specify the EWLM correlator associated with the parent correlator, you use the EWLM_CORR parameter on the IWMCLSFY service.

The parent correlator is the correlator that is passed from the sending application tier. It contains, among other information, the transaction class of the work request. When a sub-work request is started, the parent correlator must be used to indicate to EWLM that a sub-work request is to be started, and the current correlator can be derived from the parent correlator. Otherwise, the current correlator is generated by classifying the new work request.

z/OS passes classification attributes to ARM as property names. These attributes are used in case EWLM classification on z/OS is required, for example, because no correlator was passed into an EWLM participant, or the work manager represents the first hop. For EWLM classification it is critical that these names are in upper case in the EWLM policy. The attribute value, however, can be upper or lower case.

The classification attributes passed to ARM are:
- ACCTINFO
- COLLECTION
- CONNECTION
- CORRELATION
- LUNAME
- NETID
- PACKAGE
- PERFORM
- PLAN
- PRCNAME
- PRIORITY
- PROCESSNAME
- SCHEDENV
- SUBCOLN
- SUBSYSPM
- TRXCLASS
- TRXNAME
- USERID

For details on the attributes, see Chapter 12, “IWMCLSFY — Classifying Work,” on page 139.
Starting and Stopping Work Requests Explicitly

WLM services allow work managers that are EWLM participants to explicitly indicate the start and end of an EWLM work request:
- IWMESTRT, for start
- IWMESTOP, for stop

Required parameters for each service specify the enclave under which the work request is processed and the handle that represents the work request. On IWMESTRT you also specify classification attributes and a parent correlator when a sub-work request should be started.

For more information, see Chapter 27, “IWMESTRT – Starting a Work Request,” on page 261 and Chapter 26, “IWMESTOP – Stopping a Work Request,” on page 253.

Continuing a Work Request at Another Application

To continue a work request at another application, a work manager must pass the correlator of the current work request to that application. To retrieve the correlator for a given work request handle, you use the IWMEGCOR service. The service can also be used to return the maximum length of a correlator. The receiving application would in turn use this correlator as the parent correlator to start a sub-work request.

Blocking/Unblocking Work Requests

Services are provided for the blocking and unblocking of work requests. You would block the processing of a work request when it is waiting for a work request in another application to complete.
- IWMEBLK indicates that processing of a work request is blocked.
- IWMEUBLK indicates that processing of a work request is no longer blocked.

For more information, see Chapter 17, “IWMEBLK – Work Request Blocked,” on page 191 and Chapter 29, “IWMEUBLK – Work Request No Longer Blocked,” on page 275.

Enclave Services and the ARM API

For a work manager that is an EWLM participant, the enclave services internally invoke the ARM services. A work manager becomes an EWLM participant when it connects to WLM through the IWM4CON service with EWLM=YES. Table 14 shows the ARM services that are invoked by the enclave services.

<table>
<thead>
<tr>
<th>Enclave Service</th>
<th>Description</th>
<th>ARM Service</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWM4CON</td>
<td>Connect to WLM, identify the work manager as an EWLM participant</td>
<td>arm_register_application</td>
<td>app_name = SUBSYS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>arm_register_transaction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>arm_start_application</td>
<td>app_group_name = GROUPNM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>app_instance_name = SUBSYSNM</td>
</tr>
<tr>
<td>IWM4ECRE with ESTRT(IMPLIED)</td>
<td>Create an enclave</td>
<td>arm_start_transaction</td>
<td></td>
</tr>
<tr>
<td>IWMESTRT</td>
<td>Start a work request</td>
<td>arm_start_transaction</td>
<td></td>
</tr>
<tr>
<td>IWMESTOP</td>
<td>Stop a work request</td>
<td>arm_stop_transaction</td>
<td></td>
</tr>
<tr>
<td>IWMEBLK</td>
<td>Indicate that processing of a work request is blocked</td>
<td>arm_block_transaction</td>
<td></td>
</tr>
</tbody>
</table>
Table 14. WLM Enclave Services and ARM APIs (continued)

<table>
<thead>
<tr>
<th>Enclave Service</th>
<th>Description</th>
<th>ARM Service</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWMEUBLK</td>
<td>Indicate that processing of a work request is no longer blocked</td>
<td>arm_unblock_transaction</td>
<td></td>
</tr>
<tr>
<td>IWMEDELE</td>
<td>Delete an enclave</td>
<td>arm_stop_transaction (if applicable)</td>
<td></td>
</tr>
<tr>
<td>IWM4DIS</td>
<td>Disconnect from WLM</td>
<td>arm_destroy_application</td>
<td></td>
</tr>
</tbody>
</table>

Instrumenting a C Application for ARM

The sections that follow describe how to instrument, compile, bind and run an ARM-instrumented application on z/OS.

Using the ARM Services for Instrumenting Applications and for Managing ARM Transactions on z/OS

Supporting Transaction Management

The services arm_start_transaction and arm_stop_transaction indicate the beginning and the end of an ARM transaction. Starting with z/OS V1R10 the ARM services support using enclaves. Thus, ARM transactions can now be managed individually on z/OS.

To allow for transaction management, you must code the arm_bind_thread() and arm_unbind_thread() services in their applications to indicate that the current thread (TCB) is now performing on behalf of a specified transaction. Only when you use the arm_bind_thread() and arm_unbind_thread() services, WLM is able to track the thread. WLM can then assign the necessary resources to that unit of work to help the transaction to reach its goals.

Note: The z/OS implementation of arm_bind_thread() and arm_unbind_thread() conform to the original EWLM R1 semantic specifications, for example, threads are implicitly unbound by arm_stop_transaction() or arm_discard_transaction().

A sample C-program IWMSARM4 that demonstrates the usage of the services and the new sub-buffers is available in SYS1.SAMPLIB(IWMSARM4). A sample JCL to compile, bind and run this application is provided in SYS1.SAMPLIB(IWMCARM4).
To understand the management of ARM transactions on z/OS it is important to understand that a distributed transaction on a single z/OS system is managed as a whole – even if it spans several address spaces (see Figure 11).

When WLM running on a z/OS system first detects of an ARM-instrumented transaction (when the first application A1 performs an arm_start_transaction in the example above) a management control block (enclave) is created. Later on, when application A2 performs its arm_start_transaction call, the same control block (enclave) is used to track the transaction. Of course it is necessary to pass the current_correlator c1 from the arm_start_transaction call in A1 to application A2 and use that correlator as the parent_correlator in the arm_start_transaction call in A2 (and equally so for additional applications A3, A4 etc.) The correlator is used by WLM to find out that A1 and A2 are working on behalf of the same transaction.

Each application in a transaction call sequence needs to indicate that it wants its transactions to be managed towards transaction goals (see next chapter). For example, if A1 has indicated transaction management, but A2 has not, and just because A1 passes a correlator to A2, A2 will not be managed towards transaction goals.

In an A1->A2->A3 scenario where every application correlates properly, but only A1 and A3 have indicated transaction management, A1 and A3 are managed together, but A2 is not.
z/OS ARM Sub-buffers to Support WLM management
Two z/OS-specific ARM sub-buffers support ARM-instrumented application on z/OS. The first one is for arm_register_application(), the second is for arm_start_transaction().

The sub-buffers are defined in header file <armewlm.h> and are located in data set SYS1.SIEAHDRV.H(ARM4EWLM). The sub-buffers have the following names:
- arm_subbuffer_zos_connect_t
- arm_subbuffer_zos_classify_t

These sub-buffers provide WLM with the information that it needs to connect to WLM for management purposes and to specify WLM classification attributes.

New Sub-buffer arm_subbuffer_zos_connect: Use sub-buffer arm_subbuffer_zos_connect to specify the attributes for the connection of the ARM-instrumented address space (application) to WLM. It can be provided as a sub-buffer with the format_id=ARM_SUBBUFFER_ZOS_CONNECT (-30400) on an arm_register_application service call. WLM needs this sub-buffer to manage individual transactions.

Figure 12 shows the layout of the sub-buffer and the parameters which can be passed to the arm_register_application service where:
- The subsys and subsysName parameters are required
- groupName is an optional parameter

Specify all character parameters in the character set that the application uses (arm_charset_t). There is no restriction for an application using EBCDIC (IBM-1047) or US-ASCII encoding. For UTF8 and UTF16, the strings are restricted to characters from the US-ASCII (codepoints 0..127) subset.
The subsys parameter also determines the subsystem type parameter that can be specified in the WLM Administrative Application, for example, the sample application in SYS1.SAMPLIB(IWMSARM4) refers to a subsystem type of “STOK” that could be defined in the WLM classification rules as follows:

Subsystem Type Selection List for Rules

<table>
<thead>
<tr>
<th>Command</th>
<th>Subsystem Type Selection List for Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action Codes:</td>
<td>1=Create, 2=Copy, 3=Modify, 4=Browse, 5=Print, 6=Delete, /=Menu Bar</td>
</tr>
<tr>
<td>Action Type Description Service Report</td>
<td></td>
</tr>
</tbody>
</table>

New Sub-buffer arm_subbuffer_zos_classify:

ARM service arm_start_transaction can associate a starting transaction to a WLM enclave. The new enclave has to be classified to a WLM service class. This is accomplished by passing the WLM classification attributes in a new (optional) z/OS sub-buffer arm_subbuffer_zos_classify with format_id=ARM_SUBBUFFER_ZOS Classify (-30401). The values of the classification attributes can then be used in classification rules of the WLM Administrative Application to associate a specific service class with a transaction. If the sub-buffer is not present but

Figure 12. Sub-Buffer arm_subbuffer_zos_connect
arm_subbuffer_zos_connect has been specified on the arm_register_application call, the transaction will be assigned the default service class for the subsystem.

Figure 13 on page 66 shows the layout of this sub-buffer and the parameters which can be passed to the arm_start_transaction service. The parameters are the same as those specified on the WLM IWMCLSFY service. Specify all character parameters in the character set that the application uses (arm_charset_t). There is no restriction for an application using EBCDIC (IBM-1047) or US-ASCII encoding. For UTF8 and UTF16 the strings are restricted to characters from US-ASCII (codepoints 0..127) subset.
When compiling an ARM-instrumented application, the application should use `#include "arm4.h"` to include the ARM header file. As a result, the arm4.h header file library, SYS1.SIEAHDRV.H, must be included in the SEARCH/LSEARCH path.
Using the C/C++ Compiler in BATCH

Figure 14 shows sample JCL that illustrates the required options to compile an ARM-instrumented 31-bit XPLINK application in MVS batch.

```
/MYJOB jobcard
/**
// JCLLIB ORDER=CBC.SCCNPRC
/**
//COMPILE EXEC CBCC,
//   CPARM='OPTF(DD:OPTIONS)',
//   INFILE='mysource(mymember)',
//   OUTFILE='myobjectdeck(mymember),DISP=SHR'
//COMPILE.OPTIONS DD *
LSEARCH(//'SYS1.SIEAHDRV.+')
SEARCH(//'SYS1.SIEAHDRV.+')
LANGLEVEL(EXTENDED)
XPLINK  Non-XPLINK: omit, 64BIT: LP64
SOURCE
other options
```

Figure 14. Sample JCL for Compiling an ARM-instrumented Application in MVS Batch

For a 31-bit non-XPLINK application, omit XPLINK (third line from the bottom in the example).

For a 64-bit application, specify the LP64 option instead of XPLINK. (The LP64 option is supported by the z/OS V1R6 or higher C/C++ compiler.)

Using the C/C++ Compiler under z/OS UNIX System Services

Run the c89 or c++ z/OS UNIX System Services shell command to compile your program and store the object. For C++ compiles add the -+ option. Table 15 shows examples of compiling under z/OS UNIX System Services in the various environments.

<table>
<thead>
<tr>
<th>Environment</th>
<th>Sample Command</th>
</tr>
</thead>
</table>
| 31-bit XPLINK | c++ -c -o mymain.o -Wc,"DLL,XPLINK,LANGLEVEL(EXTENDED)" \
| | -I"'SYS1.SIEAHDRV.++"" mymain.c |
| 31-bit non-XPLINK| c++ -c -o mymain.o -Wc,"DLL,LANGLEVEL(EXTENDED)" \
| | -I"'SYS1.SIEAHDRV.++"" mymain.c |
| 64-bit | c++ -c -o mymain.o -Wc,"DLL,LP64,LANGLEVEL(EXTENDED)" \
| | -I"'SYS1.SIEAHDRV.++"" mymain.c |

Binding an ARM-instrumented Application

Using the Binder in BATCH

Figure 15 on page 68 shows sample JCL that illustrates the required options to compile an ARM-instrumented 31-bit XPLINK application in MVS batch.
For 31-bit non-XPLINK applications, use the procedure CBCB rather than CBCXB (line 5 in the example), and specify SIEASID member LARM431 rather than LARM43X (third line from the bottom in the example).

For 64-bit applications (compiled with compiler option LP64) use the procedure CBCQB rather than CBCXB (line 5 in the example), and specify SIEASID member LARM464 rather than LARM43X (third line from the bottom). In addition, specify an ENTRY point for the binder of CELQSTRT instead of CEESTART (second line from the bottom).

Using the Binder under z/OS UNIX System Services

Run the c89 / c++ command specifying the appropriate side-deck for the ARM DLL and the correct binder options. Table 16 shows sample commands for 31-bit and 64-bit environments.

<table>
<thead>
<tr>
<th>Environment</th>
<th>Sample Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-bit XPLINK</td>
<td>`c++ -o mymain -Wl,"DLL,XPLINK" mymain.o mymem2.o \</td>
</tr>
<tr>
<td></td>
<td>/usr/lib/libarm4_3x.x`</td>
</tr>
<tr>
<td>31-bit non-XPLINK</td>
<td>`c++ -o mymain -Wl,"DLL" mymain.o mymem2.o \</td>
</tr>
<tr>
<td></td>
<td>/usr/lib/libarm4_31.x`</td>
</tr>
<tr>
<td>64-bit</td>
<td>`c++ -o mymain -Wl,"LP64,DLL" mymain.o mymem2.o \</td>
</tr>
<tr>
<td></td>
<td>/usr/lib/libarm4_64.x`</td>
</tr>
</tbody>
</table>

Running an ARM-Instrumented Application

The ARM-instrumented application can run:

- In batch or as a started task
- Under z/OS UNIX System Services

Running an Application under z/OS UNIX System Services

To run an ARM application under z/OS UNIX System Services, you must ensure that the path /usr/lib is in the application's LIBPATH.
Chapter 5. Using the Queueing Manager Services

The queueing manager services are intended for queueing managers to use to manage server (execution) address spaces and the work requests they process to meet service class performance goals. Through queueing manager services, workload management maintains the queues for passing work requests from the queueing manager to its servers. A queueing manager is a subsystem that queues work requests to workload management for execution in server address spaces.

Workload management dynamically starts and maintains server address spaces as required to meet the queueing manager’s workload. Therefore, installations do not have to manage the address spaces manually, nor do they have to monitor workload fluctuations that change the number of address spaces needed for the work to meet its goals. Workload management automatically adjusts to changes in the workload.

For queue managers using the services, workload management spreads the work across multiple address spaces, providing workload isolation and greater scalability based on workload demands. For a queueing manager that queues and executes work all in the same address space, sometimes encountering storage overlay problems, the services provide an incentive to change to a multiple address space configuration.

This chapter describes how to use the queueing manager services, and suggests the information you should provide to your customers so they can properly set up the required service definitions.

Note: The queueing manager services uses application environments. (See “Updating a Service Definition with Application Environment Information” on page 77 for a discussion of defining policy for application environments.)

Example of Using the Queueing Manager Services

This section describes how a queueing manager can use the services to:
• Isolate different types of requests into separate server address spaces for integrity, security, and operational reasons.
• Classify work into service classes according to business goals.
• Manage the application execution in the server address space as a continuation of the originating unit of work.
• Specify dynamic management of server address spaces, and other resources to meet the service class goals of the work requests.
• Report service class goals against actual service class performance.
• Report response time information.

Figure 16 on page 70 shows an example of how a queueing manager can use the services. The example shows the services used to achieve the objectives listed above. The services are intended to be used with the enclave services, and must be used independently of the execution delay monitoring services.
The figure shows a queueing manager address space starting up, connecting to workload management, and queueing work requests to workload management. The server address spaces are created dynamically by workload management as needed. When the server initializes, it connects to workload management, which allows it to select work from the queues. The server address space indicates to workload management when each request starts and ends, so the work request can be properly managed and its performance statistics reported. The following steps describe the flow illustrated in Figure 16.

* Enclave can be created and deleted directly by the queueing manager as shown, or by its caller.

Figure 16. Services for a queueing manager
1. **Establish queueing manager**

 The queueing manager address space starts up through either a manual start or customer automation. During its initialization, it issues the IWM4CON service with the QUEUE_MANAGER=YES parameter, and provides the subsystem type (SUBSYS parameter), the subsystem name (SUBSYSNM parameter), and, optionally, the node name (NODENM parameter) to identify the type of work associated with the queueing manager. If you need to create an independent enclave, then the queueing manager should also specify WORK_MANAGER=YES (the default) on IWM4CON. If you are creating dependent enclaves, you do not need to specify WORK_MANAGER=YES.

 If the queueing manager needs to take some action when workload management deletes work requests that the queueing manager previously queued, specify a connect exit routine on the QMGR_EXIT@= parameter. Workload management deletes all queue requests when the queue manager disconnects from workload management or the application environment is deleted. This exit gets control when workload management has deleted a work element from its queue. Input to the exit is mapped by the list form of the IWMQCXIT macro. For information about the IWMQCXIT exit, see "Using the Queueing Manager Connect Exit" on page 77. Workload management provides the exit with the information passed to workload management when a work element is queued and an indication that the work element has been removed from the queue.

2. **Define dynamic application environment**

 Optionally, you can define a dynamic application environment using the IWM4AEDF service. The scope of this newly defined DAE only applies to the queueing manager that invoked this service. For further information, refer to Chapter 68, "IWM4AEDF — Defining Dynamic Application Environments to Workload Management," on page 553.

3. **Create enclave**

 The queueing manager receives a work request and must use an enclave to manage it. Depending on the environment, the queueing manager can use an existing enclave or create a new enclave, either dependent or independent, using the IWM4ECRE service.

 If running under the requestor's dispatchable unit, IWMESQRY can be used to determine whether the requestor belongs to an enclave and if so, which enclave. If running under a different dispatchable unit, it is the subsystem's responsibility to pass information on any existing enclave along with the work request. For example, the subsystem could pass information it obtained from IWMESQRY while running under the requestor's dispatchable unit.

 If the requestor does not belong to an enclave but has an address space transaction (for example, it is a TSO user or a batch job), the queueing manager can create a dependent enclave to represent a continuation of the requestor's transaction. This requires that the requestor be the home address space.

 If there is no existing enclave or address space transaction, such as when the requestor is on another system, the queueing manager must create an independent enclave to begin a new transaction. This requires the queueing manager to classify the work request.

4. **Queue request**

 The queueing manager uses the IWM4QIN service to add the work request to a workload management queue. The application environment, enclave token, and optional userid for resource access control are provided as input to workload management. The service class is determined from the enclave token, and the...
request is added to a queue associated with that service class within the specified application environment. You can optionally pass information to the server address space when it selects this work request. Workload management does not read or modify this data in any way.

Workload management stages work requests between the queueing manager address space and the server(s), but the queueing manager is still responsible for managing the flow of work requests and handling timeout and abnormal conditions where servers are failing to properly process requests. Workload management detects and reacts to certain error conditions such as JCL errors in the procedure used to start the server and repeated, unexpected terminations of the server address space. For more information, see “Defining Application Environments” in z/OS MVS Planning: Workload Management.

If the queueing manager needs to remove a work request that it previously queued through the IWM4QIN service before it has been processed by the server, it uses the IWM4QDE service. This service is provided for exceptional circumstances, such as:

- Timeout of the work request
- An external request to cancel a queued request
- Queueing manager recovery.

A queueing manager must not insert requests for a dynamic and static application environment with the same application environment name concurrently.

5. **Establish server address space**

When the first request is queued to an application environment, workload management detects that there are no active servers for the request, and automatically starts one. The MVS procedure name and start parameters are taken from the application environment definition in the service definition. As the workload fluctuates, workload management adjusts the number of server address spaces so the goals of the work are met.

When the server initializes, it must establish itself as a server address space using the IWM4CON service with SERVER_MANAGER=YES parameter, and indicate which application environment it is servicing. The subsystem type and name specified on the server connect must match the values specified on the associated queueing manager connect.

Workload management creates as many server address spaces as are needed to meet the goals of the work running in the servers, unless the application has limited the number of server instances that workload management can create using IWM4SLI.

Immediately after invoking IWM4CON, you have the option of using IWM4SLI to control the number of server instances that WLM will create. Use the AE_SERVERMAX parameter to establish a maximum number — this is particularly useful for applications such as MQSeries Workflow that connect to backend applications supporting a limited number of parallel connections. Use the AE_SERVERMIN parameter to establish a minimum number — this allows an application to keep a number of servers active, even during low utilization periods. In addition, you can specify AE_SPREADMIN=YES to ensure that the defined minimum number of servers are distributed evenly across all of the service classes used to execute work requests in the application environment.

There will be at least as many servers for an application environment as there are unique service classes associated with the work requests, even if the workload is low. This is so workload management can separately manage work with different service class goals.
Applications can optionally give workload management the control about the number of server instances per server address space. Directly after IWM4CON, you can use IWMSINF to obtain recommendations from workload management about the number of server instances to be started. WLM will pass the number of instances to be started in addition to the already running server instances to the server address space. The caller must have previously connected to WLM using the IWM4CON service specifying SERVER_MANAGER=YES, SERVER_TYPE=QUEUE, and MANAGER_TASKS=YES. See “Managing the Number of Server Instances per Server Address Space” on page 75 for a more detailed explanation on using IWMSINF.

Because the workload management services used by server address spaces are available to problem programs, a SAF call is made as part of the connection process to allow the installation to protect against malicious use or damage due to incorrect startup definitions. This SAF check permits the server address space to be totally unauthorized (no APF authorization required). The RACF-supported resource for this call is of the class SERVER and has the name:

sstype.subsys.applenv[.nodenm]

where:

- **sstype** is the subsystem type
- **subsys** is the subsystem name of the queueing manager address space
- **applenv** is the name of the application environment being serviced
- **nodenm** is an optional qualifier of the queueing manager

Workload management picks up these values from the IWM4CON parameters, SUBSYS=, SUBSYSNM=, APPLENV=, and NODEDM respectively. For more information, see “Workload Management Migration” in z/OS MVS Planning.

6. **Process work request**

 The server uses the IWM4SSL service to remove a work request from the queue associated with its application environment and service class. If no requests are queued, workload management suspends the task issuing the IWM4SSL until work is available. After a request is selected, the server uses the IWM4STBG service to indicate the processing of the request is beginning. At this point the task joins the enclave identified when the work was queued through IWM4QIN. When the server is finished processing the request, it uses the IWM4STEN service to cause the task to leave the enclave.

 Almost all of the processing in a server address space should be on behalf of a work request and occur between the IWM4STBG and IWM4STEN calls. A server address space should not have other tasks performing unrelated processing as this could interfere with effectively managing the enclave to its goals.

 If the queueing manager provided a userid on the IWM4QIN service, IWM4STBG sets up a SAF environment for the work request to control access to resources.

 Alternative task structures:

 This example shows a single task issuing the IWM4SSL, IWM4STBG, and IWM4STEN services: one task within the server address space selects work from the queue, processes the request, then loops back to select more work. Queueing manager services does not impose any rules limiting the ways a server can organize its tasks. The following task structures are also possible:

 - **Multiple tasks with single thread execution.**
One task selects work from the queue, selects a “worker” subtask to process
the request, posts the worker task, and then waits to be posted by the worker
task when the processing of the request is complete.

• Multiple tasks with parallel work selection and execution.

There is a set of “worker” subtasks within the server address space, each of
whom selects work from the queue, processes the request, and loops back to
obtain a new request.

At the time the server connects to workload management (IWM4CON), the
server must specify how many tasks will execute work in parallel
(PARALLEL_EU).

7. **Delete enclave**

The server address space informs the queueing manager using its own
interface that a work request is complete. If the queueing manager had
previously created an enclave for the work request, it determines if there are
other work requests active for the same enclave. If there are none, the
queueing manager deletes the enclave and returns to the originator of the
request.

8. **Terminate server address space**

Under normal circumstances, it is expected that a server address space will
continue to select work until told by workload management that the space is no
longer needed through a return and reason code (x'0C14') on the IWM4SSL
service. The server is then expected to complete any work requests already
selected, clean up, disconnect from workload management through the
IWM4DIS service, and terminate. Possible reasons for this IWM4SSL return
code are:

• The operator entered one of the following commands for the application
 environment:
 – VARY WLM,APPLENV=,QUIESCE
 – VARY WLM, DYNAPPL=,QUIESCE or
 – VARY WLM,APPLENV=,REFRESH
 – VARY WLM,DYNAPPL=,REFRESH
• A policy was activated from a new service definition which no longer includes
 the application environment associated with the server.
• WLM determines that the server is not needed to meet the goals of the
 enclave’s service class.

The server should make reasonable recovery attempts when errors occur. If the
server encounters a failure that forces it to terminate, it should disconnect from
workload management as part of its shutdown. If the server address space
terminates without explicitly disconnecting from workload management,
workload management detects the termination and performs the IWM4DIS
processing at that time. If workload management detects five unexpected server
disconnects or address space terminations within ten minutes, it will put the
application environment into a STOPPED state. This means that no new servers
are created for the application environment until the VARY
WLM,APPLENV=,RESUME or VARY WLM, DYNAPPL=RESUME command is
issued for it. Existing server address spaces continue to run work while the
application environment is in the STOPPED state, as long as they are operating
normally.

9. **Terminate queueing manager address space**

When the queueing manager terminates normally, it is expected to quiesce its
activities, drain its queues of pending work, and disconnect from workload
management using the IWM4DIS service. If the queueing manager address space terminates without first disconnecting from workload management, workload management detects the termination and performs the IWM4DIS processing at that time.

Workload management returns control immediately to the caller of IWM4DIS, and asynchronously performs server clean up. It purges all queued, but unselected, requests and attempts to terminate all associated server address spaces. Because workload management depends on server address spaces to terminate voluntarily when requested, and because workload management must wait for a server to request work prior to telling it to terminate, server address spaces could remain for a significant amount of time after the queueing manager terminates.

Managing the Number of Server Instances per Server Address Space

A server address space contains one or multiple server instances which all select work requests from a work queue. Without using the new interface IWMSINF, the server address space must tell WLM during start up how many server instances will be started (parameter: PARALLEL_EU on IWM4CON).

The new interface IWMSINF allows the application to obtain the number of server instances from WLM. The following Figure 17 shows an example on how the server manager address space can use IWMSINF.

1. To use the new interface, the server manager address space connects to WLM with IWM4CON specifying the option MANAGE_TASK=YES. All server address spaces which connect to the same application environment must specify the same setting of MANAGE_TASK. The options SERVER_MANAGER=YES and SERVER_TYPE=QUEUE have to be defined, too.

2. After connecting the server manager address space must invoke the new service IWMSINF to obtain the number of server instances to be started initially.
3. The server address space starts the server instances which select work from WLM by using IWM4SSL.

4. The server manager address space reinvokes IWMSINF again to “listen” for recommendations from WLM for the number of tasks to start.

5. If WLM wants to terminate one or multiple server instances, it resumes IWM4SSL with a new return code telling the server instance to terminate.

6. If WLM wants to terminate the server address space, it resumes IWM4SSL and IWMSINF with return code that tells the server to terminate.

Note: WLM can only manage the number of server instances per server address space if there is a linear relationship between the number of instances in an address space and the virtual storage consumed in the address space. This implies that all instances allocate about the same amount of virtual storage.

Directing Work Requests to a Specific Server Region

Existing workload manager interfaces allow a control region to queue work requests to a pool of server regions for a service class. The underlying assumption is that each work request represents one or multiple contiguous transactions. This transaction is represented by an enclave which is created when the work request is inserted and which is removed when the application completed its processing for the work request. It is assumed that no information is left in any temporary structure in the system for following work requests.

But there are cases where information must be preserved across multiple “independent” work requests. The information left behind lives only in the virtual storage of the address space. Following work requests requiring this information must now be directed to the server region which has this information.

The solution is that the server region is able to obtain a region token at select time (IWM4SSL) or connect (IWM4CON) and passes this region token to the queue manager. The queue manager is now able to route subsequent requests directly to this server region by specifying the region token on IWM4QIN. A new interface (IWM4TAF) allows the server or control region to mark the server region as being needed by follow-on work requests. WLM will ensure that server region stays alive until all temporal affinities have been removed.

Notes:

1. The requests which are directly routed to server regions are outside of the control scope of WLM. Therefore WLM is not able to manage the number of server regions properly if the majority of requests is directly routed to the regions and not queued for being picked up by the WLM managed server pool. It is assumed that requests which are outside of the scope of WLM represent only a minor portion of all work requests processed by the application.

2. The application should carefully use the new interface IWM4TAF. WLM will not terminate a server region if it is marked of having a temporal affinity. This can significantly delay the behaviour of WLM operator commands such as refresh and quiesce for these application environments. It is assumed that temporal affinities live only a short period (a few minutes) in the system and that they do not represent the majority of the work requests of the application (see also Note 1.)
Updating a Service Definition with Application Environment Information

When a customer installs a subsystem that makes use of the queueing manager services, the service administrator must define one or more application environments in the workload management service definition. An application environment is a group of application functions requested by a client which execute in a server address space. Workload management dynamically adjusts the number of address spaces servicing the application environment to meet the goals of the work.

If you use the queueing manager services, make sure to document the information needed by the customer’s service administrator to define the application environments. For example, you should provide the following:

- A technique for grouping work into application environments.
 Each application environment should represent a named group of server functions that require access to the same application libraries. Having a named group facilitates library security, application program change control, performance management, and system operation.
 For example, a set of related payroll applications might be grouped into one application environment because of their similar run-time requirements. The customer can name the application environment for these payroll applications in the service definition. Workload management then starts and stops server address spaces to process the work in the payroll applications.

- The queueing manager subsystem type
 The queueing manager specifies the subsystem type in the SUBSYS parameter of the IWM4CON service. A service administrator defines the subsystem type when specifying the application environment in the service definition. Make sure you do not use a subsystem type already in use by another subsystem.

- Samples of JCL start procedures and start parameters for a server address space.
 You should provide your customer with sample procedures and start parameters for the server address spaces.

For more information on how to define an application environment and a list of subsystem types currently used, see z/OS MVS Planning: Workload Management.

Note: When defining an application environment, you must specify whether or not workload management can start multiple address spaces for the subsystem. In the case of a queueing manager, you can only choose Option 1, Managed by WLM, or Option 2, Limited to a single address space per system. For more information, see the “Defining Application Environments” chapter in MVS Planning: Workload Management.

Using the Queueing Manager Connect Exit

A queueing manager can optionally provide the name of an exit routine on the QMGR_EXIT@ parameter of IWM4CON when it connects to workload management. Through this exit, the queueing manager is informed when workload management has had to delete queued work requests associated with the queueing manager. Workload management deletes all queued requests when:

- The installation deletes the application environment (that is, activates a service policy that does not contain the application environment).
- The queueing manager address space disconnects.

When the exit routine is invoked, register 1 contains the address of a parameter list mapped by the list form of the IWMQCXIT macro. The parameter list includes an indicator of what action workload management has taken and the input values specified previously by the queueing manager when it queued the work request using IWM4QIN.

The execute and standard form of IWMQCXIT are intended for use only by the operating system.

Exit Routine Environment

The queueing manager connect exit routine receives control in the following environment:

Authorization:
Supervisor state and PSW key 0

Dispatchable unit mode:
Task

Cross memory mode:
any PASN, any HASN, any SASN

AMODE:
31-bit

ASC mode:
Primary

Interrupt status:
Enabled for I/O and external interrupts

Locks:
No locks held

Serialization:
None

Location:
The connect exit must be a resident routine callable from any address space and must remain available after the queueing manager disconnects or terminates. Input parameter list is in the primary address space.

The input parameter list is in pageable storage addressable in the primary address space, but should not be changed by the exit.

Exit Recovery:
The system may discontinue calling the exit upon repetitive, abnormal completions, that is, where an error within the exit percolates to the system recovery routine. The exit may optionally establish a functional recovery routine (FRR) or ESTAEX for any needed recovery or cleanup of its resources.

Register Usage

Upon entry to the exit, the register contents are as follows:
- Register 0 = not defined
- Register 1 contains the address of the input parameter list
- Register 2-13 = not defined
Register 14 = return address
Register 15 - entry point address

Upon entry to the exit, the access register contents are undefined.

Upon return from the exit, the register contents are expected to be:
- Register 0 = reason code if GR15 return code is non-zero
- Registers 1-14 = not defined (need not be restored to value on entry).
- Register 15 = return code

Upon return from the exit, the access register contents are unchanged.

Restrictions

The exit routine should not invoke functions or suspend execution which could
prevent return to the caller for a protracted period. This includes the use of system
services which either explicitly or implicitly give control back to the system. In this
context, "protracted period" means durations of one second or longer. When such
processing is required, the exit should use asynchronous techniques.

Example

Following is an example of invoking the IWMQCXIT macro instruction and the
resulting parameter list mapping. This parameter list is passed to the queueing
manager connect exit specified on the QMGR_EXIT@ parameter of
IWM4CON.

```
IWMQCXIT MF=(L,MYQCXITPL)
MYQCXITPL DS 0D ++ IWMQCXIT PARAMETER LIST
MYQCXITPL_XVERSION DS XL1 ++ INPUT
MYQCXITPL_XRSV0001 DS CL1 ++ RESERVED
MYQCXITPL_XPLISTLEN DS XL2 ++ INPUT
MYQCXITPL_XACTION DS BL.8 ++ ACTION INDICATORS
MYQCXITPL_XACTION_QDEL EQU B'10000000'
++ INDICATES QUEUE ELEMENT DELETED
MYQCXITPL_XRSV0005 DS CL2 ++ RESERVED
MYQCXITPL_XSECUSER_OPTIONS DS BL.8
++ OPTIONS USED ON IWM4QIN
MYQCXITPL_XSECUSER_YES EQU B'10000000'
++ SECUSER=YES USED ON IWM4QIN
MYQCXITPL_XETOKEN DS CLB ++ ETOKEN VALUE FROM IWM4QIN
MYQCXITPL_XUSERDATA DS CL16 ++ USERDATA FROM IWM4QIN
MYQCXITPL_XRSV0020 DS CL4 ++ RESERVED
MYQCXITPL_XAPPLENV_ADDR DS A ++ ADDR OF APPLICATION ENVIRONMENT
MYQCXITPL_XUSERID DS CLB ++ USERID FROM IWM4QIN
MYQCXITPL_XRSV0030 DS CLB ++ RESERVED
MYQCXITPL EQU *-MYQCXITPL ++ LENGTH OF PARAMETER LIST
```
Chapter 6. Using the Routing Manager Services

A routing manager is a subsystem that establishes and manages connections between a client and a server address space. The routing manager handles these connections rather than individual work requests; the requests are processed only after they arrive in the server address space. The routing manager is responsible for balancing the client connections across a set of eligible servers, with the assistance of the routing manager services.

Routing manager services perform two main functions:

- Automatically starting and maintaining server address spaces as needed by the workload across the sysplex. Installations then do not have to manage the address spaces manually, nor do they have to monitor workload fluctuations that change the number of address spaces needed. Workload management automatically adjusts to changes in the workload.
- Balancing the workload among the servers in the sysplex by deciding on the best server and providing the server routing information when a server is requested by the routing manager.

Routing manager services differ from sysplex routing services in the following ways:

- Routing manager services provide automatic management of address spaces.
- Routing manager services include the server's performance index when selecting the best available servers.
- With routing manager services, workload management decides on a server and passes its identity to the routing manager, instead of offering the routing manager a choice of several servers.

This chapter presents a model of how the routing manager services are intended to be used. Routing manager services combines the use of the “find server” function with application environments and enclaves. See "Updating a Service Definition with Application Environment Information" on page 77 for a discussion of defining policy for application environments.

Note: When defining an application environment, you must specify whether workload management can start multiple or single address spaces for the subsystem. In the case of a routing manager, both Option 1, Managed by WLM, and Option 3, Limited to a single address space per sysplex are valid. For more information, see the “Defining Application Environments” chapter in MVS Planning: Workload Management.

It is strongly recommended that server address spaces associated with a routing manager use enclave services to manage the work requests according to goals set by the customer. Be aware that enclaves are mutually exclusive with the execution delay monitoring services described in earlier chapters. For a discussion of enclaves and a comparison to delay monitoring, see Chapter 3, “Creating and Using Enclaves,” on page 33.

A Routing Manager Model

This section presents a model of a routing manager which uses workload management services to accomplish the following objectives:

- Isolate different types of requests into separate server address spaces for integrity, security, and operational reasons.
- Have MVS adjust the number of server address spaces to meet the goals of the workload.
- Have MVS balance the workload across a sysplex by selecting the best system on which to start a server.
- Associate work coming into the server with a service class goal.
- Report goals versus actuals.
- Report response time information.

Figure 18 shows the suggested services for a routing manager for managing server address spaces and balancing workload.

Routing Manager Model

Figure 18 shows a routing manager connecting to workload management and establishing itself as a routing manager. It then issues a “find server” for each client.
request for server location. Workload management is then able to create server address spaces as needed and keep track of the servers across the sysplex. When the client contacts the server, the server creates an enclave on behalf of the client so the work request can be managed to the customer goals.

The detailed sequence of events in Figure 18 on page 82 is:

1. **Establish routing manager**
 The routing manager address space starts up through either a manual start or customer automation. During its initialization, it issues the IWM4CON service with the ROUTER=YES parameter to indicate the intent to use routing manager services. The routing manager supplies the subsystem type (SUBSYS parameter) and subsystem name (SUBSYSNM parameter). These parameters identify the type of work associated with the routing manager.

2. **Request server routing information**
 Once initialized in step 1, the routing manager is ready to receive requests to locate servers. In response to such a request, the routing manager calls the IWMSRFSSV service, passing the desired application environment name (via the APPLENV= parameter). The output returned will be the routing information needed for the client to contact the selected server directly. (The specific content of this information is defined by the client and passed by the server via the SERVER_DATA= parameter, as described in step 3.)

 If no eligible servers exist, workload management will proceed to step 3 to start a server.

3. **Establish server**
 If this step is necessary, the client program will be suspended until the new server address space is created (possibly on another MVS image). For an application environment defined for a routing server, workload management starts at most one server address space per system instance in the sysplex. The first server is started on the system with the most available capacity at the lowest importance level. Subsequent servers are started on other systems in the sysplex when the work running in the existing servers is not meeting its goals. However, if the workload diminishes for a routing manager, workload management does not decrease the number of servers in the sysplex. The number of servers remains at the high water mark.

 It is possible to run more than one instance of a subsystem in the sysplex, meaning they have the same subsystem type, and therefore the same application environments, but different subsystem names as specified on IWM4CON. The above rules for starting servers apply separately to each subsystem instance. In other words, for each instance, you can have up to one server per system per application environment.

 During server initialization, the server invokes the IWM4CON service with the SERVER_MANAGER=YES and SERVER_TYPE=ROUTER parameters, and information in the SERVER_DATA= parameter to uniquely identify the server. The subsystem type and name specified must match that of the associated routing manager instances which will route clients to the server (as defined in step 1). The WORK_MANAGER= parameter must remain the default YES so that the server can create independent enclaves in the next step. In addition, the address of an exit routine must be identified on the SRV_MGR_EXIT= parameter. Refer to "Using the Routing Server Connect Exit" on page 85.

 Workload management invokes this exit to initiate the shutdown of the server address space. The exit is expected to initiate the shutdown of the server address space. Input to the exit is mapped by the list form of the IWMSCXIT macro instruction. For more information on the quiesce process for an
application environment, see step 6 below, as well as the “Defining Application Environments” chapter in *MVS Planning: Workload Management*.

4. **Create enclave**
 The server address space receives a work request directly from the client and uses the IWM4ECRE service to create an enclave (normally one per request, depending on the definition of the request).
 For the duration of the processing of a request, the client task is joined to the enclave via the IWMEJOIN service so that it can be managed to the installation performance objectives. While the task is part of the enclave, it should only be doing work on behalf of the enclave. Upon completion of the request, the task leaves the enclave via the IWMELEAV service.

 Note: While IWM4STBG and IWM4STEN are similar in many ways to IWMEJOIN and IWMELEAV, they cannot be used here, as queueing services are not involved.

5. **Delete enclave**
 When work is completed, the server address space informs workload management via the IWM4EDEL service.

6. **Terminate server address space**
 Under normal circumstances, it is expected that a server address space terminates only when directed to do so by workload management through the connect exit. Possible reasons for the exit being invoked could be:
 - Operator entered a **VARY WLM,QUIESCE** or **VARY WLM,REFRESH** command
 - Policy activated from new service definition which no longer includes the application environment associated with the server.
 - WLM determines that the server is not needed to meet the goals of the enclave’s service class.
 The server is expected to complete any active work requests, clean up, and then disconnect and terminate from workload management through the IWM4DIS service.
 If the server encounters a failure that forces it to terminate, it should disconnect from workload management as part of its shutdown. If the server address space terminates without explicitly disconnecting from workload management, workload management detects the termination and performs the IWM4DIS processing at that time.

7. **Terminate routing manager address space**
 When the routing manager terminates normally, it is expected to quiesce its activities and disconnect from workload management using the IWM4DIS service. If the routing manager address space terminates without first disconnecting from workload management, workload management detects the termination and performs the IWM4DIS processing at that time. The disconnect and termination of a routing manager does not cause the related server address spaces to terminate. It is the responsibility of the subsystem to coordinate termination processing between the routing manager address space and the servers.
Using the Routing Server Connect Exit

A routing server must provide the name of an exit routine on the SRV_MGR_EXIT@ parameter of IWM4CON when it connects to workload management. The exit is invoked when workload management needs to inform the server to terminate during quiesce or refresh processing. When the exit routine is invoked, register 1 contains the address of a parameter list mapped by the list form of the IWMSCXIT macro instruction. The parameter list includes an indicator of the action the exit is to take and the connect token associated with the IWM4CON macro issued previously by the server.

The execute and standard form of IWMSCXIT are intended for use only by the operating system.

Exit Routine Environment

The server connect exit routine receives control in the following environment:

Authorization:
Supervisor state key 0

Dispatchable unit mode:
SRB

Cross memory mode:
PASN=HASN=SASN with the current home address space the same as when the server issued the IWM4CON macro instruction.

AMODE:
31-bit

ASC mode:
Primary

Interrupt status:
Enabled for I/O and external interrupts

Locks:
No locks held

Serialization:
It is possible for the exit to be called before the caller has received control back from IWM4CON. The exit or any program it drives (synchronously or asynchronously) must synchronize with the program issuing IWM4CON to ensure that IWM4CON has returned a connect token prior to issuing IWM4DIS (disconnect) or any other service that requires the connect token.

Location:
The server exit must be a resident routine callable from the server address space and must remain available after the server manager disconnects or after the termination of the server task which issued the IWM4CON. The exit need not persist after termination of the server address space.

The input parameter list is in pageable storage addressable in the current address space, but should not be changed by the exit.

Exit Recovery:
The system may cause the server to become ineligible to be recommended by IWMSRFSV (find server) if there have been repetitive errors in calling the exit. The exit may optionally establish a functional recovery routine (FRR) or ESTAEX for any needed recovery or cleanup of its resources.
Register Usage

Upon entry to the exit, the register contents are as follows:
- Register 0 = not defined
- Register 1 contains the address of the input parameter list
- Register 2-13 = not defined
- Register 14 = return address
- Register 15 = entry point address

Upon entry to the exit, the access register contents are undefined.

Upon return from the exit, the register contents are expected to be:
- Register 0 = reason code if GR15 return code is non-zero
- Registers 1-14 = not defined (need not be restored to value on entry)
- Register 15 = return code

Upon return from the exit, the access register contents are unchanged.

Example

Following is an example of invoking the IWMSCXIT macro instruction and the resulting parameter list mapping. This is the parameter passed to the routing server exit routine specified on the SRV_MGR_EXIT@ parameter of IWM4CON.

```
IWMSCXIT MF=(L,MYSCXITPL)
+MYSCXITPL DS 0D       ++ IWMSCXIT PARAMETER LIST
+MYSCXITPL_XVERSION DS XL1      ++ INPUT
+MYSCXITPL_XRSV0001 DS CL1      ++ RESERVED
+MYSCXITPL_XPLISTLEN DS XL2      ++ INPUT
+MYSCXITPL_XACTION DS BL.8       ++ ACTION INDICATORS
+MYSCXITPL_XACTIONQUIESCE EQU B'10000000'
    ++ INDICATES QUIESCE ACTION
+MYSCXITPL_XACTIONRESUME EQU B'01000000'
    ++ RESUME (NOT USED IN OS/390 R3)
+MYSCXITPL_XRSV0005 DS CL3      ++ RESERVED
+MYSCXITPL_XCONNTKN DS BL.32     ++ CONNECT TOKEN FROM IWM4CON
+MYSCXITPL_XRSV000C DS CL4       ++ RESERVED
+MYSCXITPLLEN EQU *-MYSCXITPL    ++ LENGTH OF PARAMETER LIST
```
Chapter 7. Using the Scheduling Environment Services

A scheduling environment is a list of resource requirements and their required states. It allows you to manage the scheduling of work in an asymmetric sysplex where the systems differ in installed applications or installed hardware facilities. If an MVS image satisfies all of the requirements in the scheduling environment associated with a given unit of work, then that unit of work can be assigned to that MVS image. If any of the resource requirements are not satisfied, then that unit of work cannot be assigned to that MVS image. See z/OS MVS Planning: Workload Management for information on using the WLM application to define scheduling environments.

Obtaining Scheduling Environment Definitions

Use the IWMSEQRY service to obtain scheduling environment and resource definitions and status on each system in the sysplex. This service can be used by a program to produce alternative displays to those provided by the DISPLAY WLM command.

In Figure 19 on page 88, IWMSEQRY returns the resource requirements in the DB2LATE scheduling environment (DB2A must be ON, PRIMETIME must be OFF), and the resource state settings on each of the four systems in the sysplex. Because DB2A is set to ON and PRIMETIME is set to OFF on SYS2, that system is identified as the appropriate system for work associated with the DB2LATE scheduling environment.
Manipulating Resource State Settings

Use the IWMSESET service to change resource state settings. The resource state can be changed only on the system in which the program is executing.

The resource states can be set to:
- **ON**, which will satisfy a resource state requirement of ON.
- **OFF**, which will satisfy a resource state requirement of OFF.
- **RESET**, which will not satisfy any resource state requirement.
In Figure 20, a program executing on SYS3 invokes IWMSESET to change the value of DB2A from OFF to ON. SYS3 now satisfies the DB2LATE resource requirements shown in Figure 19 on page 88 (DB2A ON and PRIMETIME OFF).
A Model Work Flow

Figure 21 shows how a multisystem work scheduler can use the IWMSEVAL and IWMSEDES services to implement support of scheduling environments.

Figure 21. Scheduling Environment Flow
In Figure 21 on page 90, work request ZJOB9 is submitted and associated with the DB2LATE scheduling environment.

The scheduler calls the IWMSEVAL service to verify that the scheduling environment name is valid. If there is no such scheduling environment known to workload management, then the scheduler fails the work request. If the scheduling environment name is valid, then the scheduler accepts the work request.

The scheduler creates a queue element for the work request. The scheduling environment name is included in that queue element, as well as a resource affinity mask. For each system in the sysplex, IWMSEDES will indicate whether that system satisfies the scheduling environment in question. The scheduler can then build the resource affinity mask, which is simply a 32-bit string of ones and zeros. A one means that the system satisfies the scheduling environment, and a zero means that the system does not satisfy the scheduling environment. The scheduler must keep an ordered list of system names corresponding to the bit positions in the mask.

In Figure 21 on page 90, the resource affinity mask for DB2LATE reads “0100”, because only SYS2 satisfies the DB2LATE scheduling environment.

Scheduling environment definitions and resource state settings can change at any moment. The scheduler must be aware of these changes so that it can adjust its decision-making accordingly. The scheduler listens for two ENF events, 41 and 57, which signal these changes:

41 A new service definition has been activated. When a new service definition is activated, resource names can be added to, or removed from, a scheduling environment. A particular scheduling environment or resource name may even have been deleted from the service definition altogether. (See note below.)

57 A scheduling environment has changed state on a system. It was not available and now is, or vice versa.

For more information about ENF, see z/OS MVS Programming: Authorized Assembler Services Guide.

For either event, the scheduler must reevaluate the status of each work request on the queue. It must rebuild the resource affinity masks to reflect the new scheduling environment definitions or the new resource state settings.

If a scheduling environment no longer exists, the scheduler can either delete the associated work requests or place them in a hold state for installation action. The latter choice is appropriate if it is important for the installation to be able to recover the work requests. The installation could recover by installing a new service definition that includes the deleted scheduling environment.

The final step in this work flow is when the work request moves from the queue to the appropriate system for execution. In Figure 21 on page 90, the ZJOB9 work request is scheduled on SYS2, as that is the only system that satisfies the DB2LATE scheduling environment.
Chapter 8. Using the Sysplex Routing Services

The sysplex routing services allow work associated with a server to be distributed across a sysplex. They are intended for use by clients and servers.

A client is any application or product in the network that requests a service. The service could be a request for data, a program to be run, or access to a database or application. In terms of the sysplex routing services, a client is any program routing work to a server. A server is any subsystem address space that provides a service on an MVS image.

The sysplex routing services provide the following functions:

- The **IWMSRSRG** macro lets a caller register as a server.
- The **IWMSRSRS** macro provides a caller with a list of registered servers and the number of requests that should be routed to each server.
- The **IWMSRDRS** macro lets a caller deregister when it is no longer available as a server.
- The **IWMSRDNS** macro provides the caller with list of location names for all registered servers known to the system on which the service is invoked.
- The **IWM4SRSC** macro provides the caller with server-specific information about the performance and capacity of a specific server before work gets routed to it from WLM. This information can be used for balanced routing decisions.

Why Use the Sysplex Routing Services?

The sysplex routing services enable distributed client/server environments to balance work among multiple servers. These services help the distributed programs make the routing decisions, rather than having each installation have to make the decisions.

The sysplex routing services provide information for more intelligent routing. They do not route or distribute work requests. The server must use its existing routing mechanisms.

When to Use the Sysplex Routing Services

When a server is available to receive work requests, it issues the **IWMSRSRG** macro to register. You should issue IWMSRSRG once per initialization of a server. The system makes this information available asynchronously to all MVS images in the sysplex.

When a client wants to route work to a server, it issues the **IWMSRSRS** macro for a list of registered servers. To help the client decide where to route the request, IWMSRSRS returns the relative number of work requests that can be routed to each server in the list.

When a server is no longer available to receive work requests, it issues the **IWMSRDRS** macro to deregister. A server should issue IWMSRDRS once per address space termination.

The following section explains each of the services in more detail.
Registering as an Eligible Server

A server can use IWMSRSRG to register that it is available for receiving work requests. A server should issue IWMSRSRG at address space initialization time. The server identifies itself by a triplet consisting of the following:

- Location name
- Network id
- LU name

Servers with the same location name are considered to be related and to provide equal service. The server must also specify an address space token (STOKEN) identifying the server address space token. Since the propagation of registration to all systems in the sysplex is asynchronous, a newly registered server is not immediately available for selection on other systems.

For complete information about the IWMSRSRG macro, see Chapter 60, “IWMSRSRG – Register a Server for Sysplex Routing,” on page 493.

Determining Where to Route Work

The IWMSRSRS macro returns a list of eligible servers, and for each server, an associated weight. From this list, a client can determine where to route work. See z/OS MVS Data Areas, Vol 3 (IVT-RCWK) for the mapping.

The weights provided allow changes in system conditions and server availability to be factored into the distribution of work. The weights represent the relative number of requests each server should receive. Various capacity considerations are used to calculate the weights.

A client can route the work to the servers as ordered in the list, and can route the number of requests as suggested for each server. A caller should be aware of other clients in the sysplex issuing the IWMSRSRS macro, and route work properly.

For example, if the list consists of the following:

<table>
<thead>
<tr>
<th>Server</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>NETID1.LUNAMEA</td>
<td>3</td>
</tr>
<tr>
<td>NETID2.LUNAMEB</td>
<td>8</td>
</tr>
<tr>
<td>NETID3.LUNAMEC</td>
<td>2</td>
</tr>
</tbody>
</table>

then the client should route the first 3 requests to NETID1.LUNAMEA, the next 8 to NETID2.LUNAMEB, and so on. When the client has gone through the list, the client can either invoke IWMSRSRS again for a refreshed list, or rotate through the list again.

Acceptable weights are from 1 to 64. If a server is busy, and not available to receive any work requests, it will not appear in the list. If work is routed to the server and it is not able to process the request, the request is not processed.

Clients should issue this macro on a regular basis, so that the list is refreshed every one to three minutes. This way, a client can stay current with changing system loads and server viability.

For complete information about the IWMSRSRS macro, see Chapter 61, “IWMSRSRS – Determine Where to Route Work,” on page 501.
Deregistering as an Eligible Server

When a server is no longer available for processing work, the server should issue the IWMSRDRS macro to deregister. A server should issue IWMSRDRS at address space termination. This makes the system aware that the server is no longer a candidate for future work requests, and can remove it from the list of eligible servers.

For complete information about the IWMSRDRS macro, see Chapter 58, “IWMSRDRS – Deregister a Server for Sysplex Routing,” on page 479.

Example of Using the Sysplex Routing Services

Figure 22 shows an example of the sysplex routing services.

In the figure, there are three servers, and one client program. Each of the servers registers at address space initialization using the IWMSRSRG macro. Suppose the first server registered, with the following defined:

- LOCATION1 DS CL18 location
- NETWORKID1 DS CL8 network id
- LUNAME1 DS CL8 LU name
- STOKEN1 DS CL8 token of server address space

The first server uses the IWMSRSRG macro as follows:

IWMSRSRG LOCATION=location1,
 NETWORK_ID=networkid1,
 LUNAME=luname1,
 STOKEN=stoken1

Meanwhile, the client program wants the list of address spaces available for processing work. The client issues IWMSRSRS once for the length of the area required for the list. The length required is in the QUERYLEN output parameter. The client issues:
IWMSRSRS SYSINFO_BLOCK=sysinfo_block,
ANSLEN=anslen,
QUERYLEN=querylen,
LOCATION=location

Note: The QUERYLEN value is a snapshot taken when IWMSRSRS is issued. That value can change between calls due to other servers registering. To compensate, it is recommended that you add a few entries extra length to the size resulting from the first IWMSRSRS call.

The client then obtains the required amount of storage, and issues IWMSRSRS again for the list of eligible servers and their weights:
IWMSRSRS SYSINFO_BLOCK=sysinfo_block,
ANSLEN=anslen,
QUERYLEN=querylen,
LOCATION=location

The caller receives the list, mapped by IWMWSYSR, as follows:

<table>
<thead>
<tr>
<th>Server</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>NETID3.LUNAME3</td>
<td>4</td>
</tr>
<tr>
<td>NETID1.LUNAME1</td>
<td>6</td>
</tr>
<tr>
<td>NETID2.LUNAME2</td>
<td>2</td>
</tr>
</tbody>
</table>

The client routes the first 4 work requests it receives to NETID3.LUNAME3, the first in the list. The client routes the next 6 requests to NETID1.LUNAME1, and then the following 2 to NETID2.LUNAME2. The client opted to issue the IWMSRSRS macro every three minutes. Once the client has received 12 requests, it will route the 13th through the 16th requests to NETID3.LUNAME3, and go down the list again until the three minutes are over.

WLM Sysplex Workload Distribution

When WLM is called by DNS or sysplex distributor for advice on where to route work in a sysplex, WLM returns a list of eligible servers with a weight assigned to each server. Work is then routed to the server proportionally to its weight so the higher weight servers receive more work. For example, if four servers A, B, C, and D are returned by WLM with weights of 2, 2, 4, and 8 respectively, DNS will route one-eighth of the requests to each of servers A and B, one-fourth of the requests to server C, and one-half the requests to server D.

The weights are calculated as follows. WLM first assigns a weight to each system, with a higher weight to systems with the most available capacity. The weights are proportional to the amount of available capacity on each system. Then WLM divides the weight for a system equally among the registered servers on that system. In the case of DNS, there can be multiple servers registered with WLM per system image. For sysplex distributor, however, the WLM server registration is done by the TCP/IP stack so there is only one server per system image. This means the server weight always equals the system weight for sysplex distributor. If all systems are running at or near 100% utilization, then higher weights are given to the systems running less important work. The objective is to send work where there is available capacity or, if there is no available capacity, where the least important work will be displaced. Servers on systems that are in a serious storage shortage (SQA, fixed frame, auxiliary storage) are not recommended unless all systems are in a shortage.
Calculation of server weights

The basis for WLM's weight calculation is the Table 17 for each goal mode system in the sysplex. More than half of the systems in the sysplex need to be in goal mode for WLM to calculate weights. Otherwise, all weights are set equal to one.

The table has one row for each level of work in the system:

- Level 0 is used for service consumed by the system
- Levels 1-5 are the externally defined importance levels
- Level 6 is used for Discretionary work
- Level 7 is unused service (equivalent number of service units)

Each row contains the following fields:

- Number of service units (SUs) consumed in 3 minutes at the given importance level and below.
- Percentage of total capacity consumed in 3 minutes at given importance level and below.

 For example, Level 4 in the table has the service units consumed by importance 4, importance 5, and discretionary work plus unused capacity.

1. WLM scans the rows in the table in reverse starting with Level 7 until it finds a level where one or more systems have at least 5% cumulative service units of capacity. WLM then uses this table level for all goal mode systems to assign relative weights.

2. A system weight is calculated for each system in the sysplex using the SU value in the selected row in the table.

\[
\frac{\text{SUs for this system at selected level} \times 64}{\text{total SUs for all systems at selected level}} = \text{System weight}
\]

3. Finally, a server weight is calculated:

\[
\frac{\text{system weight}}{\# \text{ of servers on system}} = \text{Server weight}
\]

Example

In this example, there are three goal-mode systems in the sysplex, all running at 100% CPU utilization. Each system has two DNS servers running for a particular application. To assign weights to the three systems, WLM scans the CPU consumption table from the bottom up, looking for a level where at least one system has 5% or greater cumulative CPU consumption. In this case, Level 5 row is used because System A exceeds the 5% minimum (and so does System B). Level 5 is then used to calculate the weight for all systems including System C. So in this case the system weights are determined by the amount of importance 5 and discretionary work each system is running. Because there are two servers on each system, the server weight is the system weight divided by 2.

System A weight = 200 * 64 / 640 = 20 Server weight = 20 / 2 = 10
System B weight = 400 * 64 / 640 = 40 Server weight = 40 / 2 = 20
System C weight = 40 * 64 / 640 = 4 Server weight = 4 / 2 = 2

Table 17. CPU consumption table

<table>
<thead>
<tr>
<th>Level</th>
<th>System A</th>
<th>System B</th>
<th>System C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SUs</td>
<td>%</td>
<td>SUs</td>
</tr>
<tr>
<td>0</td>
<td>2000</td>
<td>100</td>
<td>2000</td>
</tr>
<tr>
<td>1</td>
<td>1800</td>
<td>90</td>
<td>1900</td>
</tr>
</tbody>
</table>
Table 17. CPU consumption table (continued)

<table>
<thead>
<tr>
<th></th>
<th>System A</th>
<th>System B</th>
<th>System C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1600</td>
<td>80</td>
<td>1500</td>
</tr>
<tr>
<td>3</td>
<td>1100</td>
<td>55</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td>20</td>
<td>800</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Starting with z/OS V1R7 the IWMSRSRS service supports the function code SPECIFIC, that allows for calculated weights to also take the server-specific information into account. If the IWMSRSRS service is called with FUNCTION=SPECIFIC, then the weight calculated as described above, is additionally multiplied by a Performance Index (PI) factor and a queue time factor. The value of these two factors is calculated as follows:

The PI factor
- is 1 if the server has a PI <= 1 which means that it achieves its goals. The PI factor will become < 1, if the PI indicates, that the server does not achieve its goal.

The queue time factor
- becomes < 1 if the server is the owner of enclaves and those enclaves have reported queue times relative to their total elapsed times. This means that their arrival time differs from the enclaves create time, when the enclave was created.

Since z/OS V1R8, or z/OS V1R7 with OA14310 installed, a third factor is multiplied into the weight calculation, the health factor. The health factor is set for the server address space either by the registration service IWMSRSRG or by the health service IWM4HLTH. For further information about these services, refer to Chapter 60, “IWMSRSRG – Register a Server for Sysplex Routing,” on page 493 and to Chapter 73, “IWM4HLTH – Setting Server Health Indicator,” on page 611.
Chapter 9. Using the Workload Reporting Services

The workload reporting services are intended for monitoring or reporting products to collect performance data. They replace some of the existing methods of collecting data, and provide a means to collect data for the goal-oriented processing with the service policy.

When to Use the Workload Reporting Services

Because the data collection is cumulative, performance monitors can collect information based on their own reporting intervals. But the collection is stopped and re-started when a significant change occurs in workload management, such as when a new policy is activated, or a system failure occurs. Performance monitors should “bookend” their intervals when such a significant change occurs in workload management. For each of these events, ENF signals are issued. SRM samples the states of address spaces, and an ENF signal is issued when a new set of samples is available. The performance monitor can use the ENF signals to guide its reporting interval. For example, when an ENF code for a new policy activation is issued, the performance monitor can end its last reporting interval, and start the next reporting interval for the newly activated service policy.

To enable the performance monitor to know when a workload reporting change is taking place, such as when a policy is activated, there is an ENF system event code. ENF event code 41 and its related qualifiers indicate when changes are taking place related to service policies. ENF code 41 guides the performance monitor’s reporting intervals, and helps it to issue the services at the appropriate times.

Using ENF Signals to Guide Data Collection

Since all performance data is continually collected until a significant change takes place in workload management, the performance monitor must know when the collection is re-set. Workload management re-sets its collecting when:
• A service policy is activated (VARY WLM,POLICY=)
• A system error occurs.

ENF signals are issued for these events, and for each ENF, a listener is notified synchronously at the start of a change, and at the completion of a change. There is an ENF code qualifier indicating a change started, an ENF code qualifier indicating a change completed, and an ENF code qualifier indicating a change has failed.

When a change is started, workload management captures a last copy of workload data. The performance monitor can listen for the “start” event code, and then invoke IWMRCOLL to get the last available data. The workload data remains the same until either the change completes, or the change fails. Based on the “start” event code, the performance monitor should save this data, end its current interval, and wait for the next code.

Note: Since the ENF signal is issued synchronously, the listener should complete processing as quickly as possible. For example, if the ENF is issued broadcasting the start of policy activation, the policy activation is held up until all listeners for that ENF have relinquished control.

If the change is completed, the performance monitor should invoke the proper services, as shown in Table 18 on page 100. A performance monitor should always
complete its last interval with the data collected when it received the “start” event code. If the change failed, the performance monitor can continue to use the data it saved when it received the start event code. Regardless of whether the event has completed or failed, the performance monitor should reinitialize all of its workload activity information. Then the performance monitor should issue:
- IWMPQRY for a copy of the active policy
- IWMRCOLL for workload activity information.

This way, the performance monitor does not need to do two different things for completions and failures.

There is also an asynchronous ENF signal issued when the IWMWRQAA information is available. That way, a performance monitor can synchronize its sampling interval for address space states with workload management’s sampling interval.

Table 18 on page 100 shows the ENF event code and its qualifiers. The table also outlines what a performance monitor could do when the ENF code is heard.

ENF Event Code 41

Table 18. Using ENF event code 41 to guide data collection for policy changes

<table>
<thead>
<tr>
<th>Event</th>
<th>Signal and qualifiers</th>
<th>Expected action</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARY WLM, POLICY=</td>
<td>WLMENF11, WLMENF12,</td>
<td>WLMENF11 indicates the policy change has begun. The performance monitor should</td>
</tr>
<tr>
<td></td>
<td>WLMENF13</td>
<td>invoke IWMRCOLL to obtain a copy of the last available data, and wait for WLMENF12. The performance monitor should save the copy as the last available for the interval.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WLMENF12 indicates the policy was successfully activated on this system. To get a copy of the new policy information, the performance monitor should issue the IWMPQRY macro. The performance monitor should then reinitialize its workload activity reporting fields and resume data collection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WLMENF13 indicates the new policy was not activated on this system, but may have been activated on some systems in the sysplex. This system is potentially running with a different policy than the rest of the systems in the sysplex. The performance monitor should acquire the current policy information by issuing the IWMPQRY macro. The performance monitor should reinitialize its data collection fields and indicators and resume data collection with subsequent IWMRCOLLS. The performance monitor could alert the customer that this system is not running with the active service policy.</td>
</tr>
<tr>
<td>System failure</td>
<td>WLMENF31, WLMENF32,</td>
<td>WLMENF31 indicates workload activity reporting failed, recovery has begun. Do not issue IWMRCOLL until recovery is complete.</td>
</tr>
<tr>
<td></td>
<td>WLMENF33</td>
<td>WLMENF32 indicates workload activity reporting recovery was successful. Start a new reporting interval.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WLMENF33 indicates workload activity reporting recovery was unsuccessful. Do not issue IWMRCOLL as no data is returned until the next IPL.</td>
</tr>
</tbody>
</table>
Using the IWMRCOLL Service

The IWMRCOLL service allows a performance monitor to obtain a variety of performance data from a single system. Although IWMRCOLL provides information about a single system, the performance monitor can combine the information to provide a sysplex view.

Table 19 shows how you can use the workload reporting services together with IWMRCOLL to get workload activity information on a single system. The following section explains how to use the information returned by IWMRCOLL.

Table 19. Using IWMRCOLL with the workload reporting services on a single system

<table>
<thead>
<tr>
<th>Action</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue REQSRMST SYSEVENT</td>
<td>To get information about the service definition and policy</td>
</tr>
<tr>
<td>Issue IWMPQRY macro</td>
<td>To obtain current active policy length</td>
</tr>
<tr>
<td>Issue GETMAIN</td>
<td>To obtain storage needed to hold the active service policy information</td>
</tr>
<tr>
<td>Issue IWMPQRY</td>
<td>To obtain active service policy information</td>
</tr>
<tr>
<td>Set up a reporting interval.</td>
<td>To prepare for subsequent IWMRCOLL requests</td>
</tr>
<tr>
<td>Issue IWMRCOLL specifying MINLEN,</td>
<td>To obtain length of storage needed. IWMRCOLL returns ANSTOKN required for subsequent calls to IWMRCOLL</td>
</tr>
<tr>
<td>MAXLEN, and QUERYLEN</td>
<td></td>
</tr>
<tr>
<td>Issue GETMAIN</td>
<td>To get storage needed to hold information returned by IWMRCOLL</td>
</tr>
<tr>
<td>Issue IWMRCOLL ANSTOKN=token</td>
<td>To get workload activity information mapped by IWMWRCAA</td>
</tr>
<tr>
<td>Set up a reporting interval Sample workload activity information by issuing IWMRCOLL at your determined interval</td>
<td></td>
</tr>
<tr>
<td>Calculate differences in data</td>
<td>To determine the delta of data returned for the interval in each successive IWMWRCAA</td>
</tr>
</tbody>
</table>

Using the Information in IWMWRCAA

By using IWMRCOLL, a performance monitor can get the following kinds of information:
- Resource consumption information
- Response time and distribution information
- General delay information
- Subsystem work manager delay state information

The information provided is mapped by the IWMWRCAA data area. Information is returned on a service class and report class basis. The following section explains how to use the response time data and the subsystem work manager delay state information.

- **Header Data**
 The header data present in the RCAA consists of:
 - Data specific to the workload management mode in effect, such as which service policy is active.
 - General information such as bookkeeping information.

- **Resource Data**
 Resource information is available for address spaces and there is a distinction between transactions and server address spaces. A server address space is any address space that does work on behalf of a transaction manager or a resource manager. For example, a server address space could be a CICS AOR, or an IMS control region. Service classes that represent CICS or IMS transactions, as
opposed to address spaces, have no resource data. The resources being consumed by such transactions are reported in the service class of the server address space.

- **Delay Data**
 There are two types of delay information returned by IWMRCOLL: general execution delays, and subsystem work manager delays. All data is sampled. The general execution delays are address space oriented while the subsystem work manager execution delays are service class oriented. They show delays encountered by service classes representing transactions. The subsystem work manager execution delays are in the *subsystem work manager state samples* section of IWMWRCAA. The state samples are available only for subsystem work managers using the execution delay monitoring services.

In order to determine whether a service class has execution delay state sampling information, the header data indicates which type of delay information is available for a service class. You can use address space delay data to calculate execution velocity.

- **Response Time Data**
 There is response time information and response time distributions for transactions. Both are reported for service classes and report classes.

You can calculate average response times using the information provided in this section. Total completed transactions (both normal and abnormal) are provided, as well as total transaction completion time. This same information is available for the execution phase of transactions.

Using the Subsystem Work Manager Delay State Information

The delay information in IWMWRCAA represent delays encountered by subsystem work managers as they process transactions. Workload management can recognize those address spaces that process transactions on behalf of the transaction managers. Such address spaces are called *server address spaces*. Workload management manages the server address spaces to achieve the goals of the transactions the server is processing. If a server address space is managing more than one service class, workload management manages the address space to meet the most stringent service class goal. However, resource consumption and address space delays for server address spaces are reported in the server’s service classes.

The delay information shows the different states server address spaces experience while processing transactions. The information is provided on a service and report class basis—in the service or report class representing the transactions. This way, the delay states show for the transactions being processed, not for the address spaces serving the transactions. The states include how many times the service or report class was seen active, ready, and waiting. There are several waiting states. Each of these is reported separately. Some other states include whether the transactions are continued somewhere else in the system, in the sysplex, or in the network.

Using the Continued State Information

The state information helps a performance monitor show a picture of how well transactions are being processed. Because multiple address spaces can be involved in processing a transaction, a delay could occur in any of several places. IWMWRCAA provides state information to help a performance monitor pin down when transactions experience delays. The states show whether a service class has continued:

- In the local system
With the cooperation of the participating subsystem work managers, the information reported divides the lifespan of transactions into two phases: a begin-to-end phase, and an execution phase. A begin-to-end phase shows transaction states from the time the subsystem work manager receives a transaction, processes it, and ends it. An execution phase shows transaction states only during the time a subsystem work manager processes the transaction. Delay states may not always appear in each phase. It depends on how a subsystem work manager is reporting the delays it encounters while processing.

For example, for CICS transactions, delay states are recorded from the time the TOR receives the transaction and begins processing, through the time the transaction is processed in the AOR, FOR, or elsewhere, and ended back in the TOR. The phase where the TOR receives the transaction, and ends it is called the begin-to-end phase. The phase where the transaction moves into the AOR, FOR, or elsewhere and is processed is called the execution phase.

The delay states for both the begin-to-end and the execution phase are reported together in the service class of the CICS transactions processed. For example, Figure 23 shows the delay states sampled for both begin-to-end phase and the execution phase for one CICS service class representing CICS transactions.

If the execution phase occurs on the same MVS image as the begin-to-end phase, then (barring some statistical anomalies), the amount of time the service class spends in the continued - LOCAL state of the begin-to-end phase should approximately equal the amount of time the service class spends in the execution phase.

The execution phase could be in the same system as the begin-to-end phase, but could also be on another system in the sysplex, or in the network.

By combining the information collected on each system for a given service class, the performance monitor can resolve the states where the transactions in the service class continued elsewhere in the sysplex. For transactions continued elsewhere in the network, workload management cannot know any more information. Only the count of how many were switched out through the network is provided.
Figure 24 shows how the performance monitor could view the state information to provide a sysplex view. In this example, the states are reported for the CICSFAST service class. In this example, the number of samples of transactions continued somewhere in the sysplex should equal the number of transaction states sampled in the sysplex (summed from each system in the sysplex). The performance monitor can combine all the state data from all the systems in the sysplex to provide a sysplex view, correlating the data by service class.

Using Delay States to Report Subsystem Interactions

Not only are multiple address spaces involved in processing transactions, but those address spaces may be part of different subsystems. For example, a CICS TOR may give control to a CICS AOR who in turn may do a query to IMS DLI. Workload management can keep track of subsystems that communicate with each other, and provides the information so that a performance monitor can present the subsystem interactions in processing transactions.

The CICS transaction used in the previous example has a begin-to-end phase and an execution phase. The execution phase could be split among several subsystems, and the delays associated with each distinct subsystem are reported separately. The performance monitor should combine all information by service class by subsystem to provide a sysplex view.

Delay data are presented for as many distinct subsystems as participated in processing each service class. The data are available for both the begin-to-end phase and the execution phase.

A performance monitor could provide a timeline with the various pieces and phases of the work represented differently. In the performance monitor sees that the biggest delays encountered are in the Waiting state and the Continued Local state. The performance monitor could show further information about the Continued Local states by presenting the information found in the
In the example, the performance monitor shows that there are execution delays attributed to Active, Waiting, and Continued states. Notice that of the 35 delay states reported in the original display as being Continued Local, only 33 of them show up in the execution phase. This is one of the shortcomings of sampling.

In Figure 26, there are two subsystems represented in the execution phase. This means that during this interval, both subsystem A and subsystem B performed work on behalf of service class xyz. Again, notice that there is 1 state sample missing due to statistical anomalies. The performance monitor could determine the specific reason for subsystem B Waiting states from the delay states.

Figure 25. Combining state information for a service class.

Figure 26. Combining state information across subsystems.
Using the Response Time Information

To provide a picture of how a performance group was performing, SRM previously reported total transaction time for use in calculating standard deviation. This information is provided for transaction execution time. Response time distributions are provided for both service classes and report classes.

These distributions consist of 14 buckets of information. There is a header explaining the contents of the buckets that is provided once. The header contains the value of the particular bucket, which is a percentage of the specified goal (that is, 50 equates to 50% of the goal; 150 equates to 150%, of the goal) There is always one bucket which exactly maps to the specified goal, with a value of 100%.

In each bucket is the number of transactions that completed in the amount of time represented by that bucket.

In [Figure 27] each of the fourteen buckets represents a percentage of the specified 1 second goal. For instance, bucket 2 represents all transactions that completed in 500 to 600 milliseconds, while bucket 8 contains the number of transactions that completed in 110% to 120% of the goal or 1.1 to 1.2 seconds. Notice that bucket 6 falls exactly on the goal. This bucket will capture all those transactions that complete in 900-1000 milliseconds.

The two end buckets have special meaning. Bucket 1 contains the total number of transactions that completed in up to 50% of the goal. Bucket 14 contains the number of transactions that completed in greater than 4 times the goal.

Response Time Distributions

Service Class: XYZ
Goal: 90% in 1 second

<table>
<thead>
<tr>
<th>Percent of Goal</th>
<th>Bucket Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>80</td>
<td>48</td>
</tr>
<tr>
<td>90</td>
<td>12</td>
</tr>
<tr>
<td>100</td>
<td>26</td>
</tr>
<tr>
<td>110</td>
<td>13</td>
</tr>
<tr>
<td>120</td>
<td>7</td>
</tr>
<tr>
<td>130</td>
<td>2</td>
</tr>
<tr>
<td>140</td>
<td>2</td>
</tr>
<tr>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>400</td>
<td>0</td>
</tr>
<tr>
<td>FFF</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 27. Self-defining response time distributions

Interpreting Report Class Data

Through classification rules WLM allows you to associate transactions with report classes for reporting purposes only. Report classes can be used to report on a subset of transactions running in a single service class but also combine transactions running in different service classes within one report class. In the first case a report class is called homogeneous, and in the second case it is called heterogeneous.

Before z/OS V1R2, WLM only returned a report class summary. From the data it was not possible to conclude from where it came from, for example the service class, and what service class period contributed to the report class. For that reason, the calculation of response time distribution or velocity, for example, was not possible because there was no guarantee that:
• the data in the report class is homogeneous, and
• the data is related to a single-period service class only.

Now, with z/OS V1R2 WLM returns report class periods. A report class period is homogeneous if there is only one service class found contributing to this report class period in a given report interval. To allow a reporting product to determine whether a report class period is homogeneous in its reporting interval, WLM offers two indicators returned by IWMRCOLL:

mixed-class-indication timestamp
This timestamp indicates when workload data associated with a different service class last contributed data to a report class period that was currently collecting data from another service class (see Figure 28).

service class index
This index indicates the last service class whose data was collected in the report class period.

The following Figure 28 illustrates the concept of the mixed-class-indication timestamp in relation to the time interval in which a caller collects workload data.

A caller invokes IWMRCOLL twice in order to get interval data, first at time \(t_0 \) to start the interval and second at time \(t_1 \) to end collecting data. With the second invocation at \(t_1 \), the caller gets back the mixed-class-indication timestamp. If the returned timestamp is \(\geq t_0 \), as it is for caller 1, it means that transaction data from a different service class started contributing data to the same report class period. The report class is heterogeneous. If the returned timestamp is outside the interval (smaller than \(t_0 \)), as it is for caller 2, it means that the report class remained homogenous during the calling interval.

Being able to see that a period is homogeneous allows the reporting product to format response time distribution buckets and work manager delay data for this period while it would not report this data for a heterogeneous period. If the...
timestamp indicates that the report class is heterogeneous, it is recommended to collapse the periods which means to report the data as if the report class had only one period.

Using the IWMRQRY Service

The IWMRQRY service provides sampled data on address spaces including:
- Address space state samples
- Server information

To see when an address space is serving more than one service class, information is provided for server address spaces in the general execution delay portion of the IWMWRCAA. This information includes:
- The service classes being served by an address space.
- The number of samples of address spaces serving a particular service class.

For example, address space ACSFOR1 is seen serving service class CICSSLOW 60 times, and service class CICSFAST 40 times.

The data returned is mapped by the IWMWRQAA data area. It represents the data collected during one sampling interval, an instantaneous, non-cumulative snapshot of the address space. The data is not tied to a particular job. Products using IWMRQRY must decide whether to accumulate this latest state data with prior samples.

An asynchronous ENF signal is issued whenever a new copy of IWMWRQAA information is available. The performance monitor can use the ENF signal to determine when to issue IWMRQRY.

Table 20 shows a sample sequence of what to do to get address space information using IWMRQRY.

Table 20. Using IWMRQRY with the workload reporting services

<table>
<thead>
<tr>
<th>Action</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue IWMRQRY macro</td>
<td>To obtain answer area length</td>
</tr>
<tr>
<td>Issue GETMAIN</td>
<td>To get storage to hold the address space data</td>
</tr>
<tr>
<td>Issue IWMRQRY</td>
<td>To obtain address space data mapped by IWMWRQAA</td>
</tr>
<tr>
<td>Set up a reporting interval</td>
<td>To collect data from issuing IWMRQRY multiple times</td>
</tr>
<tr>
<td>Issue IWMRQRY INFO=ASID,ASCB=ascb</td>
<td>The performance monitor recognizes an exception for the address space represented by the specified ASCB. To obtain specific data about the ascb address space.</td>
</tr>
</tbody>
</table>
Chapter 10. Using the Administrative Application Services

This chapter explains how to use the administrative application services. The services are intended for programs which provide an interface to define and edit a service definition. They include:

- **IWMDINST**, which allows a program to install a service definition on the WLM couple data set.
- **IWMDEXTR**, which allows a program to extract a service definition from the WLM couple data set.
- **IWMPACT**, which allows a program to activate a service policy.
- **IWMCQRY**, which allows a program to query the classification rules in effect.

For information about service definition concepts, see [z/OS MVS Planning: Workload Management](#).

Installing a Service Definition

The IWMDINST macro allows a program to install a service definition onto a WLM couple data set. The service definition is moved onto the WLM couple data set as an area of storage, mapped by the IWMSERVD macro.

Mapping a Service Definition

The service definition is installed and extracted from the WLM couple data set either in XML format, or as a data area mapped by the IWMSERVD mapping macro. The XML structure is defined by the DTD described in Appendix C, “Structure of the XML Service Definition (DTD),” on page 805. The IWMSERVD macro points to the following sections:

- **IWMSVDEF**
 - Maps the following service definition information:
 - Service policies
 - Workloads
 - Service classes
 - Report classes
 - Resource groups
 - Service definition coefficients

- **IWMSVDCR**
 - Maps the service definition classification rule information.

- **IWMSVNPA**
 - Maps the service definition notepad area.

- **IWMSVAEA**
 - Maps the service definition application environments.

- **IWMSVSEA**
 - Maps the service definition scheduling environments.

Adding Program-Specific Extensions to a Service Definition

A program can add program-specific information to the service definition. For example, suppose you want to add a kind of reporting extension to a workload. In your program, you allow the service administrator to define this extension when defining workloads.
You can add extensions to each of the following:
- Service definition
- Service policies
- Workloads
- Service classes
- Service class attributes
- Report classes
- Resource groups
- Resource group attributes
- Application environments
- Scheduling environments
- Scheduling environment headers
- Scheduling environment resources
- Classifications
- Resources

Extensions can be specified in an XML service definition. For service definitions mapped by IWMSERVVD, a program can add extensions to IWMSVDEF, IWMSVDCR, IWMSVAEA, and IWMSVSEA. The following example illustrates extensions to IWMSVDEF. IWMSVDCR, IWMSVAEA, and IWMSVSEA all have roughly similar structures, and are extended in much the same way. For more details on these other structures see [z/OS MVS Data Areas, Vol 3 (IVT-RCWK)] or else see the individual prologs for those macros.

To add the extensions to the service definition structure, the program must update the following fields in IWMSVDEF:

SVDEF_EXT_DATA_OFF
- The offset to the extension data, from the beginning of IWMSVDEF

SVDEF_EXT_DATA_LEN
- The total length of the extension data, from the beginning of IWMSVDEF

For each part of the service definition with extensions, the program must update IWMSVDEF with the following:
- The offset to the extension entries from the beginning of IWMSVDEF
- The number of extension entries
- The length of the extension entries

Each entry must have the following fields filled in:

SVDEFVID
- Identifier of the product adding the extension.

SVDEFROB
- The name of the related object. For example, if you are adding an extension to a service class, this field should contain the service class name.

SVDEFEPN
- Related policy name, if the extension is for a service class or resource group. Otherwise, leave this field blank.

SVDEFEDL
- The length of the extension data.

SVDEFEDO
- The offset to the extension data.
Example of Service Definition Extensions

Figure 29 shows the structure of IWMSVDEF for a service definition with extensions to workloads. In the example, there are two workload entries, and therefore two workload extensions. Remember that IWMSERVD points to the IWMSVDEF mapping macro.

The program adding the workload extensions has updated the following fields in IWMSVDEF:

SVDEF WD EXT OFF
- The offset to the workload extension data header from the beginning of IWMSVDEF.

SVDEF WD EXT NUM
- The number of workload extension entries

SVDEF WD EXT SIZ
- The size of the workload extension entries

SVDEF EXT DATA OFF
- The offset to the beginning of the extension data, from the beginning of IWMSVDEF.

SVDEF EXT DATA LEN
- The total length of the extension data, not including the length of the extension entries.

For each extension, the program must create an entry with the following fields:

SVDEFVID
- Identifier of the your product.
Maintaining the Service Definition

Make sure your program maintains the service definition data structure. For example, your program has added an extension to service classes, and the service administrator deletes that service class, then your program must ensure that the service class extension is also deleted.

In order for customers to allow for the extra space this information may take up on the WLM couple data set, there are new keywords on the JCL utility to allocate a couple data set. If your program intends to use the service definition extensions, you should make sure customers know how to factor the extensions into the size of the WLM couple data set. For information about how a service administrator allocates a WLM couple data set, see z/OS MVS Planning: Workload Management.

Checking a Service Definition Using IWMDINST

Before installing a service definition on the WLM couple data set, the IWMDINST macro checks to make sure the service definition is valid. For a service definition in XML format, the macro parses the input to make sure it conforms to the DTD. Otherwise, the macro checks the service definition to verify the service definition data structure and to detect any storage overlay problems.

All data in a service definition must be valid to allow for the system to complete the installation. If the IWMDINST macro finds an error during parsing or validity checking, it issues a reason code in the VALCHECK_RSN parameter. IWMDINST also returns the offset to indicate where an error was found in the IWMSVDEF mapping macro or the XML string, respectively. Note that no valid offset is returned in case the service definition type is XML and the primary reason code returned is xxxx083d. IWMDINST identifies no more than one error per call.

Appendix B, “Application Validation Reason Codes,” on page 793 contains a list of the reason codes, and their explanations. Table 21 shows an example of the information provided for reason code 1B01.

<table>
<thead>
<tr>
<th>Section</th>
<th>Reason</th>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVDCRSST</td>
<td>1B01</td>
<td>entry</td>
<td>Service class for the subsystem type (SVDCRSCN) not found in the SVDEF</td>
</tr>
</tbody>
</table>

In this example, IWMDINST returned a reason code of 1B01 in the VALCHECK_RSN parameter. The error is in the SVDCRSST section of IWMSVDEF, and is in a subsystem type entry. IWMDINST found a service class in the classification rules for the subsystem type that was not defined in the service definition. Your program could check the service definition for the undefined service class name, and could issue a message to the service administrator.
Recommended Validity Checking

In addition to using the validity checking provided by IWMDINST, a program should check for additional errors not covered by IWMDINST.

For example, suppose the service administrator has defined a service class representing IMS transactions, and assigned the service class to a resource group. Because MVS/ESA SP 5.2 does not support resource groups for transaction-oriented work, you cannot assign a resource group to a service class representing IMS transactions. Rather than allowing the service administrator to make a mistake, your program should issue a warning message. The message could point the service administrator to the IMS service class containing the illegal resource group assignment.

Your program should check the following conditions not checked by IWMDINST:

- No workloads defined.
- No service classes defined.
- The response time goal for a service class period does not exceed the response time goal for the previous period.
- Duplicate service class or resource group names. The names must be unique within a service definition.
- Some rule within a subsystem type refers to a service class, but there is no default service class specified for the subsystem type. If a subsystem type has classification rules defined, then there must be a service class default defined.
- A qualifier type is repeated in a sub-rule for a subsystem type in the classification rules. Only qualifier type longer than 8 characters can be repeated in a sub-rule.
- The classification rules for a subsystem type refer to a service class with multiple periods, but that subsystem type does not support multiple periods. The subsystem types which support multiple periods are JES, ASCH, OMVS, STC, TSO, and DDF.
- The classification rules for a subsystem type refer to a service class with a resource group, but that subsystem type does not support resource groups. The subsystem types which support resource groups are JES, ASCH, OMVS, STC, TSO, and DDF.
- An unreferenced classification group. The service administrator defined a classification group, but did not use it in the classification rules.
- The classification rules for a subsystem type refer to a qualifier type not supported by the subsystem type. For a list of the qualifier types supported by each subsystem, see [z/OS MVS Planning: Workload Management](#).
- Subsystem type does not support discretionary or velocity goals. Service class with a discretionary or velocity goal was referred to in the classification rules for that subsystem type. Subsystem types which support discretionary and velocity goals are: JES, ASCH, OMVS, STC, TSO, and DDF.

Preventing Service Definition Overlays

Suppose a service administrator extracts a service definition from the WLM couple data set, makes some changes, and in the meantime someone else has extracted, changed, and reinstalled the service definition. If the first user installs the service definition, any changes the second user made will be overwritten. To prevent the service administrator from overwriting the service definition, a program can use:

- The COND parameter on IWMDINST
- The ENQ macro
Using the COND Parameter on IWMDINST
The optional COND parameter lets a caller specify whether or not to install the service definition if the service definition has not been changed since it was extracted from the WLM couple data set. IWMDINST determines whether the service definition has changed by checking a service definition identifier.

The service definition identifier consists of the service definition name, and the time and date the service definition was installed.

Use COND=YES to install the service definition only if the identifier of the currently installed service definition matches the base identifier passed on IN_BASEID parameter. If the identifiers do not match, your program can issue a message stating that the service definition has changed since the last extract. The message can also ask the service administrator to confirm the installation.

Use COND=NO to specify that the input service definition should be installed unconditionally.

When the service definition has been successfully installed on the WLM couple data set, the system issues ENF signal 41. A program can use the ENF macro to know when a service definition has been installed. For more information about how to use ENF signals, see z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG.

Using the ENQ Macro
To ensure that two service definitions are not installed simultaneously on the WLM couple data set, a program can use the ENQ macro. Programs can serialize installation of the service definition onto the WLM couple data set by obtaining an exclusive ENQ on:

QNAME
 SYSZWLM

RNAME
 WLM_SERVICE_DEFINITION_INSTALL

SCOPE
 SYSTEMS

For more information about how to use the ENQ macro, see z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG.

Example of Using IWMDINST to Install a Service Definition
Suppose you have coded an application to define and edit a service definition mapped by the IWMSERVD mapping macro. To install the service definition onto the WLM couple data set, do the following:

- Check the service definition data structure and whether there are any storage overlay problems. If there are any problems, have the macro return the location of the error in the service definition.
- Specify that the service definition is to be installed only if the service definition installed on the WLM couple data set has not changed since the last extract.

To install the service definition, you specify:

IWMDINST SERVD_AREA=(R4),
 PRODUCT_ID=ProductIdArea,
 QRY_BASEID=(R5),
 VALCHECK_RSN=ValcheckRsn,
Extracting a Service Definition

The IWMDINST macro allows a program to extract a service definition from the WLM couple data set. Once the service definition is extracted, then a service administrator can make changes.

A caller should issue IWMDINST specifying QUERYLEN to determine the storage required for the service definition. The service definition returned by IWMDINST is not serialized against future installs, so the length returned could change before a caller can issue IWMDINST again. The caller should issue IWMDINST in a loop, checking return and reason codes, and obtaining a larger storage area if necessary.

Example of Using IWMDINST to Extract a Service Definition

To extract a service definition from the WLM couple data set, specify:

```plaintext
IWMDINST ANSAREA=(R4),
    ANSLEN=StorSizeForServd,
    QUERYLEN=QueryLenForServd,
    RETCODE=Module_Rc,
    RSNCODE=Module_Rsn,
    MF=E
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StorSizeForServd</td>
<td>DS IF</td>
<td>Storage size for service definition</td>
</tr>
<tr>
<td>QueryLenForServd</td>
<td>DS IF</td>
<td>Query length for service definition</td>
</tr>
<tr>
<td>Module_Rc</td>
<td>DS IF</td>
<td>Return code</td>
</tr>
<tr>
<td>Module_Rsn</td>
<td>DS IF</td>
<td>Reason code</td>
</tr>
</tbody>
</table>

Activating a Service Policy

You can also activate a service policy from your application by using the IWMPACT macro. The caller must provide the name of the service policy to be activated in the SERVICE_POLICY=service_policy parameter. The specified policy must exist in the service definition installed on the WLM couple data set.
A single policy can be activated at any one time, and the policy is activated synchronously.

A caller can optionally request the name of the system where another policy activation is taking place by specifying SYSTEM_NAME=system_name. Therefore, if a previous IMWPACT request is being processed and a new IWMPACT request is issued, the new request is rejected with an appropriate return and reason code. This occurs regardless of whether the requests were issued on the same system or different systems in the sysplex. Control is not returned to the caller until the policy has been activated on all systems in the sysplex or for some reason the policy activation could not be completed.

Example of Activating a Policy using IWMPACT

To activate a service policy, and if another policy activation is in progress, have IWMPACT return the name of the system that activated the policy, specify:

IWMPACT POLICY_NAME=policy,
 SYSTEM_NAME=system,
 RETCODE=Module_rc,
 RSNCODE=Module_rsn

Where the following are defined:

- policy DS CL8 The policy name
- system DS CL8 System name where another policy is activating
- Module_rc DS 1F Return code
- Module_rsn DS 1F Reason code

Querying the Active Classification Rules

IWMCQRY lets a caller query the classification rules associated with the active service policy. The classification rules determine how incoming work is assigned a service class and/or report class. The data returned by this macro is mapped by IWMSVDCR. For a description of the IWMSVDCR macro, see [z/OS MVS Data Areas, Vol 3 (IVT-RCWK)].

Optionally, a caller can request the active service policy identifier by specifying the POLICY_ID parameter. This is the active policy containing the classification rules returned by this macro. The caller can then compare the service policy ID with the policy identification information returned by the IWMPQRY macro to ensure they are the same.

Some data sections in the IWMSVDCR data area may not be available through IWMCQRY. For example, the time stamps indicating when a classification GROUP was last updated and by whom may not be available. For a complete list of fields that are not available refer to IWMSVDCR as described in [z/OS MVS Data Areas, Vol 3 (IVT-RCWK)]. The complete classification rules associated with a service policy are returned by the IWMDEXTR macro and mapped by IWMSVDCR.

A caller can use the classification rules together with the active service policy to determine the goals associated with incoming work. The service class goals are in the active service policy mapping returned by the IWMPQRY service.

The information returned is not serialized upon return to the caller, and so may be out of date if a service definition was modified, installed, and a new policy activated.
Example of IWMCQRY

To query the classification information associated with the active policy, specify:

IWMCQRY POLICY_ID=(R7),
 ANSAREA=(R5),
 ANSLEN=anslen,
 QUERYLEN=qcry_len,
 RETCODE=RCODE,
 RSNCODE=RSN

Where the following are defined:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>anslen</td>
<td>DS</td>
<td>1F</td>
<td>Length of the answer area</td>
</tr>
<tr>
<td>qcry_len</td>
<td>DS</td>
<td>1F</td>
<td>Length required for answer area</td>
</tr>
<tr>
<td>RCODE</td>
<td>DS</td>
<td>1F</td>
<td>Return code</td>
</tr>
<tr>
<td>RSNCODE</td>
<td>DS</td>
<td>1F</td>
<td>Reason code</td>
</tr>
</tbody>
</table>
Chapter 11. Using SMF Record Type 99

SMF record type 99 provides detailed audit information for work run on z/OS. You can use the type 99 records for analyzing the performance characteristics of work. The records contain performance data for each service class period, a trace of SRM actions, the data SRM used to decide which actions to take, and the internal controls SRM uses to manage work. This can help you determine in detail what SRM is doing to meet your work’s goals with respect to other work, and the types of delays the work is experiencing.

You should write SMF type 99 records only when you want this detailed information. For general reporting and tuning information for a system, you can use SMF type 72 records.

SRM writes type 99 records for each policy interval, or approximately once every 10 seconds.

There are the following type 99 record subtypes:

Subtype 1
Contains system level data, the trace of SRM actions, and data about resource groups. A subtype 1 record is written every policy interval.

Subtype 2
Contains data for service classes. A subtype 2 record is written every policy interval for each service class if any period in the service class had recent activity.

Subtype 3
Contains service class period plot data. A subtype 3 record is written every policy interval for each service class if any period in the service class had recent activity and plot data.

Subtype 4
Contains information about a device cluster. A device cluster is a set of service classes that compete to use the same DASD devices. A subtype 4 record is written every policy interval for each device cluster in the system.

Subtype 5
Contains data about monitored address spaces. A subtype 5 record is written each policy interval for each swapped in monitored address space.

Subtype 6
Contains summary information about each service class period, including the resource control settings for the next policy interval. A subtype 6 record is written each policy interval.

Subtype 7
Contains summary information for the Enterprise Storage Server (ESS) with Parallel Access Volume (PAV) feature. A subtype 7 record is written every third policy interval.

Subtype 8
Contains summary information for LPAR CPU management. A subtype 8 record is written each policy interval, when in LPAR mode.

Subtype 9
Contains summary information for dynamic channel path management. A subtype 9 record is written each policy interval.
Some fields are used as input to adjust the policy. Those fields contain the data collected during the policy interval just prior to policy adjustment. Other fields are altered when the policy is adjusted. Those fields contain the data resulting from the policy adjustment. For example, a service class period dispatch priority field contains the dispatch priority for the next policy interval not the dispatch priorities from the previous policy interval.

When to Start SMF Record Type 99
A type 99 is written every policy interval, which is frequent! The records contain the data, plots, and tables SRM uses to assess the effects of changes. So you should write type 99 records only for a time period in which you want this detailed audit information.

Starting SMF Record Type 99
You specify the type 99 record in the SMFPRMxx parmlib member under SUBSYS STC.

Because SMF type 99 records are written approximately every 10 seconds, you should write them only for certain time periods. If you use NOTYPE in your SMFPRMxx parmlib member, you should include type 99 in your NOTYPE list. For example:

```
SUBSYS(STC,NOTYPE(99))
```

If you use TYPE in your SMFPRMxx parmlib member, make sure you add TYPE 99 only when you want this level of detail. For example, add:

```
SUBSYS(STC,TYPE(99))
```

You should have an SMFPRMxx parmlib member for general audit information that does not specify type 99, and another for detailed audit information that specifies type 99. This way, you can write the frequently written SMF record types like SMF type 99 only when you need them.

The mapping macro (IRASMF99) for this record is shipped in SYS1.AMODGEN.

Identifying Work in SMF Type 99 Records
This section explains how to identify work in SMF type 99 records. You can identify work throughout SMF type 99 by:

- Service class name
- Service class performance period number
- Resource group name
- Address space name

This information is as defined in the service policy at the time the type 99 record was written.

Identifying Server Service Classes
Some service classes are server service classes, that is they are service classes representing address spaces doing work on behalf of transactions. You can determine whether a service class represented in the subtype 2 period data is a server by first checking the goal type in the service class period section. If the goal type is 0, indicating a system or server service class, you next check whether there
are any server data entries. If there are entries, then the service class period is a server, and the server data describes the service classes being served by this server.

If the goal type is 0, and there are no server entries, then the service class is a system service class.

Identifying Internal Service Classes

SRM groups some work not defined in the service policy into internal service classes. The internal service class names are:

- **$SRMDInn - resource group discretionary**
 Contains all work in a resource group with a discretionary goal. There is one $SRMDInn class per resource group with discretionary work.

- **$SRMDI00 - general discretionary**
 Contains all work assigned a discretionary goal, but not assigned a resource group. There is always one $SRMDI00.

- **$SRMDISC - SYSOTHER service class**
 Contains all work not otherwise assigned to a service class.

- **$SRMSnnn - server**
 Contains all address spaces serving the same set of service classes. That is, the server address space (s) could be serving more than one service class. For example, 2 AORs may be serving the same 3 CICS service classes. Those 2 AORs make up one $SRMSnnn service class.

 An address space can belong to one internal server service class, but can move from one class to another. The number of $SRMSnnn service classes depends on how many external service classes are served and by how many combinations of server address spaces.

- **$SRMDUMP - SDUMP**
 Contains only SDUMP.

- **$SRMBEST - best**
 Contains the special system component address spaces, unless they are explicitly assigned to a service class in the service policy. This includes the SYSTEM service class.

- **$SRMGOOD - good**
 Contains the STC subsystem type default work, if there was no default service class specified in the classification rules for STC in the service policy. This is the SYSSTC service class.

- **$SRMGOD1-5 - good**
 Contains the work defined for service classes SYSSTC1, SYSSTC2, SYSSTC3, SYSSTC4, and SYSSTC5. For further information refer to [z/OS MVS Planning: Workload Management](#).

Interpreting Trace Table Entries

Subtype 1 contains a trace table. The trace codes describe which action SRM took or is considering taking to process work. This section describes the SRM concepts reflected in the trace codes. For a list and a brief explanation of the trace codes, see Appendix A, “SMF Type 99 Action Codes,” on page 749.
Policy Adjustment

Policy adjustment is how SRM:
- Selects work to help
- Selects performance bottlenecks to address
- Selects which work should donate resource to help other work
- Assesses whether it is worth it to help work.

The purpose of policy adjustment is to meet service class and resource group goals. Policy adjustment is done approximately every 10 seconds.

Resource Adjustment

Resource adjustment is how SRM keeps system resources effectively utilized. Resource adjustment detects and addresses under-utilized resources, over-utilized resources, and shortage conditions. SRM handles resource adjustment algorithms within the constraints set by the policy adjustment algorithms. Resource adjustment is done approximately every 2 seconds.

Receivers and Donors

A *receiver* is the service class period SRM is considering helping. SRM helps only one receiver during each policy interval, although it may assess multiple receivers before finding one to help. A *donor* is a service class period that donates resources to the receiver. Multiple donors may donate multiple resources to a single receiver during one policy interval.

The resources to help the receiver may also come out of what is referred to as *discretionary* resources. Discretionary resources are those that can be reallocated with little or no effect on the system’s ability to meet performance goals.

Service class periods other than receivers and donors can also be affected by changes. These service class periods are referred to as *secondary* receivers and donors. SRM may decide not to help a receiver due to minimal net value for either a primary or secondary donor. [Action Trace Example on page 131](#) explains an example in which there are secondary receivers and donors.

If a service class period is being served by one or more address spaces, it is called the *goal* receiver or donor. It is the service class period with the response time goals. To help such service class periods, SRM must donate resources to the server address spaces. The service class period serving a service class, is called a *resource* receiver or donor. SRM adjusts resources for the resource receiver/donor to affect the performance of the goal receiver/donor.

Performance Index

Performance index is a calculation of how well work is meeting its defined goal. For work with response time goals, the performance index is the actual divided by goal. For work with velocity goals, the performance index is goal divided by actual.

A performance index of 1.0 indicates the service class period is exactly meeting its goal. A performance index greater than 1 indicates the service class period is missing its goal. A performance index less than 1.0 indicates the service class period is beating its goal. Work with a discretionary goal is defined to have a performance index of .81.
Each service class period has a sysplex and a local performance index. The sysplex performance index represents the performance of a service class period across all the systems in the sysplex. The local performance index represents only the performance on the local system.

Within resource groups and importances, receivers are selected in *performance index* order. Donors are selected in the reverse order of receivers. The sysplex performance index is the primary criteria used for selecting receivers and donors and assessing changes.

Receiver Value

A receiver is helped only if there is projected to be sufficient *receiver value*. Receiver value is a minimum performance index improvement, a minimum group service increase, or other minimum criteria designed to reject very small improvements. The reason to reject actions for too little receiver value is to get on to addressing other problems for other service class periods rather than continuing to make changes that yield only marginal improvements for a few service classes.

Net Value

A receiver is only helped by a specific donor if SRM projects sufficient *net value* to the resource reallocation. SRM calculates the net value and uses it to determine if using a donor to help a receiver results in more projected harm to the donor than projected improvement to the receiver. If so, the condition is traced, and another donor is selected. The net value assessment considers all external service policy specifications (resource group capacity minimums and maximums, importance, and goals) for both primary and secondary donors.

Small Processor Consumer

Service class periods that consume little or no processor time are referred to as *small processor consumers*. Under some circumstances these small consumers are assigned a relatively high dispatching priority and not assessed for dispatching priority changes.

Storage Housekeeping

The purpose of *storage housekeeping* is to decrease storage targets that are out of date or ineffective. Storage housekeeping will only reduce a target if it will not affect the ability of work to meet goals. There are four types of storage housekeeping.

- **time driven**
 Reduce target when the projected effect is small and the service class period will still easily meet goals

- **minimal effect**
 Reduce target slightly when the projected effect is very small

- **unassessable**
 Reduce target slightly when the projected effect cannot be determined but the service class period is meeting goals easily

- **slow mode**
 Reduce target slightly when the projected effect cannot be determined but keep the target close to the current allocation
Reverse Housekeeping

A second type of housekeeping, referred to as reverse housekeeping increases targets if these targets are significantly less than the resources the service class period or address space already owns. The targets are increased by reverse housekeeping so that if there is a sudden increase in the demand for resources the service class period or address space will have some protection until the policy adjustment can reevaluate the situation.

Interpreting Management Policy Data

This section explains the controls SRM uses to manage work, and where these controls can be found in SMF type 99. SRM algorithms set all the control values internally. All changes to the control values have trace entries in the subtype 1 record.

The SRM controls are:
- Dispatching priority
- MPL targets
- Swap protect time
- Storage targets
- Cap slices
- I/O priority
- Number of server address spaces

They are shown in the subtype 1, subtype 2, and subtype 5 records.

Dispatching Priority

SRM defines dispatching priority for service class periods. All address spaces in a service class period have the same base dispatching priority. Multiple service class periods may have the same base dispatching priority. After a dispatching priority change, service class periods may be remapped to different dispatching priorities such that there is an unoccupied priority between each occupied priority. This process is referred to as priority unbunching.

The dispatching priority is recorded in the subtype 2 records.

MPL Targets

SRM defines an MPL-in and MPL-out target for each service class period. MPL-in target represents the number of address spaces that must be in the swapped-in state for the service class period to meet its goals. MPL-out target is the maximum number of address spaces allowed in the swapped-in state.

The MPL targets are recorded in the subtype 2 records.

Swap Protect Time

SRM defines swap protect time for service class periods. Swap protect time is the time in milliseconds swapped-out address spaces will remain in processor storage before becoming candidates for swap to auxiliary storage.

The swap protect time is recorded in the subtype 2 records.
Storage Target

To manage central storage, SRM defines a storage target of **protective central**. This specifies the number of frames that are protected in central storage. The system will not 'steal' below this value.

The storage target assigned depends on the service class period goal.

For short response time goals, the service class period gets a protective processor storage target. Every address space in the service class period has the same target.

For long response time, velocity, or discretionary goals, or for server internal service classes ($SRMSnnn), SRM may define individual storage targets for the address spaces in the service class period. Each address space may have one or more of each type of storage targets. Storage targets for individual address spaces are recorded in subtype 5, in the monitored address space information section.

Cap Slices

SRM defines cap slices for resource groups to enforce resource group maximums. Work is not dispatched during its cap slices in order to reduce access to the processor to enforce the resource group maximum. Each cap slice represents 1/64th of total time. All address spaces in all service class periods in a resource group are controlled by the same number of cap slices.

The number of cap slices is recorded in the subtype 1 records.

I/O Priority

SRM defines an I/O priority for each service class period. All address spaces in a service class period have the same I/O priority. Multiple service class periods may have the same I/O priority. I/O priority is used to prioritize requests on IOS’s UCB queues.

The I/O priority is recorded in the subtype 2 records.

Number of Server Address Spaces

SRM manages the number of server address spaces for users of the queueing manager services (see Chapter 5, “Using the Queueing Manager Services,” on page 69) and manages the number of initiators for WLM-managed JES job classes.

Information on how SRM manages these server address spaces is recorded in the subtype 2 records in the queue server data section and in the remote queue server data section.

Interpreting Plots

SRM creates the following plots to track how well work is being processed:

- System paging delay plot
- Period MPL delay plot
- Period ready user average plot
- Period swap delay plot
- Period paging rate plot
- Period proportional aggregate speed plot
- I/O delay plot
- Queue delay plot
• Address space paging plot
• I/O velocity plot

All plots except the address space paging plot are “one-curved” plots where one variable is plotted against another. The address space paging plot is a “three curved” plot where one variable is plotted against three variables.

System Paging Delay Plot
SRM uses the system paging delay plot to determine if the paging configuration is close to capacity or if it can support additional work. There is one system paging plot per system. The plot can show the point at which additional page faults will start requiring a disproportionately longer time because the paging subsystem is becoming overloaded.

<table>
<thead>
<tr>
<th>System Paging Delay Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>x axis</td>
</tr>
<tr>
<td>The system wide page fault rate, in page faults per second.</td>
</tr>
<tr>
<td>y axis</td>
</tr>
<tr>
<td>The system wide auxiliary storage delay sample rate, in samples per minute.</td>
</tr>
</tbody>
</table>

Page faults and delay samples are for all types: private area, common area, and cross memory.

The system paging delay plot is recorded in subtype 1 records.

Period MPL Delay Plot
SRM uses the period MPL delay plot to assess increasing or decreasing a service class period’s MPL targets. The plot shows how response time may be improved by increasing MPL slots or how response time may be degraded by reducing MPL slots.

<table>
<thead>
<tr>
<th>Period MPL Delay Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>x axis</td>
</tr>
<tr>
<td>The percentage of ready users who have an MPL slot available to them.</td>
</tr>
<tr>
<td>y axis</td>
</tr>
<tr>
<td>The MPL delay per completion in milliseconds.</td>
</tr>
</tbody>
</table>

The period MPL delay plot is recorded in subtype 3 records.

Period Ready User Average Plot
SRM uses the period ready user average plot to predict the number of ready users when assessing an MPL target change. The plot can show the point at which users will start backing up. The plot shows the approximate MPL target at which users would be disproportionately delayed due to MPL.
Period Ready User Average Plot

x axis
The number of MPL slots, times 16, available to the service class period.

y axis
The maximum number of ready users, times 16, averaged over a two second interval.

The period ready user average plot is recorded in subtype 3 records.

Period Swap Delay Plot

SRM uses the period swap delay plot to assess increasing or decreasing swap protect time for a service class period. The plot shows how response time may be improved or degraded by increasing or decreasing a service class period's swap protect time.

x axis
The average time an address space in the service class period is logically swapped or swapped on expanded, in milliseconds.

y axis
The swap delay time per completion, in milliseconds.

The period swap delay plot is recorded in subtype 3 records.

Period Paging Rate Plot

SRM uses the period paging rate plot to assess increasing or decreasing period wide storage isolation for a service class period.

x axis
The average address space size in frames.

y axis
The page fault rate in tenths of a page fault per departure from the period.

The period paging rate plot is recorded in subtype 3 records.

Period Proportional Aggregate Speed Plot

SRM uses the proportional aggregate speed plot to assess the effects of processor access or storage allocation changes for served service classes. Proportional aggregate speed is similar to velocity. Proportional aggregate speed applies to service class periods that are served while velocity applies to service class periods that are not served. The units for proportional aggregate speed are the same units as for velocity:
The samples are an aggregate of the samples of all internal server service classes that serve the service class. The server samples are apportioned to the served classes based on the relative amount of time, also determined by state sampling, that the server is serving the service class.

Proportional Aggregate Speed Plot

x axis
- The proportional aggregate speed of a service class period.

y axis
- The performance index at that speed, times 100.

The period proportional aggregate speed plot is recorded in subtype 3 records for served service class periods.

I/O Delay Plot

SRM uses the I/O Delay plot when assessing increasing or decreasing a service class period's I/O priority.

I/O Delay Plot

x axis
- The combined maximum I/O demand of service class periods with I/O priorities above a given priority.

y axis
- The ratio of I/O delay time to I/O using time at that priority scaled by 16.

Maximum I/O demand is the maximum percentage of time that work units in a service class period would use non-paging DASD devices if they were experiencing no I/O delay. Maximum I/O demand is represented as a percentage scaled by 10.

The I/O delay plots are recorded in the subtype 4 records.

Queue Delay Plot

SRM uses the queue delay plot to assess creating or removing server address spaces. The plot shows how queue delay for a service class period may be reduced by adding server address spaces for work running in the service class period or how queue delay may be increased by removed server address spaces for work running in the service class period.
Queue Delay Plot

x axis
The ratio of work requests that require a task in a server address space to the number of server tasks. This ratio is scaled by 100.

y axis
The queue delay per work request in milliseconds.

The queue delay plots are recorded in the subtype 3 records.

Address Space Paging Plots

SRM uses address space paging plots when assessing whether to increase or decrease the central storage or processor storage allocated to an address space. There are two address space paging plots:

Central Storage Plot

SRM uses the central storage paging plot when assessing increasing or decreasing the central storage allocated to an address space.

Central Storage Plot

x axis
Address space size in frames.

y axis
Each one of the following:
- Page-in rate per captured (task and SRB) second from auxiliary and expanded storage.
- Paging cost in milliseconds per elapsed second from auxiliary and expanded storage.
- Captured time in milliseconds per elapsed second.

Processor Storage Plot

SRM uses the processor storage paging plot when assessing increasing or decreasing the processor storage allocated to an address space.

Processor Storage Plot

x axis
The address space size in frames.

y axis
Each one of the following:
- Page-in rate per captured (task+SRB) second from auxiliary storage.
- Paging cost in milliseconds per elapsed second from auxiliary storage.
- Captured time in milliseconds per elapsed second.

The address space paging plots are recorded in subtype 5 records.
SRM uses the I/O velocity plot to keep track of the relationship between the number of channel paths connected to a subsystem (along with the channel path’s utilization) and the I/O velocity of that subsystem. There is one I/O velocity plot for each I/O subsystem (control unit).

I/O Velocity Plot

- **x axis**: The contention factor.
- **y axis**: The I/O velocity.

If there is a single channel, the contention factor equals the channel utilization. If there are multiple channels, the contention factor is the utilization a single channel would have to have to be equivalent to the channels connected to the control unit, given the number of channels and their average utilization. In this case, “equivalent” means that an I/O operation would have the same probability of experiencing delay.

The I/O velocity plots are recorded in the subtype 9 records.

Interpreting Priority Table Data

Subtype 1 priority table data contains processor resource demand and consumption at each dispatching priority in use. Subtype 2 records contain similar data for each service class period. You can use the data in these two records to determine how much processor capacity is available to each service class period or to explain the actions being taken to increase or decrease access to the processor.

You can use the priority table data in subtype 1 to understand why dispatching priority change actions are rejected. When a dispatching priority change is made, the table shows the before and after demand and consumption data at each priority in use. The before data is actual data. The after data is projected data.

Maximum demand is the theoretical maximum percentage of total system processor time the address spaces in a service class period would consume if they were suffering no processor delays. This value is calculated for each service class period and accumulated for each priority.

Achievable maximum demand is the percentage of total system processor time the address spaces in a service class period are projected to use, given the maximum demand of all work at higher dispatching priorities. SRM calculates achievable maximum demand to assess dispatching priority changes.

Interpreting Lack of Action

Just as you can determine the actions SRM takes to manage work, you can determine lack of action from SMF type 99. You can use the resource group and service class period information in the subtype 1 and 2 records. If a service class period is having a problem meeting its goals and isn’t selected as a receiver, it could be one or more of the following:

- Other work is even worse off.
- The service class period is of lower importance than the receiver selected.
- The receiver selected may be in a resource group that is not meeting its minimum.

The importances and performance indexes for all service class periods are in the subtype 2 records. Resource group information is in the subtype 1 records.

In some cases, potential receivers may be skipped and not assessed as receivers. They are skipped when the service class period hasn’t accumulated any state samples that show it was delayed for any resource SRM manages during the last policy interval. You can determine this from the needs help indicator in the service class period data.

They are also skipped when a potential receiver’s skip clock hasn’t expired. If a receiver is assessed and all actions to help it are rejected, a skip clock (counter) is set and the service class period will not be selected as a receiver again until the skip clock expires.

In other cases, a service class period is selected as a receiver but not helped. It could be that there was no receiver value projected for a change. The subtype 1 trace entry indicates these cases with the no receiver value trace code.

For storage changes such as MPL targets, swap protect time, or storage targets, you can determine the reasons for insufficient receiver value from the service class period’s current targets in the subtype 2 records and the plots in the subtype 3 and 5 records.

For rejected dispatching priority actions, you can determine the reasons from the service class period’s dispatching priority, service, and maximum demand data in the subtype 2 records and at the priority table data in the subtype 1 records.

For no net value assessments, you can determine the reasons from the service class period data, plot data, and priority table data. From this data, you can also determine which service class periods are using the resources for which another service class period is delayed.

Examples of Interpreting SMF Record Type 99

This section describes the following examples on interpreting the data in SMF type 99:

- Action trace
- MPL policy

The examples show information from SMF type 99 records that were combined and displayed in a report format.

Action Trace Example

This example shows how to use subtype 1 trace data with subtype 2 service class period data to understand what actions SRM is taking, why those actions are taken, and which work is affected.

The table below shows the subtype 1 trace data output:
Subtype 1 Trace Data Output

<table>
<thead>
<tr>
<th>CLASS</th>
<th>P</th>
<th>SPI</th>
<th>LPI</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRBATCH</td>
<td>2</td>
<td>.02</td>
<td>.03</td>
<td>3610 rv_hs_lnc_pl</td>
</tr>
<tr>
<td>TSO</td>
<td>1</td>
<td>.10</td>
<td>.11</td>
<td>2630 tdh_rem_prf</td>
</tr>
<tr>
<td>TSO</td>
<td>2</td>
<td>1.84</td>
<td>1.84</td>
<td>270 pa_rec_cand</td>
</tr>
<tr>
<td>TSO</td>
<td>1</td>
<td>.10</td>
<td>.11</td>
<td>880 pa_pro_rdon_cand</td>
</tr>
<tr>
<td>TSO</td>
<td>2</td>
<td>1.84</td>
<td>1.84</td>
<td>620 pa_pmuo_rec</td>
</tr>
<tr>
<td>APPC</td>
<td>1</td>
<td>1.10</td>
<td>1.10</td>
<td>960 pa_pro_unc_sec_don</td>
</tr>
<tr>
<td>APPC</td>
<td>3</td>
<td>1.10</td>
<td>1.10</td>
<td>960 pa_pro_unc_sec_don</td>
</tr>
<tr>
<td>NRBATCH</td>
<td>1</td>
<td>2.23</td>
<td>3.23</td>
<td>960 pa_pro_unc_sec_don</td>
</tr>
<tr>
<td>TSO</td>
<td>1</td>
<td>.10</td>
<td>.11</td>
<td>940 pa_pro_unc_don</td>
</tr>
<tr>
<td>TSO</td>
<td>2</td>
<td>1.08</td>
<td>1.08</td>
<td>750 pa_pro_incp_rec</td>
</tr>
</tbody>
</table>

The data has the following headings:

CLASS The service class name.

P The service period number within the service class.

SPI The sysplex performance index for the service class period traced.

LPI The local performance index for the service class period traced.

ACTION The action code and mnemonic.

The table below shows the subtype 2 service class period output.

Subtype 2 Service Class Period Data

<table>
<thead>
<tr>
<th>CLASS</th>
<th>P</th>
<th>I</th>
<th>N</th>
<th>SC</th>
<th>GT</th>
<th>SPI</th>
<th>LPI</th>
<th>DP</th>
<th>MPLI</th>
<th>MPLO</th>
<th>SWPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPC</td>
<td>1</td>
<td>2</td>
<td>N</td>
<td>-99</td>
<td>SRT</td>
<td>1.10</td>
<td>1.10</td>
<td>251</td>
<td>0</td>
<td>999</td>
<td>488</td>
</tr>
<tr>
<td>APPC</td>
<td>2</td>
<td>2</td>
<td>N</td>
<td>-99</td>
<td>SRT</td>
<td>0</td>
<td>0</td>
<td>251</td>
<td>0</td>
<td>999</td>
<td>0</td>
</tr>
<tr>
<td>APPC</td>
<td>3</td>
<td>3</td>
<td>N</td>
<td>-72</td>
<td>SRT</td>
<td>1.10</td>
<td>1.10</td>
<td>251</td>
<td>1</td>
<td>999</td>
<td>76206</td>
</tr>
<tr>
<td>APPC</td>
<td>4</td>
<td>3</td>
<td>N</td>
<td>-99</td>
<td>VEL</td>
<td>0</td>
<td>0</td>
<td>249</td>
<td>1</td>
<td>999</td>
<td>0</td>
</tr>
<tr>
<td>NRBATCH</td>
<td>1</td>
<td>3</td>
<td>N</td>
<td>-99</td>
<td>LRT</td>
<td>2.16</td>
<td>3.04</td>
<td>249</td>
<td>1</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>NRBATCH</td>
<td>2</td>
<td>4</td>
<td>Y</td>
<td>-98</td>
<td>LRT</td>
<td>.02</td>
<td>.03</td>
<td>247</td>
<td>2</td>
<td>999</td>
<td>0</td>
</tr>
<tr>
<td>NRBATCH</td>
<td>3</td>
<td>6</td>
<td>Y</td>
<td>-99</td>
<td>DIS</td>
<td>.81</td>
<td>.81</td>
<td>192</td>
<td>0</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>OFFBATCH</td>
<td>1</td>
<td>6</td>
<td>Y</td>
<td>-99</td>
<td>DIS</td>
<td>.81</td>
<td>.81</td>
<td>192</td>
<td>0</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>TSO</td>
<td>1</td>
<td>2</td>
<td>Y</td>
<td>-64</td>
<td>SRT</td>
<td>.10</td>
<td>.11</td>
<td>251</td>
<td>1</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>TSO</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>-99</td>
<td>SRT</td>
<td>.91</td>
<td>.93</td>
<td>247</td>
<td>2</td>
<td>12</td>
<td>2440</td>
</tr>
<tr>
<td>TSO</td>
<td>3</td>
<td>2</td>
<td>Y</td>
<td>-2</td>
<td>SRT</td>
<td>1.84</td>
<td>1.84</td>
<td>251</td>
<td>1</td>
<td>999</td>
<td>1464</td>
</tr>
<tr>
<td>TSO</td>
<td>4</td>
<td>3</td>
<td>Y</td>
<td>-99</td>
<td>VEL</td>
<td>.26</td>
<td>.26</td>
<td>245</td>
<td>7</td>
<td>999</td>
<td>0</td>
</tr>
<tr>
<td>$SRMDISC</td>
<td>1</td>
<td>6</td>
<td>Y</td>
<td>-99</td>
<td>DIS</td>
<td>.81</td>
<td>.81</td>
<td>192</td>
<td>0</td>
<td>14</td>
<td>0</td>
</tr>
</tbody>
</table>

The subtype 2 service class policy period output has the following headings:

CLASS The service class name.

P The service period number within the service class.

I The service class period’s importance, with 1 being highest.

N The “needs help” indicator. Y means the service class period needs help and N means the service class period doesn’t need help.

SC The skip clock.

GT One of the following goal types:
- SRT - short response time goals
- LRT - long response time goals
- VEL - velocity goals
- DIS - discretionary goals.

SPI The sysplex performance index for the service class period traced.

LPI The local performance index for the service class period traced.

DP Dispatching priority
MPLI MPL-in target
MPLO MPL-out target
SWPT Swap protect time

Interpreting the Trace Data

Based on the information in these subtypes, SRM took the following actions:

- **rv_hsk_inc_mpl**, reverse housekeeping, to increase the MPL targets for service class NRBATCH, period 2.

 This action code indicates the service class period was using significantly more MPL slots than guaranteed by its MPL control so its MPL in target was increased.

- **tdh_rem_prt**, time driven housekeeping, removing the swap protect time target from first period TSO.

 First period TSO is easily meeting its goals and was assessed to not need swap protect time.

- **pa_rec_cand** indicates TSO period 2 was chosen as the receiver.

 This shows the start of a series of actions where SRM is trying to improve the performance of TSO period 2 by increasing its dispatching priority. SRM selected TSO period 2 as the receiver because it had the worst performance index, 1.84, of all the work at the highest importance defined, 2. Service class NRBATCH, period 1, had a worse performance index, 2.16, but it also had a lower importance, 3, so it would be chosen as a receiver after TSO period 2 which had a higher importance and was not meeting goals.

- **pa_pro_rdon_cand** indicates that TSO period 1 has been selected as the processor donor to be assessed.

 SRM selected TSO period 1 as the first donor candidate because it had the best performance index of all service class periods that were running at a dispatching priority higher than or equal to the receiver’s dispatching priority.

- **pa_pmuo_rec** indicates that the first dispatching priority move to be assessed is to move TSO period 2 up to a higher dispatching priority.

 The next several **pa_pro_unc_sec_don** trace entries show the other service class periods whose processor access will be affected by the move up of TSO period 2 even though their priority remains unchanged. These service class periods were all secondary donors. TSO period 1 was the primary donor. This is indicated by the **pa_pro_unc_don** action.

- **pa_pro_incp_rec** shows that the primary receiver, TSO period 2, received a dispatching priority increase.

 The sysplex and local performance index projections are shown with the final action for each service class period affected.

MPL Policy Example

This example shows how to use subtype 2 service class period data to analyze a first period TSO problem. The example shows how SRM used the data to resolve the problem. You can use the data in the same way to analyze why SRM isn’t solving a problem. From this kind of information, a service administrator can decide whether to change goals or service class importance in the service policy.

This subtype 2 data shows the controls SRM is using for first period TSO, and the resulting performance delays.
At 13:15:01 TSO period 1 was meeting its goals easily. This is indicated by a sysplex performance index (SPI) of 0.1 and a local performance index (LPI) of 0.09. The dispatching priority (DP) was 251. The MPL in and out targets (MPLI/MPLO) were 3 and 6. After being swapped out, work in the period was protected in processor storage for 15.952 seconds (SWPT=15952). There was no period wide storage isolation (PSI=0) and the expanded policy was space available for swap working set, VIO, and hiperspace pages, and LRU for demand pages (EXP POL= SLSS). At 13:15:01 TSO period 1 has a swap delay and an MPL delay but was meeting its goals easily.

Conditions change between 13:15:01 and 13:15:11. The sysplex performance index spiked to 6.18 and the local performance index was worse. This period needs help. The delay samples show that the problem could be either swap delay, processor delay, or MPL delay. Since it is the work furthest from meeting its goals, it is selected as a receiver.

The following data, from the subtype 1 record at 13:15:11 shows what happens next. The fields are explained in the first example.

Subtype 1 Trace Data Output

<table>
<thead>
<tr>
<th>CLASS</th>
<th>P</th>
<th>SPI</th>
<th>LPI</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSO</td>
<td>1</td>
<td>6.18</td>
<td>6.73</td>
<td>270 pa_rec_cand</td>
</tr>
<tr>
<td>TSO</td>
<td>1</td>
<td>6.18</td>
<td>6.73</td>
<td>2540 pa_prt_na_rec_val</td>
</tr>
<tr>
<td>TSO</td>
<td>1</td>
<td>6.18</td>
<td>6.73</td>
<td>850 pa_pro_na_no_donor 290 pa_use_disc_cent</td>
</tr>
<tr>
<td>TSO</td>
<td>1</td>
<td>4.69</td>
<td>5.10</td>
<td>3530 pa_inc_mpl</td>
</tr>
</tbody>
</table>

TSO period 1 is selected as the receiver candidate. The trace entry, pa_rec_cand indicates this.

The largest delay is selected to be worked on first. In this case the largest delay in recent history is swap delay. The swap delay plot is shown below. ccc indicates the current plot point. The current plot point shows that only 89 milliseconds of swap delay per transaction could be eliminated even if all swap delay were eliminated. The pa_prt_na_rec_val trace entry indicates that there was insufficient receiver value to be gained by increasing the swap protect time. The swap delay plot data is from the subtype 3 record.
The next largest delay is processor delay. However TSO period 1 is running alone at the highest dispatching priority in use. Therefore there is no work to donate processor time. This reason for lack of action is indicated by the `pa_pro_na_no_donor` trace. The dispatch priorities are from the subtype 2 records.

The third largest delay is MPL delay. The MPL delay plot below shows that here there is value to increasing the MPL. The third entry in the MPL plot, indicated by `ccc` shows that on average, only 48/100ths of the ready users have MPL slots. This results in an MPL delay of 202 milliseconds per completion. This plot is recorded in the subtype 3 record. The fact that MPL targets were increased is indicated by the `pa_inc_mpl` trace. The new MPL targets are recorded in the subtype 2 record.

At 13:15:22 the performance index was improving but there was still significant MPL delay and the MPL targets were increased again. At 13:15:32 the work was back to meeting its goals as shown by sysplex and local performance indexes of less than 1.0.
Chapter 12. IWMCLSFY – Classifying Work

The purpose of this service is to factor in available information about an arriving work request in order to associate a service class and possibly a report class with it.

Environment

The requirements for the caller are:

Minimum authorization:	Either problem state or supervisor state. PSW key must either be 0 or match the value supplied on IWM4CON.
Dispatchable unit mode:	Task or SRB
Cross memory mode:	Any PASN, any HASN, any SASN
AMODE:	31-bit
ASC mode:	Primary
Interrupt status:	Enabled for I/O and external interrupts
Locks:	Unlocked or locked.
Control parameters:	Control parameters must be in the primary address space.

Programming Requirements

1. The macro IWMYCON must be included to use this macro.
2. Caller is responsible for error recovery.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.

Restrictions

1. This macro may only be used on MVS/ESA (version 3 or higher), NOT versions 1 or 2 of MVS.
2. FRRs are allowed
3. This macro may not be used during task/address space termination for the connect owner.
4. If the key specified on IWM4CON was a user key (8-F), then current primary must equal primary at the time that IWM4CON was invoked.
5. Only limited checking is done of the connect token obtained from IWM4CON.
6. SOURCELU is mutually exclusive with NETID/LUNAME.
7. This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to the PLISTVER parameter description for further information.
IWMCLSFY Macro

Input Register Information

Before issuing the IWMCLSFY macro, the caller must ensure that the following general purpose registers (GPRs) contain the specified information:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>The address of a 72-byte standard save area in the primary address space</td>
</tr>
</tbody>
</table>

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMCLSFY macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,.ACCTINFL=acctinfl
When ACCTINFO=acctinfo is specified, a required input parameter, which contains the length of the accounting information field. The maximum value supported is 143.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,.ACCTINFO=acctinfo
,.ACCTINFO=NO_ACCTINFO
An optional input parameter, which contains the accounting information. For environments where accounting information is available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_ACCTINFO. The default is NO_ACCTINFO, which indicates that no accounting information was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,.COLLECTION=collection
,.COLLECTION=NO_COLLECTION
An optional input parameter, which contains the customer defined name for a group of associated packages. For environments where the collection name may be available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_COLLECTION. The default is NO_COLLECTION, which indicates that no COLLECTION name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,.COLLECTION_LEN=collection_len
When COLLECTION=collection is specified, a required input parameter, which contains the length of the collection name. There is no restriction on the length of data passed, but all storage between the start and end must be allocated (getmained).

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,.CONNECTION=connection
,.CONNECTION=NO_CONNECTION
An optional input parameter, which contains the name associated with the environment creating the work request, which may reside anywhere within the network. For environments where the connection name may be available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_CONNECTION. The default is NO_CONNECTION, which indicates that no CONNECTION name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.
A required input parameter, which is returned by IWM4CON for use by the classify routine.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

.CORR_LEN=corr_len

When CORRELATION=correlation is specified, a required input parameter, which contains the length of the correlation identifier. There is no restriction on the length of data passed, but all storage between the start and end must be allocated (getmained).

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

.CORRELATION=correlation

.CORRELATION=NO_CORRELATION

An optional input parameter, which contains the name associated with the user/program creating the work request, which may reside anywhere within the network. For environments where the correlation name may be available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specifying NO_CORRELATION. The default is NO_CORRELATION. This indicates that no CORRELATION name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

.EWLM_CHCORR=ewlm_chcorr

An optional output parameter, which contains the cross-platform Enterprise Workload Management (EWLM) child correlator associated with the instantiated sub work request. Specifying this parameter indicates that a sub work request will be created.

Notes:

1. z/OS only uses the first 64 bytes of the EWLM_CHCORR field.
2. The EWLM_OUTCORR, EWLM_CHCORR and EWLM_CHCTKN parameters are mutually exclusive.

To code: Specify the RS-type address, or address in register (2)-(12), of a 512-character field.

.EWLM_CHCTKN=ewlm_chctkn

An optional output parameter, which contains the cross-platform Enterprise Workload Management (EWLM) child correlator token associated with the instantiated sub work request. Specifying this parameter indicates that a sub work request will be created. An EWLM child correlator token must not be passed outside of the EWLM management domain.

The EWLM_OUTCORR, EWLM_CHCORR and EWLM_CHCTKN parameters are all mutually exclusive.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-character field.

.EWLM_CLTOKEN=ewlm_cltoken

An optional input parameter, which contains internal EWLM classification information to be passed from EWLM to WLM. This parameter is used internally
IWMCLSFY Macro

by WLM and must not be used by application programs. The default is
NO_EWLM_CLTOKEN which indicates that no EWLM classification information
was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
40-character field.

EWLM_CORR=ewlm_corr
EWLM_CORR=NO_EWLM_CORR
An optional input parameter, which contains the cross-platform Enterprise
Workload Management (EWLM) correlator associated with the work request. If
this parameter is specified and a valid EWLM correlator is passed, the EWLM
transaction class can be used for WLM classification purposes. The default is
NO_EWLM_CORR which indicates that no EWLM correlator is passed.

The EWLM correlator also serves as the input correlator for the
EWLM_CHCORR, EWLM_CHTKN, EWLM_OUTCORR parameters.

Notes:
1. The architected length field of an ARM correlator in the first two bytes must
contain a value between 4 (X'0004') and 512 (X'0200').
2. For environments where the EWLM correlator may be available on some,
but not all flows, providing a data area with the first four bytes set to binary
 zeroes is equivalent to specifying NO_EWLM_CORR.
3. The EWLM_OUTCORR, EWLM_CHCORR and EWLM_CHCTKN
parameters are mutually exclusive.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

EWLM_OUTCORR=ewlm_outcorr
An optional output parameter which receives a validated EWLM correlator on
return. The execution form of IWMCLSFY validates the passed correlator in
EWLM_CORR and provides a valid EWLM correlator in EWLM_OUTCORR as
follows:
• If the EWLM_CORR parameter is specified and the correlator in
EWLM_CORR is a valid ARM correlator in EWLM format, it will be copied to
EWLM_OUTCORR.
• If the correlator in EWLM_CORR is not a valid EWLM ARM correlator or the
EWLM_CORR parameter is omitted, a new classify correlator will be returned
within the EWLM_OUTCORR field.

Notes:
1. z/OS only uses the first 64 bytes of the EWLM_OUTCORR field.
2. Specifying EWLM_OUTCORR (unlike EWLM_CHCORR or
EWLM_CHCTKN) does not indicate the beginning of a sub work request.
3. The application may specify the same parameter for both EWLM_CORR
and EWLM_OUTCORR, which means that the EWLM correlator can be
validated or replaced in place.
4. The EWLM_OUTCORR, EWLM_CHCORR and EWLM_CHCTKN
parameters are mutually exclusive.

To code: Specify the RS-type address, or address in register (2)-(12), of a
512-character field.

LUNAME=luname
LUNAME=NO_LUNAME

An optional input parameter, which contains the local LU name associated with
the requestor. For environments where the local LU name may be available on
some, but not all flows, provision of a data area initialized to all blanks is
equivalent to specification of NO_LUNAME.

SOURCELU is mutually exclusive with LUNAME. The default is NO_LUNAME.
indicates that no local LU name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

MF=S
MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)
MF=(E,list addr)
MF=(E,list addr,COMPLETE)
MF=(E,list addr,NOCHECK)
MF=(M,list addr)
MF=(M,list addr,COMPLETE)
MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided input.
Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of IWMCLSFY in
the following order:

• Use IWMCLSFY ...MF=(M,list-addr,COMPLETE) specifying appropriate
 parameters, including all required ones.
• Use IWMCLSFY ...MF=(M,list-addr,NOCHECK), specifying the parameters
 that you want to change.
• Use IWMCLSFY ...MF=(E,list-addr,NOCHECK), to execute the macro.

list addr
The name of a storage area to contain the parameters. For MF=S, MF=E,
and MF=M, this can be an RS-type address or an address in register
(1)-(12).

attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

COMPLETE
- Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

NOCHECK
- Specifies that the system is not to check for required parameters and is not to supply defaults for omitted optional parameters.

NETID=netid
- An optional input parameter, which contains the network identifier associated with the requestor. For environments where the network identifier may be available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_NETID.

SOURCESLU is mutually exclusive with NETID. The default is NO_NETID. indicates that no network identifier is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

PACKAGE=package
- An optional input parameter, which contains the package name for a set of associated SQL statements. Products using this attribute must choose a specific package name to be associated with the work request, e.g. the first package name used in the unit of work. Individual product documentation will describe how this choice is made to allow the installation to use the WLM administrative application. For environments where the package name may be available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_PACKAGE. The default is NO_PACKAGE. indicates that no PACKAGE name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

PERFORM=perform
- An optional input parameter, which contains the performance group number (PGN) associated with the work request. If specified, the performance group number value must be within the range of 1-999, represented as character data, left justified and padded with blanks on the right. For environments where the perform value may be available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_PERFORM. The default is NO_PERFORM. indicates that no PERFORM value is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

PLAN=plan
- An optional input parameter, which contains the access plan name for a set of associated SQL statements. For environments where the plan name may be available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_PLAN. The default is NO_PLAN. indicates that no PLAN name is passed.
To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

PLISTVER=IMPLIED_VERSION
PLISTVER=MAX
PLISTVER=0
PLISTVER=1
PLISTVER=2
PLISTVER=3
PLISTVER=4
PLISTVER=5
PLISTVER=6
PLISTVER=7
PLISTVER=8

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.
- 0, which supports all parameters except those specifically referenced in higher versions.
- 1, which supports the following parameters along with those from version 0:
 PERFORM PRCNAME PRCNAME_LEN
- 2, which supports the following parameters along with those from version 0 and 1:
 PRIORITY
- 3, which supports the following parameters along with those from version 0, 1 and 2:
 PROCESSNAME PROCESSNM_LEN
- 4, which supports the following parameters along with those from version 0, 1, 2 and 3:
 TTRACETOKEN
- 5, which supports both the following parameters and those from version 0, 1, 2, 3, and 4:
 SCHEDENV SCHEDENV_LEN SRMTOKEN SUBCOLN
IWMCLSFY Macro

- 6, which supports both the following parameters and those from version 0, 1, 2, 3, 4, and 5:

 EWLM_CORR

- 7, which supports both the following parameters and those from version 0, 1, 2, 3, 4, 5, and 6:

 EWLM_CHCORR EWLM_CHCTKN EWLM_OUTCORR

- 8, which supports both the following parameters and those from version 0, 1, 2, 3, 4, 5, 7, and 8:

 EWLM_CLTOKEN

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0, 1, 2, 3, 4, 5, 6, 7, or 8

,PRCNAME=prcname

,PRCNAME=NO_PRCNAME

 An optional input parameter, which contains the DB2 Stored SQL Procedure name associated with the work request. For environments where the SQL procedure name may be available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_PRCNAME. The default is NO_PRCNAME, which indicates that no PRCNAME value is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 18-character field.

,PRCNAME_LEN=prcname_len

When PRCNAME=prcname is specified, a required input parameter, which contains the length of the procedure name. There is no restriction on the length of data passed, but all storage between the start and end must be allocated (getmained).

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,PRIORITY=priority

,PRIORITY=NO_PRIORITY

 An optional input parameter, which contains the priority associated with the work request. For environments where the priority value may be available on some, but not all flows, provision of a data area initialized to hexadecimal 80000000 (the largest negative integer) is equivalent to specification of NO_PRIORITY. The default is NO_PRIORITY.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,PROCESSNAME=processname

,PROCESSNAME=NOPROCESSNAME

 An optional input parameter, which contains the process name associated with the work request. The default is NOPROCESSNAME, indicates that no PROCESSNAME value is passed.
To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

\texttt{PROCESSNM_LEN}=\textit{processnm_len}

When \texttt{PROCESSNAME}=\textit{processname} is specified, a required input parameter, which contains the length of the process name. There is no restriction on the length of data passed, but all storage between the start and end must be allocated (getmained).

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

\texttt{RETCODE}=\textit{retcode}

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

\texttt{RPTCLSNM}=\textit{rptclsnm}

An optional output parameter, which is to receive the output report class name.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

\texttt{RSNCODE}=\textit{rsncode}

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

\texttt{SCHEDENV=schedenv}

\texttt{SCHEDENV=NO_SCHEDENV}

An optional input parameter, which contains the scheduling environment value associated with the work request. The default is \texttt{NO_SCHEDENV}. indicates that no scheduling environment value is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

\texttt{SCHEDENV_LEN}=\textit{schedenv_len}

\texttt{SCHEDENV_LEN}=16

When \texttt{SCHEDENV=schedenv} is specified, an optional input parameter, which contains the length of the scheduling environment. There is no restriction on the length of data passed, but all storage between the start and end must be allocated (getmained). The default is 16.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

\texttt{SERVCLS=\textit{servcls}}

A required output parameter, which is to receive the output token which represents the service and report class for the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

\texttt{SOURCELU=\textit{sourcelu}}

\texttt{SOURCELU=NO_SOURCELU}

An optional input parameter, which contains the LU name associated with the requestor. This may be the fully qualified NETID.LUNAME, e.g. network name (1-8 bytes), followed by a period, followed by the LU name for the requestor (1-8 bytes). It may also be the 1-8 byte local LU name, with no network
IWMCLSFY Macro

The SOURCELU field may be from 1-17 characters. In the assembler form, the macro determines the length of the field as follows:

1. If the field is specified by register notation, it will be assumed to be 17 characters (padded with blanks).
2. If the field is specified using an RS form name, then the length will be determined using the L' assembler function.

In the PL/AS form, the rules for the PL/AS compiler will determine the length. The product using IWMCLSFY is responsible for documenting which form is used so that the customer may specify the correct format.

For environments where the LU name may be available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_SOURCELU.

SOURCELU is mutually exclusive with NETID/LUNAME. The default is NO_SOURCELU. indicates that no source LU name was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,SRM_TOKEN=smrtoken
An optional output parameter, token for SRM internal use only.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,SRVCLSNM=srvclsnm
An optional output parameter, which is to receive the output service class name.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,SSPMLEN=sspmlen
When SUBSYSPM=subsyspm is specified, a required input parameter, which contains the length of the data passed by the work manager. There is no restriction on the length of data passed, but all storage between the start and end must be allocated (getmained).

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,SUBCOLN=subcoln
,NO_SUBCOLN
An optional input parameter, which contains the subsystem collection name associated with the work request. A subsystem collection is a named group of related subsystem address spaces — for instance, the XCF group name of JES2 and JES3 work. The default is NO_SUBCOLN, indicating that no subsystem collection name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,SUBSYSPM=subsyspm
,NO_SUBSYSPM
An optional input parameter, which contains character data related to the work request which is passed by the work manager for use in classification. The nature of the contents of this data must be documented for customer use. For environments where the subsystem parameter is available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_SUBSYSPM. The default is NO_SUBSYSPM. indicates that no parameter was passed.
IWMCLSFY Macro

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

TRXCLASS=trxclass
TRXCLASS=NO_TRXCLASS
An optional input parameter, which contains a class name within the subsystem. This can be any meaningful value that the installation can recognize and specify to match the value presented by the work manager. For environments where the transaction class is available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_TRXCLASS. The default is NO_TRXCLASS. indicates that no transaction class was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

TRXNAME=trxname
TRXNAME=NO_TRXNAME
An optional input parameter, which contains the transaction name for the work request, as known by the work manager. For environments where the transaction name is available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_TRXNAME. The default is NO_TRXNAME. indicates that no transaction name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

TTRACETOKEN=ttrace token
An optional output parameter, which is to receive the output transaction trace token associated with the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

USERID=user id
USERID=NO_USERID
An optional input parameter, which contains the userid associated with the work request. For environments where the user id is available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_USERID. The default is NO_USERID. indicates that no userid is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMCLSFY macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.
Table 22. Return and Reason Codes for the IWMCLSFY Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeWarning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0409</td>
<td>Equate Symbol: IwmRsnCodeNoConn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Connect token does not reflect a successful Connect.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0821</td>
<td>Equate Symbol: IwmRsnCodeBadConn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Input connect token does not pass validity checking.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>Equate Symbol: IwmRsnCodeServiceNotEnabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller’s space connection is not enabled for this service.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function under the input connection. IWM4CON options must be specified previously to enable this service.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0894</td>
<td>Equate Symbol: IwmRsnCodeInvalidEWLMCorr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The classification information contains an EWLM correlator (EWLM_CORR) that does not pass validity checking. The architected ARM correlator length field in the first two Bytes of the EWLM_CORR is either less than 4 (‘0004’x) or greater than 512 (‘0200’x).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check the specification of the EWLM correlator in the classification information.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0895</td>
<td>Equate Symbol: IwmRsnCodeEWLMServNotEnabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Service is not enabled because caller invoked the IWMCONN service with EWLM=NO.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Specify the parameter EWLM_CORR only when connected with EWLM=YES.</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeEnvError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Environmental error.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>Equate Symbol: IwmRsnCodeNoStg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Storage is not available for the request.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: There is a storage shortage. The function may work successfully at a later time.</td>
</tr>
</tbody>
</table>
Table 22. Return and Reason Codes for the IWMCLSFY Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>—</td>
<td><code>Equate Symbol: iwmRetCodeCompError</code>
<code>Meaning: Component error.</code>
<code>Action: No action required. The function may be successful if invoked again.</code></td>
</tr>
</tbody>
</table>

Examples

Suppose the transactions processed by a subsystem work manager have the following qualifiers:
- Userid
- Transaction name
- Transaction class

To get the service class associated with an incoming work request, specify:

```plaintext
IWMCLSFY USERID=AUSERID,TRXCLASS=ATRXCLS,TRXNAME=ATRXNM,
    CONNTKN=(R7),SERVCLS=(R9),
    RETCODE=RETCODE,RSNCODE=RSNCODE
```

Where the following are declared:

- `AUSERID DS CL8`
- `ATRXCLS DS CL8`
- `ATRXNM DS CL8`
IWMCLSFY Macro
Chapter 13. IWMCNTN — WLM Contention Notification

The IWMCNTN service allows resource managers to notify WLM of changes to the list of resources, work units, or transactions involved with resources that have been in contention (waiters exist) for longer than a resource manager defined interval. The interval should be chosen so that only contention which has lasted long enough to be considered chronic for the issuing resource manager results in calling this service.

The caller can run in task or SRB mode.

Environment

The requirements for the caller are:

- **Minimum authorization:** Supervisor state or program key mask (PKM) allowing keys 0-7.
- **Dispatchable unit mode:** Task or SRB
- **Cross memory mode:** Any PASN, any HASN, any SASN
- **AMODE:** 31-bit
- **ASC mode:** Primary
- **Interrupt status:** Enabled for I/O and external interrupts
- **Locks:** No locks may be held.
- **Control parameters:** Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.
6. Since this service may only be used by system-like code, some validity checking on the parameter list is not performed. These checks would only be needed if the macro were not used to invoke the service routine.

Restrictions

None.

Input Register Information

Before issuing the IWMCNTN macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.
Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
main diagram

IWMCNTN—SUBSYS=subsys—,SUBSYSNM=subsysnm

,RESOURCESCOPE=SINGLESYSTEM
,RESOURCESCOPE=MULTISYSTEM

,INVOCATIONTYPE=UPDATE—,REQUESTLIST=requestlist
,INVOCATIONTYPE=REPLACE—,REQUESTLIST=requestlist
,INVOCATIONTYPE=ENDOFCONTENTION

,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

,MF=S

,MF=(L,list addr)

,MF=(E,list addr)

```
Parameters

The parameters are explained as follows:

{name}
An optional symbol, starting in column 1, that is the name on the IWMCNTN macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

{INVOCATIONTYPE=UPDATE}
{INVOCATIONTYPE=REPLACE}
{INVOCATIONTYPE=ENDOFCONTENTION}
A required parameter, which indicates the type of operation requested.

{INVOCATIONTYPE=UPDATE}
indicates that the operations described in the request list have to be applied to the resource. If contention information for the resource does not already exist, it is created. If after applying the operations there are no holders or waiters (local or remote), tracking of the resource is abandoned locally.

{INVOCATIONTYPE=REPLACE}
same as UPDATE, except that any existing local resource topology is discarded first.

{INVOCATIONTYPE=ENDOFCONTENTION}
indicates that all topology information for the resource is discarded.

{MF=S}
{MF=(L,list addr)}
{MF=(L,list addr,attr)}
{MF=(L,list addr,0D)}
{MF=(E,list addr)}
{MF=(E,list addr,COMPLETE)}
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

{list addr}
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

{attr}
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.
IWMCNTN Macro

,COMPLETE
 Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters
 specified on the request to be processed. If you omit the PLISTVER
 parameter, IMPLIED_VERSION is the default.

- **MAX**, if you want the parameter list to be the largest size currently possible.
 This size might grow from release to release and affect the amount of
 storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify
 PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
 the list-form parameter list is always long enough to hold all the parameters
 you might specify on the execute form, when both are assembled with the
 same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

- **0**, if you use the currently available parameters.

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0

,REQUESTLIST=requestlist

When INVOCATIONTYPE=UPDATE or REPLACE is specified, a required input
parameter, which specifies a list of topology requests. For each request, you
must specify:

- Whether you want to add or to delete the contention information
- Whether the work unit is holding the resource or is waiting for it.
- The identification of the entity in terms of STOKEN, TCB address or enclave
token.

For each request the macro returns a return and a reason code. See
IWMCNTRL for the mapping of the request list.

The work unit ID varies based on the resource ownership model (transaction or
task resource) used by the IWMCNTN exploiter and the work unit type involved,
as described in Table 23:

<table>
<thead>
<tr>
<th>Work unit type</th>
<th>Exploiters using the transaction model will pass</th>
<th>Exploiters using the task resource model will pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global SRB, local SRB, preemptible SRB (but not a client or enclave SRB)</td>
<td>Home STOKEN, TCB=0, Etoken=0</td>
<td>Same as transaction resource ownership model</td>
</tr>
</tbody>
</table>

Table 23. Work unit IDs
Table 23. Work unit IDs (continued)

<table>
<thead>
<tr>
<th>Work unit type</th>
<th>Exploiters using the transaction model will pass</th>
<th>Exploiters using the task resource model will pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client SRB</td>
<td>Client STOKEN, TCB=0, Etoken=0</td>
<td>Same as transaction resource ownership model</td>
</tr>
<tr>
<td>Enclave SRB</td>
<td>STOKEN=0, TCB=0, Etoken=e</td>
<td>Same as transaction resource ownership model</td>
</tr>
<tr>
<td>Non-enclave task</td>
<td>Home STOKEN, TCB=0, Etoken=0</td>
<td>Home STOKEN, TCB=0, Etoken=0</td>
</tr>
<tr>
<td>Enclave task</td>
<td>STOKEN=0, TCB=0, Etoken=e</td>
<td>Home STOKEN, TCB=0, Etoken=0</td>
</tr>
</tbody>
</table>

The following return/reason codes may be returned per request:

Return Code
A 2-byte output field set based on whether or not the entity identification information passed validity checks.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
</table>
| 0 | Name: IwmRetCodeOk | Meaning: Successful completion.
| | | Action: None required. |
| 4 | Name: IwmRetCodeWarning | Meaning: Successful completion, unusual conditions noted.
| | | Action: Check reason code |
| 8 | Name: IwmRetCodeInvocError | Meaning: Invalid invocation environment or parameters.
| | | Action: Check reason code |

Reason Code
A 2-byte output field set based on whether or not the entity identification information passed validity checks.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
</table>
| 0448 | Name: IwmRsnCodePossibleDeadlock | Meaning: The specified chronic resource contention may have caused a deadlock: The holder of resource (A) is waiting for resource (B), which is currently held by another holder, which is waiting for resource (A).
| | | Action: Check for possible deadlock. |
| 0807 | Name: IwmRsnCodeBadSTOKEN | Meaning: The specified STOKEN does not pass verification.
| | | Action: Check for possible storage overlay of the address space token. |
| 083A | Name: IwmRsnCodeBadEnclave | Meaning: Enclave token does not pass verification.
| | | Action: Check for possible storage overlay of the enclave token. |
| 0886 | Name: IwmRsnCodeBadRequestCode | Meaning: The request code must be either ADD or |
DELETE
Action: Correct the request code.

0887 Name: IwmRsnCodeBadEntityType
Meaning: The entity type must be either HOLDER or WAITER
Action: Correct the entity type.

088A Name: IwmRsnCodeBadEntityId
Meaning: The specified combination of STOKEN, TCB and/or enclave token does not pass verification.
Action: Correct the entity id.

088B Name: IwmRsnCodeBadTCB
Meaning: The specified TCB address does not pass verification.
Action: Correct the TCB address. Task may have terminated since the parameter list was built. TCB may not match STOKEN.

08A5 Name: IwmRsnCodeNoContention
Meaning: The specified chronic resource contention is not stored in the topology. The DELETE request for this request list entry was not processed.
Action: Correct the delete request.

08A8 Name: IwmRsnCodeDupContention
Meaning: The specified chronic resource contention is already stored in the topology. The ADD request for this request list entry was not processed.
Action: Correct the add request.

08AF Name: IwmRsnCodeDeadlock
Meaning: The specified chronic resource contention caused a deadlock: The holder of resource (A) is waiting for resource (B), which is currently held by another holder, which is waiting for resource (A). The request list entry was not processed.
Action: Remove the deadlock.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,RESOURCEID=resourceid
A required input parameter, which identifies the resource uniquely within all resources for a subsystem type and name.
For resources whose type is multisystem, the value must be unique within the subsystem type and name across all systems where the interface might ever be invoked for this resource.
To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,RESOURCEID_LEN=resourceid_len
A required input parameter, which contains the length of the resource identifier. A resource identifier may not exceed 264 bytes.
To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RESOURCESCOPE=SINGLESYSTEM
IWMCTNTN Macro

,RESOURCESCOPEmultisystem
An optional parameter, which identifies if the resource information is shared with other WLM instances in the cluster. The default is RESOURCESCOPESINGLESYSTEM.

,RESOURCESCOPESINGLESYSTEM
indicates that the resource information is used on the issuing system only.

,RESOURCESCOPEMULTISYSTEM
indicates that the resource information is shared among other systems.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SUBSYS=subsys
A required input parameter, which contains the generic subsystem type (e.g. IMS, CICS, etc.).

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-character field.

,SUBSYSSNM=subsysnm
A required input parameter, which identifies the subsystem instance.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMCTNTN macro returns control to your program:
• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 24. Return and Reason Codes for the IWMCTNTN Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Successful completion, unusual conditions noted.</td>
</tr>
</tbody>
</table>
Table 24. Return and Reason Codes for the IWMCNTN Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>xxxx0447</td>
<td>Equate Symbol: lwmRsnCodeRequestListEntryWarning</td>
<td>Meaning: The processing of at least one of the request list entries has caused a warning. Refer to the return code and reason code stored for this request list entry. Action: SRM continues with the request list processing.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: lwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: lwmRsnCodeDisabled</td>
<td>Meaning: Caller is disabled. Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: lwmRsnCodeLocked</td>
<td>Meaning: Caller is locked. Action: Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: lwmRsnCodeAmode24</td>
<td>Meaning: Caller invoked service but was in 24-bit addressing mode. Action: Request this function only when you are in 31-bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>Equate Symbol: lwmRsnCodeAscModeNotPrimary</td>
<td>Meaning: Caller invoked service but was not DAT on primary ASC mode. Action: Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: lwmRsnCodeBadVersion</td>
<td>Meaning: Version number in parameter list is not valid. Action: Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0888</td>
<td>Equate Symbol: lwmRsnCodeBadRequestList</td>
<td>Meaning: The request list does not pass verification. No request in the request list was processed. Action: Check the return and reason codes in the request list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0889</td>
<td>Equate Symbol: lwmRsnCodeBadResourceIdLen</td>
<td>Meaning: The length of the resource id must not exceed 264 bytes. Action: Specify a correct resource id length.</td>
</tr>
</tbody>
</table>
Table 24. Return and Reason Codes for the IWMCNTN Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx088C</td>
<td>Equate Symbol: IwmRsnCodeBadRequestListVersion
Meaning: The version specified in the request list is not supported
Action: Specify a correct request list version.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx088D</td>
<td>Equate Symbol: IwmRsnCodeBadRequestListLength
Meaning: The specified request list length is too small to carry the specified number of request entries.
Action: Specify a correct request list length or correct the entry count.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx08A6</td>
<td>Equate Symbol: IwmRsnCodeBadRequestListEntry
Meaning: The processing of at least one of the request list entries failed. Refer to the return code and reason code stored for this request list entry. SRM continues with the request list processing.
Action: Check the return and reason codes in the request list.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx08A7</td>
<td>Equate Symbol: IwmRsnCodeBadResource
Meaning: The resource ID was not found in the topology for INVOCATIONTYPE=ENDOFCONTENTION.
Action: Specify a correct resource ID.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError
Meaning: Component error.
Action: No action required. The function may be successful if invoked again.</td>
<td></td>
</tr>
</tbody>
</table>

Example

```plaintext
IWMCNTN SUBSYS=SUBSTYPE, SUBSYSNM=SUBSNAME, RESOURCEID=RESOURCE, RESOURCEID_LEN=128, INVOCATIONTYPE=REPLACE, REQUESTLIST=REQUESTS

* Storage areas
  * SUBTYPE DS CL4 Subsystem type
  * SUBNAME DS CL8 Subsystem name
  * RESOURCE DS CL128 Resource id
  * REQUESTS DS OD Request list
  * EYE DC CL8 'IWMCNTRL'
  * VERSION DC XL1 '01'
  * RSRV_1 DS CL3
  * LENGTH# DC F'96'
  * ENTRY# DC F'2'
  * RSRV_2 DS CL12
  * ENTRY_1 DS 0CL32 1st entry
  * E#1_CODE DC CL1 'A' code = add
  * E#1_TYPE DC CL1 'H' type = holder
  * E#1_RSRV DS CL6 reserved
  * E#1_STKN DC XL8 '0000000000000000' STOKEN not specified
  * E#1_TCB DC A'0' TCB not specified
  * E#1_ETKN DS XL8 enclave token
  * E#1_RC DS H entity return code
```
IWMCNTN Macro

E#1_RSN DS H entity reason code
ENTRY_2 DS OCL32 2nd entry
E#2_CODE DC CL1'A' code = add
E#2_TYPE DC CL1'W' type = waiter
E#2_RSrv DS CL6 reserved
E#2_STKN DS XL8 STOKEN
E#2_TCB DC A'0' TCB not specified
E#2_ETKN DC XLB'0000000000000000' enclave token not specified
E#2_RC DS H entity return code
E#2_RSN DS H entity reason code
Chapter 14. IWMCQRY – Querying Classification Attributes

The Query Active Classification Rules routine is given control from the IWMCQRY macro. The Query Active Classification Rules macro will complete the parameter list with caller provided data and generate a stacking, space switching, program call to the query service.

The purpose of this routine is to return a representation of the classification rules that are associated with the active policy that is in effect for the sysplex. The data returned by this service describes the installation-defined rules that determine how incoming work is assigned a service class and/or report class by MVS.

The classification rule data returned by this service is mapped by macro IWMSVDCR. This macro is also used to map the classification rules associated with the WLM service definition. As a result, some data sections in this mapping will not be available (filled in) when it is obtained via this service. An example of some of the information that will not be available, are the timestamps indicating when a classification GROUP was last updated and by whom. For a complete list of fields that will not be available refer to the field comments in macro IWMSVDCR.

The classification rules can be used in conjunction with the active service policy to determine what performance goals will be associated with incoming work. The performance goals for a service class are contained within service policy mapping returned by the IWMPQRY service.

The information returned is not serialized upon return to the caller, and so may be out-of-date if a modified service definition was installed and a new policy activated.

The caller can optionally request that the identifier of the active policy that these classification rules are part of, be returned in an area specified by the POLICY_ID keyword. The caller can then compare the policy identification information returned with the policy data returned by the IWMPQRY macro to ensure they are in synch.

The Query Active Classification Rules macro is provided in list, execute, and standard form. The list form accepts no variable parameters and is used only to reserve space for the query parameter list. The standard form is provided for use with routines which do not require reentrant code. The execute form is provided for use with the list format for reentrant routines.

The parameter list must be in the caller’s primary address space or be addressable by the dispatchable unit access list.

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Minimum authorization:</th>
<th>Supervisor state or program key mask (PKM) allowing keys 0-7.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatchable unit mode:</td>
<td>Task</td>
</tr>
<tr>
<td>Cross memory mode:</td>
<td>Any PASN, any HASN, any SASN</td>
</tr>
<tr>
<td>AMODE:</td>
<td>31-bit</td>
</tr>
</tbody>
</table>
IWMCQRY Macro

ASC mode: Primary or access register (AR) If in Access Register ASC mode, specify SYSSTATE ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: All parameter areas must reside in current primary or be addressable by the dispatchable unit access list.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. This functions provided by this macro are only supported on MVS/ESA SP5.2.0 or later. If code with this macro expansion is executed on lower MVS/ESA releases (version 3 or later) a return code of 4 and reason code of xxxx041A (constant IwmRsnCodeNoPolMgt) will be returned indicating that the service is not available. This macro should NOT be executed on MVS versions 1 or 2.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

The caller cannot have an EUT FRR established.

Input Register Information

Before issuing the IWMCQRY macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as a work register by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>
Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

```
main diagram
```

```
IWMCQRY -- ANSAREA=ansarea, ANSLEN=anslen, QUERYLEN=querylen

POLICY_ID=policy_id, RETCODE=retcode, RSNCODE=rsncode

PLISTVER=IMPLIED_VERSION, PLISTVER=MAX, PLISTVER=0

MF=S, MF=(L, list addr, attr), MF=(L, list addr, 0D)
```

Parameters

The parameters are explained as follows:

- **name**

 An optional symbol, starting in column 1, that is the name on the IWMCQRY macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

- **ANSAREA=ansarea**

 A required output parameter, variable specifying an area to contain the data being returned by IWMCQRY. The answer area is defined by the IWMSVDCR macro.

 To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

- **ANSLEN=anslen**

 A required input parameter, variable which contains the length of the area provided to contain the data being returned by IWMCQRY.

 To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

- **MF=S, MF=(L, list addr), MF=(L, list addr, attr), MF=(L, list addr, 0D), MF=(E, list addr), MF=(E, list addr, COMPLETE)**

 An optional input parameter that specifies the macro form.
Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,,list addr
 The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,,attr
 An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,,COMPLETE
 Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX
 ,PLISTVER=0
 An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:
 • IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
 • MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.
 • 0, if you use the currently available parameters.

 To code: Specify one of the following:
 • IMPLIED_VERSION
 • MAX
 • A decimal value of 0

,,POLICY_ID=policy_id
 An optional output parameter, variable specifying an area to contain the
identifier of the active policy that these classification rules are a part of. This answer is mapped by the SVIDSSVP DSECT in the IWMSVIDS macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,,QUERYLEN=querylen
A required output parameter, variable which contains the number of bytes needed to contain the classification rule information.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes

Reason Code (Hex)
- 0Axx0005

Explanation
An attempt to reference caller’s parameters caused an OC4 abend.

Return and Reason Codes

When the IWMCQRY macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 25. Return and Reason Codes for the IWMCQRY Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Meaning: Successful completion. Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
</tr>
</tbody>
</table>
Table 25. Return and Reason Codes for the IWMCQRY Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>xxxx040A</td>
<td>Equate Symbol: IwmRsnCodeOutputAreaTooSmall</td>
<td>Meaning: The output area supplied is too small to receive all the available information. The variable specified in the QUERYLEN keyword will contain the size of the storage required to hold the returned data area. Action: None required. If necessary, reinvoke the service with an output area of sufficient size to receive all information.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx041A</td>
<td>Equate Symbol: IwmRsnCodeNoPolMgt</td>
<td>Meaning: System does not support policy management services. This return code is only set when the MVS release is prior to MVS/ESA SP5.2.0. Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>Equate Symbol: IwmRsnCodeSrBMode</td>
<td>Meaning: Caller is in SRB mode. Action: Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
<td>Meaning: Caller is disabled. Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td>Meaning: Caller is locked. Action: Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>Equate Symbol: IwmRsnCodeDatOff</td>
<td>Meaning: Caller invoked service while DATOFF Action: Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td>Meaning: Caller invoked service but was in 24 bit addressing mode. Action: Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>Equate Symbol: IwmRsnCodeRsvdNot0</td>
<td>Meaning: Reserved field in parameter list was non-zero. Action: Check for possible storage overlay of the parameter list.</td>
</tr>
</tbody>
</table>
Table 25. Return and Reason Codes for the IWMCQRY Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx0828 | Equate Symbol: `IwmRsnCodeBadVersion`

| | | **Meaning:** Version number in parameter list is not valid or the length specified is incorrect.

| | | **Action:** Check for possible storage overlay of the parameter list. |
| 8 | xxxx0830 | Equate Symbol: `IwmRsnCodeBadAlet`

| | | **Meaning:** Caller has passed an invalid ALET.

| | | **Action:** Check for possible storage overlay of the parameter list or variable. |
| 10 | — | Equate Symbol: `IwmRetCodeCompError`

| | | **Meaning:** Component error.

| | | **Action:** No action required. The function may be successful if invoked again. |
IWMCQRY Macro
Chapter 15. IWMDEXTR – Extracting WLM Service Definition

The extract service definition routine is given control from the IWMDEXTR macro. The extract service definition macro will complete the parameter list with caller provided data and generate a stacking, program call to the extract service.

The purpose of this routine is to return a representation of the Workload Management service definition currently installed in the WLM couple data set for the current sysplex. The service definition returned contains all the policies that are currently eligible to be activated in the sysplex.

The information returned can be used by an application to be presented and manipulated by an end user. The install service definition macro IWMDINST, may be used to install a service definition into the WLM couple data set.

The service definition can be extracted either in XML format, or as a data area mapped by the IWMSERVD mapping macro. The XML structure is defined by the DTD described in Appendix C, “Structure of the XML Service Definition (DTD),” on page 805. The IWMSERVD mapping is a single logical entity described by the service definition descriptor element, defined by IWMSERVD. The service definition descriptor element contains offsets to the 5 distinct areas that comprise the service definition:

- The general service definition data area.
 This data area contains general service definition information like the service definition name and description along with more detailed information like the policy, workload, service class and resource group information. This area is mapped by IWMSVDEF.
- The service definition classification rules data area.
 This data area contains the definitions of the classification rules and classification groups that define which service and report classes are associated with incoming work when the work enters MVS. This area is mapped by IWMSVDCR.
- The notepad data area.
 This data area contains any comments (or change history) that an installation chooses to associate with the service definition. This area is mapped by IWMSVNP.
- The service definition application environment data area.
 This data area contains the definitions of the application environments. This area is mapped by IWMSVAEA.
- The service definition scheduling environment data area.
 This data area contains the definitions of the scheduling environments. This area is mapped by IWMSVSEA.

The caller must provide sufficient storage to contain the service definition data requested. If insufficient storage is passed, no data is returned, an appropriate return and reason code is set, and the length required is returned in the variable specified in the QUERYLEN keyword.

Since the data returned is not serialized against future installs, the length returned may still change before the extract is issued again. Therefore, the caller must issue the extract service in a loop, checking return and reason codes, and obtaining a larger storage area as necessary.
IWMDEXTR Macro

The extract service definition macro is provided in list, execute, and standard form. The list form accepts no variable parameters and is used only to reserve space for the extract parameter list. The standard form is provided for use with routines which do not require reentrant code. The execute form is provided for use with the list format for reentrant routines. The extract macro is provided in PL/AS and assembler formats.

The parameter list must be in the caller’s primary address space or be addressable by the dispatchable unit access list.

Environment

The requirements for the caller are:

Minimum authorization:	Problem state. Any PSW key
Dispatchable unit mode:	Task
Cross memory mode:	PASN=HASN=SASN
AMODE:	31-bit
ASC mode:	Primary or access register (AR) If in Access Register ASC mode, specify SYSSTATE ASCENV=AR before invoking this macro.
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No locks may be held.
Control parameters:	All parameter areas must reside in current primary or be addressable by the dispatchable unit access list.

In addition, all parameters must reside in storage of the same key as the caller is executing in when the macro is invoked unless the caller is in key 0.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The functions provided by this macro are only supported on MVS/ESA SP5.2.0 or higher. If code with this macro expansion is executed on lower MVS/ESA releases (version 3 or later) a return code of 4 and reason code of xxxx041A (constant lwmsrncodenoPoliMgt) will be returned indicating that the service is not available. This macro should NOT be executed on MVS versions 1 or 2.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high-order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

1. The caller cannot have an EUT FRR established.
2. This macro supports multiple versions. Some keywords are unique to certain versions. For further information, see the PLISTVER parameter description.
Input Register Information

Before issuing the IWMDEXTR macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

Parameters

The parameters are explained as follows:
IWMDEXTR Macro

name

An optional symbol, starting in column 1, that is the name on the IWMDEXTR macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

ANSAREA=ansarea

A required output parameter, variable specifying an area to contain the service definition data returned by the extract service. When TYPE=HEX is specified, this area is defined by the IWMSERVD macro. When TYPE=XML is specified, it is the area where the service definition XML stream is to be stored.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

ANSLEN=anslen

A required input parameter, variable to contain the length of the area specified on ANSAREA keyword to contain the service definition data returned by the extract service.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

MF=S

MF=(L,list addr)

MF=(L,list addr,attr)

MF=(L,list addr,0D)

MF=(E,list addr)

MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

attr

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

COMPLETE

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

PLISTVER=IMPLIED_VERSION

PLISTVER=MAX
IWMDEXTR Macro

,.PLISTVER=0
,.PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, which supports all parameters except those specifically referenced in higher versions.
- **1**, which supports both the following parameters and those from version 0:

 TYPE

 To code: Specify one of the following:

 - IMPLIED_VERSION
 - MAX
 - A decimal value of 0, or 1

,.QUERYLEN=querylen

A required output parameter, variable which contains the number of bytes of service definition data returned by the extract service, or the number of bytes of storage required to contain the service definition if insufficient storage was provided.

 To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,.RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,.RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from GPR 0.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,.TYPE=HEX
,.TYPE=XML

An optional parameter indicating in which format the service definition will be extracted. The default is TYPE=HEX.

,.TYPE=HEX

The service definition will be returned in HEX format mapped by IWMMSERV (default).
IWMDEXTR Macro

The service definition will be returned in XML format.

ABEND Codes

<table>
<thead>
<tr>
<th>Reason Code (Hex)</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0Axx0005</td>
<td>An attempt to reference caller's parameters caused an OC4 abend.</td>
</tr>
</tbody>
</table>

Return and Reason Codes

When the IWMDEXTR macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 26. Return and Reason Codes for the IWMDEXTR Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol, Meaning and Action</th>
</tr>
</thead>
</table>
| 0 | — | **Equate Symbol:** IwmRetCodeOk
Meaning: Successful completion.
Action: None required. |
| 4 | — | **Equate Symbol:** IwmRetCodeWarning
Meaning: Successful completion, unusual conditions noted. |
| 4 | xxxx040A | **Equate Symbol:** IwmRsnCodeOutputAreaTooSmall
Meaning: The output area supplied for the service definition area (ANSAREA keyword on macro IWMDEXTR) is too small to receive all the available information. As a result no service definition data is returned. The length required to receive all the service definition data is returned in the variable specified on the QUERYLEN keyword.
Action: None required. If necessary, reinvoke the service with an output area of sufficient size to receive all information. |
| 4 | xxxx0414 | **Equate Symbol:** IwmRsnCodeNullCDS
Meaning: No service definition is currently installed. As a result, no service definition data is returned.
Action: None required. |
| 4 | xxxx0417 | **Equate Symbol:** IwmRsnCodeBadServDE
Meaning: Service Definition retrieved from WLM CDS has failed validation but the structure is still returned to the caller.
Action: None required. Caution is advised in using the structure. |
Table 26. Return and Reason Codes for the IWMDEXTR Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol, Meaning and Action</th>
</tr>
</thead>
</table>
| 4 | xxxx041A | **Equate Symbol**: IwmRsnCodeNoPolMgt
Meaning: The system does not support policy management services. This return code is only set when the MVS release is prior to MVS/ESA SP5.2.0.
Action: None required. |
| 8 | — | **Equate Symbol**: IwmRetCodeInvocError
Meaning: Invalid invocation environment or parameters. |
| 8 | xxxx0801 | **Equate Symbol**: IwmRsnCodeSrbMode
Meaning: Caller is in SRB mode.
Action: Avoid requesting this function while in SRB mode. |
| 8 | xxxx0803 | **Equate Symbol**: IwmRsnCodeDisabled
Meaning: Caller is disabled.
Action: Avoid requesting this function while disabled. |
| 8 | xxxx0804 | **Equate Symbol**: IwmRsnCodeLocked
Meaning: Caller is locked.
Action: Avoid requesting this function while locked. |
| 8 | xxxx0810 | **Equate Symbol**: IwmRsnCodeEutFrr
Meaning: Caller has EUT FRR established.
Action: Avoid requesting this function with an EUT FRR set. |
| 8 | xxxx0823 | **Equate Symbol**: IwmRsnCodeDatoff
Meaning: Caller invoked service while DATOFF
Action: Avoid requesting this function in this environment. |
| 8 | xxxx0824 | **Equate Symbol**: IwmRsnCodeAmode24
Meaning: Caller invoked service but was in 24-bit addressing mode.
Action: Request this function only when you are in 31-bit addressing mode. |
| 8 | xxxx0827 | **Equate Symbol**: IwmRsnCodeRsvdNot0
Meaning: Reserved field in parameter list was non-zero.
Action: Check for possible storage overlay of the parameter list. |
| 8 | xxxx0828 | **Equate Symbol**: IwmRsnCodeBadVersion
Meaning: Version number in parameter list is not valid or the length specified is incorrect.
Action: Check for possible storage overlay of the parameter list. |
| 8 | xxxx0830 | **Equate Symbol**: IwmRsnCodeBadAlet
Meaning: Caller has passed an invalid ALET.
Action: Check for possible storage overlay of the parameter list or variable. |
Table 26. Return and Reason Codes for the IWMDEXTR Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol, Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0841</td>
<td>Equate Symbol: IwmRsnCodeXMemMode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is in cross-memory mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Invoke the function in non-cross memory mode.</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeEnvError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Environmental error.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>Equate Symbol: IwmRsnCodeNoStg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Storage is not available for the request.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: There is a storage shortage. The function may work successfully at a later time.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C0E</td>
<td>Equate Symbol: IwmRsnCodeInsufAccess</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The RACF facility class is active and a profile has been defined for the MVSADMIN.WLM.POLICY RACF facility class profile to which the caller does not have sufficient (read) access.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Invoke the function when the conditions are alleviated.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C0F</td>
<td>Equate Symbol: IwmRsnCodeCDSNotAvail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: A couple data set for WLM has not been defined or it has been defined but this system does not have connectivity to the data set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: No action required.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Component error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: No action required. The function may be successful if invoked again.</td>
</tr>
<tr>
<td>10</td>
<td>xxxx0F09</td>
<td>Equate Symbol: IwmRsnCodeUnknownLvl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Internal error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Contact IBM.</td>
</tr>
</tbody>
</table>
Chapter 16. IWMDINST – Installing Service Definition

The Install Service Definition routine is given control from the IWMDINST macro. The Install Service Definition macro will complete the parameter list with caller provided data and generate a stacking, program call to the install service.

The purpose of this routine is to install the WLM service definition supplied into the WLM couple data set for the current sysplex. After this service definition is installed in the couple data set all policies contained in it are eligible to be activated in the sysplex.

The service definition can be installed either in XML format, or as a data area mapped by the IWMSERVD mapping macro. The XML structure is defined by the DTD described in Appendix C, “Structure of the XML Service Definition (DTD),” on page 805. The IWMSERVD mapping is a single logical entity described by the service definition descriptor element, defined by IWMSERVD. The service definition descriptor element contains offsets to the 5 distinct areas that comprise the service definition:

- The **general service definition data area**: Contains general service definition information like the service definition name and description along with more detailed information like the policy, workload, service class and resource group information. This area is mapped by the IWMSVDEF.
- The **service definition classification rules data area**: Contains the definitions of the classification rules and classification groups that govern which service and report classes are associated with incoming work when the work enters MVS. This area is mapped by IWMSVDCR.
- The **notepad data area**: Contains any comments (or change history) that an installation chooses to associate with the service definition. This area is mapped by IWMSVNPA.
- The **service definition application environment data area**: Contains the definitions of the application environments. This area is mapped by IWMSVAEA.
- The **service definition scheduling environment data area**: Contains the definitions of the scheduling environments. This area is mapped by IWMSVSEA.

The service definition descriptor element and all five data areas of the service definition must be passed as input to the install service definition service. Even if certain data areas are non-applicable, for example no notepad information exists, the data area header information must still be completely filled in and pointed to by the descriptor element.

All input data areas must represent a valid service definition in order for the install to occur. If validity checking for any section of the service definition fails, the entire install process is aborted and a return and reason code indicating that validation of the service definition failed is returned. In addition, a reason code describing the specific error detected is returned in the variable specified on keyword VALCHECK_RSN and an offset to the specific section of the service definition where the error was detected is returned in the variable specified on the VALCHECK_OFFSET keyword. Validity check processing occurs until the first error is detected and only a single error is identified on an invocation of this macro.

The caller can also request that the install occurs only if the service definition that was used as a base for the definition being installed is still the currently installed service definition in the WLM couple data set. This allows the caller the ability to
IWMDINST Macro

prevent inadvertent overwrites of service definition updates that some other user (caller) made in the window, from when the service definition was initially read, to when the current install with the updated service definition was issued. For more details, refer to the description of the COND keyword.

The parameter list must be in the caller’s primary address space or be addressable by the dispatchable unit access list.

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Minimum authorization:</th>
<th>Problem state. Any PSW key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatchable unit mode:</td>
<td>Task</td>
</tr>
<tr>
<td>Cross memory mode:</td>
<td>PASN=HASN=SASN</td>
</tr>
<tr>
<td>AMODE:</td>
<td>31-bit</td>
</tr>
<tr>
<td>ASC mode:</td>
<td>Primary or access register (AR) If in Access Register ASC mode, specify SYSSTATE ASCENV=AR before invoking this macro.</td>
</tr>
<tr>
<td>Interrupt status:</td>
<td>Enabled for I/O and external interrupts</td>
</tr>
<tr>
<td>Locks:</td>
<td>No locks may be held.</td>
</tr>
<tr>
<td>Control parameters:</td>
<td>All parameter areas must reside in current primary or be addressable by the dispatchable unit access list.</td>
</tr>
</tbody>
</table>

In addition, all parameters must reside in storage of the same key as the caller is executing in when the macro is invoked unless the the caller is in key 0.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The functions provided by this macro are only supported on MVS/ESA SP5.2.0 or higher. If code with this macro expansion is executed on lower MVS/ESA releases (version 3 or later) a return code of 4 and reason code of xxxx041A (constant lwmRsnCodeNoPolMgt) will be returned indicating that the service is not available. This macro should NOT be executed on MVS versions 1 or 2.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
5. Note that the high-order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

1. The caller cannot have an EUT FRR established.
2. This macro supports multiple versions. Some keywords are unique to certain versions. See the PLISTVER parameter description.
Input Register Information

Before issuing the IWMDINST macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as a work register by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
/IWMDINST--SERVD_AREA=ervd_area
     ,TYPE=HEX
     ,TYPE=XML,XML_LEN=xml_len

/QRY_BASEID=qry_baseid

/PRODUCT_ID=product_id,VALCHECK_RSN=valcheck_rsn

/VALCHECK_OFFSET=valcheck_offset,COND=YES,IN_BASEID=in_baseid,COND=NO

/RETCODE=retcode,RSNCODE=rsncode
   ,PLISTVER=IMPLIED_VERSION
   ,PLISTVER=MAX
   ,PLISTVER=0
   ,PLISTVER=1
```
Parameters

The parameters are explained as follows:

name

An optional symbol, starting in column 1, that is the name on the IWMDINST macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

COND=YES

COND=NO

A required parameter, which indicates whether checking is performed prior to the install, to determine if the service definition that the input definition was based on is still the currently installed service definition (i.e. another user has not made updates).

COND=YES

indicates that the input service definition should only be installed if the identifier of currently installed service definition matches the base identifier passed on IN_BASEID keyword. This allows the user to detect changes in the installed service definition, since the last extract was done, and allows the user to confirm whether the install should still occur.

COND=NO

indicates that the input service definition should be installed unconditionally.

IN_BASEID=in_baseid

When COND=YES is specified, a required input parameter, variable specifying an area that contains the identifier of the service definition that was used as a base for the service definition being installed. This area is mapped by the SVIDSSVD DESCT in macro IWMSVIDS.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

MF=S

MF=(L,list addr)

MF=(L,list addr,attr)

MF=(L,list addr,0D)

MF=(E,list addr)

MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.
Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

\textit{list addr}

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

\textit{attr}

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code \textit{attr}, the system provides a value of 0D.

\textbf{COMPLETE}

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

\textbf{PLISTVER=IMPLIED_VERSION}
\textbf{PLISTVER=MAX}
\textbf{PLISTVER=0}
\textbf{PLISTVER=1}

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- \textbf{IMPLIED_VERSION}, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- \textbf{MAX}, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.

- \textbf{0}, which supports all parameters except those specifically referenced in higher versions.
- \textbf{1}, which supports both the following parameters and those from version 0:

\begin{tabular}{ll}
\textbf{TYPE} & \textbf{XML_LEN} \\
\end{tabular}

\textbf{To code}: Specify one of the following:

- \textbf{IMPLIED_VERSION}
- \textbf{MAX}
- A decimal value of 0, or 1

\textbf{PRODUCT_ID=product_id}

A required input parameter, variable specifying an area that contains an identifier of the product (application) performing the install. The identifier should include information like product name, a unique version/release identifier, and any other information that can help identify your product. This area is mapped by the SVIDSPRD DSECT in the IWMSVIDS macro.
IWMDINST Macro

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

\QRY_BASEID=qry_baseid
An optional output parameter, variable specifying an area to contain the identifier of the service definition that is currently installed on the WLM couple data set. This area is mapped by the SVIDSSVD DSECT in macro IWMSVIDS. When this keyword is specified, the data is returned when the return code indicates successful completion (return code 0) regardless of whether COND(YES) or COND(NO) was specified. In addition, this data is returned on a conditional request (COND(YES)) if the return and reason code indicate that specified IN_BASEID does not match the baseid of the installed service definition (return code 4, reason code '0413'X).

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

\RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

\RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

\TYPE=HEX, \TYPE=XML
An optional parameter indicating in which format the service definition will be extracted. The default is TYPE=HEX.

\TYPE=HEX
The service definition will be returned in HEX format mapped by IWMSERVD (default).

\TYPE=XML
The service definition will be returned in XML format.

SERVD_AREA=servd_area
A required input parameter, variable specifying an area that contains the service definition data to be installed. When TYPE=HEX is specified, this area is defined by the IWMSERVD macro. When TYPE=XML is specified, it is the area where the service definition XML stream is to be stored.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

\VALCHECK_OFFSET=valcheck_offset
A required output parameter. The variable will contain the offset identifying the specific error in the input service definition found during validity checking. If the primary reason code is xxxx083D and the service definition type is HEX, the variable contains the offset from the beginning of the service definition (IWMSERVD) to the section of the input service definition where validity check processing found an error described by the reason code returned in VALCHECK_RSN. If the primary reason code is xxxx083D and the service definition type is XML, the VALCHECK_OFFSET has no meaning. If the primary reason code is xxxx08B2 or xxxx08B5, the variable contains the offset from the beginning of the service definition in XML format. This offset is returned under the same conditions as when VALCHECK_RSN is returned.
To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,VALCHECK_RSN=\texttt{valcheck_rsn}

A required output parameter. The variable will contain the reason code identifying the specific error in the input service definition found during validity checking. This reason code is only returned if validation of the input service definition fails and a primary return code of 8 and reason code of xxxx083D, xxxx08B2, or xxxx08B5 is returned. If reason codes xxxx083D and xxxx08B5 are issued, refer to Appendix B, “Application Validation Reason Codes,” on page 793 for an explanation. If the primary reason code is xxxx08B2, refer to "XML System Services Users Guide and Reference" for an explanation.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,XML_LEN=\texttt{xml_len}

When TYPE=XML is specified, a required input parameter. The variable contains the length of the area specified on the SERVD_AREA keyword to contain the service definition data in XML format.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

\begin{tabular}{|c|l|}
\hline
\textbf{ABEND Codes} & \\
\hline
\textbf{Reason Code (Hex)} & \textbf{Explanation} \\
\hline
0Axx0005 & An attempt to reference caller’s parameters caused an OC4 abend. \\
\hline
\end{tabular}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|l|}
\hline
\textbf{Table 27. Return and Reason Codes for the IWMDINST Macro} & & \\
\hline
\textbf{Return Code} & \textbf{Reason Code} & \textbf{Equate Symbol Meaning and Action} \\
\hline
0 & — & \textbf{Equate Symbol}: IwmRetCodeOk \\
& & \textbf{Meaning}: Successful completion. \\
& & \textbf{Action}: None required. \\
\hline
4 & — & \textbf{Equate Symbol}: IwmRetCodeWarning \\
& & \textbf{Meaning}: Successful completion, unusual conditions noted. \\
\hline
\end{tabular}
\end{table}
Table 27. Return and Reason Codes for the IWMDINST Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>xxxx0413</td>
<td>Equate Symbol: IwmRsnCodeIdsDontMatch

Meaning: COND=YES was specified on the IWMDINST macro, yet the service definition identifier specified on the IN_BASEID keyword did not match the identifier of the installed service definition. The identifier of the currently installed service definition is returned in the area specified on the QRY_BASEID keyword.

Action: None required.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx041A</td>
<td>Equate Symbol: IwmRsnCodeNoPolMgt

Meaning: System does not support policy management services. This return code is only set when the MVS release is prior to MVS/ESA SP5.2.0.

Action: None required.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0810</td>
<td>Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter list.</td>
<td></td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol Meaning and Action</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Version number in parameter list is not valid or the length specified is incorrect. Action: Check for possible storage overlay of the parameter list.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0829</td>
<td>Equate Symbol: IwmRsnCodeBadOptions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Parameter list omits required parameters or supplies mutually exclusive parameters or provides data associated with options not selected. Action: Check for possible storage overlay of the parameter list.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0830</td>
<td>Equate Symbol: IwmRsnCodeBadAlet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller has passed an invalid ALET. Action: Check for possible storage overlay of the parameter list or variable.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx083D</td>
<td>Equate Symbol: IwmRsnCodeBadServDI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller has passed a Service Definition area that failed validation. Action: See values in VALCHECK_RSN and VALCHECK_OFFSET parameters for more information concerning the specific failure.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0841</td>
<td>Equate Symbol: IwmRsnCodeXMemMode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is in cross-memory mode. Action: Invoke the function in non-cross memory mode.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx085B</td>
<td>Equate Symbol: IwmRsnCodeNoSERVDArea</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller invoked service without a required SERVD area or the SERVD area address is 0. Action: Check for possible storage overlay of the parameter list or variable.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx08B2</td>
<td>Equate Symbol: IwmRsnCodeParserError</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The XML parser was not able to parse the service definition XML document. Action: See values in VALCHECK_RSN and VALCHECK_OFFSET parameters for more information concerning the specific failure. The XML parser reason codes can be found in the book: “XML System Services Users Guide and Reference”.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx08B3</td>
<td>Equate Symbol: IwmRsnCodeXmlZeroLen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The length of the provided XML service definition is zero. Action: Provide the correct length of the service definition.</td>
<td></td>
</tr>
</tbody>
</table>
Table 27. Return and Reason Codes for the IWMDINST Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx08B5</td>
<td>IwmRsnCodeXmlInvalid</td>
<td>The XML parser was not able to parse the service definition XML document.</td>
<td>See values in VALCHECK_RSN and VALCHECK_OFFSET parameters for more information concerning the specific failure. The reason codes can be found in z/OS MVS Programming: Workload Management Services.</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>IwmRetCodeEnvError</td>
<td>Environmental error.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>IwmRsnCodeNoStg</td>
<td>Storage is not available for the request.</td>
<td>There is a storage shortage. The function may work successfully at a later time.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C0E</td>
<td>IwmRsnCodeInsufAccess</td>
<td>The RACF FACILITY class is active and a profile has been defined for the MVSADMIN.WLM.POLICY RACF facility class profile to which the caller does not have sufficient (update) access.</td>
<td>Invoke the function when the conditions are alleviated.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C0F</td>
<td>IwmRsnCodeCDSNotAvail</td>
<td>A couple data set for WLM has not been defined or it has been defined but this system does not have connectivity to the data set.</td>
<td>No action required.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C10</td>
<td>IwmRsnCodeCDSTooSmall</td>
<td>WLM CDS is too small to process the request.</td>
<td>No action required.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>IwmRetCodeCompError</td>
<td>Component error.</td>
<td>No action required. The function may be successful if invoked again.</td>
</tr>
<tr>
<td>10</td>
<td>xxxx0F0A</td>
<td>IwmRsnCodeEndOfBuffer</td>
<td>Internal error.</td>
<td>Contact IBM.</td>
</tr>
</tbody>
</table>
Chapter 17. IWMEBLK – Work Request Blocked

The IWMEBLK service allows work managers that participate in cross-platform enterprise workload management (EWLM) to indicate that processing of a work request is blocked while waiting for a work request in another application to complete.

The counterpart of this service to indicate that the processing of a work request is no longer blocked is IWMEUBLK.

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Minimum authorization:</th>
<th>Supervisor state or program key mask (PKM) allowing keys 0-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatchable unit mode:</td>
<td>Task or SRB</td>
</tr>
<tr>
<td>Cross memory mode:</td>
<td>Any PASN, any HASN, any SASN</td>
</tr>
<tr>
<td>AMODE:</td>
<td>31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.</td>
</tr>
<tr>
<td>ASC mode:</td>
<td>Primary or access register (AR)</td>
</tr>
<tr>
<td>Interrupt status:</td>
<td>Enabled for I/O and external interrupts</td>
</tr>
<tr>
<td>Locks:</td>
<td>No locks may be held</td>
</tr>
<tr>
<td>Control parameters:</td>
<td>Control parameters must be in the primary address space.</td>
</tr>
</tbody>
</table>

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.
6. Since this service may only be used by system-like code, some validity checking on the parameter list is not performed. These checks would only be needed if the macro were not used to invoke the service routine.
7. If the parameter EWLMMODE=EXPLICIT_SINGLE is specified, the following restrictions apply:
 • No other task or SRB is allowed to issue other enclave services for the same enclave concurrently.
 • The caller must be in primary ASC mode before invocation.
 • The parameter list, the classification parameters and the savearea pointed to by GPR13 must be addressable in AMODE 31 and primary ASC mode.
IWMEMBLK Macro

- No recovery environment is set up by the service. The caller is responsible to provide an appropriate error recovery environment to handle abnormal terminations.
- The enclave must have been created with option ESTRT=EXPLICIT_SINGLE on the IWM4ECRE (or IWMECREA) invocation.
- The caller must provide the ETOKEN parameter.

Restrictions

This macro supports multiple versions. Some keywords are unique to certain versions. See the PLISTVER parameter description.

Input Register Information

If the EWLMMODE=EXPLICIT_SINGLE parameter is specified, the caller must provide a standard 72-byte savearea pointed to by GPR13.

For all other cases the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
{IWMEBLK | WORKREQ_HDL=workreq_hdl, BLOCK_HDL=block_hdl}
```
IWMEMBLK Macro

Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMEMBLK macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,BLOCK_HDL=block_hdl
A required output parameter that will receive the handle identifying the blocked work request.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ETOKEN=etoken
ETOKEN=NO_ETOKEN
An optional input parameter that contains the enclave token of the enclave under which the work request is processed. The values of ETOKEN are:

- **ETOKEN=etoken** is required, if the option EWLMMODE=EXPLICIT_SINGLE is specified.
- **ETOKEN=NO_ETOKEN** indicates that no ETOKEN is passed. This is the default.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,EWLMMODE=NORMAL
,EWLMMODE=EXPLICIT_SINGLE
An optional input keyword that indicates if the parameter EXPLICIT_SINGLE has been specified on the IWM4ECRE (or IWMECREA) call. Note that EWLMMODE=EXPLICIT_SINGLE can only be specified if the enclave was created with the ESTRT=EXPLICIT_SINGLE option. The values of EWLMMODE are:

- **EWLMMODE=NORMAL** indicates that the enclave was created with the ESTRT=EXPLICIT or with the ESTRT=IMPLIED option. EWLMMODE=NORMAL is the default.
- **EWLMMODE=EXPLICIT_SINGLE** indicates that the enclave was created with the ESTRT=EXPLICIT_SINGLE option which can only be used for a restricted environment. The caller must provide a standard 72-byte savearea,
which is addressable in AMODE 31 and pointed to by GPR13. The parameter list and the classification parameters must also be addressable in AMODE 31.

,\$F=S
,\$F=(L,list addr)
,\$F=(L,list addr,attr)
,\$F=(L,list addr,0D)
,\$F=(E,list addr)
,\$F=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use \$F=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. \$F=S is the default.

Use \$F=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use \$F=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,\$list addr
The name of a storage area to contain the parameters. For \$F=S and \$F=E, this can be an RS-type address or an address in register (1)-(12).

,\$attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code \$attr, the system provides a value of 0D.

,\$COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- 0, which supports all parameters except those specifically referenced in higher versions.
- 1, which supports both the following parameters and those from version 0:

 - ETOKEN
 - EWLMMODE

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0, or 1

\[,RETCODE=\text{retcode}\]

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

\[,RSNCODE=\text{rsncode}\]

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

\[\text{WORKREQ_HDL=workreq_hdl}\]

A required input parameter that contains the handle which represents the work request. This handle was returned from a previous call to IWMESTRT or IWM4ECRE.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWMEBLK macro returns control to your program:
- GPR 15 (and \text{retcode}, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and \text{rsncode}, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the \text{xxxx} value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>\text{IwmRetCodeOk}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
</tbody>
</table>

Chapter 17. IWMEBLK – Work Request Blocked 195
Table 28. Return and Reason Codes for the IWMEBLK Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8 xxxx0803</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.</td>
<td></td>
</tr>
<tr>
<td>8 xxxx0804</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.</td>
<td></td>
</tr>
<tr>
<td>8 xxxx080B</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.</td>
<td></td>
</tr>
<tr>
<td>8 xxxx0824</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24-bit addressing mode.

Action: Request this function only when you are in 31-bit addressing mode.</td>
<td></td>
</tr>
<tr>
<td>8 xxxx0828</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter list.</td>
<td></td>
</tr>
<tr>
<td>8 xxxx083A</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeBadEnclave

Meaning: EWLMODE=EXPLICIT_SINGLE was specified and the required enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave token, or for asynchronous events which may have deleted the enclave.</td>
<td></td>
</tr>
<tr>
<td>8 xxxx0895</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeEWLMServNotEnabled

Meaning: Service is not enabled because caller invoked the IWM4CON (IWMCONN) service with EWLM=NO.

Action: Ensure that EWLM=YES is specified on the IWM4CON (IWMCONN) request to enable this service.</td>
<td></td>
</tr>
<tr>
<td>8 xxxx0896</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeBadWorkReqHandle

Meaning: Work request handle is invalid.

Action: Check the specification of the WORKREQ_HDL parameter.</td>
<td></td>
</tr>
</tbody>
</table>
Table 28. Return and Reason Codes for the IWMEBLK Macro (continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx08A0</td>
<td>The service has been invoked with option EWLMMODE=EXPLICIT_SINGLE but the enclave has not been created with the ESTRT=EXPLICIT_SINGLE option or vice versa.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: If ESTRT=EXPLICIT_SINGLE was coded on the IWM4ECRE or IWMECREA call, EWLMMODE=EXPLICIT_SINGLE must also specified on the IWMEBLK call. If ESTRT=EXPLICIT OR ESTRT=IMPLIED was coded on the IWM4ECRE or IWMECREA call, EWLMMODE=NORMAL must be specified on the IWMEBLK call (or the EWLMMODE parameter can be omitted).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>—</th>
<th>Equate Symbol: IwmRetCodeCompError</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Meaning: Component error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: No action required. The function may be successful if invoked again.</td>
</tr>
</tbody>
</table>

Examples

IWMEBLK WORKREQ_HDL=WRHANDLE, BLOCK_HDL=BKHANDLE

* Storage areas
 *
 WRHANDLE DS CL8 Work Request Handle
 BKHANDLE DS CL8 Work Request Block Handle
IWMEEBLK Macro
Chapter 18. IWMECQRY – Querying Enclave Classification Attributes

The purpose of this service is to query the classification attributes of an enclave. The output is mapped by IWMEDC.

The Query macro is provided in list, execute, and standard form. The list form accepts no variable parameters and is used only to reserve space for the parameter list. The standard form is provided for use with routines which do not require reentrant code. The execute form is provided for use with the list format for reentrant routines.

The parameter list must be in the caller's primary address space or be addressable by the dispatchable unit access list.

Environment

The requirements for the caller are:

Minimum authorization:	Supervisor state or program key mask (PKM) allowing keys 0-7.
Dispatchable unit mode:	Task or SRB
Cross memory mode:	Any PASN, any HASN, any SASN
AMODE:	31-bit
ASC mode:	Primary or access register (AR) Any P,S,H.
	If in Access Register ASC mode, specify SYSSTATE ASCENV=AR before invoking this macro.
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No locks may be held.
Control parameters:	Control parameters must be in the primary address space.

Programming Requirements

1. This macro may only be used on MVS/ESA SP5.2 or later levels.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMYPB must be in the library concatenation, since it is included by IWMYCON.
4. Reason code and return code constants are defined within IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above.
 The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

1. This macro may not be used prior to the completion of WLM address space initialization
2. All parameter areas must reside in current primary or be addressable by the dispatchable unit access list.
IWMECQRY Macro

3. The caller must provide storage for an answer area mapped by IWMEDC. This answer area may reside in the caller’s primary address space, or in a dataspace accessible via the current unit of work’s dispatchable unit access list (DUal).

Input Register Information

Before issuing the IWMECQRY macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.
Syntax

main diagram

 Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMECQRY macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,ANSAREA=ansarea
A required output parameter, which specifies an area to contain the data being returned. The answer area is defined by the IWMECD macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,ANSLEN=anslen
A required input parameter, variable which contains the length of the area provided to contain the data being returned by IWMECQRY.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

ETOKEN=etoken
A required input parameter, which contains the Enclave token representing the Enclave of interest.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.
IWMECQRY Macro

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

\list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

\attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code \attr, the system provides a value of 0D.

\complete
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

PLISTVER=IMPLIED_VERSION
PLISTVER=MAX
PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.
- 0, if you use the currently available parameters.

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0

\querylen=querylen
A required output parameter, variable which contains the number of bytes needed to contain the classification attributes being returned by IWMECQRY.
The length of the area needed to contain the data is dependent on the MVS release. If the ANSLEN is less than the QUERYLEN, then no data is returned in the output area specified by ANSAREA.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

\texttt{RETCODE} = \texttt{retcode}

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes

None.

Return and Reason Codes

When the IWMECQRY macro returns control to your program, GPR 15 (and \texttt{retcode}, if you coded \texttt{RETCODE}) contains a return code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the \texttt{xxxx} value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>\texttt{IwmRetCodeOk}</td>
<td>Successful completion.</td>
<td>None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>\texttt{IwmRetCodeWarning}</td>
<td>Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>\texttt{xxxx040A}</td>
<td>\texttt{IwmRsnCodeOutputAreaTooSmall}</td>
<td>The output area supplied is too small to receive all the available information.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>\texttt{xxxx043C}</td>
<td>\texttt{IwmRsnCodeIsReset}</td>
<td>Classification information returned may not reflect how the independent enclave is being managed. The independent enclave was reset to another service class or is reset quiesced.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>\texttt{IwmRetCodeInvocError}</td>
<td>Invalid invocation environment or parameters</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>\texttt{xxxx0803}</td>
<td>\texttt{IwmRsnCodeDisabled}</td>
<td>Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol</td>
<td>Meaning</td>
<td>Action</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>IwmRsnCodeBadPl</td>
<td>Error accessing parameter list.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24 bit addressing mode.</td>
<td>Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0830</td>
<td>IwmRsnCodeBadAlet</td>
<td>Caller has passed an invalid ALET.</td>
<td>Check for possible storage overlay of the parameter list or variable.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx083A</td>
<td>IwmRsnCodeBadEnclave</td>
<td>Enclave token is invalid.</td>
<td>Check the specification of the ETOKEN parameter.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>IwmRetCodeCompError</td>
<td>Component error</td>
<td>No action required. The function may be successful if invoked again.</td>
</tr>
</tbody>
</table>
Chapter 19. IWMEDREG — Deregistering a WLM Enclave

The IWMEDREG service allows the caller to deregister an enclave which it previously registered using the IWMEREG service. Deregistration is required as soon as the caller has finished using the enclave so that the enclave can eventually be deleted. If enclave deletion was requested while the enclave was registered, deletion occurs when the last deregistration takes place.

The caller can run in task or SRB mode.

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Requirement Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum authorization</td>
<td>Supervisor state or program key mask (PKM) allowing keys 0-7.</td>
</tr>
<tr>
<td>Dispatchable unit mode</td>
<td>Task or SRB</td>
</tr>
<tr>
<td>Cross memory mode</td>
<td>Any PASN, any HASN, any SASN</td>
</tr>
<tr>
<td>AMODE</td>
<td>31-bit</td>
</tr>
<tr>
<td>ASC mode</td>
<td>Primary or access register (AR)</td>
</tr>
<tr>
<td>Interrupt status</td>
<td>Enabled for I/O and external interrupts</td>
</tr>
<tr>
<td>Locks</td>
<td>No locks may be held.</td>
</tr>
<tr>
<td>Control parameters</td>
<td>Control parameters must be in the primary address space.</td>
</tr>
</tbody>
</table>

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASKCONST defined in IWMYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.
6. Since this service may only be used by system-like code, some validity checking on the parameter list is not performed. These checks would only be needed if the macro were not used to invoke the service routine.

Restrictions

None

Input Register Information

Before issuing the IWMEDREG macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.
IWMEDREG Macro

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None

Syntax

main diagram

```
name, IWMEDREG=REGTOKEN=regtoken, ETOKEN=etoken, RETCODE=retcode

,PLISTVER=IMPLIED_VERSION

,RSNCODE=rsncode

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L, list addr)

,MF=(E, list addr)

```

Parameters

The parameters are explained as follows:

name

An optional symbol, starting in column 1, that is the name on the IWMEDREG macro invocation. The name must conform to the rules for an ordinary assembler language symbol.
IWMEDREG Macro

\texttt{,ETOKEN=etoken}

A required input parameter that contains the enclave token.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

\texttt{,MF=S}
\texttt{,MF=(L,list addr)}
\texttt{,MF=(L,list addr,attr)}
\texttt{,MF=(E,list addr)}
\texttt{,MF=(E,list addr,COMPLETE)}

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

\texttt{,list addr}

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

\texttt{,attr}

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or OD to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of OD.

\texttt{,COMPLETE}

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

\texttt{,PLISTVER=IMPLIED_VERSION}
\texttt{,PLISTVER=MAX}
\texttt{,PLISTVER=0}

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- \texttt{IMPLIED_VERSION}, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

- \texttt{MAX}, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- 0, if you use the currently available parameters.

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0

REGTOKEN=regtoken

A required input parameter, which passes the registration token obtained in a previous call to service IWMEREG.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes

None.

Return and Reason Codes

When the IWMEDREG macro returns control to your program:

- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 30. Return and Reason Codes for the IWMEDREG Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
<td>Meaning: Successful completion.</td>
<td>Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
<td>Meaning: Caller is disabled.</td>
<td>Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol</td>
<td>Meaning</td>
<td>Action</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>Equate Symbol: IwmRsnCodeBadPl</td>
<td>Error accessing parameter list.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24 bit addressing mode.</td>
<td>Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx083A</td>
<td>Equate Symbol: IwmRsnCodeBadEnclave</td>
<td>Enclave token does not pass verification.</td>
<td>Check for possible storage overlay of the enclave token, or asynchronous events which may have deleted the enclave.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0880</td>
<td>Equate Symbol: IwmRsnCodeBadRegToken</td>
<td>Register token does not pass verification.</td>
<td>Check for possible storage overlay of the register token, or asynchronous events which may have deregistered the enclave already.</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Equate Symbol: IwmRetCodeCompError</td>
<td>Component error.</td>
<td>No action required. The function may be successful if invoked again.</td>
</tr>
</tbody>
</table>

Example

IWMEDREG REGTOKEN=REGTKN,ETOKEN=ENCTKN

* Storage areas
* ENCTKN DS CL8 Enclave token
* REGTKN DS CL8 Register token
IWMEDREG Macro
Chapter 20. IWMEGCOR – Retrieving a Correlator

The IWMEGCOR service allows work managers that participate in cross-platform enterprise workload management (EWLM) to retrieve the correlator for a given work request handle or the maximum length of a correlator.

Environment

The requirements for the caller are:

- **Minimum authorization:** Supervisor state or program key mask (PKM) allowing keys 0-7
- **Dispatchable unit mode:** Task or SRB
- **Cross memory mode:** Any PASN, any HASN, any SASN
- **AMODE:** 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.
- **ASC mode:** Primary or access register (AR)
- **Interrupt status:** Enabled for I/O and external interrupts
- **Locks:** No locks may be held.
- **Control parameters:** Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.
6. Since this service may only be used by system-like code, some validity checking on the parameter list is not performed. These checks would only be needed if the macro were not used to invoke the service routine.
7. If the parameter EWLMMODE=EXPLICIT_SINGLE is specified, the following restrictions apply:
 - No other task or SRB is allowed to issue other enclave services for the same enclave concurrently.
 - The caller must be in primary ASC mode before invocation.
 - The parameter list, the classification parameters and the savearea pointed to by GPR13 must be addressable in AMODE 31 and primary ASC mode.
 - No recovery environment is set up by the service. The caller is responsible to provide an appropriate error recovery environment to handle abnormal terminations.
 - The enclave must have been created with option ESTRT=EXPLICIT_SINGLE on the IWM4ECRE (or IWMECREA) invocation.
IWMGCOR Macro

- The caller must provide the ETOKEN parameter.

Restrictions

This macro supports multiple versions. Some keywords are unique to certain versions. See the PLISTVER parameter description.

Input Register Information

If the EWLMMODE=EXPLICIT_SINGLE parameter is specified, the caller must provide a standard 72-byte savearea pointed to by GPR13.

For all other cases the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
name IWMGCOR
  GET=CORRELATOR, WORKREQ_HDL=workreq_hdl, EWLMM CORR=ewlm_corr
  GET=MAXLENGTH, EWLMM CORRML=ewlm_corrml
  ETOKEN=NO_ETOKEN
  ETOKEN=etoken
```
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMEGCOR macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

ETOKEN=etoken
ETOKEN=NO_ETOKEN
An optional input parameter that contains the enclave token of the enclave under which the work request is processed. The values of ETOKEN are:

- ETOKEN=etoken is required, if the option EWLMMODE=EXPLICIT_SINGLE is specified.
- ETOKEN=NO_TOKEN indicates that no ETOKEN is passed. This is the default.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,EWLM_CORR=ewlm_corr
When GET=CORRELATOR is specified, a required input parameter field where the service returns the correlator of the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_CORRML=ewlm_corrml
When GET=MAXLENGTH is specified, a required output parameter, which will receive the maximum length of a correlator.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,EWLMMODE=NORMAL
,EWLMMODE=EXPLICIT_SINGLE
An optional input keyword that indicates if the parameter EXPLICIT_SINGLE has been specified on the IWM4ECRE (or IWMECREA) call. Note that EWLMMODE=EXPLICIT_SINGLE can only be specified if the enclave was created with the ESTRT=EXPLICIT_SINGLE option. The values of EWLMMODE are:

- EWLMMODE=NORMAL indicates that the enclave was created with the ESTRT=EXPLICIT or with the ESTRT=IMPLIED option. EWLMMODE=NORMAL is the default.
- EWLMMODE=EXPLICIT_SINGLE indicates that the enclave was created with the ESTRT=EXPLICIT_SINGLE option which can only be used for a restricted environment. The caller must provide a standard 72-byte savearea,
IWMEGCOR Macro

which is addressable in AMODE 31 and pointed to by GPR13. The parameter list and the classification parameters must also be addressable in AMODE 31.

GET=CORRELATOR

GET=MAXLENGTH

A required parameter, which describes whether the correlator or the maximum length of a correlator is returned.

GET=CORRELATOR

indicates that the correlator should be returned.

GET=MAXLENGTH

indicates that the maximum length of a correlator should be returned.

,\text{MF}=S
,\text{MF}=\langle L, list \ addr \rangle
,\text{MF}=\langle L, list \ addr, attr \rangle
,\text{MF}=\langle L, list \ addr,0D \rangle
,\text{MF}=\langle E, list \ addr \rangle
,\text{MF}=\langle E, list \ addr, COMPLETE \rangle

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,\text{list \ addr}

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,\text{attr}

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,\text{COMPLETE}

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,\text{PLISTVER}=\text{IMPLIED_VERSION}
,\text{PLISTVER}=\text{MAX}
,\text{PLISTVER}=0
,\text{PLISTVER}=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form.
using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, which supports all parameters except those specifically referenced in higher versions.
- **1**, which supports both the following parameters and those from version 0:

 - ETOKEN
 - EWLMODE

 To code: Specify one of the following:
 - IMPLIED_VERSION
 - MAX
 - A decimal value of 0, or 1

- **RETCODE=retcode**

 An optional output parameter into which the return code is to be copied from GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

- **RSNCODE=rsncode**

 An optional output parameter into which the reason code is to be copied from GPR 0.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

- **WORKREQ_HDL=workreq_hdl**

 When GET=CORRELATOR is specified, a required input parameter that contains the handle which represents the work request. This handle was returned on a previous invocation of IWMESTRT or IWM4ECRE.

 To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWMEGCOR macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.
The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 31. Return and Reason Codes for the IWMEGCOR Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 0 | — | Equate Symbol: IwmRetCodeOk
Meaning: Successful completion.
Action: None required. |
| 8 | — | Equate Symbol: IwmRetCodeInvocError
Meaning: Invalid invocation environment or parameters. |
| 8 | xxxx0803 | Equate Symbol: IwmRsnCodeDisabled
Meaning: Caller is disabled.
Action: Avoid requesting this function while disabled. |
| 8 | xxxx0804 | Equate Symbol: IwmRsnCodeLocked
Meaning: Caller is locked.
Action: Avoid requesting this function while locked. |
| 8 | xxxx0808 | Equate Symbol: IwmRsnCodeBadPl
Meaning: Error accessing parameter list.
Action: Check for possible storage overlay. |
| 8 | xxxx0824 | Equate Symbol: IwmRsnCodeAmode24
Meaning: Caller invoked service but was in 24 bit addressing mode.
Action: Request this function only when you are in 31 bit addressing mode. |
| 8 | xxxx0828 | Equate Symbol: IwmRsnCodeBadVersion
Meaning: Version number in parameter list is not valid.
Action: Check for possible storage overlay of the parameter list. |
| 8 | xxxx083A | Equate Symbol: IwmRsnCodeBadEnclave
Meaning: EWLMMODE=EXPLICIT_SINGLE was specified and the required enclave token does not pass verification.
Action: Check for possible storage overlay of the enclave token, or for asynchronous events which may have deleted the enclave. |
| 8 | xxxx0895 | Equate Symbol: IwmRsnCodeEWLMServNotEnabled
Meaning: Service is not enabled because caller invoked the IWM4CON (IWMCONN) service with EWLM=NO.
Action: Ensure that EWLM=YES is specified on the IWM4CON request to enable this service. |
| 8 | xxxx0896 | Equate Symbol: IwmRsnCodeBadWorkReqHandle
Meaning: Work request handle in parameter list is not valid.
Action: Check the specification of the WORKREQ_HDL parameter. |
Table 31. Return and Reason Codes for the IWMEGCOR Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx08A0</td>
<td>IwmRsnCodeNotExplicitSingle</td>
<td>The service has been invoked with option EWLMMODE=EXPLICIT_SINGLE but the enclave has not been created with the ESTRT=EXPLICIT_SINGLE option or vice versa.</td>
<td>If ESTRT=EXPLICIT_SINGLE was coded on the IWM4ECRE or IWMECREA call, EWLMMODE=EXPLICIT_SINGLE must also specified on the IWMEBLK call. If ESTRT=EXPLICIT or ESTRT=IMPLIED was coded on the IWM4ECRE or IWMECREA call, EWLMMODE=NORMAL must be specified on the IWMEBLK call (or the EWLMMODE parameter can be omitted).</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>IwmRetCodeCompError</td>
<td>Component error.</td>
<td>No action required. The function may be successful if invoked again.</td>
</tr>
</tbody>
</table>

Examples

```c
IWMEGCOR GET=MAXLENGTH,EWLM_CORRML=CMLEN

* Storage areas
* CMLEN DS F Maximum correlator length
IWMEGCOR GET=CORRELATOR,
      WORKREQ_HDL=WRHANDLE,EWLM_CORR=CORR
* Storage areas
* WRHANDLE DS CL8 Work Request Handle
CORR DS CL127 Output field of size maximum correlator length
```
IWMEGCOR Macro
Chapter 21. IWMEJOIN – Joining a WLM Enclave

The purpose of this service is to allow the task invoking this service to join an enclave for the purpose of performance management. The scope of this service affects only a single task at the time the service is invoked. However any tasks which are attached by the current task subsequently will also become part of the enclave environment. This inheritance of the enclave attribute will apply to any further level of newly attached subtasks as well. However subtasks which exist at the time this service is invoked will not become part of the enclave environment nor will any subtasks which are created subsequently by these non-enclave tasks become part of the enclave environment, unless they explicitly join.

Note that a task may only join an enclave if it is not already part of an enclave. In particular, a subtask which inherited the enclave attribute from its mother task (which may happen either as a result of the mother task issuing IWMEJOIN or IWM4STBG) is not allowed to use IWMEJOIN to explicitly join an enclave. This restriction is independent of whether the enclave specified is the same enclave as it is in, or a different enclave from the one it is in. Such a subtask which inherited the enclave attribute is also not allowed to use IWMELEAV to explicitly leave the enclave. The subtask would only leave the enclave upon its own (task) termination or when the enclave is deleted (IWM4EDEL). Also, a task which successfully establishes a Begin environment (IWM4STBG) may not invoke Enclave Join, nor is the task allowed to use Enclave Leave while this Begin environment exists.

Upon successful completion of this service, the CPU time for the task (and any subsequently attached subtasks) will be attributed to the enclave for the purpose of service unit calculations and performance period switches, rather than being attributed to the address space owning the task. Management and reporting for the enclave will include activity for the task until the task either leaves the enclave or the enclave is deleted.

Environment

The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
IWMEJOIN Macro

4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCOE_MAKC_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.

Restrictions

1. The caller cannot have an EUT FRR established.
2. This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to the PLISTVER parameter description for further information.

Input Register Information

Before issuing the IWMEJOIN macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram
IWMEJOIN Macro

Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMEJOIN macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

ENCLAVESERVER=YES
ENCLAVESERVER=NO
An optional parameter, which specifies if the address space acts as enclave server. The default is ENCLAVESERVER=YES.

ENCLAVESERVER=YES
For internal use only.

ENCLAVESERVER=NO
For internal use only.

ETOKEN=etoken
A required input parameter, which contains the enclave token to be associated with the task as returned by IWM4ECRE.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

MF=S
MF=(L,**list addr**)
MF=(L,**list addr,attr**)
MF=(L,**list addr,0D**)
MF=(E,**list addr**)
MF=(E,**list addr,COMPLETE**)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,,list addr
 The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,,attr
 An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,,COMPLETE
 Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,,PLISTVER=IMPLIED_VERSION
,,PLISTVER=MAX
,,PLISTVER=0
,,PLISTVER=1
 An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:
 - IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
 - MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.
 - 0, which supports all parameters except those specifically referenced in higher versions.
 - 1, which supports both the following parameters and those from version 0:

ENCLAVESERVER

To code: Specify one of the following:
 - IMPLIED_VERSION
 - MAX
 - A decimal value of 0, or 1

,,RETCODE=retcode
 An optional output parameter into which the return code is to be copied from GPR 15.
 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,,RSNCODE=rsncode
 An optional output parameter into which the reason code is to be copied from GPR 0.
IWMEJOIN Macro

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes

None.

Return and Reason Codes

When the IWMEJOIN macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 32. Return and Reason Codes for the IWMEJOIN Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
<td>None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Successful completion, unusual conditions noted.</td>
<td>None required.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx041F</td>
<td>IwmRsnCodeExecEnvChanged</td>
<td>The execution environment has changed while the requested function is in progress.</td>
<td>None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters.</td>
<td>None required.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>IwmRsnCodeSrbMode</td>
<td>Caller is in SRB mode.</td>
<td>Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
<td>Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>IwmRsnCodeBadPl</td>
<td>Error accessing parameter list.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0810</td>
<td>IwmRsnCodeEutFrr</td>
<td>Caller has EUT FRR established.</td>
<td>Avoid requesting this function with an EUT FRR set.</td>
</tr>
</tbody>
</table>
Table 32. Return and Reason Codes for the IWMEJOIN Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>IwmRsncodeDatoff</td>
<td>Caller invoked service while DATOFF</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>IwmRsncodeAmode24</td>
<td>Caller invoked service but was in 24-bit addressing mode.</td>
<td>Request this function only when you are in 31-bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>IwmRsncodeAscModeNotPrimary</td>
<td>Caller invoked service but was not DAT on Primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0826</td>
<td>IwmRsncodeTaskTerm</td>
<td>Caller invoked service while task termination is in progress for the current task.</td>
<td>Avoid requesting this function while task termination is in progress.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsncodeBadVersion</td>
<td>Version number in parameter list is not valid or version length field is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx083A</td>
<td>IwmRsncodeBadEnclave</td>
<td>Enclave token does not pass verification.</td>
<td>Check for possible storage overlay of the enclave token, or asynchronous events which may have deleted the enclave.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0850</td>
<td>IwmRsncodeBeginEnvOutstanding</td>
<td>Caller is already operating under an outstanding Begin environment which has implicitly joined an enclave.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0857</td>
<td>IwmRsncodeAlreadyInEnclave</td>
<td>Current dispatchable workunit is already in an enclave.</td>
<td>Avoid requesting this function while the caller is already in an enclave.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>IwmRetCodeCompError</td>
<td>Component error.</td>
<td>Contact your system programmer.</td>
</tr>
</tbody>
</table>

Example

To allow the current task to join an enclave, specify the following:
IWMEJOIN Macro

IWMEJOIN ETOKEN=ENCTOKEN, RETCODE=RC, RSNCODE=RSN

* Storage areas
*
ENCTOKEN DS CL8 Contains the enclave token
* associated with the work
* request as returned by IWMECRE
RC DS F Return code
RSN DS F Reason code
Chapter 22. IWMELEAV – Leaving an Enclave

The purpose of this service is to allow the task invoking this service to leave an Enclave. For the purpose of performance management, the task will become associated with its home address space. The scope of this service affects the current task at the time the service is invoked.

Note that a task may only leave an Enclave if it explicitly joined the Enclave. A subtask which inherited the Enclave attribute from its mother task is not allowed to use IWMELEAV to explicitly leave the Enclave. The subtask would only leave the Enclave upon its own (task) termination or when the Enclave is deleted (IWM4EDEL). Also, a task which successfully establishes a Begin environment (IWM4STBG) may not invoke Enclave Join, nor is the task allowed to use Enclave Leave while this Begin environment exists.

Upon successful completion of this service, the CPU time for the task (and any subsequently attached subtasks) will be attributed to the home address space for the purpose of service unit calculations and performance period switches, rather than being attributed to the Enclave.

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Minimum authorization:</th>
<th>Supervisor state or program key mask (PKM) allowing keys 0-7.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatchable unit mode:</td>
<td>Task</td>
</tr>
<tr>
<td>Cross memory mode:</td>
<td>Any PASN, any HASN, any SASN</td>
</tr>
<tr>
<td>AMODE:</td>
<td>31-bit</td>
</tr>
<tr>
<td>ASC mode:</td>
<td>Primary</td>
</tr>
<tr>
<td>Interrupt status:</td>
<td>Enabled for I/O and external interrupts</td>
</tr>
<tr>
<td>Locks:</td>
<td>No locks may be held.</td>
</tr>
<tr>
<td>Control parameters:</td>
<td>Control parameters must be in the primary address space.</td>
</tr>
</tbody>
</table>

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.
IWMELEAV Macro

Restrictions
The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the IWMELEAV macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications
None.

Syntax

Syntax

Parameters
The parameters are explained as follows:
IWMELEAV Macro

name
An optional symbol, starting in column 1, that is the name on the IWMELEAV macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

ETOKEN=etoken
A required input parameter, which contains the Enclave token associated with the work request as returned by IWM4ECRE.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S
,LF=(L,list addr)
,LF=(L,list addr,attr)
,LF=(L,list addr,0D)
,LF=(E,list addr)
,LF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
IWMELEAV Macro

- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, if you use the currently available parameters.

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0

,RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes

None.

Return and Reason Codes

When the IWMELEAV macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
<td>None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx041C</td>
<td>IwmRsnCodeNotEnclave</td>
<td>The current dispatchable workunit is not associated with an Enclave.</td>
<td>Check for possible asynchronous events which may have deleted the Enclave.</td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol Meaning and Action</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 8 | — | Equate Symbol: IwmRetCodeInvocError
Meaning: Invalid invocation environment or parameters. |
| 8 | xxxx0801 | Equate Symbol: IwmRsnCodeSrbMode
Meaning: Caller is in SRB mode.
Action: Avoid requesting this function while in SRB mode. |
| 8 | xxxx0803 | Equate Symbol: IwmRsnCodeDisabled
Meaning: Caller is disabled.
Action: Avoid requesting this function while disabled. |
| 8 | xxxx0804 | Equate Symbol: IwmRsnCodeLocked
Meaning: Caller is locked.
Action: Avoid requesting this function while locked. |
| 8 | xxxx080B | Equate Symbol: IwmRsnCodeBadPl
Meaning: Error accessing parameter list.
Action: Check for possible storage overlay. |
| 8 | xxxx0810 | Equate Symbol: IwmRsnCodeEutFrr
Meaning: Caller has EUT FRR established.
Action: Avoid requesting this function with an EUT FRR set. |
| 8 | xxxx0823 | Equate Symbol: IwmRsnCodeDatoff
Meaning: Caller invoked service while DATOFF
Action: Avoid requesting this function in this environment. |
| 8 | xxxx0824 | Equate Symbol: IwmRsnCodeAmode24
Meaning: Caller invoked service but was in 24 bit addressing mode.
Action: Request this function only when you are in 31 bit addressing mode. |
| 8 | xxxx0825 | Equate Symbol: IwmRsnCodeAscModeNotPrimary
Meaning: Caller invoked service but was not DAT on Primary ASC mode.
Action: Avoid requesting this function in this environment. |
| 8 | xxxx0826 | Equate Symbol: IwmRsnCodeTaskTerm
Meaning: Caller invoked service while task termination is in progress for the current task.
Action: Avoid requesting this function while task termination is in progress. |
| 8 | xxxx0828 | Equate Symbol: IwmRsnCodeBadVersion
Meaning: Version number in parameter list is not valid or version length field is not valid.
Action: Check for possible storage overlay of the parameter list. |
Table 33. Return and Reason Codes for the IWMELEAV Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx083A</td>
<td>Equate Symbol: IwmRsnCodeBadEnclave</td>
<td>Enclave token does not pass verification.</td>
<td>Check for possible storage overlay of the Enclave token.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0845</td>
<td>Equate Symbol: IwmRsnCodeWrongEnclave</td>
<td>The current dispatchable workunit is not associated with the input Enclave.</td>
<td>Check for possible storage overlay of the Enclave token.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0850</td>
<td>Equate Symbol: IwmRsnCodeBeginEnvOutstanding</td>
<td>Current dispatchable workunit is operating under an outstanding Begin environment. Enclave leave is not allowed.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0858</td>
<td>Equate Symbol: IwmRsnCodeNotEjoinedTcb</td>
<td>The current dispatchable workunit did not issue Enclave Join, but only inherited Enclave attribute from mother task.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0859</td>
<td>Equate Symbol: IwmRsnCodeEnclaveSubTaskExists</td>
<td>The current dispatchable workunit has residual subtasks propagated to the Enclave which are still associated with the Enclave.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
<td>Component error.</td>
<td>Contact your system programmer.</td>
</tr>
</tbody>
</table>

Example

To cause the current task to leave its Enclave environment:

```plaintext
IWMELEAV ETOKEN=ENCTOKEN,RETCODE=RC,RSNCODE=RSN
```

* Storage areas

 ENCTOKEN DS CL8 Contains the Enclave token associated with the work request as returned by IWM4ECRE

 RC DS F Return code

 RSN DS F Reason code
Chapter 23. IWMEQTME – Querying Enclave CPU Time

The purpose of this service is to return the enclave processor times if the current dispatchable work unit is associated with an enclave.

Environment

The requirements for the caller are:

- **Minimum authorization:** Supervisor state. Any PSW key.
- **Dispatchable unit mode:** Task or SRB
- **Cross memory mode:** Non-XMEM or XMEM. Any PASN, HASN, SASN.
- **AMODE:** 31-bit
- **ASC mode:** Primary
- **Interrupt status:** Enabled or disabled for I/O and external interrupts
- **Locks:** No locks are required.
- **Control parameters:** Control parameters must be in the primary address space.

Programming Requirements

1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
4. Caller is responsible for error recovery.

Restrictions

This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to the PLISTVER parameter description for further information.

Input Register Information

Before issuing the IWMEQTME macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>
IWMEQTME Macro

15 Return code

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMEQTME macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

CPUTIME=putime
An optional output parameter, which will contain the total accumulated CPU
IWMEQTME Macro

time for an enclave, if the current dispatchable work unit is associated with an enclave. The CPU time will be in TOD clock format.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

\texttt{MF=S}
\texttt{MF=(L, list addr)}
\texttt{MF=(L, list addr, attr)}
\texttt{MF=(L, list addr, 0D)}
\texttt{MF=(E, list addr, COMPLETE)}

An optional input parameter that specifies the macro form.

Use \texttt{MF=S} to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. \texttt{MF=S} is the default.

Use \texttt{MF=L} to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use \texttt{MF=E} to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

\texttt{list addr}

The name of a storage area to contain the parameters. For \texttt{MF=S} and \texttt{MF=E}, this can be an RS-type address or an address in register (1)-(12).

\texttt{attr}

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code \texttt{attr}, the system provides a value of 0D.

\texttt{COMPLETE}

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

\texttt{PLISTVER=IMPLIED_VERSION}
\texttt{PLISTVER=MAX}
\texttt{PLISTVER=0}
\texttt{PLISTVER=1}
\texttt{PLISTVER=2}

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- \texttt{IMPLIED_VERSION}, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- \texttt{MAX}, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
IWMEQTME Macro

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- 0, which supports all parameters except those specifically referenced in higher versions.
- 1, which supports both the following parameters and those from version 0:
 ZIIPONCPTIME ZIIPQUALTIME ZIIPTIME
- 2, which supports both the following parameters and those from version 0 and 1:
 ZAAPNFACTOR ZAAPONCPTIME ZAAPTIME

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0, 1, or 2

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.
To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.
To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,ZAAPNFACTOR=zaapnfactor
An optional output parameter, which will contain the normalization factor for application assist processors (zAAPs). If zAAPs are running at a different speed, multiply zAAP times with this factor and divide the result by 256 to normalize the values to the speed of regular CPs. Note however, that if there has been a speed change of zAAP processors during the life time of the enclave, this calculation will return imprecise data.
To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,ZAAPONCPTIME=zaaponcptime
An optional output parameter, which will contain the total accumulated time spent on a regular CP for application assist processor (zAAP) eligible work for the enclave that is associated with the current dispatchable work unit. The time will be in TOD clock format, normalized to the regular processor speed.
To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,ZAAPTIME=zaaptime
An optional output parameter, which will contain the total accumulated application assist processor (zAAP) time for the enclave that is associated with the current work unit. The value is not normalized to the speed of regular CPs, but is expressed in zAAP speed which might be different. You may use ZAAPNFACTOR to normalize the value to the speed of regular CPs. Note
however, that if the zAAP speed changed during the life time of the enclave, this value cannot be normalized precisely. The time will be in TOD clock format.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

\texttt{ZIIPONCPTIME=ziiponcptime}

An optional output parameter, which will contain the total accumulated time spent on a standard processor for zIIP-eligible work for the enclave that is associated with the current dispatchable work unit. The time will be in TOD clock format, normalized to standard processor speed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

\texttt{ZIIPQUALTIME=ziipqualtime}

An optional output parameter, which will contain the total time that the enclave associated with the current dispatchable work unit was qualified to run on an integrated information processor (zIIP). The time returned will be in TOD clock format, normalized to standard processor speed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

\texttt{ZIIPTIME=ziiptime}

An optional output parameter, which will contain the total accumulated time spent on an integrated information processor (zIIP) for the enclave that is associated with the current dispatchable work unit. The zIIP time will be in TOD clock format, normalized to standard processor speed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

\section*{ABEND Codes}

None.

\section*{Return and Reason Codes}

When the IWMEQTME macro returns control to your program:

- GPR 15 (and \texttt{retnode}, when you code \texttt{RETCODE}) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and \texttt{rsncode}, when you code \texttt{RSNCODE}) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|l|}
\hline
Return Code & Reason Code & Equate Symbol Meaning and Action \\
\hline
0 & — & \begin{tabular}{l}
\textbf{Equate Symbol: IwmRetCodeOk} \\
\textbf{ Meaning: Successful completion.} \\
\textbf{Action: None required.}
\end{tabular} \\
\hline
4 & — & \begin{tabular}{l}
\textbf{Equate Symbol: IwmRetCodeWarning} \\
\textbf{ Meaning: Successful completion, unusual conditions noted.}
\end{tabular} \\
\hline
\end{tabular}
\caption{Return and Reason Codes for the IWMEQTME Macro}
\end{table}
Table 34. Return and Reason Codes for the IWMEQTME Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>xxxx041C</td>
<td>IwmRsnCodeNotEnclave</td>
<td>The current dispatchable workunit is not associated with an Enclave.</td>
<td>None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
</tbody>
</table>
Chapter 24. IWMEREG — Registering a WLM Enclave

The IWMEREG service allows the caller to register an enclave in order to prevent it from being deleted. This is useful if the caller wants to schedule SRBs or join tasks to an enclave that is owned by another subsystem. Registration guarantees that the enclave will continue to exist until the corresponding deregistration is done, even if the other subsystem deletes the enclave. The system defers the enclave's deletion until after the last deregistration.

The address space identified as the home address space at the time of registration is held responsible for deregistration in case of abnormal termination of the job step, the job, or the address space itself.

The caller can run in task or SRB mode.

Environment

The requirements for the caller are:

- **Minimum authorization:** Supervisor state or program key mask (PKM) allowing keys 0-7.
- **Dispatchable unit mode:** Task or SRB
- **Cross memory mode:** Any PASN, any HASN, any SASN
- **AMODE:** 31-bit
- **ASC mode:** Primary or access register (AR)
- **Interrupt status:** Enabled for I/O and external interrupts
- **Locks:** No locks may be held.
- **Control parameters:** Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.
6. Since this service may only be used by system-like code, some validity checking on the parameter list is not performed. These checks would only be needed if the macro were not used to invoke the service routine.
IWMEREG Macro

Restrictions
This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to the PLISTVER parameter description for further information.

Input Register Information
Before issuing the IWMEREG macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications
None.

Syntax

main diagram

```plaintext
IWMEREG REGTOKEN=regtoken, SUBSYS=subsys, SUBSYSNM=subsysnm

,SUBSYSREQUEST=subsysrequest, ETOKEN=etoken, OWNER=HOME

,OWNER=PRIMARY, PLISTVER=IMPLIED_VERSION

,RETCODE=retcode, RSNCODE=rsncode

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1
```
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMEREG macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,**ETOKEN=etoken**
A required input parameter that contains the enclave token.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,**MF=S,**
,**MF=(L,list addr)**
,**MF=(L,list addr,attr)**
,**MF=(L,list addr,0D)**
,**MF=(E,list addr)**
,**MF=(E,list addr,COMPLETE)**

An optional input parameter that specifies the macro form.

Use **MF=S** to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. **MF=S** is the default.

Use **MF=L** to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use **MF=E** to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,**list addr**
The name of a storage area to contain the parameters. For **MF=S** and **MF=E**, this can be an RS-type address or an address in register (1)-(12).

,**attr**
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code **attr**, the system provides a value of 0D.

,**COMPLETE**
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,**OWNER=HOME**
IWMEREG Macro

,OWNER=PRIMARY
 An optional parameter, for internal use only. The default is OWNER=HOME.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
 An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:
 • IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
 • MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.
 • 0, which supports all parameters except those specifically referenced in higher versions.
 • 1, which supports both the following parameters and those from version 0:

OWNER

 To code: Specify one of the following:
 • IMPLIED_VERSION
 • MAX
 • A decimal value of 0, or 1

REGTOKEN=regtoken
 A required output parameter that will receive the registration token

 To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,RETCODE=retcode
 An optional output parameter into which the return code is to be copied from GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
 An optional output parameter into which the reason code is to be copied from GPR 0.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SUBSYS=subsys
 A required input parameter, which contains the generic subsystem type (e.g. IMS, CICS, etc.).

 To code: Specify the RS-type address, or address in register (2)-(12), of a 4-character field.
IWMEREG Macro

,.SUBSYSNM=subsysnm
A required input parameter, which identifies the subsystem instance.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,.SUBSYSREQUEST=subsysrequest
An optional input parameter that allows the caller to pass additional information
in order to distinguish between different invocations by the same subsystem.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWMEREG macro returns control to your program:
- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code
RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 35. Return and Reason Codes for the IWMEREG Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is disabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while disabled.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is locked.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while locked.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>Equate Symbol: IwmRsnCodeBadPl</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Error accessing parameter list.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td></td>
</tr>
</tbody>
</table>
| | | Meaning: Caller invoked service but was in 24 bit
addressing mode. |
| | | Action: Request this function only when you are in 31 bit
addressing mode. |
Table 35. Return and Reason Codes for the IWMEREG Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Version number in parameter list is not valid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay of the parameter list.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx083A</td>
<td>Equate Symbol: IwmRsnCodeBadEnclave</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Enclave token does not pass verification.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay of the enclave token, or asynchronous events which may have deleted the enclave.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0882</td>
<td>Equate Symbol: IwmRsnCodeTooManyRegistrations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: There are too many concurrent registrations requested.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: There is a resource shortage. The function may work successfully at a later time.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Component error.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: No action required. The function may be successful if invoked again.</td>
<td></td>
</tr>
</tbody>
</table>

Example

```plaintext
IWMEREG ETOKEN=ENCTKN,REGTOKEN=REGTKN,
          SUBSYS=SUBSTYPE,SUBSYSNM=SUBSNAME
```

* Storage areas
 * ENCTKN DS CL8 Enclave token
 * SUBSNAME DS CL8 Subsystem name
 * SUBSTYPE DS CL4 Subsystem type
 * REGTKN DS CL8 Register token
Chapter 25. IWMERES — Changing an Enclave

The IWMERES macro allows the caller to change the performance controls for work associated with an independent enclave. The caller can:

- Change the service class of work currently in execution, with the SRVCLASS keyword. Resetting to a new service class also resumes quiesced work.
- Quiesce work currently in execution, with the QUIESCE keyword.
- Reclassify work currently in execution according to the service policy in effect, with the RESUME keyword. The RESUME keyword also resumes quiesced work.

The system does not allow foreign enclaves or dependent enclaves to be reset. Refer to [Restrictions] for further details.

Environment

The requirements for the caller are:

- **Minimum authorization:** Supervisor state or program key mask (PKM) allowing keys 0-7.
- **Dispatchable unit mode:** Task or SRB
- **Cross memory mode:** PASN=HASN=SASN
- **AMODE:** 31-bit
- **ASC mode:** Primary
- **Interrupt status:** Enabled for I/O and external interrupts
- **Locks:** No locks may be held.
- **Control parameters:** Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

1. This macro may not be used prior to the completion of WLM address space initialization.
2. This macro may only be used on z/OS V1R3 or higher.
3. The caller cannot reset a dependent enclave. A dependent enclave can only be reset by resetting the address space that owns the enclave.
4. The caller cannot reset a work-dependent enclave. Such an enclave can only be reset by resetting the owning independent enclave.
5. The caller cannot reset a foreign enclave. A foreign enclave can only be reset by resetting the original enclave on the originating system (foreign independent enclave) or by resetting the remote owner address space (foreign dependent enclave).
6. The caller cannot reset an enclave that is implicitly quiesced because one or more address space currently serving the enclave is quiesced. An address space is serving an enclave when any of its tasks is joined to the enclave or when an SRB is scheduled to the enclave and the SRB used the ENCASSOC-sysevent to establish an association with the address space.

Input Register Information

Before issuing the IWMERES macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
IWMERES ETOKEN=etoken,FUNCTION=RESET,SRVCLASS=srvclass

USERID=userid,PRODUCT=product,RETCODE=retcode,RSNCODE=rsncode
```
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMERES macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

ETOKEN=etoken
A required input parameter that contains the enclave token. The enclave token must represent an original independent enclave.

FUNCTION=RESET
Requests that the enclave's service class be changed.

FUNCTION=QUIESCE
Requests that the enclave be quiesced.

FUNCTION=RESUME
Requests that the enclave be reclassified according to the service policy in effect. This undoes a prior request to reset the enclave to a particular service class, or to quiesce the enclave.

MF=S
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.
IWMERES Macro

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines that need to provide different options according to user-provided input. Use the list form to define a storage area; use the modify form to set the appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of IWMERES in the following order:
- Use IWMERES ...MF=(M,list-addr,COMPLETE) specifying appropriate parameters, including all required ones.
- Use IWMERES ...MF=(M,list-addr,NOCHECK), specifying the parameters that you want to change.
- Use IWMERES ...MF=(E,list-addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E, and MF=M, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not to supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:
- IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- 0, if you use the currently available parameters.

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0

.PRODUCT=product
A required input parameter, which contains the product name that is requesting the enclave be changed. The product name is included in the SMF 90 subtype 30 record created by IWMERES.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

.RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

.RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

.SRVCLASS=srvclass
When FUNCTION=RESET is specified, a required input parameter, which is the service class to be assigned to the enclave. Resetting to a new service class also resumes quiesced work.

To code: Specify the RS-type address of an 8-character field.

.USERID=userid
A required input parameter, which contains the id of the user who is requesting the enclave be changed. The userid is included in the SMF 90 subtype 30 record created by IWMERES. If there is no userid available, the caller should pass blanks.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWMERES macro returns control to your program:
- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.
The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
<td>Meaning: Successful completion.</td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx043B</td>
<td>Equate Symbol: IwmRsnCodeIsQuiesced</td>
<td>Meaning: The enclave cannot be reset because an address space currently serving this enclave is quiesced. An address space is known to serve an enclave if any of its tasks is joined to the enclave or if an SRB is scheduled to the enclave and the SRB established an association with the address space by using the ENCASSOC-sysevent.</td>
<td>Action: Retry the request when no address spaces serving the enclave is quiesced.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
<td>Meaning: Caller is disabled.</td>
<td>Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td>Meaning: Caller is locked.</td>
<td>Action: Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td>Meaning: Caller invoked service but was in 24 bit addressing mode.</td>
<td>Action: Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>Equate Symbol: IwmRsnCodeAscModeNotPrimary</td>
<td>Meaning: Caller invoked service but was not in primary ASC mode.</td>
<td>Action: Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>Equate Symbol: IwmRsnCodeRsvdNot0</td>
<td>Meaning: Reserved field in parameter list was non-zero.</td>
<td>Action: Check for use of keywords that are not supported by the MVS release on which the program is running.</td>
</tr>
</tbody>
</table>
Table 36. Return and Reason Codes for the IWMERES Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx0828 | IwmRsnCodeBadVersion | **Meaning:** Version number in parameter list is not valid.
Action: Check for possible storage overlay of the parameter list. |
| 8 | xxxx0829 | IwmRsnCodeBadOptions | **Meaning:** Parameter list omits required parameters.
Action: Check for possible storage overlay of the parameter list. |
| 8 | xxxx083A | IwmRsnCodeBadEnclave | **Meaning:** Enclave token does not pass verification.
Action: Check for possible storage overlay of the enclave token, or asynchronous events which may have deleted the enclave. |
| 8 | xxxx0841 | IwmRsnCodeXMemMode | **Meaning:** Caller is in cross memory mode.
Action: Invoke the function in non-cross memory mode. |
| 8 | xxxx0872 | IwmRsnCodeForeignEnclave | **Meaning:** The requested service is not supported for a foreign enclave. This reason code is returned for independent foreign enclaves only.
Action: All participants of a multisystem enclave can only be reset together by resetting the original enclave on the originating system. |
| 8 | xxxx0885 | IwmRsnCodeDependentEnclave | **Meaning:** The requested service is not supported for a dependent enclave. This reason code is returned for both, an original and a foreign dependent enclave.
Action: A dependent enclave cannot be reset directly. It can only be reset by resetting its owning address space. |
| 8 | xxxx08B7 | IwmRsnCodeWorkDepEnclave | **Meaning:** The requested service is not supported for a 'work-dependent' enclave.
Action: A 'work-dependent' enclave cannot be reset directly. It can only be reset by resetting its owning independent enclave. |
| C | — | IwmRetCodeEnvError | **Meaning:** Environmental error. |
| C | xxxx0C28 | IwmRsnCodeBadServiceClass | **Meaning:** The input service class name is not defined in the active workload manager policy.
Action: Record or report the error if appropriate. |
| C | xxxx0C2E | IwmRsnCodeWrongMode | **Meaning:** Reserved |
Table 36. Return and Reason Codes for the IWMERES Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>xxxx0C32</td>
<td>Equate Symbol: IwmRsnCodeNotEligibleForSrvClass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The active job in the specified address space or the specified enclave is not eligible for reset into the specified system service class. Only address spaces created with the ASCRE HIPRI attribute are eligible for reset into the SYSTEM service class.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Record or report the error if appropriate.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Component error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Contact your system programmer.</td>
</tr>
</tbody>
</table>

Example

To change the service class of the enclave identified by the token TOKEN:

```plaintext
IWMERES ETOKEN=TOKEN,SRVCLASS=SCNAME,USERID=USR,
PRODUCT=PROD
```

* * Storage areas
 * TOKEN DS CL8 Contains the enclave token
 * SCNAME DS CL8 Contains the service class name to assign to the job
 * USR DS CL8 Contains the id of the user who is requesting the change
 * PROD DS CL8 Contains the product name of the code invoking IWMERES
Chapter 26. IWMESTOP – Stopping a Work Request

The IWMESTOP service allows work managers that participate in cross-platform enterprise workload management (EWLM) to explicitly indicate the stop of an EWLM work request. Using this service the application work request model is decoupled from WLM’s enclave model.

The counterpart of this service to indicate the start of an EWLM work request is IWMESTRT.

Environment

The requirements for the caller are:

Minimum authorization:	Supervisor state or program key mask (PKM) allowing keys 0-7
Dispatchable unit mode:	Task or SRB
Cross memory mode:	Any PASN, any HASN, any SASN
AMODE:	31- and 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.
ASC mode:	Primary or access register (AR)
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No locks may be held.
Control parameters:	Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of 31-bit register 0, and the reason code variable when specified, may be non-zero and represent diagnostic data which is not part of the external interface. The high-order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.
6. Since this service may only be used by system-like code, some validity checking on the parameter list is not performed. These checks would only be needed if the macro were not used to invoke the service routine.
7. If the parameter EWLMMODE=EXPLICIT_SINGLE is specified, the following restrictions apply:
 • No other task or SRB is allowed to issue other enclave services for the same enclave concurrently.
 • The caller must be in primary ASC mode before invocation.
 • The parameter list, the classification parameters and the savearea pointed to by GPR13 must be addressable in AMODE 31 and primary ASC mode.
IWMESTOP Macro

- No recovery environment is set up by the service. The caller is responsible to provide an appropriate error recovery environment to handle abnormal terminations.
- The enclave must have been created with option ESTRT=EXPLICIT_SINGLE on the IWM4ECRE (or IWMECREA) invocation.
- The caller must provide the ETOKEN parameter.

Restrictions

None.

Input Register Information

If the EWLMMODE=EXPLICIT_SINGLE parameter is specified, the caller must provide a standard 72-byte savearea pointed to by GPR13.

For all other cases the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```plaintext
IWMESTOP ETOKEN=etoken WORKREQ_HDL=workreq_hdl
```
The parameters are explained as follows:

name
- An optional symbol, starting in column 1, that is the name on the IWMESTOP macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

ETOKEN=etoken
- A required input parameter that contains the enclave token of the enclave under which the work request is processed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

EWLMMODE=NORMAL
- EWLMMODE=NORMAL indicates that the enclave was created with the ESTRT=NORMAL or with the ESTRT=IMPLIED option. The values of EWLMMODE are:
 - EWLMMODE=NORMAL indicates that the enclave was created with the ESTRT=EXPLICIT or with the ESTRT=IMPLIED option.
 - EWLMMODE=NORMAL is the default.

EWLMMODE=EXPLICIT_SINGLE
- EWLMMODE=EXPLICIT_SINGLE indicates that the enclave was created with the ESTRT=EXPLICIT_SINGLE option which can only be used for a restricted environment. The caller must provide a standard 72-byte savearea, which is addressable in AMODE 31 and pointed to by GPR13. The parameter list and the classification parameters must also be addressable in AMODE 31.

MF=S
- MF=(L,list addr)
- MF=(L,list addr,attr)
- MF=(L,list addr,0D)
- MF=(E,list addr)
- MF=(E,list addr,COMPLETE)
- An optional input parameter that specifies the macro form.
Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

\texttt{list _addr}

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

\texttt{attr}

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code \texttt{attr}, the system provides a value of 0D.

\texttt{COMPLETE}

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

\texttt{PLISTVER=IMPLIED_VERSION}

\texttt{PLISTVER=MAX}

\texttt{PLISTVER=0}

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- \texttt{IMPLIED_VERSION}, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- \texttt{MAX}, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- \texttt{0}, if you use the currently available parameters.

\textbf{To code}: Specify one of the following:

- \texttt{IMPLIED_VERSION}
- \texttt{MAX}
- A decimal value of 0
IWMESTOP Macro

RET CODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

RSN CODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

WORKREQ_HDL=workreq_hdl
A required input parameter that contains the handle which represents the work request. This handle was returned from a previous call to IWMESTRT or IWM4ECRE.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

WORKREQ_STA=workreq_sta
WORKREQ_STA=0
An optional input parameter, which contains the completion status code of the work request. Available completion status codes are described in the EWLM ARM interface specification. The use of symbolic constants IwmEwlmArmStatusGood, IwmEwlmArmStatusAborted, IwmEwlmArmStatusFailed, IwmEwlmArmStatusUnkonwn (defined in macro IWMYCON) is recommended.

The default is 0. This indicates successful completion.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

ABEND Codes
None.

Return and Reason Codes
When the IWMESTOP macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 37. Return and Reason Codes for the IWMESTOP Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion. None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters.</td>
</tr>
</tbody>
</table>

Chapter 26. IWMESTOP – Stopping a Work Request 257
Table 37. Return and Reason Codes for the IWMESTOP Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is disabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while disabled.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is locked.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while locked.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>Equate Symbol: IwmRsnCodeBadPl</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Error accessing parameter list.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller invoked service but was in 24 bit addressing mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Request this function only when you are in 31 bit addressing mode.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Version number in parameter list is not valid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay of the parameter list.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx083A</td>
<td>Equate Symbol: IwmRsnCodeBadEnclave</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Enclave token does not pass verification.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay of the enclave token, or for asynchronous events which may have deleted the enclave.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0885</td>
<td>Equate Symbol: IwmRsnCodeDependentEnclave</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Service is not available for dependent enclaves.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function for dependent enclaves.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0895</td>
<td>Equate Symbol: IwmRsnCodeEWLMServNotEnabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Service is not enabled because caller invoked the IWM4CON (IWMCONN) service with EWLM=NO.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Ensure that EWLM=YES is specified on the IWM4CON request to enable this service.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0896</td>
<td>Equate Symbol: IwmRsnCodeBadWorkReqHandle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Work request handle is not associated with passed enclave.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check the specification of the WORKREQ_HDL parameter.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0897</td>
<td>Equate Symbol: IwmRsnCodeTranStatusInvalid</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Passed work request completion status is not valid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check the EWLM ARM interface specification for valid completion status values.</td>
<td></td>
</tr>
</tbody>
</table>
Table 37. Return and Reason Codes for the IWMESTOP Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx08A0</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeNotExplicitSingle</td>
<td>Meaning: The service has been invoked with option EWLMMODE=EXPLICIT_SINGLE but the enclave has not been created with the ESTRT=EXPLICIT_SINGLE option or vice versa.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Action: If ESTRT=EXPLICIT_SINGLE was coded on the IWM4ECRE or IWMECREA call, EWLMMODE=EXPLICIT_SINGLE must also specified on the IWMEBLK call. If ESTRT=EXPLICIT OR ESTRT=IMPLIED was coded on the IWM4ECRE or IWMECREA call, EWLMMODE=NORMAL must be specified on the IWMEBLK call (or the EWLMMODE parameter can be omitted).</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
<td>Meaning: Component error.</td>
<td>Action: No action required. The function may be successful if invoked again.</td>
</tr>
</tbody>
</table>

Example

```
IWMESTOP ETOKEN=ENCTKN, WORKREQ_HDL=WRHANDLE, WORKREQ_STA=WRSTATUS
*
* Storage areas
*
  ENCTKN DS CL8 Enclave token
  WRHANDLE DS CL8 Work Request Handle
  WRSTATUS DS CL4 Work Request Completion Status
```
IWMESTOP Macro
Chapter 27. IWMESTRT – Starting a Work Request

The IWMESTRT service allows work managers that participate in cross-platform enterprise workload management (EWLM) to explicitly indicate the start of an EWLM work request. Using this service the application work request model is decoupled from WLM's enclave model.

The counterpart of this service to indicate the end of an EWLM work request is IWMESTOP.

Environment

The requirements for the caller are:

- **Minimum authorization:** Supervisor state or program key mask (PKM) allowing keys 0-7
- **Dispatchable unit mode:** Task or SRB
- **Cross memory mode:** Any PASN, any HASN, any SASN
- **AMODE:** 31- and 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.
- **ASC mode:** Primary or access register (AR)
- **Interrupt status:** Enabled for I/O and external interrupts
- **Locks:** No locks may be held.
- **Control parameters:** Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of 31-bit register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.
6. Since this service may only be used by system-like code, some validity checking on the parameter list is not performed. These checks would only be needed if the macro were not used to invoke the service routine.
7. If the parameter EWLMMODE=EXPLICIT_SINGLE is specified, the following restrictions apply:
 - No other task or SRB is allowed to issue other enclave services for the same enclave concurrently.
 - The caller must be in primary ASC mode before invocation.
 - The parameter list, and the savearea pointed to by GPR13 must be addressable in AMODE 31 and primary ASC mode.
IWMESTRT Macro

- No recovery environment is set up by the service. The caller is responsible to provide an appropriate error recovery environment to handle abnormal terminations.
- The enclave must have been created with option ESTRT=EXPLICIT_SINGLE on the IWM4ECRE (or IWMECREA) invocation.
- All data in the optional classify parameter list (CLSFY=xxx) are ignored, including EWLM_CORR. If the application wants to specify an EWLM parent correlator or classification attributes for an EWLM hop0 work request, these data have to be passed in the classification parameter list on the IWM4ECRE (IWMECREA) call and thus will be the same for all work requests on the enclave.

Restrictions

None.

Input Register Information

If the EWLMODE=EXPLICIT_SINGLE parameter is specified, the caller must provide a standard 72-byte savearea pointed to by GPR13.

For all other cases the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.
Syntax

main diagram

Parameters

The parameters are explained as follows:

name

An optional symbol, starting in column 1, that is the name on the IWMESTRT macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

ARRIVALTIME=arrivaltime

ARRIVALTIME=NO_ARRIVALTIME

An optional input parameter, which contains the time when the work request actually started. This time is used to calculate the response time of the work request. The format of the field is STCK. The default is NO_ARRIVALTIME. This indicates that no arrival time is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

CLSFY=clsfy

CLSFY=NO_CLSFY

An optional input parameter, which contains the classification information in the format of the parameter list for IWMCLSFY. This name is the data area name, not its pointer. IWMCLSFY MF(M) should be used to initialize the area prior to invocation of IWMESTRT. If the EWLM_CORR field within that classification information is non-zero, a sub-work request is started. The classify parameter list must be from z/OS V1R5 or higher.

Note that the variable length fields associated with the classify parameter list given by the CLSFY keyword have the following limitations in addition to those documented in IWMCLSFY:

- SUBSYSSEM is limited to 255 bytes
- COLLECTION is limited to 18 bytes
- CORRELATION is limited to 12 bytes
IWMESTRT Macro

Note: If EWLMMODE=EXPLICIT_SINGLE is specified, all data in the optional classify parameter list (CLSFY=xxx) is ignored, including the EWLM_CORR. If the application wants to specify an EWLM parent correlator or classification attributes for an EWLM hop0 work request, these data have to be passed in the classification parameter list on the IWM4ECRE (IWMECREA) call and thus will be the same for all work requests on the enclave.

CLSFY=NO_CLSFY indicates that no classify parameter list is passed. This is the default.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

ETOKEN=etoken
A required input parameter that contains the enclave token of the enclave under which the work request is processed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,EWLMMODE=NORMAL
,EWLMMODE=EXPLICIT_SINGLE
An optional input keyword that indicates whether the parameter EXPLICIT_SINGLE has been specified on the IWM4ECRE (or IWMECREA) call. Note that EWLMMODE=EXPLICIT_SINGLE can only be specified if the enclave was created with the ESTRT=EXPLICIT_SINGLE option. The values of EWLMMODE are:

,EWLMMODE=NORMAL
indicates that the enclave was created with the ESTRT=EXPLICIT or with the ESTRT=IMPLIED option. EWLMMODE=NORMAL is the default.

ESTRT=EXPLICIT_SINGLE
indicates that the enclave was created with the option which can only be used for a restricted environment. The caller must provide a standard 72-byte savearea, which is addressable in AMODE 31 and pointed to by GPR13. The parameter list and the classification parameters must also be addressable in AMODE 31.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.
IWMESTRT Macro

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,.list addr
 The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,.attr
 An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,.COMPLETE
 Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,.PLISTVER=IMPLIED_VERSION
,.PLISTVER=MAX
,.PLISTVER=0
 An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:
 • IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
 • MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.
 • 0, if you use the currently available parameters.

 To code: Specify one of the following:
 • IMPLIED_VERSION
 • MAX
 • A decimal value of 0

,.RETCODE=retcode
 An optional output parameter into which the return code is to be copied from GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,.RSNCODE=rsncode
 An optional output parameter into which the reason code is to be copied from GPR 0.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).
IWMESTRT Macro

WORKREQ_HDL=workreq_hdl

A required output parameter that will receive the handle which represents the work request. The application must pass this handle to the other work request services IWMESTOP, IWMEBLK, IWMEUBLK, and IWMEGCOR.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWMESTRT macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 38. Return and Reason Codes for the IWMESTRT Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
<td>Successful completion.</td>
<td>None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8 xxxx0803</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
<td>Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8 xxxx0804</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8 xxxx080B</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeBadPl</td>
<td>Error accessing parameter list.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8 xxxx0824</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24 bit addressing mode.</td>
<td>Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8 xxxx0828</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
</tbody>
</table>
Table 38. Return and Reason Codes for the IWMESTRT Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0838</td>
<td>IwmRsnCodeClisyAreaTooBig</td>
<td>Input area associated with classification information is larger than supported.</td>
<td>Invoke the function with an area of the proper size. Check for possible storage overlay.</td>
</tr>
<tr>
<td></td>
<td>xxxx0839</td>
<td>IwmRsnCodeClisyPtTooSmall</td>
<td>Input Classify parameter list is too small.</td>
<td>Invoke the function with an area of the proper size. Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx083A</td>
<td>IwmRsnCodeBadEnclave</td>
<td>Enclave token does not pass verification.</td>
<td>Check for possible storage overlay of the enclave token, or asynchronous events which may have deleted the enclave.</td>
</tr>
<tr>
<td></td>
<td>xxxx0885</td>
<td>IwmRsnCodeDependentEnclave</td>
<td>Service is not available for dependent enclaves.</td>
<td>Avoid requesting this function for dependent enclaves.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0893</td>
<td>IwmRsnCodeMissingEWLMCorr</td>
<td>Passed classification information must contain an EWLM correlator (EWLM_CORR).</td>
<td>Provide an EWLM correlator (EWLM_CORR) within the passed classification information.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0894</td>
<td>IwmRsnCodeInvalidEWLMCorr</td>
<td>Passed classification information contains an EWLM correlator (EWLM_CORR) that does not pass validity checking or that is not associated with the enclave.</td>
<td>Check the specification of the EWLM correlator in the classification information.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0895</td>
<td>IwmRsnCodeEWLMServNotEnabled</td>
<td>Service is not enabled because caller invoked the IWM4CON service with EWLM=NO.</td>
<td>Ensure that EWLM=YES is specified on the IWM4CON request to enable this service.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx089F</td>
<td>IwmRsnCodeMoreThanOneStart</td>
<td>The service has been invoked with the EWLMMODE=EXPLICIT_SINGLE option, but a work request is already active for the enclave. For EWLMMODE=EXPLICIT_SINGLE only one work request may be active at a given point in time.</td>
<td>Ensure that the IWMESTRT and IWMESTOP invocations are correctly paired and that only one work request is active.</td>
</tr>
</tbody>
</table>
Table 38. Return and Reason Codes for the IWMESTRT Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx08A0 | IwmRsnCodeNotExplicitSingle | **Meaning**: The service has been invoked with option EWLMMODE=EXPLICIT_SINGLE, but the enclave has not been created with the ESTRT=EXPLICIT_SINGLE option or vice versa.
Action: If ESTRT=EXPLICIT_SINGLE was coded on the IWMMICECRE (or IWMECREA) call, EWLMMODE=EXPLICIT_SINGLE must also specified on the IWMESTRT call. If ESTRT=EXPLICIT OR ESTRT=IMPLIED was coded on the IWMMICECRE (or IWMECREA) call, EWLMMODE=NORMAL must be specified on the IWMESTRT call (or the EWLMMODE parameter can be omitted). |
| 10 | — | IwmRetCodeCompError | **Meaning**: Component error.
Action: No action required. The function may be successful if invoked again. |

Example

* Before calling IWMESTRT initialize classification attributes in CLFSY
*
* IWMESTRT ETOKEN=ENCTKN,CLSFY=CLFSY,
 WORKREQ_HDL=WRHANDLE,ARRIVALTIME=ATIME
*
* Storage areas

* IWMCLSFY PLISTVER=MAX,MF=(L,CLFSY,0D)
ENCTKN DS CLB Enclave token
ATIME DS CLB Arrival time
WRHANDLE DS CLB Work Request Handle
Chapter 28. IWMESQRY – Querying Enclave State

The purpose of this service is to query whether or not the current dispatchable workunit is associated with an enclave. The output either is the enclave token or the STOKEN of the address space associated with the caller's workunit.

Environment

The requirements for the caller are:

Minimum authorization: Supervisor state. Any PSW key.
Dispatchable unit mode: Task or SRB
Cross memory mode: Non-XMEM or XMEM. Any PASN, HASN, SASN.
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks are required.
Control parameters: Control parameters must be in the primary address space.

Programming Requirements

1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
4. Caller is responsible for error recovery.

Restrictions

None.

Input Register Information

Before issuing the IWMESQRY macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>
IWMESQRY Macro

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMESQRY macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

ETOKEN=etoken
A required output parameter, which will receive the Enclave token if the current dispatchable workunit is associated with an Enclave. If it is not associated with an Enclave, the field is set to 0. This parameter is deprecated and supported for compatibility reasons only. The TOKEN parameter should be used instead.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.
IWMESQRY Macro

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.
- 0, if you use the currently available parameters.

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.
IWMESQRY Macro

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,**RSNCODE**=rsncode

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,**TOKEN**=token

A required output parameter which will receive either the Enclave token if the current dispatchable workunit is associated with an Enclave (as indicated by return code 0), or the STOKEN of the address space the workunit is associated with (return code 4).

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWMESQRY macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeWarning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx041C</td>
<td>Equate Symbol: IwmRsnCodeNotEnclave</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The current dispatchable workunit is not associated with an Enclave.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
</tbody>
</table>

Table 39. Return and Reason Codes for the IWMESQRY Macro
Example

To query whether the current dispatchable workunit is associated with an Enclave or an address space:

```
   IWMESQRY TOKEN=MYTOKEN,RETCODE=RC,RSN=RSN
```

* Storage areas

```
   MYTOKEN  DS  CL8     Enclave token or STOKEN
   RC       DS  F      Return code
   RSN      DS  F      Reason code
```
IWMESQRY Macro
Chapter 29. IWMEUBLK – Work Request No Longer Blocked

The IWMEUBLK service allows work managers that participate in cross-platform enterprise workload management (EWLM) to indicate that processing of a work request is no longer blocked.

The counterpart of this service to indicate that the processing of a work request is blocked is IWMEBLK.

Environment

The requirements for the caller are:

- **Minimum authorization:** Supervisor state or program key mask (PKM) allowing keys 0-7
- **Dispatchable unit mode:** Task or SRB
- **Cross memory mode:** Any PASN, any HASN, any SASN
- **AMODE:** 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.
- **ASC mode:** Primary or access register (AR)
- **Interrupt status:** Enabled for I/O and external interrupts
- **Locks:** No locks may be held.
- **Control parameters:** Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of 31-bit register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.
6. Since this service may only be used by system-like code, some validity checking on the parameter list is not performed. These checks would only be needed if the macro were not used to invoke the service routine.
7. If the parameter EWLMODE=EXPLICIT_SINGLE is specified, the following restrictions apply:
 - No other task or SRB is allowed to issue other enclave services for the same enclave concurrently.
 - The caller must be in primary ASC mode before invocation.
 - The parameter list, the classification parameters and the savearea pointed to by GPR13 must be addressable in AMODE 31 and primary ASC mode.
IWMEUBLK Macro

- No recovery environment is set up by the service. The caller is responsible to provide an appropriate error recovery environment to handle abnormal terminations.
- The enclave must have been created with option ESTRT=EXPLICIT_SINGLE on the IWM4ECRE (or IWMECREA) invocation.
- The caller must provide the ETOKEN parameter.

Restrictions

This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to the PLISTVER parameter description for further information.

Input Register Information

If the EWLMMODE=EXPLICIT_SINGLE parameter is specified, the caller must provide a standard 72-byte savearea pointed to by GPR13.

For all other cases the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

```
main diagram

IWMEUBLK WORKREQ_HDL=workreq_hdl, BLOCK_HDL=block_hdl
```
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMEUBLK macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,BLOCK_HDL=block_hdl
A required output parameter that will receive the handle identifying the blocked work request. This handle was returned from a previous call to IWMEUBLK.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ETOKEN=etoken
ETOKEN=NO_ETOKEN
Is the name (RS-type), or address in register (2)-(12), of an optional 8-character input variable that contains the enclave token of the enclave under which the work request is processed. The values of ETOKEN are:

- **ETOKEN=etoken** required, if the option EWLMMODE=EXPLICIT_SINGLE is specified.
- **ETOKEN=NOTOKEN** indicates that no ETOKEN is passed. This is the default.

,EWLMMODE=NORMAL
,EWLMMODE=EXPLICIT_SINGLE
An optional input keyword that indicates if the parameter EXPLICIT_SINGLE has been specified on the IWM4ECRE (or IWMECREA) call. Note that EWLMMODE=EXPLICIT_SINGLE can only be specified if the enclave was created with the ESTRT=EXPLICIT_SINGLE option. The values of EWLMMODE are:

- **EWLMMODE=NORMAL** indicates that the enclave was created with the ESTRT=EXPLICIT or with the ESTRT=IMPLIED option. EWLMMODE=NORMAL is the default.
- **EWLMMODE=EXPLICIT_SINGLE** indicates that the enclave was created with the ESTRT=EXPLICIT_SINGLE option which can only be used for a restricted environment. The caller must provide a standard 72-byte savearea,
IWMEUBLK Macro

which is addressable in AMODE 31 and pointed to by GPR13. The parameter list and the classification parameters must also be addressable in AMODE 31.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- 0, which supports all parameters except those specifically referenced in higher versions.
- 1, which supports both the following parameters and those from version 0:

 ETOKEN
 EWLMMODE

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0, or 1

,** RETCODE=retcode **

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,** RSNCODE=rsncode **

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,** WORKREQ_HDL=workreq_hdl **

A required input parameter that contains the handle which represents the work request. This handle was returned from a previous call to IWMESTRT or IWMECRE.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWMEUBLK macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 40. Return and Reason Codes for the IWMEUBLK Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>IwmRsnCodeLocked</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>IwmRsnCodeBadPl</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>IwmRsnCodeAmode24</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
</tr>
<tr>
<td>8</td>
<td>xxxx083A</td>
<td>IwmRsnCodeBadEnclave</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0895</td>
<td>IwmRsnCodeEWLMServNotEnabled</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0896</td>
<td>IwmRsnCodeBadWorkReqHandle</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0898</td>
<td>IwmRsnCodeBadBlockHandle</td>
</tr>
</tbody>
</table>
Table 40. Return and Reason Codes for the IWMEUBLK Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx08A0</td>
<td>Equate Symbol: IwmRsnCodeNotExplicitSingle</td>
<td></td>
</tr>
</tbody>
</table>

Meaning: The service has been invoked with option EWLMMODE=EXPLICIT_SINGLE but the enclave has not been created with the ESTRT=EXPLICIT_SINGLE option or vice versa.

Action: If ESTRT=EXPLICIT_SINGLE was coded on the IWM4ECRE or IWMECREA call, EWLMMODE=EXPLICIT_SINGLE must also specified on the IWMEBLK call. If ESTRT=EXPLICIT OR ESTRT=IMPLIED was coded on the IWM4ECRE or IWMECREA call, EWLMMODE=NORMAL must be specified on the IWMEBLK call (or the EWLMMODE parameter can be omitted).

| 10 | — | Equate Symbol: IwmRetCodeCompError |

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

Examples

IWMEUBLK WORKREQ_HDL=WRHANDLE, BLOCK_HDL=BKHANDLE

* Storage areas
* WRHANDLE DS CL8 Work Request Handle
 BKHANDLE DS CL8 Work Request Block Handle
Chapter 30. IWMEXPT – Exporting a WLM Enclave

The IWMEXPT macro exports an enclave to all systems in a parallel sysplex. This enables dispatchable units on other systems to import and join the enclave. The macro returns an export token which the caller must pass to other systems where it wants to import and join the enclave.

The caller must invoke the IWMUEXPT macro when other systems no longer need access to the exported enclave.

The primary address space must have connected to WLM using the IWM4CON macro.

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum authorization:</td>
<td>Supervisor state or program key mask (PKM) allowing keys 0-7.</td>
</tr>
<tr>
<td>Dispatchable unit mode:</td>
<td>Task or SRB</td>
</tr>
<tr>
<td>Cross memory mode:</td>
<td>Any HASN, any SASN. PASN must be the address space which connected to WLM.</td>
</tr>
<tr>
<td>AMODE:</td>
<td>31-bit</td>
</tr>
<tr>
<td>ASC mode:</td>
<td>Primary</td>
</tr>
<tr>
<td>Interrupt status:</td>
<td>Enabled for I/O and external interrupts</td>
</tr>
<tr>
<td>Locks:</td>
<td>No locks may be held.</td>
</tr>
<tr>
<td>Control parameters:</td>
<td>Control parameters must be in the primary address space.</td>
</tr>
</tbody>
</table>

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

It is not supported to export work-dependent enclaves.

Input Register Information

Before issuing the IWMEXPT macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.
Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

![Diagram]

Parameters

The parameters are explained as follows:

name

An optional symbol, starting in column 1, that is the name on the IWMEXPT macro invocation. The name must conform to the rules for an ordinary assembler language symbol.
IWMEXPT Macro

.CONNTKN=conntkn

A required input parameter that contains the connect token for the primary address space’s connection to WLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

ETOKEN=etoken

A required input parameter that contains the enclave token of the enclave to be exported.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

.MF=S

.MF=(L,list addr)

.MF=(L,list addr,attr)

.MF=(L,list addr,0D)

.MF=(E,list addr)

.MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

attr

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

.COMPLETE

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

.PLISTVER=IMPLIED_VERSION

.PLISTVER=MAX

.PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:
IWMEXPT Macro

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.
- **0**, if you use the currently available parameters.

 To code: Specify one of the following:
 - IMPLIED_VERSION
 - MAX
 - A decimal value of 0

 ,RETCODE=retcode
 An optional output parameter into which the return code is to be copied from GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

 ,RSNCODE=rsncode
 An optional output parameter into which the reason code is to be copied from GPR 0.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

 ,XTOKEN=xtoken
 A required output parameter that contains an export token which uniquely identifies the exported enclave throughout the parallel sysplex.

 To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWMEXPT macro returns control to your program:

- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.
Table 41. Return and Reason Codes for the IWMEXPT Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
</table>
| 0 | — | **Equate Symbol**: IwmRetCodeOk
Meaning: Successful completion.
Action: None required. |
| 4 | — | **Equate Symbol**: IwmRetCodeWarning
Meaning: Successful completion, unusual conditions noted. |
| 4 | xxxx0433 | **Equate Symbol**: IwmRsnCodeEncAlreadyExported
Meaning: The input enclave was imported from another system. It cannot be exported by this system.
Action: The existing export token associated with the input enclave is returned. It can be used as long as it remains valid, which is under the control of the work manager that exported the enclave. Do not invoke IWMUEXPT to undo the export since this invocation did not establish the export. |
| 8 | — | **Equate Symbol**: IwmRetCodeInvocError
Meaning: Invalid invocation environment or parameters. |
| 8 | xxxx0803 | **Equate Symbol**: IwmRsnCodeDisabled
Meaning: Caller is disabled.
Action: Avoid requesting this function while disabled. |
| 8 | xxxx0804 | **Equate Symbol**: IwmRsnCodeLocked
Meaning: Caller is locked.
Action: Avoid requesting this function while locked. |
| 8 | xxxx080B | **Equate Symbol**: IwmRsnCodeBadPI
Meaning: Error accessing parameter list.
Action: Check for possible storage overlay. |
| 8 | xxxx0821 | **Equate Symbol**: IwmRsnCodeBadConn
Meaning: Input connect token does not pass validity checking.
Action: Make sure the primary address space connected to WLM using the IWM4CON service. Make sure the connect token returned by IWM4CON is passed correctly. |
| 8 | xxxx0824 | **Equate Symbol**: IwmRsnCodeAmode24
Meaning: Caller invoked service but was in 24 bit addressing mode.
Action: Request this function only when you are in 31-bit addressing mode. |
| 8 | xxxx0825 | **Equate Symbol**: IwmRsnCodeAscModeNotPrimary
Meaning: Caller invoked service but was not in primary ASC mode.
Action: Avoid requesting this function in this environment. |
Table 41. Return and Reason Codes for the IWMEXPT Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>IwmRsnCodeRsvdNot0</td>
<td>Reserved field in parameter list was non-zero.</td>
<td>Check for use of keywords that are not supported by the z/OS release on which the program is running.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx083A</td>
<td>IwmRsnCodeBadEnclave</td>
<td>Enclave token does not pass verification.</td>
<td>Check for possible storage overlay of the enclave token, or asynchronous events which may have deleted the enclave.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>IwmRsnCodeServiceNotEnabled</td>
<td>Caller's connection is not enabled for this service.</td>
<td>Make sure that EXPTIMPT=YES is specified on the IWM4CON macro invocation.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0842</td>
<td>IwmRsnCodeNoWLMConnect</td>
<td>Caller's primary address space is not connected to WLM.</td>
<td>Invoke the IWM4CON macro before invoking this macro.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0884</td>
<td>IwmRsnCodeEnclaveDefEx</td>
<td>Enclave is marked Execution Start Time to be deferred</td>
<td>Enclave is marked Execution Start Time to be deferred.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx08B7</td>
<td>IwmRsnCodeWorkDepEnclave</td>
<td>The requested service is not supported for a work-dependent enclave.</td>
<td>Do not try to export work-dependent enclaves.</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>IwmRetCodeEnvError</td>
<td>Environmental error.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>IwmRsnCodeNoStg</td>
<td>Virtual storage is not available for the request.</td>
<td>Process the unit-of-work on the local system or fail the unit-of-work, whichever is appropriate.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C2F</td>
<td>IwmRsnCodeSystemSpace</td>
<td>The enclave is owned by a system (i.e. limited-function) address space. Exporting such an enclave is not supported.</td>
<td>Process the unit-of-work on the local system or fail the unit-of-work, whichever is appropriate.</td>
</tr>
</tbody>
</table>
Table 41. Return and Reason Codes for the IWMEXPT Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>xxxx0C37</td>
<td>Equate Symbol: IwmRsnCodeStructureFull</td>
<td>Meaning: The coupling facility structure is full. Action: Process the unit-of-work on the local system or fail the unit-of-work, whichever is appropriate.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C36</td>
<td>Equate Symbol: IwmRsnCodeStructureUnavailable</td>
<td>Meaning: WLM does not have access to its coupling facility structure. Action: Process the unit-of-work on the local system or fail the unit-of-work, whichever is appropriate. Check for WLM or XES messages which describe the problem.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
<td>Meaning: Component error. Action: Contact your system programmer.</td>
</tr>
</tbody>
</table>

Example

```
IWMEXPT ETOKEN=ENCLAVET,XTOKEN=EXPORTT,CONNTKN=CONNECTT
*
  * Storage areas
  *
  ENCLAVET DS CL8 Enclave token
  EXPORTT DS CL32 Export token
  CONNECTT DS CL4 Connect token
```
IWMEXPT Macro
Chapter 31. IWMGCORF – Getting Correlator Flags

The IWMGCORF service allows to check whether or not certain Application Response Measurement (ARM) flags in a provided EWLM correlator are set. These flags are contained in byte 3 of the ARM correlator format.

For further details about ARM, refer to the ARM V4 OpenGroup standard at http://www.opengroup.org/arm.

Environment

The requirements for the caller are:

Minimum authorization:	Problem state or supervisor state.
Dispatchable unit mode:	Task or SRB
Cross memory mode:	Any PASN, any HASN, any SASN
AMODE:	31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.
ASC mode:	Primary
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No restriction.
Control parameters:	Control parameters must be in the primary address space.

Programming Requirements

1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of bits 0-31 of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

None.

Input Register Information

Before issuing the IWMGCORF macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>
IWMGCORF Macro

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
IWMGCORF
  name
  EWLM_CORR=ewlm_corr,
  ASYNC_FLAG=async_flag,
  INDEP_FLAG=indep_flag,
  RETCODE=retcode,
  RSNCODE=rsncode,
  MF=(M,addr)
```

Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMGCORF macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

_ASYNC_FLAG=async_flag
An optional output parameter, which receives the indication whether or not the asynchronous flow flag is set. A value of 1 is returned, if the asynchronous flow flag is set. Otherwise 0 is returned. The caller must initialize the ASYNC_FLAG field before issuing the macro because IWMGCORF will not modify it if the EWLM_CORR field contains an invalid ARM correlator.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

EWLM_CORR=ewlm_corr
A required input parameter, which contains an EWLM correlator. If the correlator is invalid (the architected length in the first two bytes is less than 4 or greater than 512), a call to this macro acts as a no-operation and no change to the ASYNC_FLAG or INDEP_FLAG is made.
IWMGCORF Macro

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

```
INDEP_FLAG=indep_flag
```

An optional output parameter, which receives the indication whether or not the independent flag is set. A value of 1 is returned, if the independent flag is set. Otherwise 0 is returned. The caller must initialize the INDEP_FLAG field before issuing the macro because IWMGCORF will not modify it if the EWLM_CORR field contains an invalid ARM correlator.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

```
RETCODE=retcode
```

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

```
RSNCODE=rsncode
```

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes

None.

Return and Reason Codes

None.

Example

To extract the setting of the asynchronous and the independent flag from a storage area holding an ARM correlator, specify the following:

```
LHI 2,-1 INIT TO CATCH INVALID CORRELATOR
ST 2,ASYNCHRO
ST 2,INDEPEND
IWMGCORF *
   EWLM_CORR=MYCORR,*
   ASYNC_FLAG=ASYNCHRO,*
   INDEP_FLAG=INDEPEND
L 2,ASYNCHRO LOAD ASYNCHRONOUS INDICATOR
LTR 2,2 TEST ASYNC RESULT
JP ASYN_ON ASYNC FLAG IS ON
JZ ASYN_OFF ASYNC FLAG IS OFF
CORR_INVA DS OH NOT A VALID ARM CORRELATOR :
:
ASYN_ON L 3,INDEPEND LOAD INDEPENDENT INDICATOR
LTR 3,3 TEST INDEP (RELEVANT, IF ASYNC)
JP INDE_ON:
INDE_OFF DS OH ASYNC ON, BUT NOT INDEPENDANT :
:
ASYNCHRO DS F STORAGE AREA FOR ASYNC FLAG
INDEPEND DS F STORAGE AREA FOR INDEP FLAG
MYCORR DS CL512 STORAGE AREA FOR ARM CORRELATOR
```
IWMGCORF Macro
Chapter 32. IWMIMPT – Importing an Enclave

The IWMIMPT macro imports an enclave that has been previously exported using the IWMEXPT macro.

The caller must invoke the IWMUIMPT macro when it no longer needs access to the enclave.

The primary address space must have connected to WLM using the IWM4CON macro.

Environment

The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space which connected to WLM.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

None.

Input Register Information

Before issuing the IWMIMPT macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:
IWMIMPT Macro

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications
None.

Syntax

```
main diagram
```

Parameters

The parameters are explained as follows:

`name`
An optional symbol, starting in column 1, that is the name on the IWMIMPT macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

`.CONNTKN=conntkn`
A required input parameter that contains the connect token for the primary address space’s connection to WLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.
IWMIMPT Macro

,EETOKEN=etoken
A required output parameter that contains the enclave token for the imported enclave. The caller can pass this token as input to all enclave services except IWM4EDEL. The enclave token is valid on the local system only.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MMF=S
,MMF=(L,list addr)
,MMF=(L,list addr,attr)
,MMF=(L,list addr,0D)
,MMF=(E,list addr)
,MMF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.
Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.
Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.
Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:
- IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
IWMIMPT Macro

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- 0, if you use the currently available parameters.

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0

,**RETCODE=retcode**
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,**RSNOCODE=rsnocode**
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,**XTOKEN=xtoken**
A required input parameter that contains the export token which identifies the exported enclave.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

ABEND Codes

None.
Return and Reason Codes

When the IWMIMPT macro returns control to your program:
- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
</table>
| 0 | — | Equate Symbol: IwmRetCodeOk
Meaning: Successful completion.
Action: None required. | | |
| 4 | — | Equate Symbol: IwmRetCodeWarning
Meaning: Successful completion, unusual conditions noted. | | |
| 4 | xxxx0432 | Equate Symbol: IwmRsnCodeUnknownExportToken
Meaning: No enclave matching the export token was found. The enclave may have been unexported or deleted, or the WLM coupling facility structure may have been lost.
Action: Discontinue processing the unit of work. | | |
| 8 | — | Equate Symbol: IwmRetCodeInvocError
Meaning: Invalid invocation environment or parameters. | | |
| 8 | xxxx0803 | Equate Symbol: IwmRsnCodeDisabled
Meaning: Caller is disabled.
Action: Avoid requesting this function while disabled. | | |
| 8 | xxxx0804 | Equate Symbol: IwmRsnCodeLocked
Meaning: Caller is locked.
Action: Avoid requesting this function while locked. | | |
| 8 | xxxx080B | Equate Symbol: IwmRsnCodeBadPl
Meaning: Error accessing parameter list.
Action: Check for possible storage overlay. | | |
| 8 | xxxx0821 | Equate Symbol: IwmRsnCodeBadConn
Meaning: Input connect token does not pass validity checking.
Action: Make sure the primary address space connected to WLM using the IWMACON service. Make sure the connect token returned by IWMACON is passed correctly. | | |
| 8 | xxxx0824 | Equate Symbol: IwmRsnCodeAmode24
Meaning: Caller invoked service but was in 24 bit addressing mode.
Action: Request this function only when you are in 31 bit addressing mode. | | |
Table 42. Return and Reason Codes for the IWMIMPT Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not in primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>IwmRsnCodeRsvdNot0</td>
<td>Reserved field in parameter list was non-zero.</td>
<td>Check for use of keywords that are not supported by the OS/390 release on which the program is running.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0836</td>
<td>IwmRsnCodeMaxEnclave</td>
<td>Enclave could not be created because the enclave limit has been reached.</td>
<td>Check for possible problems wherein enclaves are not being deleted as expected or excessive numbers of enclaves are being created in a loop.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>IwmRsnCodeServiceNotEnabled</td>
<td>Caller's connection is not enabled for this service.</td>
<td>Make sure that EXPTIMPT=YES is specified on the IWM4CON macro invocation.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0842</td>
<td>IwmRsnCodeNoWLMConnect</td>
<td>Caller's primary address space is not connected to WLM.</td>
<td>Invoke the IWM4CON macro before invoking this macro.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0870</td>
<td>IwmRsnCodeBadExportToken</td>
<td>The export token is not validly formatted.</td>
<td>Check for possible storage overlay of the export token.</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>IwmRetCodeEnvError</td>
<td>Environmental error.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>IwmRsnCodeNoStg</td>
<td>Virtual storage is not available for the request.</td>
<td>Contact your system programmer.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C36</td>
<td>IwmRsnCodeStructureUnavailable</td>
<td>WLM does not have access to its coupling facility structure.</td>
<td>Check for WLM or XES messages which describe the problem.</td>
</tr>
</tbody>
</table>
Table 42. Return and Reason Codes for the IWMIMPT Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>xxxx0C38</td>
<td>IwmRsnCodeUplevelObject</td>
<td>The multisystem enclave requires functions that are not available on this level of the operating system.</td>
<td>Do not process the work request on this system.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C39</td>
<td>IwmRsnCodeTooManySystems</td>
<td>The sysplex has exceeded 32 systems with unique names. This can occur when a system is reIPLed into the sysplex with a different SYSNAME or CPU Adjustment factor.</td>
<td>Do not process the work request on this system.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>IwmRetCodeCompError</td>
<td>Component error.</td>
<td>Contact your system programmer.</td>
</tr>
</tbody>
</table>

Example

```plaintext
IWMIMPT XTOKEN=EXPORTT,ETOKEN=ENCLAVET,CONNTKN=CONNECTT

* Storage areas
  * ENCLAVET DS CL8           Enclave token
  * EXPORTT DS CL32          Export token
  * CONNECTT DS CL4          Connect token
```
IWMIMPT Macro
Chapter 33. IWMMABNL – Recording Abnormal Event

You can use IWMMABNL to record an abnormal event that has occurred for work requests. The information is kept in the input monitoring environment. The abnormal condition supplements any existing abnormal conditions recorded in the input monitoring environment.

The abnormal events are transferred (with all other information) to any parent monitoring environment with the IWMXFER FUNCTION=RETURN parameter. These abnormal events are recorded in the monitoring environment so that the caller can get an indication that further requests might fail due to some abnormal situation. This supplements any information a caller receives from the return code.

Environment

The requirements for the caller are:

Minimum authorization: Supervisor state, or problem state. PSW key must either be 0 or match the value supplied on IWM4MCRE for the input monitoring token when MONENVKEYP=PSWKEY is specified.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary mode

Interrupt status: Enabled

Locks: Unlocked

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

- You must include the IWMYCON mapping macro in the calling program.
- If the key specified on IWM4MCRE was a user key, then either primary or secondary addressability must exist to the performance block IWM4MCRE obtained.
- If you specify MONENVKEYP=VALUE, then the caller must be in supervisor state or have PKM authority to the key specified by MONENVKEY.
- If you specify MONENVKEYP=UNKNOWN, then the caller must be in supervisor state or have PKM authority to key 0.
- The caller must serialize to prevent any delay monitoring services from being invoked concurrently for the environment represented by the monitoring token.
- Only limited validity checking is done on the input monitoring token.
- The caller is responsible for error recovery.

Restrictions

None.
Input Register Information

Before issuing the IWMMABNL macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if the return code in GPR 15 is not 0, otherwise, used as a work register by the system.</td>
</tr>
<tr>
<td>1</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14 - 15</td>
<td>Used as a work register by the system.</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

The syntax of the IWMMABNL macro is as follows:

```
main diagram

```

Parameters

The parameters are explained as follows:
IWMMABNL Macro

ABNORMAL=abnormal
Required input parameter specifying the abnormal mask reflecting the abnormality. Macro IWMYCON contains the defined abnormal masks. The mask variable names begin with IWMMABNL, for example - IWMMABNL_SCOPE_LOCALMVS.

To code: Specify the name (RS-type), or address in register (2)-(12) of a 32-bit field containing the abnormal mask.

MONTKN=montkn
Required input parameter specifying the monitoring token for the environment affected by the abnormality.

To code: Specify the name (RS-type), or address in register (2)-(12) of a 32-bit field containing the monitoring token.

MONENVKEYP=VALUE
MONENVKEYP=PSWKEY
MONENVKEYP=UNKNOWN
Required input parameter that specifies whether a key switch is needed to access the input monitoring environment.

Use **MONENVKEYP=VALUE** to indicate that the key is being passed explicitly in MONENVKEY.

Use **MONENVKEYP=PSWKEY** to indicate that the current PSW key should be used. If you use this parameter, the input monitoring environment must have been created with the same key as the current PSW key.

Use **MONENVKEYP=UNKNOWN** to indicate that the key associated with the input monitoring environment is unknown. If you use this parameter, the caller must be in supervisor state or have PKM authority to key 0.

MONENVKEY=monenvkey
Required input parameter for **MONENVKEYP=VALUE** that specifies the key in which the input monitoring environment must be accessed. If you use this parameter, the caller must be in supervisor state or have PKM authority to the key specified.

To code: Specify an 8 bit name (RS-type), or address in register (2)-(12), of the monitoring environment key. The leftmost (high order) 4 bits contain the key value. Note that this uses the machine orientation for keeping the storage key in the high order bits.

MONENV=NOSWITCH
MONENV=SECONDARY
Required keyword input which describes whether an address space switch is needed to access the input monitoring environment.

Use **MONENV=NOSWITCH** to indicate that no space switch is needed to access the input monitoring environment. This is appropriate if the input monitoring environment was established (by IWM4MCRE) to be used by routines in a specific system key or if it was established to be used in a specific user key in the current primary.

Use **MONENV=SECONDARY** to indicate that the input monitoring environment was established in current secondary (for use by a specific user key).

RETCODE=retcode addr
Optional output parameter that specifies where the system is to store the return code. The return code is also in GPR 15.
IWMMABNL Macro

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain the return code.

,RSNCODE=rsncode addr
Optional output parameter that specifies where the system is to store the reason code. The reason code is also in GPR 0.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain the reason code (if any).

ABEND Codes

None.

Return and Reason Codes

When IWMMABNL macro returns control to your program, GPR 15 contains a return code. When the return code is non-zero, then GPR 0 contains a reason code.

<table>
<thead>
<tr>
<th>Hexadecimal Return Code</th>
<th>Hexadecimal Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td></td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None.</td>
</tr>
<tr>
<td>04</td>
<td>0402</td>
<td>Meaning: Warning. Input monitoring token indicates no monitoring environment was established.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None.</td>
</tr>
<tr>
<td>08</td>
<td>0820</td>
<td>Meaning: Program error. The monitoring environment does not pass short form verification.</td>
</tr>
</tbody>
</table>

Example

To record an abnormal event that has occurred for a work request associated with a monitoring token defined in the field MONTKN1, specify:

IWMMABNL ABNORMAL=(R7),
 MONTKN=MONTKN1,
 MONEVKKEY=PSWKEY,
 MONENV=NOSWITCH,
 RETCODE=RCODE,RSNCODE=RSN

No address space switch is required, so you can specify MONENV=NOSWITCH.
Chapter 34. IWMMDELE – Deleting the Monitoring Environment

Use this macro to delete the monitoring environment. You should invoke IWMMDELE during address space shutdown processing.

Environment

The requirements for the caller are:

- **Minimum authorization:** Supervisor state, or PKM key 0 - 7.
- **Dispatchable unit mode:** Task or SRB
- **Cross memory mode:** Any PASN, any SASN. HASN must match the HASN when IWM4MCRE was invoked.
- **AMODE:** 31-bit
- **ASC mode:** Primary
- **Interrupt status:** Enabled
- **Locks:** Unlocked, but FRRs may be established.
- **Control parameters:** Control parameters must be in the primary address space.

Programming Requirements

1. You must include the CVT and IWMYCON mapping macros in the calling program.
2. The caller must serialize to prevent any delay monitoring services from being invoked concurrently or subsequently for the environment represented by the monitoring token.
3. Do not invoke IWMMDELE while in a RTM termination routine (resource manager) for the task owning the monitoring environment since MVS will have its own resource cleanup routine and unpredictable results would occur. It is legitimate to use this service while in a recovery routine, however, or in mainline processing.

Restrictions

1. If the key specified on IWM4MCRE was a user key (8-F), then all of the following must be true:
 - Caller must be in non-cross-memory mode (PASN=SASN=HASN). This implies that the current primary must match the primary at the time that IWM4MCRE was invoked.
 - Must be in task mode (not SRB)
 - Current task must match the task at the time that IWM4MCRE was invoked.

Input Register Information

Before issuing the IWMMDELE macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.
Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if the return code in GPR 15 is not 0, otherwise, used</td>
</tr>
<tr>
<td></td>
<td>as a work register by the system.</td>
</tr>
<tr>
<td>1</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14 - 15</td>
<td>Used as a work register by the system.</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
\[\text{main diagram image}\]
```

Parameters

The parameters are explained as follows:

- **.MONTKN=montkn**
 Required input parameter that specifies the monitoring token obtained from IWM4MCRE.

 To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a 32-bit field containing the monitoring token.

- **.RETCODE=retcode addr**
 Optional output parameter that specifies where the system is to store the return code. The return code is also in GPR 15.
To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain the return code.

\[\text{RSNCODE=rsncode addr}\]
Optional output parameter that specifies where the system is to store the reason code. The reason code is also in GPR 0.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain the reason code (if any).

\[\text{MF=S}\]
\[\text{MF=(L,mfctrl,mfattr)}\]
\[\text{MF=(E,mfctrl,COMPLETE)}\]
Use MF=S to specify the standard form, which places parameters into an inline parameter list and invokes the IWM4CON macro service.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require re-entrant code. The list form defines an area of storage that the execute form uses to store the parameters.

Use MF=E to specify the execute form of the macro. Use the execute form with the list form of the macro for applications that require re-entrant code. The execute form stores the parameters into the storage area defined by the list form and generates the macro invocation to transfer control to the service.

\[\text{,mfctrl}\]
Use this output parameter to specify the name of the storage area to contain the parameters.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of the storage area containing the parameter list.

\[\text{,mfattr}\]
Use this input parameter to specify the name of a 1 to 60 character storage area that can contain any value that is valid on an assembler DS pseudo-op. You can use this parameter to force boundary alignment of the parameter list. If you do not code \[mfattr\] the system provides a value of 0D, which forces the parameter on a doubleword boundary.

\[\text{,COMPLETE}\]
Use this input parameter to specify that the system check for required parameters and supply defaults for omitted optional parameter.

ABEND Codes

None.

Return and Reason Codes

When IWMMDELE macro returns control to your program, GPR 15 contains a return code. When the return code is non-zero, then GPR 0 contains a reason code.

<table>
<thead>
<tr>
<th>Hexadecimal Return Code</th>
<th>Hexadecimal Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>04</td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td>04</td>
<td>0401</td>
<td>Meaning: Warning. The system does not support delay monitoring services. This return code is only set when the MVS release is prior to MVS/ESA SP 5.2.</td>
</tr>
<tr>
<td>Hexadecimal Return Code</td>
<td>Hexadecimal Reason Code</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>04</td>
<td>0402</td>
<td>Meaning: Warning. Input monitoring token indicates no monitoring environment was established.</td>
</tr>
<tr>
<td>04</td>
<td>0403</td>
<td>Meaning: Warning. Input monitoring token does not reflect an allocated monitoring environment owned by the current home address space.</td>
</tr>
<tr>
<td>08</td>
<td>0802</td>
<td>Meaning: Program error. Caller is in cross-memory mode while the token was obtained in user key.</td>
</tr>
<tr>
<td>08</td>
<td>0803</td>
<td>Meaning: Program error. Caller is disabled.</td>
</tr>
<tr>
<td>08</td>
<td>0804</td>
<td>Meaning: Program error. Caller is locked.</td>
</tr>
<tr>
<td>08</td>
<td>0805</td>
<td>Meaning: Program error. Input monitoring token reflects a switch continuation.</td>
</tr>
<tr>
<td>08</td>
<td>0806</td>
<td>Meaning: Program error. Input monitoring token reflects a continuation to a dependent monitoring environment.</td>
</tr>
<tr>
<td>08</td>
<td>0808</td>
<td>Meaning: Program error. Input monitoring token reflects a continuation from a parent monitoring environment.</td>
</tr>
<tr>
<td>08</td>
<td>0809</td>
<td>Meaning: Program error. Caller is in SRB mode, while the token was obtained in a user key (8-F).</td>
</tr>
<tr>
<td>08</td>
<td>080A</td>
<td>Meaning: Program error. Current task is not the current owner, while the token was obtained in a user key (8-F).</td>
</tr>
<tr>
<td>08</td>
<td>080B</td>
<td>Meaning: Program error. Error accessing parameter list.</td>
</tr>
<tr>
<td>08</td>
<td>0823</td>
<td>Meaning: Program error. Caller invoked service while dynamic address translation was disabled.</td>
</tr>
<tr>
<td>08</td>
<td>0824</td>
<td>Meaning: Program error. Caller invoked service but was in 24 bit addressing mode.</td>
</tr>
<tr>
<td>08</td>
<td>0825</td>
<td>Meaning: Program error. Caller invoked service but was not in Primary ASC mode.</td>
</tr>
<tr>
<td>08</td>
<td>0826</td>
<td>Meaning: Program error. Caller invoked service while task termination is in progress for the task associated with the owner.</td>
</tr>
<tr>
<td>08</td>
<td>0827</td>
<td>Meaning: Program error. Reserved field in parameter list was non-zero.</td>
</tr>
<tr>
<td>08</td>
<td>0828</td>
<td>Meaning: Program error. Version number in parameter list is not valid.</td>
</tr>
<tr>
<td>08</td>
<td>082A</td>
<td>Meaning: Program error. Input monitor token is related to a parent monitoring environment.</td>
</tr>
</tbody>
</table>

Example

To delete a monitoring environment, where the monitoring token is in register 7, specify:

IWMMDELE MONTKN=(R7),
 RETCODE=RCODE,RSNCODE=RSN
The purpose of this service is to extract information about the monitoring environment which was previously passed through IWM4MINI/IWMMRELA. When IWMMRELA was invoked for a management monitoring environment, owner token, owner data and abnormal conditions are always available. Arrival time, userid and transaction name are only available when IWM4MINI was previously invoked. Arrival time, however, is only available for management monitoring environments.

When the service class token is requested for a management monitoring environment, the value may represent a token from a prior active policy. Furthermore, when the monitoring environment was established via IWMMRELA, the token may be zero, which does not represent a valid service class or report class. IWMWQRY may be used to obtain the service and/or report class name, along with other information about these classes. The SERVCLS keyword is not applicable for report-only monitoring environments. The returned token is zero, which does not represent a valid service class.

The ENCLAVE_TOKEN and ASID keywords are only applicable for report-only monitoring environments.

The EWLM_S_CURCORR keyword should only be specified, if a work unit has been started by IWMMSTRT.

When no output keywords are specified, the service merely checks whether a monitoring environment was established and passes short form checking.

Environment

The requirements for the caller are:

Minimum authorization:	Either problem state or supervisor state. Any PSW key.
Dispatchable unit mode:	Task or SRB
Cross memory mode:	Any PASN, any HASN, any SASN
AMODE:	31-bit
ASC mode:	Primary
Interrupt status:	Enabled for I/O and external interrupts
Locks:	Suspend locks are allowed.
Control parameters:	Control parameters must be in the primary address space.

Programming Requirements

1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSCNOCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
Restrictions

1. Caller is responsible for error recovery.
2. Only limited checking is done against the input monitoring token.
3. If the key specified on IWM4MCRE was a user key (8-F), then the primary addressability must exist to the performance block IWM4MCRE obtained. This condition is satisfied by ensuring that current primary matches primary at the time that IWM4MCRE was invoked. If this service is invoked in a subspace, the condition may be satisfied by ensuring that the performance block is shared with the base space.
4. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for the environment represented by the monitoring token.
5. This macro may only be used on z/OS R2 or higher levels for ENCLAVE_TOKEN and ASID keywords.
6. This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to the PLISTVER parameter description for further information.

Input Register Information

Before issuing the IWMMEXTR macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

```
main diagram

name_IWMMEXTR,MONTKN=montkn,OWNER_TOKEN=owner_token
```
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMESTR macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,**ABNORMAL_COND=abnormal_cond**
an optional output parameter, which contains the current information about abnormal conditions which were either recorded in the input monitoring environment or which were propagated to it via IWMMXFER Function(Return). Multiple conditions may exist.

The mask, Iwmmabnl_Scope_LocalMVS, may be used to determine whether an abnormality which only affects work on the current MVS image was recorded.

The mask, Iwmmabnl_Scope_Sysplex, may be used to determine whether an abnormality which affects work on all MVS images in the sysplex was recorded.

To determine whether a condition was recorded, merely AND the field supplied for ABNORMAL_COND with the relevant mask. The result will be nonzero when the condition is true, zero when the condition is false.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,**ARRIVALTIME=arrivaltime**
An optional output parameter, which contains the work arrival time in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.
IWMMEXTR Macro

,ASID=asid
An optional output parameter, which contains the address space ID. When the monitoring environment is not associated with an address space, the output will be a halfword of binary zeros. This keyword is available on z/OS R2 and higher.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-bit field.

,ENCLAVE_TOKEN=enclave_token
An optional output parameter, which contains the enclave token. When the monitoring environment is not associated with an enclave, the output will be a doubleword of binary zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,EWLM_CHCORR=ewlm_chcorr
An optional output parameter, which contains the cross-platform Enterprise Workload Management (EWLM) correlator of the work request associated with the monitoring environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_PACTKN=ewlm_pactkn
An optional output parameter, which contains the cross-platform Enterprise Workload Management (EWLM) parent correlator token of the work request associated with the monitoring environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_S_CURCORR=ewlm_s_curcorr
An optional output parameter, which contains the current correlator of the work unit started by IWMMSTRT. Normally this correlator is different from the child correlator of the work request created by IWM4MINI.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

MONTKN=montkn
A required input parameter, which contains the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,OWNER_DATA=owner_data
An optional output parameter, which is to receive the data established by the user/owner of the monitoring environment. The format is undefined to MVS. When the monitoring environment is not associated with an OWNER_TOKEN value, the output will be a word of binary zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,OWNER_TOKEN=owner_token
An optional output parameter, which is to receive the token established by the user/owner of the monitoring environment. The format is undefined to MVS. When the monitoring environment is not associated with an OWNER_TOKEN value, the output will be a word of binary zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.
.PLISTVER=IMPLIED_VERSION
_.PLISTVER=MAX
_.PLISTVER=0
_.PLISTVER=1
_.PLISTVER=3
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.
- **0**, which supports all parameters except those specifically referenced in higher versions.
- **1**, which supports both the following parameters and those from version 0:

 TTRACETOKEN

- **2**, which supports both the following parameters and those from version 0 and 1:

 ASID ENCLAVE_TOKEN

- **3**, which supports both the following parameters and those from version 0, 1, and 2:

 EWLM_CHCORR EWLM_PACTKN

- **4**, which supports both the following parameters and those from version 0,1,2 and 3:

 EWLM_S_CURCORR

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0, 1, 2, 3, or 4

_.RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

_.RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.
IWMMEXTR Macro

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SERVCLS=servcls
An optional output parameter, which contains the service class token. When the monitoring environment is not associated with a service class token, the output will be a word of binary zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,TRXNAME=trxname
An optional output parameter, which contains the transaction name. The field will be all blanks when NO_TRXNAME was specified on IWM4MINI.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,TTRACETOKEN=ttracetoken
An optional output parameter, which contains the transaction trace token associated with the work request. The field will be all zero when NO_TTRACETOKEN was specified on IWM4MINI.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,USERID=userid
An optional output parameter, which contains the local userid associated with the work request. The field will be all blanks when NO_USERID was specified on IWM4MINI.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWMMEXTR macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
<td>None required.</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>IwmRetCodeWarning</td>
<td>Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
</tbody>
</table>
Table 43. Return and Reason Codes for the IWMMEXTR Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>xxxx0402</td>
<td>Equate Symbol: IwmRsnCodeNoMonEnv</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Monitoring token indicates that no monitoring environment exists.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx040C</td>
<td>Equate Symbol: IwmRsnCodeMonEnvLacksInfo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Input monitoring environment does not contain the necessary information to return the data requested.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0820</td>
<td>Equate Symbol: IwmRsnCodeBadMonEnv</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Monitoring environment does not pass short form verification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0895</td>
<td>Equate Symbol: IwmRsnCodeEWLMServNotEnabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Service is not enabled because monitoring environment cannot be associated with EWLM work requests.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Specify the parameter EWLM_CHCORR or EWLM_PACTKN only when the monitoring environment is created with IWMMCREA EWLM=YES or the address space is connected with IWMCONN EWLM=YES and the connect token is passed to IWMMCREA when creating the monitoring environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx08AC</td>
<td>Equate Symbol: IwmRsnCodeTranNotStarted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: A work unit has not been started.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Start a work unit by IWMMSTRT macro, before specifying the EWLM_S_CURCORR parameter.</td>
</tr>
</tbody>
</table>
IWMMEXTR Macro
Chapter 36. IWMMNTFY – Notify of Work Execution Completion

The primary purpose of this service is to notify MVS that the execution phase for a work request associated with a monitoring environment has just completed. This may represent the entire work request OR merely a subset of it. An indication is also given as to whether the monitoring environment should be disassociated from the work request or not. When DISASSOCIATE(YES) is specified, this service will render the information associated with the monitoring environment unpredictable. To associate a work request with the monitoring environment following use of DISASSOCIATE(YES), first use Initialize Mode(Reset) or Relate/Transfer.

Environment

The requirements for the caller are:

Minimum authorization: Supervisor state. PSW key must either be 0 or match the value supplied on IWM4CON when a connect token is passed. PSW key must either be 0 or match the value supplied on IWM4MCRE. PSW key must be 0-7. See restrictions below.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: LOCAL lock held

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASKCONST defined in IWMYCON, may be used for this purpose.

Restrictions

1. Caller is responsible for error recovery
2. Though the caller is required to be enabled, this is not checked. Violation of this restriction may cause disabled program checks which would be the responsibility of the caller’s recovery to handle.
3. The monitoring environment must contain the information saved by IWM4MINI, not IWMMRELA.
4. The current PSW key must be 0 or match the key specified on IWM4MCRE provided the latter is a system key (0-7).
IWMMNTFY Macro

5. This service cannot be used for Report-Only Monitoring Environments

6. If the key specified on IWM4MCRE was a user key (8-F), then:
 - PSW key must be 0
 - Current primary must match the primary at the time that IWM4MCRE was invoked. Calling from a subspace is not supported.

7. If a connect token is passed to IWMMNTFY, then:
 - The connect token must be enabled for using the WLM Work Management services (specifying WORK_MANAGER=YES on IWM4CON).
 - If the key specified on IWM4CON was a user key (8-F), then:
 - PSW key must be 0
 - Current primary must match the primary at the time that IWM4CON was invoked. Calling from a subspace is not supported.

8. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for the environment represented by the monitoring token.

9. This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to the PLISTVER parameter description for further information.

Input Register Information

Before issuing the IWMMNTFY macro, the caller must ensure that the following general purpose registers (GPRs) contain the specified information:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>The address of a 72-byte standard save area in the primary address space</td>
</tr>
</tbody>
</table>

Before issuing the IWMMNTFY macro, the caller does not have to place any information into any AR unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMNTFY macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,COMPLETION=YES
,COMPLETION=NO
A required parameter, which indicates whether the (or possibly one of several) major execution phase(s) is(are) now complete.

,COMPLETION=YES
indicates that execution for an entire phase of processing has now completed. Typically IWMMNTFY Completion(Yes) would be issued as a result of the completion of the transaction program for the work request. When a work request is comprised of several (typically cascaded) transaction programs, each would correspond to an invocation of IWMMNTFY Completion(Yes).

The execution time, as given by the difference between the IWMMNTFY ENDTIME value and the Execution start time (established via IWM4MINI), will be added to the running total execution time for the service class. There may still be “output” processing left to perform for the work request, which time would be accounted for via IWMRPT. There may also be operations corresponding to hardening of the database data outside the scope of NOTIFY.
indicates that this invocation of Notify does not correspond to the
completion of an entire execution segment. Instead this invocation of Notify
corresponds to the portion of the work request represented by the
monitoring environment. For example, use Completion(No) when this
portion of processing behaves like a subroutine in the execution phase,
which is therefore a subset of the execution time passed in another
NOTIFY.

The execution time, as given by the difference between the IWMMNTFY
ENDTIME value and the Execution start time (established via IWM4MINI),
will be treated separately from that passed for Completion(Yes), since
otherwise there would be double-counting.

,CONNTKN=conntkn
,CONNTKN=NO_CONNTKN
An optional input parameter, which is returned by IWM4CON. The default is
NO_CONNTKN. indicates that no connect token is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,DISASSOCIATE=YES
,DISASSOCIATE=NO
A required parameter, which indicates whether the work request should be
disassociated from the monitoring environment or not.

,DISASSOCIATE=YES
indicates that the work request should be disassociated from the monitoring
environment.

,DISASSOCIATE=NO
indicates that the work request should not be disassociated from the
monitoring environment.

,ENDTIME=endtime
,ENDTIME=CURRENT
An optional input parameter, which specifies the ending execution time for the
transaction in STCK format. The default is CURRENT. indicates that the current
time should be used.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64
bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.
IWMMNTFY Macro

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,,list addr
 The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,,attr
 An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,,COMPLETE
 Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,,MONTKN=montkn
 A required input parameter, which contains the delay monitoring token

 To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,,PLISTVER=IMPLIED_VERSION
,,PLISTVER=MAX
,,PLISTVER=0
,,PLISTVER=1
 An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:
 • IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
 • MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.
 • 0, which supports all parameters except those specifically referenced in higher versions.
 • 1, which supports both the following parameters and those from version 0:

WORKREQ_STA

 To code: Specify one of the following:
 • IMPLIED_VERSION
 • MAX
 • A decimal value of 0, or 1
IWMMNTFY Macro

,RETCODE=retcode
 An optional output parameter into which the return code is to be copied from
 GPR 15.
 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
 An optional output parameter into which the reason code is to be copied from
 GPR 0.
 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SYSEVPL=sysevpl
 When TRAXFRPT=YES is specified, a required input parameter, which is the
 fully initialized SYSEVENT parameter list, as mapped by IHATRBPL.
 To code: Specify the RS-type address, or address in register (2)-(12), of a
 40-character field.

TRAXFRPT=NO
TRAXFRPT=YES
 An optional parameter, which indicated prior to z/OS R3 whether a SYSEVENT
 TRAXFRPT should be issued when the system was in compatibility mode. This
 has become irrelevant. However, for compatibility reasons TRAXFRPT can still
 be set but has no effect. The default is TRAXFRPT=NO.
 TRAXFRPT=NO
 indicates that no SYSEVENT TRAXFRPT should be issued.
 TRAXFRPT=YES
 indicated prior to z/OS R3 that a SYSEVENT TRAXFRPT should be issued
 when the system was in compatibility mode. This has become irrelevant.
 However, for compatibility reasons TRAXFRPT can still be set but has no
 effect.

,WORKREQ_STA=workreq_sta
,WORKREQ_STA=IWMEWLMARMSTATUSNONE
 When DISASSOCIATE=YES is specified, an optional input parameter, which
 contains the completion status code of the work request. Available completion
 status codes (defined in macro IWMYCON) are the following:
 • IwmEwlmArmStatusGood(0)
 • IwmEwlmArmStatusAborted(1)
 • IwmEwlmArmStatusFailed(2)
 • IwmEwlmArmStatusUnknown(3)
 These codes correspond to status codes in the OpenGroup ARM 4.0 Standard.
 For further information about the meaning of the status codes, refer to the ARM
 4.0 Standard at http://www.opengroup.org/management/arm. The default is
 IWMEWLMARMSTATUSNONE. This indicates that the COMPLETION
 parameter value and internal information in the monitoring environment are
 examined to determine the status of the work request. If COMPLETION=YES is
 specified and no abnormal event was recorded for the monitoring environment
 with the IWMMABNL service, the completion status IwmEwlmArmStatusGood is
 reported to EWLM. If an abnormal event was reported via IWMMABNL or
 COMPLETION=NO was specified, the completion status
 IwmEwlmArmStatusFailed is reported to EWLM.
 To code: Specify the RS-type address, or address in register (2)-(12), of a
 fullword field.
ABEND Codes

None.

Return and Reason Codes

When the IWMMNTFY macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 44. Return and Reason Codes for the IWMMNTFY Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeWarning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0401</td>
<td>Equate Symbol: IwmRsnCodeNoWLM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: System does not support delay monitoring services. This return code is only set when the MVS release is prior to MVS/ESA SP5.1.0.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0404</td>
<td>Equate Symbol: IwmRsnCodeCompatNoSyseventRqd</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Reserved</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0405</td>
<td>Equate Symbol: IwmRsnCodeGoalNoMonEnv</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: System is in goal mode but the input monitoring token indicates no monitoring environment was established, hence MVS did not receive the information.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx080C</td>
<td>Equate Symbol: IwmRsnCodeMonEnvLacksData</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Input monitoring environment does not contain the necessary information.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Ensure that the monitoring environment was established with the necessary information.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx080F</td>
<td>Equate Symbol: IwmRsnCodeNoUserKeyNtfy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: User key routine not allowed to issue Notify.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function in user key.</td>
<td></td>
</tr>
</tbody>
</table>
Table 44. Return and Reason Codes for the IWMMNTFY Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx0820 | | **Equate Symbol**: IwmRsnCodeBadMonEnv
Meaning: Input monitoring environment does not pass short form validity checking.
Action: Check for possible storage overlay. |
| 8 | xxxx0821 | | **Equate Symbol**: IwmRsnCodeBadConn
Meaning: Input connect token does not pass validity checking.
Action: Check for possible storage overlay. |
| 8 | xxxx082D | | **Equate Symbol**: IwmRsnCodeExStTimeGTEndTime
Meaning: Input execution start time later than end time.
Action: Check for possible storage overlay of the parameter list or variable. |
| 8 | xxxx0840 | | **Equate Symbol**: IwmRsnCodeServiceNotEnabled
Meaning: Caller’s space connection is not enabled for this service.
Action: Avoid requesting this function under the input connection. IWM4CON options must be specified previously to enable this service. |
| 8 | xxxx087E | | **Equate Symbol**: IwmRsnCodeRoMonEnv
Meaning: Input monitoring environment is Report-Only.
Action: Avoid requesting this function for Report-Only PBs. |
| 8 | xxxx0895 | | **Equate Symbol**: IwmRsnCodeEWLMServNotEnabled
Meaning: Service is not enabled because monitoring environment can not be associated with EWLM work requests.
Action: Specify the parameter WORKREQ_STA only when the monitoring environment is created with IWMMCREA EWLM=YES or the address space is connected with IWMCNN EWLM=YES and the connect token is passed to IWMMCREA when creating the monitoring environment. |
| 8 | xxxx0897 | | **Equate Symbol**: IwmRsnCodeTranStatusInvalid
Meaning: Passed work request completion status is not valid.
Action: Check the EWLM ARM interface specification for valid completion status values. |
| C | — | | **Equate Symbol**: IwmRetCodeEnvError
Meaning: Environmental error. |
Table 44. Return and Reason Codes for the IWMMNTFY Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
</table>
| C | xxxx0C02 | Equate Symbol: IwmRsnCodeReportingSusc | **Meaning:** Reserved SYSEVENT TRAXFRPT invoked, but reporting is temporarily suspended for one of the following reasons:
• RMF workload activity reporting is not active
• There is no installation control specification (IEAICSxx parmlib member with RPGN specified for some subsystem other than TSO) in effect. No data reported but a later reissue could be successful. |
| | | | **Action:** Invoke the function when the conditions are alleviated. | |
| C | xxxx0C03 | Equate Symbol: IwmRsnCodeSyseventNoWorkElt | **Meaning:** SYSEVENT TRAXFRPT invoked, but no work element was available to save the input information. | |
| | | | **Action:** Invoke the function when the conditions are alleviated. This condition may be due to a common storage shortage condition. | |
| C | xxxx0C04 | Equate Symbol: IwmRsnCodeNtfyNoWorkElt | **Meaning:** Notify routine invoked, but no work element was available to save the input information. | |
| | | | **Action:** Invoke the function when the conditions are alleviated. This condition may be due to a common storage shortage condition. | |
| C | xxxx0C06 | Equate Symbol: IwmRsnCodeNoEndTime | **Meaning:** No end time was supplied to the service and STCK gave a non-zero condition code. | |
| | | | **Action:** No action required. | |
IWMMNTFY Macro
Chapter 37. IWMMRELA – Relate Monitoring Environment Service

The calling subsystem work manager can use IWMMRELA to relate two different monitoring environments that are associated with the same work request. IWMMRELA initializes a monitoring environment, called a dependent monitoring environment, and associates it with a previously established monitoring environment, called a parent monitoring environment.

You can use IWMMRELA when you do not have direct access to the information required by IWM4MINI. If the caller has the monitoring token for a parent monitoring environment that is previously established for the same work request, you should provide it in the PARENTMONTKN parameter. If the caller does not pass the parent monitoring token, you can use PARENTP=FINDACTIVE to specify that the parent monitoring environment is the active monitoring environment owned by the home address space and which is associated with the TCB provided via PARENTTCB.

IWMMRELA must be used together with IWMMXFER to ensure that the dependent monitoring environment is a valid representation for the work request.

Optionally, with this macro, you can use the OWNER_TOKEN and OWNER_DATA parameters to use the monitoring environment for your own purposes. You could use the token/data to keep your own information.

Environment

The requirements for the caller are:

Minimum authorization: Problem state, or supervisor state. PSW key must either be 0, or match the value specified on IWM4MCRE.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Unlocked when PARENTP=FINDACTIVE is specified, otherwise, no restrictions.

Control parameters: Control parameters must be in the primary address space, except the TCB, if specified, must reside in current home address space.

Programming Requirements

1. You must include the IWMYCON mapping macro in the calling program.
2. If the key specified on IWM4MCRE for the input MONTKN was a user key (8-F), then the following must be true:
 • If you specify PARENTP=YES, then:
 – Primary addressability must exist to the performance block IWM4MCRE obtained (represented by the input MONTKN). You could do this by ensuring that current primary matches primary at the time that
IWMMRELA Macro

IWMMRELA Macro

IWMM4MCRE was invoked. If this service is invoked in a subspace, the condition may be satisfied by ensuring that the performance block is shared with the base space.

- You cannot specify the list form of this macro. With PARENTP=YES, IWMMRELA produces an inline expansion rather than an out-of-line service, so you do not need a parameter list. Registers 0, 1, 14, and 15 are not preserved across the expansion.
 - If you specify PARENTP=FINDACTIVE, then the caller must be in non-cross-memory mode (PASN=SASN=SASN). That is, the current primary (and home) must match the primary (and home) at the time that IWMM4MCRE was invoked.

3. If the key specified on IWMM4MCRE for the parent environment was a user key (8-F), then either primary or secondary addressability must exist to the monitoring environment for the parent environment.

4. Both monitoring environments must be established on the same MVS image.

5. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for the monitoring environment.

6. When PARENTP=YES, the caller must provide recovery.

Restrictions

None.

Input Register Information

Before issuing the IWMMRELA macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR 15 return code is non-zero.</td>
</tr>
<tr>
<td>1</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14 - 15</td>
<td>Used as a work register by the system.</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.
Parameters

The parameters are explained as follows:

name

An optional symbol, starting in column 1, that is the name on the IWMMRELA macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,DISPTYPE=TCB,DISPTYPE=SRB

When FUNCTION=CREATE is specified, a required parameter, which describes the dispatchable units which participate in processing work requests associated with the monitoring environment represented by the monitoring token (MONTKN).

,DISPTYPE=TCB

indicates that work requests run in TCB mode under a TCB within the current home address space. Note that in cross-memory mode, this may be different from the current primary address space.

,DISPTYPE=SRB

Chapter 37. IWMMRELA – Relate Monitoring Environment Service 331
indicates that work requests run in SRB mode within the current home address space.

FUNCTION=CREATE
FUNCTION=DELETE

A required parameter, which indicates whether the relationship is being established or inactivated.

FUNCTION=CREATE
indicates that the relationship is being established.

FUNCTION=DELETE
which indicates that the relationship is being inactivated.

Note that this produces an inline expansion rather than an out-of-line service, so that no parameter list is needed. Therefore, the MF keyword is not supported when this option is specified. Registers 0, 1, 14, and 15 are not preserved across the expansion.

`,MF=S`
`,MF=(L,list addr)`
`,MF=(L,list addr,attr)`
`,MF=(L,list addr,0D)`
`,MF=(E,list addr)`
`,MF=(E,list addr,COMPLETE)`

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

`,list addr`
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

`,attr`
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code `attr`, the system provides a value of 0D.

`,COMPLETE`
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

`,MONTKN=montkn`
A required input parameter, which contains the delay monitoring token for the dependent environment.
To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

.OWNER_DATA=owner_data

.OWNER_DATA=NO_OWNER_DATA

When FUNCTION=CREATE is specified, an optional input parameter, which contains data maintained by the user or owner of the monitoring environment. The format is undefined to MVS. The default is NO_OWNER_DATA which indicates that no owner data is provided.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

.OWNER_TOKEN=owner_token

.OWNER_TOKEN=NO_OWNER_TOKEN

When FUNCTION=CREATE is specified, an optional input parameter, which contains a token maintained by the user or owner of the monitoring environment. The format is undefined to MVS. The default is NO_OWNER_TOKEN which indicates that no owner token is provided on this service.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

.PARENTENV=NOSWITCH

.PARENTENV=SECONDARY

.PARENTENV=HOME

When PARENTP=YES and FUNCTION=CREATE are specified, a required parameter, which describes whether a space switch is needed to access the parent monitoring environment.

.PARENTENV=NOSWITCH

indicates that NO space switch is needed to access the parent monitoring environment. This would be appropriate if the parent monitoring environment was established (by IWMMCRE) to be used by routines in a specific system key or if it was established to be used in a specific user key in the current primary.

.PARENTENV=SECONDARY

indicates that the parent monitoring environment was established in current secondary (for use by a specific user key).

.PARENTENV=HOME

indicates that the parent monitoring environment was established in current home (for use by a specific user key). Use of this option requires that the program must reside in the MVS common area.

.PARENTMONTKEN=parentmontkn

When PARENTP=YES and FUNCTION=CREATE are specified, a required input parameter, which contains the delay monitoring token for the parent environment, for example, the monitoring environment which was established earlier and contains the characteristics to be inherited.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

.PARENTP=YES

.PARENTP=FINDACTIVE

When FUNCTION=CREATE is specified, a required parameter, which describes whether the parent monitoring environment is known or not.
IWMMRELA Macro

,PARENTP=YES

indicates that the parent monitoring environment is known.

Note that this produces an inline expansion rather than an out-of-line service, so that no parameter list is needed. Therefore, the MF keyword is not supported when this option is specified. Registers 0, 1, 14, and 15 are not preserved across the expansion.

,PARENTP=FINDACTIVE

indicates that the parent monitoring environment is unknown, but requests that the input monitoring environment be related to the active monitoring environment owned by the current HOME address space and which is associated with the TCB specified by PARENTTCB and which has no further continuations to other monitoring environments. When no such monitoring environment exists, the input monitoring environment will be related to the current home address space.

,PARENTTCB=parenttcb

When PARENTP=FINDACTIVE and FUNCTION=CREATE are specified, a required input parameter, which defines the TCB owned by the current home address space associated with a monitoring environment via Initialize/Relate Disptype=TCB,TCB=. This TCB need not be the owner of the monitoring environment. Note that this name is not the pointer to the TCB, but the name of the data area containing the TCB. A typical invocation might replace xTCB with TCB.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- 0, if you use the currently available parameters.

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0
IWMMRELA Macro

.RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

.RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

.SAMEDU=YES
.SAMEDU=NO
When DISPTYPE=SRB and FUNCTION=CREATE are specified, a required
parameter, which describes whether the dependent monitoring environment
associated with MONTKN is running under the same dispatchable unit as the
parent. In that case, it would behave as a “subroutine” and execute on the
same processor (CP, a.k.a. CPU) as the parent environment.

.SAMEDU=YES
indicates that the work request runs as a subroutine of the parent.
YES may not be specified when PARENTP(FINDACTIVE) is coded.

.SAMEDU=NO
indicates that the work request runs in SRB mode and is independent of the
parent dispatchable unit.

.TCB=tcb
When DISPTYPE=TCB and FUNCTION=CREATE are specified, a required
input parameter, which defines the TCB within the current home address space
which will serve the work request. Note that this name is not the pointer to the
TCB, but the name of the data area containing the TCB. A typical invocation
might replace xTCB with TCB.

Generally, the input TCB specified should be the TCB under which the work
request (e.g. transaction program) runs and under which the delay information
is recorded (in spite of the fact that task switches may occur).

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMMRELA macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded
 RSNODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.
<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0401</td>
<td>IwmRsnCodeNoWLM</td>
<td>System does not support delay monitoring services. This return code is only set when the MVS release is prior to MVS/ESA SP5.1.0.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0402</td>
<td>IwmRsnCodeNoMonEnv</td>
<td>Input monitoring token indicates no monitoring environment was established.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0406</td>
<td>IwmRsnCodeNoParEnv</td>
<td>No parent monitoring environment was established. The input dependent monitoring environment is now related to the Home address space.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0802</td>
<td>IwmRsnCodeXmemUserKeyTkn</td>
<td>Caller is in cross-memory mode while the token was obtained in user key.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
<td>Caller is disabled</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>IwmRsnCodeLocked</td>
<td>Caller is locked</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>IwmRsnCodeBadPl</td>
<td>Error accessing parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx081A</td>
<td>IwmRsnCodeCallerNotAuthDepEnv</td>
<td>Caller is not authorized to update the dependent monitoring environment</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0820</td>
<td>IwmRsnCodeBadMonEnv</td>
<td>Monitoring environment does not pass verification.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0822</td>
<td>IwmRsnCodeBadParEnv</td>
<td>Parent monitoring environment does not pass verification.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>IwmRsnCodeDatoff</td>
<td>Caller invoked service while DATOFF</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not DAT on Primary ASC mod</td>
</tr>
</tbody>
</table>
Table 45. Return and Reason Codes for the IWMMRELA Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>Equate Symbol: IwmRsnCodeRsvdNot0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Reserved field in parameter list was non-zero</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Version number in parameter list is not valid.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0829</td>
<td>Equate Symbol: IwmRsnCodeBadOptions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Parameter list omits required parameters or supplies mutually exclusive parameters or provides data associated with options not selected.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx087E</td>
<td>Equate Symbol: IwmRsnCodeRoMonEnv</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Monitoring environment is report only</td>
</tr>
<tr>
<td>8</td>
<td>xxxx087F</td>
<td>Equate Symbol: IwmRsnCodeRoParEnv</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Parent monitoring environment is report only</td>
</tr>
<tr>
<td>8</td>
<td>xxxx08A4</td>
<td>Equate Symbol: IwmRsnCodeBPParEnv</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Parent monitoring environment is buffer pool management only</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Component error</td>
</tr>
</tbody>
</table>

Example

To relate two monitoring environments where an address space switch is not required, specify:

```
IWMMRELA FUNCTION=CREATE, MONTKN=(R7), PARENTP=YES,
    PARENTMONTKN=(R8), PARENTENV=NOSWITCH,
    DISPTYPE=SRB, SAMEDI=YES,
    RETCODE=RCODE, RSNCODE=RSN
```
IWMMRELA Macro
Chapter 38. IWMMSTOP – Stopping a Work Unit

The IWMMSTOP service allows to stop a work unit which has been started by IWMMSTRT. A work unit started by IWM4MINI is not affected by this service. The work unit is unblocked, if it is blocked at the time you issue this macro.

Environment

The requirements for the caller are:

- **Minimum authorization:** Supervisor state or program key mask (PKM) allowing keys 0-7.
- **Dispatchable unit mode:** Task or SRB
- **Cross memory mode:** Any PASN, any HASN, any SASN
- **AMODE:** 31-bit
- **ASC mode:** Primary
- **Interrupt status:** Enabled for I/O and external interrupts
- **Locks:** No restrictions.
- **Control parameters:** Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of bits 0-31 of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK CONST defined in IWMYCON, may be used for this purpose.

Restrictions

- This macro may not be used before the completion of WLM address space initialization
- The caller must have issued the IWMMSTRT macro successfully.
- The caller is responsible for error recovery.
- The current PSW key must be 0 or match the key specified on IWM4MCRE provided the latter is a system key (0-7).
- The caller must serialize to prevent any delay monitoring services from being invoked concurrently for the environment represented by the monitoring token.

Input Register Information

Before issuing the IWMMSTOP macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.
Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if the return code in GPR 15 is not 0, otherwise, used as a work register by the system. The reason code is stored in bits 0-31.</td>
</tr>
<tr>
<td>1</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged.</td>
</tr>
<tr>
<td>14</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>15</td>
<td>Return code is stored in bits 0-31.</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14 - 15</td>
<td>Used as work registers by the system.</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

The syntax of the IWMMSTOP macro is as follows:

```
main diagram

name
                                           END_FLOW=NO
                                           END_FLOW=YES

MESSAGES_SENT=NO_MESSAGES_SENT

MESSAGES_SENT=messages_sent

EWLM_RCVD_CORR=NO_EWLM_RCVD_CORR

EWLM_RCVD_CORR=ewlm_rcvd_corr

AFTER_STRT=NO

AFTER_STRT=YES

STATUS=IWMEWLMARMSTATUSGOOD

STATUS=status

RETCODE=retcode

RSNCODE=rsncode
```
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMSTOP macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,AFTER_STMT=NO, AFTER_STMT=YES
When EWLM_RCVD_CORR=ewlm_rcvd_corr is specified, an optional parameter, which indicates the moment the correlator has been received. The default is AFTER_STMT=NO.

,AFTER_STMT=NO
indicates that the correlator has been received before this work unit has been started by IWMMSTRT.

,AFTER_STMT=YES
indicates that the correlator has arrived within the scope of this work unit that means after issuing IWMMSTRT.

,END_FLOW=NO, END_FLOW=YES
An optional parameter, which indicates the completion of a message flow. The default is END_FLOW=NO.

,END_FLOW=NO
indicates that a message flow has not completed.

,END_FLOW=YES
indicates that a message flow has completed. Specify END_FLOW=YES, if you know that the running work unit is the last one in a work unit flow. This indication cannot be cleared, if it has been set.

,EWLM_RCVD_CORR=ewlm_rcvd_corr, EWLM_RCVD_CORR=NO_EWLM_RCVD_CORR
An optional input parameter, which contains a cross-platform Enterprise Workload Management (EWLM) correlator received from another application. Workflows often have multiple parent work units that must complete before a new work unit can be initiated. You can pass only one parent correlator to the IWMMSTRT macro and one additional parent correlator to the IWMMSTOP macro. You have to issue the IWMMPUPD macro, if more than two parent correlators should be assigned to a work unit. This correlator is ignored, if it is an unknown EWLM correlator. The default is NO_EWLM_RCVD_CORR.

indicates that parameter EWLM_RCVD_CORR has not been specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.
IWMMSTOP Macro

,MESSAGES_SENT=messages_sent
,MESSAGES_SENT=NO_MESSAGES_SENT
An optional input parameter, which contains the number of messages sent to
other applications. This value is added to the total messages_sent value of the
work unit. The total messages_sent value should not exceed 32767. The default
is NO_MESSAGES_SENT, indicates that parameter MESSAGES_SEND has
not been specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

MONTKN=montkn
A required input parameter, which contains the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
IWMMSTOP Macro

using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, if you use the currently available parameters.

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0

RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

STATUS=status

STATUS=IWMEWLMARMSTATUSGOOD

An optional input parameter, which contains the completion status code of the work unit. Available completion status codes (defined in macro IWMYCON) are:

- *IWmEwlArmStatusGood(0),
- *IWmEwlArmStatusAborted(1),
- *IWmEwlArmStatusFailed(2) or
- *IWmEwlArmStatusUnknown(3)

The codes above correspond to status codes in the OpenGroup ARM 4.0 Standard. For an explanation of the status codes, refer to the ARM 4.0 Standard at http://www.opengroup.org/management/arm. The default is IWMEWLMARMSTATUSGOOD, which indicates that the work unit completed successfully.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

ABEND Codes

None.
Return and Reason Codes

When the IWMMSTOP macro returns control to your program:
- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
<td>Meaning: Successful completion. Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0402</td>
<td>Equate Symbol: IwmRsnCodeNoMonEnv</td>
<td>Meaning: The input monitoring token indicates no monitoring environment was established. Action: Establish a monitoring environment by macro IWM4MCRE.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0441</td>
<td>Equate Symbol: IwmRsnCodeTooManyMsgCorrs</td>
<td>Meaning: The correlator passed to EWLM_RCVD_CORR is ignored, since the maximum number of supported correlators has been reached. Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0443</td>
<td>Equate Symbol: IwmRsnCodeTooManyMsgsSent</td>
<td>Meaning: The value passed to MESSAGES_SENT is ignored, since the maximum number of messages sent is reached. Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0444</td>
<td>Equate Symbol: IwmRsnCodeTooManyMsgsReceived</td>
<td>Meaning: The EWLM_RCVD_CORR parameter has been specified too often. The correlated counter is not increased. Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0897</td>
<td>Equate Symbol: IwmRsnCodeTranStatusInvalid</td>
<td>Meaning: An unsupported value has been passed to the STATUS parameter. Action: Specify a supported value.</td>
</tr>
</tbody>
</table>
Table 46. Return and Reason Codes for the IWMMSTOP Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx08AC</td>
<td>Equate Symbol: iwrmRsnCodeTranNotStarted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: No work unit has been started by IWMMSTRT for the specified monitoring environment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Start a work unit by IWMMSTRT macro, before issuing this macro.</td>
</tr>
</tbody>
</table>
IWMMSTOP Macro
Chapter 39. IWMMSTRT – Indicating the Start of a Work Unit

This service indicates that a work unit is beginning execution. The work unit runs under the specified monitoring environment, but is reported to EWLM completely independently from a potentially running transaction on the same monitoring environment that is defined by IWM4MINI and IWMRPT/IWMMNTFY calls. You can use the set of services IWMMSTRT, IWMMSTOP, IWMMUPD to provide data for “mini work units” running within a long-running transaction. In addition, a work unit started by IWMMSTRT can participate in asynchronous and synchronous work unit flows.

Environment

The requirements for the caller are:

- **Minimum authorization:** Supervisor state or program key mask (PKM) allowing keys 0-7.
- **Dispatchable unit mode:** Task or SRB
- **Cross memory mode:** Any PASN, any HASN, any SASN
- **AMODE:** 31-bit
- **ASC mode:** Primary
- **Interrupt status:** Enabled for I/O and external interrupts
- **Locks:** No restrictions.
- **Control parameters:** Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. You must include the IWMYCON and CVT mapping macros in the calling program.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of bits 0-31 of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

1. This macro may not be used before the completion of WLM address space initialization.
2. The caller must have issued the IWM4MCRE macro successfully and the created delay monitoring environment must be enabled for EWLM support. This means the delay monitoring environment must be created by one of the following ways:
 - IWM4CONN EWLM=YES ... and IWM4MCRE SUBSYSP=CONNECT ... OR
 - IWM4MCRE SUBSYSP=VALUE EWLM=YES ...
3. The caller is responsible for error recovery.
4. The current PSW key must be 0 or match the key specified on IWM4MCRE provided the latter is a system key (0-7).
5. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for the environment represented by the monitoring token.

Input Register Information

Before issuing the IWMMSTRT macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if the return code in GPR 15 is not 0, otherwise, used as a work register by the system. The reason code is stored in bits 0-31.</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>15</td>
<td>Return code stored in bits 0-31</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
<td>Used as work registers by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14 - 15</td>
<td>Used as work registers by the system.</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

The syntax of the IWMMSTRT macro is as follows:

```
main diagram
```

```
name IWMMSTRT MONTKN=montkn,END_FLOW=NO,MSG_RECEIVED=NO
,END_FLOW=YES,MSG_RECEIVED=YES
,ARRIVALTIME=NO_ARRIVALTIME
,ARRIVALTIME=arrivaltime
```
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMSTRT macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,ARRIVALTIME=arrivaltime
,ARRIVALTIME=NO_ARRIVALTIME
An optional input parameter, which contains a timestamp in STCK format. This timestamp is subtracted from the current timestamp and assigned as queued time to the work unit. For example, you may use this parameter, if the work unit is started by receipt of a message from a queue and you know the put time (the timestamp when the message has been put onto the queue). The default is NO_ARRIVALTIME which indicates that parameter ARRIVALTIME has not been specified.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,END_FLOW=NO
,END_FLOW=YES
An optional parameter, which indicates the completion of a message flow. The default is END_FLOW=NO.

,END_FLOW=NO
indicates that a message flow has not completed.

,END_FLOW=YES
indicates that a message flow has completed. Specify END_FLOW=YES, if you know that this work unit is the last one in a work unit flow. This indication cannot be cleared, if it has been set.

,EWLM_RCVD_CORR=ewlm_rcvd_corr
,EWLM_RCVD_CORR=NO_EWLM_RCVD_CORR
When EWLM_S_CURCORR=ewlm_s_curcorr is specified, an optional input parameter, which contains a cross platform Enterprise Workload Management (EWLM) correlator received from another application. Normally this is a received correlator which has the independent flag and the asynchronous flag set. It
IWMMSTRT Macro

should not be passed to the EWLM_S_PACORR or the EWLM_S_CURCORR parameter. If you pass this correlator to one of them then the started work unit is not reclassified and runs under the classification of this correlator. When you receive a correlator with the independent flag set, you should:

1. Reclassify the work unit by issuing IWMCLSFY EWLM_CORR=r_corr
 EWLM_CHCORR=c_corr. r_corr is the received correlator and c_corr is the correlator created by IWMCLSFY.

2. Start the work unit by issuing IWMMSTRT EWLM_S_CURCORR=c_corr
 EWLM_RCVD_CORR=r_corr.

The default is NO_EWLM_RCVD_CORR which indicates that parameter EWLM_RCVD_CORR has not been specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_S_CURCORR=ewlm_s_curcorr
A required input parameter which contains a cross-platform Enterprise Workload Management (EWLM) correlator for the current application. The correlator passed to this parameter is used as the current correlator of this work unit. It has usually been created by means of a previous IWMCLSFY call with the EWLM_CHCORR parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_S_PACORR=ewlm_s_pacorr
A required input parameter which contains a cross-platform Enterprise Workload Management (EWLM) parent correlator received from another application.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).
IWMMSTRT Macro

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

MONTKN=montkn
A required input parameter, which contains the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,MSG_RECEIVED=NO
,MSG_RECEIVED=YES
An optional parameter, which indicates whether this work unit has been started as a result of a receipt of a message. The default is MSG_RECEIVED=NO.

,MSG_RECEIVED=NO
indicates that this work unit has not been started by receipt of a message.

,MSG_RECEIVED=YES
indicates that this work unit has been started as a result of a receipt of a message.

,PLISTVER=IMPLIED VERSION
,PLISTVER=MAX
,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

• IMPLIED VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:

• IMPLIED VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.
IWMMSTRT Macro

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

.RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes

None.

Return and Reason Codes

When the IWMMSTRT macro returns control to your program:
• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code
RSNCODE) contains a reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
<td>Meaning: Successful completion.</td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0402</td>
<td>Equate Symbol: IwmRsnCodeNoMonEnv</td>
<td>Meaning: The input monitoring token indicates no monitoring environment was established.</td>
<td>Action: Establish a monitoring environment by macro IWM4MCRE.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0442</td>
<td>Equate Symbol: IwmRsnCodeCorrelatorUnknown</td>
<td>Meaning: A unknown correlator has been passed to the EWLM_RCVD_CORR parameter. It is ignored.</td>
<td>Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
<td></td>
</tr>
</tbody>
</table>
Table 47. Return and Reason Codes for the IWMMSTRT Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0894</td>
<td>IwmRsnCodeInvalidEwlmCorr</td>
<td>An unknown EWLM correlator has been passed to the EWLM_S_PACORR or EWLM_S_CURCORR parameter.</td>
<td>Specify a supported correlator. You can create a supported correlator by macro IWMCLSFY.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0895</td>
<td>IwmRsnCodeEWLMServNotEnabled</td>
<td>The EWLM service was not enabled for a delay monitoring environment.</td>
<td>Create a monitoring environment with EWLM=YES (either on macro IWM4CON or macro IWM4MCRE).</td>
</tr>
<tr>
<td>8</td>
<td>xxxx08AD</td>
<td>IwmRsnCodeAlreadyActive</td>
<td>A work unit started by IWMMSTRT is already active.</td>
<td>Stop the active work unit by macro IWMMSTOP before creating a new one.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx08AF</td>
<td>IwmRsnCodeArrTimeGTStartTime</td>
<td>The arrivaltime passed is greater than the current timestamp.</td>
<td>Check the format of the passed arrivaltime.</td>
</tr>
</tbody>
</table>

Example

To indicate that the current monitoring environment continues only once elsewhere in the sysplex, specify:

IWMMSTRT FUNCTION=CONTINUE,WHERE=SYSPLEX,MONTKN=(R7), RETCODE=RCODE,RSNCODE=RSN
The IWMMSWCH macro allows the caller to indicate that the delay information for a work request may now also reside in another monitoring environment which is not related (via IWMMRELA) to the current environment. You can also use IWMMSWCH to indicate that there is no further information for the current work request beyond the current monitoring environment.

The scope of this service is restricted to the input monitoring environment; no other monitoring environments are accessed or otherwise involved.

Environment

The requirements for the caller are:

Minimum authorization: Problem state, or supervisor state. PSW key must either be 0, or match the value specified on IWM4MCRE.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Suspend locks are allowed, as are FRRs

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

1. You must include the IWMYCON and CVT mapping macros in the calling program.
2. The caller is responsible for error recovery.
3. If you specify FUNCTION=CONTINUE, you cannot specify the list form of this macro. With FUNCTION=CONTINUE, IWMMSWCH produces an inline expansion rather than an out-of-line service, so you do not need a parameter list. Registers 0, 1, 14, and 15 are not preserved across the expansion.
4. If the key specified on IWM4MCRE was a user key (8 - F) then primary addressability must exist to the monitoring environment IWM4MCRE obtained. You could do this by making sure the primary address space matches the primary at the time IWM4MCRE was invoked.
5. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for the monitoring environment.

Restrictions

You cannot use FUNCTION=CONTINUE when there is an outstanding continuation established by the IWMMXFMR macro FUNCTION=CONTINUE.

Input Register Information

Before issuing the IWMMSWCH macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.
IWMMSWCH Macro

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if the return code in GPR 15 is not 0, otherwise, used as a work register by the system.</td>
</tr>
<tr>
<td>1</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14 - 15</td>
<td>Used as a work register by the system.</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

The syntax of the IWMMSWCH macro is as follows:

main diagram

\[
\text{main diagram}\]

parameters-1

\[
\text{parameters-1}\]
The parameters are explained as follows:

.FUNCTION=CONTINUE

Required input parameter that specifies where there may be one or more monitoring environments which represent current information about the work request. FUNCTION indicates further continuations, and does not deal with any parent environment that may exist.

Use FUNCTION=CONTINUE to indicate that the current monitoring environment continues elsewhere.

If you specify FUNCTION=CONTINUE, you cannot specify the MF keyword. With FUNCTION=CONTINUE, IWMMSWCH produces an inline expansion rather than an out-of-line service, so that you do not need a parameter list. Registers 0, 1, 14, and 15 are not preserved across the expansion.

.FUNCTION=RETURN

Use FUNCTION=RETURN to indicate that continuations of the current monitoring environment have completed. Registers 0, 1, 14, and 15 are not preserved across the expansion.

.RUNTIME_VER=SHORT_FORM

Optional parameter that specifies what level of runtime verification will be performed.

RUNTIME_VER=SHORT_FORM indicates that checking should verify that a monitoring environment is established and passes a short form of verification prior to being used.

RUNTIME_VER=MINIMAL indicates that checking should assume that if a monitoring environment is created, it is valid and useable.

.WHERE=LOCALMVS

Required input parameter for FUNCTION=CONTINUE that specifies where there may be another monitoring environment.

Use WHERE=LOCALMVS to indicate that another monitoring environment may exist on the current MVS.

Use WHERE=SYSPLEX to indicate that another monitoring environment may exist in the current sysplex, but is not expected to be on the current MVS image.

Use WHERE=NETWORK to indicate that another monitoring environment may exist, but is not expected to be in the current MVS sysplex.

.MONTKN=montkn

Required input parameter that specifies the monitoring token.

To code: Specify the RS-type name or address (using a register from 2 to 12) of a 32 bit field containing the monitoring token.

.COMPCODE=NO

Optional input parameter that specifies whether you need completion status for IWMMSWCH.
COMPCODE=NO specifies that you do not need completion status. Registers 0, 15 cannot be used as reason code and return code registers upon completion of the macro expansion. If you specify COMPCODE=NO, you cannot specify RETCODE nor RSNCODE.

COMPCODE=YES specifies that you need completion status.

\`\text{RETCODE}=\text{retcode addr}\`

Optional output parameter that specifies where the system is to store the return code. The return code is also in GPR 15.

\textbf{To code:} Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain the return code.

\`\text{RSNCODE}=\text{rsncode addr}\`

Optional output parameter that specifies where the system is to store the reason code. The reason code is also in GPR 0.

\textbf{To code:} Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain the reason code (if any).

\`\text{MF=S}\`

\textbf{MF=(L, mfctrl,mfattr)}

\textbf{MF=(E, mfctrl,COMPLETE)}

Use MF=S to specify the standard form, which places parameters into an inline parameter list and invokes the IWM4CON macro service.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require re-entrant code. The list form defines an area of storage that the execute form uses to store the parameters.

Use MF=E to specify the execute form of the macro. Use the execute form with the list form of the macro for applications that require re-entrant code. The execute form stores the parameters into the storage area defined by the list form and generates the macro invocation to transfer control to the service.

\'mfctrl\'

Use this output parameter to specify the name of the storage area to contain the parameters.

\textbf{To code:} Specify the name (RS-type) or address (using a register from 2 to 12) of the storage area containing the parameter list.

\'mfattr\'

Use this input parameter to specify the name of a 1 to 60 character storage area that can contain any value that is valid on an assembler DS pseudo-op. You can use this parameter to force boundary alignment of the parameter list. If you do not code \texttt{mfattr} the system provides a value of 0D, which forces the parameter on a doubleword boundary.

\'COMPLETE\'

Use this input parameter to specify that the system check for required parameters and supply defaults for omitted optional parameter.

\textbf{ABEND Codes}

None.
Return and Reason Codes

When IWMMSWCH macro returns control to your program, GPR 15 contains a return code. When the return code is non-zero, then GPR 0 contains a reason code.

<table>
<thead>
<tr>
<th>Hexadecimal Return Code</th>
<th>Hexadecimal Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td></td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td>04</td>
<td>0401</td>
<td>Meaning: Warning. The system does not support delay monitoring services. This return code is only set when the MVS release is prior to MVS/ESA SP 5.2</td>
</tr>
<tr>
<td>04</td>
<td>0402</td>
<td>Meaning: Warning. Input monitoring token indicates no monitoring environment was established.</td>
</tr>
<tr>
<td>04</td>
<td>0407</td>
<td>Meaning: Warning. Switch return was from a monitoring environment with an outstanding continuation.</td>
</tr>
<tr>
<td>08</td>
<td>081C</td>
<td>Meaning: Program error. Outstanding continuation exists.</td>
</tr>
<tr>
<td>08</td>
<td>0820</td>
<td>Meaning: Program error. Monitoring environment does not pass short form verification.</td>
</tr>
</tbody>
</table>

Example

To indicate that the current monitoring environment continues only once elsewhere in the sysplex, specify:

```
IWMMSWCH FUNCTION=CONTINUE,WHERE=SYSPLEX,MONTKN=(R7),
    RETCODE=RCODE,RSNCODE=RSN
```
IWMMSWCH Macro
Chapter 41. IWMMUPD – Updating Data of a Work Unit

The IWMMUPD service allows to update data about a work unit which has been started by IWMMSTRT. A work unit started by IWM4MINI is not affected by this service.

Environment

The requirements for the caller are:

- **Minimum authorization:** Supervisor state or program key mask (PKM) allowing keys 0-7.
- **Dispatchable unit mode:** Task or SRB
- **Cross memory mode:** Any PASN, any HASN, any SASN
- **AMODE:** 31-bit
- **ASC mode:** Primary
- **Interrupt status:** Enabled for I/O and external interrupts
- **Locks:** No restrictions.
- **Control parameters:** Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of bits 0-31 of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

1. This macro may not be used before the completion of WLM address space initialization
2. The caller must have issued the IWMMSTRT macro successfully.
3. The caller is responsible for error recovery.
4. The current PSW key must be 0 or match the key specified on IWM4MCRE provided the latter is a system key (0-7).
5. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for the environment represented by the monitoring token.

Input Register Information

Before issuing the IWMMUPD macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.
Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if the return code in GPR 15 is not 0, otherwise, used as a work register by the system. The reason code is stored in bits 0-31.</td>
</tr>
<tr>
<td>1</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged.</td>
</tr>
<tr>
<td>14</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>15</td>
<td>Return code is stored in bits 0-31.</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged.</td>
</tr>
<tr>
<td>14 - 15</td>
<td>Used as work registers by the system.</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

The syntax of the IWMMUPD macro is as follows:

```
main diagram
```

1. `IWMMUPD `MONTKN=montkn,
2. `END_FLOW=NO `END_FLOW=YES
3. `MESSAGES_SENT=NO_MESSAGES_SENT `MESSAGES_SENT=messages_sent
4. `RETCODE=retcode
5. `RSNCODE=rsncode
6. `PLISTVER=IMPLIED_VERSION `PLISTVER=MAX `PLISTVER=0

IWMMUPD Macro
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMUPD macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

.AFTER_STRT=NO
.AFTER_STRT=YES
When EWLM_RCVD_CORR=ewlm_rcvd_corr is specified, an optional parameter, which indicates the moment the correlator has been received. The default is AFTER_STRT=NO.

.AFTER_STRT=NO
indicates that the correlator has been received before this work unit has been started by IWMMSTRT.

.AFTER_STRT=YES
indicates that the correlator has arrived within the scope of this work unit that means after issuing IWMMSTRT.

.END_FLOW=NO
.END_FLOW=YES
An optional parameter, which indicates the completion of a message flow. The default is END_FLOW=NO.

.END_FLOW=NO
indicates that a message flow has not completed.

.END_FLOW=YES
indicates that a message flow has completed. Specify END_FLOW=YES, if you know that the running work unit is the last one in a work unit flow. This indication cannot be cleared, if it has been set.

.EWLM_RCVD_CORR=ewlm_rcvd_corr
.EWLM_RCVD_CORR=NO_EWLM_RCVD_CORR
An optional input parameter, which contains a cross-platform Enterprise Workload Management (EWLM) correlator received from another application. Workflows often have multiple parent work units that must complete before a new work unit can be initiated. You can pass only one parent correlator to the IWMMSTRT macro and one additional parent correlator to the IWMMUPD macro. You have to issue the IWMMUPD macro, if more than two parent correlators should be assigned to a work unit. This correlator is ignored, if it is an unknown EWLM correlator. The default is NO_EWLM_RCVD_CORR.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.
IWMMUPD Macro

.MESSAGES_SENT=messages_sent
.MESSAGES_SENT=NO_MESSAGES_SENT
An optional input parameter, which contains the number of messages sent to other applications. This value is added to the total messages_sent value of the work unit. The total messages_sent value should not exceed 32767. The default is NO_MESSAGES_SENT, indicates that parameter MESSAGES_SEND has not been specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

.list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

.attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

MONTKN=montkn
A required input parameter, which contains the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form.
using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- 0, if you use the currently available parameters.

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0

,RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes

None.

Return and Reason Codes

When the IWMMUPD macro returns control to your program:

- GPR 15 (and retcode, when you code RETCODE) contains a return code.

- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains a reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

| Table 48. Return and Reason Codes for the IWMMUPD Macro |
|---|--|---|
| Return Code | Reason Code | Equate Symbol: IwmRetCodeOk |
| 0 | — | Meaning: Successful completion. |
| | | Action: None required. |
Table 48. Return and Reason Codes for the IWMMUPD Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Equate Symbol: IwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0402</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeNoMonEnv</td>
<td>Meaning: The input monitoring token indicates no monitoring environment was established. Action: Establish a monitoring environment by macro IWM4MCRE.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0441</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeTooManyMsgCorrs</td>
<td>Meaning: The correlator passed to EWLM_RCVD_CORR is ignored, since the maximum number of supported correlators has been reached. Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0443</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeTooManyMsgsSent</td>
<td>Meaning: The value passed to MESSAGES_SENT is ignored, since the maximum number of messages sent is reached. Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0444</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeTooManyMsgsReceived</td>
<td>Meaning: The EWLM_RCVD_CORR parameter has been specified too often. The correlated counter is not increased. Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0820</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeBadMonEnv</td>
<td>Meaning: Input monitoring environment does not pass short form validity checking. Action: Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx08AC</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeTranNotStarted</td>
<td>Meaning: No work unit has been started by IWMMSTRT for the specified monitoring environment. Action: Start a work unit by IWMMSTRT macro, before issuing this macro.</td>
</tr>
</tbody>
</table>
Chapter 42. IWMMXDC – Exit For Collecting Resource Data

IWMMXDC invokes the resource data collection exit specified. This exit returns information about the usage of the buffer pool or other resources which may be responsible for delays to work requests. The return and reason codes for IWMMXDC are those set by the exit invoked.

The exit environment is described in the following. The parameter list is in the same key as the PSW at the time of invocation and is in pageable storage addressable from the current address space. Upon entry to the exit, the register contents are as follows:

- Register 0 = not defined
- Register 1 contains the address of a parameter list as formatted by the list form of this macro, IWMMXDC MF=(L).
- Registers 2-13 = not defined
- Register 14 = return address
- Register 15 = entry-point address

Upon entry to the exit, the access register contents are undefined.

Upon return from the exit, the register contents are as follows:

- Register 0 = Reason code if GR15 return code is non-zero
- Registers 1-14 = not defined (need not be restored to value on entry)
- Register 15 = Return code

Upon return from the exit, the access register contents are unchanged.

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Minimum authorization:</th>
<th>Supervisor state with the same PSW key as at the time of registration (IWM4MREG).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatchable unit mode:</td>
<td>Task or SRB</td>
</tr>
<tr>
<td>Cross-memory mode:</td>
<td>PASN=HASN=SASN. The current home address space must be the same as at the time of registration (IWM4MREG).</td>
</tr>
<tr>
<td>AMODE:</td>
<td>31-bit</td>
</tr>
<tr>
<td>ASC mode:</td>
<td>Primary</td>
</tr>
<tr>
<td>Interrupt status:</td>
<td>Enabled for I/O and external interrupts</td>
</tr>
<tr>
<td>Locks:</td>
<td>No locks may be held. FRRs may be established.</td>
</tr>
<tr>
<td>Control parameters:</td>
<td>Control parameters must be in the primary address space.</td>
</tr>
</tbody>
</table>

Programming Requirements

The list form of the macro is intended for use by products supplying a data collection exit.

The execute form of the macro is intended for use by z/OS.

The assembler execute form only initializes the parameter list and calls the exit routine. The following restrictions apply:

- The invoker must save registers required before invoking the macro
IWMMXDC Macro

- The invoker must restore registers required immediately after invoking the macro, without depending on the exit to preserve any registers
- The invoker must copy the output results directly from the parameter list to local variables and NOT use macro keywords to do this

Restrictions

None.

Input Register Information

Before issuing the IWMMXDC macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unpredictable in assembler form, unchanged in PL/X form</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

```
main diagram

IWMMXDC(resourceName) RESOURCE_TKN=resource_tkn, RES_DATA_EXIT@=res_data_exit@, RESOURCE_TYPE=BUFFER_POOL parameters-1, RESOURCE_TYPE=NULL RETCODE=retcode
```
Parameters

The parameters are explained as follows:

name

An optional symbol, starting in column 1, that is the name on the IWMMXDC macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

MF=S

MF=(L,list addr)

MF=(L,list addr,attr)

MF=(L,list addr,0D)

MF=(E,list addr)

MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).
IWMXDC Macro

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,OWNER_TKN=owner_tkn
When RESOURCE_TYPE=BUFFER_POOL is specified, a required input parameter, which contains data associated with the resource that was passed to registration (IWM4MREG).

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:
• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RES_#HITS=res_#hits
When RESOURCE_TYPE=BUFFER_POOL is specified, an optional output parameter, which contains the number of hits among the references to the bufferpool since the last invocation of the data collection exit. The corresponding field in the parameter list (IWMMXDC MF=(L)) must be set by the exit.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RES_#REFERENCES=res_#references
When RESOURCE_TYPE=BUFFER_POOL is specified, an optional output parameter, which contains the number of references to the bufferpool since the
last invocation of the data collection exit. The corresponding field in the parameter list (IWMMXDC MF=(L)) must be set by the exit.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RES_CUR_SIZE=\texttt{res_cur_size}
When RESOURCE_TYPE\%=BUFFER_POOL is specified, an optional output parameter, which contains the current size (in 4K pages) associated with the specified resource. The corresponding field in the parameter list (IWMMXDC MF=(L)) must be set by the exit.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RES_DATA_EXIT@=\texttt{res_data_exit@}
A required input parameter that contains the address of the resource data collection exit to be invoked.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

,RES_INUSE_SIZE=\texttt{res_inuse_size}
When RESOURCE_TYPE\%=BUFFER_POOL is specified, an optional output parameter, which contains the current in use size (in 4K pages) associated with the specified resource. The corresponding field in the parameter list (IWMMXDC MF=(L)) must be set by the exit.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

RESOURCE_TKN=\texttt{resource_tkn}
A required input parameter, which contains the associated WLM resource token which is returned by the registration (IWM4MREG).

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,RESOURCE_TYPE\%=BUFFER_POOL
,RESOURCE_TYPE\%=NULL
A required parameter, which indicates the type of resource being registered.

,RESOURCE_TYPE\%=BUFFER_POOL
indicates that a bufferpool is being collected.

,RESOURCE_TYPE\%=NULL
indicates that no exit is to be called.

,RETCODE=\texttt{retcode}
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=\texttt{rsncode}
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

\textbf{ABEND Codes}

None.
Return and Reason Codes

When the IWMMXDC macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsnencode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
<td>Equate Symbol: IwmRetCodeOk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
</tbody>
</table>

Example

To register a resource for delay monitoring, specify:

```
IWMMXDC
  RESOURCE_TKN=RSCTOKEN, X
  RES_DATA_EXIT@=DATAEXIT@, X
  RESOURCE_TYPE=BUFFER_POOL, X
  OWNER_TKN=OWNERTKN, X
  RETCODE=RC, RSNCODE=RSN
```

* Storage areas
* RSCTOKEN DS CL8 WLM resource token
* DATAEXIT@ DS AL4 contains the address of the Resource Data Collection Exit to be invoked
* OWNERTKN DS CL8 Contains data maintained by the user
* RC DS F Return code
* RSN DS F Reason code
Chapter 43. IWMMXFER – Transfer Monitoring Environment

The purpose of this service is to reflect that the delay information for a work request may now also reside in a dependent monitoring environment (CONTINUE) OR that delay information is no longer present in a dependent monitoring environment (RETURN).

The two monitoring environments referred to above must be related by a previous IWMMRELA invocation. This service requires as input the monitoring token for the dependent environment, which is accessed, but the parent environment must also be updated. This implies that the user must have addressability and update access to the parent monitoring environment. PARENTKEYP and PARENTENV keywords are provided to accommodate these requirements. These restrictions apply even when the Relate was performed using the FINDACTIVE option, though when the monitoring environment is related to the address space characteristics, no key or addressability requirements exist beyond those for the dependent monitoring environment.

Environment

The requirements for the caller are:

Minimum authorization:
- Either problem state or supervisor state.
- PSW key must either be 0 or match the value supplied on IWM4MCRE for the (dependent) monitoring token.
- PARENTKEYP(VALUE) may only be specified in supervisor state or with PKM authority to the key specified by PARENTKEY. Note that the key for IWMMXFER is located in bit positions 0-3 (using 0 origin), which is the machine orientation to keeping keys, not the “natural” way of declaring the key value.
- PARENTKEYP(UNKNOWN) may only be specified in supervisor state or with PKM authority to key 0.
- When PARENTKEYP(PSWKEY) is specified, the PSW key must either be 0 or match the value supplied on IWM4MCRE for the parent monitoring environment.
- If FUNCTION=RETURN is specified and the passed MONTKN is associated with an ARM work request (EWLM=YES was specified on IWM4CON (or IWMCNN) and the monitoring environment was created using that CONNTKN), the caller must be in supervisor state or have PKM authority to key 0.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro IWMYCON must be included to use this macro.
IWMMXFER Macro

2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
4. Note that specification of FUNCTION(CONTINUE) produces an inline expansion rather than an out-of-line service. Registers 0, 1, 14, and 15 are not preserved across the expansion.

Restrictions

1. If the key specified on IWM4MCRE for the dependent monitoring environment was a user key (8-F), then primary addressability must exist to the performance block IWM4MCRE obtained. This condition is satisfied by ensuring that current primary matches primary at the time that IWM4MCRE was invoked. If this service is invoked in a subspace, the condition may be satisfied by ensuring that the performance block is shared with the base space.
2. If the key specified on IWM4MCRE for the parent environment was a user key (8-F), then either primary OR secondary addressability must exist to the performance block for the parent environment.
3. When FUNCTION(CONTINUE|RETURN) are used, the caller is responsible for error recovery.
4. When FUNCTION(CONTINUE) is used, the caller is responsible to ensure that the parent monitoring environment does not already have a continuation (via a previous IWMMXFER or IWMMSWCH) to another (or other) dependent monitoring environment(s).
5. Both monitoring environments must be established on the same MVS image.
6. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for the dependent monitoring environment.
7. The caller and/or the owner of the parent environment must ensure that parent environment is not deleted while between the time that IWMMXFER FUNCTION(CONTINUE) is used and the time that either IWMMXFER FUNCTION(RETURN) is used against the dependent monitoring environment or IWMMSWCH FUNCTION(RETURN) is used against the parent monitoring environment.
8. Only limited validity checking is done on the input monitoring tokens.
9. This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to the PLISTVER parameter description for further information.

Input Register Information

Before issuing the IWMMXFER macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications
None.

Syntax

main diagram

```

```

Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMXFER macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,COMPCODE=YES
,COMPCODE=NO
An optional parameter, which indicates whether completion status for this service is needed. The default is COMPCODE=YES.
IWMMXFER Macro

,COMPCODE=YES
 indicates that completion status is needed.

,COMPCODE=NO
 indicates that completion status is not needed. Registers 0, 15 cannot be
 used as reason code and return code registers upon completion of the
 macro expansion. For this reason neither RETCODE NOR RSNCODE may
 be specified when COMPCODE(NO) is specified.

FUNCTION=CONTINUE
FUNCTION=RETURN
 A required parameter, which indicates whether the dependent environment is
 continuing from or returning to the parent environment.

FUNCTION=CONTINUE
 indicates that this is a unique continuation of the work request which is
 reflected in the dependent monitoring environment.

 Note that the parent environment may continue to be active on behalf of the
 work request.

 Note that specification of FUNCTION(CONTINUE) produces an inline
 expansion rather than an out-of-line service. Registers 0, 1, 14, and 15 are
 not preserved across the expansion.

FUNCTION=RETURN
 indicates that the work request is returning to a previously established
 parent monitoring environment.

 Use of this option indicates that the dependent environment no longer
 represents the work request.

 Note that specification of FUNCTION(RETURN) produces an inline
 expansion rather than an out-of-line service. Registers 0, 1, 14, and 15 are
 not preserved across the expansion.

,MONTKN=montkn
 A required input parameter, which contains the delay monitoring token for the
 dependent environment.

 To code: Specify the RS-type address, or address in register (2)-(12), of a
 32-bit field.

,PARENTENV=NOSWITCH
,PARENTENV=SECONDARY
 A required parameter, which describes whether a space switch is needed to
 access the parent monitoring environment.

,PARENTENV=NOSWITCH
 indicates that NO space switch is needed to access the parent monitoring
 environment. This would be appropriate if the parent monitoring
 environment was established (by IWM4MCRE) to be used by routines in a
 specific system key or if it was established to be used in a specific user key
 in the current primary.

,PARENTENV=SECONDARY
 indicates that the parent monitoring environment was established in current
 secondary (for use by a specific user key).

,PARENTKEY=parentkey
 When PARENTKEY=VALUE is specified, a required input parameter, which
 contains the key in which the parent monitoring environment must be accessed.
IWMMXFER Macro

Use of this keyword value requires that the invoker be in supervisor state or that the caller have PKM authority to the key specified. The high-order 4 bits (i.e. bits 0-3) contain the key value.

Note that this is different from the “normal” way of declaring the key, and uses the machine orientation for keeping the storage key in the high-order bits.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-bit field.

\[\text{PARENTKEYP} = \text{VALUE} \]
\[\text{PARENTKEYP} = \text{PSWKEY} \]
\[\text{PARENTKEYP} = \text{UNKNOWN} \]

A required parameter, which describes whether a key switch is needed to access the parent monitoring environment.

\[\text{PARENTKEYP} = \text{VALUE} \]
indicates that the key is being passed explicitly via PARENTKEY.

\[\text{PARENTKEYP} = \text{PSWKEY} \]
indicates that the current PSW key should be used. Use of this keyword value requires that the parent monitoring environment was established with the same key as the current PSW.

\[\text{PARENTKEYP} = \text{UNKNOWN} \]
indicates that the key associated with the parent monitoring environment is unknown. Use of this keyword value requires that the invoker be in supervisor state or that the caller have PKM authority to key 0.

\[\text{PLISTVER} = \text{IMPLIED VERSION} \]
\[\text{PLISTVER} = \text{MAX} \]
\[\text{PLISTVER} = 0 \]
\[\text{PLISTVER} = 1 \]

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, which supports all parameters except those specifically referenced in higher versions.
- **1**, which supports both the following parameters and those from version 0:

WORKREQ_STA

To code: Specify one of the following:
- **IMPLIED_VERSION**
- **MAX**
IWMMXFER Macro

- A decimal value of 0, or 1

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.
To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.
To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RUNTIME_VER=SHORT_FORM
,RUNTIME_VER=MINIMAL
When FUNCTION=CONTINUE is specified, an optional parameter, which indicates what level of runtime verification will be performed. The default is RUNTIME_VER=SHORT_FORM.

,RUNTIME_VER=SHORT_FORM
indicates that checking should verify that a monitoring environment is established and passes a short form of verification prior to being used.

,RUNTIME_VER=MINIMAL
indicates that checking will only be done to verify that a monitoring environment may be established, assuming that it would be valid and usable if established.

,RUNTIME_VER=SHORT_FORM
,RUNTIME_VER=MINIMAL
When FUNCTION=RETURN is specified, an optional parameter, which indicates what level of runtime verification will be performed. The default is RUNTIME_VER=SHORT_FORM.

,RUNTIME_VER=SHORT_FORM
indicates that checking should verify that a monitoring environment is established and passes a short form of verification prior to being used.

,RUNTIME_VER=MINIMAL
indicates that checking will only be done to verify that a monitoring environment may be established, assuming that it would be valid and usable if established.

,WORKREQ_STA=workreq_sta
,WORKREQ_STA=IWMEWLMARMSTATUSNONE
When FUNCTION=RETURN is specified, an optional input parameter, which contains the completion status code of the work request. Available completion status codes (defined in macro IWMYCON) are the following:
- IwmEwlmArmStatusGood(0)
- IwmEwlmArmStatusAborted(1)
- IwmEwlmArmStatusFailed(2)
- IwmEwlmArmStatusUnknown(3)

These codes correspond to status codes in the OpenGroup ARM 4.0 Standard. For further information about the meaning of the status codes, refer to the ARM 4.0 Standard at http://www.opengroup.org/management/arm. The default is IWMEWLMARMSTATUSNONE. This indicates that internal information in the monitoring environment are examined to determine the status of the work request. If no abnormal event was recorded for the monitoring environment with the IWMMABNL service, the
IWMMXFER Macro

Completion status IwmEwlmArmStatusGood is reported to EWLM. If an abnormal event was reported with IWMMABNL, the completion status IwmEwlmArmStatusFailed is reported to EWLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

ABEND Codes

None.

Return and Reason Codes

When the IWMMXFER macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Meaning: Successful completion. Action: None required.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0402</td>
<td>IwmRsnCodeNoMonEnv</td>
<td>Meaning: Input monitoring token indicates no monitoring environment was established. Action: None required.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx081F</td>
<td>IwmRsnCodeNoRelate</td>
<td>Meaning: No Parent environment exists since Relate Function(Continue) has not been performed or has not been performed subsequent to a Relate Function(Delete). Action: Check for possible storage overlay and whether Relate Function(Continue) has been used properly.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0820</td>
<td>IwmRsnCodeBadMonEnv</td>
<td>Meaning: Monitoring environment does not pass verification.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0822</td>
<td>IwmRsnCodeBadParEnv: Parent monitoring environment does not pass verification. Action: Check for possible storage overlay.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol</td>
<td>Meaning</td>
<td>Action</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>8</td>
<td>xxx0895</td>
<td>IwmRsnCodeEWLMServNotEnabled</td>
<td>Service is not enabled because monitoring environment can not be associated with EWLM work requests.</td>
<td>Specify the parameter WORKREQ_STA only when the monitoring environment is created with IWMMCREA EWLM=YES or the address space is connected with IWMCONN EWLM=YES and the connect token is passed to IWMMCREA when creating the monitoring environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxx0897</td>
<td>IwmRsnCodeTranStatusInvalid</td>
<td>Passed work request completion status is not valid.</td>
<td>Check the EWLM ARM interface specification for valid completion status values.</td>
</tr>
</tbody>
</table>
Chapter 44. IWMMXRA – Exit For Adjusting Resources

IWMMXRA invokes the resource adjustment exit. This exit makes the adjustments indicated for the buffer pool or other resources which may be responsible for delays to work requests. The return or reason codes for IWMMXRA are those set by the exit invoked.

The exit environment is described in the following. The parameter list is in pageable storage addressable in the current address space, but is not guaranteed to be in the key of the exit because it is not expected to be changed by the exit. Upon entry to the exit, the register contents are as follows:

- Register 0 = not defined
- Register 1 contains the address of a parameter list as formatted by the list form of this macro, IWMMXRA MF=(L).
- Registers 2-13 = not defined
- Register 14 = return address
- Register 15 = entry-point address

Upon entry to the exit, the access register contents are undefined.

Upon return from the exit, the register contents are as follows:

- Register 0 = Reason code if GR15 return code is non-zero
- Registers 1-14 = not defined (need not be restored to value on entry)
- Register 15 = Return code

Upon return from the exit, the access register contents are unchanged.

Environment

The requirements for the caller are:

Minimum authorization:	Supervisor state with the same PSW key as at the time of registration (IWM4MREG).
Dispatchable unit mode:	Task or SRB
Cross-memory mode:	PASN=HASN=SASN. The current home address space must be the same as at the time of registration (IWM4MREG).
AMODE:	31-bit
ASC mode:	Primary
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No locks may be held. FRRs may be established.
Control parameters:	Control parameters must be in the primary address space.

Programming Requirements

The list form of the macro is intended for use by products supplying a resource adjustment exit.

The execute form of the macro is intended for use by z/OS.

The assembler execute form only initializes the parameter list and calls the exit routine. The following restrictions apply:

- The invoker must save registers required before invoking the macro
IWMMXRA Macro

- The invoker must restore registers required immediately after invoking the macro, without depending on the exit to preserve any registers.

Restrictions

None.

Input Register Information

Before issuing the IWMMXRA macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unpredictable in assembler form, unchanged in PL/X form</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

```
main diagram

IWMMXRA—RESOURCE_TKN=resource_tkn—.RES_ADJ_EXIT@=res_adj_exit@

| RESOURCE_TYPE=BUFFER_POOL— parameters-1 |
| RESOURCE_TYPE=NULL— RETCODE=retcode |

| RSNCODE=rsncode— PLISTVER=IMPLIED_VERSION |
| PLISTVER=MAX— PLISTVER=0 |
```
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMXRA macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,\(MF=S\)
,\(MF=(L,\text{list addr})\)
,\(MF=(L,\text{list addr},\text{attr})\)
,\(MF=(L,\text{list addr},0D)\)
,\(MF=(E,\text{list addr})\)
,\(MF=(E,\text{list addr},\text{COMPLETE})\)
An optional input parameter that specifies the macro form.

Use \(MF=S\) to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. \(MF=S\) is the default.

Use \(MF=L\) to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use \(MF=E\) to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,\text{list addr}\nThe name of a storage area to contain the parameters. For \(MF=S\) and \(MF=E\), this can be an RS-type address or an address in register (1)-(12).

,\text{attr}\nAn optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code \text{attr}, the system provides a value of 0D.

,\text{COMPLETE}\nSpecifies that the system is to check for required parameters and supply defaults for omitted optional parameters.
When RESOURCE_TYPE=BUFFER_POOL is specified, a required input parameter, which contains data associated with the resource that was passed to registration (IWM4MREG).

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

PLISTVER=IMPLIED_VERSION

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.
- **0**, if you use the currently available parameters.

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0

RES_ADJ_EXIT@=res_adj_exit@

A required input parameter that contains the address of the resource adjustment exit to be invoked.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

RES_CUR_SIZE=res_cur_size

When RESOURCE_TYPE=BUFFER_POOL is specified, an required input parameter, which contains the current size (in 4K pages) associated with the specified resource.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

RES_NEW_SIZE=res_new_size

When RESOURCE_TYPE=BUFFER_POOL is specified, a required input parameter, which contains the new size (in 4K pages) to be associated with the specified resource.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.
RESOURCE_TKN=resource_tkn

A required input parameter, which contains the associated WLM resource token which is returned by the registration (IWMMREG).

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

.RESOURCE_TYPE=BUFFER_POOL

A required parameter, which indicates the type of resource being registered.

.RESOURCE_TYPE=BUFFER_POOL

indicates that buffer pool adjustments are needed.

.RESOURCE_TYPE=NULL

indicates that no exit is to be called.

.RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

.RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes

None.

Return and Reason Codes

When the IWMMXRA macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
</tbody>
</table>

Example

To call a resource adjustment exit, specify the following:

IWMMXRA
RES_ADJ_EXIT=ADJEXIT, X
OWNER_TKN=OWNERTKN, X
RESOURCE_TYPE=BUFFER_POOL, X
RESOURCE_TKN=RSCTOKEN, X
RES_CUR_SIZE=RESCURSIZE, X
RES_NEW_SIZE=RESNEWSIZE, X

Chapter 44. IWMMXRA – Exit For Adjusting Resources 385
IWMMXRA Macro

RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
RESCURSIZE DS FL4 contains the current size of the
* specified resource in 4K pages
RESNEWSIZE DS FL4 contains the new target size of the
* specified resource in 4K pages
ADJEXIT@ DS AL4 contains the address of the
* Resource Adjustment Exit
* to be invoked
OWNERTKN DS CL8 Contains data maintained by
* the user
RSCTOKEN DS CLB WLM resource token
RC DS F Return code
RSN DS F Reason code
Chapter 45. IWMPACT – Activating Service Policy

The Activate Service Policy routine is given control from the IWMPACT macro. The Activate Service Policy macro will complete the parameter list with caller-provided data and generate a stacking, program call to the activate policy service.

The purpose of this routine is to activate a service policy in the sysplex. The name of the service policy to be activated must be provided as input. The specified policy must exist in the current WLM service definition installed on the WLM couple data set.

The Activate Service Policy service causes a service policy to be activated synchronously. In other words, control will not be returned to the caller until the policy has been activated on all systems in the sysplex or for some reason the policy activation could not be completed.

Note that only a single policy activation request can be processed at any one time. Therefore, if a previous policy activation request is being processed and a new activation request is issued, the new request will be rejected with an appropriate return and reason code. This will occur regardless of whether the two requests were issued on the same system or different systems in the sysplex. The user can optionally request that the name of the system where another policy activation is taking place be returned in the variable specified in keyword SYSTEM_NAME.

The Activate Service Policy macro is provided in list, execute, and standard form. The list form accepts no variable parameters and is used only to reserve space for the activate policy parameter list. The standard form is provided for use with routines which do not require reentrant code. The execute form is provided for use with the list format for reentrant routines.

Environment

The requirements for the caller are:

Minimum authorization:	Problem state. Any PSW key
Dispatchable unit mode:	Task
Cross memory mode:	PASN=HASN=SASN
AMODE:	31-bit
ASC mode:	Primary
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No locks may be held.
Control parameters:	All parameter areas must reside in current primary.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. This functions provided by this macro are only supported on MVS/ESA SP5.2.0 or later. If code with this macro expansion is executed on lower MVS/ESA releases (version 3 or later) a return code of 4 and reason code of xxxx041A (constant IwmRsnCodeNoPolMgt) will be returned indicating that the service is not available. This macro should NOT be executed on MVS versions 1 or 2.
3. The macro IWMYCON must be included to use this macro.
IWMPACT Macro

4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

The caller cannot have an EUT FRR established.

Input Register Information

Before issuing the IWMPACT macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as a work register by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
IWMPACT--POLICY_NAME=policy_name,SYSTEM_NAME=system_name
```
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMPACT macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

.MF=S
.MF=(L,list addr)
.MF=(L,list addr,attr)
.MF=(L,list addr,0D)
.MF=(E,list addr)
.MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

.list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

.attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

.COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

.PLISTVER=IMPLIED_VERSION
PLISTVER=MAX
PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, if you use the currently available parameters.

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0

POLICY_NAME=**policy_name**
A required input parameter, variable specifying the name of the service policy to be activated. The specified service policy must exist in the current service definition that is installed on the WLM couple data set.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

RETCODE=**retcode**
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

RSN_CODE=**rsn_code**
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SYSTEM_NAME=**system_name**
An optional output parameter, variable where the name of the system where another policy activation is taking place will be returned. This variable is only filled in when a return code of 4 and a reason code of xxxx0415 is returned.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes

<table>
<thead>
<tr>
<th>Reason Code (Hex)</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0Axx0005</td>
<td>An attempt to reference caller’s parameters caused an OC4 abend.</td>
</tr>
</tbody>
</table>
Return and Reason Codes

When the IWMPACT macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 52. Return and Reason Codes for the IWMPACT Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
<td>Meaning: Successful completion. Action: None required.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0414</td>
<td>Equate Symbol: IwmRsnCodeNullCDS</td>
<td>Meaning: This request could not be completed because no Service definition has been installed on the WLM CDS. Action: None required.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0415</td>
<td>Equate Symbol: IwmRsnCodePolicyActInProgress</td>
<td>Meaning: This request could not be completed because another policy activation request is currently being processed. If specified, the SYSTEM_NAME parameter will contain the name of the system on which policy activation is in progress. Action: None required. If this service is re-invoked at a later time it may be successful.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0416</td>
<td>Equate Symbol: IwmRsnCodePolicyUndefined</td>
<td>Meaning: The service policy specified could not be found in the service definition currently installed on the WLM couple data set. The service policy was not activated. Action: None required. Verify that the policy was specified correctly.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx041A</td>
<td>Equate Symbol: IwmRsnCodeNoPolMgt</td>
<td>Meaning: System does not support policy management services. This return code is only set when the MVS release is prior to MVS/ESA SP5.2.0. Action: None required.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>Equate Symbol: IwmRsnCodeSrbMode</td>
<td>Meaning: Caller is in SRB mode. Action: Avoid requesting this function while in SRB mode.</td>
<td></td>
</tr>
</tbody>
</table>
Table 52. Return and Reason Codes for the IWMPACT Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is disabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while disabled.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is locked.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while locked.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0810</td>
<td>Equate Symbol: IwmRsnCodeEutFrr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller has EUT FRR established.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function with an EUT FRR set.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>Equate Symbol: IwmRsnCodeDatoff</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller invoked service while DATOFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function in this environment.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller invoked service but was in 24 bit addressing mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Request this function only when you are in 31 bit addressing mode.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>Equate Symbol: IwmRsnCodeRsvedNot0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Reserved field in parameter list was non-zero.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay of the parameter list.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Version number in parameter list is not valid or the length specified is incorrect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay of the parameter list.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0841</td>
<td>Equate Symbol: IwmRsnCodeXMemMode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is in cross memory mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Invoke the function in non-cross memory mode.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeEnvError</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Environmental error.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>Equate Symbol: IwmRsnCodeNoStg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Storage is not available for the request.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: There is a storage shortage. The function may work successfully at a later time.</td>
<td></td>
</tr>
</tbody>
</table>
Table 52. Return and Reason Codes for the IWMPACT Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>xxxx0C0E</td>
<td>Equate Symbol: IwmRsnCodeInsufAccess</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The RACF facility class is active and a profile has been defined for the MVSADMIN.WLM.POLICY RACF facility class profile to which the caller does not have sufficient (update) access.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Invoke the function when the conditions are alleviated.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C0F</td>
<td>Equate Symbol: IwmRsnCodeCDSNotAvail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: A couple data set for WLM has not been defined or it has been defined but this system does not have connectivity to the data set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: No action required.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C10</td>
<td>Equate Symbol: IwmRsnCodeCDSTooSmall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: WLM CDS is too small to process the request.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: No action required.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C11</td>
<td>Equate Symbol: IwmRsnCodeOneSystemUnable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: At least one system in the sysplex was unable to activate the policy. One or more systems may have been successful in activating the policy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: No action required.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C13</td>
<td>Equate Symbol: IwmRsnCodePolicyNotAvail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The service policy specified could not be verified because the service definition retrieved from WLM CDS has failed validation. The service policy was not activated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: No action required.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Component error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: No action required. The function may be successful if invoked again.</td>
</tr>
</tbody>
</table>
Chapter 46. IWMPQRY – Querying Active Service Policy

The query active service policy routine is given control from the IWMPQRY macro. The query active service policy macro will complete the parameter list with caller-provided data and generate a stacking, space switching, program call to the query service.

The purpose of this routine is to return a representation of the active policy which could be used to explain how the system/sysplex is being managed and could be used in conjunction with current measurements to evaluate the condition of the system/sysplex. The information returned is not serialized upon return to the caller, and so may be out-of-date due to a change in policy.

The Query Active Service Policy macro is provided in list, execute, and standard form. The list form accepts no variable parameters and is used only to reserve space for the query parameter list. The standard form is provided for use with routines which do not require reentrant code. The execute form is provided for use with the list format for reentrant routines.

The parameter list must be in the caller’s primary address space or be addressable by the dispatchable unit access list.

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Minimum authorization:</th>
<th>Supervisor state or program key mask (PKM) allowing keys 0-7.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatchable unit mode:</td>
<td>Task</td>
</tr>
<tr>
<td>Cross memory mode:</td>
<td>Any PASN, any HASN, any SASN</td>
</tr>
<tr>
<td>AMODE:</td>
<td>31-bit</td>
</tr>
<tr>
<td>ASC mode:</td>
<td>Primary or access register (AR) If in Access Register ASC mode, specify SYSSTATE ASCENV=AR before invoking this macro.</td>
</tr>
<tr>
<td>Interrupt status:</td>
<td>Enabled for I/O and external interrupts</td>
</tr>
<tr>
<td>Locks:</td>
<td>No locks may be held.</td>
</tr>
<tr>
<td>Control parameters:</td>
<td>All parameter areas must reside in current primary or be addressable by the dispatchable unit access list.</td>
</tr>
</tbody>
</table>

Programming Requirements

1. The macro CVT must be included to use this macro.
2. This macro may only be used on MVS/ESA SP5.1.0 or later.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
Restrictions

The caller cannot have an EUT FRR established.

Input Register Information

Before issuing the IWMPQRY macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as a work register by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
IWMPQRY ANSAREA=ansarea, ANSLEN=anslen, QUERYLEN=querylen,

, RETCODE=retcode, RSNCODE=rsncode, PLISTVER=IMPLIED_VERSION,

, PLISTVER=MAX, PLISTVER=0,

,MF=S,

,MF=(L,list addr,attr,COMPLETE),

,MF=(E,list addr),
```
Parameters

The parameters are explained as follows:

name

An optional symbol, starting in column 1, that is the name on the IWMPQRY macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

ANSAREA=ansarea

A required output parameter, variable specifying an area to contain the data being returned by IWMPQRY. The answer area is defined by the IWMSVPOL macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

ANSLEN=anslen

A required input parameter, variable which contains the length of the area provided to contain the data being returned by IWMPQRY.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

MF=S

MF=(L,list addr)

MF=(L,list addr,attr)

MF=(L,list addr,0D)

MF=(E,list addr)

MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

attr

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of OF to force the parameter list to a word boundary, or OD to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

COMPLETE

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.
IWMPQRY Macro

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, if you use the currently available parameters.

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0

,QUERYLEN=querylen

A required output parameter, variable which contains the number of bytes needed to contain the policy information.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes

<table>
<thead>
<tr>
<th>Reason Code (Hex)</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0Axx0005</td>
<td>An attempt to reference caller's parameters caused an OC4 abend.</td>
</tr>
</tbody>
</table>

Return and Reason Codes

When the IWMPQRY macro returns control to your program:
- GPR 15 (and `retcode`, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and `rsncode`, if you coded RSNCODE) contains reason code.
The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
<td>Meaning: Successful completion. Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0401</td>
<td>Equate Symbol: IwmRsnCodeNoWLM</td>
<td>Meaning: System does not support policy management services. This return code is only set when the MVS release is prior to MVS/ESA SP5.1.0. Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx040A</td>
<td>Equate Symbol: IwmRsnCodeOutputAreaTooSmall</td>
<td>Meaning: The output area supplied is too small to receive all the available information. Action: None required. If necessary, reinvoke the service with an output area of sufficient size to receive all information.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0423</td>
<td>Equate Symbol: IwmRsnCodeDefaultPolicy</td>
<td>Meaning: The default policy was returned. Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>Equate Symbol: IwmRsnCodeSrbMode</td>
<td>Meaning: Caller is in SRB mode. Action: Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
<td>Meaning: Caller is disabled. Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td>Meaning: Caller is locked. Action: Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0830</td>
<td>Equate Symbol: IwmRsnCodeBadAlet</td>
<td>Meaning: Caller has passed an invalid ALET. Action: Check for possible storage overlay of the parameter list or variable.</td>
</tr>
</tbody>
</table>
IWMPQRY Macro
Chapter 47. IWMRCOLL – Collecting Workload Activity Data

With the IWMRCOLL macro, a performance monitor can get the following Workload activity information:

- Resource consumption information
- Response time and distribution information
- General delay information
- Subsystem work manager delay state information

For a detailed description, refer to Chapter 9, “Using the Workload Reporting Services,” on page 99.

To help the caller keep track of changes in workload management, this service returns a token, ANSTOKN. ANSTOKN is a required input on all subsequent calls to IWMRCOLL. When a change occurs in workload management, such as when a new policy is activated, IWMRCOLL returns a new token value. The caller's code should check the reason codes to see if the ANSTOKN has changed since the last call to IWMRCOLL. If the token has changed, the performance monitor should reset its reporting interval. If the token has not changed, the performance monitor can continue with its existing reporting interval.

There are also some ENF event codes to keep track of changes in workload management. For information about the ENF codes, see z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG.

The caller must provide a storage area in the ANSAREA=ansarea and the length of that area in the ANSLEN=anslen for IWMRCOLL to place the workload activity information. This area may reside in either address space related storage or dataspace storage. IWMRCOLL returns the information, which is mapped by IWMWRCAA.

You must also specify the MINLEN and MAXLEN parameters. IWMRCOLL fills in the minimum and maximum amount of storage required for the answer area.

The caller should issue the IWMPQRY macro for active service policy information to map the workload activity information.

If the caller does not provide enough storage to contain all of the workload activity data, no data is returned. IWMRCOLL returns the minimum length of the storage required in the ANSLEN field, and issues the appropriate return and reason code.

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Minimum authorization:</th>
<th>Supervisor state or program key mask (PKM) allowing keys 0-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatchable unit mode:</td>
<td>Task</td>
</tr>
<tr>
<td>Cross memory mode:</td>
<td>Any PASN, any HASN, any SASN</td>
</tr>
<tr>
<td>AMODE:</td>
<td>31-bit</td>
</tr>
<tr>
<td>ASC mode:</td>
<td>Primary or access register. If in access register ASC mode, specify SYSSTATE ASCENV = AR before invoking IWMRCOLL.</td>
</tr>
</tbody>
</table>
IWMRCOLL Macro

<table>
<thead>
<tr>
<th>Interrupt status:</th>
<th>Enabled for I/O and external interrupts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locks:</td>
<td>No locks held.</td>
</tr>
<tr>
<td>Control parameters:</td>
<td>Control parameters must be in the primary address space.</td>
</tr>
</tbody>
</table>

The caller of IWMRCOLL must provide storage for an answer area mapped by IWMWRCAA. This answer area may reside in the caller’s primary address space, or in a dataspace accessible via the current unit of work’s dispatchable unit access list (DUal).

Programming Requirements

You must include the CVT and the IWMYCON mapping macros in the program.

Restrictions

The caller cannot have an EUT FRR established.

Input Register Information

Before issuing the IWMRCOLL macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, using it as a base register, or using it to provide the ALET of the storage area.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if the GP 15 return code is non-zero.</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
<td>Used as work registers by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14 - 15</td>
<td>Used as work registers by the system.</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.
Syntax

main diagram

\[
\begin{align*}
\text{name} & \quad \text{ICS=NO} \quad \text{parameters-1} \\
\quad \text{ICS=YES,ICSLEN=icslen,ICSAREA=icsarea,ICSQLEN=icsqlen,} \\
\quad \text{ANSTOKEN=anstoken} & \quad \text{RETCODE=retcode} \\
\quad \text{ANSTOKEN=anstoken} \quad \text{RSNCODE=rsncode} \\
\quad \text{PLISTVER=IMPLIED_VERSION} \\
\quad \text{PLISTVER=MAX} \\
\quad \text{MF=S} \quad \text{MFCTRL} \\
\quad \text{MF=(L,MFCTRL)} \\
\quad \text{mfattr} \\
\quad \text{COMPLETE} \\
\quad \text{complete} \\
\quad \text{MF=(E,MFCTRL)} \\
\end{align*}
\]

parameters-1

\[
\begin{align*}
\quad \text{ANSAREA=ansarea} & \quad \text{ANSLEN=anslen} & \quad \text{MINLEN=minlen} & \quad \text{MAXLEN=maxlen}
\end{align*}
\]

Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMRCOLL macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,ANSAREA=ansarea
When ICS=NO is a required output parameter that contains the address of a storage area to hold the information returned by IWMRCOLL. The area is mapped by the IWMWRCAA mapping macro.

to code: Specify the RS-type address, or address in register (2)-(12) of a character field.

,ANSLEN=anslen
When ICS=NO is specified, a required input parameter that contains the length of the storage area (answer area) you are providing on ANSAREA.

to code: Specify the RS-type address, or address in register (2)-(12) of a fullword field.

,ANSTOKN=anstoken,
A required input/output parameter that contains a token value. On your first call to IWMRCOLL, you specify ANSTOKEN as an output parameter. IWMRCOLL provides a token value that is required for subsequent calls to IWMRCOLL.

to code: Specify the RS-type address, or address in register (2)-(12) of an 8-character field.

ICS=NO

Chapter 47. IWMRCOLL – Collecting Workload Activity Data 403
ICS=YES
An optional parameter that specifies whether IWMRCOLL should return ICS information, or workload activity information. The default is ICS=NO.

ICS=NO
Specifies that IWMRCOLL should return workload activity information.

ICS=YES
Specifies that IWMRCOLL should return ICS information. It is valid for systems prior to z/OS R3 only.

ICSAREA=icsarea
When ICS=YES is specified, a required output parameter that is valid for systems prior to z/OS R3 only.

To code: Specify the RS-type address, or address in register (2)-(12) of a character field.

ICSLEN=icslen
When ICS=YES is specified, a required input parameter that is valid for systems prior to z/OS R3 only.

To code: Specify the RS-type address, or address in register (2)-(12) of a fullword field.

ICSQLEN=icsqlen
When ICS=YES is specified, a required output parameter that is valid for systems prior to z/OS R3 only.

To code: Specify the RS-type address, or address in register (2)-(12) of a fullword field.

MAXLEN=maxlen
When ICS=NO is specified, a required output parameter that contains the maximum length of the storage area required by IWMRCOLL to contain all the performance data for transactions that might run while the ANSTOKN is valid.

To code: Specify the RS-type address, or address in register (2)-(12) of a fullword field.

MF=S
MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)
MF=(E,list addr)
MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.
IWMRCOLL Macro

,,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,,attr
An optional 1 to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of X'0F' to force the parameter list to a word boundary, or X'0D' to force the parameter list to a doubleword boundary. If you do not code ,attr, the system provides a value of X'0D'.

,,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,,MINLEN=minlen
When ICS=NO is specified, a required output parameter that contains the minimum length of the storage area required by IWMRCOLL to contain all existing performance data.

To code: Specify the RS-type address, or address in register (2)-(12) of a fullword field.

,,PLISTVER=IMPLIED_VERSION
,,PLISTVER=MAX
,,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

IMPLIED_VERSION
Is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

MAX
Specify PLISTVER=MAX if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

0 Specify PLISTVER=0 to use the currently available parameters.

To code: Specify one of the following:
• IMPLIED_VERSION
• MAX
• A decimal value of 0

,,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).
IWMRCOLL Macro

.RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes
None.

Return and Reason Codes

When the IWMRCOLL macro returns control to your program:
- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code
 RSNCODE) contains a reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 54. Return and Reason Codes for the IWMRCOLL Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol, Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>Equate Symbol: IwmRetCodeOk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion. All requested data returned.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>Equate Symbol: IwmRetCodeWarning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0401</td>
<td>Equate Symbol: IwmRsnCodeNoWLM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The system does not support workload activity data collection. The collect output area has not been modified. This return code is set only when the MVS release is prior to MVS/ESA SP5.1.0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx040A</td>
<td>Equate Symbol: IwmRsnCodeOutputAreaTooSmall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The output area supplied is too small to receive all the available information. The correct answer area length is returned in the MINLEN and MAXLEN fields.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required. If necessary, reinvoke the service with an output area of sufficient size to receive all information.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx040D</td>
<td>Equate Symbol: IwmRsnCodeIcsDefault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The system default ICS is in effect. No ICS information is returned.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol, Meaning and Action</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-----------------------------------</td>
</tr>
</tbody>
</table>
| 4 | xxxx040E | **Equate Symbol**: IwmRsnCodeIcsAreaTooSmall
Meaning: The output area supplied is too small to receive all the available ICS information. The correct answer area length is returned in the ICSQLEN field.
Action: None required. If necessary, reinvoke the service with an output area of sufficient size to receive all information. |
| 4 | xxxx040F | **Equate Symbol**: IwmRsnCodeStateInvDatRet
Meaning: The token value specified on the ANSTOKN keyword is associated with a WLM state that is no longer valid. The new system state is represented by the token returned in the ANSTOKN field. The answer area provided is large enough to contain the available data. However, the new answer area lengths are returned in the MINLEN and MAXLEN fields, or in the ICSQLEN field.
Action: Reinvoke the service with the token passed with the ANSTOKN keyword. |
| 8 | - | **Equate Symbol**: IwmRetCodeInvocError
Meaning: Invalid invocation environment or parameters. |
| 8 | xxxx0801 | **Equate Symbol**: IwmRsnCodeSrbMode
Meaning: Caller is in SRB mode.
Action: Avoid requesting this function while in SRB mode. |
| 8 | xxxx0803 | **Equate Symbol**: IwmRsnCodeDisabled
Meaning: Caller is disabled.
Action: Avoid requesting this function while disabled. |
| 8 | xxxx0804 | **Equate Symbol**: IwmRsnCodeLocked
Meaning: Caller is locked.
Action: Avoid requesting this function while locked. |
| 8 | xxxx0810 | **Equate Symbol**: IwmRsnCodeEutFrr
Meaning: Caller has an EUT FRR set.
Action: Avoid requesting this function with an EUT FRR set. |
| 8 | xxxx0830 | **Equate Symbol**: IwmRsnCodeBadAlet
Meaning: Caller specified an invalid alet for the storage pointed to by the ANSAREA keyword.
Action: Check for possible storage overlay of the parameter list or variable. |
Table 54. Return and Reason Codes for the IWMRCOLL Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0832</td>
<td>IwmRsnCodeStateInvNoDatRet</td>
<td>The token value specified on the ANSTOKN keyword is associated with a WLM state that is no longer valid. A new token has been returned. The storage provided is not large enough to contain all of the data available because of the state change. No data was returned. The length of the new answer area required is returned in the MINLEN and MAXLEN fields, or the ICSQLEN field.</td>
<td>Reinvoke the service with an output area of sufficient size to receive all information and the token passed with the ANSTOKN keyword.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0833</td>
<td>IwmRsnCodeNotInCompatMode</td>
<td>ICS information cannot be returned because WLM is not running in compatibility mode.</td>
<td>Reinvoke the service by using ICS=NO.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0835</td>
<td>IwmRsnCodeBadIcsAlet</td>
<td>Caller specified an invalid alet for the storage pointed to by the ICSAREA keyword.</td>
<td>Check for possible storage overlay of the parameter list or variable.</td>
</tr>
<tr>
<td>C</td>
<td>-</td>
<td>IwmRetCodeEnvError</td>
<td>Environmental error</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>IwmRsnCodeNoStg</td>
<td>Storage is not available for the request.</td>
<td>There is a storage shortage. The function may work successfully at a later time.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C0A</td>
<td>IwmRsnCodeSuspended</td>
<td>Data collection is suspended as a result of a component error. No data can be returned for this IWMRCOLL invocation, future invocations may be successful.</td>
<td>Reinvoke this service.</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>IwmRetCodeCompError</td>
<td>Component error</td>
<td>No action required. The function may work successfully if invoked again.</td>
</tr>
</tbody>
</table>

Example

For workload activity information from a system running in goal mode, specify:

```plaintext
IWMRCOLL ICS=NO,ANSAREA=(R6),ANSLEN=(R8), MINLEN=QMINLEN,MAXLEN=QMAXLEN, RSNCODE=RSN,MF=(E,MFRCOLL)
```
Chapter 48. IWMRESET – Change a Job

The IWMRESET macro allows the caller to perform the same functions as the RESET system command. If the system is running in workload management goal mode, the caller can:

- Change the service class of work currently in execution, with the SRVCLASS keyword. Resetting to a new service class also resumes quiesced work.
- Quiesce work currently in execution, with the QUIESCE keyword.
- Reclassify work currently in execution according to the service policy in effect, with the RESUME keyword. The RESUME keyword also resumes quiesced work.

The system does not allow every address space to be reset. The IWMRESET service has the same restrictions as the RESET system command. Refer to z/OS MVS System Commands for more information.

Environment

The requirements for the caller are:

Minimum authorization:	Supervisor state or program key mask (PKM) allowing keys 0-7.
Dispatchable unit mode:	Task
Cross memory mode:	PASN=HASN=SASN
AMODE:	31-bit
ASC mode:	Primary
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No locks may be held.
Control parameters:	Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restriction

The caller cannot have an EUT FRR established.

Input Register Information

Before issuing the IWMRESET macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.
Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
MAIN Diagram
```

```
(name)_IWMRESET
 JOBNAME=jobname
 ASID=asid

,FUNCTION=RESET
 ,SRVCLASS=srvclass
 ,USERID=userid
 ,PRODUCT=product

,RETCODE=retcode
 ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION
 ,PLISTVER=MAX
 ,PLISTVER=0

,MF=S

,MF=(L,, list addr)
 attr
 COMPLETE

,MF=(E,, list addr)
 COMPLETE

,MF=(M,, list addr)
 COMPLETE

```

IWMRESET Macro

410 z/OS V1R11.0 MVS Programming: Workload Management Services
IWMRESET Macro

Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMRESET macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

ASID=asid
A parameter which contains the address space identifier (ASID) of the job you want to change.

To code: Specify the RS-type address, or address in register (2)-(12), of a halfword field.

```
,FUNCTION=RESET
,FUNCTION=QUIESCE
,FUNCTION=RESUME
```
An optional parameter, which indicates the function to perform against the job. The default is FUNCTION=RESET.

```
,FUNCTION=RESET
  Requests that the job's service class or performance group be changed.
```

```
,FUNCTION=QUIESCE
  Requests that the job be quiesced. If the job is non-swappable, it is given the lowest possible performance characteristics.
```

```
,FUNCTION=RESUME
  Requests that the job be reclassified according to the service policy in effect. This undoes a prior request to reset the job to a particular service class, or to quiesce the job.
```

JOBNAME=jobname
A required input parameter which contains the jobname of the job you want to change. If there is more than one executing job with this jobname, you must specify the ASID parameter to identify the specific job.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

```
,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)
```
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The
IWMRESET Macro

list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines that need to provide different options according to user-provided input. Use the list form to define a storage area; use the modify form to set the appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of IWMRESET in the following order:

- Use IWMRESET ...MF=(M,list-addr,COMPLETE) specifying appropriate parameters, including all required ones.
- Use IWMRESET ...MF=(M,list-addr,NOCHECK), specifying the parameters that you want to change.
- Use IWMRESET ...MF=(E,list-addr,NOCHECK), to execute the macro.

, list addr
The name of a storage area to contain the parameters. For MF=S, MF=E, and MF=M, this can be an RS-type address or an address in register (1)-(12).

, attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

, COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

, NOCHECK
Specifies that the system is not to check for required parameters and is not to supply defaults for omitted optional parameters.

, PLISTVER=IMPLIED_VERSION
, PLISTVER=MAX
, PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.

- 0, if you use the currently available parameters.

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0

PRODUCT=product
A required input parameter, which contains the product name that is requesting the job be changed. The product name is included in the SMF 90 subtype 30 record created by IWMRESET.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SRVCLASS=srvclass
When FUNCTION=RESET is specified, a required input parameter which is the service class to be assigned to the job. Resetting to a new service class also resumes quiesced work.

When you reset a server to a new service class, the goals associated with that service class are ignored. However the resource group associated with the new service class is honored. The one exception where the goal for a server is honored is when the transactions it is serving have been assigned a discretionary goal.

To code: Specify the RS-type address of an 8-character field.

,USERID=userid
A required input parameter, which contains the id of the user who is requesting the job be changed. The userid is included in the SMF 90 subtype 30 record created by IWMRESET. If there is no userid available, the caller should pass blanks.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWMRESET macro returns control to your program:
- GPR 15 (and retnode, if you coded RETCODE) contains a return code.
IWMRESET Macro

- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 55. Return and Reason Codes for the IWMRESET Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: iwmRetCodeOk</td>
<td>Meaning: Successful completion. Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: iwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0408</td>
<td>Equate Symbol: iwmRsnCodeWorkNotFound</td>
<td>Meaning: A job matching the input job name or ASID was not found. Action: The caller should report the error appropriately.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: iwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>Equate Symbol: iwmRsnCodeSRBMode</td>
<td>Meaning: Caller is in SRB mode. Action: Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: iwmRsnCodeDisabled</td>
<td>Meaning: Caller is disabled. Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: iwmRsnCodeLocked</td>
<td>Meaning: Caller is locked. Action: Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0810</td>
<td>Equate Symbol: iwmRsnCodeEutFrr</td>
<td>Meaning: Caller has EUT FRR established. Action: Avoid requesting this function with an EUT FRR set.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: iwmRsnCodeAmode24</td>
<td>Meaning: Caller invoked service but was in 24 bit addressing mode. Action: Request this function only when you are in 31 bit addressing mode.</td>
</tr>
</tbody>
</table>
IWMRESET Macro

Table 55. Return and Reason Codes for the IWMRESET Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>Equate Symbol: IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not in primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>Equate Symbol: IwmRsnCodeRsvdNot0</td>
<td>Reserved field in parameter list was non-zero.</td>
<td>Check for use of keywords that are not supported by the MVS release on which the program is running.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0829</td>
<td>Equate Symbol: IwmRsnCodeBadOptions</td>
<td>Parameter list omits required parameters.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0841</td>
<td>Equate Symbol: IwmRsnCodeXMemMode</td>
<td>Caller is in cross memory mode.</td>
<td>Invoke the function in non-cross memory mode.</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeEnvError</td>
<td>Environmental error.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C28</td>
<td>Equate Symbol: IwmRsnCodeBadServiceClass</td>
<td>The input service class name is not defined in the active workload manager policy.</td>
<td>Record or report the error if appropriate.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C2D</td>
<td>Equate Symbol: IwmRsnCodeBadPerformanceGroup</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C2E</td>
<td>Equate Symbol: IwmRsnCodeWrongMode</td>
<td>The caller tried to perform a goal-mode function in compatibility mode, or vice versa.</td>
<td>Record or report the error if appropriate.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C2F</td>
<td>Equate Symbol: IwmRsnCodeSystemSpace</td>
<td>The input address space is either a system component address space or a privileged address space. It cannot be reset.</td>
<td>With APAR OA12625 installed, the restriction for privileged address spaces has been removed, meaning that privileged address spaces can be reset. System component address space still cannot be reset.</td>
</tr>
</tbody>
</table>
Table 55. Return and Reason Codes for the IWMRESET Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>C xxxx0C30</td>
<td>Equate Symbol: IwmRsnCodeDuplicateJobs</td>
<td>Meaning: There is more than one job active with the same jobname.</td>
<td>Action: Specify the ASID parameter to identify the specific job.</td>
</tr>
<tr>
<td>C xxxx0C31</td>
<td>Equate Symbol: IwmRsnCodeWrongASID</td>
<td>Meaning: The active job in the specified address space has a different jobname than the one passed by the caller.</td>
<td>Action: Record or report the error if appropriate.</td>
</tr>
<tr>
<td>C xxxx0C32</td>
<td>Equate Symbol: IwmRsnCodeNotEligibleForSrvClass</td>
<td>Meaning: The active job in the specified address space is not eligible for reset into the specified system service class. Only address spaces created with the ASCRE HIPRI attribute are eligible for reset into the SYSTEM service class.</td>
<td>Action: Record or report the error if appropriate.</td>
</tr>
</tbody>
</table>

Example

To change the service class of the job executing in the ASID at location JOBASID:

```plaintext
IWMRESET ASID=JOBASID,SRVCLASS=SCNAME,USERID=USR,
          PRODUCT=PROD
```

* Storage areas
 * JOBASID DS H Contains the address space id of the job
 * SCNAME DS CLB Contains the service class name to assign to the job
 * USR DS CLB Contains the id of the user who is requesting the change
 * PROD DS CLB Contains the product name of the code invoking IWMRESET
Chapter 49. IWMRPT – Report on Work Request Completion

The primary purpose of this service is to allow MVS to obtain the total response time for a completed work request and its corresponding service class and (when customer specified) its report class.

The second purpose in using this service is to allow MVS to know which address spaces were involved in serving the service class.

When a monitoring token is provided, the third purpose in using this service is to allow MVS to know that the monitoring environment should no longer be associated with the now completed work request. The use of this service will render the information associated with the monitoring environment unpredictable. To associate a work request with the monitoring environment following use of Report, first use Initialize Mode(Reset) or Relate/Transfer.

Environment

The requirements for the caller are:

Minimum authorization: Supervisor state. PSW key must either be 0 or match the value supplied on IWM4CON. PSW key must either be 0 or match the value supplied on IWM4MCRE when a monitoring token is passed. PSW key must be 0-7. See restrictions below.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: LOCAL lock held

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.

Restrictions

1. Caller is responsible for error recovery
IWMRPT Macro

2. Though the caller is required to be enabled, this is not checked. Violation of this restriction may cause disabled program checks which would be the responsibility of the caller’s recovery to handle.

3. If a delay monitoring token is provided, then
 - The caller must serialize to prevent any delay monitoring services from being invoked concurrently for the environment represented by the monitoring token.
 - The monitoring environment must contain the information saved by IWM4MINI, not IWMMRELX
 - If the key specified on IWM4MCRE was a system key (0-7), then the current PSW key must be 0 or match the key specified on IWM4MCRE.
 - If the key specified on IWM4MCRE was a user key (8-F), then:
 - PSW key must be 0
 - Current primary must match the primary at the time that IWM4MCRE was invoked. Calling from a subspace is not supported.

4. If the key specified on IWM4CON for the input connect token was a user key (8-F), then:
 - PSW key must be 0
 - Current primary must match the primary at the time that IWM4CON was invoked. Calling from a subspace is not supported.

5. This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to the PLISTVER parameter description for further information.

Input Register Information

Before issuing the IWMRPT macro, the caller must ensure that the following general purpose registers (GPRs) contain the specified information:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>The address of a 72-byte standard save area in the primary address space</td>
</tr>
</tbody>
</table>

Before issuing the IWMRPT macro, the caller does not have to place any information into any AR unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system.</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system.</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.
Performance Implications

None.

Syntax

main diagram

Parameters

The parameters are explained as follows:
IWMRPT Macro

name

An optional symbol, starting in column 1, that is the name on the IWMRPT macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,ARRIVALTIME=arrivaltime

When MONTKNI=NO is specified, a required input parameter, which contains the arrival time for the work unit in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,BLOCK_TIME=block_time

When MONTKNI=NO is specified, an optional input parameter, which contains the duration where the work request has been blocked. The format of the field is STCK. A work request is blocked, when the transaction processing is waiting on an external transaction processing or some other event to complete. The default is NO_BLOCK_TIME indicates that no block time is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,CONNTKN=conntkn

A required input parameter, which is returned by IWM4CON.

If a monitoring token is passed (MONTKNI(YES)), AND this monitoring token was obtained using a connect token on IWM4MCRE, then the latter connect token is expected to be the same as that specified for IWMRPT.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,ENDTIME=endtime

An optional input parameter, which specifies the ending time for the transaction (typically, when the output is sent or available to be sent) in STCK format. The default is CURRENT. indicates that the current time should be used.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

,EWLM_CHCORR=ewlm_chcorr

When MONTKNI=NO is specified, an optional input parameter, which contains the cross-platform Enterprise Workload Management (EWLM) correlator associated with the work request.

Note: If this correlator is not a valid ARM correlator, return code 8 and reason code IwmRsnCodeInvalidEWLMCorr is returned to the caller (see return code section below). If the correlator is valid, but cannot be understood by EWLM (no EWLM format), the correlator is silently ignored and the work request will not be reported to EWLM.

The EWLM_CHCORR and EWLM_CHCTKN parameters are mutually exclusive.

The default is NO_EWLM_CHCORR. It indicates that no EWLM correlator is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,EWLM_CHCTKN=ewlm_chctkn
When MONTKNI=NO is specified, an optional input parameter, which contains the cross-platform Enterprise Workload Management (EWLM) correlator token associated with the work request. The EWLM_CHCORR and EWLM_CHCTKN parameters are mutually exclusive. The default is NO_EWLM_CHCTKN. It indicates that no EWLM correlator token is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

When EWLM_CHCORR=ewlm_chcorr and MONTKNI=NO are specified, an optional input parameter, which contains the cross-platform Enterprise Workload Management (EWLM) parent correlator associated with the work request. The default is NO_EWLM_PACORR. It indicates that no EWLM parent correlator is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

When EXSTARTTIMEP=YES and MONTKNI=NO are specified, a required input parameter, which contains the start execution time in STCK format. Note that this should only be used when IWMMNTFY was NOT used to pass the execution time for this work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

When MONTKNI=NO is specified, a required parameter, which indicates whether the start execution time value is passed.

EXSTARTTIMEP=NO indicates that the start execution time value is not passed.

EXSTARTTIMEP=YES indicates that the start execution time value is passed. Note that this should only be used when IWMMNTFY was NOT used to pass the execution time for this work request.

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.
Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

(list addr)
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

(attr)
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

(COMPLETE)
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

(MONTKN=montkn)
When MONTKNI=YES is specified, a required input parameter, which contains the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

(MONTKNI=YES, MONTKNI=NO)
A required parameter, which indicates whether a delay monitoring token is provided.

(MONTKNI=YES)
indicates that a delay monitoring token is provided.

(MONTKNI=NO)
indicates that no delay monitoring token is provided.

(OK_THRESHOLD=ok_threshold)
When STATUS=NORMAL_LE_VAL is specified, a required input parameter, which contains the threshold value at which the work request is considered to have ended normally.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

(OK_THRESHOLD=ok_threshold)
When STATUS=NORMAL_GE_VAL is specified, a required input parameter, which contains the threshold value at which the work request is considered to have ended normally.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

(PLISTVER=IMPLIED_VERSION, PLISTVER=MAX, PLISTVER=0, PLISTVER=1)
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, which supports all parameters except those specifically referenced in higher versions.

- **1**, which supports both the following parameters and those from version 0:

<table>
<thead>
<tr>
<th>BLOCK_TIME</th>
<th>EWLM_CHCTKN</th>
<th>WORK_AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWLM_CHCORR</td>
<td>EWLM_PACORR</td>
<td>WORKREQ_STA</td>
</tr>
</tbody>
</table>

 To code: Specify one of the following:

 - IMPLIED_VERSION
 - MAX
 - A decimal value of 0, or 1

 PSWKEY=pswkey

 When PSWKEYP=VALUE and TRAXFRPT=NO are specified, a required input parameter, which contains the current PSW key. The low order 4 bits (bits 4-7) contain the key value. The high order 4 bits (bits 0-3) contain zeros.

 To code: Specify the RS-type address, or address in register (2)-(12), of an 8 bit field.

 PSWKEYP=CURRENT

 PSWKEYP=VALUE

 When TRAXFRPT=NO is specified, an optional parameter, which describes how to determine the current PSW key. The default is PSWKEYP=CURRENT.

 - **PSWKEYP=CURRENT**
 indicates that the current PSW key should be determined.

 - **PSWKEYP=VALUE**
 indicates that the key is being passed explicitly via PSWKEY.

 RETCODE=retcode

 An optional output parameter into which the return code is to be copied from GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

 RSNCODE=rsncode

 An optional output parameter into which the reason code is to be copied from GPR 0.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

 SERVCLS=servcls

 When MONTKNI=NO is specified, a required input parameter, which contains the service class token.
IWMRPT Macro

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,STATUS=NORMAL
,STATUS=ABNORMAL
,STATUS=NORMAL_LE_VAL
,STATUS=NORMAL_GE_VAL
An optional parameter, which indicates whether the portion of the work request associated with the Report call has completed normally or not. The default is STATUS=NORMAL.

,STATUS=NORMAL
indicates that work request execution associated with the Report call has completed normally.

,STATUS=ABNORMAL
indicates that work request execution associated with the Report call has completed abnormally.

,STATUS=NORMAL_LE_VAL
indicates that work request execution associated with the Report call has completed normally PROVIDED the work completion code is below or at (<=) the threshold value given by OK_THRESHOLD.

,STATUS=NORMAL_GE_VAL
indicates that work request execution associated with the Report call has completed normally PROVIDED the work completion code is above or at (>=) the threshold value given by OK_THRESHOLD.

,SYSEVPL=sysevpl
When TRAXFRPT=YES is specified, a required input parameter, which is the fully initialized SYSEVENT parameter list, as mapped by IHATRBPL.

To code: Specify the RS-type address, or address in register (2)-(12), of a 40-character field.

TRAXFRPT=NO
TRAXFRPT=YES
An optional parameter, which indicated prior to z/OS R3 whether a SYSEVENT TRAXFRPT should be issued when the system was in compatibility mode. This has become irrelevant. However, for compatibility reasons TRAXFRPT can still be set but has no effect. The default is TRAXFRPT=NO.

TRAXFRPT=NO
indicates that no SYSEVENT TRAXFRPT should be issued.

TRAXFRPT=YES
indicated prior to z/OS R3 that a SYSEVENT TRAXFRPT should be issued when the system was in compatibility mode. This has become irrelevant. However, for compatibility reasons TRAXFRPT can still be set but has no effect.

,WORK_AREA=work_area
,WORK_AREA=NO_WORK_AREA
When MONTKNI=NO is specified, an optional input parameter, which is used as a work area by WLM when MONTKNI(NO) is specified and either EWLM_CHCORR or EWLM_CHTKN is specified on the IWMRPT invocation (in these cases WORK_AREA is required). The work area must begin on a doubleword boundary and must be accessible in the current PSW key when the macro is invoked. The default is NO_WORK_AREA. It indicates that no work area is passed.
IWMRPT Macro

To code: Specify the RS-type address, or address in register (2)-(12), of a 256-character field.

,WORK_COMPCD=work_compcd
,WORK_COMPCD=NO_WORK_COMPCD

When STATUS=NORMAL is specified, an optional input parameter, which contains the completion/return code for the work request execution associated with the Report call. The default is NO_WORK_COMPCD. indicates that NO completion/return code is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,WORK_COMPCD=work_compcd
,WORK_COMPCD=NO_WORK_COMPCD

When STATUS=ABNORMAL is specified, an optional input parameter, which contains the completion/return code for the work request execution associated with the Report call. The default is NO_WORK_COMPCD. indicates that NO completion/return code is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,WORK_COMPCD=work_compcd

When STATUS=NORMAL_LE_VAL is specified, a required input parameter, which contains the completion/return code for the work request execution associated with the Report call.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,WORK_COMPCD=work_compcd

When STATUS=NORMAL_GE_VAL is specified, a required input parameter, which contains the completion/return code for the work request execution associated with the Report call.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,WORKREQ_STA=workreq_sta
,WORKREQ_STA=IWMEWLMARMSTATUSNONE

An optional input parameter, which contains the completion status code of the work request. Available completion status codes (defined in macro IWMYCON) are the following:

- IwmEwlArmStatusGood(0)
- IwmEwlArmStatusAborted(1)
- IwmEwlArmStatusFailed(2)
- IwmEwlArmStatusUnknown(3)

These codes correspond to status codes in the OpenGroup ARM 4.0 Standard. For further information about the meaning of the status codes refer to the ARM 4.0 Standard at http://www.opengroup.org/management/arm. The default is IWMEWLMARMSTATUSNONE. This indicates that work request completion status should be derived from the passed STATUS parameter value.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

Chapter 49. IWMRPT – Report on Work Request Completion 425
IWMRPT Macro

ABEND Codes

None.

Return and Reason Codes

When the IWMRPT macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 56. Return and Reason Codes for the IWMRPT Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Meaning: Successful completion. Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0401</td>
<td>IwmRsnCodeNoWLM</td>
<td>Meaning: System does not support delay monitoring services. This return code is only set when the MVS release is prior to MVS/ESA SP5.1.0. Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0405</td>
<td>IwmRsnCodeGoalNoMonEnv</td>
<td>Meaning: System is in goal mode but the input monitoring token indicates no monitoring environment was established, hence MVS did not receive the information. Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0409</td>
<td>IwmRsnCodeNoConn</td>
<td>Meaning: Connect token does not reflect a successful Connect. The system did not receive the information (applies to both goal mode and compatibility mode). No SYSEVENT TRAXFRPT was issued. Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080C</td>
<td>IwmRsnCodeMonEnvLacksData</td>
<td>Meaning: Input monitoring environment does not contain the necessary information. Action: Ensure that the monitoring environment was established with the necessary information.</td>
</tr>
</tbody>
</table>
Table 56. Return and Reason Codes for the IWMRPT Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx080E | IwmRsnCodeArrTimeGTEndTime | **Meaning:** Input arrival time later than end time.
Action: Check for possible storage overlay of the parameter list or variable. |
| 8 | xxxx0820 | IwmRsnCodeBadMonEnv | **Meaning:** Input monitoring environment does not pass short form validity checking.
Action: Check for possible storage overlay. |
| 8 | xxxx0821 | IwmRsnCodeBadConn | **Meaning:** Input connect token does not pass validity checking.
Action: Check for possible storage overlay. |
| 8 | xxxx082D | IwmRsnCodeExStTimeGTEndTime | **Meaning:** Execution start time greater than execution end time
Action: Check for possible storage overlay of the parameter list or variable. |
| 8 | xxxx0840 | IwmRsnCodeServiceNotEnabled | **Meaning:** Caller’s space connection is not enabled for this service.
Action: Avoid requesting this function under the input connection. IWM4CON options must be specified previously to enable this service. |
| 8 | xxxx087E | IwmRsnCodeRoMonEnv | **Meaning:** Input monitoring environment is report-only.
Action: Avoid calling this function for report-only monitoring environments. |
| 8 | xxxx0894 | IwmRsnCodeInvalidEWLMCorr | **Meaning:** Passed correlator information (EWLM_CHCORR, EWLM_PACORR, or EWLM_CHCTKN) did not pass validity checking, that means: the architected ARM correlator length field in the first two Bytes of the correlator (token) is either less than 4 ('0004'x) or greater than 512 ('0200'x).
Action: Check the specification of the correlator information. |
| 8 | xxxx0895 | IwmRsnCodeEWLMServNotEnabled | **Meaning:** Service is not enabled because caller invoked the IWMCONN service with EWLM=NO.
Action: Specify the parameter EWLM_CHCORR, EWLM_PACORR, EWLM_CHCTKN, or WORKREQ_STA only when connected with EWLM=YES. |
Table 56. Return and Reason Codes for the IWMRPT Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0897</td>
<td>IwmRsnCodeTranStatusInvalid</td>
<td>Passed work request completion status is not valid.</td>
<td>Check the EWLM ARM interface specification for valid completion status values.</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>IwmRetCodeEnvError</td>
<td>Environmental error.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C02</td>
<td>IwmRsnCodeReportingSusp</td>
<td>SYSEVENT TRAXFRPT invoked, but reporting is temporarily suspended for one of the following reasons:</td>
<td>Invoke the function when the conditions are alleviated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• RMF workload activity reporting is not active</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• There is no installation control specification (IEAICSxx parmlib member with RPGN specified for some subsystem other than TSO) in effect. No data reported but a later reissue could be successful.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C03</td>
<td>IwmRsnCodeSyseventNoWorkElt</td>
<td>SYSEVENT TRAXFRPT invoked, but no work element was available to save the input information.</td>
<td>Invoke the function when the conditions are alleviated. This condition may be due to a common storage shortage condition.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C05</td>
<td>IwmRsnCodeRptNoWorkElt</td>
<td>Report routine invoked, but no work element was available to save the input information.</td>
<td>Invoke the function when the conditions are alleviated. This condition may be due to a common storage shortage condition.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C06</td>
<td>IwmRsnCodeNoEndTime</td>
<td>No end time was supplied to the service and STCK gave a non-zero condition code.</td>
<td>No action required.</td>
</tr>
</tbody>
</table>
Chapter 50. IWMRQRY – Collecting Address Space Delay Information

IWMRQRY is the interface reporting products should use to obtain address space related general execution delays. Enclave related information may optionally be requested.

The macro will complete the parameter list with caller specified data and invoke a stacking, space switching PC routine in the WLM address space. Address space related data collected will be aggregated on an address space basis, while Enclave related data (if requested) will be aggregated by Enclave.

If a user does not know the size of the answer area required by the service, he should code issue IWMRQRY with ANSLEN set to zero. The length of the answer area will be placed in QRYLEN.

The IWMRQRY macro is provided in list, execute, and standard form. The list form accepts no variable parameters and is used only to reserve space for the parameter list. The standard form is provided for use with routines which do not require reentrant code. The execute form is provided for use with the list format for reentrant routines.

The parameter list must be in the caller’s primary address space, or in a dataspace accessible by the current unit of work’s dispatchable unit access list (DUal).

Environment

The requirements for the caller are:

Minimum authorization:	Supervisor state or program key mask (PKM) allowing keys 0-7.
Dispatchable unit mode:	Task
Cross memory mode:	Any PASN, any HASN, any SASN
AMODE:	31-bit
ASC mode:	Primary or access register (AR) Any P,S,H.
If in Access Register ASC mode, specify SYSSTATE ASCENV=AR before invoking this macro.	
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No locks may be held.
Control parameters:	The caller of IWMRQRY must provide storage for an answer area mapped by IWMWRQAA. This answer area may reside in the caller’s primary address space, or in a dataspace accessible via the current unit of work’s dispatchable unit access list (DUal).

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The functions provided by this macro are only supported on MVS/ESA SP5.2.0 or later.
IWMRQRY Macro

3. The ENCLAVES=ONE keyword is only supported on OS/390 R4 or later. If code with this keyword expansion is executed on lower OS/390 releases a return code of 8 and reason code of xxxx0828 (constant IwmRsnCodeBadVersion) will be returned indicating that the version is incorrect.
4. The macro IWMYCON must be included to use this macro.
5. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
6. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

The caller cannot have an EUT FRR established.

Input Register Information

Before issuing the IWMRQRY macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as a work register by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.
IWMRQRY Macro

Parameters

The parameters are explained as follows:

`name`
An optional symbol, starting in column 1, that is the name on the IWMRQRY macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

`,ANSAREA=ansarea`
A required output parameter, variable specifying an area to contain the data returned by the query service. If the length of the output area is insufficient, no data is returned.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

`,ANSLEN=anslen`
A required input parameter, which contains the length of the answer area.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

`,ASID=asid`
When INFO=ONE is specified, a required input parameter, which contains the ASID of the address space to be queried.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

`,ENCLAVES=NONE`
,ENCLAVES=ALL
,ENCLAVES=ONE
An optional parameter, which indicates whether Enclave information is requested. The default is ENCLAVES=NONE.
IWMRQRY Macro

,ENCLAVES=NONE
 indicates that no Enclave information is requested.

,ENCLAVES=ALL
 indicates that information for all Enclaves should be returned.

,ENCLAVES=ONE
 indicates that Enclave information is requested for a particular Enclave.
 This ENCLAVES=ONE keyword is only supported on OS/390 R4 or later.

,ETOKEN=etoken
 When ENCLAVES=ONE is specified, a required input parameter, which
 contains the Enclave token of the Enclave to be queried.

 To code: Specify the RS-type address, or address in register (2)-(12), of an
 8-character field.

INFO=ALL
INFO=ONE
 A required parameter, which indicates what information the query service is to
 return

INFO=ALL
 indicates that information for all address spaces should be returned.

INFO=ONE
 indicates that address space information is requested for a particular asid.

,MF=S
,MF=(L, list addr)
,MF=(L, list addr, attr)
,MF=(L, list addr, 0D)
,MF=(E, list addr)
,MF=(E, list addr, COMPLETE)
 An optional input parameter that specifies the macro form.
 Use MF=S to specify the standard form of the macro, which builds an inline
 parameter list and generates the macro invocation to transfer control to the
 service. MF=S is the default.
 Use MF=L to specify the list form of the macro. Use the list form together with
 the execute form of the macro for applications that require reentrant code. The
 list form defines an area of storage that the execute form uses to store the
 parameters. Only the PLISTVER parameter may be coded with the list form of
 the macro.
 Use MF=E to specify the execute form of the macro. Use the execute form
 together with the list form of the macro for applications that require reentrant
 code. The execute form of the macro stores the parameters into the storage
 area defined by the list form, and generates the macro invocation to transfer
 control to the service.

 ,list addr
 The name of a storage area to contain the parameters. For MF=S and
 MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
 An optional 1- to 60-character input string that you use to force boundary
 alignment of the parameter list. Use a value of 0F to force the parameter
 list to a word boundary, or 0D to force the parameter list to a doubleword
 boundary. If you do not code attr, the system provides a value of 0D.
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

PLISTVER=IMPLIED_VERSION
PLISTVER=MAX
PLISTVER=0
PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.
- **0**, if you use only the following parameters:

 ANSAREA ASID INFO
 ANSLEN ENCLAVES QUERYLEN

- **1**, if you use any of the following parameters, and parameters from version 0, or both:

 ETOKEN

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0 or 1

QUERYLEN=querylen

A required output parameter, which contains the length of the storage area required by the IWMRQRY service. The length of the area may change between invocations.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

RSNCODE=rsnocode

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).
Return and Reason Codes

When the IWMRQRY macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 57. Return and Reason Codes for the IWMRQRY Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
<td>None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0401</td>
<td>IwmRsnCodeNoWLM</td>
<td>System does not support workload activity query services. The query output area has not been modified. This return code is set only when the MVS release is prior to MVS/ESA SP5.1.0.</td>
<td>None required.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx040A</td>
<td>IwmRsnCodeOutputAreaTooSmall</td>
<td>The output area supplied is too small to receive all the available information.</td>
<td>None required. If necessary, reinvoke the service with an output area of sufficient size to receive all information.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx042C</td>
<td>IwmRsnCodeEtokenNoMatch</td>
<td>No Enclave information matching the input Enclave token was found. Enclave related information is not returned.</td>
<td>None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>IwmRsnCodeSrbMode</td>
<td>Caller is in SRB mode.</td>
<td>Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
<td>Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
</tbody>
</table>
Table 57. Return and Reason Codes for the IWMRQRY Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is locked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>Equate Symbol: IwmRsnCodeBadPl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Error accessing parameter list.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0810</td>
<td>Equate Symbol: IwmRsnCodeEutFrr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller has EUT FRR established.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function with an EUT FRR set.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0812</td>
<td>Equate Symbol: IwmRsnCodeBadAscb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The ASID value specified on the ASID keyword is invalid.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Version number in parameter list is not valid or version length field is not valid.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0830</td>
<td>Equate Symbol: IwmRsnCodeBadAlet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller has passed an invalid ALET.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay of the parameter list or variable.</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeEnvError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Environmental error.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>Equate Symbol: IwmRsnCodeNoStg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Storage is not available for the request.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: There is a storage shortage. The function may work successfully at a later time.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C0A</td>
<td>Equate Symbol: IwmRsnCodeSuspended</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Data sampling is suspended as a result of a component error. No data can be returned for this IWMRQRY invocation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Reinvoke the function as it may be successful.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C0B</td>
<td>Equate Symbol: IwmRsnCodeStateChanged</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: A state change (a policy activation) occurred while the data for the last sampling interval was being collected. No data is returned for this invocation of IWMRQRY.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: The current sampling interval should be bypassed, future invocations of IWMRQRY for subsequent sampling intervals should begin returning data again.</td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol Meaning and Action</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Component error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: No action required. The function may be successful if invoked again.</td>
</tr>
</tbody>
</table>
Chapter 51. IWMSCORF – Setting Correlator Flags

This service allows to set or clear certain correlator flags in a provided EWLM correlator. These flags are contained in byte 3 of the architected Application Response Measurement (ARM) correlator format.

For further details about ARM, refer to the ARM V4 OpenGroup standard at http://www.opengroup.org/arm.

Environment

The requirements for the caller are:

Minimum authorization:	Problem state or supervisor state.
Dispatchable unit mode:	Task or SRB
Cross memory mode:	Any PASN, any HASN, any SASN
AMODE:	31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.
ASC mode:	Primary
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No restriction.
Control parameters:	Control parameters must be in the primary address space.

Programming Requirements

None.

Restrictions

1. The caller is responsible for error recovery.
2. The caller must serialize to prevent any correlator from being accessed concurrently.

Input Register Information

Before issuing the IWMSCORF macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>
IWMSCORF Macro

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
name

IWMSCORF

EWLM_CORR=ewlm_corr

,SET_ASYNC_FLAG=NO_SET_ASYNC
,SET_ASYNC_FLAG=OFF
,SET_ASYNC_FLAG=ON

,SET_INDEP_FLAG=NO_SET_INDEP
,SET_INDEP_FLAG=OFF
,SET_INDEP_FLAG=ON

,RETCODE=retcode
,RSNCODE=rsncode

,MF=(M,addr)

,COMPLETE

,NOCHECK
```

Parameters

The parameters are explained as follows:

`name`
An optional symbol, starting in column 1, that is the name on the IWMSCORF macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

`EWLM_CORR=ewlm_corr`
A required input/output parameter, which contains an EWLM (ARM) correlator. If the correlator is invalid (the architected length is less than 4 or greater than 512), no change is made to the ASYNC_FLAG or INDEP_FLAG.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

`RETCODE=retcode`
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

`RSNCODE=rsncode`
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

`SET_ASYNC_FLAG=NO_SET_ASYNC`

`SET_ASYNC_FLAG=OFF`

`SET_ASYNC_FLAG=ON`
IWMSCORF Macro

,SET_ASYNC_FLAG=ON
An optional parameter, which requests to update the asynchronous flow flag.
The default is NO_SET_ASYNC.

,SET_ASYNC_FLAG=NO_SET_ASYNC
Indicates that parameter SET_ASYNC_FLAG was not specified and the
asynchronous flow flag in the EWLM correlator will not be changed.

,SET_ASYNC_FLAG=OFF
Requests to clear the asynchronous flow flag. The independent flag is also
cleared, because the independent flag may only be ON if the asynchronous
flag is ON.

,SET_ASYNC_FLAG=ON
Requests to set the asynchronous flow flag to ON.

,SET_INDEP_FLAG=NO_SET_INDEP
,SET_INDEP_FLAG=OFF
,SET_INDEP_FLAG=ON
An optional parameter, which requests to update the independent flag. The
default is NO_SET_INDEP.

,SET_INDEP_FLAG=NO_SET_INDEP
Indicates that parameter SET_INDEP_FLAG was not specified and the
independent flag in the EWLM correlator will not be changed.

,SET_INDEP_FLAG=OFF
Requests to clear the independent flag.

,SET_INDEP_FLAG=ON
Requests to set the independent flag to ON. The independent flag
should only be set if the asynchronous flag is already set or will be set
by this request.

ABEND Codes
None.

Return and Reason Codes
None.
IWMSCORF Macro
Chapter 52. IWMSEDES – Scheduling Environments
Determine Execution Service

The IWMSEDES service determines if a scheduling environment is available on a
specified system. A scheduling environment is a list of resource names and their
required states. If all of the resources are in the required state, the scheduling
environment is available. If any of the resources is not in the required state, the
scheduling environment is not available.

The caller can use the IWMSEDES service to perform certain work only when a
particular scheduling environment is available.

If the scheduling environment is available, the caller receives return code
IwmRetCodeOK. If the scheduling environment is not available, the caller receives
return code IwmRetCodeWarning and reason code
IwmRsnCodeSCHENVNotAvailable.

Environment

The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by
IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable
when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRNSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions

None.
IWMSEDES Macro

Input Register Information

Before issuing the IWMSEDES macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

Parameters

The parameters are explained as follows:
An optional symbol, starting in column 1, that is the name on the IWMSEDES macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,FM=S
,FM=(L,,list addr)
,FM=(L,,list addr,attr)
,FM=(L,,list addr,0D)
,FM=(E,,list addr)
,FM=(E,,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,LIST addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
IWMSEDES Macro

the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, if you use the currently available parameters.

To code: Specify one of the following:
- `IMPLIED_VERSION`
- `MAX`
- A decimal value of 0

,RETCODE= `retcode`
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE= `rsncode`
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SCHENV= `schenv`
A required input parameter, which contains the scheduling environment name to be checked.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

,SYSTEM_NAME= `system_name`
A required input parameter, which contains the system name to be checked.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWMSEDES macro returns control to your program:
- GPR 15 (and `retcode`, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and `rsncode`, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the **xxxx** value.

Table 58. Return and Reason Codes for the IWMSEDES Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk: Successful completion.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning: Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0425</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0426</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0427</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx042A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 58. Return and Reason Codes for the IWMSEDES Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not in primary ASC mode.</td>
<td>Request this function in primary mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>IwmRsnCodeRsvdNot0</td>
<td>Reserved field in parameter list was non-zero.</td>
<td>Request this function with reserved fields zero.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
<td>Version number in parameter list or version length field is not valid.</td>
<td>Request this function with correct version number.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>IwmRetCodeCompError</td>
<td>Component error.</td>
<td>Contact your system programmer.</td>
</tr>
</tbody>
</table>

Example

To determine if the scheduling environment at location ENVNAME is available on the system name at location SYSNAME specify:

```
IWMSEDES SCHENV=ENVNAME,
       SYSTEM_NAME=SYSNAME,
       RETCODE=RETCODE,
       RSNCODE=RSNCODE
```

* Storage areas

```
ENVNAME DS CL16          Scheduling environment name
SYSNAME DS CL8           Name of system
RETCODE DS 1F             Return code
RSNCODE DS 1F             Reason code
```
Chapter 53. IWMSEQRY – Scheduling Environments Query Service

IWMSEQRY returns information about the scheduling environments and resources that are defined in the active service policy. The information includes the current state of each scheduling environment and resource on the current system and on other systems in the sysplex.

The information is obtained without serialization. Data may not be available for all systems in the sysplex.

The information is returned in a work area that you specify. The work area must be located in the caller’s primary address space. The format of the work area is mapped by the IWMSET macro. IWMSEQRY checks if the specified work area length (ANSLEN) is large enough to receive the output. If so, IWMSEQRY returns the information in the work area and returns the actual length of the information in the QUERYLEN parameter. If the storage provided is not large enough, the caller receives reason code 040A, and IWMSEQRY returns the required amount of storage in the QUERYLEN parameter.

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Minimum authorization:</th>
<th>Supervisor state or program key mask (PKM) allowing keys 0-7.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatchable unit mode:</td>
<td>Task</td>
</tr>
<tr>
<td>Cross memory mode:</td>
<td>Any PASN, any HASN, any SASN</td>
</tr>
<tr>
<td>AMODE:</td>
<td>31-bit</td>
</tr>
<tr>
<td>ASC mode:</td>
<td>Primary</td>
</tr>
<tr>
<td>Interrupt status:</td>
<td>Enabled for I/O and external interrupts</td>
</tr>
<tr>
<td>Locks:</td>
<td>No locks may be held.</td>
</tr>
<tr>
<td>Control parameters:</td>
<td>Control parameters must be in the primary address space.</td>
</tr>
</tbody>
</table>

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRNSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restriction

The caller cannot have an EUT FRR established.
IWMSEQRY Macro

Input Register Information

Before issuing the IWMSEQRY macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

```
main diagram
```

Parameters

The parameters are explained as follows:
IWMSEQRY Macro

name
An optional symbol, starting in column 1, that is the name on the IWMSEQRY macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,ANSAREA=ansarea
A required input/output parameter, of an area to contain the data returned by IWMSEQRY. The area is mapped by macro IWMSET.

To code: Specify the RS-type address, or address in register (2)-(12), of a field.

ANSLEN=anslen
A required input parameter, which contains the length of the area provided to contain the data returned by IWMSEQRY.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,MF=S,*,MF=(L,list addr)*
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code *attr*, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION,*,PLISTVER=MAX*,*,PLISTVER=0*

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.
- **0**, if you use the currently available parameters.

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0

\[\text{QUERYLEN}=\text{querylen}\]

A required output parameter, which contains the number of bytes needed to contain the scheduling environment information.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

\[\text{RETCODE}=\text{retcode}\]

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

\[\text{RSNCOE}=\text{rsncode}\]

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes

None.

Return and Reason Codes

When the IWMSEQRY macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCOE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk: Successful completion. All requested data returned.</td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
</tr>
<tr>
<td>4</td>
<td>xxxx040A</td>
<td>Equate Symbol: IwmRsnCodeOutputAreaTooSmall</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0425</td>
<td>Equate Symbol: IwmRsnCodeNoSCHENV</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0428</td>
<td>Equate Symbol: IwmRsnCodeNoSCHENVDefined</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>Equate Symbol: IwmRsnCodeSrbMode</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>Equate Symbol: IwmRsnCodeBadPl</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0810</td>
<td>Equate Symbol: IwmRsnCodeEutFrr</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>Equate Symbol: IwmRsnCodeAscModeNotPrimary</td>
</tr>
</tbody>
</table>
Table 59. Return and Reason Codes for the IWMSEQRY Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>IwmRsnCodeRsvdNot0</td>
<td>Meaning: Reserved field in parameter list was non-zero. Action: Request this function with reserved fields zero.</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>IwmRetCodeEnvError</td>
<td>Meaning: Environmental error.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C2C</td>
<td>IwmRsnCodeCannotAccessPolicy</td>
<td>Meaning: The service cannot access the active policy possibly due to a policy activation in progress. Action: The caller can try the service again later, or return an error indication to its caller.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>IwmRetCodeCompError</td>
<td>Meaning: Component error. Action: Contact your system programmer.</td>
</tr>
</tbody>
</table>

Example

To store scheduling environment and resource information into an area whose address is in register 5 and whose length is at location ANSLEN:

```
IWMSEQRY ANSAREA=(R5),
          ANSLEN=ANSLEN,
          QUERYLEN=RQDLEN,
          RETCODE=RETCODE,
          RSNCODE=RSNCODE
```

* Storage areas
 * ANSLEN DS 1F Answer area length
 * RQDLEN DS 1F Required length
 * RETCODE DS 1F Return code
 * RSNCODE DS 1F Reason code

*
Chapter 54. IWMSESET – Scheduling Environments Set
Resource

IWMSESET allows the caller to modify the state of a resource. A resource is an abstract element that can represent an actual physical entity (such as a peripheral device), or an intangible quality (such as a certain time of day). A resource has an ON, OFF, or RESET state.

A resource is a component of a scheduling environment. A scheduling environment is a list of resource names and their required states. By modifying the state of a resource you can:
• change a scheduling environment such that the resources are in the required state thereby allowing work to be scheduled,
• change a scheduling environment such that the resources are not in the required state thereby preventing work from being scheduled.

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Minimum authorization:</th>
<th>Supervisor state or program key mask (PKM) allowing keys 0-7.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatchable unit mode:</td>
<td>Task</td>
</tr>
<tr>
<td>Cross memory mode:</td>
<td>Any PASN, any HASN, any SASN</td>
</tr>
<tr>
<td>AMODE:</td>
<td>31-bit</td>
</tr>
<tr>
<td>ASC mode:</td>
<td>Primary</td>
</tr>
<tr>
<td>Interrupt status:</td>
<td>Enabled for I/O and external interrupts</td>
</tr>
<tr>
<td>Locks:</td>
<td>No locks may be held.</td>
</tr>
<tr>
<td>Control parameters:</td>
<td>Control parameters must be in the primary address space.</td>
</tr>
</tbody>
</table>

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

None.

Input Register Information

Before issuing the IWMSESET macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.
Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

The parameters are explained as follows:

name
 An optional symbol, starting in column 1, that is the name on the IWMSESET macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

, MF=S
IWMSESET Macro

\textbf{MF=\{L, \textit{list addr}\}}

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

\textbf{, \textit{list addr}}

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

\textbf{, \textit{attr}}

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code \textit{attr}, the system provides a value of 0D.

\textbf{, COMPLETE}

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

\textbf{PLISTVER=IMPLIED_VERSION, PLISTVER=MAX, PLISTVER=0}

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.
- **0**, if you use the currently available parameters.

To code: Specify one of the following:
IWMSESET Macro

- IMPLIED_VERSION
- MAX
- A decimal value of 0

RESOURCE=resource
A required input parameter, which contains the resource name to be modified.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,STATE=ON
,STATE=OFF
,STATE=RESET
A required parameter, which sets the state of the resource.

,STATE=ON
sets the resource to the ON state.

,STATE=OFF
sets the resource to the OFF state.

,STATE=RESET
sets the resource to the RESET state.

ABEND Codes

None.

Return and Reason Codes

When the IWMSESET macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>IwmRetCodeOk</td>
<td>Successful completion. All requested data returned.</td>
</tr>
<tr>
<td>4</td>
<td>IwmRetCodeWarning</td>
<td>Successful completion, unusual conditions noted.</td>
</tr>
</tbody>
</table>
Table 60. Return and Reason Codes for the IWMSESET Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>xxxx0425</td>
<td>IwmRsnCodeNoSCHENV</td>
<td>The system does not support scheduling environments services. This return code is set for releases prior to OS/390 Release 4.</td>
<td>Avoid requesting this function on releases prior to OS/390 Release 4.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0429</td>
<td>IwmRsnCodeResourceNotFound</td>
<td>The resource specified by RESOURCE does not exist.</td>
<td>Check the specification of the RESOURCE parameter. If the RESOURCE parameter is correct, check whether the resource is defined in the active service policy.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>IwmRsnCodeSrbMode</td>
<td>Caller is in SRB mode.</td>
<td>Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
<td>Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>IwmRsnCodeBadPl</td>
<td>Error accessing parameter list.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>IwmRsnCodeAmode24</td>
<td>Caller is in 24 bit addressing mode.</td>
<td>Request this function in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not in primary ASC mode.</td>
<td>Request this function in primary mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>IwmRsnCodeRsvdNot0</td>
<td>Reserved field in parameter list was non-zero.</td>
<td>Request this function with reserved fields zero.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
<td>Version number in parameter list or version length field is not valid.</td>
<td>Request this function with correct version number.</td>
</tr>
</tbody>
</table>
IWMSESET Macro

Table 60. Return and Reason Codes for the IWMSESET Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
<td>Component error.</td>
<td>Contact your system programmer.</td>
</tr>
</tbody>
</table>

Example

To set the resource specified at location RESNAME to the ON state specify:

```plaintext
IWMSESET RESOURCE=RESNAME,
       STATE=ON,
       RETCODE=RETCODE,
       RSNCODE=RSNCODE
```

* Storage areas

* RESNAME DS CL16 Resource name
* RETCODE DS 1F Return code
* RSNCODE DS 1F Reason code
Chapter 55. IWMSEVAL – Scheduling Environments Validate Service

The IWMSEVAL service validates a scheduling environment name. The caller can validate a scheduling environment prior to associating it with a work item (such as a job or transaction).

If the scheduling environment is valid, the caller receives return code IwmRetCodeOK. If the scheduling environment is not valid, the caller receives return code IwmRetCodeWarning and reason code IwmRsnCodeSCHENVNotFound.

Environment

The requirements for the caller are:

Minimum authorization:	Supervisor state or program key mask (PKM) allowing keys 0-7.
Dispatchable unit mode:	Task
Cross memory mode:	Any PASN, any HASN, any SASN
AMODE:	31-bit
ASC mode:	Primary
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No locks may be held.
Control parameters:	Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

None.

Input Register Information

Before issuing the IWMSEVAL macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.
Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSEVAL macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
IWMSEVAL Macro

,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:
• IMPLIED_VERSION
• MAX
• A decimal value of 0
IWMSEVAL Macro

.RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

.RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SCHENV=schenv
A required input parameter, which contains the scheduling environment to be validated.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

ABEND Codes
None.

Return and Reason Codes

When the IWMSEVAL macro returns control to your program:
• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 61. Return and Reason Codes for the IWMSEVAL Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0425</td>
<td>Equate Symbol: IwmRsnCodeNoSCHENV: Meaning: The system does not support scheduling environments services. This return code is set for releases prior to OS/390 Release 4. Action: Avoid requesting this function on releases prior to OS/390 Release 4.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0426</td>
<td>Equate Symbol: IwmRsnCodeSCHENVNotFound: Meaning: The scheduling environment specified by SCHENV does not exist. Action: Check the specification of the SCHENV parameter. If the SCHENV parameter is correct, check whether the scheduling environment is defined in the active service policy.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError: Invalid invocation environment or parameters</td>
<td></td>
</tr>
</tbody>
</table>

ABEND Codes
None.

Return and Reason Codes

When the IWMSEVAL macro returns control to your program:
• GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 61. Return and Reason Codes for the IWMSEVAL Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0425</td>
<td>Equate Symbol: IwmRsnCodeNoSCHENV: Meaning: The system does not support scheduling environments services. This return code is set for releases prior to OS/390 Release 4. Action: Avoid requesting this function on releases prior to OS/390 Release 4.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0426</td>
<td>Equate Symbol: IwmRsnCodeSCHENVNotFound: Meaning: The scheduling environment specified by SCHENV does not exist. Action: Check the specification of the SCHENV parameter. If the SCHENV parameter is correct, check whether the scheduling environment is defined in the active service policy.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError: Invalid invocation environment or parameters</td>
<td></td>
</tr>
</tbody>
</table>
Table 61. Return and Reason Codes for the IWMSEVAL Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>Equate Symbol: IwmRsnCodeSrbMode:</td>
<td>Meaning: Caller is in SRB mode. Action: Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td></td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td>Meaning: Caller is locked. Action: Avoid requesting this function while locked.</td>
</tr>
<tr>
<td></td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td>Meaning: Caller is in 24 bit addressing mode. Action: Request this function in 31 bit addressing mode.</td>
</tr>
<tr>
<td></td>
<td>xxxx0825</td>
<td>Equate Symbol: IwmRsnCodeAscModeNotPrimary</td>
<td>Meaning: Caller invoked service but was not in primary ASC mode. Action: Request this function in primary mode.</td>
</tr>
<tr>
<td></td>
<td>xxxx0827</td>
<td>Equate Symbol: IwmRsnCodeRsvdNot0</td>
<td>Meaning: Reserved field in parameter list was non-zero. Action: Request this function with reserved fields zero.</td>
</tr>
<tr>
<td></td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td>Meaning: Version number in parameter list or version length field is not valid. Action: Request this function with current version number.</td>
</tr>
</tbody>
</table>

Example

To validate the scheduling environment name at location ENVNAME specify:

```iwmseval```

```
IWMSEVAL SCHENV=ENVNAME,
 RETCODE=RETCODE,
 RSNCODE=RSNCODE
```

* Storage areas

<table>
<thead>
<tr>
<th>ENVNAME</th>
<th>DS</th>
<th>CL16</th>
<th>Scheduling environment name</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETCODE</td>
<td>DS</td>
<td>1F</td>
<td>Return code</td>
</tr>
<tr>
<td>RSNCODE</td>
<td>DS</td>
<td>1F</td>
<td>Reason code</td>
</tr>
</tbody>
</table>

---

Chapter 55. IWMSEVAL – Scheduling Environments Validate Service 463
IWMSEVAL Macro
Chapter 56. IWMSINF — WLM Server Manager Inform Service

The IWMSINF service should be used to obtain the number of server instances to be started from WLM. The caller must have previously connected to WLM using the IWM4CON service specifying SERVER_MANAGER=YES, SERVER_TYPE=QUEUE and MANAGE_TASKS=YES.

The caller can use the service in the following ways:
1. **MODE=SUSPEND**
   - The calling task is suspended until WLM wants the caller to start additional server instances. The caller must re-invoke the service after it starts the server instances to wait for the next notification. The caller cannot rely upon asynchronous exits receiving control while the task is suspended.
2. **MODE=POST**
   - The calling task is not suspended by WLM. WLM returns the number of additional server instances to start now. WLM will post the caller’s ECB when the number of server instances should be increased. After the ECB is posted the caller must re-invoke IWMSINF to obtain the number of server instances to start.
3. **MODE=INFORM**
   - The calling task is not suspended by WLM. WLM returns the number of additional server instances to start now. This form should only be used the first time the service is invoked immediately after connect because at this time the service will always return a value.
4. **MODE=ECBCANCEL**
   - The calling task is not suspended by WLM. This invocation should only be used to inform WLM that it should not post a caller’s ECB any more. The form can be used for error recovery purposes in conjunction with MODE=POST.

WLM stops server instances by returning reason code IwmRsnCodeStopTask from IWM4SSL.

**Environment**

The requirements for the caller are:

- **Minimum authorization:** Problem state. Any PSW key
- **Dispatchable unit mode:** Task
- **Cross memory mode:** PASN=HASN=SASN
- **AMODE:** 31-bit
- **ASC mode:** Primary
- **Interrupt status:** Enabled for I/O and external interrupts
- **Locks:** No locks may be held.
- **Control parameters:** Control parameters must be in the primary address space.

**Programming Requirements**

1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.
IWMSINF Macro

4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

1. This macro may not be used during task/address space termination.
2. Only a single invocation is allowed to be active for a given address space at any given time.
3. Before using this macro the caller must connect to WLM via IWM4CON
   Server_Manager=YES, Server_Type=Queue, Manage_Tasks=Yes.

Input Register Information

Before issuing the IWMSINF macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram
IWMSINF Macro

Parameters

The parameters are explained as follows:

**name**
An optional symbol, starting in column 1, that is the name on the IWMSINF macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

**.ECB=ecb**
**.ECB=NO_ECB**
When **MODE=POST** is specified, an optional input parameter, to specify the ECB which should be posted if WLM wants to inform the caller that the number of server instances have changed. The caller re-invokes IWMSINF after the ECB was posted by WLM to obtain number of server instances to start. The default is NO_ECB. indicates that no ECB has been specified by the Caller

**To code:** Specify the RS-type address, or address in register (2)-(12), of a fullword field.

**.MF=S**
**.MF=(L,,list addr)**
**.MF=(L,,list addr,attr)**
**.MF=(L,,list addr,0D)**
**.MF=(E,,list addr)**
**.MF=(E,,list addr,COMPLETE)**
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The
IWMSINF Macro

List form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

\list addr
   The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

\attr
   An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of OF to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

\complete
   Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

\mode=suspend
\mode=post
\mode=inform
\mode=ecbcancel
   A required parameter that indicates how the caller uses the service
   \mode=suspend
      indicates that the caller wants to get suspended by WLM to listen for additional server instances to start. WLM will resume the caller if the number of server instances should be increased.
   \mode=post
      indicates that the caller wants to be posted if additional server instances should be started. If the caller gets posted it must re-invoke IWMSINF to obtain the value.
      The caller is not suspended by WLM and WLM will also return the number of additional server instances on this call.
   \mode=inform
      indicates that the caller wants to obtain the number of server instances without being suspended by WLM. This form is useful during initialization after IWM4CON if the caller wants to use the POST form but is not able to provide an ECB yet. It is expected that the caller will provide an ECB on the next invocation of the service.
   \mode=ecbcancel
      indicates that a caller who passed an ECB to WLM wants to cancel the ECB address to avoid being posted in the future by WLM.
      This form is useful during termination or recovery of server address spaces if a previous ECB address is no longer valid.

\plistver=IMPLIED_VERSION
\plistver=MAX
\plistver=0
   An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
  
  If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, if you use the currently available parameters.

**To code:** Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0

**.RETCODE=retcode**

An optional output parameter into which the return code is to be copied from GPR 15.

**To code:** Specify the RS-type address of a fullword field, or register (2)-(12).

**.RSNCODE=rsncode**

An optional output parameter into which the reason code is to be copied from GPR 0.

**To code:** Specify the RS-type address of a fullword field, or register (2)-(12).

**.SRVINST_TO_STRT=srvinst_to_strt**

When MODE=SUSPEND is specified, a required output parameter that returns the number of server instances to start by the caller

**To code:** Specify the RS-type address, or address in register (2)-(12), of a fullword field.

**.SRVINST_TO_STRT=srvinst_to_strt**

When MODE=POST is specified, a required output parameter that returns the number of server instances to start by the caller

**To code:** Specify the RS-type address, or address in register (2)-(12), of a fullword field.

**.SRVINST_TO_STRT=srvinst_to_strt**

When MODE=INFORM is specified, a required output parameter that returns the number of server instances to start by the caller

**To code:** Specify the RS-type address, or address in register (2)-(12), of a fullword field.

---

**ABEND Codes**

None.
## Return and Reason Codes

When the IWMSINF macro returns control to your program:
- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion</td>
<td>None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>IwmRsnCodeSrbMode</td>
<td>Caller is in SRB mode.</td>
<td>Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
<td>Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0808</td>
<td>IwmRsnCodeBadPl</td>
<td>Error accessing parameter list.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24 bit addressing mode.</td>
<td>Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not in primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
</tbody>
</table>
### Table 62. Return and Reason Codes for the IWMSINF Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>IwmRsnCodeServiceNotEnabled</td>
<td>Caller's space connection is not enabled for this service</td>
<td>Make sure that SERVER_MANAGER=YES, SERVER_TYPE=QUEUE and MANAGE_TASKS=YES is specified on the IWM4CON request to enable this service.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0841</td>
<td>IwmRsnCodeXmemMode</td>
<td>Caller is in cross-memory mode.</td>
<td>Request this function only when you are not in cross-memory mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0842</td>
<td>IwmRsnCodeNoWLMConnect</td>
<td>Caller's space is not connected to WLM.</td>
<td>Invoke the IWM4CON macro before invoking this macro.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx084D</td>
<td>IwmRsnCodeNotAuthConnect</td>
<td>The caller must be supervisor state or have PSW key mask 0-7 authority to use the requested WLM service. This applies only if the caller uses the service with MODE=POST.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx087B</td>
<td>IwmRsnCodeUnexpectedCall</td>
<td>The system didn’t expected the caller to use this service</td>
<td>Make sure that MANAGE_TASKS=YES is specified on the IWM4CON request.</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>IwmRetCodeEnvError</td>
<td>Environmental error.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C14</td>
<td>IwmRsnCodeNoWorkShutDown</td>
<td>No work selected. Caller is to shutdown.</td>
<td>Caller must disconnect by invoking the IWM4DIS macro.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>IwmRetCodeCompError</td>
<td>Component error.</td>
<td>Contact your system programmer.</td>
</tr>
</tbody>
</table>

#### Example

To obtain information about the number of server instances to start from WLM, specify the following:

```
IWM4CON WORK_MANAGER=YES,
SERVER_MANAGER=YES,
PARALLEL_EU=EUNITS,
SERVER_TYPE=QUEUE,
MANAGE_TASKS=YES,
SERVER_LIMIT=MAXTASKS,
CONNTKN=CTKN,CONNTKNKEY=PSWKEY,
```
IWMSINF Macro

```assembly
RETCODE=RC,RSNCODE=RSN

IWMSINF MODE=SUSPEND,
 SRVINST_TO_STR=NUMINST,
 RETCODE=RC,RSNCODE=RSN

* * Storage areas
* *
EUNITS DS F Number of Tasks which will be started
 * if the application environment is not managed.
MAXTASKS DS F Maximum Number of Tasks up to which
 * WLM adjusts the number of server
 * instances for the server AS
CTKN DS FL4 Connect Token
NUMINSTS DS F Number of server instances to start
RC DS F Return code
RSN DS F Reason code
```
Chapter 57. IWMSRDNS – Get Sysplex Routing Location List

IWMSRDNS will return a list of location names for all registered servers which have
been registered with a host name, known to the system on which the service is
invoked. Servers which have deregistered, via IWMSRDRS, may still be present in
the output list, due to the asynchronous nature of deregistration. Conversely, some
registered servers may not appear for this same reason.

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Minimum authorization:</th>
<th>Problem state with any PSW key.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatchable unit mode:</td>
<td>Task</td>
</tr>
<tr>
<td>Cross memory mode:</td>
<td>Any PASN, any HASN, any SASN</td>
</tr>
<tr>
<td>AMODE:</td>
<td>31-bit</td>
</tr>
<tr>
<td>ASC mode:</td>
<td>Primary</td>
</tr>
<tr>
<td>Interrupt status:</td>
<td>Enabled for I/O and external interrupts</td>
</tr>
<tr>
<td>Locks:</td>
<td>No locks may be held. FRRs may be established.</td>
</tr>
<tr>
<td>Control parameters:</td>
<td>Control parameters must be in the primary address space.</td>
</tr>
</tbody>
</table>

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by
IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable
when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMSRNCODE_MASK CONST defined in IWMYCON, may be used for this
purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and
padded with blanks on the right, as needed, to occupy the specified number of
bytes.

Restrictions

This macro may only be used on OS/390 Version 2, Release 4 or equivalent.

Input Register Information

Before issuing the IWMSRDNS macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
</table>

© Copyright IBM Corp. 1988, 2009
IWMSRDNS Macro

0  Reason code if GR15 return code is non-zero
1  Used as work register by the system
2-13 Unchanged
14  Used as work register by the system
15  Return code

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
main diagram
IWMSRDNS LOCATION_NAMES=location_names,ANSLEN=anslen
ENTRY_COUNT=entry_count,QUERYLEN=querylen,RETCODE=retcode
RSNCODE=rsncode,PLISTVER=IMPLIED_VERSION,PLISTVER=MAX,PLISTVER=0
,MF=S,MF=(L,list addr,attr,COMPLETE)
```

Parameters

The parameters are explained as follows:

**name**

An optional symbol, starting in column 1, that is the name on the IWMSRDNS macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

**,ANSLEN=anslen**

A required input parameter, which contains the length of the LOCATION_NAMES in bytes.
IWMSRDNS Macro

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,ENTRY_COUNT=entry_count

An optional output parameter, which will hold the number of location entries returned by the service. This is the number of entries in the SYSL_INFO array (see IWMWSYSL).

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

LOCATION_NAMES=location_names

A required input parameter, which specifies the name of the area to be filled in with the list of location names for the registered, active, LUs in the SYSPLEX registered with a host name.

The area must be large enough to contain at least 1 entry. The format of this area is mapped by IWMWSYSL.

To code: Specify the RS-type address, or address in register (2)-(12), of a field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
IWMSRDNS Macro

,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
  
  If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.
- **0**, if you use the currently available parameters.

**To code:** Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0

,QUERYLEN=querylen
A required output parameter, variable which contains the number of bytes needed for all data requested.

**To code:** Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

**To code:** Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

**To code:** Specify the RS-type address of a fullword field, or register (2)-(12).

**ABEND Codes**

None.

**Return and Reason Codes**

When the IWMSRDNS macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.
### Table 63. Return and Reason Codes for the IWMSRDNS Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 0           | —           | Equate Symbol: IwmRetCodeOk  
Meaning: Successful completion.  
Action: None required. |
| 4           | —           | Equate Symbol: IwmRetCodeWarning  
Meaning: Successful completion, unusual conditions noted. |
| 4           | xxxx040A    | Equate Symbol: IwmRsnCodeOutputAreaTooSmall  
Meaning: The output area supplied is too small to receive all the available information.  
Action: None required. If necessary, reinvoke the service with an output area of sufficient size to receive all information. |
| 4           | xxxx040B    | Equate Symbol: IwmRsnCodeNoServersRegistered  
Meaning: No Servers have registered in the sysplex.  
Action: None required. |
| 8           | —           | Equate Symbol: IwmRetCodeInvocError  
Meaning: Invalid invocation environment or parameters. |
| 8           | xxxx0803    | Equate Symbol: IwmRsnCodeDisabled  
Meaning: Caller is disabled.  
Action: Avoid requesting this function while disabled. |
| 8           | xxxx0804    | Equate Symbol: IwmRsnCodeLocked  
Meaning: Caller is locked.  
Action: Avoid requesting this function while locked. |
| 8           | xxxx080B    | Equate Symbol: IwmRsnCodeBadPl  
Meaning: Error accessing parameter list.  
Action: Check for possible storage overlay. |
| 8           | xxxx0823    | Equate Symbol: IwmRsnCodeDatoff  
Meaning: Caller invoked service while DATOFF  
Action: Avoid requesting this function in this environment. |
| 8           | xxxx0824    | Equate Symbol: IwmRsnCodeAmode24  
Meaning: Caller invoked service but was in 24 bit addressing mode.  
Action: Request this function only when you are in 31 bit addressing mode. |
| 8           | xxxx0825    | Equate Symbol: IwmRsnCodeAscModeNotPrimary  
Meaning: Caller invoked service but was not DAT on Primary ASC mode.  
Action: Avoid requesting this function in this environment. |
| C           | —           | Equate Symbol: IwmRetCodeEnvError  
Meaning: Environmental error. |
Table 63. Return and Reason Codes for the IWMSRDNS Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>C xxxx0C01</td>
<td>EwmRsnCodeNoStg</td>
<td>Storage is not available for the request.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: There is a storage shortage. The function may work successfully at a later time.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>IwmRetCodeCompError</td>
<td>Component error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: No action required. The function may be successful if invoked again.</td>
</tr>
</tbody>
</table>

Example

To list all locations registered with a host name:

```
IWMSRDNS LOCATION NAMES=DATA,
 ANSLEN=SIZE,
 ENTRY_COUNT=E,
 QUERYLEN=Q,
 RETCODE=RC,RSNCODE=RSN
```

* Storage areas
  * DATA    DS    CL200 Area to receive output
  SIZEEQU  EQU   *-DATA Equate for size of Data
  E        DS    F Field to receive entry count
  Q        DS    F Field to receive query length
  RC       DS    F Return code
  RSN      DS    F Reason code
  SIZE     DC    A(SIZEEQU) Field to hold size
IWMSRDRS will deregister a server that had previously registered via IWMSRSRG, the Sysplex Router Registration macro, for sysplex workload balancing. Deregistration removes the specified server as a candidate from the Sysplex Routing Selection service, IWMSRSRS. Since the propagation of the deregistration to other systems is asynchronous, a newly deregistered triplet will continue to be eligible for selection by other systems for a period of time after return from the IWMSRDRS invocation. If the server was registered with a host name the caller must provide the host name in order to deregister the server.

**Important Note**

With APAR OW33878 installed, new security checks are added to the module this service invokes (as well as to the register module invoked by IWMSRSRG). With this APAR installed, the security checks are invoked when the caller is in Problem state, and does not own any privileged keys (i.e. has none of the authorization key mask bits 0-7 turned on). In this case, the caller must satisfy the following three conditions to use this service:

- The caller must not be in cross memory mode
- The caller must not have an EUT FRR established
- The caller must be authorized in the BPX.WLMSERVER profile in the facility class.

**Environment**

The requirements for the caller are:

**Minimum authorization:** Problem state with any PSW key (see previous note).

**Dispatchable unit mode:** Task or SRB

**Cross memory mode:** Any PASN, any HASN, any SASN (see previous note).

**AMODE:** 31-bit

**ASC mode:** Primary

**Interrupt status:** Unlocked. FRRs may be established (see previous note).

**Locks:** No locks may be held.

**Control parameters:** Control parameters must be in the primary address space.

**Programming Requirements**

None.

**Restrictions**

1. This macro may not be used prior to the completion of WLM address space initialization
2. All parameter areas must reside in current primary.
Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as a work register by the macro</td>
</tr>
<tr>
<td>14</td>
<td>Used as a work register by the macro</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Used as a work register by the macro</td>
</tr>
<tr>
<td>1</td>
<td>Used as a work register by the macro</td>
</tr>
<tr>
<td>14</td>
<td>Used as a work register by the macro</td>
</tr>
<tr>
<td>15</td>
<td>Used as a work register by the macro</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after using a service. If the system changes the contents of registers on which the caller depends, the caller must save them before calling the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

```
main diagram
```

```
\textbf{IWMSRDRS-LOCATION=location,NETWORK_ID=network_id,LUNAME=luname}
\textbf{,HOST=NO_HOST}
\textbf{,HOST=host}
\textbf{,RETCODE=retcode}
\textbf{,RSNRCODE=rsncode}
\textbf{,PLISTVER=IMPLIED_VERSION}
\textbf{,PLISTVER=MAX}
\textbf{,PLISTVER=0}
\textbf{,PLISTVER=1}
\textbf{,MF=S}
\textbf{,MF=(L,list addr,attr,COMPLETE)}
```

Parameters

The parameters are explained as follows:

- **name**
  An optional symbol, starting in column 1, that is the name on the IWMSRDRS macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

- **,HOST=host**
  An optional input parameter, which contains the server HOST name associated
with the address space to be deregistered. The value should be padded on the right with blanks for any unused characters. The default is NO_HOST, which indicates that a HOST name was not passed.

**To code:** Specify the RS-type address, or address in register (2)-(12), of a 64-character field.

**LOCATION=location**
A required input parameter, which contains the server LOCATION associated with the registered address space.

**To code:** Specify the RS-type address, or address in register (2)-(12), of a 18-character field.

**,LUNAME=luname**
A required input parameter, which contains the server Logical Unit name associated with the registered address space.

**To code:** Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

**,MF=S**
**,MF=L(list addr)**
**,MF=L(list addr,attr)**
**,MF=L(list addr,0D)**
**,MF=E(list addr)**
**,MF=E(list addr,COMPLETE)**
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

**,list addr**
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

**,attr**
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

**,COMPLETE**
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

**,NETWORK_ID=network_id**
A required input parameter, which contains the Network ID associated with the registered address space.
To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

  If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, if you use only the following parameters:

    LOCATION     LUNAME     NETWORK_ID

  - **1**, if you use any of the following parameters, and parameters from version 0, or both:

    HOST

  To code: Specify one of the following:

  - IMPLIED_VERSION
  - MAX
  - A decimal value of 0 or 1

,RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

**ABEND Codes**

None.

**Return and Reason Codes**

When the IWMSRDRS macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 0           | —           | Equate Symbol: IwmRetCodeOk  
Meaning: Successful completion. | |
| 4           | —           | Equate Symbol: IwmRetCodeWarning  
Meaning: Successful completion, unusual conditions noted. | |
| 4           | xxxx0418    | Equate Symbol: IwmRsnCodeServerNotRegistered  
Meaning: Server not registered | |
| 8           | —           | Equate Symbol: IwmRetCodeInvocError  
Meaning: Invalid invocation environment or parameters | |
| 8           | xxxx0803    | Equate Symbol: IwmRsnCodeDisabled  
Meaning: Caller is disabled. | |
| 8           | xxxx0804    | Equate Symbol: IwmRsnCodeLocked  
Meaning: Caller is locked. | |
| 8           | xxxx080B    | Equate Symbol: IwmRsnCodeBadPl  
Meaning: Error accessing parameter list | |
| 8           | xxxx0823    | Equate Symbol: IwmRsnCodeDatoff  
Meaning: Caller invoked service while DATOFF | |
| 8           | xxxx0824    | Equate Symbol: IwmRsnCodeAmode24  
Meaning: Caller invoked service but was in 24 bit addressing mode. | |
| 8           | xxxx0825    | Equate Symbol: IwmRsnCodeAscModeNotPrimary  
Meaning: Caller invoked service but was not DAT on Primary ASC mode. | |
| 8           | xxxx0828    | Equate Symbol: IwmRsnCodeBadVersion  
Meaning: Version number in parameter list or version length field is not valid. This reason code is only set when the MVS release is on MVS/ESA HBB6603 or later levels. | |
| 8           | xxxx0829    | Equate Symbol: IwmRsnCodeBadOptions  
Meaning: Parameter list omits required parameters or supplies mutually exclusive parameters or provides data associated with options not selected. Note that this reason code will only occur on calls to this service through the IWMDNDRG C language interface.  
Action: Check for possible storage overlay of the parameter list. | |
| C           | —           | Equate Symbol: IwmRetCodeEnvError  
Meaning: Environmental error. | |
<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| C           | xxxx0C35    | Equate Symbol: iwrmRsnCodeNotSecAuthServReg | Meaning: The caller is not authorized by SAF to register/deregister a server.  
Action: Only supervisor state or authorized key 8 callers can register or deregister servers. Key 8 callers must have RACF authority to the BPX.WLMSERVER profile in the facility class (BPX.WLMSERVER must be defined for authorized users to execute the DNS services). The RACROUTE command is invoked during the SAF check, which does not allow the caller to be in cross memory mode or have an FRR established. |
| 10          | —           | Equate Symbol: iwrmRetCodeCompError | Meaning: Component error (no reason codes) |
Chapter 59. IWMSRFSV – Finding a Sysplex Routing Server

IWMSRFSV will find a server associated with the specified application environment and return the associated server data which was passed at the time the server connected to WLM (via IWM4CON). The only eligible servers are those that have connected to WLM with a specification of IWM4CON SERVER_MANAGER=YES,SERVER_TYPE=ROUTING, and whose application environment matches the input value passed to IWMSRFSV, which implies that the server belongs to the same subsystem type as the caller. The server chosen is considered a best choice to run work in terms of a variety of system conditions which are monitored.

When no eligible servers are already started, and the service policy allows MVS to start a server, and certain other conditions apply, MVS will start a new server on behalf of the request. Circumstances such as this imply that the program calling this service may be suspended until the request can be resolved. When no eligible servers exist and none can be started the caller will receive a return code to reflect this.

Environment

The requirements for the caller are:

Minimum authorization:	Supervisor state or program key mask (PKM) allowing keys 0-7.
Dispatchable unit mode:	Task
Cross memory mode:	PASN=HASN=SASN
AMODE:	31-bit
ASC mode:	Primary
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No locks may be held.
Control parameters:	Control parameters must be in the primary address space.

Programming Requirements

1. The macro IWMYCON must be included to use this macro.
2. The macro IWMYPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
4. All character inputs are assumed to be padded on the right with blanks, when needed to fill out the entire length.

Restrictions

1. This macro may not be used during task/address space termination.
2. NO FRRs may be established.
IWMSRFSV Macro

3. The Connect token from the input parameter list must be owned by the current home address space.
4. The address space from which this service is invoked must have previously connected to WLM, using IWM4CON Router=Yes. The input application environment must be associated in the current service policy with the subsystem type specified through IWM4CON.

Input Register Information

Before issuing the IWMSRFSV macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

The task issuing this service may be suspended while a new server address space is being started, possibly on another MVS image.

Syntax

main diagram

```
name
IWMSRFSV=CONNTKN=conntkn,APPLENV=applenv,SERVER_DATA=server_data
```

```
,,RETCODE=retcode,,RSNCODE=rsncode,,PLISTVER=IMPLIED_VERSION
```

```
,,PLISTVER=MAX,,PLISTVER=0
```
Parameters

The parameters are explained as follows:

**name**
An optional symbol, starting in column 1, that is the name on the IWMSRFSV macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

**APPLENV=applenv**
A required input parameter, which contains the application environment under which work requests are to be served.

**To code:** Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

**CONNTKN=conntkn**
A required input parameter, which contains the connect token for the current home space.

**To code:** Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

**.MF=S**
**.MF=(L,list addr)**
**.MF=(L,list addr,attr)**
**.MF=(L,list addr,0D)**
**.MF=(E,list addr)**
**.MF=(E,list addr,COMPLETE)**
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

**.list addr**
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

**.attr**
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter
IWMSRFSV Macro

list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

• IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

• MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:
• IMPLIED_VERSION
• MAX
• A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SERVER_DATA=server_data
A required output parameter, which contains the data needed to uniquely identify the chosen server. The structure of this data is undefined to MVS, and is the same data passed when the server connected using IWM4CON
SERVER_MANAGER=YES, SERVER_TYPE=ROUTING, SERVER_DATA=...

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

ABEND Codes
None.
Return and Reason Codes

When the IWMSRFSV macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

**Table 65. Return and Reason Codes for the IWMSRFSV Macro**

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
</table>
| 0           | —           | Equate Symbol: IwmRetCodeOk  
Meaning: Successful completion.  
Action: None required. |
| 8           | —           | Equate Symbol: IwmRetCodeInvocError  
Meaning: Invalid invocation environment or parameters. |
| 8           | xxxx0801    | Equate Symbol: IwmRsnCodeSRBMode  
Meaning: Caller is in SRB mode.  
Action: Avoid requesting this function in SRB mode. |
| 8           | xxxx0803    | Equate Symbol: IwmRsnCodeDisabled  
Meaning: Caller is disabled.  
Action: Avoid requesting this function while disabled. |
| 8           | xxxx0804    | Equate Symbol: IwmRsnCodeLocked  
Meaning: Caller is locked.  
Action: Avoid requesting this function while locked. |
| 8           | xxxx080B    | Equate Symbol: IwmRsnCodeBadPl  
Meaning: Error accessing parameter list.  
Action: Check for possible storage overlay. |
| 8           | xxxx0810    | Equate Symbol: IwmRsnCodeEutFrr  
Meaning: Caller has EUT FRR established.  
Action: Avoid requesting this function with an EUT FRR. |
| 8           | xxxx0823    | Equate Symbol: IwmRsnCodeDatoff  
Meaning: Caller invoked service while DATOFF  
Action: Avoid requesting this function in this environment. |
| 8           | xxxx0824    | Equate Symbol: IwmRsnCodeAmode24  
Meaning: Caller invoked service but was in 24 bit addressing mode.  
Action: Request this function only when you are in 31 bit addressing mode. |
<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not DAT on Primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0826</td>
<td>IwmRsnCodeTaskTerm</td>
<td>Caller invoked service while task termination is in progress for the current task.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
<td>Version number or version length field in parameter list is not valid.</td>
<td>Check for possible overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx083B</td>
<td>IwmRsnCodeHomeNotOwnConn</td>
<td>Home address space does not own the connect token from the input parameter list.</td>
<td>Invoke the function with the correct home address space.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>IwmRsnCodeServiceNotEnabled</td>
<td>Caller’s space connection is not enabled for this service.</td>
<td>Avoid requesting this function under the input connection. IWM4CON options must be specified previously to enable this service.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0841</td>
<td>IwmRsnCodeXmemMode</td>
<td>Caller invoked service but was in cross-memory mode.</td>
<td>Avoid requesting this function in cross-memory mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0842</td>
<td>IwmRsnCodeNoWLMConnect</td>
<td>Caller’s space is not connected to WLM.</td>
<td>Issue IWM4CON with the necessary options prior to invoking this service.</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>IwmRetCodeEnvError</td>
<td>Environmental error.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>IwmRsnCodeNoStg</td>
<td>Storage is not available for the request.</td>
<td>There is a storage shortage. The function may work successfully at a later time.</td>
</tr>
</tbody>
</table>
### Table 65. Return and Reason Codes for the IWMSRFSV Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| C           | xxxx0C1A    | Equate Symbol: IwmRsnCodeApplNotDefined | **Meaning**: The application environment name is not defined in the active WLM policy.  
**Action**: Check whether the correct application environment name is being used. If so, a service administrator must define the application environment in the WLM service definition. |
| C           | xxxx0C1B    | Equate Symbol: IwmRsnCodeApplNotSST | **Meaning**: The application environment name is defined for use by a different subsystem type in the active WLM policy.  
**Action**: Check whether the correct application environment name is being used. If so, a service administrator must change the application environment in the WLM service definition to specify the correct subsystem type. |
| C           | xxxx0C1C    | Equate Symbol: IwmRsnCodeServerNotStarted | **Meaning**: No server exists for the specified application environment and no server could be started.  
**Action**: No action required. The function may be successful if invoked again. |
| C           | xxxx0C22    | Equate Symbol: IwmRsnCodeEnvQuiesced | **Meaning**: The specified application environment has been quiesced, server cannot be started for the request.  
**Action**: Restart the application environment and then retry the request. |
| C           | xxxx0C23    | Equate Symbol: IwmRsnCodeIndLocalSystem | **Meaning**: Local system is not running with the current WLM policy, new server cannot be started for the request.  
**Action**: Avoid requesting this function while the local system is not running with the current WLM policy. |
| C           | xxxx0C24    | Equate Symbol: IwmRsnCodeProcNameBlank | **Meaning**: Server procname is blank, server cannot be started for the request.  
**Action**: Check the server procname, fix it, and then retry the request. |
| C           | xxxx0C25    | Equate Symbol: IwmRsnCodeEnvStopped | **Meaning**: WLM has given up trying to start a server because of failures. The associated application environment has been internally stopped.  
**Action**: Restart the application environment and then retry the request. |
| C           | xxxx0C26    | Equate Symbol: IwmRsnCodeRouterNotActive | **Meaning**: Either there is no router exists for the requested server or the router exists but not active. No server can be selected/started on this system.  
**Action**: Re-connect the router for the requested application environment to WLM and then retry the request. |
IWMSRFSV Macro

Table 65. Return and Reason Codes for the IWMSRFSV Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>xxxx0C27</td>
<td>Equate Symbol: IwmRsnCodeFsvReqInCompat</td>
<td>Meaning: Reserved.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: No action required. The function may be successful if invoked again.</td>
<td></td>
</tr>
</tbody>
</table>

Example

To determine the best server to which to route work, specify the following:

```plaintext
IWMSRFSV CONNTKN=CTKN, X
APPLENV=AENAME, X
SERVER_DATA=SVRDATA, X
RETCODE=RC,RSNCODE=RSN
```

* Storage areas

<table>
<thead>
<tr>
<th>DS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTKN</td>
<td>Contains the connect token for the current home space</td>
</tr>
<tr>
<td>AENAME</td>
<td>Contains the application environment name</td>
</tr>
<tr>
<td>SVRDATA</td>
<td>Contains the output server data</td>
</tr>
<tr>
<td>RC</td>
<td>Return code</td>
</tr>
<tr>
<td>RSN</td>
<td>Reason code</td>
</tr>
</tbody>
</table>
The purpose of the IWMSRSRG service is to register a server that wishes to participate in sysplex workload balancing. The service allows the caller to identify an address space to be associated with a triplet, corresponding to location name, network id and LU name. This triplet is expected to be unique across all registered spaces in the sysplex, and, should be unique across all networks. The caller can additionally associate the triplet with a host name. Specifying a host name is optional, and if it is not coded it is set to blanks by the system. A list of eligible servers is made available to IWMSRSRS. These work requests include enclaves owned by the space as well as the address space’s activity itself.

If this macro is issued to register a LOCATION.NETWORK_ID.LUNAME that already exists on the issuing MVS image, the second registration will be ignored (IWMSRDRE should first be used to deregister the triplet). This condition will be identified through a unique return and reason code. Due to timing considerations, sysplex-wide uniqueness is not enforced, and so is the responsibility of the caller.

The caller can additionally associate the server with a health indicator. This is a value between 0 and 100, that indicates the percentage up to which the server is capable of performing its normal work. This health indicator is used by the routing service to modify the routing recommendations according to this indicator. It can be modified by calling this service again with another HEALTH value. In this case the return and reason code for already registered servers will not be returned.

After a server registers by issuing this macro, the sysplex routing service IWMSRSRS can be issued to return a weighted list of registered servers in the sysplex to which work could be directed. Alternatively, IWMSRSRS can be used to obtain a complete list of servers associated with a given location when invoked on a system running OS/390 R3 or later. IWMSRSRS can be used to obtain the user data associated with each server when invoked on a system at OS/390 R3 or later, though servers resident on an earlier release will be associated with user data which is binary zeroes. Since the propagation of the registration to other systems is asynchronous, a newly registered triplet will not be immediately visible to other systems.

A server is automatically deregistered during job termination or memory termination.

Environment

The requirements for the caller are:

- **Minimum authorization:** Problem state with any PSW key (see previous note)
- **Dispatchable unit mode:** Task or SRB
- **Cross memory mode:** Any PASN, any HASN, any SASN (see previous note)
- **AMODE:** 31-bit
- **ASC mode:** Primary
- **Interrupt status:** Enabled for I/O and external interrupts
- **Locks:** No locks may be held. FRRs may be established (see previous note).
- **Control parameters:** Control parameters must be in the primary address space.
Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRNSCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.

Restrictions

This macro supports multiple versions. Some keywords are only supported by certain versions. The PLISTVER=3 option can only be used on systems running z/OS V1R7 with OA14310 installed, and on systems running z/OS V1R8 or higher. Refer to the PLISTVER parameter description for further information.

Input Register Information

Before issuing the IWMSRSRG macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.
Syntax

main diagram

```
name

,STOKEN=stoken
,USERDATA=userdata

,HOST=host

,HEALTH=health

,RETCODE=retcode
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,MF=(L,list addr,attr,COMPLETE)

,MF=(E,list addr,attr)
```

Parameters

The parameters are explained as follows:

*name*
An optional symbol, starting in column 1, that is the name on the IWMSRSRG macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

*HEALTH=health*
*HEALTH=NO_HEALTH*
An optional input parameter, which contains the health factor associated with the address space. This is a value, that reflects, up to which percentage this address space is capable to handle requests. NO_HEALTH indicates that no health indicator was passed. This is the default. In this case, a health value of 100 is assumed, when the server is registered.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

*HOST=host*
*HOST=NO_HOST*
An optional input parameter, which contains the host name associated with the address space to be registered. The value should be padded on the right with blanks for any unused characters. NO_HOST indicates that no host name was passed. This is the default.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-character field.

*LOCATION=location*
A required input parameter, which contains the server LOCATION associated...
with the address space to be registered. The value should be padded on the
right with blanks for any unused characters.

To code: Specify the RS-type address, or address in register (2)-(12), of a
18-character field.

,,LUNAME=luname
A required input parameter, which contains the server Logical Unit name
associated with the address space to be registered.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,,MF=S
,,MF=(L,list addr)
,,MF=(L,list addr,attr)
,,MF=(E,list addr)
,,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,,NETWORK_ID=network_id
A required input parameter, which contains the Network ID associated with the
address space to be registered.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,,PLISTVER=IMPLIED_VERSION
,,PLISTVER=MAX
,,PLISTVER=0
,,PLISTVER=1
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs. If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.
- **0**, which supports all parameters except those specifically referenced in higher versions.
- **1**, which supports the following parameter and those from version 0:
  
  USERDATA

- **2**, which supports the following parameter and those from version 0 and 1:
  
  HOST

- **3**, which supports the following parameter and those from version 0,1 and 2:
  
  HEALTH

**Note:** The PLISTVER=3 option can only be used on systems running z/OS V1R7 with OA14310 installed, and on systems running z/OS V1R8 or higher.

**To code:** Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0, 1, 2, or 3

**,RETCODE=**retcode
An optional output parameter into which the return code is to be copied from GPR 15.

**To code:** Specify the RS-type address of a fullword field, or register (2)-(12).

**,RSNCODE=**rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

**To code:** Specify the RS-type address of a fullword field, or register (2)-(12).

**,STOKEN=**stoken
A required input parameter, which contains the space token of the server to be registered.
To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

USERDATA=userdata
USERDATA=NO_USERDATA

An optional input parameter, which contains data meaningful to the user of this service. This user data is available to callers of the IWMSRSRS service when invoked on a system running OS/390 R3 or later.

Userdata may only be passed via IWMSRSRG when running OS/390 R3 or higher - when passed to lower level systems the data will be ignored and no return code set to reflect this condition. The format is undefined to MVS. The default is NO_USERDATA, which indicates that no user data was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWMSRSRG macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Meaning: Successful completion.</td>
<td>None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
<td>None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
<td>Meaning: Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>IwmRsnCodeLocked</td>
<td>Meaning: Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
</tbody>
</table>
### Table 66. Return and Reason Codes for the IWMSRSRG Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0807</td>
<td>Equate Symbol: IwmRsnCodeBadSTOKEN</td>
<td>Bad STOKEN passed.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>Equate Symbol: IwmRsnCodeBadPI</td>
<td>Error accessing parameter list.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>Equate Symbol: IwmRsnCodeDatoff</td>
<td>Caller invoked service while DATOFF</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24-bit addressing mode.</td>
<td>Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>Equate Symbol: IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not DAT on Primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td>Version number in parameter list or version length field is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx08A2</td>
<td>Equate Symbol: IwmRsnCodeBadHealth</td>
<td>Health Value out of range</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeEnvError</td>
<td>Environmental error.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>Equate Symbol: IwmRsnCodeNoStg</td>
<td>Storage is not available for the request.</td>
<td>There is a storage shortage. The function may work successfully at a later time.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>IwmRetCodeCompError: Component error (no reason codes)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Example

To register an instance of a given location, specify:

```
IWMSRSRG LOCATION=LOC, NETWORK_ID=NET, LUNAME=LU, STOKEN=STKN, HOST=HST, HEALTH=HLTH, USERDATA=DATA, RETCODE=RC, RSNCODE=RSN *
```
**IWMSRSRG Macro**

* Storage areas

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC</td>
<td>DS</td>
<td>CL18</td>
</tr>
<tr>
<td>NET</td>
<td>DS</td>
<td>CL8</td>
</tr>
<tr>
<td>LU</td>
<td>DS</td>
<td>CL8</td>
</tr>
<tr>
<td>STKN</td>
<td>DS</td>
<td>CL8</td>
</tr>
<tr>
<td>DATA</td>
<td>DS</td>
<td>CL64</td>
</tr>
<tr>
<td>HST</td>
<td>DS</td>
<td>CL64</td>
</tr>
<tr>
<td>HLTH</td>
<td>DS</td>
<td>F</td>
</tr>
<tr>
<td>RC</td>
<td>DS</td>
<td>F</td>
</tr>
<tr>
<td>RSN</td>
<td>DS</td>
<td>F</td>
</tr>
</tbody>
</table>

Contains the Location associated with the server instance.
Contains the Network ID associated with the server instance.
Contains the LU name associated with the server instance.
Contains the STOKEN associated with the server instance.
Contains the user data associated with the server instance.
Contains the Host name associated with the server instance.
Contains the Health indicator associated with the server instance.
Return code.
Reason code.
Chapter 61. IWMSRSRS – Determine Where to Route Work

IWMSRSRS provides three functions: SELECT, QUERY and SPECIFIC. All return a list of registered servers known to the system on which the service is invoked. Servers which have deregistered, via IWMSRDRS, may still be present in the output list, due to the asynchronous nature of deregistration. Conversely, some registered servers may not appear for this same reason.

When either the SELECT or the SPECIFIC function is chosen, IWMSRSRS will return a list of servers in the sysplex which are associated with the input Location name along with a relative weighting for each server. These servers are identified by their Network id and LU name, which were previously registered using the sysplex Router Register macro, IWMSRSRG. Note that some servers may not appear in the output list due to balancing decisions, so this service should not be used as a general query service to find all currently registered servers for the input location.

Next to each server in the list will be a weight which tells the caller the relative number of requests to send to each entry. For example, the caller might send the indicated number of requests to each LU in the list before routing to the next LU in the list.

<table>
<thead>
<tr>
<th>Server</th>
<th>Weight</th>
<th>CPU Weight</th>
<th>zAAP Weight</th>
<th>zIIP Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>NETIDA.LUNAME1</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>NETIDB.LUNAME2</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>NETIDC.LUNAME3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>NETIDD.LUNAME43</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>NETID4.LUNAME2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

The requestor could then choose to send the first 4 requests to NETIDA.LUNAME1, the next 7 requests to NETIDB.LUNAME2, the next request to NETIDC.LUNAME3, and so forth. When the list is exhausted, the requestor could invoke this macro again and get a completely new list or could rotate through the list again. It is expected that the requestor would invoke this macro frequently to get current system views for work balancing. For example, it would be appropriate for the caller to invoke this service approximately every 1 to 3 minutes, so that the list will remain current with changing system conditions and server availability.

Starting with z/OS V1R9, three output weights are available: the CPU weight, the zAAP weight and the zIIP weight. The CPU weight is computed the same way as the weight prior to V1R9, taking only CPU data into account. The zAAP and the zIIP weights are computed taking only zAAP, respectively zIIP, data into account. The weight is a combination of these three processor weights.

Starting with z/OS V1R11, an optional input keyword METHOD selects how the weight (also referred to as "mixed" weight) is computed. The default is METHOD=PROPORTIONAL, which calculates the weight as a combination of three processor weights (CPU, zIIP, and zAAP). It is the same method as prior to V1R11. With METHOD=EQUICPU, WLM computes the weight by trying to simulate a 100% usage of the system capacity, and determining the capacity of a CPU-only system having equivalent resource consumption.

Both methods can be specified with keyword IL_WEIGHTING, and EQUICPU by COST_ZAAP_ON_CP and COST_ZIIP_ON_CP too.
The QUERY function is only available on systems running OS/390 R3 or higher. When the QUERY function is requested, IWMSRSRS will return the list of all servers in the sysplex which are associated with the input Location name along with a fixed weight of one for each server. The format of the output is the same as for SELECT.

When using the QUERY function, the CPU, zAAP and zIIP weights are always set to 0.

When using the SELECT or the SPECIFIC function, the mixed weight is a combination of the CPU, zAAP and zIIP weights with the relative use of the CPU, zAAP and zIIP by the server. Moreover, the mixed weights are scaled up, so that their sum is 64. Due to rounding up errors, the sum of the mixed weights is usually as low as 64-(number of servers).

If there are pre-V1R9 systems in the sysplex, the zAAP and zIIP weights are automatically set to 0, and the weight is equal to the CPU weight, because pre-V1R9 systems do not have such weights and could not be correctly compared to V1R9 systems.

The Sysplex Routing Service (IWMSRSRS) can be used to obtain the userdata associated with each server when invoked on a system at OS/390 R3 or higher, though servers resident on an earlier release will be associated with userdata which is binary zeroes.

The SPECIFIC function is available on systems running z/OS R7 or higher. When the SPECIFIC function is issued, IWMSRSRS returns a list of servers in the sysplex which are associated with the input Location name along with a relative weighting for each server. In contrast to the weights in the SELECT function, the weights in the SPECIFIC function do not only consider available capacity values and the number of servers on the same system.

With the SPECIFIC function the following three additional factors are taken into account:

- The performance index that indicates the achievement of the WLM-defined goals of the server, that is its related work. A server that achieves its goal is preferred over one that does not achieve its goal.

- If the server owns independent enclaves those also take the delays into account that the work is subject to, due to the queue times of the owned enclaves. A server with less average queue times for its enclaves is preferred over one with higher queue times.

- The health factor of this server. It is dependent on the health indicator which was reported to WLM for this server by the IWM4HLTH service or by IWMSRSRG. If no health indicator was reported, this factor is also neutral. This factor is only taken into account on systems running z/OS V1R7 with OA14310 installed, and on systems running z/OS V1R8 or higher.

Environment

The requirements for the caller are:

Minimum authorization:	Problem state. Any PSW key
Dispatchable unit mode:	Task or SRB
Cross memory mode:	Any PASN, any HASN, any SASN
IWMSRSRS Macro

AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held. FRRs may be established.
Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.

Restrictions
- This macro may only be used on MVS/ESA SP5.2 or higher levels. Extended data may only be returned when running on OS/390 R3 or higher, and server instances residing on prior releases will be assigned userdata values consisting of all binary zeroes.
- This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to the PLISTVER parameter description for further information.

Input Register Information
Before issuing the IWMSRSRS macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>
IWMSRSRS Macro

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
IWMSRSR
 .EXTENDED_DATA=NO
 .EXTENDED_DATA=YES

 .ANSLEN=anslen
 .ENTRY_COUNT=entry_count
 .QUERYLEN=querylen
 .LOCATION=location

 .FUNCTION=SELECT
 .METHOD=PROPORTIONAL
 .COST_ZAAP_ON_CP=1
 .COST_ZAAP_ON_CP=cost_zaap_on_cp

 .FUNCTION=QUERY
 .METHOD=EQUICPU
 .COST_ZAAP_ON_CP=cost_zaap_on_cp

 .FUNCTION=SPECIFIC
 .COST_ZIIP_ON_CP=1
 .COST_ZIIP_ON_CP=cost_ziip_on_cp

 .IL_WEIGHTING=0
 .IL_WEIGHTING=il_weighting

 .RETCODE=retcode
 .RSNCODE=rsncode
 .PLISTVER=IMPLIED_VERSION
 .PLISTVER=MAX
 .PLISTVER=0
 .PLISTVER=1

 .MF=S
 .MF=(L, list addr)
 .MF=(E, list addr)
```

Parameters

The parameters are explained as follows:

*name*

An optional symbol, starting in column 1, that is the name on the IWMSRSRS macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

*,ANSLEN=anslen*

A required input parameter, which contains the length of the SYSINFO_BLOCK in bytes.

*To code*: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

*,COST_ZAAP_ON_CP=cost_zaap_on_cp*
An optional input parameter, which is used in conjunction with
METHOD=EQUICPU. It describes the additional cost of executing zAAP-eligible
work on a CPU instead of on a zAAP processor.

If the caller wants to use the full system capacity, independently of the cost,
then one should set COST_ZAAP_ON_CP=1. With high values of this cost
parameter, WLM considers that a system having used up its free zAAP capacity
should offload less work to the CPU, and gives this system a smaller output
weight.

This cost parameter must be in the range from 1 to 100. If the specified value is
outside of this range, WLM will instead use the nearest valid integer (1 or 100)
as cost parameter. The default is 1.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

An optional input parameter, which is used in conjunction with
METHOD=EQUICPU. It describes the additional cost of executing zIIP-eligible
work on a CPU instead of on a zIIP processor.

If the caller wants to use the full system capacity, independently of the cost,
then one should set COST_ZIIP_ON_CP=1. With high values of this cost
parameter, WLM considers that a system having exhausted its whole free zIIP
capacity should offload less work to the CPU, and gives this system a smaller
output weight.

This cost parameter must be in the range from 1 to 100. If the specified value is
outside of this range, WLM will instead use the nearest valid integer (1 or 100)
as cost parameter. The default is 1.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

An optional output parameter, which will hold the number of server entries
returned by the service. This is the number of entries in the SYSR_INFO array
(see IWMWSYSR). ENTRY_COUNT may only be specified when running on
OS/390 R3 or higher. On earlier releases this request is ignored and the
variable is zeroed. No return code is given that this has happened.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

An optional parameter, which describes whether the format of the output area
named by SYSINFO_BLOCK includes the extended section or not (see
IWMWSYSR). The default is EXTENDED_DATA=NO.

EXTENDED_DATA=NO
indicates that the format of the output area named by SYSINFO_BLOCK
includes only the standard information mapped by the SYSR, which
consists of an array of entries described by SYSR_INFO.

EXTENDED_DATA=YES
indicates that the format of the output area given by SYSINFO_BLOCK
includes first the standard information mapped by the SYSR, which consists
of an array of entries described by SYSR_INFO, followed immediately by
the header for the extension section and any other data described by the
header.

EXTENDED_DATA is only available to callers of the IWMSRSRS service
when invoked on a system running OS/390 R3 or later. The
EXTENDED_DATA returned by OS/390 R3 includes the header and
associated userdata. Data associated with entries on MVS images not
supporting a particular type of data will be set as binary zeroes - for
example servers on MVS SP5.2 will have userdata which is all zeroes. No
special indication will be given for this condition. In particular, no special
return or reason codes are given.

On releases prior to OS/390 R3, EXTENDED_DATA=YES is processed as
though EXTENDED_DATA=NO was specified. No return code is given that
this has happened.

,FUNCTION=SELECT
,FUNCTION=QUERY
,FUNCTION=SPECIFIC
An optional parameter, which describes which set of servers are of interest to
the caller. The default is FUNCTION=SELECT.

,FUNCTION=SELECT
indicates that the servers best suited to receive work are to be returned.

,FUNCTION=QUERY
indicates that all servers associated with the input LOCATION are to be
returned. QUERY may only be specified when running on OS/390 R3 or
later. On earlier releases this request is processed as a SELECT request. In
this case no return code is issued.

,FUNCTION=SPECIFIC
indicates that the servers best suited to receive work are to be returned
together with their weights. The weight calculation differs from the weights
that are returned by the SELECT function, in that each weight takes also
server-specific information for each server into account the Performance
Index (PI) of the server and the Queue time of enclaves, if the server is an
enclave owner. SPECIFIC may only be specified when running z/OS V1R7
or higher. On earlier releases this request is processed as a SELECT
request. In this case no return code is issued.

,IL_WEIGHTING=il_weighting
,IL_WEIGHTING=0
An optional input parameter, which controls how WLM weights available
capacity at importance levels (ILs) lower than the currently selected one. The
value of IL_WEIGHTING should be in the range from 0 to 3. If the passed value
is outside of this range, WLM will instead use the nearest valid integer (0 or 3)
as IL_WEIGHTING.

When this parameter is set to 0 (the default value), all free capacities used by
levels less important than the current one are weighted the same. This means
that the free capacity below the current level is considered to be totally free,
and this is equivalent to what WLM did prior to V1R11.

When this parameter is set to 1, free capacity at the lowest ILs is weighted
more than the current IL, with a weighting growing proportionally to the square
root of the IL difference + 1. For example, with a selected IL of 1, free capacity
at IL 5 is weighted about 2.236 times more than free capacity at IL 1.
When this parameter is set to 2, free capacity at the lowest ILs is weighted more than the current IL, with a weighting growing proportionally to the IL difference + 1. For example, with a selected IL of 1, free capacity at IL 5 is weighted 5 times more than free capacity at IL 1.

When this parameter is set to 3, free capacity at the lowest ILs is weighted more than the current IL, with a weighting growing proportionally to the square of the IL difference + 1. For example, with a selected IL of 1, free capacity at IL 5 is weighted 25 times more than free capacity at IL 1. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a literal decimal value.

,LOCATION=location
A required input parameter, which contains the LOCATION associated with the registered address spaces which are candidates to receive work.

To code: Specify the RS-type address, or address in register (2)-(12), of a 18-character field.

,METHOD=PROPORTIONAL
,METHOD=EQUICPU
An optional parameter, which selects the method for computing the output weights. The default is METHOD=PROPORTIONAL.

,METHOD=PROPORTIONAL
Calculates the output weights as a proportion of the three processor types weights.

,METHOD=EQUICPU
Calculates a CPU equivalent of the systems before computing the output weights.

In order for METHOD=EQUICPU to be active, all systems in sysplex must run at least z/OS V1R11. Otherwise WLM automatically switches back to METHOD=PROPORTIONAL.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.
IWMSRSRS Macro

, list addr
   The name of a storage area to contain the parameters. For MF=S and
   MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
   An optional 1- to 60-character input string that you use to force boundary
   alignment of the parameter list. Use a value of 0F to force the parameter
   list to a word boundary, or 0D to force the parameter list to a doubleword
   boundary. If you do not code attr, the system provides a value of 0D.

, COMPLETE
   Specifies that the system is to check for required parameters and supply
   defaults for omitted optional parameters.

, PLISTVER=IMPLIED_VERSION
, PLISTVER=MAX
, PLISTVER=0
, PLISTVER=1
, PLISTVER=2
   An optional input parameter that specifies the version of the macro. PLISTVER
   determines which parameter list the system generates. PLISTVER is an
   optional input parameter on all forms of the macro, including the list form. When
   using PLISTVER, specify it on all macro forms used for a request and with the
   same value on all of the macro forms. The values are:
   • IMPLIED_VERSION, which is the lowest version that allows all parameters
     specified on the request to be processed. If you omit the PLISTVER
     parameter, IMPLIED_VERSION is the default.
   • MAX, if you want the parameter list to be the largest size currently possible.
     This size might grow from release to release and affect the amount of
     storage that your program needs.
     If you can tolerate the size change, IBM recommends that you always specify
     PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
     the list-form parameter list is always long enough to hold all the parameters
     you might specify on the execute form; in this way, MAX ensures that the
     parameter list does not overwrite nearby storage.
   • 0, which supports all parameters except those specifically referenced in
     higher versions.
   • 1, which supports both the following parameters and those from version 0:
     ENTRY_COUNT  EXTENDED_DATA  FUNCTION
   • 2, which supports both the following parameters and those from version 0
     and 1:
     COST_ZAAP_ON_CP  COST_ZIIP_ON_CP  METHOD

To code: Specify one of the following:
• IMPLIED_VERSION
• MAX
• A decimal value of 0, 1, or 2

, QUERYLEN=querylen
   A required output parameter, variable which contains the number of bytes
   needed for all data requested, taking into account the format specified via the
   EXTENDED_DATA keyword.
IWMSRSRS Macro

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SYSINFO_BLOCK=sysinfo_block
A required input parameter, which specifies the name of the area to be filled in with the system information for the registered, active, LUs in the SYSPLEX associated with the input location.

The area must be large enough to contain at least 1 entry. The format of this area is mapped by IWMWSYSR. The EXTENDED_DATA keyword describes the desired format. The FUNCTION keyword describes which servers are candidates for inclusion.

To code: Specify the RS-type address, or address in register (2)-(12), of a field.

ABEND Codes
None.

Return and Reason Codes
When the IWMSRSRS macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 67. Return and Reason Codes for the IWMSRSRS Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx040A</td>
<td>IwmRsnCodeOutputAreaTooSmall</td>
<td>Meaning: The output area supplied is too small to receive all the available information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: None required. If necessary, reinvoke the service with an output area of sufficient size to receive all information.</td>
</tr>
</tbody>
</table>
### Table 67. Return and Reason Codes for the IWMSRSRS Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>xxxx040B</td>
<td>IwmRsnCodeNoServersRegistered</td>
<td>No Servers have registered in the sysplex.</td>
<td>None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
<td>Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>IwmRsnCodeBadPl</td>
<td>Error accessing parameter list.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>IwmRsnCodeDatoff</td>
<td>Caller invoked service while DATOFF</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24-bit addressing mode.</td>
<td>Request this function only when you are in 31-bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not DAT on Primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
<td>Version number in parameter list or version length field is not valid. This reason code is only set when the MVS release is on MVS/ESA HB6603 or higher levels.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx089D</td>
<td>IwmRsnCodeWrongSysLevels</td>
<td>There are servers registered in the sysplex, associated with the input Location name, but with a too old z/OS level (prior to V1R7) for the SPECIFIC function in the routing service.</td>
<td>You may either deregister the servers with the old level, or decide to use IWMSRSRS with function SELECT instead of SPECIFIC.</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>IwmRetCodeEnvError</td>
<td>Environmental error.</td>
<td></td>
</tr>
</tbody>
</table>
### Example

To register an instance of a given location, specify the following:

```plaintext
IWMSRSRS SYSINFO_BLOCK=DATA,
 EXTENDED_DATA=YES,
 ANSLEN=SIZE,
 ENTRY_COUNT=E,
 QUERYLEN=Q,
 LOCATION=LOC,
 FUNCTION=QUERY,RETCODE=RC,RSNCODE=RSN
```

* Storage areas

<table>
<thead>
<tr>
<th>DATA</th>
<th>DS</th>
<th>CL200</th>
<th>Area to receive output</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZEEQU</td>
<td>EQU</td>
<td>-<em>DATA</em></td>
<td>Equate for size of Data</td>
</tr>
<tr>
<td>E</td>
<td>DS</td>
<td>F</td>
<td>Field to receive entry count</td>
</tr>
<tr>
<td>Q</td>
<td>DS</td>
<td>F</td>
<td>Field to receive query length</td>
</tr>
<tr>
<td>LOC</td>
<td>DS</td>
<td>CL18</td>
<td>Contains the Location</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>associated with the server</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>instance</td>
</tr>
<tr>
<td>RC</td>
<td>DS</td>
<td>F</td>
<td>Return code</td>
</tr>
<tr>
<td>RSN</td>
<td>DS</td>
<td>F</td>
<td>Reason code</td>
</tr>
<tr>
<td>SIZE</td>
<td>DC</td>
<td>A(SIZEEQU)</td>
<td>Field to hold size</td>
</tr>
</tbody>
</table>
IWMSRSRS Macro
Chapter 62. IWMUEXPT – WLM Undo Export Service

The IWMUEXPT macro undoes an earlier request to export an enclave via the IWMEXPT macro.

The caller is expected to invoke IWMUEXPT after all importing systems have invoked IWMUIMPT. If IWMUEXPT is invoked while other systems have imported the enclave, WLM loses the ability to manage the multisystem enclave as a unit. Also the enclave owner's SMF 30 record will not contain all of the CPU time used by the enclaves on the other systems.

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum authorization</td>
<td>Supervisor state or program key mask (PKM) allowing keys 0-7.</td>
</tr>
<tr>
<td>Dispatchable unit mode</td>
<td>Task or SRB</td>
</tr>
<tr>
<td>Cross memory mode</td>
<td>Any HASN, any SASN. PASN must be the address space which connected to WLM.</td>
</tr>
<tr>
<td>AMODE</td>
<td>31-bit</td>
</tr>
<tr>
<td>ASC mode</td>
<td>Primary</td>
</tr>
<tr>
<td>Interrupt status</td>
<td>Enabled for I/O and external interrupts</td>
</tr>
<tr>
<td>Locks</td>
<td>No locks may be held.</td>
</tr>
<tr>
<td>Control parameters</td>
<td>Control parameters must be in the primary address space.</td>
</tr>
</tbody>
</table>

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

None.

Input Register Information

Before issuing the IWMUEXPT macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:
IWMUXEPT Macro

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

```
main diagram
```

Parameters

The parameters are explained as follows:

`name`

An optional symbol, starting in column 1, that is the name on the IWMUXEPT macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

`,CONNTKN=conntkn`

A required input parameter that contains the connect token for the primary address space’s connection to WLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

, list addr
   The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

, attr
   An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of OF to force the parameter list to a word boundary, or OD to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of OD.

, COMPLETE
   Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

, PLISTVER=IMPLIED_VERSION
, PLISTVER=MAX
, PLISTVER=0
   An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:
   • IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
   • MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
     If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.
IWMUXEPT Macro

- 0, if you use the currently available parameters.

**To code:** Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0

**,RETCODE=retcode**
An optional output parameter into which the return code is to be copied from GPR 15.

**To code:** Specify the RS-type address of a fullword field, or register (2)-(12).

**,RSNCODE=rsncode**
An optional output parameter into which the reason code is to be copied from GPR 0.

**To code:** Specify the RS-type address of a fullword field, or register (2)-(12).

**XTOKEN=xtoken**
A required input parameter that contains the export token which identifies the exported enclave.

**To code:** Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

**ABEND Codes**

None.

**Return and Reason Codes**

When the IWMUXEPT macro returns control to your program:
- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

**Table 68. Return and Reason Codes for the IWMUXEPT Macro**

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
<td>Meaning: Successful completion.</td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0432</td>
<td>Equate Symbol: IwmRsnCodeUnknownExportToken</td>
<td>Meaning: No enclave matching the export token was found. The enclave may have been unexported or deleted, or the WLM coupling facility structure may have been lost.</td>
<td>Action: None.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol</td>
<td>Meaning</td>
<td>Action</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
<td>Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>IwmRsnCodeBadPl</td>
<td>Error accessing parameter list.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0821</td>
<td>IwmRsnCodeBadConn</td>
<td>Input connect token does not pass validity checking.</td>
<td>Make sure the primary address space connected to WLM using the IWM4CON service. Make sure the connect token returned by IWM4CON is passed correctly.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24 bit addressing mode.</td>
<td>Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not in primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>IwmRsnCodeRsvdNot0</td>
<td>Reserved field in parameter list was non-zero.</td>
<td>Check for use of keywords that are not supported by the MVS release on which the program is running.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>IwmRsnCodeServiceNotEnabled</td>
<td>Caller’s connection is not enabled for this service.</td>
<td>Make sure that EXPTIMPT=YES is specified on the IWM4CON macro invocation.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0842</td>
<td>IwmRsnCodeNoWLMConnect</td>
<td>Caller’s primary address space is not connected to WLM.</td>
<td>Invoke the IWM4CON macro before invoking this macro.</td>
</tr>
</tbody>
</table>
### IWMUXEXPT Macro

#### Table 68. Return and Reason Codes for the IWMUXEXPT Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0870</td>
<td></td>
<td><strong>Equate Symbol</strong>: IwmRsnCodeBadExportToken</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Meaning</strong>: The export token is not validly formatted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Action</strong>: Check for possible storage overlay of the export token.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0871</td>
<td></td>
<td><strong>Equate Symbol</strong>: IwmRsnCodeDidNotExportOrImport</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Meaning</strong>: The primary address space did not export the enclave.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Action</strong>: Invoke IWMUXEXPT from the correct address space.</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td></td>
<td><strong>Equate Symbol</strong>: IwmRetCodeEnvError</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Meaning</strong>: Environmental error.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td></td>
<td><strong>Equate Symbol</strong>: IwmRetCodeCompError</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Meaning</strong>: Component error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Action</strong>: Contact your system programmer.</td>
</tr>
</tbody>
</table>

#### Example

```
IWMUXEXPT XTOKEN=EXPORTT,CONNTKN=CONNECTT
* Storage areas
* EXPORTT DS CL32 Export token
CONNECTT DS CL4 Connect token
```
Chapter 63. IWMUIMPT – WLM Undo Import Service

The IWMUIMPT macro undoes an earlier request to import an enclave via the IWMIMPT macro.

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Requirement Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum authorization</td>
<td>Supervisor state or program key mask (PKM) allowing keys 0-7.</td>
</tr>
<tr>
<td>Dispatchable unit mode</td>
<td>Task or SRB</td>
</tr>
<tr>
<td>Cross memory mode</td>
<td>Any HASN, any SASN. PASN must be the address space which connected to WLM.</td>
</tr>
<tr>
<td>AMODE</td>
<td>31-bit</td>
</tr>
<tr>
<td>ASC mode</td>
<td>Primary</td>
</tr>
<tr>
<td>Interrupt status</td>
<td>Enabled for I/O and external interrupts</td>
</tr>
<tr>
<td>Locks</td>
<td>No locks may be held.</td>
</tr>
<tr>
<td>Control parameters</td>
<td>Control parameters must be in the primary address space.</td>
</tr>
</tbody>
</table>

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

None.

Input Register Information

Before issuing the IWMUIMPT macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

© Copyright IBM Corp. 1988, 2009
Return code

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMUIMPT macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,CONNTKN=conntkn
A required input parameter that contains the connect token for the primary address space's connection to WLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
  
  If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.
- **0**, if you use the currently available parameters.

**To code:** Specify one of the following:

- **IMPLIED_VERSION**
- **MAX**
A decimal value of 0

.,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.
To code: Specify the RS-type address of a fullword field, or register (2)-(12).

.,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.
To code: Specify the RS-type address of a fullword field, or register (2)-(12).

XTOKEN=xtoken
A required input parameter that contains the export token which identifies the exported enclave.
To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMUIMPT macro returns control to your program:
- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: iwmRetCodeOk</td>
<td>Meaning: Successful completion.</td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: iwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0432</td>
<td>Equate Symbol: iwmRsnCodeUnknownExportToken</td>
<td>Meaning: No enclave matching the export token was found. The enclave may have been unexported or deleted, or the WLM coupling facility structure may have been lost.</td>
<td>Action: None.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: iwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: iwmRsnCodeDisabled</td>
<td>Meaning: Caller is disabled.</td>
<td>Action: Avoid requesting this function while disabled.</td>
</tr>
</tbody>
</table>
Table 69. Return and Reason Codes for the IWMUIMPT Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>Equate Symbol: IwmRsnCodeBadPl</td>
<td>Error accessing parameter list.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0821</td>
<td>Equate Symbol: IwmRsnCodeBadConn</td>
<td>Input connect token does not pass validity checking.</td>
<td>Make sure the primary address space connected to WLM using the IWM4CON service. Make sure the connect token returned by IWM4CON is passed correctly.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24 bit addressing mode.</td>
<td>Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>Equate Symbol: IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not in primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>Equate Symbol: IwmRsnCodeRsvdNot0</td>
<td>Reserved field in parameter list was non-zero.</td>
<td>Check for use of keywords that are not supported by the MVS release on which the program is running.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>Equate Symbol: IwmRsnCodeServiceNotEnabled</td>
<td>Caller’s connection is not enabled for this service.</td>
<td>Make sure that EXPTMPT=YES is specified, or used by default, on the IWM4CON macro invocation.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0842</td>
<td>Equate Symbol: IwmRsnCodeNoWLMConnect</td>
<td>Caller’s primary address space is not connected to WLM.</td>
<td>Invoke the IWM4CON macro before invoking this macro.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0870</td>
<td>Equate Symbol: IwmRsnCodeBadExportToken</td>
<td>The export token is not validly formatted.</td>
<td>Check for possible storage overlay of the export token.</td>
</tr>
</tbody>
</table>
Table 69. Return and Reason Codes for the IWMUIMPT Macro  (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0871</td>
<td>Equate Symbol: IwmRsnCodeDidNotExportOrImport</td>
<td>Meaning: The primary address space did not import the enclave. Action: Invoke IWMUIMPT from the correct address space.</td>
</tr>
</tbody>
</table>

Example

```
IWMUIMPT XTOKEN=EXPORTT,CONNTKN=CONNECTT
* * Storage areas
* *
EXPORTT DS CL32 Export token
CONNECTT DS CL4 Connect token
```
Chapter 64. IWMWMCON – Modify Connect Information

The purpose of this service is to modify a particular connection to WLM with respect to the associated subsystem type and/or name for Work Manager services, described below, and so could replace the use of the pair of services Disconnect (IWM4DIS) and Connect (IWM4CON) for the new values of subsystem type and/or name. This change only affects Work Manager related services, and does not affect the subsystem identify for Queue Manager or Server Manager services. For this reason, the caller must be connected to the WLM work management services, i.e. IWM4CON WORK_MANAGER=YES must be specified. Queue Manager and/or Server Manager may also be specified at Connect, but are not affected by use of IWMWMCON. The PSW key and topology list associated with the connect may not be changed via this service.

Use of this service needs to be coordinated with the use of other Work Manager services which depend on the Connect token and the associated subsystem related information to ensure that the desired results are obtained. Among these services are Classify (IWMCLSFY), Report (IWMRPT), Notify (IWMMNTFY) where it is an optional input, and Enclave Create (IWM4ECRE). Note that use of IWMWMCON is not appropriate prior to creation of Enclaves with TYPE(Dependent) or TYPE(Montkn).

Environment

The requirements for the caller are:

Minimum authorization:	Supervisor state or program key mask (PKM) allowing keys 0-7.
Dispatchable unit mode:	Task or SRB
Cross memory mode:	Any P,S. Current Home address space must be the same as Home when the corresponding Connect was invoked.
AMODE:	31-bit
ASC mode:	Primary
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No locks may be held.
Control parameters:	Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
IWMWMCON Macro

Restrictions
1. If the key specified on IWM4CON was a user key (8-F), then the following must ALL be true:
   • Caller must be in non-cross-memory mode (P=S=H). This implies that the current primary must match the primary at the time that IWM4CON was invoked. Running in a subspace is not supported.
   • Must be in task mode (not SRB)
   • Current task must match the task at the time that IWM4CON was invoked.
2. It is the caller's responsibility to serialize use of this service with use of IWMCLSFY and other services using the connect token. Failure to do so may result in classification to a service and/or report class which is other than the intended one.
3. This service should not be invoked while in a RTM termination routine (resource manager) for the task owning the connect token since MVS will have its own resource cleanup routine and unpredictable results would occur. It is legitimate to use this service while in a recovery routine, however, or in mainline processing.

Input Register Information
Before issuing the IWMWMCON macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications
None.
IWMWMCON Macro

Syntax

main diagram

Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMWMCON macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

CONNTKN=conntkn
A required input parameter, which contains the connect token for the environment to be modified.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.
IWMWMCON Macro

`list addr`

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

`attr`

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code `attr`, the system provides a value of 0D.

`COMPLETE`

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

`PLISTVER=IMPLIED_VERSION`

`PLISTVER=MAX`

`PLISTVER=0`

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible.
  This size might grow from release to release and affect the amount of storage that your program needs.
  If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.
- **0**, if you use the currently available parameters.

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0

`RETCODE=retcode`

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

`RSNCode=rsncode`

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

`SUBSYS=subsys`

A required input parameter, which contains the generic subsystem type (e.g. IMS, CICS, etc.).

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-character field.
IWMWMCON Macro

,.SUBSYSNM=subsysnm
A required input parameter, which contains the name of the specific subsystem instance

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWMWMCON macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
<td>None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0409</td>
<td>IwmRsnCodeNoConn</td>
<td>Input connection token does not reflect an active connection to WLM.</td>
<td>None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0802</td>
<td>IwmRsnCodeXmemUserKeyTkn</td>
<td>Caller is in cross-memory mode while the token was requested in user key.</td>
<td>Avoid requesting this function while in cross-memory mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
<td>Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
</tbody>
</table>
### Table 70. Return and Reason Codes for the IWMWMCON Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meanings and Action</th>
</tr>
</thead>
</table>
| 8           | xxxx0809    | Equate Symbol: IwmRsnCodeSrbUserKeyTkn  
**Meaning:** Caller is in SRB mode, while the token was obtained in a user key (8-F).  
**Action:** Avoid requesting this function in SRB mode for tokens associated with user key. |
| 8           | xxxx080A    | Equate Symbol: IwmRsnCodeTcbNotOwnerUserKeyTkn  
**Meaning:** Current task is not the owner, while the token was obtained in a user key (8-F).  
**Action:** Avoid requesting this function under a task other than the owner for a token associated with user key. |
| 8           | xxxx080B    | Equate Symbol: IwmRsnCodeBadPl  
**Meaning:** Error accessing parameter list.  
**Action:** Check for possible storage overlay. |
| 8           | xxxx0823    | Equate Symbol: IwmRsnCodeDatoff  
**Meaning:** Caller invoked service while DATOFF  
**Action:** Avoid requesting this function in this environment. |
| 8           | xxxx0824    | Equate Symbol: IwmRsnCodeAmode24  
**Meaning:** Caller invoked service but was in 24 bit addressing mode.  
**Action:** Request this function only when you are in 31 bit addressing mode. |
| 8           | xxxx0825    | Equate Symbol: IwmRsnCodeAscModeNotPrimary  
**Meaning:** Caller invoked service but was not DAT on Primary ASC mode.  
**Action:** Avoid requesting this function in this environment. |
| 8           | xxxx0826    | Equate Symbol: IwmRsnCodeTaskTerm  
**Meaning:** Caller invoked service while task termination is in progress for the task associated with the owner.  
**Action:** Avoid requesting this function in this environment. |
| 8           | xxxx0827    | Equate Symbol: IwmRsnCodeRsvdNot0  
**Meaning:** Reserved field in parameter list was non-zero.  
**Action:** Check for possible storage overlay of the parameter list. |
| 8           | xxxx0828    | Equate Symbol: IwmRsnCodeBadVersion  
**Meaning:** Version number in parameter list is not valid.  
**Action:** Check for possible storage overlay of the parameter list. |
| 8           | xxxx082F    | Equate Symbol: IwmRsnCodeWrongHome  
**Meaning:** Caller invoked the service from the wrong home address space.  
**Action:** Invoke the function with the correct home address space. |
Table 70. Return and Reason Codes for the IWMWMCON Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>Equate Symbol: IwmRsnCodeServiceNotEnabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Meaning:</strong> Caller's space connection is not enabled for this service. The caller is not connected to the WLM work management services.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Action:</strong> Avoid requesting this function under the input connection. IWM4CON options must be specified previously to enable this service. Check the specification of the WORK_MANAGER keyword on the IWM4CON macro invocation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Meaning:</strong> Component error.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Action:</strong> No action required. The function may be successful if invoked again.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples

To override the subsystem name and subsystem type provided on a previous call to IWM4CON, specify:

```
IWMWMCON SUBSYS=GENSUB, SUBSYSNM=SUBNAME,
 CONNTKN=CONNTOKEN, RETCODE=RC, RSNCODE=RSN,
```

Where the following are declared:

- GENSUB DS CL4  Generic subsystem type
- SUBNAME DS CL8  Subsystem name
- CONNTOKEN DS FL4  Connect token
IWMWMCON Macro
Chapter 65. IWMWQRY – Query Service

IWMWQRY provides information to help the subsystem work manager make work routing and scheduling decisions. IWMWQRY allows the caller to obtain the service class goals and importance for a service class by performance period.

The caller must provide an area of storage in the ANSAREA=ansarea and the length of that area in the ANSLEN=anslen for IWMWQRY to place the service class goal and importance information. IWMWQRY returns the actual length of the information in the QUERYLEN=querylen parameter.

The answer area is mapped by the IWMSVPOL and IWMSVPDC data areas. The data areas are described in [z/OS MVS Data Areas, Vol 3 (IVT-RCWK)]

The first time the caller invokes this macro, you should specify QUERYLEN. The service returns the length required for the service class information.

The information returned is not serialized upon return to the caller, and so may be out of date due to a change in service policy.

Environment

The requirements for the caller are:

Minimum authorization: Supervisor state, or problem state. Any PSW key.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or Access Register (AR) mode.

Interrupt status: Enabled

Locks: Unlocked

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

- Make sure no EUT FRRs are established.
- If you are in AR mode, you must specify SYSSTATE ASCENV=AR before invoking IWMWQRY.
- You must include the CVT and the IWMYCON mapping macros in the calling program.

Restrictions

None.

Input Register Information

Before issuing the IWMWQRY macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.
### Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if the return code in GPR 15 is not 0, otherwise, used as a work register by the system.</td>
</tr>
<tr>
<td>1</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14 - 15</td>
<td>Used as a work register by the system.</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

### Performance Implications

None.

### Syntax

The syntax of the IWMWQRY macro is as follows:

```
main diagram
\[... \]

Parameters

The parameters are explained as follows:

SERVCLS=SERVCLS

Required input parameter that specifies the token representing the service class, and if there is one, the report class.
IWMWQRY Macro

To code: Specify the RS-type name or address (using a register from 2 to 12) of a 32 bit field containing the service class token.

,ANSLEN=anslen
Required input parameter containing the length of the area provided to hold the data returned by IWMWQRY.

To code: Specify the RS-type name or address (using a register from 2 to 12) of a 32 bit field containing the length of the area provided.

,ANSAREA=ansarea
Required output parameter that specifies the area provided to contain the data being returned by IWMWQRY.

The area is mapped by the IWMSVPCD mapping macro and the service class period definition section in the IWMSVPOL mapping macro. The IWMSVPCD part of the answer area contains the offset to the class data, the size of the class data, and the size of each period entry. The IWMSVPOL part of the answer area contains the service class definition section, and the service class period definition of the service class.

To code: Specify the RS-type name or address (using a register from 2 to 12) of a character field specifying an area to contain the data returned by the query service.

,QUERYLEN=querylen
Required output parameter that specifies the number of bytes needed to contain the service class information.

To code: Specify the RS-type name or address (using a register from 2 to 12) of a fullword field to contain the required number of bytes.

,RETCODE=retcode addr
Optional output parameter that specifies where the system is to store the return code. The return code is also in GPR 15.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain the return code.

,RSNCODE=rsncode addr
Optional output parameter that specifies where the system is to store the reason code. The reason code is also in GPR 0.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain the reason code (if any).

,MF=S
,MF=(L,mfctrl,mfattr)
,MF=(E,mfctrl,COMPLETE)
Use MF=S to specify the standard form, which places parameters into an inline parameter list and invokes the IWM4CON macro service.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require re-entrant code. The list form defines an area of storage that the execute form uses to store the parameters.

Use MF=E to specify the execute form of the macro. Use the execute form with the list form of the macro for applications that require re-entrant code. The execute form stores the parameters into the storage area defined by the list form and generates the macro invocation to transfer control to the service.
IWMWQRY Macro

,mfctrl
Use this output parameter to specify the name of the storage area to contain the parameters.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of the storage area containing the parameter list.

,mfattr
Use this input parameter to specify the name of a 1 to 60 character storage area that can contain any value that is valid on an assembler DS pseudo-op. You can use this parameter to force boundary alignment of the parameter list. If you do not code ,mfattr the system provides a value of 0D, which forces the parameter on a doubleword boundary.

,COMPLETE
Use this input parameter to specify that the system check for required parameters and supply defaults for omitted optional parameter.

ABEND Codes

None.

Return and Reason Codes

When IWMWQRY macro returns control to your program, GPR 15 contains a return code. When the return code is non-zero, then GPR 0 contains a reason code.

<table>
<thead>
<tr>
<th>Hexadecimal Return Code</th>
<th>Hexadecimal Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td></td>
<td>Meaning: Warning.</td>
</tr>
<tr>
<td>04 0401</td>
<td></td>
<td>Meaning: Warning. The system does not support work manager services. The Query output area has not been modified. This return code is only set when the MVS release is prior to MVS/ESA SP 5.1.0.</td>
</tr>
<tr>
<td>04 040A</td>
<td></td>
<td>Meaning: Warning. The output area supplied is too small to receive all the available information.</td>
</tr>
<tr>
<td>04 0410</td>
<td></td>
<td>Meaning: Warning. The input service class token does not reflect a service class in the current service policy.</td>
</tr>
<tr>
<td>08 0801</td>
<td></td>
<td>Meaning: Program error. The caller is in SRB mode.</td>
</tr>
<tr>
<td>08 0803</td>
<td></td>
<td>Meaning: Program error. The caller is disabled.</td>
</tr>
<tr>
<td>08 0804</td>
<td></td>
<td>Meaning: Program error. The caller is locked.</td>
</tr>
<tr>
<td>08 080D</td>
<td></td>
<td>Meaning: Program error. Input service class is not valid.</td>
</tr>
<tr>
<td>08 0810</td>
<td></td>
<td>Meaning: Program error. Caller has EUT FRR established.</td>
</tr>
<tr>
<td>08 0830</td>
<td></td>
<td>Meaning: Program error. Caller has passed an invalid ALET.</td>
</tr>
</tbody>
</table>

Example

For information related to the service class represented by the service class token in the SERVCLS field, specify:

IWMWQRY ANSAREA=ANSAREA, ANSLEN=ANSLEN, SERVCLS=SERVCLS
QUERYLEN=QUERYLEN, RETCODE=RCODE,
RSNCODE=RSN, MF=(E,MFWQRY)
Chapter 66. IWMWQWRK – Query Work Service

A work manager can use IWMWQWRK to help identify where its transactions may
be executing. A caller can issue this for a work manager address space that is
having trouble executing transactions, and wants to find out where transactions are
abending.

A caller can narrow in on where the problem is occurring by using the LU 6.2 token
information contained in monitoring environments.

With this service, a caller can get:

- A list of LU 6.2 tokens
 Specify SEARCH_BY=CONNTKN, and get a list of LU 6.2 tokens for all work
 requests reflected in monitoring environments owned by the current home
 address space. To do this, the caller should provide the connect token of the
 address space in the CONNTKN parameter.

- A list of ASIDs and/or STOKENs
 Specify SEARCH_BY=LU62TKN and provide a list of LU 6.2 tokens, and
 IWMWQWRK returns a list of ASIDs and/or STOKENs representing owners of
 monitoring environments initialized (via IWM4MINI) with an LU 6.2 token in the
 list.
 The list of LU 6.2 tokens must have been obtained on a previous call to
 IWMWQWRK.
 Monitoring environments owned by the home address space which are related
 (by IWMMRELA) to other monitoring environments are not searched.
 Optionally, to narrow the search, a caller can also provide the subsystem type or
 the subsystem instance in the SUBSYS and SUBSYSNM parameters.

Environment

The requirements for the caller are:

| Minimum authorization: | Supervisor state, or problem state. Any PSW key. |
| Dispatchable unit mode: | Task |
| Cross memory mode: | PASN = HASN = SASN, unless all monitoring environments owned by the current home address space were created only in system keys. If the current home address space owns any monitoring environments created in a user key (8-F), then PASN = HASN = SASN. |
| AMODE: | 31-bit |
| ASC mode: | Primary |
| Interrupt status: | Enabled for I/O and external interrupts |
| Locks: | Unlocked |
| Control parameters: | Control parameters must be in the primary address space. |

Programming Requirements

You must include the IWMYCON mapping macro in the calling program.
IWMWQWRK Macro

Restrictions

None.

Input Register Information

Before issuing the IWMWQWRK macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if the return code in GPR 15 is not 0, otherwise, used as a work register by the system.</td>
</tr>
<tr>
<td>1</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
<td>Used as a work register by the system.</td>
</tr>
<tr>
<td>2 - 13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14 - 15</td>
<td>Used as a work register by the system.</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

The syntax of the IWMWQWRK macro is as follows:

```
main diagram
```

```
->,name<--IWMWQWRK.search_by<--.CONNTKN<--parameters-1<--,RETCODE=retcode<--
```

```
->,RSNCODE=rsncode<--.MF=S<--
```

```
->,MF=(L,--MFCTRL<--.OD<--.mffattr<--.COMPLETE<--.complete<--)
```

```
->,MF=(E,--MFCTRL<--.complete<--)
```

Z/OS V1R11.0 MVS Programming: Workload Management Services
IWMWQWRK Macro

Parameters

The parameters are explained as follows:

SEARCH_BY=CONNTKN
SEARCH_BY=LU62TKN

Required input parameter that specifies the type of search for the information about work.

Use SEARCH_BY=CONNTKN to indicate that the information about work associated with the input connect token should be returned. The information returned is a list of LU 6.2 tokens, contained in LU62_LIST, and a return code.

Use SEARCH_BY=LU62TKN to indicate that information about work associated with the input list of LU 6.2 tokens (which the caller must provide in the LU62_LIST=lu62_list) should be returned.

You define the input list with the LU62_LIST and LU62_LISTSIZE keywords. The list must be the output of a prior call to IWMWQWRK specifying SEARCH_BY=CONNTKN.

The information returned is a return code indicating whether work reflected in any monitoring environment owned by the current home address space is associated with ANY LU 6.2 token in the list of token provided in the LU62_LIST.

CONNTKN=conntkn

Required input parameter for SEARCH_BY=CONNTKN that specifies the
connect token returned by IWM4CON. The connect token (CONNTKN) must be owned by the current home address space.

To code: Specify the RS-type name or address in register (2)-(12), of a 32 bit field containing the connect token.

QUERYLEN=querylen
Required output parameter for SEARCH_BY=CONNTKN that specifies the number of bytes needed to contain the information for the input connect token (CONNTKN=conntkn).

To code: Specify the RS-type name or address in register (2)-(12), of a fullword containing the number of bytes to contain the information.

SUBSYS=subsys
SUBSYS=NO_SUBSYS
Optional input parameter for SEARCH_BY=LU62TKN that specifies the generic subsystem type (ie CICS, IMS) This keyword helps narrow the search for the matching LU 6.2 token further.

To code: Specify the RS-type name or address in register (2)-(12), of a 4 character field containing the generic subsystem type.

SUBSYSNM=subsysnm
SUBSYSNM=NO_SUBSYSNM
Optional input parameter for SEARCH_BY=LU62TKN that specifies the subsystem instance name. This keyword helps narrow the search for the matching LU 6.2 token further.

To code: Specify the RS-type name or address in register (2)-(12), of an 8 character field containing the subsystem instance name.

LU62_LIST=lu62_list
LU62_LIST=NO_LU62_LIST
Optional input/output parameter specifying the area for the list of LU 6.2 tokens. To specify an input LU62_LIST, you must have previously invoked this macro to receive an output LU62_LIST, and provide the list on a subsequent invocation.

To code: Specify the RS-type name or address in register (2)-(12), of a character field specifying the area for the LU 6.2 token list.

LU62_LISTSIZE=lu62_listsize
Required input parameter for LU62_LIST=lu62_list specifying the length of the area provided to contain the data returned by IWMWQWRK.

To code: Specify the RS-type name or address in register (2)-(12), of a fullword field containing the length of the LU 6.2 token list.

ASID_LIST=asid_list
ASID_LIST=NO_ASID_LIST
Optional input/output parameter that specifies an area for the list of ASIDs. Each entry (ASID) is 2 bytes. Only ASIDs for regions known to be involved in some work request are returned. Regions which could not be interrogated are reflected only in the SKIP_REGIONS parameter.

ASID_LIST=NO_ASID_LIST indicates that no list area is provided.

To code: Specify the RS-type name or address in register (2)-(12), of a character field specifying the area for the list of ASIDs.

ASID_LISTSIZE=asid_listsize
Required input parameter for ASID_LIST=asid_list that specifies the length of the area provided for the ASIDs returned by IWMWQWRK.
To code: Specify the RS-type name, or address in register (2)-(12), of a fullword containing the length of the area.

ASID_SIZENEED=asid sizeneed
Required output parameter for **ASID_LIST=asid_list** that specifies the number of bytes needed for the output list of ASIDs.

To code: Specify the RS-type name or address in register (2)-(12), of a fullword to contain the number of bytes needed for the ASID list.

STOKEN_LIST=stoken_list

STOKEN_LIST=NO_STOKEN_LIST area is provided.
Option input/output parameter for that specifies the area for the list of STOKENs. Only STOKENs for regions known to be involved in some work request are returned. Regions which could not be interrogated are only reflected in the SKIP_REGIONS variable.

To code: Specify the name (RS-type), or address in register (2)-(12), of a character field specifying an area for the list of STOKENs.

STKN_LISTSIZE=stkn_listsize
Required input parameter for **STOKEN_LIST=stoken_list** that contains the length of the area provided for the STOKEN list being returned by IWMWQWRK.

To code: Specify the name (RS-type), or address in register (2)-(12), of a fullword containing the length of the area.

STKN_SIZENEED=stkn_sizeneed
Required input parameter for **STOKEN_LIST=stoken_list** that specifies the number of bytes needed for the output list of STOKENs.

To code: Specify the RS-type name or address in register (2)-(12), of a fullword containing the number of bytes.

SKIP_REGIONS=skip_regions
Optional output parameter for **STOKEN_LIST=stoken_list** that contains the number of address spaces skipped and therefore not included in the output list of ASIDs/STOKENs. If the caller wants to re-invoke IWMWQWRK when SKIP_REGIONS is non-zero, it may be desirable to ensure that ASID_SIZENEED + 2*SKIP_REGIONS <= ASID_LISTSIZE, AND that STKN_SIZENEED + 8*SKIP_REGIONS <= STKN_LISTSIZE when these output areas are passed.

,RETCODE=retcode addr
Optional output parameter that specifies where the system is to store the return code. The return code is also in GPR 15.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain the return code.

,RSNCODE=rsncode addr
Optional output parameter that specifies where the system is to store the reason code. The reason code is also in GPR 0.

To code: Specify the name (RS-type) or address (using a register from 2 to 12) of a fullword to contain the reason code (if any).

,MF=S
,MF=(L,mfctrl,mfattr)
,MF=(E,mfctrl,COMPLETE)
Use MF=S to specify the standard form, which places parameters into an inline parameter list and invokes the IWM4CON macro service.
IWMWQWRK Macro

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require re-entrant code. The list form defines an area of storage that the execute form uses to store the parameters.

Use MF=E to specify the execute form of the macro. Use the execute form with the list form of the macro for applications that require re-entrant code. The execute form stores the parameters into the storage area defined by the list form and generates the macro invocation to transfer control to the service.

\texttt{,mfctrl}

Use this output parameter to specify the name of the storage area to contain the parameters.

\textbf{To code:} Specify the name (RS-type) or address (using a register from 2 to 12) of the storage area containing the parameter list.

\texttt{,mfattr}

Use this input parameter to specify the name of a 1 to 60 character storage area that can contain any value that is valid on an assembler DS pseudo-op. You can use this parameter to force boundary alignment of the parameter list. If you do not code \texttt{,mfattr} the system provides a value of 0D, which forces the parameter on a doubleword boundary.

\texttt{,COMPLETE}

Use this input parameter to specify that the system check for required parameters and supply defaults for omitted optional parameter.

ABEND Codes

None.

Return and Reason Codes

When IWMWQWRK macro returns control to your program, GPR 15 contains a return code. When the return code is non-zero, then GPR 0 contains a reason code.

<table>
<thead>
<tr>
<th>Hexadecimal Return Code</th>
<th>Hexadecimal Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td></td>
<td>Successful completion.</td>
</tr>
<tr>
<td>04 0401</td>
<td></td>
<td>Warning. System does not support work manager services. The query output area has not been modified. This return code is set only when the MVS release is prior to MVS/ESA SP 5.1.</td>
</tr>
<tr>
<td>04 0408</td>
<td></td>
<td>Warning. No work matching the input search arguments was found.</td>
</tr>
<tr>
<td>04 0409</td>
<td></td>
<td>Warning. Input connection token does not reflect an active connection to WLM.</td>
</tr>
<tr>
<td>04 040A</td>
<td></td>
<td>Warning. The output area supplied is too small to receive all the available information.</td>
</tr>
<tr>
<td>08 0802</td>
<td></td>
<td>Program error. Caller is in cross memory mode while some monitoring environments were in user key.</td>
</tr>
<tr>
<td>08 0803</td>
<td></td>
<td>Program error. Caller is disabled.</td>
</tr>
<tr>
<td>08 0804</td>
<td></td>
<td>Program error. Caller is locked.</td>
</tr>
</tbody>
</table>

542 z/OS V1R11.0 MVS Programming: Workload Management Services
IWMQWRK Macro

<table>
<thead>
<tr>
<th>Hexadecimal Return Code</th>
<th>Hexadecimal Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>08</td>
<td>080B</td>
<td>Meaning: Program error. Error accessing parameter list.</td>
</tr>
<tr>
<td>08</td>
<td>0810</td>
<td>Meaning: Program error. Caller has EUT FRR established.</td>
</tr>
<tr>
<td>08</td>
<td>0823</td>
<td>Meaning: Program error. Caller invoked service while dynamic address translation was disabled.</td>
</tr>
<tr>
<td>08</td>
<td>0824</td>
<td>Meaning: Program error. Caller invoked service but was in 24-bit addressing mode.</td>
</tr>
<tr>
<td>08</td>
<td>0825</td>
<td>Meaning: Program error. Caller invoked service but was not in primary ASC mode.</td>
</tr>
<tr>
<td>08</td>
<td>0827</td>
<td>Meaning: Program error. Reserved field in parameter list was non-zero.</td>
</tr>
<tr>
<td>08</td>
<td>0828</td>
<td>Meaning: Program error. Version number in parameter list is not valid.</td>
</tr>
<tr>
<td>08</td>
<td>0829</td>
<td>Meaning: Program error. Parameter list omits required parameters or supplies mutually exclusive parameters or provides data associated with options not selected.</td>
</tr>
</tbody>
</table>

Example

To identify where the transactions associated with the input connect token are executing, specify:

```
IWMQWRK SEARCH_BY=CONNTKN,CONNTKN=(R7),
   LU62_LIST=LIST1,LU62_LISTSIZE=SIZE1,
   QUERYLEN=(R9),RETCODE=RCODE,RSNCODE=RSN
```

LIST1 is a field containing the area for the list. SIZE1 is a field containing the length of the list.
This service queries information about the systems in the sysplex that are in goal mode. The Query System Information service, IWMWSYSQ, returns a list of systems running in goal mode and information related to available CPU capacity and resource constraints.

The caller of IWMWSYSQ must provide storage to contain all of the system information. This storage area must reside in the caller’s primary address space.

It is possible that the storage required by IWMWSYSQ may change such that multiple IWMWSYSQ calls are required to obtain data. IWMWSYSQ users should take this into account when obtaining the amount of storage that the IWMWSYSQ service can use.

If the caller does not provide enough storage to contain all of the system information, this service will return a return/reason code pair indicating that the input SYSINFO_BLOCK is too small. Output data about the amount of storage required (QUERYLEN) will be set to reflect the required SYSINFO_BLOCK size. However, no system capacity information is returned.

Applications that schedule work across multiple systems in an MVS sysplex can use this service to
- Locate the “best” (fastest or most idle) system in a sysplex for scheduling specific work
- Avoid scheduling additional work to systems already critically overloaded
- Factor WLM business importance level information into scheduling decisions

The output of this service is a data area mapped by the IWMWSYSI macro, that provides a point-in-time snapshot of each system WLM is managing in goal mode within the sysplex. A scheduling application can interpret and use this information to schedule one or more types of work to systems with specific operating characteristics. Some examples of operating characteristics you can identify with IWMWSYSQ are
- FASTEST CP SPEED - use the IWMWSYSI data area to identify the system having the fastest single CP speed.
- MULTI-PROCESSING CAPABILITY - use the IWMWSYSI data area to identify the number of online CPs on each available system.
- IDLE CAPACITY - use the IWMWSYSI data area to identify the system with the greatest idle capacity.

If a scheduling application can identify the IMPORTANCE LEVEL of the work it schedules the application can use IWMWSYSI to select the most appropriate system. IWMWSYSI provides a vector containing the amount of capacity consumed at each importance level on each system. Thus, if an application is scheduling importance level 3 work, it can use IWMWSYSI to identify the system that has the most capacity that is either idle or is handling importance level 4 or lower work.

An important use of a scheduling application is to avoid placing additional work on systems experiencing contention. IWMWSYSI provides an indicator for each system that, if on, signifies that the system should be avoided for scheduling additional work. This contention indicator is set if a auxiliary storage, fixed storage, or SQA
shortcut exists. Also, if work to be scheduled may consume large quantities of CSA, you can use IWMWSYSI to determine the amount of CSA and ECSA that is available on each system.

Note that:

- Multiple applications may simultaneously use the same IWMWSYSQ information to make work scheduling decisions. These multiple applications will have no direct cooperation and will compete for the available systems. It is recommended that before an application schedules a large amount of work it activate a small quantity of work, wait for a built-in delay, and then use IWMWSYSQ to determine the effect of the added work before scheduling the additional work.

- Field SYSI_CPU_UP in macro IWMWSYSI returns the speed of an individual CP on the system, adjusted to compensate for MP effects. However, the CP speed of an LPAR is influenced by the CEC LPAR configuration. Variables such as the number of LPARs, the CP mode (shared or dedicated), capping controls, and the logical to physical CP ratio will all influence the actual CP speed. SYSI_CPU_UP is not adjusted for such LPAR configuration effects and therefore the actual performance may differ. See the PR/SM manual for more details.

Environment

The requirements for the caller are:

| Minimum authorization: | Problem state. Any PSW key |
| Dispatchable unit mode: | Task |
| Cross memory mode: | Any PASN, any HASN, any SASN |
| AMODE: | 31-bit |
| ASC mode: | Primary or access register (AR) |
| Interrupt status: | Enabled for I/O and external interrupts |
| Locks: | No locks may be held. |
| Control parameters: | Control parameters must be in the primary address space. |

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

None.
Input Register Information

Before issuing the IWMWSYSQ macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

```
main diagram
```

Parameters

The parameters are explained as follows:
IWMWSYSQ Macro

name
An optional symbol, starting in column 1, that is the name on the IWMWSYSQ macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,ANSLEN=anslen
A required input parameter, which contains the length of the SYSINFO_BLOCK in bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,EXTENDED_DATA=NO
,EXTENDED_DATA=YES
An optional input parameter, which describes whether the format of the output area named by SYSINFO_BLOCK includes the extended section or not (see IWMWSYSI). The default is EXTENDED_DATA=NO.

,EXTENDED_DATA=NO
indicates that the format of the output area named by SYSINFO_BLOCK includes only the standard information mapped by the SYSI, which consists of an array of entries described by SYSI_ENTRY.

,EXTENDED_DATA=YES
indicates that the format of the output area given by SYSINFO_BLOCK includes first the standard information mapped by the SYSI, which consists of an array of entries described by SYSI_ENTRY, followed immediately by the header for the extension section and another array of entries described by SYSI_EXT_Entry.

The EXTENDED_DATA parameter is only available to callers of the IWMWSYSQ service when invoked on a system running z/OS R9 or higher.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).
IWMWSYSQ Macro

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=2
An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

- IMPLIED_VERSION, which is the lowest version that allows all parameters
 specified on the request to be processed. If you omit the PLISTVER
 parameter, IMPLIED_VERSION is the default.
- MAX, if you want the parameter list to be the largest size currently possible.
 This size might grow from release to release and affect the amount of
 storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify
 PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
 the list-form parameter list is always long enough to hold all the parameters
 you might specify on the execute form; in this way, MAX ensures that the
 parameter list does not overwrite nearby storage.
- 2, if you use the currently available parameters.

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 2

,QUERYLEN=querylen
A required output parameter, variable which contains the output area size that
must be provided by the caller to contain all of the active systems in the sysplex
that are in goal mode (i.e. the amount of data returned by the IWMWSYSQ
service).

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SYSINFO_BLOCK=sysinfo_block
A required input parameter that is to contain the address of an output area to
IWMWSYSQ Macro

contain information provided by this service. The format of this area is mapped by IWMWSYSI and should only be considered valid upon return code zero from this service.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

ABEND Codes

None.

Return and Reason Codes

When the IWMWSYSQ macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 71. Return and Reason Codes for the IWMWSYSQ Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Meaning: Successful completion</td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx040A</td>
<td>IwmRsnCodeOutputAreaTooSmall</td>
<td>Meaning: The output area supplied is too small to receive all the available information.</td>
<td>Action: None required. If necessary, reinvoke the service with an output area of sufficient size (returned in QUERYLEN) to receive all information.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0420</td>
<td>IwmRsnCodeSysInfoIncomplete</td>
<td>Meaning: System capacity data for one or more systems running in goal mode is unavailable when the IWMWSYSQ service is invoked.</td>
<td>Action: None required. If necessary, wait a few minutes and reinvoke the service to receive all information.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
<td>Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>IwmRsnCodeSrbMode</td>
<td>Meaning: Caller is in SRB mode.</td>
<td>Action: Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
<td>Meaning: Caller is disabled.</td>
<td>Action: Avoid requesting this function while disabled.</td>
</tr>
</tbody>
</table>
Table 71. Return and Reason Codes for the IWMWSYSQ Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx0804 | Equate Symbol: IwmRsnCodeLocked | Meaning: Caller is locked.
Action: Avoid requesting this function while locked. |
| 8 | xxxx080B | Equate Symbol: IwmRsnCodeBadPl | Meaning: Error accessing parameter list.
Action: Check for possible storage overlay. |
| 8 | xxxx0823 | Equate Symbol: IwmRsnCodeDatoff | Meaning: Caller invoked service while DATOFF
Action: Avoid requesting this function in this environment. |
| 8 | xxxx0824 | Equate Symbol: IwmRsnCodeAmode24 | Meaning: Caller invoked service but was in 24 bit addressing mode.
Action: Request this function only when you are in 31 bit addressing mode. |
| 8 | xxxx0828 | Equate Symbol: IwmRsnCodeBadVersion | Meaning: Version number in parameter list is not valid or the length specified is incorrect.
Action: Check for possible storage overlay of the parameter list. |
| 8 | xxxx083C | Equate Symbol: IwmRsnCodeMissingAcro | Meaning: Required parameter list acronym (eye catcher) not found or a zero SYSINFO_BLOCK pointer is found to be associated with a non-zero ANSLEN.
Action: Check for possible storage overlay of the parameter list after ensuring that the acronym was correctly set. |
| C | xxxx0C12 | Equate Symbol: IwmRsnNoGoalModeSystems | Meaning: There are no goal mode systems in the sysplex
Action: No action required. |
Action: No action required. The function may be successful if invoked again. |

Example

To query system information, specify:

IWMWSYSQ SYSINFO_BLOCK=SYSINFO, ANSLEN=ANSLEN, QUERYLEN=QUERYLEN, RETCODE=RC, RSCODE=RSN

Where the following are declared:
IWMWSYSQ Macro

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSINFO</td>
<td>DS</td>
<td>SYSINFO_BLOCK address</td>
</tr>
<tr>
<td>ANSLEN</td>
<td>DS</td>
<td>Length of the SYSINFO_BLOCK area</td>
</tr>
<tr>
<td>QUERYLEN</td>
<td>DS</td>
<td>Query length</td>
</tr>
<tr>
<td>RC</td>
<td>DS</td>
<td>Return code</td>
</tr>
<tr>
<td>RSN</td>
<td>DS</td>
<td>Reason code</td>
</tr>
</tbody>
</table>
The IWM4AEDF service defines dynamic application environments to WLM. The service can be used by queue manager address spaces to add new application environments after they connected to WLM and to delete the dynamic application environments before they disconnect from WLM.

Furthermore, the service can be used to define the method how server spaces should be resumed for static and dynamic application environments.

Before using this service, the caller must connect to WLM using the IWM4CON service, specifying Work_Manager=Yes, and Queue_Manager=Yes.

A queueing manager must not insert requests for a dynamic and static application environment with the same application environment name concurrently.

Information

Note that this service was previously called IWMAEDEF for 31-bit address space only (see "IWMAEDEF — Defining Dynamic Application Environments to Workload Management" on page 815).

Environment

The requirements for the caller are:

- **Minimum authorization:** Supervisor state or program key mask (PKM) allowing keys 0-7.
- **Dispatchable unit mode:** Task or SRB
- **Cross memory mode:** Any HASN, any SASN. PASN must be the address space which connected to WLM (i.e. the address space that was home when IWM4CON was issued for Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue).
- **AMODE:** 31- or 64-bit
- **ASC mode:** Primary
- **Interrupt status:** Enabled for I/O and external interrupts
- **Locks:** No locks may be held.
- **Control parameters:** Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.

Restrictions

None.

Input Register Information

Before issuing the IWM4AEDF macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

```
main diagram
```

```
IWM4AEDF,CONNTKN=conntkn

,PARAMETERS-1
,PARAMETERS=parameters-1
,PARAMETERS=APPLENV=applenv
,PARAMETERS=DISTRIBUTE_WORK-FIRST_AVAILABLE,STATIC=NO
,PARAMETERS=DISTRIBUTE_WORK-ROUND_ROBIN
,PARAMETERS=STATIC=YES
```
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4AEDF macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

.APPLENV=applenv
When FUNC=ADD is specified, a required input parameter, which contains the name of the static or dynamic application environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

.CONNTKN=conntkn
A required input parameter, which contains the connect token returned by the IWM4CON macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

.DISTRIBUTE_WORK=FIRST_AVAILABLE
.DISTRIBUTE_WORK=ROUND_ROBIN
When FUNC=ADD is specified, an optional parameter that controls how Workload Management resumes bound server spaces that are waiting for work. The default is DISTRIBUTE_WORK=FIRST_AVAILABLE.

.DISTRIBUTE_WORK=FIRST_AVAILABLE
Workload Management wakes up the server space that has been suspended first (default).

.DISTRIBUTE_WORK=ROUND_ROBIN
Workload Management wakes up the server space that has the smallest number of affinities. If there are several server spaces with the same number of affinities, workload management will start the server space with the smallest number of active server tasks.

.FUNC=ADD
IWM4AEDF Macro

*,FUNC=DELETE
 A required parameter that indicates how the caller uses the service
*,FUNC=ADD
 indicates that the caller wants to add a dynamic application environment to WLM.
*,FUNC=DELETE
 indicates that the caller wants to delete its interest in the dynamic application environment.
*,FUNC=MODIFY
 indicates that the caller wants to redefine the method how server spaces should be resumed for static and dynamic application environments.

*,JCLPARMS=jclparms
*,JCLPARMS=0
 When FUNC=ADD is specified, an optional input parameter, which contains the parameters which are passed to the start procedure of the server manager address spaces by WLM. The default is 0.

 To code: Specify the RS-type address, or address in register (2)-(12), of a 115-character field.

*,JCLPROC=jclproc
 When FUNC=ADD is specified, a required input parameter, which contains the name of the start procedure which is used by WLM to start server manager address spaces for the application environment.

 To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

*,MF=S
*,MF=(L,list addr)
*,MF=(L,list addr,attr)
*,MF=(L,list addr,0D)
*,MF=(E,list addr)
*,MF=(E,list addr,COMPLETE)
 An optional input parameter that specifies the macro form.

 Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

 Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

 Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

*,list addr
 The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).
IWM4AEDF Macro

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:
- IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.
- 0, if you use the currently available parameters.

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SELECT_POLICY=select_policy
,SELECT_POLICY=0
When FUNC=ADD is specified, an optional input parameter, which tells WLM how to select work if work requests are directly routed to the server address space. Only 0, 1 and 2 are valid select policies. 0 is the default which is also selected if an invalid policy is specified.

The select policy options 0, 1 and 2 have the following meaning:
- 0 Default, the oldest request on either the service class or server address space queue is selected first.
IWM4AEDF Macro

- 1 The request on the server address space queue (if present) is selected first independently of the times the requests have been inserted.
- 2 The request on the service class queue is always selected first.

The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of an one-byte field.

,**SINGLE_SERVER=NO**
,**SINGLE_SERVER=YES**

When FUNC=ADD is specified, an optional parameter indicating whether one or multiple server spaces should be started for the application environment. The default is SINGLE_SERVER=NO.

,**SINGLE_SERVER=NO**

Multiple server spaces should be started for the application environment (default).

,**SINGLE_SERVER=YES**

Only one server space should be started for the application environment.

,**STATIC=NO**
,**STATIC=YES**

When FUNC=MODIFY is specified, an optional parameter that controls whether a static or dynamic application environment should be updated. The default is STATIC=NO.

,**STATIC=NO**

indicates that the caller wants to modify a dynamic application environment (default).

,**STATIC=YES**

indicates that the caller wants to modify a static application environment.

ABEND Codes

None.

Return and Reason Codes

When the IWM4AEDF macro returns control to your program:

- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Table 72. Return and Reason Codes for the IWM4AEDF Macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Code</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Return Code</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
IWM4AEDF Macro

Table 72. Return and Reason Codes for the IWM4AEDF Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>IwmRsnCodeServiceNotEnabled</td>
<td>Caller's space connection is not enabled for this service</td>
<td>Make sure that Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue is specified on the IWM4CON request to enable this service.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0842</td>
<td>IwmRsnCodeNoWLMConnect</td>
<td>Caller's space disconnected from WLM during processing of the request.</td>
<td>None.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0890</td>
<td>IwmRsnCodeApplEnvExists</td>
<td>The caller tried to add an application environment that has already been defined. subsystem type.</td>
<td>Check whether the correct application environment name is being used. Make sure that a unique application environment name is used when adding application environments.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0891</td>
<td>IwmRsnCodeApplEnvNotFound</td>
<td>The caller tried to delete or modify an application environment that does not exist.</td>
<td>Check whether the correct application environment name is being used.</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>IwmRsnCodeEnvError</td>
<td>Environmental error.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>IwmRsnCodeNoStg</td>
<td>Storage is not available for the request.</td>
<td>Contact your system programmer. There is a common storage shortage.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>IwmRsnCodeCompError</td>
<td>Component error.</td>
<td>Contact your system programmer.</td>
</tr>
</tbody>
</table>

Example

To add a dynamic application environment, specify the following:

```plaintext
IWM4AEDF CONNTKN=CONNTOKEN, X
     FUNC=ADD, X
     APPLNV=APPLNV X
     JCLPROC=JCLPROC X
     RETCODE=RC, RSCODE=RSN

* Storage areas
* CONNTOKEN DS FL4 Contains the connect token associated with the use of WLM
* APPLNV DS CL32 Contains the application
```

560 z/OS V1R11.0 MVS Programming: Workload Management Services
IWM4AEDF Macro

* environment name
JCLPROC DS CL8 Contains the name of the start procedure
* RC DS F Return code
RSN DS F Reason code
IWM4AEDF Macro
Chapter 69. IWM4CON – Connecting to Workload Management

The purpose of this service is to connect a calling address space to WLM. This service returns a token which is needed to invoke other services. This service can be used to:

• Request that WLM Work Management services be available to the connecting address space and optionally to pass topology information to WLM.
• Request that WLM Work Queuing services be available to the connecting address space.
• Request that WLM Work Execution services be available to the connecting address space.
• Request that WLM Work Balancing services be available to the connecting address space.
• Request that WLM export and import services be available to the connecting address space.

Note that:

• The space which is connected is the current home address space.
• Only a single connection is allowed to be active for a given address space at any given time.
• For each connected task/space, WLM will establish a dynamic resource manager (RESMGR) to be associated with the current task/space. When it receives control, it will free any accumulated resources and delete any enclaves associated with the connect token. This implies that the resource manager will logically perform the disconnect function and the connect token can no longer be passed to WLM services.

Information

Note that this service was previously called IWMCONN for 31-bit address space only (see "IWMCONN – Connecting to Workload Management" on page 823).

Environment

The requirements for the caller are:

Minimum authorization: For WORK_MANAGER=YES or ROUTER=YES, QUEUE_MANAGER=YES or EXPTIMPT=YES, supervisor state or program key mask (PKM) allowing keys 0-7.

For SERVER_MANAGER=YES, problem state with any PSW key.

Dispatchable unit mode: Task

Cross memory mode: Non-XMEM when input key is a user key or SERVER_MANAGER = YES, otherwise XMEM, any P,S,H.

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.
IWM4CON Macro

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
6. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.

Restrictions
1. This macro may only be used on MVS/ESA (Version 3, or higher), NOT Versions 1 or 2 of MVS.
2. This macro may not be used during task/address space termination.
3. Only a single connection is allowed to be active for a given address space at any given time.
4. Specification of both Queue_Manager=Yes, and Server_Manager=Yes requires that Server_Type=Queue. Specification of Server_Type=Routing is rejected.
5. Specification of both Router=Yes, and Server_Manager=Yes requires that Server_Type=Routing. Specification of Server_Type=Queue is rejected.
6. If the callers recovery routine should get control as a result of requesting this service, the function cannot be guaranteed to be complete. It is possible that a token has been saved in the parameter list where the connect token would reside upon successful completion. This token may be passed to IWM4DIS to prevent the address space from being disabled from future IWM4CON requests, but the token should not be used for other services. IWM4DIS in these circumstances may give a warning return code indicating that no connection was established.
7. If the key specified on IWM4CON is a user key (8-F) or SERVER_MANAGER=YES was specified, then the caller must be in non-cross-memory mode (P=S=H)
8. While not a restriction for IWM4CON, it should be noted that when the key specified is a user key (8-F), the connect token may only be passed to IWMCLSFY, IWMRPT, or IWMMNTFY services, when the current primary matches primary at the time IWM4CON is invoked.
9. This macro supports multiple versions. Some keywords are unique to certain versions. See the PLISTVER parameter description.

Input Register Information
Before issuing the IWM4CON macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.
Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
IWM4CON turbo_name WORK_MANAGER=YES parameters-1

,ROUTER=NO
,QUEUE_MANAGER=NO
,QUEUE_MANAGER=YES

,OMGR_EXIT@=NO_QMGR_EXIT@
,OMGR_EXIT@=qmgr_exit@
,ROUTER=YES

,SERVER_MANAGER=NO
,SERVER_MANAGER=YES parameters-2

,EXPTIMPT=NO
,EXPTIMPT=YES

,EXPTIMPT=EXPTIMPT
,SUBSYS=subsys

,SUBSYSNMSUBSYSNM
,CONNTKN=CONNTKN

,CONNTKN=CONNTKN
```

Chapter 69. IWM4CON – Connecting to Workload Management 565
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4CON macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,**APPLENV=applenv**
When SERVER_MANAGER=YES is specified, a required input parameter, which contains the application environment under which work requests are served.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,**CONNTKN=conntkn**
A required output parameter, which will receive the connect token.
To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

CONNTKNKEY = conntknkey
When CONNTKNKEYP=VALUE and WORK_MANAGER=YES are specified, a required input parameter, which contains the key for which the various branch entry services using the CONNTKN returned by IWM4CON must have PSW update authority. These other services include Classify (IWMCLSFY), Report (IWMRPT), Notify (IWMMNTFY). Create (IWM4MCRE) is a PC interface and hence is excluded. The low order 4 bits (bits 4-7) contain the key value. The high order 4 bits (bits 0-3) must be zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-bit field.

CONNTKNKEYP = VALUE
CONNTKNKEYP = PSWKEY
When WORK_MANAGER=YES is specified, a required parameter, which describes how the input key should be obtained.

CONNTKNKEYP = VALUE
indicates that the key is passed explicitly via CONNTKNKEY.

CONNTKNKEYP = PSWKEY
indicates that the current PSW key should be used.

DYNAMIC = NO
DYNAMIC = YES
When SERVER_MANAGER=YES is specified, an optional parameter indicating whether the server manager connects to a dynamic or static application environment. The default is DYNAMIC=NO.

DYNAMIC = NO
The server manager connects to a static application environment. This is the default.

DYNAMIC = YES
The server manager connects to a dynamic application environment.

EWLM = NO
EWLM = YES
When WORK_MANAGER=YES is specified, an optional parameter, which indicates if this work manager intends to participate in cross-platform enterprise workload management (EWLM). The default is EWLM=NO.

EWLM = NO
The work manager interacts only with WLM and no interaction with EWLM takes place. This is the default.

EWLM = YES
The work manager participates in cross-platform enterprise workload management and interacts with EWLM.

EXPTIMPT = NO
EXPTIMPT = YES
An optional parameter indicating whether the space needs access to the export and import services (IWMEXPT, IWMUEXPT, IWMIIMPORT, IWMUIMPORT). The default is EXPTIMPT=NO.

EXPTIMPT = NO
The connecting address space will not use the export and import services.
The connecting address space will use the export and import services.

GROUPNM=groupnm

An optional input parameter, which contains the name of an application group, for example, a group of similar or cooperating subsystem instances. A group name can be up to 255 characters long. Provision of a data area initialized to all blanks is equivalent to specification of NO_GROUPNM. The default is NO_GROUPNM. This indicates that no group name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

GROUPNM_LEN=groupnm_len

When GROUPNM=groupnm is specified, a required input parameter, which contains the length of the group name. A group name can be up to 255 characters long.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

MANAGE_TASKS=NO

MANAGE_TASKS=YES

When SERVER_TYPE=QUEUE and SERVER_MANAGER=YES are specified, an optional parameter indicating that WLM will manage the server instances (tasks), selecting work from a work queue.

If YES is specified, the caller must use service IWMSINF to obtain the number of server instances to start from WLM.

The meaning of PARALLEL_EU changes in this case. PARALLEL_EU is only used to determine the number of tasks to start if the application environment cannot be managed by WLM. Otherwise PARALLEL_EU can be used to limit the number of server tasks to start initially.

The server can define the SERVER_LIMIT parameter to specify a limit for the number of server tasks supported by the application.

MANAGE_TASKS=NO

The connecting address space starts the number of server instances as provided with PARALLEL_EU. This is the default.

MANAGE_TASKS=YES

The connecting address space uses IWMSINF to obtain the number of server instances to start from WLM.

MF=S

MF=(L,list addr)

MF=(L,list addr,attr)

MF=(L,list addr,0D)

MF=(E,list addr)

MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
tool control to the service.

,,list addr
 The name of a storage area to contain the parameters. For MF=S and
 MF=E, this can be an RS-type address or an address in register (1)-(12).

,,attr
 An optional 1- to 60-character input string that you use to force boundary
 alignment of the parameter list. Use a value of X'0F' to force the parameter
 list to a word boundary, or X'0D' to force the parameter list to a doubleword
 boundary. If you do not code attr, the system provides a value of X'0D'.

,,COMPLETE
 Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,,NODENM=nodem
,,NODENM=NO_NODENM
 An optional input parameter, which contains the node name to be used for
classifying work requests when Work_Manager=Yes is specified or taken as
default. The node name identifies a specific subcomponent of the generic
subsystem type.

When Server_Manager=Yes and Server_Type=Queue is specified, the node
name should match the node name specified on the corresponding Connect for
the Queue_Manager, for example, all servers associated with the
Queue_Manager have identical node names.

If a product chooses to use both Work_Manager=Yes and Server_Manager=Yes
on a single invocation of IWM4CON for a space, then the rules for
Server_Manager apply, for example, the node name refers to the node name of
the space playing the role of Queue_Manager.

If the caller connects to the WLM work queueing services, the combination of
the subsystem type, node name and the subsystem name must be unique to
that MVS system. Node name can be omitted. The default is NO_NODENM.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,,NUMBERASCB=numberascb
 When TOPOLOGY=topology and WORK_MANAGER=YES are specified, a
required input parameter, which contains the number of ASCBs in the list
passed via xTOPOLOGY. While there is no restriction on the number of entries
in the list, the current support will only look at the first 10 entries. The number
specified must be positive (hence also non-zero).

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,,PARALLEL_EU=parallel_eu
 When SERVER_MANAGER=YES is specified, a required input parameter,
which contains the maximum number of tasks (TCBs) within the address space
which will be used to concurrently process distinct work requests if
MANAGE_TASKS=YES is not in effect. When Select (IWM4SSL) is used to obtain a work request, which might then be passed to another task (TCB) for processing under a Begin (IWM4STBG) environment, this count represents the number of tasks (TCBs) which can be running concurrently against these work requests, that is the number of concurrent Begin environments. It is important that this count should represent the actual number of tasks (TCBs) which can be utilized, and not merely some approximate upper bound, as this value will influence system algorithms.

If MANAGE_TASKS=YES is in effect, the application environment managed by WLM PARALLEL_EU is not used. In this case the parameter is only used as described above if no procedure name was defined for the application environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

```
,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
```

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible.
 This size might grow from release to release and affect the amount of storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.
- **0**, which supports all parameters except those specifically referenced in higher versions.
- **1**, which supports both the following parameters and those from version 0:

 REGION_TOKEN

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0, or 1

```
,QMGR_EXIT@=qmgr_exit@
,QMGR_EXIT@=NO_QMGR_EXIT@
```

When QUEUE_MANAGER=YES and ROUTER=NO are specified, an optional input parameter that is to contain the address of the Queue Manager Connect Exit to be invoked when the system wishes to inform the queue manager of actions it should perform. The exit will be called in enabled, unlocked TCB mode with no FRRs set, but may be called in a cross-memory environment.
The mapping of the parameter list for the exit and its invocation environment is given by the list form of the IWMQCXIT macro.

The system may choose to discontinue calling the exit upon repetitive abnormal completions, i.e. where the system recovery routine is percolated to from an error within the exit. The exit must be callable from any address space and remain available after the queue manager disconnects or terminates. The default is NO_QMGR_EXIT, which indicates that no queue manager exit is provided.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

```
,QUEUE_MANAGER=NO
```

```
,QUEUE_MANAGER=YES
```

When ROUTER=NO is specified, an optional parameter indicating that WLM Work Queuing services be available to the connecting address space. For example:

- Insert (IWM4QIN)
- Delete (IWM4QDE)

If YES is specified, the combination of the subsystem type and the subsystem name must be unique to that MVS system. The default is QUEUE_MANAGER=NO.

```
,QUEUE_MANAGER=NO
```

The connecting address space will not use the WLM Work Queuing services.

```
,QUEUE_MANAGER=YES
```

The connecting address space will be using the WLM Work Queuing services.

```
,REGION_TOKEN=region_token
```

When SERVER_MANAGER=YES is specified, an optional 16-character output parameter, which contains a region token. A queueing manager can use the region token to queue work requests to a specific server region. These work requests are considered to belong to a set of theting request all needing access to some status information which exists only in the virtual storage of the server region. They are selected using the IWM4SSL macro. It is assumed that the application uses the service IWM4TAF to tell WLM when the temporary affinity to the defined server region begins and ends.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

```
,RETCODE=retcode
```

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

```
,ROUTER=NO
```

```
,ROUTER=YES
```

An optional parameter, which describes whether recommendations for sysplex routing to servers associated with the same subsystem type and name are requested. The default is ROUTER=NO.

```
,ROUTER=NO
```

indicates that recommendations for sysplex routing via IWMSRFSV are not required.
IWM4CON Macro

,.ROUTER=YES
 indicates that recommendations for sysplex routing via IWMSRFSV is
 required. Note that only server spaces which have the same Subsystem
 type and name AND which specified Server_Type=Routing are considered
 when IWMSRFSV is invoked.

 If YES is specified, the combination of the subsystem type and the
 subsystem name must be unique to that MVS system.

,.RSNCODE=rsncode
 An optional output parameter into which the reason code is to be copied from
 GPR 0.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,.SERVER_DATA=server_data
 When SERVER_TYPE=ROUTING and SERVER_MANAGER=YES are
 specified, a required input parameter, which contains whatever data is needed
 to uniquely identify the server when recommended by MVS through use of the
 IWMSRFSV interface. The structure of this data is undefined to MVS, and will
 be returned to the program invoking IWMSRFSV when the server is returned.

 To code: Specify the RS-type address, or address in register (2)-(12), of a
 32-character field.

,.SERVER_LIMIT=server_limit
,.SERVER_LIMIT=1000
 When MANAGE_TASKS=YES, SERVER_TYPE=QUEUE and
 SERVER_MANAGER=YES are specified, an optional input parameter indicating
 the architectural limit of the application for the number of server instances which
 can be supported.

 This parameter can be used to tell WLM the upper limit up to which WLM will
 recommend to start server instances. The default is 1000.

 To code: Specify the RS-type address of a fullword field.

,.SERVER_MANAGER=NO
,.SERVER_MANAGER=YES
 An optional parameter indicating whether the space needs access to a family of
 services specified by SERVER_TYPE.

 ,SERVER_MANAGER=NO
 The connecting address space will not use any of the various server-related
 WLM services documented under SERVER_TYPE. This is the default.

 ,SERVER_MANAGER=YES
 The connecting address space will be acting in the role of a server and
 needs access to the family of services specified by SERVER_TYPE.

 Specification of both Queue_Manager=Yes, and Server_Manager=Yes
 requires that Server_Type=Queue. Specification of Server_Type=Routing is
 rejected.

 Specification of both Router=Yes, and Server_Manager=Yes requires that
 Server_Type=Routing. Specification of Server_Type=Queue is rejected.

,.SERVER_TYPE=QUEUE
,.SERVER_TYPE=ROUTING
 When SERVER_MANAGER=YES is specified, an optional parameter, which
 describes what type of services are used by the server.
IWM4CON Macro

,SERVER_TYPE=QUEUE
This is the default. Indicates that the server selects work from a queue, and thus requests that WLM Work Execution services be available to the connecting address space. For example:
- Select (IWM4SSL)
- Begin (IWM4STBG)
- End (IWM4STEN)

The server also has the WLM Work Queuing services available to the connecting address space when the corresponding Queue Manager with the same subsystem type and name is active on the same MVS image (see the following macros for macro-specific restrictions). For example:
- Insert (IWM4QIN)
- Delete (IWM4QDE)

,SERVER_TYPE=ROUTING
indicates that the server receives work by way of routing, and may be selected by the IWMSRFSV (Find Server) macro interface. Note that the space which invokes the IWMSRFSV service must Connect with Router=Yes.

Termination of the router with the same subsystem type and name on the same MVS image will not cause notification to the server to terminate. This coordination, if required, must be handled through a different protocol than use of Connect.

,SERV_MGR_EXIT@=srv_mgr_exit@
When SERVER_TYPE=ROUTING and SERVER_MANAGER=YES are specified, a required input parameter that is to contain the address of the Server Manager Connect Exit to be invoked when the system wishes to inform the server of actions it should perform. This exit will be called in SRB mode, with a non cross-memory environment, where HASN=SASN=PASN=HASN at the time IWM4CON was invoked. The mapping of the parameter list for the exit and its invocation environment is given by the list form of the IWMSCXIT macro.

Note that it may be possible for the exit to be called before the caller has received control back from IWM4CON. The exit or any program it drives (synchronously or asynchronously) must synchronize with the program issuing IWM4CON to ensure that IWM4CON has returned a connect token prior to issuing IWM4DIS (disconnect) or any other services that need the connect token.

The system may cause the space to become ineligible to be recommended by IWMSRFSV upon repetitive errors in calling the exit specified. The exit must be callable from the server address space and remain available after the server manager disconnects or the connecting server TCB terminates. The exit need not persist upon memory termination of the server.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

,SRVB=SYS
A required input parameter, which contains the generic subsystem type (e.g. IMS, CICS, etc.). When WORK_MANAGER=YES is specified, this is the primary category under which classification rules are grouped.

If the caller connects to the WLM work queueing services by specifying QUEUE_MANAGER=YES, or requests sysplex routing by specifying
ROUTER=YES, the combination of the subsystem type and the subsystem name must be unique to that MVS system.

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-character field.

,SUBSYSNM=subsysnm
A required input parameter, which contains the subsystem name to be used for classifying work requests when Work_Manager=Yes is specified or taken as default. The subsystem name identifies a specific instance of the generic subsystem type.

When Server_Manager=Yes and Server_Type=Queue is specified, the subsystem name should match the subsystem name specified on the corresponding Connect for the Queue_Manager, that is all servers associated with the Queue_Manager have identical subsystem names.

When Server_Manager=Yes and Server_Type=Routing is specified, the subsystem name should match the subsystem name specified on the corresponding Connect for Router=Yes, that is all servers associated with the Router have identical subsystem names.

If a product chooses to use both Work_Manager=Yes and Server_Manager=Yes on a single invocation of IWM4CON for a space, then the rules for Server_Manager apply, that is the subsystem name refers to the subsystem name of the space playing the role of Queue_Manager or Router.

If the caller connects to the WLM work queueing services, or to sysplex routing services, the combination of the subsystem type and the subsystem name must be unique to that MVS system.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,TOPOLOGY=topology

,TOPOLOGY=NO_TOPOLOGY
When WORK_MANAGER=YES is specified, an optional input parameter, which represents a list of ASCB addresses for the address spaces which comprise the subsystem. This list should ONLY include address spaces which do NOT surface as the current home address space when IWM4MINI or IWMMRELA are used to establish the delay monitoring environments, but that may participate as dispatchable units (TCBs or SRBs) in serving work requests. If the current primary or home space is a space not surfacing in a monitoring environment and its execution can affect the response time of work flowing through the subsystem, then it should appear in the list. Neither current primary nor current home are defaults. While there are no limits on the number of address spaces, this information is less precise than that provided by monitoring environments. The default is NO_TOPOLOGY, which indicates that no topology information was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

WORK_MANAGER=YES
WORK_MANAGER=NO
An optional parameter indicating that WLM Work Management services be available to the connecting address space. For example:

- Classify (IWMCLSFY)
- Report (IWMRPT)
- Notify (IWMMNTFY)
- Enclave Create (IWM4ECRE)
IWM4CON Macro

- Modify Connect (IWMWMCON)

If NO is specified, the above services cannot be used, except for the form of Notify that does not pass an input connect token.

WORK_MANAGER=YES

The connecting address space will be using the WLM Work Management services. This the default.

WORK_MANAGER=NO

The connecting address space will not use the WLM Work Management services. Specifying this keyword may reduce the use of system resources.

ABEND Codes

None.

Return and Reason Codes

When the IWM4CON macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 73. Return and Reason Codes for the IWM4CON Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeWarning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0401</td>
<td>Equate Symbol: IwmRsnCodeNoWLM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: System does not support work manager services. This return code is only set when the MVS release is prior to MVS/ESA SP5.1.0 or prior to HBB6603 for IWM4CON QUEUE_MANAGER/SERVER_MANAGER services.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>Equate Symbol: IwmRsnCodeSrbMode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is in SRB mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0802</td>
<td>Equate Symbol: IwmRsnCodeXmemUserKeyTkn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is in cross-memory mode while the token was requested in user key.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while in cross-memory mode.</td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>IwmRsnCodeLocked</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>IwmRsnCodeBadPl</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0810</td>
<td>IwmRsnCodeEutFrr</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0812</td>
<td>IwmRsnCodeBadAscb</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>IwmRsnCodeDatoff</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>IwmRsnCodeAmode24</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>IwmRsnCodeAscModeNotPrimary</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0826</td>
<td>IwmRsnCodeTaskTerm</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>IwmRsnCodeRsvdNot0</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
</tr>
</tbody>
</table>
Table 73. Return and Reason Codes for the IWM4CON Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0829</td>
<td>Equate Symbol: IwmRsnCodeBadOptions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Parameter list omits required parameters or supplies mutually exclusive parameters or provides data associated with options not selected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx082C</td>
<td>Equate Symbol: IwmRsnCodeBadNumberAscb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: NUMBERASCB variable is not a positive value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay of the parameter list or variable.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx082E</td>
<td>Equate Symbol: IwmRsnCodeConnectExists</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Connect has already been established for the current home address space.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function when a connection already exists.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>Equate Symbol: IwmRsnCodeServiceNotEnabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Requested connection type cannot be established in the current execution environment. This occurs when SERVER_MANAGER=YES is specified and the program is run as a batch job in a WLM-managed job class.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Run the program as a started task.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0841</td>
<td>Equate Symbol: IwmRsnCodeXMemMode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is in cross memory mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Invoke the function in non-cross memory mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0847</td>
<td>Equate Symbol: IwmRsnCodeOtherSpaceConnected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Another address space with the same subsystem type and name is connected to WLM on the MVS image and has the role of queue manager or router.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function with duplicate values.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0849</td>
<td>Equate Symbol: IwmRsnCodeWLMServBadAPPL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The application environment name (APPLENV=) specified is not the same as the one used by WLM to start the server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Verify that the start parameters for the application environment are coded correctly in the WLM ISPF application, and that those parameters are used by the started JCL procedure.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx084A</td>
<td>Equate Symbol: IwmRsnCodeWLMServBadSSN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The subsystem name (SUBSYSNM=) specified is not the same as the one used by WLM to start the server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Verify that the start parameters for the application environment are coded correctly in the WLM ISPF application, and that those parameters are used by the started JCL procedure.</td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>8</td>
<td>xxxx084B</td>
<td>IwmRsnCodeWLMServBadSST</td>
</tr>
<tr>
<td>8</td>
<td>xxxx084D</td>
<td>IwmRsnCodeNotAuthConnect</td>
</tr>
<tr>
<td>8</td>
<td>xxxx084E</td>
<td>IwmRsnCodeWlmServBadType</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0853</td>
<td>IwmRsnCodeWimQmBadType</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0855</td>
<td>IwmRsnCodeBadNumEUMax</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0856</td>
<td>IwmRsnCodeBadNumEUMin</td>
</tr>
<tr>
<td>8</td>
<td>xxxx085C</td>
<td>IwmRsnCodeWrongNumEU</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0873</td>
<td>IwmRsnCodeWrongSrvLmt</td>
</tr>
</tbody>
</table>
Table 73. Return and Reason Codes for the IWM4CON Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx0874 | IwmRsnCodeWrongMngTsk | **Equate Symbol:** IwmRsnCodeWrongMngTsk
Meaning: Caller invoked service with a MANAGE_TASKS parameter setting which is different from the MANAGE_TASKS of existing servers in the application environment
Action: Ensure that all servers in the application environment specify the same MANAGE_TASKS value. |
| 8 | xxxx0878 | IwmRsnCodeBadNumLimitMax | **Equate Symbol:** IwmRsnCodeBadNumLimitMax
Meaning: Caller invoked service with a SERVER_LIMIT parameter setting which exceeds the maximum number of tasks which can be started in a server address space. The current maximum value is 65534.
Action: Correct number or do not specify SERVER_LIMIT parameter in order to use the default. |
| 8 | xxxx0879 | IwmRsnCodeBadNumLimitMin | **Equate Symbol:** IwmRsnCodeBadNumLimitMin
Meaning: Caller invoked service with a SERVER_LIMIT parameter setting which is less than what has been defined on the PARALLEL_EU parameter.
Action: Ensure that SERVER_LIMIT is always greater or equal to PARALLEL_EU. |
| 8 | xxxx087A | IwmRsnCodeNoQServer | **Equate Symbol:** IwmRsnCodeNoQServer
Meaning: The MANAGE_TASKS parameter is not allowed when QUEUE_SERVER=YES has been specified.
Action: Ensure to use the parameters correctly. |
| 8 | xxxx088E | IwmRsnCodeWlmServBadSSND | **Equate Symbol:** IwmRsnCodeWlmServBadSSND
Meaning: For WLM started servers, the NODENM= is not the one used to start the server.
Action: Specify the correct NODENM. |
| 8 | xxxx088F | IwmRsnCodeApplNotSSN | **Equate Symbol:** IwmRsnCodeApplNotSSN
Meaning: The application environment name is defined for use by a different subsystem node.
Action: Check whether the correct application environment name is being used. |
| C | — | IwmRtnCodeEnvError | **Equate Symbol:** IwmRetCodeEnvError
Meaning: Environmental error. |
| C | xxxx0C01 | IwmRsnCodeNoStg | **Equate Symbol:** IwmRsnCodeNoStg
Meaning: Storage is not available for the request.
Action: There is a storage shortage. The function may work successfully at a later time. |
| C | xxxx0C09 | IwmRsnCodeNoResmgr | **Equate Symbol:** IwmRsnCodeNoResmgr
Meaning: Resource manager could not be established.
Action: No action required. This condition may be due to a storage shortage condition. |
IWM4CON Macro

Table 73. Return and Reason Codes for the IWM4CON Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>xxxx0C14</td>
<td>Equate Symbol: iwmRsnCodeNoWorkShutDown</td>
<td>Meaning: No work selected. Caller is to shutdown.</td>
<td>Action: The server should shut down (terminate).</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C19</td>
<td>Equate Symbol: IwmRsnCodeNotSecAuthConnect</td>
<td>Meaning: The caller is not authorized by SAF to connect to WLM with SERVER_MANAGER=YES.</td>
<td>Action: The security administrator must grant access to the appropriate resource.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C1A</td>
<td>Equate Symbol: IwmRsnCodeApplNotDefined</td>
<td>Meaning: The application environment name is not defined in the active WLM policy.</td>
<td>Action: Check whether the correct application environment name is being used. If so, a service administrator must define the application environment in the WLM service definition.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C1B</td>
<td>Equate Symbol: IwmRsnCodeApplNotSST</td>
<td>Meaning: The application environment name is defined for use by a different subsystem type in the active WLM policy.</td>
<td>Action: Check whether the correct application environment name is being used. If so, a service administrator must change the application environment in the WLM service definition to specify the correct subsystem type.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C1F</td>
<td>Equate Symbol: IwmRsnCodeServerExists</td>
<td>Meaning: A server exists for the specified application environment which only allows 1 such server in the sysplex.</td>
<td>Action: Check whether the correct application environment name is being used. If so and the current server is shutting down, a retry may be successful after a delay.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C22</td>
<td>Equate Symbol: IwmRsnCodeApplEnvQuiesced</td>
<td>Meaning: The specified application environment has been quiesced, server cannot be started for the request.</td>
<td>Action: Restart the application environment and then retry the request.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
<td>Meaning: Component error.</td>
<td>Action: No action required. The function may be successful if invoked again.</td>
</tr>
</tbody>
</table>

Examples

To connect to workload management with a key value of 8, and a list of 7 address spaces involved in processing work, specify:

```
IWM4CON SUBSYS=GENSUB, SUBSYSNM=SUBNAME,
TOPOLOGY=LISTASCBS, NUMBERASCBS=NUMSPACE
CONNTKN=CTKN, CONNTKNKEYP=VALUE, CONNTKNKEY=KEY,
RETCODE=RC, RSNCODE=RSN,
```
Where the following are declared:

- GENSUB DS CL4 Generic subsystem type
- SUBNAME DS CL8 Subsystem name
- LISTASCBS DS CL28 List of 7 address spaces
- NUMSPACE DC F'7' Number of ASCBs
- CTKN DS FL4 Connect token
- KEY DS XL1 Key value

IWM4CON Macro
IWM4CON Macro
Chapter 70. IWM4DIS – Disconnecting from Workload Management

IWM4DIS allows the caller to disconnect from the workload management services. This means that the input connect token can no longer be passed to workload management macros such as IWMCLSFY and IWMRPT. When a program disconnects, any enclaves associated with the input connect token are deleted from the system. Any SRBs running in the enclave are run as preemptible SRBs at the priority of the home address space. Any enclave TCBs are converted to ordinary TCBs.

You should issue this macro once during shutdown of the connecting address space.

Information
Note that this service was previously called IWMDISC for 31-bit address space only (see “IWMDISC – Disconnecting from Workload Management” on page 842).

Environment

The requirements for the caller are:

Minimum authorization: When the corresponding Connect (IWM4CON) invocation specified WORK_MANAGER=YES or QUEUE_MANAGER=YES, ROUTER=YES, or EXPTIMPT=YES, supervisor state or program key mask (PKM) allowing keys 0-7.

When the corresponding Connect (IWM4CON) invocation specified WORK_MANAGER=NO, QUEUE_MANAGER=NO, ROUTER=NO, EXPTIMPT=NO, and SERVER_MANAGER=YES, problem state with any PSW key.

Dispatchable unit mode: Task or SRB

When the corresponding Connect (IWM4CON) invocation specified SERVER_MANAGER=YES, task mode.

Cross memory mode: The current Home address space must be the same as Home when the corresponding Connect was invoked. Any PASN, any SASN.

When the corresponding Connect (IWM4CON) invocation specified SERVER_MANAGER=YES, non-cross memory mode, P=S=H.

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts
IWM4DIS Macro

Locks:
No locks may be held.

When the corresponding Connect (IWM4CON) invocation specified SERVER_MANAGER=YES,
SERVER_TYPE=ROUTING, NO FRRs may be set.

Control parameters:
Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable
when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
1. No FRRs may be set when calling to disconnect a space which is connected as
a server manager with server type = routing.
2. If the key specified on IWM4CON was a user key (8-F), then the following must
ALL be true:
 • The caller must be in non-cross-memory mode (P=S=H). This implies that the
current primary must match the primary at the time that IWM4CON was
invoked. Running in a subspace is not supported.
 • Must be in TCB mode (not SRB)
 • Current TCB must match the TCB at the time that IWM4CON was invoked.
3. This service should not be invoked while in a RTM termination routine (resource
manager) for the TCB owning the connect token since MVS will have its own
resource cleanup routine and unpredictable results would occur. It is legitimate
to use this service while in a recovery routine, however, or in mainline
processing.

Input Register Information
Before issuing the IWM4DIS macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
</table>

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications
None.

Syntax

main diagram

```
name
token
,RETCODE=retcode
,RSNCODE=rsncode
,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,MF=(L,list addr
,attr)
,MF=(E,list addr
,COMPLETE)
```

Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4DIS macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

CONNTKN=conntkn
A required input parameter, which contains the connect token for the environment to be disconnected.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,.MF=S
,.MF=(L,list addr)
,.MF=(L,list addr,attr)
,.MF=(L,list addr,0D)
,.MF=(E,list addr)
,.MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

\[\text{list addr} \]

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

\[\text{attr} \]

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of X'0F' to force the parameter list to a word boundary, or X'0D' to force the parameter list to a doubleword boundary. If you do not code \text{attr}, the system provides a value of X'0D'.

\[\text{COMPLETE} \]

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

\[\text{PLISTVER=IMPLIED_VERSION} \]
\[\text{PLISTVER=MAX} \]
\[\text{PLISTVER=0} \]

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.
- **0**, if you use the currently available parameters.

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0

\[\text{RETCODE=retcode} \]

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).
.RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes

None.

Return and Reason Codes

When the IWM4DIS macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 74. Return and Reason Codes for the IWM4DIS Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: iwmRetCodeOk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: iwmRetCodeWarning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0401</td>
<td>Equate Symbol: iwmRsnCodeNoWLM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: System does not support work manager services. This return code is only set when the MVS release is prior to MVS/ESA SP5.1.0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0409</td>
<td>Equate Symbol: iwmRsnCodeNoConn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Input connection token does not reflect an active connection to WLM.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: iwmRetCodeInvocError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>Equate Symbol: iwmRsnCodeSrbMode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is in SRB mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0802</td>
<td>Equate Symbol: iwmRsnCodeXmemUserKeyTkn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is in cross-memory mode while the token was obtained in a user key.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while in cross-memory mode.</td>
</tr>
</tbody>
</table>
Table 74. Return and Reason Codes for the IWM4DIS Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
<td>Meaning: Caller is disabled.</td>
<td>Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td>Meaning: Caller is locked.</td>
<td>Action: Avoid requesting this function while locked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0809</td>
<td>Equate Symbol: IwmRsnCodeSrbUserKeyTkn</td>
<td>Meaning: Caller is in SRB mode, while the token was obtained in a user key (8-F).</td>
<td>Action: Avoid requesting this function in SRB mode for tokens associated with user key.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx080A</td>
<td>Equate Symbol: IwmRsnCodeTcbNotOwnerUserKeyTkn</td>
<td>Meaning: Current TCB is not the owner, while the token was obtained in a user key (8-F).</td>
<td>Action: Avoid requesting this function under a TCB other than the owner for a token associated with user key.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>Equate Symbol: IwmRsnCodeDatoff</td>
<td>Meaning: Caller invoked service while DATOFF</td>
<td>Action: Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td>Meaning: Caller invoked service but was in 24 bit addressing mode.</td>
<td>Action: Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>Equate Symbol: IwmRsnCodeAscModeNotPrimary</td>
<td>Meaning: Caller invoked service but was not DAT on Primary ASC mode.</td>
<td>Action: Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0826</td>
<td>Equate Symbol: IwmRsnCodeTaskTerm</td>
<td>Meaning: Caller invoked service while task termination is in progress for the TCB associated with the owner.</td>
<td>Action: Avoid requesting this function in this environment.</td>
</tr>
</tbody>
</table>
Table 74. Return and Reason Codes for the IWM4DIS Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>IwmRsnCodeRsvdNot0</td>
<td>Reserved field in parameter list was non-zero.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx082F</td>
<td>IwmRsnCodeWrongHome</td>
<td>Caller invoked the service from the wrong home address space.</td>
<td>Invoke the function with the correct home address space.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0841</td>
<td>IwmRsnCodeXMemMode</td>
<td>Caller is in cross memory mode.</td>
<td>Invoke the function in non-cross memory mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx084D</td>
<td>IwmRsnCodeNotAuthConnect</td>
<td>The caller must be supervisor state or have PSW key mask 0-7 authority to disconnect from the requested WLM services.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>IwmRetCodeCompError</td>
<td>Component error.</td>
<td>No action required. The function may be successful if invoked again.</td>
</tr>
</tbody>
</table>
IWM4DIS Macro
Chapter 71. IWM4ECRE – Creating an Enclave

The purpose of this service is to create an enclave where possibly multiple SRBs and/or TCBs may be simultaneously executing or scheduled. For the duration of each enclave, all SRBs and TCBs associated with the enclave are treated as part of a single work request. All SRBs and/or TCBs associated with the enclave accumulate service as a single entity and are managed as a single entity. The address spaces where enclave SRBs are dispatched, as defined by the ENV= parameter of IEAMSCHD, should be non-swappable.

For more information about managing address spaces with enclaves, see "Performance Management of Address Spaces with Enclaves" on page 48.

Note: An address space must be non-swappable if it has enclave SRBs dispatched and SYSEVENT ENCASSOC has not been issued.

For TYPE=INDEPENDENT enclaves, a new work business unit of work is created and classified according to the input Connect token’s subsystem type and subsystem name, along with whatever other attributes are passed via the Classify parameter list. The current home address space is considered the owner.

For TYPE=DEPENDENT enclaves, SRM considers the enclave to be part of the current home address space’s transaction, which then becomes the owning space. This space need not be connected to WLM via IWM4CON.

For TYPE=WORKDEPENDENT, SRM considers the enclave to be a continuation of the creating unit of work’s (TCB or SRB) transaction. The resulting enclave’s type depends on the caller’s execution environment.

If the caller has joined or is scheduled into an enclave of type independent, the resulting enclave will be of type work-dependent and is regarded as an extension of the independent enclave’s transaction. Classification and owner address space is adopted from the independent enclave.

If the caller has joined or is scheduled into an enclave of type work-dependent, the resulting enclave will be of type work-dependent, as well. It is considered a part of the underlying independent enclave’s transaction and inherits owner address space and classification from that independent enclave.

If the caller has joined or is scheduled into a dependent enclave, the resulting enclave will be of type dependent. The new enclave is considered part of the creating enclave’s (that is, the enclave the caller is running in) owner address space’s transaction and inherits its classification. The creating enclave’s owner address space will become the owner of the new enclave. Finally, if no enclave has been joined when the service is called, the resulting enclave will be as if the service had been invoked with TYPE=DEPENDENT specified. Note that it is not allowed to invoke this service with TYPE=WORKDEPENDENT specified while running in a foreign enclave.

For TYPE=MONENV enclaves, SRM considers the enclave to be part of the address space’s transaction which is delayed according to the input monitoring environment, as set when IWM4MINI or IWMMRELA was used. This space becomes the owning space. This space need not be connected to WLM via IWM4CON.
IWM4ECRE Macro

For both TYPE=MONENV and TYPE=DEPENDENT enclaves, SRM will change the enclave to TYPE=INDEPENDENT if the owning address space’s transaction ends.

For both TYPE=MONENV and TYPE=DEPENDENT enclaves, SRM will check the enclave for period switch when the owning address space is swapped in. If the owning address space is swapped out SRM will continue to accumulate service for any enclaves owned by the space, but will not check the address space and any owned enclave for period switch until the address space is swapped in again. The presence of enclaves does not make the address space appear to be ready from an SRM point of view.

Enclaves are deleted if the owning address space terminates.
TYPE=INDEPENDENT enclaves are deleted if the owning address space disconnects or the TCB which connected terminates.

Enclaves should only be created when this environment is ready for execution, and should not be used when prolonged queueing effects are possible prior to the scheduling of the first SRB (IEAMSCHD) or the first task join (IWMEJOIN).
“Prolonged” would certainly include times measured in seconds. The service allows the caller to pass the queueing time prior to creation of the enclave so that this may be separately reported.

Information
Note that this service was previously called IWMECREA for 31-bit address space only (see "IWMECREA – Create an Enclave" on page 848).

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held
Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro CVT must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded.
IWM4ECRE Macro

from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.

6. For versions earlier than z/OS V1R11, the caller has to assure that work-dependent enclave support is available on the system before calling this macro with TYPE=WORKDEPENDENT. A flag (SRMSTWDP) in macro IRASRMST (which is returned by sysevent REQSRMST) indicates whether or not work-dependent enclaves can be created.

Restrictions

1. The Connect token from the input classify parameter list must be owned by the current home address space and must be associated with a system key (0-7), as specified on IWM4CON. The Classify parameter list and hence the Connect token is only relevant for TYPE=INDEPENDENT enclaves.

2. Since this service may only be used by system-like code, some validity checking on the parameter list is not performed. These checks would only be needed if the macro were not used to invoke the service routine.

3. The variable length fields associated with the classify parameter list (the classify parameter list is only relevant for certain options) given by the CLSFY keyword have the following limitations in addition to those documented in IWMCLSFY:
 - SUBSYSPM is limited to 255 bytes
 - COLLECTION is limited to 18 bytes
 - CORRELATION is limited to 12 bytes

4. When TYPE(MONENV) is specified the following apply:
 - If the key specified on IWM4ECRE was a user key (8-F), then primary or home addressability must exist to the performance block IWM4MCRE obtained. This condition is satisfied by ensuring that the current primary or home address space matches primary (=home) at the time that IWM4ECRE was invoked.
 - The caller must serialize to prevent any delay monitoring services from being invoked concurrently for the environment represented by the monitoring token.
 - Only limited checking is done against the input monitoring token.
 - TYPE=MONENV enclaves cannot be created for report-only monitoring environments.

5. This macro may only be used on OS/390 R12 or higher for the EXSTARTDEFER keyword.

Input Register Information

Before issuing the IWM4ECRE macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>
IWM4ECRE Macro

15 Return code

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

parameters-1

parameters-1

Parameters

The parameters are explained as follows:
name
An optional symbol, starting in column 1, that is the name on the IWM4ECRE
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ACCESS=PRIMARY
,ACCESS=HOME
When TYPE=MONENV is specified, a required parameter, which describes how
to access the monitoring environment.

,ACCESS=PRIMARY
indicates that the monitoring environment can be accessed in the caller’s
primary address space. This would be appropriate if the monitoring
environment was established (by IWM4MCRE) to be used by routines in a
specific system key or if it was established to be used in a specific user key
in the current primary.

,ACCESS=HOME
indicates that the monitoring environment must be accessed in the home
address space, which is not the caller’s primary address space. This would
be appropriate if the monitoring environment was established (by
IWM4MCRE) for use by a specific user key.

,ARRIVALTIME=arrivaltime
When TYPE=INDEPENDENT is specified, a required input parameter, which
contains the work arrival time in STCK format. This is the time at which the
business work request is considered to have arrived and from which point the
system evaluates elapsed time for the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a
64-bit field.

,CLSFY=clsfy
When TYPE=INDEPENDENT is specified, a required input parameter, which
contains the classification information in the format of the parameter list for
IWMCLSFY. NOTE that this name is the data area name, not its pointer.
IWMCLSFY MF(M) should be used to initialize the area prior to invocation of
IWM4ECRE. The Classify parameter list must be from MVS/ESA SP5.2.0 or
higher.

Note that the variable length fields associated with the classify parameter list
given by the CLSFY keyword have the following limitations in addition to those
documented in IWMCLSFY:
• SUBSYSPPM is limited to 255 bytes
• COLLECTION is limited to 18 bytes
• CORRELATION is limited to 12 bytes

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ESTRT=IMPLIED
,ESTRT=EXPLICIT
,ESTRT=EXPLICIT_SINGLE
,ESTRT=NEVER
When TYPE=INDEPENDENT is specified, an optional parameter, which
denotes how the work manager indicates the start and end point of an EWLM
work request when participating in cross-platform enterprise workload
management (EWLM).

,ESTRT=IMPLIED
If the work manager previously connected to WLM with IWM4CON
EWLM=YES, a work request is started implicitly when the enclave is created. If IWMESTOP was not invoked before, the work request will be stopped implicitly when the enclave is deleted. ESTRT=IMPLIED is the default.

ESTRT=EXPLICIT

The work manager indicates the start and end point of an EWLM work request by invoking the services IWMESTRT and IWMESTOP. Note that this option is only meaningful, if the work manager previously connected to WLM with IWM4CON EWLM=YES.

ESTRT=EXPLICIT_SINGLE

Indicates the same as option ESTRT=EXPLICIT and, in addition, the application ensures that only one work request is active. No nested calls to IWMESTRT are allowed. If this option is specified the CPU consumption on all EWLM enclave services (IWMEGCOR, IWMESTRT, IWMESTOP, IWMEBLK, IWMEUBLK) will be reduced. If ESTRT=EXPLICIT_SINGLE is specified on IWMECREA, the application must also add the EWLMMODE=EXPLICIT_SINGLE parameter on all calls to IWMEGCOR, IWMESTRT, IWMESTOP, IWMEBLK and IWMEUBLK. If this parameter is used, the application has some restrictions on all calls to IWMEGCOR, IWMESTRT, IWMESTOP, IWMEBLK and IWMEUBLK. Refer to the corresponding macro descriptions for details.

ESTRT=NEVER

Indicates that this enclave will never use any EWLM-related enclave services (IWMEGCOR, IWMESTRT, IWMESTOP, IWMEBLK, IWMEUBLK) after the enclave has been created, even if the work manager has registered (IWM4CON or IWMCONN) with EWLM=YES. Also, IWM4ECRE will not start an EWLM work request on the enclave and will not do any EWLM-related processing.

ETOKEN=etoken

A required output parameter, which will receive the enclave token.

Function Name

A required output parameter, which will receive the enclave token.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

EXSTARTDEFER=NO

EXSTARTDEFER=YES

When TYPE=INDEPENDENT is specified, an optional parameter, which indicates whether the enclave execution start time should begin when the first IWM4STBG or IWMEJOIN is executed. The time between enclave create and the first IWM4STBG or IWMEJOIN is assumed to be the queue time. The default is EXSTARTDEFER=NO

EXSTARTDEFER=NO

indicates that the enclave execution start time should not begin when the first IWM4STBG or IWMEJOIN is executed.

EXSTARTDEFER=YES

indicates that the enclave execution start time should begin when the first IWM4STBG or IWMEJOIN is executed.

FUNCTION_NAME=function_name

When TYPE=INDEPENDENT is specified, a required input parameter, which contains the descriptive name for the function for which the enclave was created.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.
IWM4ECRE Macro

`.MF=S`
`.MF=(L,list addr)`
`.MF=(L,list addr,attr)`
`.MF=(L,list addr,OD)`
`.MF=(E,list addr)`
`.MF=(E,list addr,COMPLETE)`

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

`list addr`

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

`attr`

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of X'0F' to force the parameter list to a word boundary, or X'0D' to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of X'0D'.

`,COMPLETE`

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

`MONTKN=montkn`

When TYPE=MONENV is specified, a required input parameter, which contains the delay monitoring token which describes the current business unit of work. If the monitoring environment is related to an address space, then it must be the current home address space.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

`PLISTVER=IMPLIED_VERSION`
`PLISTVER=MAX`
`PLISTVER=0`

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
IWM4ECRE Macro

- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from Release to Release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, if you use the currently available parameters.

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSN_CODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

TYPE=INDEPENDENT
TYPE=DEPENDENT
TYPE=WORKDEPENDENT
TYPE=MONEV
An optional parameter, which indicates the type of enclave being created. The default is TYPE=INDEPENDENT.

TYPE=INDEPENDENT
indicates that the enclave represents a new business unit of work with its own business objectives.

TYPE=DEPENDENT
indicates that the enclave represents a continuation of the business unit of work represented by the current home address space.

TYPE=WORKDEPENDENT
Indicates that the enclave represents a continuation of the creating TCB's/SRB’s transaction. The resulting enclave’s type depends on the caller’s execution environment.

If the caller has joined or is scheduled into an enclave of type independent, the resulting enclave will be of type work-dependent and is regarded as an extension of the independent enclave’s transaction. Classification and owner address space is adopted from the independent enclave.

If the caller has joined or is scheduled into an enclave of type work-dependent, the resulting enclave will be of type work-dependent, as well. It is considered a part of the underlying independent enclave’s transaction and inherits owner address space and classification from that independent enclave.

If the caller has joined or is scheduled into a dependent enclave, the resulting enclave will be of type dependent. The new enclave is considered
part of the creating enclave’s (that is the enclave the caller is running in) owner address space’s transaction and inherits its classification. The creating enclave’s owner address space will become the owner of the new enclave.

Finally, if no enclave has been joined when the service is called, the resulting enclave will be as if the service had been invoked with TYPE=DEPENDENT specified. Note that it is not allowed to invoke this service with TYPE=WORKDEPENDENT specified while running in a foreign enclave.

TYPE=MONENV

indicates that the enclave represents a continuation of the business unit of work represented by the input monitoring environment.

_.WORKREQ_HDL=workreq_hdl_

When ESTRT=IMPLIED and TYPE=INDEPENDENT are specified, an optional output parameter that will receive the handle which represents the work request. The application must pass this handle to the other work request services IWMESTOP, IWMEMAILK, IWMEUBLK, and IWMEGCOR.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWM4ECRE macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 75. Return and Reason Codes for the IWM4ECRE Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
<td>None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
<td>Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol</td>
<td>Meaning</td>
<td>Action</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>IwmRsnCodeBadPl</td>
<td>Error accessing parameter list.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0820</td>
<td>IwmRsnCodeBadMonEnv</td>
<td>Monitoring environment does not pass short form verification.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0821</td>
<td>IwmRsnCodeBadConn</td>
<td>Connect token from the input classify parameter list does not pass validity checking.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24-bit addressing mode.</td>
<td>Request this function only when you are in 31-bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0836</td>
<td>IwmRsnCodeMaxEnclave</td>
<td>Enclave could not be created because the Enclave limit has been reached.</td>
<td>Check for possible problems wherein Enclaves are not being deleted as expected or excessive numbers of Enclaves are being created in a loop.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0837</td>
<td>IwmRsnCodeUserKeyConntkn</td>
<td>Connect token from the input classify parameter list is associated with a user key.</td>
<td>Invoke the function with a token associated with a system key.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0838</td>
<td>IwmRsnCodeClsfyAreaTooBig</td>
<td>Input area associated with classification information is larger than supported.</td>
<td>Invoke the function with an area of the proper size. Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0839</td>
<td>IwmRsnCodeClsfyPlTooSmall</td>
<td>Input Classify parameter list is too small.</td>
<td>Invoke the function with an area of the proper size. Check for possible storage overlay.</td>
</tr>
</tbody>
</table>
Table 75. Return and Reason Codes for the IWM4ECRE Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx083B</td>
<td>Equate Symbol: IwmRsnCodeHomeNotOwnConn</td>
<td>Home address space does not own the connect token from the input classify parameter list.</td>
<td>Invoke the function with the correct home address space.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>Equate Symbol: IwmRsnCodeServiceNotEnabled</td>
<td>Caller’s space connection is not enabled for this service.</td>
<td>Avoid requesting this function under the input connection. IWM4CON options must be specified previously to enable this service.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx085D</td>
<td>Equate Symbol: IwmRsnCodeMonenvNotHome</td>
<td>The input monitoring environment is related to an address space other than home.</td>
<td>None required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0872</td>
<td>Equate Symbol: IwmRsnCodeForeignEnclave</td>
<td>It is not allowed to create an enclave of type work-dependent from out of a foreign enclave.</td>
<td>Make sure not to have joined a foreign enclave prior to calling IWM4ECRE with TYPE=WORKDEPENDENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0894</td>
<td>Equate Symbol: IwmRsnCodeInvalidEWLMCorr</td>
<td>Passed classification information contains an EWLM correlator (EWLM_CORR) that does not pass validity checking. The architected ARM correlator length field in the first two Bytes of the EWLM_CORR is either less than 4 ('0004'x) or greater than 512 ('0200'x).</td>
<td>Check the specification of the EWLM correlator in the classification information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0895</td>
<td>Equate Symbol: IwmRsnCodeEWLMServNotEnabled</td>
<td>Service is not enabled because caller invoked the IWM4CON service with EWLM=NO.</td>
<td>Specify the parameter WORKREQ_HDL only when connected with EWLM=YES.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeEnvError</td>
<td>Environmental error.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>Equate Symbol: IwmRsnCodeNoStg</td>
<td>Storage is not available for the request.</td>
<td>There is a storage shortage. The function may work successfully at a later time.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C0C</td>
<td>Equate Symbol: IwmRsnCodeClassifyFail</td>
<td>Received a non-zero return code from the classification service, IWMCLSFY.</td>
<td>No action required. Reinvoking the function later may succeed.</td>
</tr>
</tbody>
</table>
Table 75. Return and Reason Codes for the IWM4ECRE Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>xxxx0C0D</td>
<td>IwmRsnCodeBadClisy</td>
<td>Classification apparently can not access the current policy, possibly due to a policy switch in progress.</td>
<td>Invoke the function when the conditions are alleviated.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C20</td>
<td>IwmRsnCodeDepClassifyFail</td>
<td>Unable to obtain classification attributes for a dependent enclave.</td>
<td>None required.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C21</td>
<td>IwmRsnCodeNoMonEnvErr</td>
<td>Input monitoring token indicates no monitoring environment was established.</td>
<td>None required.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>IwmRetCodeCompError</td>
<td>Component error.</td>
<td>No action required. The function may be successful if invoked again.</td>
</tr>
</tbody>
</table>
Chapter 72. IWM4EDEL – Deleting an Enclave

The purpose of this service is to delete an enclave, so that no SRBs or TCBs exist within the enclave and no new SRBs may be scheduled into the enclave, nor may any TCBs join the enclave. Some residual enclave-related CPU time will not be accounted back to the work request whenever active enclave SRBs/TCBs were present at the time IWM4EDEL is invoked. SRBs scheduled to the enclave which have not completed will be converted to ordinary preemptable SRBs. TCBs joined to the enclave which have not completed will be converted to ordinary TCBs.

If IWM4EDEL is invoked for an enclave which is registered, the enclave is considered only logically deleted while all its functionality stays in place. Physical deletion is deferred until all interested parties have deregistered the enclave. The caller does not receive any notice when the physical deletion of the enclave is done.

When an enclave is deleted, the work request is considered to have finished and all related resource accounting will be finalized.

IWM4EDEL cannot be used to delete a foreign enclave. The IWMUIMPT macro must be used instead.

Information

Note that this service was previously called IWMEDEL for 31-bit address space only (see "IWMEDELE – Delete an Enclave" on page 859).

Environment

The requirements for the caller are:

Minimum authorization:	Supervisor state or program key mask (PKM) allowing keys 0-7.
Dispatchable unit mode:	Task or SRB
Cross memory mode:	Any PASN, any HASN, any SASN
AMODE:	31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.
ASC mode:	Primary or access register (AR)
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No locks may be held. FRR environments may be established.
Control parameters:	Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.

6. Since this service may only be used by system-like code, some validity checking on the parameter list is not performed. These checks would only be needed if the macro were not used to invoke the service routine.

Restrictions

This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to the PLISTVER parameter description for further information.

Input Register Information

Before issuing the IWM4EDEL macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```plaintext
IWM4EDEL ETOKEN=etoken,CPUSERVICE=cpuservice
```
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4EDEL macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,CPUSERVICE=cpuservice
An optional output parameter, which will contain the CPU service accumulated by the enclave on the local system.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,CPUTIME=cputime
An optional output parameter, which will contain the total CPU time accumulated by the enclave on the local system.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,ETOKEN=etoken
A required input parameter, which contains the enclave token to be returned.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,OD)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.
IWM4EDEL Macro

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

`list addr`

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

`attr`

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of X'0F' to force the parameter list to a word boundary, or X'0D' to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of X'0D'.

`,COMPLETE`

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

`,PLISTVER=IMPLIED_VERSION`

`,PLISTVER=MAX`

`,PLISTVER=0`

`,PLISTVER=1`

`,PLISTVER=2`

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.
- **0**, which supports all parameters except those specifically referenced in higher versions.
- **1**, which supports both the following parameters and those from version 0:

 RESPTIME_RATIO
IWM4EDEL Macro

- 2, which supports both the following parameters and those from version 0 and 1:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZAAPNFATOR</td>
<td>An optional output parameter, which contains the normalization factor for application assist processors (zAAPs). If zAAPs are running at a different speed, multiply zAAP service and times with this factor and divide the result by 256 to normalize the values to the speed of regular CPs. Note however, that if there has been a speed change of zAAP processors during the life time of the enclave, this calculation will return imprecise data.</td>
</tr>
<tr>
<td>ZAAPTIME</td>
<td>An optional output parameter, which contains the application assist processor (zAAP) service accumulated by the enclave on the local system. The value is not normalized to the speed of regular CPs, but is expressed in zAAP speed which might be different. You may use ZAAPNFATOR to normalize the value to the speed of regular CPs. Note however, that if the zAAP speed changed during the life time of the enclave, this value cannot be normalized precisely.</td>
</tr>
<tr>
<td>ZAAPSERVICE</td>
<td>An optional output parameter, which contains the application assist processor (zAAP) service accumulated by the enclave on the local system and on other systems through the use of the IWMEXPT and IWMIMPT services. If the IWMEXPT and IWMIMPT services were not used, SYSPLEXCPUSRV returns the same value as CPUSERVICE.</td>
</tr>
<tr>
<td>ZIPTIME</td>
<td>An optional output parameter, which supports both the following parameters and those from version 0 and 1:</td>
</tr>
<tr>
<td>ZIIPSERVICE</td>
<td>An optional output parameter into which the return code is to be copied from GPR 15.</td>
</tr>
<tr>
<td>RECODE</td>
<td>An optional output parameter into which the reason code is to be copied from GPR 0.</td>
</tr>
<tr>
<td>RSNCODE</td>
<td>An optional output parameter, which will contain the CPU service accumulated by the enclave on the local system and on other systems through the use of the IWMEXPT and IWMIMPT services. If the IWMEXPT and IWMIMPT services were not used, SYSPLEXCPUSRV returns the same value as CPUSERVICE.</td>
</tr>
<tr>
<td>RESPTIME_RATIO</td>
<td>An optional output parameter, which contains the response time ratio times 100: act.resp.time / goal * 100 if the enclave has a response time goal (limited to: 1<=RESPTIME_RATIO<=1000) 0 otherwise</td>
</tr>
</tbody>
</table>

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0, 1, or 2

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.
IWM4EDEL Macro

.ZAAPTIME=zaaptime
An optional output parameter, which contains the total application assist processor (zAAP) time accumulated by the enclave on the local system. The value is not normalized to the speed of regular CPs, but is expressed in zAAP speed which might be different. You may use ZAAPNFACTOR to normalize the value to the speed of regular CPs. Note however, that if the zAAP speed changed during the life time of the enclave, this value cannot be normalized precisely.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

.ZIIPSERVICE=ziipservice
An optional output parameter, which contains the integrated information processor (zIIP) service accumulated by the enclave on the local system. The service is normalized to standard processor speed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

.ZIIPTIME=ziiptime
An optional output parameter, which contains the total integrated information processor (zIIP) time accumulated by the enclave on the local system. The time is normalized to standard processor speed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

ABEND Codes
None.

Return and Reason Codes

When the IWM4EDEL macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 76. Return and Reason Codes for the IWM4EDEL Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Meaning: Successful completion.</td>
<td>None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0411</td>
<td>IwmRsnCodeEnclActive</td>
<td>Meaning: Input enclave had 1 or more SRBs scheduled or running, or 1 or more TCBs joined to the enclave.</td>
<td>None required.</td>
</tr>
</tbody>
</table>
Table 76. Return and Reason Codes for the IWM4EDEL Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
</table>
| 4 | xxxx0449 | **Equate Symbol:** IwmRsnCodeWDELDeleted
Meaning: Enclave was deleted and one or several associated work-dependent enclaves were physically deleted. |
| | | **Action:** None required. |
| 4 | xxxx044A | **Equate Symbol:** IwmRsnCodeActiveWDELDeleted
Meaning: Enclave was deleted while it had one or several TCBs joined or SRBs scheduled/running. Additionally, one or several associated work-dependent enclaves were physically deleted. |
| | | **Action:** None required. |
| 4 | xxxx044B | **Equate Symbol:** IwmRsnCodeAWDELDeleted
Meaning: Enclave was deleted and one or several associated work-dependent enclaves were physically deleted. One or several physically deleted work-dependent enclaves had TCBs joined or SRBs scheduled/running. |
| | | **Action:** None required. |
| 4 | xxxx044C | **Equate Symbol:** IwmRsnCodeActiveAWDELDeleted
Meaning: Enclave was deleted and one or several associated work-dependent enclaves were physically deleted. The enclave itself and one or several physically deleted work-dependent enclaves had TCBs joined or SRBs scheduled/running. |
| | | **Action:** None required. |
| 8 | — | **Equate Symbol:** IwmRetCodeInvocError
Meaning: Invalid invocation environment or parameters. |
| 8 | xxxx0803 | **Equate Symbol:** IwmRsnCodeDisabled
Meaning: Caller is disabled. |
| | | **Action:** Avoid requesting this function while disabled. |
| 8 | xxxx0804 | **Equate Symbol:** IwmRsnCodeLocked
Meaning: Caller is locked. |
| | | **Action:** Avoid requesting this function while locked. |
| 8 | xxxx080B | **Equate Symbol:** IwmRsnCodeBadPl
Meaning: Error accessing parameter list. |
| | | **Action:** Check for possible storage overlay. |
| 8 | xxxx0824 | **Equate Symbol:** IwmRsnCodeAmode24
Meaning: Caller invoked service but was in 24 bit addressing mode. |
| | | **Action:** Request this function only when you are in 31-bit addressing mode. |
Table 76. Return and Reason Codes for the IWM4EDEL Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx083A</td>
<td>IwmRsnCodeBadEnclave</td>
<td>Enclave token does not pass verification.</td>
<td>Check for possible storage overlay of the enclave token, or asynchronous events which may have deleted the enclave.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0872</td>
<td>IwmRsnCodeForeignEnclave</td>
<td>The enclave is foreign.</td>
<td>Use the IWMUIMPT macro to delete a foreign enclave.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>IwmRetCodeCompError</td>
<td>Component error.</td>
<td>No action required. The function may be successful if invoked again.</td>
</tr>
</tbody>
</table>

Example

To allow the current task to join an enclave, specify:

```plaintext
IWM4EDEL ETOKEN=ENCTOKEN,RETCODE=RC,RSNCODE=RSN
```

* Storage areas
 * ENCTOKEN DS CLB Contains the enclave token
 * RC DS F Return code
 * RSN DS F Reason code
Chapter 73. IWM4HLTH – Setting Server Health Indicator

The IWM4HLTH service is used to inform WLM about the health state of a server. The health indicator is a number which shows in percent how well the server is performing. It can be an integer value between 0 and 100 and means the following:

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>The server is fully capable to do work without any health problems</td>
</tr>
<tr>
<td>0</td>
<td>The server is not able to do any work occasionally</td>
</tr>
<tr>
<td>Any value between 0 and 100</td>
<td>Indicates the level of health of the server</td>
</tr>
</tbody>
</table>

The health indicator is activated when one of the routing services IWM4SRSC or IWMSRSRS with FUNCTION=SPECIFIC are used to get routing recommendations. The weights are reduced to the percentage given by the health indicator of the server address space.

The health indicator of a server keeps its value until it is modified by resetting it with the IWM4HLTH service, or with the IWMSRSRG service.

Environment

The requirements for the caller are:

- **Minimum authorization:** Problem state with any PSW key.
- **Dispatchable unit mode:** Task or SRB
- **Cross memory mode:** Any PASN, any HASN, any SASN
- **AMODE:** 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.
- **ASC mode:** Primary
- **Interrupt status:** Enabled for I/O and external interrupts
- **Locks:** No locks may be held. FRR environments may be established.
- **Control parameters:** Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high-order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.
Restrictions

This macro may only be used on systems running z/OS V1R7 (with OA14310 installed) or higher.

Input Register Information

Before issuing the IWM4HLTH macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
IWM4HLTH=STOKEN=stoken,HEALTH=health,RETCODE=retcode

,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0
```
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4HLTH macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,HEALTH=health
A required input parameter, which contains the health factor associated with the address space. This value shows the percentage up to which this address space is capable to handle requests.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.
IWM4HLTH Macro

,COMPLETE
 Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
 An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:
 • IMPLIED_VERSION, which is the lowest version that allows all parameters
 specified on the request to be processed. If you omit the PLISTVER
 parameter, IMPLIED_VERSION is the default.
 • MAX, if you want the parameter list to be the largest size currently possible.
 This size might grow from release to release and affect the amount of
 storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify
 PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
 the list-form parameter list is always long enough to hold all the parameters
 you might specify on the execute form, when both are assembled with the
 same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.
 • 0, if you use the currently available parameters.
 To code: Specify one of the following:
 • IMPLIED_VERSION
 • MAX
 • A decimal value of 0

,RETCODE=retcode
 An optional output parameter into which the return code is to be copied from
 GPR 15.
 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
 An optional output parameter into which the reason code is to be copied from
 GPR 0.
 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

STOKEN=stoken
 A required input parameter, which contains the space token of the server.
 To code: Specify the RS-type address, or address in register (2)-(12), of a 64
 bit field.

ABEND Codes

None.

Return and Reason Codes

When the IWM4HLTH macro returns control to your program:
 • GPR 15 (and retcode, if you coded RETCODE) contains a return code.
 • When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded
 RSNCODE) contains reason code.
The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 77. Return and Reason Codes for the IWM4HLTH Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeWarning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is disabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while disabled.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is locked.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while locked.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0807</td>
<td>Equate Symbol: IwmRsnCodeBadSTOKEN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Bad STOKEN passed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>Equate Symbol: IwmRsnCodeBadPl</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Error accessing parameter list.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>Equate Symbol: IwmRsnCodeDatoff</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller invoked service while DATOFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function in this environment.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller invoked service but was in 24-bit addressing mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Request this function only when you are in 31-bit addressing mode.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>Equate Symbol: IwmRsnCodeAscModeNotPrimary</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller invoked service but was not DAT on Primary ASC mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function in this environment.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Version number in parameter list or version length field is not valid. Or This service was called on a z/OS release not supported.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay of the parameter list.</td>
<td></td>
</tr>
</tbody>
</table>
Table 77. Return and Reason Codes for the IWM4HLTH Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx08A2 | | **Equate Symbol**: IwmRsnCodeBadHealth
 Meaning: Health Value out of range
 Action: Check for possible storage overlay. |
| C | — | | **Equate Symbol**: IwmRetCodeEnvError
 Meaning: Environmental error. |
| C | xxxx0C01 | | **Equate Symbol**: IwmRsnCodeNoStg
 Meaning: Storage is not available for the request.
 Action: There is a storage shortage. The function may work successfully at a later time. |
| 10 | — | | **Equate Symbol**: IwmRetCodeCompError
 Meaning: Component error.
 Action: No action required. The function may be successful if invoked again. |

Example

To set the health indication value for a particular server, specify:

```c
IWM4HLTH STOKEN=STKN
          HEALTH=HLTH
          RETCODE=RC,RSNCODE=RSN
```

* Storage areas
 * STKN DS CLB Contains the STOKEN
 * associated with the address
 * space
 * HLTH DS F Field to input the health value
 * RC DS F Return code
 * RSN DS F Reason code
Chapter 74. IWM4MCHS – Monitoring Change State Of Work Unit

The purpose of this service is to reflect in a monitoring environment what the current state of a work request is with respect to delays.

A work unit started by IWMMSTRT is blocked and unblocked automatically. WAITING states, that allow the specification of the ASYNC keyword, block the work unit. All other states unblock the work unit.

Information
Note that this service was previously called IWMMCHST for 31-bit address space only (see “IWMMCHST – Monitoring Change State Of Work Unit” on page 866).

Environment

The requirements for the caller are:

Minimum authorization:	Problem state. PSW key must either be 0 or match the value supplied on IWM4MCRE.
Dispatchable unit mode:	Task or SRB
Cross memory mode:	Any PASN, any HASN, any SASN
AMODE:	31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.
ASC mode:	Primary
Interrupt status:	Enabled for I/O and external interrupts
Locks:	Suspend locks are allowed.
Control parameters:	Control parameters must be in the primary address space.

Programming Requirements

1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK CONST defined in IWMYCON, may be used for this purpose.

Restrictions

1. Caller is responsible for error recovery
2. Only limited checking is done against the input monitoring token,
3. If the key specified on IWM4MCRE was a user key (8-F), then the primary addressability must exist to the performance block IWM4MCRE obtained. This condition is satisfied by ensuring that current primary matches primary at the
IWM4MCHS Macro

time that IWM4MCRE was invoked. If this service is invoked in a subspace, the condition may be satisfied by ensuring that the performance block is shared with the base space.

4. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for the environment represented by the monitoring token.

5. This macro may only be used on systems running z/OS R2 or higher for the following state/resources:
 - STATE(ACTIVE_APPL)
 - RESOURCE(SSL_THREAD)
 - RESOURCE(REG_THREAD)
 - RESOURCE(REG_TO_WRKTB)
 - RESOURCE(TYPE1)
 - RESOURCE(TYPE2)
 - RESOURCE(TYPE3)
 - RESOURCE(TYPE4)
 - RESOURCE(TYPE5)

6. This macro may only be used on systems running z/OS R8 or higher for the following resource:
 - RESOURCE(BUFFER_POOL_IO)

7. This macro may only be used on systems running z/OS R8 or higher for RESTKN keyword.

8. This macro may only be used on z/OS R10 or higher levels for the following state/resources
 - RESOURCE(TYPE6)
 - RESOURCE(TYPE7)
 - RESOURCE(TYPE8)
 - RESOURCE(TYPE9)
 - RESOURCE(TYPE10)
 - RESOURCE(TYPE11)
 - RESOURCE(TYPE12)
 - RESOURCE(TYPE13)
 - RESOURCE(TYPE14)
 - RESOURCE(TYPE15)

9. This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to the PLISTVER parameter description for further information.

Input Register Information

Before issuing the IWM4MCHS macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero. The reason code is stored in bits 0-31.</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>
2-13 Unchanged
14 Used as work registers by the system
15 Return code stored in bits 0-31

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.
IWM4MCHS Macro

Syntax

main diagram
Parameters

The parameters are explained as follows:

name

An optional symbol, starting in column 1, that is the name on the IWM4MCHS macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,ASYNC=NO

,ASYNC=YES

The ASYNC parameter is valid for the resources listed in the following. When:

 RESOURCE=CONV and STATE=WAITING
 RESOURCE=DISTRIBUT and STATE=WAITING
 RESOURCE=SESS_LOCALMVS and STATE=WAITING
 RESOURCE=SESS_NETWORK and STATE=WAITING
 RESOURCE=SESS_SYSPLEX and STATE=WAITING
 RESOURCE=OTHER_PRODUCT and STATE=WAITING

are specified, an optional parameter, which specifies the blocking type of a work unit started by IWMMSTRT. The default is ASYNC=NO.

,ASYNC=NO

indicates that the blocking type is synchronous.

,ASYNC=YES

indicates that the blocking type is asynchronous.

,COMPCODE=YES

,COMPCODE=NO

An optional parameter, which indicates whether completion status for this service is needed. The default is COMPCODE=YES.

,COMPCODE=YES

indicates that completion status is needed.

,COMPCODE=NO

indicates that completion status is not needed. Registers 0, 15 cannot be used as reason code and return code registers upon completion of the macro expansion. Therefore, neither RETCODE NOR RSNCODE may be specified when COMPCODE(NO) is specified.

,MONTKN=montkn

A required input parameter, which contains the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,PLISTVER=1

,PLISTVER=2

An optional input parameter that specifies the version of the macro. The values are:

*
IWM4MCHS Macro

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want to indicate the latest version currently possible.
- **0**, which supports all parameters except those specifically referenced in higher versions.
- **1**, which supports all parameters except those specifically referenced in higher versions. No parameters correspond to this version number.
- **2**, which supports all parameters except those specifically referenced in higher versions. No parameters correspond to this version number.

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0, 1, or 2

```
,RESOURCE=LATCH
,RESOURCE=LOCK
,RESOURCE=IO
,RESOURCE=CONV
,RESOURCE=DISTRIBUT
,RESOURCE=SESS_LOCALMVS
,RESOURCE=SESS_NETWORK
,RESOURCE=SESS_SYSPLEX
,RESOURCE=TIMER
,RESOURCE=OTHER_PRODUCT
,RESOURCE=MISC
,RESOURCE=SSL_THREAD
,RESOURCE=REG_THREAD
,RESOURCE=REG_TO_WRKTB
,RESOURCE=TYPE1
,RESOURCE=TYPE2
,RESOURCE=TYPE3
,RESOURCE=TYPE4
,RESOURCE=TYPE5
,RESOURCE=TYPE6
,RESOURCE=TYPE7
,RESOURCE=TYPE8
,RESOURCE=TYPE9
,RESOURCE=TYPE10
,RESOURCE=TYPE11
,RESOURCE=TYPE12
,RESOURCE=TYPE13
,RESOURCE=TYPE14
,RESOURCE=TYPE15
,RESOURCE=BUFFER_POOL_IO
```

When STATE=WAITING is specified, a required parameter, which indicates the resource that the work manager is waiting for on behalf of the work request described by the monitoring environment.

```
,RESOURCE=LATCH
  indicates that the work manager is waiting for a latch.

,RESOURCE=LOCK
  indicates that the work manager is waiting for a lock.
```
indicates that the work manager is waiting for an activity related to an I/O request. This may either be an actual I/O operation or some function associated with an I/O request that cannot be more precisely determined by the work manager, for example, locks, or buffers.

,RESOURCE=CONV
indicates that the work manager is waiting for a conversation. This may be used in conjunction with IWMMSWCH to identify where the target is located.

,RESOURCE=DISTRIBUT
indicates that the work manager is waiting for a distributed request. This expresses at a high level that some function or data must be routed before resuming the work request. This is to be contrasted with Waiting on Conversation, which is a low level view of the precise resource that is needed. A distributed request could involve waiting on a conversation as part of its processing.

,RESOURCE=SESS_LOCALMVS
indicates that the work manager is waiting to establish a session somewhere in the current MVS image.

,RESOURCE=SESS_NETWORK
indicates that the work manager is waiting to establish a session somewhere in the network.

,RESOURCE=SESS_SYSPLEX
indicates that the work manager is waiting to establish a session somewhere in the sysplex.

,RESOURCE=TIMER
indicates that the work request is waiting for a timer.

,RESOURCE=OTHER_PRODUCT
indicates that the work manager is waiting for another product to complete its function.

,RESOURCE=MISC
indicates that the work manager is waiting for some unidentified resource, possibly among the previous categories.

,RESOURCE=SSL_THREAD
indicates that the work manager is waiting for an SSL thread.

,RESOURCE=REG_THREAD
indicates that the work manager is waiting for a regular processing thread.

,RESOURCE=REG_TO_WRKTB
indicates that the work manager is waiting for the registration to a worktable.

,RESOURCE=TYPE1
indicates that the work manager is waiting for resource type 1.

,RESOURCE=TYPE2
indicates that the work manager is waiting for resource type 2.

,RESOURCE=TYPE3
indicates that the work manager is waiting for resource type 3.

,RESOURCE=TYPE4
indicates that the work manager is waiting for resource type 4.
IWM4MCHS Macro

,RESOURCE=TYPE5
 indicates that the work manager is waiting for resource type 5.

,RESOURCE=TYPE6
 indicates that the work manager is waiting for resource type 6.

,RESOURCE=TYPE7
 indicates that the work manager is waiting for resource type 7.

,RESOURCE=TYPE8
 indicates that the work manager is waiting for resource type 8.

,RESOURCE=TYPE9
 indicates that the work manager is waiting for resource type 9.

,RESOURCE=TYPE10
 indicates that the work manager is waiting for resource type 10.

,RESOURCE=TYPE11
 indicates that the work manager is waiting for resource type 11.

,RESOURCE=TYPE12
 indicates that the work manager is waiting for resource type 12.

,RESOURCE=TYPE13
 indicates that the work manager is waiting for resource type 13.

,RESOURCE=TYPE14
 indicates that the work manager is waiting for resource type 14.

,RESOURCE=TYPE15
 indicates that the work manager is waiting for resource type 15.

,RESOURCE=BUFFER_POOL_IO
 indicates that the work manager is waiting for resource buffer pool IO.

,RESTKN=restkn

,RESTKN=NORESTKN
 An optional input parameter, which contains the token of the managed resource
 previously registered with register resource (IWMMREG). The default is
 NORESTKN, which indicates that no resource token is provided.
 NORESTKN preserves the existing resource token, if any.

 To code: Specify the RS-type address, or address in register (2)-(12), of an
 8-character field.

,RETCODE=retcode
 An optional output parameter into which the return code is to be copied from
 GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
 An optional output parameter into which the reason code is to be copied from
 GPR 0.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RUNTIME_VER=SHORT_FORM

,RUNTIME_VER=MINIMAL
 An optional parameter, which indicates what level of runtime verification will be
 performed. The default is RUNTIME_VER=SHORT_FORM.
indicates that checking should verify that a monitoring environment is established and passes a short form of verification before being used.

,RUNTIME_VER=MINIMAL
indicates that checking will only be done to verify that a monitoring environment may be established, assuming that it would be valid and useable if established.

STATE=FREE
STATE=ACTIVE
STATE=ACTIVE_APPL
STATE=READY
STATE=IDLE
STATE=WAITING
A required parameter, which indicates the current state for the work request.

STATE=FREE
indicates that the work manager has no work request associated with the monitoring environment.

STATE=ACTIVE
indicates that there is a program executing on behalf of the work request described by the monitoring environment. This is an indication from the perspective of the work manager using this service, who should not try to factor in MVS decisions in preempting work, etc.

STATE=ACTIVE_APPL
indicates that there is an application program executing on behalf of the work request described by the monitoring environment. This is an indication from the perspective of the work manager using this service, who should not try to factor in MVS decisions in preempting work. This state represents the application activity in contrast to the active (subsystem) state.

STATE=READY
indicates that there is a program ready to execute on behalf of the work request described by the monitoring environment, but the work manager has given priority to another work request.

STATE=IDLE
indicates that the work manager has no work requests that it is allowed to service within the monitoring environment. This represents a delay that is not under the control of the work manager itself and which it cannot eliminate. This may be caused by limits imposed by the installation or by the kind of work request itself.

STATE=WAITING
indicates that the work manager is waiting for a resource on behalf of the work request described by the monitoring environment.

ABEND Codes

None.

Return and Reason Codes

When the IWM4MCHS macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains a reason code.
The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 78. Return and Reason Codes for the IWM4MCHS Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
<td>Meaning: Successful completion.</td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0402</td>
<td>Equate Symbol: IwmRsnCodeNoMonEnv</td>
<td>Meaning: Input monitoring token indicates no monitoring environment was established.</td>
<td>Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
<td>Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0820</td>
<td>Equate Symbol: IwmRsnCodeBadMonEnv</td>
<td>Meaning: Monitoring environment does not pass short form verification.</td>
<td>Action: Check for possible storage overlay.</td>
</tr>
</tbody>
</table>
Chapter 75. IWM4MCRE – Create Delay Monitoring Environment

The purpose of this service is to create a single delay monitoring environment or a number of delay monitoring environments so that work and resource managers may utilize other delay monitoring services to reflect to MVS the execution states and delays associated with work requests.

The following three types of monitoring environments are available:
- Management monitoring environments. These provide both, performance management and performance reporting.
- Report-only monitoring environments. These can be used for performance reporting only.
- Buffer pool management only environments. These provide only buffer pool performance management for enclaves.

Optionally, if you specify REPORTONLY=YES, the monitoring environment is used for reporting purposes only.

Furthermore, if you specify BPMGMTONLY=YES, the monitoring environment is used for buffer pool management for enclaves only.

Information

Note that this service was previously called IWMMCREA for 31-bit address space only (see "IWMMCREA – Create Delay Monitoring Environment" on page 872).

Environment

The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task

Cross memory mode: Non-XMEM or XMEM. Any P.S.H.

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts No (EUT) FRR established.

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
IWM4MCRE Macro

4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MNSTR CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.

Restrictions

1. This macro may not be used during task/address space termination.
2. If the key specified on IWM4MCRE is a user key (8-F), then the caller must be in non-cross-memory mode (P=S=H)
3. While not a restriction for IWM4MCRE, it should be noted that when the key specified is a user key (8-F), the delay monitoring token may only be passed (to any service whatsoever), when primary addressability exists to the performance block obtained by IWM4MCRE. This condition may be satisfied by ensuring that the then current primary matches primary at the time that IWM4MCRE was invoked. If these other services are invoked in a subspace, the condition may be satisfied by ensuring that the performance block is shared with the base space.

4. This service provides a task and address space resource managers to clean up any resources obtained during task and address space terminations. Once the calling task or address space terminates, the monitoring token returned by IWM4MCRE must not be used for any services.

5. This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to the PLISTVER parameter description for further information.

Input Register Information

Before issuing the IWM4MCRE macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>
Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications
None.

Syntax

```
main diagram
```

```
name
```

```
REQTYPE=SINGLE, MONTN MARK
```

```
REQTYPE=MULTIPLE, AMOUNT=amount, MONTN LIST=montkn_list, MONTN LISTLEN=montkn_listlen
```

```
REPORTONLY=NO, BPMGMTONLY=NO
```

```
REPORTONLY=YES, BPMGMTONLY=YES
```

```
MONTKNKEY=value, MONTKNKEY=montknkey
```

```
MONTKNKEY=value, MONTKNKEY=montknkey
```

```
RETCODE=retcode, RSNCODE=rsncode
```

```
PLISTVER=IMPLIED_VERSION, MF=(L, list addr)
```

```
PLISTVER=MAX, MF=(E, list addr)
```

```
PLISTVER=MIN, MF=(L, list addr)
```

```
PLISTVER=COMPLETE
```

```
parameters-1
```

```
SUBSYS=sys, SUBSYSNM=sysnm
```

```
EWLM=NO
```

```
EWLM=YES
```

```
GROUPNM=NO_GROUPNM, GROUPNM=groupnm
```

Parameters

The parameters are explained as follows:

`name`
An optional symbol, starting in column 1, that is the name on the IWM4MCRE macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

`AMOUNT=amount`
When `REQTYPE=MULTIPLE` is specified, a required input parameter, which specifies the number of delay monitoring environments to be created.
While there is no restriction on the number of delay monitoring environments to be created, the caller should only create the minimum number of delay monitoring environments that are needed.

If there are too many unused delay monitoring environments existing in the system, the storage and CPU overheads may be significant.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

- **,BPMGMTONLY=NO**
- **,BPMGMTONLY=YES**

When REPORTONLY=NO is specified, an optional parameter, which indicates whether the monitoring environment is for buffer pool management purposes only (YES) or (NO). The default is BPMGMTONLY=NO.

- **,BPMGMTONLY=NO**
 - indicates that the monitoring environment is not for buffer pool management purposes.

- **,BPMGMTONLY=YES**
 - indicates that the monitoring environment is for buffer pool management purposes only.

- **,CONNTKN=conntkn**

When SUBSYSP=CONNECT is specified, a required input parameter, which contains the connect token associated with the subsystem.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

- **,EWLM=NO**
- **,EWLM=YES**

When SUBSYSP=VALUE is specified, an optional parameter, which indicates if the created monitoring environment is intended to participate in Enterprise Workload Management (EWLM). The default is EWLM=NO.

- **,EWLM=NO**
 - The monitoring environment cannot be used to report on ARM work requests.

- **,EWLM=YES**
 - The monitoring environment participates in cross-platform Enterprise Workload Management and interacts with EWLM. An ARM application instance will be registered and started using the passed subsystem type (SUBSYS), subsystem name (SUBSYSNM), and the new parameter group name (GROUPNM, GROUPNM_LEN) - an already existing ARM registration for the same address space with identical SUBSYS, SUBSYSNM, GROUPNM and GROUPNM_LEN parameters will be reused. All ARM work requests associated with the created monitoring environment are reported for this ARM application instance.

- **,GROUPNM=groupnm**
- **,GROUPNM=NO_GROUPNM**

When EWLM=YES and SUBSYSP=VALUE are specified, an optional input parameter, which contains the name of an application group, for example, a group of similar or cooperating subsystem instances. A group name can be up to 255 characters long. Provision of a data area initialized to all blanks is equivalent to specification of NO_GROUPNM. NO_GROUPNM indicates that no group name is passed. This is the default.
To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

\texttt{GROUPNM_LEN=\texttt{\textbackslash}groupnm_len}

When \texttt{GROUPNM=\texttt{\textbackslash}groupnm}, \texttt{EWLM=YES} and \texttt{SUBSYS=VALUE} are specified, a required input parameter, which contains the length of the group name. A group name can be up to 255 characters long.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

\texttt{MF=S}
\texttt{MF=\{L,\texttt{\textbackslash}list \texttt{\textbackslash}addr\}}
\texttt{MF=\{L,\texttt{\textbackslash}list \texttt{\textbackslash}addr,\texttt{\textbackslash}attr\}}
\texttt{MF=\{L,\texttt{\textbackslash}list \texttt{\textbackslash}addr,0D\}}
\texttt{MF=\{E,\texttt{\textbackslash}list \texttt{\textbackslash}addr\}}
\texttt{MF=\{E,\texttt{\textbackslash}list \texttt{\textbackslash}addr,COMPLETE\}}

An optional input parameter that specifies the macro form.

Use \texttt{MF=S} to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. \texttt{MF=S} is the default.

Use \texttt{MF=L} to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the \texttt{PLISTVER} parameter may be coded with the list form of the macro.

Use \texttt{MF=E} to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

\texttt{\textbackslash list \texttt{\textbackslash addr}}

The name of a storage area to contain the parameters. For \texttt{MF=S} and \texttt{MF=E}, this can be an RS-type address or an address in register (1)-(12).

\texttt{\textbackslash attr}

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of \texttt{OF} to force the parameter list to a word boundary, or \texttt{0D} to force the parameter list to a doubleword boundary. If you do not code \texttt{\textbackslash attr}, the system provides a value of \texttt{0D}.

\texttt{COMPLETE}

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

\texttt{\textbackslash MONTKN=\texttt{\textbackslash}montkn}

When \texttt{REQTYPE=SINGLE} is specified, a required output parameter, which will receive the delay monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

\texttt{\textbackslash MONTKN_LIST=\texttt{\textbackslash}montkn_list}

When \texttt{REQTYPE=MULTIPLE} is specified, a required input parameter, which specifies an area into which a list of delay monitoring tokens will be placed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.
MONTKN_LISTLEN=montkn_listlen
When REQTYPE=MULTIPLE is specified, a required input parameter, which specifies the length (in bytes) of the area identified by the MONTKN_LIST keyword.

Size of this area must be at least the size of MONTKN (see MONTKN keyword) times AMOUNT. If the user specified area is not large enough to return the delay monitoring tokens, a specific return/reason code will be returned and the request will not be processed.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

MONTKNKEY=montknkey
When MONTKNKEYP=VALUE is specified, a required input parameter, which contains the key in which the delay monitoring services will be invoked subsequently when using the output MONTKN. The low order 4 bits (bits 4-7) contain the key value. The high order 4 bits (bits 0-3) must be 0.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-bit field.

MONTKNKEYP=VALUE
MONTKNKEYP=PSWKEY
A required parameter, which describes how the input key should be obtained.

MONTKNKEYP=VALUE indicates that the key is being passed explicitly via MONTKNKEY.

MONTKNKEYP=PSWKEY indicates that the current PSW key should be used.

PLISTVER=IMPLIED_VERSION
PLISTVER=MAX
PLISTVER=0
PLISTVER=1
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- 0, which supports all parameters except those specifically referenced in higher versions.
- 1, which supports both the following parameters and those from version 0:

<table>
<thead>
<tr>
<th>BPMGMTONLY</th>
<th>GROUPNM</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWLM</td>
<td>GROUPNM_LEN</td>
</tr>
</tbody>
</table>
To code: Specify one of the following:

- **IMPLIEDVERSION**
- **MAX**
- A decimal value of 0, or 1

REPORTONLY=NO

REPORTONLY=YES

An optional parameter, which indicates whether the monitoring environment is for reporting purposes only (YES) or (NO). The default is REPORTONLY=NO.

REPORTONLY=NO

indicates that the monitoring environment is for management and reporting purposes.

REPORTONLY=YES

indicates that the monitoring environment is for reporting purposes only.

REQTYPE=SINGLE

REQTYPE=MULTIPLE

An optional parameter that indicates whether the request is to create a single delay monitoring environment or to create multiple delay monitoring environments. The default is REQTYPE=SINGLE.

REQTYPE=SINGLE

requests to create a single delay monitoring environment.

REQTYPE=MULTIPLE

requests to create a number of delay monitoring environments.

RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SUBSYS=subsys

When SUBSYSP=VALUE is specified, a required input parameter, which contains the generic subsystem type, for example, IMS, or CICS.

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-character field.

SUBSYSNM=subsysnm

When SUBSYSP=VALUE is specified, a required input parameter, which contains the subsystem name.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

SUBSYSP=CONNECT

SUBSYSP=VALUE

A required parameter, which describes how the calling subsystem is providing identification.

SUBSYSP=CONNECT

indicates that the connect token is being passed.
IWM4MCRE Macro

\texttt{,SUBSYS=VALUE}

indicates that the subsystem name is being passed directly.

\section*{ABEND Codes}

None.

\section*{Return and Reason Codes}

When the IWM4MCRE macro returns control to your program:
\begin{itemize}
\item GPR 15 (and \texttt{retcode}, if you code \texttt{RETCODE}) contains a return code.
\item When the value in GPR 15 is not zero, GPR 0 (and \texttt{rsncode}, if you coded \texttt{RSNCODE}) contains reason code.
\end{itemize}

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Return Code & Reason Code & Equate Symbol | Meaning and Action \\
\hline
0 & — & \texttt{IwmRetCodeOk} & Meaning: Successful completion. \\
& & & Action: None required. \\
\hline
4 & — & \texttt{IwmRetCodeWarning} & Meaning: Successful completion, unusual conditions noted. \\
\hline
4 & xxxx0401 & \texttt{IwmRsnCodeNoWLM} & Meaning: System does not support delay monitoring services. The delay monitoring token returned is useable in other services. However use of this token will NOT result in the action requested of those services. This return code is only set when the MVS release is prior to MVS/ESA SP5.1.0. \\
& & & Action: None required. \\
\hline
4 & xxxx0409 & \texttt{IwmRsnCodeNoConn} & Meaning: Connect token does not reflect a successful Connect. The delay monitoring token returned is useable in other services. However use of this token will NOT result in the action requested of those services. \\
& & & Action: None required. \\
\hline
8 & — & \texttt{IwmRetCodeInvocationError} & Meaning: Invalid invocation environment or parameters. \\
\hline
8 & xxxx0801 & \texttt{IwmRsnCodeSrbMode} & Meaning: Caller is in SRB mode. \\
& & & Action: Avoid requesting this function while in SRB mode. \\
\hline
8 & xxxx0802 & \texttt{IwmRsnCodeXmemUserKeyTkn} & Meaning: Caller is in cross-memory mode while the token was requested in user key. \\
& & & Action: Avoid requesting this function while in cross-memory mode. \\
\hline
\end{tabular}
\caption{Return and Reason Codes for the IWM4MCRE Macro}
\end{table}
<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
<td>Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>IwmRsnCodeBadPl</td>
<td>Error accessing parameter list.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0810</td>
<td>IwmRsnCodeEutFrr</td>
<td>Caller has EUT FRR established.</td>
<td>Avoid requesting this function with an EUT FRR set.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0821</td>
<td>IwmRsnCodeBadConn</td>
<td>Input connect token does not pass validity checking.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>IwmRsnCodeDatoff</td>
<td>Caller invoked service while DATOFF</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24 bit addressing mode.</td>
<td>Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not DAT on Primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0826</td>
<td>IwmRsnCodeTaskTerm</td>
<td>Caller invoked service while task termination is in progress for the TCB associated with the owner.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>IwmRsnCodeRsvdNot0</td>
<td>Reserved field in parameter list was non-zero.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
</tbody>
</table>
Table 79. Return and Reason Codes for the IWM4MCRE Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0829</td>
<td>Equate Symbol: IwmRsnCodeBadOptions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Parameter list omits required parameters or supplies mutually exclusive parameters or provides data associated with options not selected.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay of the parameter list.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0844</td>
<td>Equate Symbol: IwmRsnCodeBadMonTknListLen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The storage area length specified on the MONTKN_LISTLEN parameter is not large enough to contain the data being returned. No data is returned.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Invoke the function with an output area sufficient to receive the data.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeEnvError</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Environmental error.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>Equate Symbol: IwmRsnCodeNoStg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Storage is not available for the request.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: There is a storage shortage. The function may work successfully at a later time.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C09</td>
<td>Equate Symbol: IwmRsnCodeNoResmgr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Resource manager could not be established.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: No action required. This condition may be due to a storage shortage condition.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Component error.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: No action required. The function may be successful if invoked again.</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 76. IWM4MDRG – Deregister a Resource From Monitoring

The purpose of the IWM4MDRG service is to deregister a resource from monitoring which was previously registered via IWM4MREG. The service allows the caller to identify a resource which is no longer involved in delays to work requests. Thus, the system may no longer alter the size of the resource to balance associated delays.

The system implicitly deregisters a resource due to repetitive errors in calling exits associated with the resource. In this case, the invocation to deregister finds that the associated resource token is invalid and returns with a warning return code. The same return code will be returned in all cases where the resource token is invalid.

Environment

The requirements for the caller are:

- **Minimum authorization:** Supervisor state or program key mask (PKM) allowing keys 0-7.
- **Dispatchable unit mode:** Task
- **Cross memory mode:** PASN=HASN=SASN Current HASN must match HASN at the time that IWM4MREG was used to register the resource.
- **AMODE:** 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.
- **ASC mode:** Primary
- **Interrupt status:** Enabled for I/O and external interrupts
- **Locks:** No locks may be held.
- **Control parameters:** Control parameters must be in the primary address space.

Programming Requirements

1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
4. All character data input is assumed to be left justified and padded with blanks on the right, as needed, to fill in the specified number of bytes.

Restrictions

- NO FRRs may be established.
- This service should not be invoked from an address space resource manager, because those are dispatched from master’s address space which will not match the space which invoked the registration service. The system will take care of the resources associated with registration when the owning address space terminates.
IWM4MDRG Macro

Input Register Information

Before issuing the IWM4MDRG macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

Parameters

The parameters are explained as follows:
name
An optional symbol, starting in column 1, that is the name on the IWM4MDRG macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

\[, \text{MF}=S \]
\[, \text{MF}=(L, \text{list addr}) \]
\[, \text{MF}=(L, \text{list addr}, \text{attr}) \]
\[, \text{MF}=(L, \text{list addr}, 0D) \]
\[, \text{MF}=(E, \text{list addr}) \]
\[, \text{MF}=(E, \text{list addr}, \text{COMPLETE}) \]
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

\[, \text{list addr} \]
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

\[, \text{attr} \]
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

\[, \text{COMPLETE} \]
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

\[, \text{PLISTVER=IMPLIED_VERSION} \]
\[, \text{PLISTVER=MAX} \]
\[, \text{PLISTVER=0} \]
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, if you use the currently available parameters.

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0

RESOURCE_TKN=resource_tkn

A required input parameter, which contains the associated WLM resource token which is returned by the resource monitoring registration service (IWM4MREG).

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes

- None.

Return and Reason Codes

When the IWM4MDRG macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 0 | — | IwmRetCodeOk | Meaning: Successful completion.
Action: None required. |
| 4 | — | IwmRetCodeWarning | Meaning: Successful completion, unusual conditions noted. |
Table 80. Return and Reason Codes for the IWM4MDRG Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
</table>
| 4 | xxxx041D | Equate Symbol: `iwmRsnCodeBadResTkn` | Meaning: The input resource token is not valid. The system may have deregistered due to errors associated with an exit.
Action: Verify that the resource token passed has the intended value. | |
| 8 | — | Equate Symbol: `iwmRetCodeInvocError` | Meaning: Invalid invocation environment or parameters. | |
| 8 | xxxx0801 | Equate Symbol: `iwmRsnCodeSRBMode` | Meaning: Caller is in SRB mode.
Action: Avoid requesting this function in SRB mode. | |
| 8 | xxxx0803 | Equate Symbol: `iwmRsnCodeDisabled` | Meaning: Caller is disabled.
Action: Avoid requesting this function while disabled. | |
| 8 | xxxx0804 | Equate Symbol: `iwmRsnCodeLocked` | Meaning: Caller is locked.
Action: Avoid requesting this function while locked. | |
| 8 | xxxx080B | Equate Symbol: `iwmRsnCodeBadPl` | Meaning: Error accessing parameter list.
Action: Check for possible storage overlay. | |
| 8 | xxxx0810 | Equate Symbol: `iwmRsnCodeEutFrr` | Meaning: Caller has EUT FRR established.
Action: Avoid requesting this function with an EUT FRR. | |
| 8 | xxxx0823 | Equate Symbol: `iwmRsnCodeDatoff` | Meaning: Caller invoked service while DATOFF
Action: Avoid requesting this function in this environment. | |
| 8 | xxxx0824 | Equate Symbol: `iwmRsnCodeAmode24` | Meaning: Caller invoked service but was in 24-bit addressing mode.
Action: Request this function only when you are in 31-bit or 64-bit addressing mode. | |
| 8 | xxxx0825 | Equate Symbol: `iwmRsnCodeAscModeNotPrimary` | Meaning: Caller invoked service but was not DAT on Primary ASC mode.
Action: Avoid requesting this function in this environment. | |
| 8 | xxxx0828 | Equate Symbol: `iwmRsnCodeBadVersion` | Meaning: Version number or version length field in parameter list is not valid.
Action: Check for possible overlay of the parameter list. | |
Table 80. Return and Reason Codes for the IWM4MDRG Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx082F</td>
<td>IwmRsnCodeWrongHome</td>
<td>Meaning: Caller invoked service from the wrong home space. Action: Invoke the service from the owning address space.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0841</td>
<td>IwmRsnCodeXmemMode</td>
<td>Meaning: Caller invoked service but was in cross-memory mode. Action: Avoid requesting this function in cross-memory mode.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>IwmRetCodeCompError</td>
<td>Meaning: Component error. Action: Contact your system programmer.</td>
</tr>
</tbody>
</table>

Example

To deregister a resource from monitoring, specify the following:

```ibm
IWM4MDRG RESOURCE_TKN=RSCTOKEN, X RETCODE=RC,RSNCODE=RSN
```

* Storage areas

```ibm
RSCTOKEN DS CL8 WLM resource token
RC DS F Return code
RSN DS F Reason code
```
Chapter 77. IWM4MGDD – Define Descriptions for Generic Delay States

With this service, a subsystem can define descriptions for its 'generic delay states'. The term 'generic delay states' in this context is related to service IWM4MCHS. It means the case when STATE=WAITING is specified and the resource that is specified is RESOURCE=TYPE\text{\textsubscript{x}}, where x is some number between 1 and 15.

With this service, descriptions can be defined that might be more intuitive to a user than the generic terms. If defined, these descriptions will be accessible to performance monitors in the IWMWRCAA data area as a result of a call to the IWMRCOLL service.

Note, that for a subsystem that allows multiple instances (address spaces) to be active on the same z/OS system, only one set of descriptions can be in effect. If more than one instance of such a subsystem defines a set of definitions, the last one defined will be effective.

For a subsystem that allows the customer to run multiple instances, possibly at different release levels on the same system, it might be helpful if each instance first checks whether there are already some descriptions defined for that subsystem, before the instance decides whether to define its own descriptions.

Environment

The requirements for the caller are:

- **Minimum authorization**: Supervisor state or program key mask (PKM) allowing keys 0-7.
- **Dispatchable unit mode**: Task or SRB
- **Cross memory mode**: Any PASN, any HASN, any SASN
- **AMODE**: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.
- **ASC mode**: Primary or access register (AR)
- **Interrupt status**: Enabled for I/O and external interrupts
- **Locks**: No locks may be held.
- **Control parameters**: Control parameters must be in the primary address space or, for AR-mode callers, must be in an address/data space that is addressable through a public entry on the caller's dispatchable unit access list (DU-AL).

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high-order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high-order halfword should thus be excluded.
IWM4MGDD Macro

from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.

Restrictions

None.

Input Register Information

Before issuing the IWM4MGDD macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4MGDD macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,DESCRIPTIONS=descriptions
A required input parameter

For REQTYPE=DEFINE, the address specifies the input area to the request that contains descriptions for generic delay states to be defined for a particular subsystem. The layout of the data area must adhere to the mapping defined by macro IWMWGDD.

Note: With one DEFINE request, a subsystem defines a set of descriptions for the generic delay states it uses. A subsequent DEFINE request will override the currently existing definitions. If IWMWGNUM is set to 0, then the currently existing definitions are deleted.

The following fields in the data area must be set correctly (for their meaning refer to the header of macro IWMWGDD):

- IWMWGEYE
- IWMWGVER
- IWMWGTYP
- IWMWGNUM
- IWMWGTNUM

The following field in the data area must not be set, that is, it must have a value of zero (or its meaning refer to the header of macro IWMWGDD):

- IWMWGNXT

If any of these fields is not set correctly, the request is terminated with return code IwmRetCodeInvocError and reason code IwmRsnCodeBadRequestList. The field in error is identified by setting IWMWGRC appropriately, refer to macro IWMWGDD for the possible values in IWMWGRC.

For REQTYPE=RETRIEVE, the address specifies the input/output area to the request. As input to the request the area contains the type of the subsystem for which the descriptions are to be retrieved. After execution of the request the area contains the descriptions for generic delay states as they are currently defined for the input subsystem. The layout of the data area must adhere to the mapping defined by macro IWMWGDD.
The following fields in the data area must be set correctly (for their meaning refer to the header of macro IWMWGDD):

- IWMWGEYE
- IWMWGVER
- IWMWGTYP
- IWMWGNUM

The following field in the data area must not be set:
- IWMWGNXT

If any of these fields is not set correctly, the request is terminated with return code IwmRetCodeInvocError and reason code IwmRsnCodeBadRequestList. The field in error is identified by setting IWMWGRC appropriately, refer to macro IWMWGDD for the possible values in IWMWGRC.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, if you use the currently available parameters.

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0

REQTYPE=DEFINE

REQTYPE=RETRIEVE

A required parameter that indicates whether the request is to define or to retrieve generic delay state descriptions.

REQTYPE=DEFINE

The request is to define the generic delay state descriptions for a particular subsystem.

REQTYPE=RETRIEVE

The request is to retrieve the generic delay state descriptions of a particular subsystem.

,**RETCODE=retcode**

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,**RSNCODE=rsncode**

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes

None.

Return and Reason Codes

When the IWM4MGDD macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.
The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the `xxxx` value.

Table 81. Return and Reason Codes for the IWM4MGDD Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
<td>None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
<td>Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0808</td>
<td>IwmRsnCodeBadPl</td>
<td>Error accessing parameter list.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>IwmRsnCodeDatoff</td>
<td>Caller invoked service while DATOFF</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24-bit addressing mode.</td>
<td>Request this function only when you are in 31-bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0829</td>
<td>IwmRsnCodeBadOptions</td>
<td>Parameter list omits required parameters or supplies mutually exclusive parameters or provides data associated with options not selected.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0888</td>
<td>IwmRsnCodeBadRequestList</td>
<td>The data area mapped by IWMWGDD does not pass verification.</td>
<td>Check the return and reason codes in IWMWGRC.</td>
</tr>
</tbody>
</table>
Table 81. Return and Reason Codes for the IWM4MGDD Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>Equate Symbol: IwmRsnCodeNoStg Meaning: Storage is not available for the request. Action: There is a storage shortage. The function may work successfully at a later time.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError Meaning: Component error. Action: No action required. The function may be successful if invoked again.</td>
</tr>
</tbody>
</table>
IWM4MGDD Macro
Chapter 78. IWM4MINI – Initialize Monitoring Environment

IWM4MINI allows the caller to supply MVS with some or all of the work request attributes needed for the monitoring environment. The attributes include userid, transaction name, transaction class, source LU, and LU 6.2 token.

There are three types of monitoring environments available, management monitoring environments, report-only monitoring environments, and bufferpool management only environments. Management monitoring environments provide both performance management and performance reporting. Report-only monitoring environments can be used for performance reporting only. Bufferpool management only environments provide only bufferpool performance management for enclaves.

Use the REPORTONLY=YES parameter to specify the monitoring environment will be used for reporting purposes only.

If you are invoking IWM4MINI with the REPORTONLY=YES parameter, ASSOCIATE=ENCLAVE or ASSOCIATE=ADDRESS_SPACE must be specified to associate the monitoring environment with an enclave or an address space.

Use the BPMGMTONLY=YES parameter to specify the monitoring environment will be used for bufferpool management for enclaves only.

If you are invoking IWM4MINI with the BPMGMTONLY=YES parameter, ASSOCIATE=ENCLAVE must be specified to associate the monitoring environment with an enclave.

For management monitoring environments, if possible, invoke IWM4MINI immediately following IWMCLSFY, and pass the service class for the work request. Without the associated service class in the monitoring environment, delay information cannot be accumulated and reported accurately.

IWM4MINI can be issued multiple times for the same work request. The first time you invoke IWM4MINI for a work request, you must specify MODE=RESET, otherwise the previous work request’s attributes are associated with this work request. Any subsequent time you invoke IWM4MINI from the same address space for the same monitoring token for the same work request, specify MODE=RETAIN. If the caller subsystem work manager consists of multiple address spaces (with multiple monitoring tokens), the first time IWM4MINI is invoked in each address space for a given work request must specify MODE=RESET. Any subsequent invocations for the same work request should specify MODE=RETAIN.

If you are invoking IWM4MINI for a management monitoring environment and multiple times for the same work request, only one of the invocations should specify EXSTARTTIME=exstarttime. It is up to you to decide at which point in the subsystem work manager’s processing you consider the real execution start time.

Optionally, with this macro, you can use the OWNER_TOKEN and OWNER_DATA parameters to specify a token for the user/owner of the monitoring environment for your own use.
IWM4MINI Macro

Information

Note that this service was previously called IWMMINIT for 31-bit address space only (see "IWMMINIT – Initialize Monitoring Environment" on page 882).

Environment

The requirements for the caller are:

- **Minimum authorization:** Either problem state or supervisor state. PSW key must either be 0 or match the value supplied on IWM4MCRE.
- **Dispatchable unit mode:** Task or SRB
- **Cross memory mode:** Any PASN, any HASN, any SASN If the key specified on IWM4MCRE was a user key (8-F), then primary addressability must be the same as when IWM4MCRE was invoked.
- **AMODE:** 31- or 64-bit
- **ASC mode:** Primary Any P,S,H.
- **Interrupt status:** Enabled for I/O and external interrupts
- **Locks:** Locked or unlocked
- **Control parameters:** Control parameters must be in the primary address space.

Programming Requirements

1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

1. All parameter areas must reside in current primary, except that the TCB (if specified) must reside in current home.
2. Caller is responsible for error recovery.
3. Only limited checking is done against the input monitoring token.
4. If the key specified on IWM4MCRE was a user key (8-F), then the primary addressability must exist to the performance block IWM4MCRE obtained. This condition is satisfied by ensuring that current primary matches primary at the time that IWM4MCRE was invoked. If this service is invoked in a subspace, the condition may be satisfied by ensuring that the performance block is shared with the base space.
5. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for the environment represented by the monitoring token.
6. The REPORTONLY and ASSOCIATE keywords may only be used on systems running z/OS R2 or higher.
7. The BPMGMTONLY keyword may only be used on systems running z/OS R8 or higher.
8. This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to the PLISTVER parameter description for further information.

Input Register Information

Before issuing the IWM4MINI macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

```
main diagram

name IWM4MINI MONTKN=montkn

,MODE=RESET ,DURATION=PREV_VALUE
,MODE=RETAIN ,DURATION=EXECUTION
,DISPTYPE=SAVEDTYPE ,DURATION=BEGIN_TO_END
,DISPTYPE=TCB
,DISPTYPE=SRB
,TCB=NO_TCB
,TCB=tcb
```
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4MINI macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

.ARRIVALTIME=arrivaltime
When ARRIVALTIMEP=YES and MODE=RESET are specified, a required input parameter, which contains the work arrival time in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

.ARRIVALTIMEP=CURRENT
.ARRIVALTIMEP=YES
When MODE=RESET is specified, a required parameter, which indicates whether the work arrival time is passed.

.ARRIVALTIMEP=CURRENT
indicates that the current time should be supplied by the service.

.ARRIVALTIMEP=YES
indicates that the work arrival time is passed.

.ASID=asid
When ASSOCIATE=ADDRESS_SPACE and REPORTONLY=YES are specified, a required input parameter which contains the address space ID.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-bit field.

.ASSOCIATE=ENCLAVE
.ASSOCIATE=ADDRESS_SPACE
When REPORTONLY=YES is specified, a required parameter, which indicates whether the monitoring environment should be associated to an enclave or an address space.

.ASSOCIATE=ENCLAVE
indicates that the monitoring environment should be associated to an enclave.

.ASSOCIATE=ADDRESS_SPACE
indicates that the monitoring environment should be associated to an address space.

.ASSOCIATE=ENCLAVE
When BPMGMTONLY=YES and REPORTONLY=NO are specified, a required parameter, which indicates whether the monitoring environment should be associated only to an enclave.

.ASSOCIATE=ENCLAVE
indicates that the monitoring environment should be associated to an enclave.

.BPMGMTONLY=NO
.BPMGMTONLY=YES
When REPORTONLY=NO is specified, an optional parameter, which indicates whether the monitoring environment is for bufferpool management purposes only (YES) or not (NO). The default is BPMGMTONLY=NO.
,BPMGMTONLY=NO
indicates that the monitoring environment is not for bufferpool management purposes only.

,BPMGMTONLY=YES
indicates that the monitoring environment is for bufferpool management purposes only.

,CONTINUEP=YES
,CONTINUEP=NO
A required parameter, which indicates whether it is known (YES) or not (NO) that there exists another monitoring environment for this same work request.

,CONTINUEP=YES
indicates that the existence of a prior monitoring environment for the work request is known.

,CONTINUEP=NO
indicates that it is not known whether there exists a prior monitoring environment for the work request. If MODE(RESET) is specified, no status is saved. If MODE(RETAIN) is specified, the existing status is preserved.

,DISPTYPE=TCB
,DISPTYPE=SRB
When MODE=RESET is specified, a required parameter, which describes the nature of the MVS dispatchable units which participate in processing work requests associated with the delay monitoring environment established by this service.

,DISPTYPE=TCB
indicates that work requests run in TCB mode under a TCB within the current home address space. Note that in cross-memory mode, this may be different from the current primary address space.

,DISPTYPE=SRB
indicates that work requests run in SRB mode within the current home address space.

,DISPTYPE=SAVEDTYPE
,DISPTYPE=TCB
,DISPTYPE=SRB
When MODE=RETAIN is specified, a required parameter, which describes the nature of the MVS dispatchable units which participate in processing work requests associated with the delay monitoring environment established by this service.

,DISPTYPE=SAVEDTYPE
indicates that the information saved when MODE(RESET) was used is still applicable.

,DISPTYPE=TCB
indicates that work requests run in TCB mode under a TCB within the current home address space. Note that in cross-memory mode, this may be different from the current primary address space.

,DISPTYPE=SRB
indicates that work requests run in SRB mode within the current home address space.

,DURATION=EXECUTION
When MODE=RESET is specified, an optional parameter, which indicates the duration of the work request over which the delays are to be represented. The default is DURATION=EXECUTION.

,DURATION=EXECUTION
indicates that the monitoring environment will reflect delays from the point where an application or transaction program is given control, i.e. the execution phase. Typically a monitoring environment with this scope would be passed to IWMMNTFY to pass the execution time for the work request.

,DURATION=BEGIN_TO_END
indicates that the monitoring environment will reflect delays from the arrival of the work request into the MVS sysplex until its completion. Ordinarily use of this option would be in close proximity to the time when the work request is classified. Typically a monitoring environment with this duration would be passed to IWMRPT to report the total elapsed time for the work request.

,DURATION=PREV_VALUE
,DURATION=EXECUTION
,DURATION=BEGIN_TO_END
When MODE=RETAIIN is specified, an optional parameter, which indicates the duration of the work request over which the delays are to be represented. The default is DURATION=PREV_VALUE.

,DURATION=PREV_VALUE
indicates that the duration for delays has been specified on a previous invocation.

,DURATION=EXECUTION
indicates that the monitoring environment will reflect delays from the point where an application or transaction program is given control, for example, the execution phase. Typically a monitoring environment with this duration would be passed to IWMMNTFY to pass the execution time for the work request.

,DURATION=BEGIN_TO_END
indicates that the monitoring environment will reflect delays from the arrival of the work request into the MVS sysplex until its completion. Ordinarily use of this option would be in close proximity to the time when the work request is classified. Typically, a monitoring environment with this duration is passed to IWMRPT to report the total elapsed time for the work request.

,ENCLAVETOKEN=enclavetoken
When ASSOCIATE=ENCLAVE and REPORTONLY=YES are specified, a required input parameter, which contains the enclave token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,EWLM_PACORR=ewlm_pacorr
,EWLM_PACORR=NO_EWLM_PACORR
When MODE=RESET is specified, an optional input parameter, which contains the cross-platform enterprise workload management (EWLM) parent correlator associated with the work request.

Note:

- If EWLM_PACORR is specified and the correlator does not contain a valid ARM correlator, reason code IwmRsnCodeInvalidEWLMCorr is returned to the caller. Refer to Table 82 on page 664 for further
IWM4MINI Macro

Information. If the correlator is a valid ARM correlator, but cannot be understood by EWLM (no EWLM format), it is ignored.

- The parameters EWLM_PACORR and EWLM_PACTKN are mutually exclusive.

The default is NO_EWLM_PACORR. It indicates that no EWLM parent correlator is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

\[\text{EWLM_PACORR} = \text{ewlm_pacorr} \]

\[\text{EWLM_PACTKN} = \text{NO_EWLM_PACTKN} \]

When MODE=RESET is specified, an optional input parameter, which contains the cross-platform Enterprise Workload Management (EWLM) parent correlator token associated with the work request.

If EWLM_PACTKN is specified and the correlator token does not contain a valid correlator token, reason code IwmRsnCodeInvalidEWLMCorr is returned to the caller. Refer to Table 82 on page 664 for further information. The default is NO_EWLM_PACTKN. It indicates that no EWLM correlator token is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

\[\text{EXSTARTTIME} = \text{exstarttime} \]

When EXSTARTTIME=YES, BPMGMTONLY=NO and REPORTONLY=NO are specified, a required input parameter, which contains the start execution time in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

\[\text{EXSTARTTIMEP} = \text{NO} \]

\[\text{EXSTARTTIMEP} = \text{CURRENT} \]

\[\text{EXSTARTTIMEP} = \text{YES} \]

When BPMGMTONLY=NO and REPORTONLY=NO are specified, a required parameter, which indicates whether the execution start time value is passed.

\[\text{EXSTARTTIMEP} = \text{NO} \]

indicates that the execution start time value is not passed.

If MODE(RETAIN) is specified, EXSTARTTIMEP(NO) preserves the existing execution start time, if any.

\[\text{EXSTARTTIMEP} = \text{CURRENT} \]

indicates that the current time should be supplied by the service.

\[\text{EXSTARTTIMEP} = \text{YES} \]

indicates that the start execution time value is passed.

\[\text{FROM} = \text{NONE} \]

\[\text{FROM} = \text{LOCALMVS} \]

\[\text{FROM} = \text{SYSPLEX} \]

\[\text{FROM} = \text{NETWORK} \]

When CONTINUEP=YES is specified, a required parameter.

\[\text{FROM} = \text{NONE} \]

indicates that there is no other environment.

\[\text{FROM} = \text{LOCALMVS} \]

indicates that such an environment should exist on the current MVS.
,FROM=SYSPLEX
 indicates that such an environment should exist in the current syplex, but is not expected to be on the current MVS image.

,FROM=NETWORK
 indicates that such an environment may exist, but is not expected to be in the current sysplex.

,LU62TKN=lu62tkn
,LU62TKN=NO_LU62TKN
 An optional input parameter, which contains LU 6.2 token for the work request. This is not an SNA term, but it is comprised of the following fields which are defined by SNA for the FMH5.
 - Logical Unit of Work Identifier length byte, in binary, which may have the values 0 or 10-26 decimal (inclusive)
 - Logical Unit of Work Identifier
 - Length byte for the network qualified LU name, in binary, which may have the values 1-17 decimal (inclusive)
 - Network qualified LU network name (1-17 bytes)
 - Logical Unit of Work Instance Number, in binary (6 bytes)
 - Logical Unit of Work Sequence Number, in binary (2 bytes)
 - Conversation Correlator Field (0 to 9 bytes)
 - Length byte for the Conversation Correlator, in binary, which may have the values 0-8 decimal (inclusive)
 - Conversation Correlator of the sending transaction (1-8 bytes)
 The Conversation Correlator Field (which includes its length byte) may be dropped when its length byte is 0. The default is NO_LU62TKN, indicates that no LU 6.2 token was passed.

 If MODE(RETAIN) is specified, NO_LU62TKN will preserve the existing LU6.2 token, if any.

 To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,LU62TKN_FMT=LU_NO_CC_27
,LU62TKN_FMT=FULL_LU_NO_CC_27
,LU62TKN_FMT=FULL_LU_0_CC_28
,LU62TKN_FMT=FULL_LU_CC_36
,LU62TKN_FMT=OTHER
 When LU62TKN=lu62tkn is specified, a required parameter, which indicates the format/length of the LU 6.2 token.

,LU62TKN_FMT=LU_NO_CC_27
 indicates that a fixed length token of 27 bytes is provided, with no conversation correlator (not even its length byte). The LU name may be 1-17 bytes. Bytes at the end of the token are padded with hexadecimal zeros, if necessary, to form a full 27 bytes.

,LU62TKN_FMT=FULL_LU_NO_CC_27
 indicates that the fully qualified LU name (17 bytes) is used, but no conversation correlator (not even its length byte) is provided. This format is architected to be 27 bytes long.

,LU62TKN_FMT=FULL_LU_0_CC_28
 indicates that the fully qualified LU name (17 bytes) is used, and the conversation correlator length byte is present and has the value 0. This format is architected to be 28 bytes long.
indicates that the fully qualified LU name (17 bytes) is used, and the
conversation correlator is provided with a length of 8 (maximum allowed).
This format is architected to be 36 bytes long.

,LU62TKN_FMT=OTHER
indicates that the format of the LU 6.2 token is different from those specified
by the remaining keywords.

,LU62TKN_LEN=lu62tkn_len
When LU62TKN_FMT=OTHER and LU62TKN=lu62tkn are specified, a required
input parameter, which contains the length of the LU62 token. Valid values are
in the range 1-36 decimal (inclusive).

To code: Specify the RS-type address, or address in register (2)-(12), of an
one-byte field.

,MODE=RESET
,MODE=RETAIN
A required parameter, which indicates how previous attributes established for a
monitoring environment should be treated. This does not refer to (or include)
attributes established in IWM4MCRE.

,MODE=RESET
indicates that previous attributes should be discarded.

,MODE=RETAIN
indicates that previous attributes should be retained unless explicitly
specified.

MONTKN=montkn
A required input parameter, which contains the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-bit field.

,OWNER_DATA=owner_data
,OWNER_DATA=NO_OWNER_DATA
An optional input parameter, which contains data maintained by the user/owner
of the monitoring environment. The format is undefined to MVS. The default is
NO_OWNER_DATA which indicates that no owner data is provided.

If MODE(RETAIN) is specified, NO_OWNER_DATA will preserve the existing
owner data, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-bit field.

,OWNER_TOKEN=owner_token
,OWNER_TOKEN=NO_OWNER_TOKEN
An optional input parameter, which contains a token maintained by the user or
owner of the monitoring environment. The format is undefined to MVS. The
default is NO_OWNER_TOKEN which indicates that no owner token is
provided.

If MODE(RETAIN) is specified, NO_OWNER_TOKEN preserves the existing
owner token, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
An optional input parameter that specifies the version of the macro. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want to indicate the latest version currently possible.
- 0, which supports all parameters except those specifically referenced in higher versions.
- 1, which supports both the following parameters and those from version 0:

\[\text{BPMGMTONLY} \quad \text{EWLM_PACORR} \quad \text{EWLM_PACTKN}\]

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0, or 1

REPORTONLY=NO

REPORTONLY=YES

An optional parameter, which indicates whether the monitoring environment is for reporting purposes only (YES) or not (NO). The default is REPORTONLY=NO.

- **REPORTONLY=NO** indicates that the monitoring environment is not for reporting purposes only.
- **REPORTONLY=YES** indicates that the monitoring environment is for reporting purposes only.

RETCODE=\(\text{retcode}\)**

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

RSNCODE=\(\text{rsncode}\)**

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SCOPE=SHARED

SCOPE=SINGLE

A required parameter, which indicates the scope of work passed.

- **SCOPE=SHARED** indicates that multiple work requests, possibly from different service classes, could be described.
- **SCOPE=SINGLE** indicates that only a single work request is described.

SERVCLS=\(\text{servcls}\)**

SERVCLS=NO_SERVCLS

When BPMGMTONLY=NO and REPORTONLY=NO are specified, an optional input parameter, which contains the service class token. The default is NO_SERVCLS which indicates that no service class token was passed.

If MODE(RETAIN) is specified, NO_SERVCLS preserves the existing service class token, if any.
To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

"SOURCELU=sourcelu"
"SOURCELU=NO_SOURCELU"

An optional input parameter, which contains the LU name associated with the requestor. This may be the fully qualified NETID.LUNAME, for example, network name (1-8 bytes), followed by a period, followed by the LU name for the requestor (1-8 bytes). It may also be the 1-8 byte local LU name, with no network qualifier. The SOURCELU field may be from 1-17 characters. In the assembler form, the macro determines the length of the field as follows:
1. If the field is specified by register notation, it will be assumed to be 17 characters (padded with blanks) and a full 17 characters will be copied.
2. If the field is specified using an RS form name, then the length will be determined using the L’ assembler function. When the length is less than 17 characters, the macro will pad with blanks. When the length is greater than or equal to 17 characters, the macro copies the first 17 bytes.

In the PL/AS form, the rules for the PL/AS compiler determines when to pad with blanks, for example, less than 17 characters implies padding, 17 or more implies a 17 character copy.

This is intended to be the same value as used in IWMCLSFY, and may be distinct from the LU name contained within the LU 6.2 token. For environments where the LU name may be available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_SOURCELU when MODE(RESET) is specified. Providing an area of all blanks when MODE(RETAIN) is specified will cause that to be used. The default is NO_SOURCELU which indicates that no source LU name was passed.

If MODE(RETAIN) is specified, NO_SOURCELU preserves the existing source LU name, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

"TCB=tcb"
"TCB=NO_TCB"

When DISPTYPE=TCB and MODE=RESET are specified, an optional input parameter, which defines the TCB within the current home address space which will serve the work request. Note that this name is not the pointer to the TCB, but the name of the data area containing the TCB. A typical invocation might replace xTCB with TCB.

Generally, the input TCB specified should be the TCB under which the work request (for example, a transaction program) runs and under which the delay information is recorded (in spite of the fact that task switches may occur). The default is NO_TCB which indicates that no TCB is currently associated with the monitoring environment for this work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.
will serve the work request. Note that this name is not the pointer to the TCB, but the name of the data area containing the TCB. A typical invocation might replace xTCB with TCB.

Ordinarily the input TCB specified should be the TCB under which the work request (e.g. transaction program) runs and under which the delay information is recorded (in spite of the fact that task switches may occur). The default is NO_TCB which indicates that no TCB is currently associated with the monitoring environment for this work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,TRXCLASS=trxclass,TRXCLASS=NO_TRXCLASS
An optional input parameter, which contains a class name within a subsystem. For environments where the transaction class is available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_TRXCLASS when MODE(RESET) is specified. Providing an area of all blanks when MODE(RETAIN) is specified will cause that to be used. The default is NO_TRXCLASS. indicates that no class name was passed.

If MODE(RETAIN) is specified, NO_TRXCLASS will preserve the existing transaction class, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,TRXNAME=trxname,TRXNAME=NO_TRXNAME
An optional input parameter, which contains the transaction name. For environments where the transaction name is available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_TRXNAME when MODE(RESET) is specified. Providing an area of all blanks when MODE(RETAIN) is specified will cause that to be used. The default is NO_TRXNAME. indicates that no transaction name was passed.

If MODE(RETAIN) is specified, NO_TRXNAME will preserve the existing transaction name, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,TTRACETOKEN=tracetoken,TTRACETOKEN=NO_TTRACETOKEN
An optional input parameter, which contains the transaction trace token. The default is NO_TTRACETOKEN which indicates that no transaction trace token was passed.

If MODE(RETAIN) is specified, NO_TTRACETOKEN preserves the existing transaction trace token, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,USERID=userid,USERID=NO_USERID
An optional input parameter, which contains the local userid associated with the work request. For environments where the user id is available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_USERID when MODE(RESET) is specified. Providing an
area of all blanks when MODE(RETAIN) is specified will cause that to be used. The default is NO_USERID. indicates that no userid was passed. If MODE(RETAIN) is specified, NO_USERID preserves the existing user id, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWM4MINI macro returns control to your program:

• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 82. Return and Reason Codes for the IWM4MINI Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4 xxxx0402</td>
<td>—</td>
<td>IwmRsnCodeNoMonEnv</td>
<td>Monitoring token indicates that no monitoring environment exists.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters</td>
</tr>
<tr>
<td>8 xxxx081E</td>
<td>—</td>
<td>IwmRsnCodeBadLU62TknLen</td>
<td>The length byte of the LU62 token has an invalid value. Only values 1-36 (decimal) are valid.</td>
</tr>
<tr>
<td>8 xxxx0820</td>
<td>—</td>
<td>IwmRsnCodeBadMonEnv</td>
<td>Monitoring environment does not pass short form verification.</td>
</tr>
<tr>
<td>8 xxxx0894</td>
<td>—</td>
<td>IwmRsnCodeInvalidEWLMCorr</td>
<td>Passed correlator information (EWLM_PACORR or EWLM_PACTKN) does not pass validity checking, that means: the architected ARM correlator length field in the first two bytes of the correlator (token) is either less than 4 (‘0004’x) or greater than 512 (‘0200’x).</td>
</tr>
</tbody>
</table>

Action: Check the specification of the correlator information.
Table 82. Return and Reason Codes for the IWM4MINI Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx0895 | Equate Symbol: IwmRsnCodeEWLMServNotEnabled | **Meaning:** Service is not enabled because the Monitoring Environment was not created with EWLM=YES (either on IWM4CON or IWM4MCRE).
Action: Specify the parameter EWLM_PACORR or EWLM_PACTKN only when the Monitoring Environment was created with EWLM=YES (either on IWM4CON or IWM4MCRE). |
| C | — | IwmRetCodeEnvError: Environmental error | |
| C | xxxx0C07 | Equate Symbol: IwmRsnCodeNoArrTime: | **Meaning:** No arrival time was supplied to the service and STCK gave a non-zero condition code. |
| C | xxxx0C08 | Equate Symbol: IwmRsnCodeNoExTime: | **Meaning:** No execution start time was supplied to the service and STCK gave a non-zero condition code. |

Example

```plaintext
IWM4MINI MONTKN=(R9),ARRIVALTIMEP=YES,  
ARRIVALTIME=(R3),EXSTARTTMEP=YES,  
EXSTARTTIME=(R4),DISPTYPE=TCB,TCB=(R7),  
SCOPE=SINGLE,TRXNAME=WLTRXNAME,SOURCELU=SOURCELU,  
CONTINUEP=YES,LU62TKN_FMT=OTHER,LU62TKN_LEN=LU62TKNLEN,  
LU62TKN=LU62TKN1,MODE=RESET,FROM=NONE,  
REPORTONLY=NO,RETCODE=RCODE,RSNCODE=RSN
```
IWM4MINI Macro
Chapter 79. IWM4MREG – Register a Resource For Monitoring

The IWM4MREG service registers a resource for delay monitoring. The service allows the caller to identify a resource which may be involved in delays to work requests. The caller's home address space is assumed to be the owner of the resource to be monitored. The system may decide to increase or decrease the size of the resource to balance the associated delays.

The resource to be monitored may require the caller to provide one or more exits to interact with the system. These exits are called in the same system key and non-cross memory environment as the program which registers the resource. The exit always receives control in AMODE31, regardless of the mode in which IWM4MREG was invoked.

The system implicitly deregisters a resource due to repetitive errors in calling exits associated with the resource. In this case, the invocation to deregister finds that the associated resource token is invalid and returns with a warning return code.

The system also cleans up its resources associated with the registration when the address space which owns the resource goes through address space termination. Therefore, no deregistration is required or honored for this case.

Environment

The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7. The caller's PSW key must be in the range 0-7.

Dispatchable unit mode: Task

Cross-memory mode: PASN=HASN=SASN

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high-order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
4. All character data input is assumed to be left justified and padded with blanks on the right, as needed, to fill in the specified number of bytes.
IWM4MREG Macro

Restrictions

NO FRRs may be established.

Input Register Information

Before issuing the IWM4MREG macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

\[
\text{IWM4MREG resource name=resource name, resource type=BUFFER_POOL, resource tkn=resource tkn, retcode=retcode, rsnocode=rsncode, plistver=IMPLIED_VERSION, plistver=MAX, plistver=0}
\]
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4MREG macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.
IWM4MREG Macro

,COMPLETE
 Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,OWNER_TKN=owner_tkn
 When RESOURCE_TYPE=BUFFER_POOL is specified, a required input parameter, which contains any data associated with the resource that may be useful later when the resource adjustment exit or the resource data collection exit is called. The format is undefined to MVS.

 To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
 An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:
 • IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
 • MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.
 • 0, if you use the currently available parameters.

 To code: Specify one of the following:
 • IMPLIED_VERSION
 • MAX
 • A decimal value of 0

,RES_ADJ_EXIT@=res_adj_exit@
 When RESOURCE_TYPE=BUFFER_POOL is specified, a required input parameter that contains the address of the resource adjustment exit to be invoked when the system wishes to rebalance resource usage. This exit is called with the same non cross-memory environment and PSW key as when IWM4MREG is invoked.

 To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

,RES_ADJ_SIZE=resource adj size
 When RESOURCE_TYPE=BUFFER_POOL is specified, a required input parameter, which contains the minimum size (in 4K pages) by which the specified resource can be adjusted. For a bufferpool, this corresponds to a product external or the size of a cell.

 To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.
When RESOURCE_TYPE=BUFFER_POOL is specified, a required input parameter that contains the address of the resource data collection exit to be invoked when the system checks how physical resources relate to effectiveness of the given resource. This exit is called with the same non cross-memory environment and PSW key as when IWM4MREG is invoked.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

When RESOURCE_TYPE=BUFFER_POOL is specified, a required input parameter, which contains the maximum size (in 4K pages) associated with the specified resource.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

When RESOURCE_TYPE=BUFFER_POOL is specified, a required input parameter, which contains the minimum size (in 4K pages) associated with the specified resource.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

A required input parameter, which contains the resource name associated with the resource to be registered. The value should be padded on the right with blanks for any unused characters.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

A required input parameter, which contains the associated WLM resource token which is used, for example, by the change state service (IWMMCHST) and the deregister a resource service (IWM4MDRG).

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

A required parameter, which indicates the type of resource being registered.

indicates that a bufferpool is being registered.

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes

None.
Return and Reason Codes

When the IWM4MREG macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8 xxxx0801</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeSRBMode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is in SRB mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function in SRB mode.</td>
</tr>
<tr>
<td>8 xxxx0803</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8 xxxx0804</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is locked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8 xxxx0808</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeBadPl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Error accessing parameter list.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay.</td>
</tr>
<tr>
<td>8 xxxx0810</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeEutFrr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller has EUT FRR established.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function with an EUT FRR.</td>
</tr>
<tr>
<td>8 xxxx0823</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeDatoff</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller invoked service while DATOFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8 xxxx0824</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller invoked service but was in 24-bit addressing mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Request this function only when you are in 31-bit addressing mode.</td>
</tr>
</tbody>
</table>
Table 83. Return and Reason Codes for the IWM4MREG Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx0825 | Equate Symbol: IwmRsnCodeAscModeNotPrimary | **Meaning**: Caller invoked service but was not DAT on Primary ASC mode.
Action: Avoid requesting this function in this environment. |
| 8 | xxxx0828 | Equate Symbol: IwmRsnCodeBadVersion | **Meaning**: Version number or version length field in parameter list is not valid.
Action: Check for possible overlay of the parameter list. |
| 8 | xxxx0841 | Equate Symbol: IwmRsnCodeXmemMode | **Meaning**: Caller invoked service but was in cross-memory mode.
Action: Avoid requesting this function in cross-memory mode. |
| 8 | xxxx0846 | Equate Symbol: IwmRsnCodeNoUserKeyReg | **Meaning**: Caller invoked service but was in user key.
Action: Request this function in system key (0-7). |
| 8 | xxxx08A1 | Equate Symbol: IwmRsnCodeBadBPMinMaxSize | **Meaning**: Maximum resource size is lower than the minimum size.
Action: Specify a maximum size value at least as high as the minimum size value. |
| C | xxxx0C01 | Equate Symbol: IwmRetCodeEnvError: | **Meaning**: Environmental error.
Action: Storage is not available for the request. |
| 10 | — | Equate Symbol: IwmRetCodeCompError | **Meaning**: Component error.
Action: Contact your system programmer. |

Example

To register a resource for delay monitoring, specify the following:

```
IWM4MREG RESOURCE_NAME=RSCNAME, RESOURCE_TYPE=BUFFER_POOL,   X
    RES_ADJ_SIZE=RESADJSIZE,     X
    RES_MIN_SIZE=RESMINSIZE,     X
    RES_MAX_SIZE=RESMAXSIZE,     X
    RES_ADJ_EXIT=ADJEXIT,        X
    RES_DATA_EXIT=DATAEXIT,      X
    OWNER_TKN=OWNERTKN,         X
    RESOURCE_TKN=RSCTOKEN, RETCODE=RC, RSNCODE=RSN
```

* Storage areas
 * RSCNAME DS CL16 Contains the resource name
 * RESADJSIZE DS FL4 contains the minimum size by which the specified resource can be adjusted
IWM4MREG Macro

RESMIN SIZE DS FL4 contains the minimum size
* associated with the specified resource
* RESMAX SIZE DS FL4 contains the maximum size
* associated with the specified resource
* ADJEXIT@ DS AL4 contains the address of the
* Resource Adjustment Exit to be invoked when the system wishes
* to rebalance resource usage
* DATAEXIT@ DS AL4 contains the address of the
* Resource Data Collection Exit to be invoked when the system
* wishes to understand how physical resources relate to
effectiveness of the given resource
* O W N E R T K N DS CL8 Contains data maintained by the user
* RSCTOKEN DS CL8 WLM resource token
RC DS F Return code
RSN DS F Reason code
Chapter 80. IWM4QDE – Deleting a Request from the Queue for An Execution Address Space

This service deletes a work request that was previously inserted using the IWM4SSL service, if it has not been selected using the IWM4SSL service.

Information
Note that this service was previously called IWMQDEL for 31-bit address space only (see "IWMQDEL – Deleting a Request from the Queue for An Execution Address Space" on page 896).

Environment

The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space which connected to WLM (i.e. the address space that was home when IWM4CON was issued for Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue).

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

None.
Input Register Information

Before issuing the IWM4QDE macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

Parameters

The parameters are explained as follows:
name
An optional symbol, starting in column 1, that is the name on the IWM4QDE macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

CONNTKN=conntkn
A required input parameter, which contains the connect token associated with the use of WLM Work Queuing services as returned by IWM4CON (specifying Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue).

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

, MF=S
, MF=(L,list addr)
, MF=(L,list addr,attr)
, MF=(L,list addr,0D)
, MF=(E,list addr)
, MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:
IWM4QDE Macro

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, if you use the currently available parameters.

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0

,.RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,.RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,.WLMWUTKN=wlmwutkn

A required input parameter, specifying the work unit to be deleted. This token must be a token that was returned on a prior IWM4QIN request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWM4QDE macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Table 84. Return and Reason Codes for the IWM4QDE Macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Code</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Return Code</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 84. Return and Reason Codes for the IWM4QDE Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td>Meaning: Version number in parameter list is not valid.</td>
<td>Action: Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx083F</td>
<td>Equate Symbol: IwmRsnCodePrimaryNotOwnConn</td>
<td>Meaning: Primary address space does not own the passed connect token.</td>
<td>Action: Avoid requesting this function while primary address space does not own the connect token.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>Equate Symbol: IwmRsnCodeServiceNotEnabled</td>
<td>Meaning: Caller's space connection is not enabled for this service.</td>
<td>Action: Make sure that Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue is specified on the IWM4CON request to enable this service.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0848</td>
<td>Equate Symbol: IwmRsnCodeBadWorkUnitToken</td>
<td>Meaning: The work unit token is not valid.</td>
<td>Action: Check the specification of the WLMWUTKN parameter.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
<td>Meaning: Component error.</td>
<td>Action: Contact your system programmer.</td>
</tr>
</tbody>
</table>

Example

To delete a work request from the WLM queue manager queues, specify:

```plaintext
IWM4QDE CONNTKN=CONNTOKEN, X
  WLMWUTKN=WLMWUTKN,RETCODE=RC,RSNCODE=RSN
```

* * * Storage areas

* CONNTOKEN DS FL4 Contains the connect token associated with the use of WLM
 Queuing services as returned by IWM4CON
 (specifying QUEUE_MANAGER=Yes or SERVER_MANAGER=Yes
 or SERVER_TYPE=QUEUE

* WLMWUTKN DS CL16 Work unit token

* RC DS F Return code

* RSN DS F Reason code
Chapter 81. IWM4QIN – Inserting a Request Onto the Queue for an Execution Address Space

The IWM4QIN service inserts a work request onto workload management queues so its execution in a server address space can be managed by WLM.

Before using this service, the caller must connect to WLM using the IWM4CON service, specifying Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue.

The IWM4QIN service requires the use of enclaves to manage the performance goals and reporting of work. It requires the use of application environments to associate types of work requests with servers capable of processing them.

<table>
<thead>
<tr>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note that this service was previously called IWMQINS for 31-bit address space only (see “IWMQINS – Inserting a Request Onto the Queue for An Execution Address space” on page 902).</td>
</tr>
</tbody>
</table>

Environment

The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space which connected to WLM (i.e. the address space that was home when IWM4CON was issued for Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue).

AMODE: 31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
IWM4QIN Macro

5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.

Restrictions

None.

Input Register Information

Before issuing the IWM4QIN macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
IWM4QIN CONNTKN=conntkn, ETOKEN=etoken, USERDATA=userdata
```

```
APPLENV=applenv, DYNAMIC=NO, DEPENDENT=NO
```

```
SECUSER=NO, SECUSER=YES, USERID=userid
```

```
WLMWUTKN=wlmwutkn
```
Parameters

The parameters are explained as follows:

name

An optional symbol, starting in column 1, that is the name on the IWM4QIN macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

APPLENV=applenv

A required input parameter, which contains an application environment name. An application environment is defined in the workload manager service definition and instructs WLM how to create a server address space.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

CONNTKN=conntkn

A required input parameter, which contains the connect token returned by the IWM4CON macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

DEPENDENT=NO

An optional parameter indicating whether the insert is for a dependent or a standard request. The default is DEPENDENT=NO.

DEPENDENT=NO

The request is for an independent (standard) work request (default).

DEPENDENT=YES

The insert is for a dependent work request which is required by already active server tasks to complete their processing. The request is prioritized above requests which are not marked as dependent.

DYNAMIC=NO

DYNAMIC=YES

An optional parameter indicating whether the insert is for a dynamic or static application environment. The default is DYNAMIC=NO.
The server manager connects to a static application environment according to the WLM service definition. This is the default.

The server manager connects to a dynamic application environment according to a prior definition via IWM4AEDF service.

ETOKEN=etoken
A required input parameter, which contains the enclave token associated with the work request. An enclave token is obtained using either the IWM4ECRE or IWMESQRY macro.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

MF=S
MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)
MF=(E,list addr)
MF=(E,list addr,COMPLETE)
MF=(E,list addr,NOCHECK)
MF=(M,list addr)
MF=(M,list addr,COMPLETE)
MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

Use MF=M together with the list and execute forms of the macro for service routines that need to provide different options according to user-provided input. Use the list form to define a storage area; use the modify form to set the appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of IWM4QIN in the following order:

- Use IWM4QIN ...MF=(M,list-addr,COMPLETE) specifying appropriate parameters, including all required ones.
- Use IWM4QIN ...MF=(M,list-addr,NOCHECK), specifying the parameters that you want to change.
- Use IWM4QIN ...MF=(E,list-addr,NOCHECK), to execute the macro.
IWM4QIN Macro

,list addr
 The name of a storage area to contain the parameters. For MF=S and
 MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
 An optional 1- to 60-character input string that you use to force boundary
 alignment of the parameter list. Use a value of 0F to force the parameter
 list to a word boundary, or 0D to force the parameter list to a doubleword
 boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
 Specifies that the system is to check for required parameters and supply
 defaults for omitted optional parameters.

,.PLISTVER=IMPLIED_VERSION
,.PLISTVER=MAX
,.PLISTVER=0
 An optional input parameter that specifies the version of the macro. PLISTVER
 determines which parameter list the system generates. PLISTVER is an
 optional input parameter on all forms of the macro, including the list form. When
 using PLISTVER, specify it on all macro forms used for a request and with the
 same value on all of the macro forms. The values are:
 • IMPLIED_VERSION, which is the lowest version that allows all parameters
 specified on the request to be processed. If you omit the PLISTVER
 parameter, IMPLIED_VERSION is the default.
 • MAX, if you want the parameter list to be the largest size currently possible.
 This size might grow from release to release and affect the amount of
 storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify
 PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
 the list-form parameter list is always long enough to hold all the parameters
 you might specify on the execute form, when both are assembled with the
 same level of the system. In this way, MAX ensures that the parameter list
 does not overwrite nearby storage.
 • 0, which supports all parameters except those specifically referenced in
 higher versions.

 To code: Specify one of the following:
 • IMPLIED_VERSION
 • MAX
 • A decimal value of 0

,.REGION_TOKEN=region_token
,.REGION_TOKEN=0
 An optional input parameter, which contains a region token returned by the
 IWM4CON and IWM4SSL macro. Use REGION_TOKEN to queue a work
 request to a specific server region. Such a work request is considered to be
 part of a set of work requests which all need access to the same status
 information which is kept in the virtual storage of the server region.

 The following qualifications apply when specifying a region token:
 • The application is responsible for passing the region token to the queueing
 manager so that it can insert the work request to the region.
 • WLM has to know that temporal affinities for work requests to a specific
 server region exist in order not to stop the server region. The application must
 use the IWM4TAF macro to tell WLM when a temporal affinity starts and
 when it ends.
IWM4QIN Macro

Coding REGION_TOKEN=0 is equivalent to omitting the REGION_TOKEN keyword. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SECUSER=NO
,SECUSER=YES
An optional parameter, which specifies whether the security environment of the user should be associated with the request at run time. The default is SECUSER=NO.

,SECUSER=NO
No security environment to be established.

,SECUSER=YES
Use the specified userid to establish a security environment.

,SERVER_TOKEN=server_token
,SERVER_TOKEN=0
An optional input parameter, which contains a server token returned by the IWM4SSL macro. Use SERVER_TOKEN to queue a secondary work request to the same server task that selected a prior work request. A secondary work request is considered to be an extension of the prior work request.

The following qualifications apply when specifying a server token:

- The server task is responsible for passing the server token to the queueing manager so that it can insert a secondary work request.
- Coordination is required between the queueing manager and the server task so that the server task knows when to expect secondary work requests. The server task uses the IWM4SSM macro to select secondary work requests. It must select all secondary work requests before it can resume normal selection using IWM4SSL.
- The same application environment and enclave token passed for the original work request must be passed for each secondary work request.
- A secondary work request cannot be deleted using the IWM4QDE macro. IWM4QIN does not return a work unit token (WLMWUTKN).
- The SECUSER keyword is ignored.

Coding SERVER_TOKEN=0 is equivalent to omitting the SERVER_TOKEN keyword. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,USERDATA=userdata
A required input parameter, which contains data to pass to the server address space. This user data is returned to the caller of the IWM4SSL or IWM4SSM macro. The format is undefined to MVS.
IWM4QIN Macro

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

,USERID=userid
When SECUSER=YES is specified, a required input parameter, which contains the requester's userid.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,WLMWUTKN=wlmwutkn
An optional output parameter, which will receive the work unit token. This token can be passed to the IWM4QDE service to delete the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWM4QIN macro returns control to your program:

- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 85. Return and Reason Codes for the IWM4QIN Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeWarning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx042E</td>
<td>Equate Symbol: IwmRsnCodeServerNotFound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The server token does not identify an existing server task. The server task may have terminated since the token was obtained.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: If the server task has not terminated, check that the correct token is specified.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx043A</td>
<td>Equate Symbol: IwmRsnCodeRegionNotFound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The region token does not identify a valid server region.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Please specify the correct region token.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvcError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
</tbody>
</table>
Table 85. Return and Reason Codes for the IWM4QIN Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
<td>Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>Equate Symbol: IwmRsnCodeBadPl</td>
<td>Error accessing parameter list.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0821</td>
<td>Equate Symbol: IwmRsnCodeBadConn</td>
<td>Input connect token does not pass validity checking.</td>
<td>Make sure to use the connect token returned by the IWM4CON service requesting Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>Equate Symbol: IwmRsnCodeDatoff</td>
<td>Caller invoked service while DATOFF</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24 bit addressing mode.</td>
<td>Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>Equate Symbol: IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not in primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>Equate Symbol: IwmRsnCodeRsvdNot0</td>
<td>Reserved field in parameter list was non-zero.</td>
<td>Check for use of keywords that are not supported by the MVS release on which the program is running.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx083A</td>
<td>Equate Symbol: IwmRsnCodeBadEnclave</td>
<td>Enclave token in parameter list is not valid.</td>
<td>Check the specification of the ETOKEN parameter.</td>
</tr>
</tbody>
</table>
IWM4QIN Macro

Table 85. Return and Reason Codes for the IWM4QIN Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx083F | Equate Symbol: IwmRsnCodePrimaryNotOwnConn | **Meaning:** Primary address space does not own the passed connect token.
Action: Ensure that the primary address space has previously connected to WLM using the IWM4CON macro. Ensure that the connect token returned by the IWM4CON macro is passed to the IWM4QIN macro. |
| 8 | xxxx0840 | Equate Symbol: IwmRsnCodeServiceNotEnabled | **Meaning:** Caller’s space connection is not enabled for this service
Action: Make sure that Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue is specified on the IWM4CON request to enable this service. |
| 8 | xxxx0842 | Equate Symbol: IwmRsnCodeNoWLMConnect | **Meaning:** Caller’s space disconnected from WLM during processing of the insert request.
Action: None. |
| 8 | xxxx0845 | Equate Symbol: IwmRsnCodeWrongEnclave | **Meaning:** The caller tried to queue a secondary work request to a specific server task using the SERVER_TOKEN parameter. The caller’s enclave token does not match the enclave token of the last work request selected by the server task.
Action: Check that the correct enclave token was specified. Check that the server task is invoking the IWM4SSL and IWM4SSM macros in the correct sequence. |
| 8 | xxxx089C | Equate Symbol: IwmRsnCodeDupAENameInsert | **Meaning:** The caller tried to insert to an application environment with a duplicate name within the same node concurrently.
Action: Make sure not to insert requests to a dynamic and static application environment within the same node concurrently. |
| C | — | Equate Symbol: IwmRetCodeEnvError | **Meaning:** Environmental error. |
| C | xxxx0C01 | Equate Symbol: IwmRsnCodeNoStg | **Meaning:** Storage is not available for the request.
Action: Contact your system programmer. There is a common storage shortage. |
Table 85. Return and Reason Codes for the IWM4QIN Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
</table>
| C xxxx0C16 | xxxx0C16 | IwmRsnCodeServerUnavail| A server cannot be started to process the work request. This is probably caused by one of the following:
1. An error in the JCL procedure used to start the server address space.
2. Repeated, unexpected terminations of the server address space.
In either of these cases, workload management stops the application environment. A DISPLAY WLM command shows this state as INTERNALLY STOPPED. | Look at the system log to determine what caused the error:
1. If it is a JCL error, correct the error in the procedure.
2. If it is repeated terminations of the server address space, correct the application error causing the termination.
In either case, the server environment can then be resumed using the VARY operator command: V WLM,APLLENV=nnn,RESUME where nnn is the applicable application environment name.
Note: A re-IPL of some or all of the systems in the sysplex does not reset the stopped state of the application environment. The VARY command is the only way to resume the environment. |
| C xxxx0C1A | xxxx0C1A | IwmRsnCodeApplNotDefined| The application environment name is not defined in the active WLM policy. | Check whether the correct application environment name is being used. If so, a service administrator must define the application environment in the WLM service definition. |
| C xxxx0C1B | xxxx0C1B | IwmRsnCodeApplNotSST | The application environment name is defined for use by a different subsystem type in the active WLM policy. | Check whether the correct application environment name is being used. If so, a service administrator must change the application environment in the WLM service definition to specify the correct subsystem type. |
| C xxxx0C1D | xxxx0C1D | IwmRsnCodeQMgrNotActive| The required Queue Manager is not active. | The Queue Manager with the same subsystem type and name as the server must be started and connected to workload management before the request can be honored. |
| C xxxx0C22 | xxxx0C22 | IwmRsnCodeApplEnvQuiesced| For server applications connecting to WLM with subsystem type IWEB only: The application environment has been quiesced. The work request is not inserted to the WLM work queue. | Resume the application environment. |
Table 85. Return and Reason Codes for the IWM4QIN Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>C xxxx0C40</td>
<td></td>
<td><code>IwmRsnCodeNoSafCheckPossible</code></td>
<td>MLS is active but a security check could not be performed probably for one of the following reasons:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• No security decision could be made. The RACF router was not loaded; the request, resource, subsystem combination could not be found in the RACF ROUTER table,...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• A resource or class name is not defined to RACF or the class has not been RAClisted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• The class was RAClisted, but the data space cannot be accessed due to an ALESERV failure.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• The class was RAClisted, but the data space has been deleted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• No security decision could be made. The RACF router was not loaded; the request, resource, subsystem combination could not be found in the RACF ROUTER table.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: Contact your RACF Security Administrator. Check if RACF is properly installed, configured and tuned. Correct the eventual problems.</td>
<td></td>
</tr>
<tr>
<td>C xxxx0C41</td>
<td></td>
<td><code>IwmRsnCodeSafCheckFailed</code></td>
<td>MLS is active. Queue Manager and Server Manager are not authorized to communicate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: Normally none. If QM and SM really must communicate, conta your RACF Security Administrator. Set the appropriate Security Labels.</td>
<td></td>
</tr>
<tr>
<td>C xxxx0C42</td>
<td></td>
<td><code>IwmRsnCodeAletError</code></td>
<td>Error while accessing access list with ALESERV probably because of one of the following</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1. The current access list cannot be expanded. There are no free access list entries and the maximum size has been reached.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. ALESERV could not obtain storage for an expanded access list.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: Delete unused entries and reissue the request in first case. Free some storage and retry the request in second case. Contact your System Programmer if none works.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td><code>IwmRetCodeCompError</code></td>
<td>Component error.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: Contact your system programmer.</td>
<td></td>
</tr>
</tbody>
</table>

Example

To insert a work request onto the WLM queue manager queues, specify the following:

```
IWM4QIN CONNTKN=CONNTOKEN,ETOKEN=ENCTOKEN, X
USERTDATA=USERDATA,APPLENV=APPLENV,SECUSER=NO, X
WLMWKTKN=WLMWKTKN,RETCODE=RC,RSNCODE=RSN
```
IWM4QIN Macro

* Storage areas
 CONNTOKEN DS FL4 Contains the connect token
 associated with the use of WLM
 Queuing services as returned by
 IWM4CON
 (specifying QUEUE_MANAGER=YES
 or SERVER_MANAGER=YES
 SERVER_TYPE=QUEUE
 ENCTOKEN DS CL8 Contains the Enclave token
 associated with the work
 request as returned by IWM4ECRE
 USERDATA DS CL16 Contains data maintained by the
 user
 APPLENV DS CL32 Contains the application
 environment name
 WLMWUTKN DS CL16 Work unit token
 RC DS F Return code
 RSN DS F Reason code
Chapter 82. IWM4SLI – Application Environment Limit Service

The IWM4SLI service should be used to tell WLM the total number of server instances which are supported by the application. WLM will ensure that no more server instances will be started in the system.

In addition the caller can define a minimum number of servers which should be made available by WLM regardless of whether work is available to execute or not. The user can decide if an additional server will be started before previously started servers have connected to WLM, or if WLM needs to wait until all previously started servers have connected before an additional server will be started. If the user defines multiple service classes to give the work of the application different service goals, the caller can define that the minimum number of servers is spread across these service classes to ensure that servers are available for all work executed by the application.

The caller must have previously connected to WLM using the IWM4CON service specifying SERVER_MANAGER=YES and SERVER_TYPE=QUEUE. It is recommended to use the IWM4SLI service directly after IWM4CON. If any server uses this service to define limits, the limits apply for all servers of the application environment regardless of whether other servers use the service or not.

If a server defines new limits during execution, WLM attempts to meet the new limit definitions as soon as possible. If the maximum limit for servers is reduced during execution it is not predictable when WLM is able to meet the new maximum definition. This depends highly on the execution time of the running work requests. Therefore changing the limits during execution should be used very carefully and primarily during times of low application utilization.

Information
Note that this service was previously called IWMSLIM for 31-bit address space only (see "IWMSLIM – Application Environment Limit Service" on page 914).

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Minimum authorization:</th>
<th>Problem state. Any PSW key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatchable unit mode:</td>
<td>Task</td>
</tr>
<tr>
<td>Cross memory mode:</td>
<td>PASN=HASN=SASN</td>
</tr>
<tr>
<td>AMODE:</td>
<td>31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.</td>
</tr>
<tr>
<td>ASC mode:</td>
<td>Primary</td>
</tr>
<tr>
<td>Interrupt status:</td>
<td>Enabled for I/O and external interrupts</td>
</tr>
<tr>
<td>Locks:</td>
<td>No locks may be held.</td>
</tr>
<tr>
<td>Control parameters:</td>
<td>Control parameters must be in the primary address space.</td>
</tr>
</tbody>
</table>
IWM4SLI Macro

Programming Requirements
1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. This macro may not be used during task/address space termination.
2. Only a single invocation is allowed to be active for a given address space at any given time.
3. Before using this macro the caller must connect to WLM via IWM4CON Server_Manager=YES, Server_Type=Queue.
4. The macro must be used directly after using IWM4CON.

Input Register Information
Before issuing the IWM4SLI macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications
None.
Parameters

The parameters are explained as follows:

name

An optional symbol, starting in column 1, that is the name on the IWM4SLI macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

AE_SERVERMAX=ae_servermax

An optional input parameter, which indicates the architectural limit for the total number of server instances which can run concurrently across the application environment for a given subsystem type and subsystem name.

This parameter represents a physical limit, such as the maximum number of available connections to a back-end subsystem. WLM will not start more than this number of server instances, even if goals cannot be met because of the limit. This value should be an integral multiple of the PARALLEL_EU value defined on the IWM4CON service. If AE_SERVERMAX is not an even multiple of PARALLEL_EU, WLM will round this value down to the next integral multiple.

The maximum limit and the number of service classes to execute work requests should be defined carefully. If the number of service classes exceeds the quotient of AE_SERVERMAX divided by PARALLEL_EU WLM cannot start enough server address spaces to execute the work requests for all service classes. The default is 0, indicating that no maximum limit has been specified.

To code: Specify the RS-type address of a halfword field.

AE_SERVERMIN=ae_servermin

An optional input parameter, which indicates the minimum number of servers which should be up and running at all times.

This parameter can be used to tell WLM that a certain amount of server tasks should always be kept available to select work. This value should be an integral...
IWM4SLI Macro

multiple of the PARALLEL EU value defined on IWM4CON service. If AE_SERVERMIN is not an even multiple of PARALLEL EU, WLM will round this value down to the next integral multiple. The default is 0, which indicates that no limit has been specified.

To code: Specify the RS-type address of a halfword field.

,AE_SPREADMIN=NO

,AE_SPREADMIN=YES

When AE_SERVERMIN=ae_servermin is specified, an optional parameter, which indicates whether WLM will distribute the minimum number of servers as evenly as possible across the service classes being used to process the work requests. The default is AE_SPREADMIN=NO.

,AE_SPREADMIN=NO

The server tasks specified in AE_SERVERMIN will be distributed to service classes as needed in order to meet goals.

,AE_SPREADMIN=YES

The server tasks specified in AE_SERVERMIN will be distributed as evenly as possible to all service classes being used to execute work requests.

,MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,**PLISTVER=0**
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, if you use the currently available parameters.

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0

,**RETCODE=retcode**
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,**RSNCODE=rsncode**
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,**START_MINIMUM=SERIAL**
,**START_MINIMUM=PARALLEL**
When AE_SERVERMIN=ae_servermin is specified, an optional parameter, which indicates whether WLM will start the minimum number of servers one by one or in parallel. The default is **START_MINIMUM=SERIAL**.

- **START_MINIMUM=SERIAL**
The server tasks specified in AE_SERVERMIN will be started one by one. This means the next server will only be started if the previous server has connected to WLM.

- **START_MINIMUM=PARALLEL**
The server tasks specified in AE_SERVERMIN will be started in parallel. This means WLM will start additional servers even when the previous servers have not connected to WLM.

ABEND Codes

None.
Return and Reason Codes

When the IWM4SLI macro returns control to your program:
- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 86. Return and Reason Codes for the IWM4SLI Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>Equate Symbol: IwmRsnCodeSrbMode</td>
<td>Meaning: Caller is in SRB mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
<td>Meaning: Caller is disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td>Meaning: Caller is locked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while locked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td>Meaning: Caller invoked service but was in 24 bit addressing mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>Equate Symbol: IwmRsnCodeAscModeNotPrimary</td>
<td>Meaning: Caller invoked service but was not in primary ASC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>Equate Symbol: IwmRsnCodeRsvdNot0</td>
<td>Meaning: Reserved field in parameter list was not zero.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: Check for use of keywords that are not supported by the MVS release on which the program is running.</td>
</tr>
</tbody>
</table>
IWM4SLI Macro

Table 86. Return and Reason Codes for the IWM4SLI Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | 8xxxx0828 | Equate Symbol: IwmRsnCodeBadVersion
Meaning: Version number in parameter list is not valid.
Action: Check for possible storage overlay of the parameter list. |
| 8 | 8xxxx0840 | Equate Symbol: IwmRsnCodeServiceNotEnabled
Meaning: Caller’s space connection is not enabled for this service
Action: Make sure that SERVER_MANAGER=YES and SERVER_TYPE=QUEUE is specified on the IWM4CON request to enable this service. |
| 8 | 8xxxx0841 | Equate Symbol: IwmRsnCodeXmemMode
Meaning: Caller is in cross-memory mode.
Action: Request this function only when you are not in cross-memory mode. |
| 8 | 8xxxx0842 | Equate Symbol: IwmRsnCodeNoWLMConnect
Meaning: Caller’s space is not connected to WLM.
Action: Invoke the IWM4CON macro before invoking this macro. |
| 8 | 8xxxx087D | Equate Symbol: IWMRNSCODEBADNUMAEDESrvMax
Meaning: The server maximum value is incorrect.
Action: Make sure that the maximum value is greater than the minimum value and that it is greater than the parallel_eu value. |
| 10 | — | Equate Symbol: IwmRetCodeCompError
Meaning: Component error.
Action: Contact your system programmer. |

Example

To define application limits to WLM, specify the following:

```
IWM4CON WORK_MANAGER=YES,  
SERVER_MANAGER=YES,  
PARALLEL_EU=EUNITS,  
SERVER_TYPE=QUEUE,  
CONNTKN=CTKN,  
CONNTKNKEY=PSWKEY,  
RETCODE=RC,  
RSNICODE=RSN

IWM4SLI AE_SERVERMAX=MAXSRVS,  
AE_SERVERMIN=MINSRVS,  
RETCODE=RC,  
RSNICODE=RSN
```

* Storage areas
 * EUNITS DS F Number of Tasks which will be started per address space.
 * MAXSRVS DS H Maximum Number of Servers supported
IWM4SLI Macro

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td></td>
<td>by the application.</td>
</tr>
<tr>
<td>MINSRVS</td>
<td>DS</td>
<td>H</td>
</tr>
<tr>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTKN</td>
<td>DS</td>
<td>FL4</td>
</tr>
<tr>
<td>RC</td>
<td>DS</td>
<td>F</td>
</tr>
<tr>
<td>RSN</td>
<td>DS</td>
<td>F</td>
</tr>
</tbody>
</table>
Chapter 83. IWM4SRSC – Obtain Server-Specific Routing Information

The IWM4SRSC service provides information about how well a server is suitable to receive work from a WLM point-of-view. The IWM4SRSC service allows to check a specific server before routing work to it from WLM. Thus, the information obtained can be used for making balanced routing decisions.

The input to the IWM4SRSC service is the STOKEN of an address space. The output is an indicator, of how well the address space itself, the transactions or enclaves – if it is a registered transaction server, an enclave server or an enclave owner – are performing relative to their WLM goal and to the displaceable capacity for its WLM importance on that system.

The service returns an indicator that can be used for load balancing by comparing it to calls of this service for other servers.

The indicator output is a weight. WLM provides two methods for computing the weight, which can be selected with the optional input parameter METHOD. The default method is PROPORTIONAL, the other one is EQUICPU.

With PROPORTIONAL, the weight is calculated based on six factors: it is a combination of the three processor weights (CPU weight, ZAAP weight and ZIIP weight) and their respective consumed service units repartition. With EQUICPU, WLM computes the weight by trying to simulate a 100% usage of the system capacity, and determining the capacity of a CPU-only system having equivalent resource consumption.

The CPU, ZAAP and ZIIP weights are each computed based on the following four factors:

- The first factor is how well this server, or the transactions or enclaves it is related to, fulfill their goals.
- The second factor is the abnormal termination factor. This depends on the ratio of abnormal terminations to normal terminations as reported by the IWMRPT service. If no terminations were reported by IWMRPT, this factor is neutral (=1).
- The third factor is the health factor of this server. It is dependent on the health indicator which was reported to WLM for this server by the IWM4HLTH service or by IWMSRSRG. If no health indicator was reported, this factor is also neutral.
- The fourth factor is how much other work with lower importance can be displaced, if it receives more work to handle on this system. With the optional IL_WEIGHTING parameter, the caller can set the relative balance between the lower and the higher importance levels.

These four factors are combined to create the output processor WEIGHT as a number.

To make it easier for the caller to determine, how far the weights were influenced by the abnormal terminations and health factors, those values can also be output through the optional parameters ABNORM_COUNT and HEALTH.

The processor weights are returned through the optional CPUWEIGHT, ZAAPWEIGHT and ZIIPWEIGHT parameters. The respective parts of these weights in the WEIGHT are returned through the optional parameters CPUPROPORTION, ZAAPPROPORTION, and ZIIPPROPORTION.
If there are pre-V1R9 systems in the sysplex, the zAAP and zIIP weights and proportions are automatically set to 0, because pre-V1R9 systems do not have such weights and could not be compared to V1R9 systems. For the same reason, if there are pre-V1R11 systems in the sysplex, only METHOD=PROPORTIONAL will be used, even if METHOD=EQUICPU is specified.

The WEIGHT is equal to the sum of these three proportion fields. As WLM computes the values with higher precision, and rounds them before output, the WEIGHT actually returned is probably greater than the sum of the returned proportion fields by one or two units.

A scenario where TCP/IP communicates on each system with WLM to obtain information about the servers which receive work is described in the following.

TCP/IP recognizes the server address spaces when they open a port. It invokes the IWM4SRSC service to WLM with an identification of the address space (STOKEN). WLM then finds out whether that address space is a registered WLM server address space or whether it creates WLM transactions which can execute in other server address spaces. The following possibilities are considered:

- The address space does not create any enclaves and is not a server address space registered to WLM. The FTP daemon is such an address space, for example. In this case WLM uses the service class the address space has been classified to.
- The address space is not a registered server address space but it creates independent enclaves which are processed by other address spaces on that system. In this case WLM has to use the service classes for the enclaves which are owned by this address space.

Note: There can be multiple service classes which are associated with enclaves. In this case the service class with the highest transaction rate is used.
- The address space is a server address space from the point-of-view of WLM. In this case it is either an enclave or a transaction server, for example, CICS or IMS. In this case WLM uses the service classes the enclaves or CICS or IMS transactions are classified to.

Environment

The requirements for the caller are:

Minimum authorization:	Problem state. Any PSW key
Dispatchable unit mode:	Task or SRB
Cross memory mode:	Any PASN, any HASN, any SASN
AMODE:	31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.
ASC mode:	Primary
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No locks may be held. FRRs may be established.
Control parameters:	Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.

4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left-justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.

Restrictions

- This macro may only be used on systems running z/OS V1R7 or higher.
- This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to the PLISTVER parameter description for further information.

Input Register Information

Before issuing the IWM4SRSC macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.
Parameters

The parameters are explained as follows:

\textbf{name}

An optional symbol, starting in column 1, that is the name on the IWM4SRSC macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

\textbf{_ABNORM_COUNT=abnorm_count}

An optional output parameter, which contains the number of abnormal terminations per 1000 total terminations, if available. If no abnormal terminations were reported to WLM, this value is zero. This is independant of
the reason why no report was issued - whether no abnormal terminations occurred or whether the subsystem of the server is not enabled to report them to WLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,COST_ZAAP_ON_CP=\texttt{cost_zaap_on_cp}

,COST_ZAAP_ON_CP=1

An optional input parameter, which is used in conjunction with METHOD=EQUICPU. It describes how much more it costs to execute zAAP-eligible work on a CPU instead of on a zAAP processor.

To use the full system capacity, independently of the cost, specify COST_ZAAP_ON_CP=1. With high values of this cost parameter, WLM considers that a system having used up its whole free zAAP capacity should offload less work to the CPU, and gives this system a smaller output weight.

This cost parameter must be in the range from 1 to 100. If the passed value is outside of this range, WLM will instead use the nearest valid integer (1 or 100) as cost parameter. The default is 1.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a literal decimal value.

,COST_ZIIP_ON_CP=\texttt{cost_ziip_on_cp}

,COST_ZIIP_ON_CP=1

An optional input parameter, which is used in conjunction with METHOD=EQUICPU. It describes how much more it costs to execute zIIP-eligible work on a CPU instead of on a zIIP processor.

To use the whole system capacity, independently of the cost, specify COST_ZIIP_ON_CP=1. With high values of this cost parameter, WLM considers that a system having used up its whole free zIIP capacity should offload less work to the CPU, and gives this system a smaller output weight.

This cost parameter must be in the range from 1 to 100. If the passed value is out of this range, WLM will use the nearest valid integer (1 or 100) as cost parameter. The default is 1.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a literal decimal value.

,CPUPROPORTION=\texttt{cpuproportion}

An optional output parameter, which contains the CPU weight part in the calculation of the weight.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,CPUWEIGHT=\texttt{cpuweight}

An optional output parameter, which contains the weight of how well the server is doing on the CPU.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,HEALTH=\texttt{health}

An optional output parameter, which contains the health indicator of this server. This is a value between 0 and 100, which was reported to WLM either by the IWM4HLTH or the IWMSSRSRG service. If no health indicator was reported, the value is 100.
To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,IL_WEIGHTING=il_weighting

An optional input parameter, which controls how WLM evaluates available capacity at importance levels (ILs) lower than the currently selected one. The value of IL_WEIGHTING should be in the range from 0 to 3. If the passed value is out of this range, WLM will use the nearest valid integer (0 or 3) as IL_WEIGHTING instead.

When this parameter is set to 0 (the default value), all free capacities used by levels less important than the current one are evaluated the same. This means that the free capacity below current level is considered to be totally free, and this is equivalent to what WLM did prior to V1R11.

When this parameter is set to 1, free capacity at the lowest ILs is evaluated higher than the current IL, with a weighting growing proportionally to the square root of the IL difference + 1. For example, with a selected IL of 1, free capacity at IL 5 is weighted about 2.236 times more than free capacity at IL 1.

When this parameter is set to 2, free capacity at the lowest ILs is evaluated higher than the current IL, with a weighting growing proportionally to the IL difference + 1. For example, with a selected IL of 1, free capacity at IL 5 is weighted 5 times more than free capacity at IL 1.

When this parameter is set to 3, free capacity at the lowest ILs is weighted more than the current IL, with a weighting growing proportionally to the square of the IL difference + 1. For example, with a selected IL of 1, free capacity at IL 5 is weighted 25 times more than free capacity at IL 1. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field, or specify a literal decimal value.

,MAXEQUIVUNITS=maxequivunits

An optional output parameter, which contains the maximum equivalent service units across all processing resources used to calculate the mixed weight output.

If METHOD=PROPORTIONAL is specified, MAXEQUIVUNITS is automatically set to 0, since WLM does not compute equivalent CPU service units in this case.

If METHOD=EQUICPU is specified, MAXEQUIVUNITS is always a number in the range from 1 to MAXSRVUNITS. MAXEQUIVUNITS then relates to the mixed weight output only, and MAXSRVUNITS to the CPU, ZAAP and ZIIP weight outputs only.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,MAXSRVUNITS=maxsrvunits

An optional output parameter, which contains the maximum service units across all processing resources used to calculate the weights.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,METHOD=PROPORTIONAL

,METHOD=EQUICPU

An optional parameter, which selects the method for computing the output weights. The default is METHOD=PROPORTIONAL.
Computes the output weights as a proportion of the three processor type weights.

METHOD=EQUICPU
Computes a CPU equivalent of the systems before computing the output weights.

To specify METHOD=EQUICPU, all systems in the sysplex must run z/OS V1R11, or higher. Otherwise WLM automatically switches back to METHOD=PROPORTIONAL.

MF=S
MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)
MF=(E,list addr)
MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

PLISTVER=IMPLIED_VERSION
PLISTVER=MAX
PLISTVER=0
PLISTVER=1
PLISTVER=2
PLISTVER=3
PLISTVER=4
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs. If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.
- **0**, which supports all parameters except those specifically referenced in higher versions.
- **1**, which supports both the following parameters and those from version 0:
 - ABNORM_COUNT
 - HEALTH
- **2**, which supports both the following parameters and those from version 0 and 1:
 - CPUPROPORPTION
 - ZAAPPROPORTION
 - ZIIPROPORTION
 - CPUWEIGHT
 - ZAAPWEIGHT
 - ZIIPWEIGHT
- **3**, which supports both the following parameter and those from version 0, 1 and 2:
 - MAXSRVUNITS
- **4**, which supports both the following parameters and those from version 0, 1, 2 and 3:
 - COST_ZAAP_ON_CP
 - IL_WEIGHTING
 - METHOD
 - COST_ZIIP_ON_CP
 - MAXEQUIVUNITS

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0, 1, 2, 3, or 4

,**RETCODE=retcode**
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,**RSNCODE=rsncode**
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,**STOKEN=stoken**
A required input parameter, which contains the space token of the server.
To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

WEIGHT= *weight*

A required output parameter, which contains the weight of how well the server is performing.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,ZAAPPROPORTION= *zaapproportion*

An optional output parameter, which contains the ZAAP weight part in the calculation of the WEIGHT.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,ZAAPWEIGHT= *zaapweight*

An optional output parameter, which contains the weight of how well the server is doing on the ZAAP.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,ZIIPPROPORTION= *ziipproportion*

An optional output parameter, which contains the ZIIP weight part in the calculation of the WEIGHT.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,ZIIPWEIGHT= *ziipweight*

An optional output parameter, which contains the weight of how well the server is doing on the ZIIP.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

ABEND Codes

None.

Return and Reason Codes

When the IWM4SRSC macro returns control to your program:

- GPR 15 (and *retcode*, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and *rsnccode*, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the *xxxx* value.

Table 87. Return and Reason Codes for the IWM4SRSC Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
<td>None required.</td>
</tr>
</tbody>
</table>
Table 87. Return and Reason Codes for the IWM4SRSC Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 4 | — | **Equate Symbol**: IwmRetCodeWarning
Meaning: Successful completion, unusual conditions noted. |
| 8 | — | **Equate Symbol**: IwmRetCodeInvocError
Meaning: Invalid invocation environment or parameters. |
| 8 | xxxx0803 | **Equate Symbol**: IwmRsnCodeDisabled
Meaning: Caller is disabled.
Action: Avoid requesting this function while disabled. |
| 8 | xxxx0804 | **Equate Symbol**: IwmRsnCodeLocked
Meaning: Caller is locked.
Action: Avoid requesting this function while locked. |
| 8 | xxxx0807 | **Equate Symbol**: IwmRsnCodeBadSTOKEN
Meaning: Bad STOKEN passed.
Action: Check for possible storage overlay. |
| 8 | xxxx0808 | **Equate Symbol**: IwmRsnCodeBadPl
Meaning: Error accessing parameter list.
Action: Check for possible storage overlay. |
| 8 | xxxx0823 | **Equate Symbol**: IwmRsnCodeDatoff
Meaning: Caller invoked service while DATOFF
Action: Avoid requesting this function in this environment. |
| 8 | xxxx0824 | **Equate Symbol**: IwmRsnCodeAmode24
Meaning: Caller invoked service but was in 24-bit addressing mode.
Action: Request this function only when you are in 31-bit addressing mode. |
| 8 | xxxx0825 | **Equate Symbol**: IwmRsnCodeAscModeNotPrimary
Meaning: Caller invoked service but was not DAT on Primary ASC mode.
Action: Avoid requesting this function in this environment. |
| 8 | xxxx0828 | **Equate Symbol**: IwmRsnCodeBadVersion
Meaning: Version number in parameter list or version length field is not valid.
Action: Check for possible storage overlay of the parameter list. |
| C | — | **Equate Symbol**: IwmRetCodeEnvError
Meaning: Environmental error. |
| C | xxxx0C01 | **Equate Symbol**: IwmRsnCodeNoStg
Meaning: Storage is not available for the request.
Action: There is a storage shortage. The function may work successfully at a later time. |
Table 87. Return and Reason Codes for the IWM4SRSC Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Component error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: No action required. The function may be successful if invoked again.</td>
</tr>
</tbody>
</table>
Example

To get the recommended values for a particular server, specify:

```plaintext
IWM4SRSC STOKEN=STKN,
    WEIGHT=WGHT,
    ABNORM_COUNT=ABCNT,
    HEALTH=HLTH,
    RETCODE=RC,RSNCODE=RSN
```

* Storage areas

* STKN DS CL8 Contains the STOKEN associated with the address
* WGHT DS F Field to receive the weight
* ABCNT DS F Field to receive the Abnormal Count
* HLTH DS F Field to receive the Health Indicator
* RC DS F Return code
* RSN DS F Reason code
Chapter 84. IWM4SSL – Selecting a Request from a Caller’s Work Manager Queue

The IWM4SSL service selects the next work request from the queue associated with the caller’s application environment. The caller must have previously connected to WLM using the IWM4CON service specifying SERVER_MANAGER=YES.

If there are no queued work requests waiting for selection the calling task will be suspended, pending arrival of work to do. The caller cannot rely upon asynchronous exits receiving control while the task is suspended.

After a work request is selected, the caller uses the IWM4STBG and IWM4STEN services to indicate the start and end of processing of the request.

Information

Note that this service was previously called IWMSSEL for 31-bit address space only (see [IWMSSEL – Selecting a Request from a Caller’s Work Manager Queue](#) on page 921).

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Minimum authorization:</th>
<th>Problem state. Any PSW key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatchable unit mode:</td>
<td>Task</td>
</tr>
<tr>
<td>Cross memory mode:</td>
<td>PASN=HASN=SASN</td>
</tr>
<tr>
<td>AMODE:</td>
<td>31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.</td>
</tr>
<tr>
<td>ASC mode:</td>
<td>Primary</td>
</tr>
<tr>
<td>Interrupt status:</td>
<td>Enabled for I/O and external interrupts</td>
</tr>
<tr>
<td>Locks:</td>
<td>No locks may be held.</td>
</tr>
<tr>
<td>Control parameters:</td>
<td>Control parameters must be in the primary address space.</td>
</tr>
</tbody>
</table>

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

None.
IWM4SSL Macro

Input Register Information

Before issuing the IWM4SSL macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```plaintext
-IWM4SSL—USERDATA=userdata—,WLMEUTKN=wlmeutkn—

SERVER_TOKEN=server_token—,REGION_TOKEN=region_token—,RETCODE=retcode—

PLISTVER=IMPLIED_VERSION

RSNCODE=rsncode

PLISTVER=MAX

PLISTVER=0

MF=S

MF=(L,list addr)

MF=(E,list addr)
```

z/OS V1R11.0 MVS Programming: Workload Management Services
Parameters

The parameters are explained as follows:

\textit{name}

An optional symbol, starting in column 1, that is the name on the IWM4SSL macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

\texttt{,MF=S}
\texttt{,MF=(L, list \textit{addr})}
\texttt{,MF=(L, list \textit{addr}, \textit{attr})}
\texttt{,MF=(L, list \textit{addr},0D)}
\texttt{,MF=(E, list \textit{addr})}
\texttt{,MF=(E, list \textit{addr},COMPLETE)}

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

\texttt{,list \textit{addr}}

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

\texttt{,attr}

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code \textit{attr}, the system provides a value of 0D.

\texttt{,COMPLETE}

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

\texttt{,PLISTVER=IMPLIED_VERSION}
\texttt{,PLISTVER=MAX}
\texttt{,PLISTVER=0}

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- \texttt{IMPLIED_VERSION}, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
IWM4SSL Macro

- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, which supports all parameters except those specifically referenced in higher versions.

 To code: Specify one of the following:
 - IMPLIED_VERSION
 - MAX
 - A decimal value of 0

_,REGION_TOKEN=region_token_

An optional output parameter, which contains a region token. A queueing manager can use the region token to queue work requests to a specific server region. These work requests are considered to belong to a set of work requests all needing access to the status information which exists only in the virtual storage of the server region. They are selected using the IWM4SSL macro. It is assumed that the application uses the service IWM4TAF to tell WLM when the temporary affinity to the defined server region begins and ends.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from GPR 0.

 To code: Specify the RS-type address of a

_,SERVER_TOKEN=server_token_

An optional output parameter, which contains a server token. A queueing manager can use the server token to queue secondary work requests to this server task. Secondary work requests are considered to be extensions of the work request selected by IWM4SSL. They are selected using the IWM4SSM macro. See the IWM4SSM macro for more information.

 To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,USERDATA=userdata

A required output parameter, which contains the user data previously passed to WLM via IWM4QIN.

 To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

,WLMEUTKN=wlmeutkn

A required output parameter, which will receive the execution unit token. This token must be passed on subsequent IWM4STBG and IWM4STEN requests.
To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes
None.

Return and Reason Codes

When the IWM4SSL macro returns control to your program:
- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 88. Return and Reason Codes for the IWM4SSL Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>Equate Symbol: IwmRsnCodeSrbMode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is in SRB mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is locked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>Equate Symbol: IwmRsnCodeBadPI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Error accessing parameter list.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>Equate Symbol: IwmRsnCodeDatoff</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller invoked service while DATOFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller invoked service but was in 24-bit addressing mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Request this function only when you are in 31-bit addressing mode.</td>
</tr>
</tbody>
</table>
Table 88. Return and Reason Codes for the IWM4SSL Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not in primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>IwmRsnCodeRsvdNot0</td>
<td>Reserved field in parameter list was non-zero.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>IwmRsnCodeServiceNotEnabled</td>
<td>Caller’s space connection is not enabled for this service</td>
<td>Make sure that SERVER_MANAGER=YES is specified on the IWM4CON request to enable this service.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0841</td>
<td>IwmRsnCodeXmemMode</td>
<td>Caller is in cross-memory mode.</td>
<td>Request this function only when you are not in cross-memory mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0842</td>
<td>IwmRsnCodeNoWLMConnect</td>
<td>Caller’s space is not connected to WLM.</td>
<td>Invoke the IWM4CON macro before invoking this macro.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0854</td>
<td>IwmRsnCodeTooManySelect</td>
<td>The caller is attempting to select more work units than it has tasks to execute the work.</td>
<td>Wait until an execution task has issued IWM4STEN before attempting to select more work units.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0864</td>
<td>IwmRsnCodeSecondaryWorkExists</td>
<td>There are secondary work requests queued to this server task. The caller was expected to process them using IWM4SSM before calling IWM4SSL.</td>
<td>Select all secondary work requests before issuing IWM4SSL.</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>IwmRetCodeEnvError</td>
<td>Environmental error.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>IwmRsnCodeNoStg</td>
<td>Storage is not available for the request.</td>
<td>Caller must disconnect by invoking the IWM4DIS macro.</td>
</tr>
</tbody>
</table>
Table 88. Return and Reason Codes for the IWM4SSL Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
</table>
| C xxxx0C14 | xxxx0C14 | Equate Symbol: IwmRsnCodeNoWorkShutDown
Meaning: No work selected. Caller is to shutdown.
Action: Caller must disconnect by invoking the IWM4DIS macro. |
| C xxxx0C3B | xxxx0C3B | Equate Symbol: IwmRsnCodeStopTask
Meaning: WLM decided to stop the server instance.
Action: Calling task must shutdown, but server address space must remain active. |
| 10 — | — | Equate Symbol: IwmRetCodeCompError
Meaning: Component error.
Action: Contact your system programmer. |

Example

To select a work request from the WLM queue manager queues, specify:

```plaintext
IWM4SSL USERDATA=USERDATA, X  
WLMEUTKN=WLMEUTKN, RETCODE=RC, RSNCODE=RSN  

* Storage areas  
USERDATA DS CL16 Contains the user-defined data  
that was passed to IWM4QIN  
WLMEUTKN DS CL8 Work unit token that must be  
passed to IWM4STBG and IWMSTEND  
RC DS F Return code  
RSN DS F Reason code
```
IWM4SSL Macro
Chapter 85. IWM4SSM – WLM Server Select Secondary Service

The IWM4SSM service selects the next secondary work request from the queue associated with the caller’s server task.

If there are no queued secondary work requests waiting for selection the calling task will be suspended, pending arrival of work to do. The caller cannot rely upon asynchronous exits receiving control while the task is suspended.

Secondary work requests are considered to be extensions of an original work request selected using IWM4SSL. The caller must invoke WLM services in the following sequence:

1. The caller invokes the IWM4SSL macro to select an initial work request. IWM4SSL returns a token identifying the server task. The caller is responsible for passing the server token to the queueing manager so that it can insert secondary work requests.

2. The caller invokes the IWM4STBG macro to establish an environment for processing the work request selected using IWM4SSL. This environment also covers all secondary work requests.

3. The caller invokes the IWM4SSM macro to select each secondary work request. The queueing manager is responsible for indicating the last secondary work request so that the server task knows when not to try to select another one.

4. After the last secondary work request has been processed, the caller invokes the IWM4STEN macro to remove the environment created by IWM4STBG.

5. The caller invokes IWM4SSL to select a new primary work request, and repeats the above flow.

In the above flow, IWM4SSL, IWM4STBG, IWM4SSM, and IWM4STEN must be invoked from the same task.

Information

Note that this service was previously called IWMSSEM for 31-bit address space only (see "IWMSSEM – WLM Server Select Secondary Service" on page 927).

Environment

The requirements for the caller are:

Minimum authorization:	Problem state. Any PSW key
Dispatchable unit mode:	Task
Cross memory mode:	PASN=HASN=SASN
AMODE:	31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.
ASC mode:	Primary
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No locks may be held.
Control parameters:	Control parameters must be in the primary address space.
IWM4SSM Macro

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
None.

Input Register Information
Before issuing the IWM4SSM macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications
None.
IWM4SSM Macro

Syntax

main diagram

```
\[\text{name}, \text{IWM4SSM}, \text{USERDATA=data}, \text{RETCODE=rcode}, \text{RSNCODE=rsncode}\]
```

Parameters

The parameters are explained as follows:

- **name**
 An optional symbol, starting in column 1, that is the name on the IWM4SSM macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

- **.MF=S**
- **.MF=(L, list addr)**
- **.MF=(L, list addr, attr)**
- **.MF=(L, list addr, 0D)**
- **.MF=(E, list addr)**
- **.MF=(E, list addr, COMPLETE)**

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

- **list addr**
 The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

- **attr**
 An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code `attr`, the system provides a value of 0D.
IWM4SSM Macro

,COMPLETE
 Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
 An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:
 • IMPLIED_VERSION, which is the lowest version that allows all parameters
 specified on the request to be processed. If you omit the PLISTVER
 parameter, IMPLIED_VERSION is the default.
 • MAX, if you want the parameter list to be the largest size currently possible.
 This size might grow from release to release and affect the amount of
 storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify
 PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
 the list-form parameter list is always long enough to hold all the parameters
 you might specify on the execute form, when both are assembled with the
 same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.
 • 0, if you use the currently available parameters.

 To code: Specify one of the following:
 • IMPLIED_VERSION
 • MAX
 • A decimal value of 0

,RETCODE=retcode
 An optional output parameter into which the return code is to be copied from
 GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
 An optional output parameter into which the reason code is to be copied from
 GPR 0.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

USERDATA=userdata
 A required output parameter, which contains the user data previously passed to
 WLM via IWM4QIN.

 To code: Specify the RS-type address, or address in register (2)-(12), of a
 16-character field.

ABEND Codes
 None.

Return and Reason Codes
 When the IWM4SSM macro returns control to your program:
 • GPR 15 (and retcode, when you code RETCODE) contains a return code.
When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 89. Return and Reason Codes for the IWM4SSM Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td></td>
<td>Equate Symbol: IwmRetCodeOk</td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td></td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeSrbMode</td>
<td>Meaning: Caller is in SRB mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
<td>Meaning: Caller is disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td>Meaning: Caller is locked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeBadPl</td>
<td>Meaning: Error accessing parameter list.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td>Meaning: Caller invoked service but was in 24-bit addressing mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Action: Request this function only when you are in 31-bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeAscModeNotPrimary</td>
<td>Meaning: Caller invoked service but was not in primary ASC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Action: Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeRsvdNot0</td>
<td>Meaning: Reserved field in parameter list was not zero.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Action: Check for use of keywords that are not supported by the MVS release on which the program is running.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td></td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td>Meaning: Version number in parameter list is not valid.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay of the parameter list.</td>
</tr>
</tbody>
</table>
Table 89. Return and Reason Codes for the IWM4SSM Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx0840 | Equate Symbol: IwmRsnCodeServiceNotEnabled
Meaning: Caller's space connection is not enabled for this service
Action: Make sure that SERVER MANAGER=YES is specified on the IWM4CON request to enable this service. |
| 8 | xxxx0841 | Equate Symbol: IwmRsnCodeXmemMode
Meaning: Caller is in cross-memory mode.
Action: Request this function only when you are not in cross-memory mode. |
| 8 | xxxx0842 | Equate Symbol: IwmRsnCodeNoWLMConnect
Meaning: Caller's space is not connected to WLM.
Action: Invoke the IWM4CON macro before invoking this macro. |
| 8 | xxxx0862 | Equate Symbol: IwmRsnCodeNoPriorSelect
Meaning: The caller has not previously selected work using the IWM4SSL macro.
Action: Invoke the IWM4SSL macro before invoking this macro. |
| 8 | xxxx0863 | Equate Symbol: IwmRsnCodeNoExecEnv
Meaning: The caller has not established an execution environment using IWM4STBG.
Action: Invoke the IWM4STBG macro before invoking this macro. |
| C | — | Equate Symbol: IwmRetCodeEnvError
Meaning: Environmental error. |
| C | xxxx0C14 | Equate Symbol: IwmRsnCodeNoWorkShutDown
Meaning: No work selected. Caller is to shutdown.
Action: Caller must disconnect by invoking the IW DISC macro. |
| 10 | — | Equate Symbol: IwmRetCodeCompError
Meaning: Component error.
Action: Contact your system programmer. |

Example

To select a secondary work request from the WLM queue manager queues, specify:

```
IWM4SSM USERDATA=USERDATA,RETCODE=RC,RSNCODE=RSN
```

* Storage areas

```
* USERDATA DS CL16 Contains the user-defined data  
* that was passed to IWMQIN  
* RC DS F Return code  
* RSN DS F Reason code
```
Chapter 86. IWM4STBG – Beginning a Request from a Caller’s Work Manager Queue

IWM4STBG establishes the environment to process a work request that was previously selected using IWM4SSL. The caller must invoke IWM4STBG from the task in the server address space that will process the request. IWM4STBG establishes a business unit-of-work relationship by joining the caller’s task to the enclave associated with the request. IWM4STBG creates a security environment if there is a userid associated with the request previously selected.

Use IWM4STBG together with IWM4STEN to begin and end the processing of a work request. A task can process only one work request at a time.

Note that a task may only join an Enclave if it is not already part of an Enclave. In particular, a subtask which inherited the Enclave attribute from its mother task (which may happen either as a result of the mother task issuing IWMEJOIN or IWM4STBG) is not allowed to use IWMEJOIN to explicitly join an Enclave. This restriction is independent of whether the specified Enclave is the same Enclave as it is in, or a different Enclave from the one it is in. Such a subtask which inherited the Enclave attribute is also not allowed to use IWMELEAV to explicitly leave the Enclave. The subtask would only leave the Enclave upon its own (task) termination or when the Enclave is deleted (IWM4EDEL). Also, a task which successfully establishes a Begin environment (IWM4STBG) may not invoke Enclave Join, nor is the task allowed to use Enclave Leave while this Begin environment exists.

Information

Note that this service was previously called IWMSTBGN for 31-bit address space only (see “IWMSTBGN – Beginning a Request from a Caller’s Work Manager Queue” on page 934).

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Minimum authorization:</th>
<th>Problem state. Any PSW key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatchable unit mode:</td>
<td>Task</td>
</tr>
<tr>
<td>Cross memory mode:</td>
<td>PASN=HASN=SASN</td>
</tr>
<tr>
<td>AMODE:</td>
<td>31- or 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.</td>
</tr>
<tr>
<td>ASC mode:</td>
<td>Primary</td>
</tr>
<tr>
<td>Interrupt status:</td>
<td>Enabled for I/O and external interrupts</td>
</tr>
<tr>
<td>Locks:</td>
<td>No locks may be held.</td>
</tr>
<tr>
<td>Control parameters:</td>
<td>Control parameters must be in the primary address space.</td>
</tr>
</tbody>
</table>

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
IWM4STBG Macro

4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

The caller cannot have an EUT FRR established.

Input Register Information

Before issuing the IWM4STBG macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.
IWM4STBG Macro

Syntax

main diagram

Parameters

The parameters are explained as follows:

name
 An optional symbol, starting in column 1, that is the name on the IWM4STBG macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

.ETOKEN=etoken
 An optional output parameter, which will receive the Enclave token.

 To code: Specify the RS-type address, or register (2)-(12), of an 8-character field.

.MF=S
.MF=(L,list addr)
.MF=(L,list addr,attr)
.MF=(L,list addr,OD)
.MF=(E,list addr)
.MF=(E,list addr,COMPLETE)
 An optional input parameter that specifies the macro form.

 Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

 Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

 Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.
IWM4STBG Macro

,,list addr
 The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,,attr
 An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,,COMPLETE
 Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
 An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:
 • IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
 • MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.
 • 0, if you use the currently available parameters.

 To code: Specify one of the following:
 • IMPLIED_VERSION
 • MAX
 • A decimal value of 0

,,RETCODE=retcode
 An optional output parameter into which the return code is to be copied from GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,,RSNCODE=rsncode
 An optional output parameter into which the reason code is to be copied from GPR 0.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

WLMEUTKN=wlmeutkn
 A required input parameter, execution unit token that was returned by a prior invocation of IWM4SSL.

 To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.
ABEND Codes

None.

Return and Reason Codes

When the IWM4STBG macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 90. Return and Reason Codes for the IWM4STBG Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
<td>Meaning: Successful completion.</td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx041F</td>
<td>Equate Symbol: IwmRsnCodeExecEnvChanged</td>
<td>Meaning: The execution environment has changed while the requested function is in progress.</td>
<td>Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
<td>Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>Equate Symbol: IwmRsnCodeSrbMode</td>
<td>Meaning: Caller is in SRB mode.</td>
<td>Action: Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
<td>Meaning: Caller is disabled.</td>
<td>Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td>Meaning: Caller is locked.</td>
<td>Action: Avoid requesting this function while locked.</td>
</tr>
</tbody>
</table>
Table 90. Return and Reason Codes for the IWM4STBG Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>IwmRsnCodeDatoff</td>
<td>Caller invoked service while DATOFF</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24 bit addressing mode.</td>
<td>Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not DAT on Primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0826</td>
<td>IwmRsnCodeTaskTerm</td>
<td>Caller invoked service while task termination is in progress for the task associated with the owner.</td>
<td>Avoid requesting this function while task termination is in progress.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid or version length field is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx083A</td>
<td>IwmRsnCodeBadEnclave</td>
<td>Enclave token does not pass verification.</td>
<td>Check for possible storage overlay of the Enclave, or asynchronous events which may have deleted the Enclave.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>IwmRsnCodeServiceNotEnabled</td>
<td>Caller’s space connection is not enabled for this service</td>
<td>Make sure that SERVER_MANAGER=YES is specified on the IWM4CON request to enable this service.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0841</td>
<td>IwmRsnCodeXmemMode</td>
<td>Caller is in cross-memory mode.</td>
<td>Request this function only when you are not in cross-memory mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0842</td>
<td>IwmRsnCodeNoWLMConnect</td>
<td>Caller’s space is not connected to WLM.</td>
<td>Invoke the IWM4CON macro before invoking this macro.</td>
</tr>
</tbody>
</table>
Table 90. Return and Reason Codes for the IWM4STBG Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx0850 | Equate Symbol: IwmRsnCodeBeginEnvOutstanding | **Meaning**: Caller is already operating under an outstanding Begin environment.
Action: Avoid requesting this function in this environment. |
| 8 | xxxx0851 | Equate Symbol: IwmRsnCodeSecEnvOutstanding | **Meaning**: Caller is already operating under an outstanding security environment.
Action: Avoid requesting this function while there is a task level security environment outstanding. |
| 8 | xxxx0852 | Equate Symbol: IwmRsnCodeExecTokenNotCorrect | **Meaning**: The execution unit token does not identify a previously selected work unit.
Action: Verify that you have coded the WLMEUTKN parameter correctly. |
| 8 | xxxx0857 | Equate Symbol: IwmRsnCodeAlreadyInEnclave | **Meaning**: Current dispatchable workunit is already in an Enclave.
Action: Avoid requesting this function while the caller is already in an Enclave. |
| 8 | xxxx085A | Equate Symbol: IwmRsnCodeSelectedWorkActive | **Meaning**: The selected work element associated with the input execution unit token is already in execution.
Action: You may have invoked IWM4STBG from multiple tasks in the server address space passing the same WLMEUTKN. Avoid requesting this function in this environment. |
| C | — | Equate Symbol: IwmRetCodeEnvError | **Meaning**: Environmental error. |
| C | xxxx0C17 | Equate Symbol: IwmRsnCodeSecEnvCreateFailed | **Meaning**: A user security environment cannot be created.
Action: Verify that the userid is defined to RACF or check the SAF installation exit routine to enable the function. |
| 10 | — | Equate Symbol: IwmRetCodeCompError | **Meaning**: Component error.
Action: Contact your system programmer. |

Example

Suppose a work request was selected using IWM4SSL and the execution unit token returned by IWM4SSL is WLMEUTKN.

To establish the environment to process the work request, specify:

```
IWM4STBG WLMEUTKN=WLMEUTKN,RETCODE=RC,RSNCODE=RSN
```

* Storage areas
IWM4STBG Macro

```
* WLMEUTKN DS CL8 Contains the execution unit
  * token that was returned by
  * IMM4SSL
  RC DS F Return code
  RSN DS F Reason code
```
IWM4STEN removes the environment which was previously established using IWM4STBG to process a work request. The caller must invoke IWM4STEN from the same task that invoked IWM4STBG. IWM4STEN removes the caller's task from the enclave associated with the request. IWM4STEN deletes the security environment if one was previously established by IWM4STBG.

Information
Note that this service was previously called IWMSTEND for 31-bit address space only (see "IWMSTEND – End a Request from a Caller’s Work Manager Queue" on page 941).

Environment
The requirements for the caller are:

Minimum authorization:	Problem state. Any PSW key
Dispatchable unit mode:	Task
Cross memory mode:	PASN=HASN=SASN
AMODE:	31- and 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.
ASC mode:	Primary
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No locks may be held.
Control parameters:	Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the IWM4STEN macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.
Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
.IWM4STEN=wlmeutkn
.RETCODE=retcode
.RSCODE=rsncode

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

,MF=S
,MF=(L,list addr,attr)
,MF=(E,list addr,COMPLETE)
```

Parameters

The parameters are explained as follows:

name

An optional symbol, starting in column 1, that is the name on the IWM4STEN macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
IWM4STEN Macro

.MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

.list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

.attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code `attr`, the system provides a value of 0D.

.COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

.PLISTVER=IMPLIED_VERSION
.PLISTVER=MAX
.PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
- If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form; in this way, MAX ensures that the parameter list does not overwrite nearby storage.

To code: Specify one of the following:

- **IMPLIED_VERSION**
- **MAX**
- A decimal value of 0
IWM4STEN Macro

\[\text{RETCODE} = \text{retcode}\]
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

\[\text{RSNCODE} = \text{rsncode}\]
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

\[\text{WLMEUTKN} = \text{wlmeutkn}\]
A required input parameter, execution unit token that was specified on the prior invocation of IWM4STBG.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWM4STEN macro returns control to your program:
- GPR 15 (and \text{retcode}, if you coded \text{RETCODE}) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and \text{rsncode}, if you coded \text{RSNCODE}) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the \text{xxxx} value.

\textbf{Table 91. Return and Reason Codes for the IWM4STEN Macro}

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>\text{IwmRetCodeOk}</td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>\text{IwmRetCodeWarning}</td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>\text{xxxx041C}</td>
<td>\text{IwmRsnCodeNotEnclave}</td>
<td>Meaning: The current dispatchable workunit is not associated with an Enclave.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>\text{xxxx041F}</td>
<td>\text{IwmRsnCodeExecEnvChanged}</td>
<td>Meaning: The execution environment has changed while the requested function is in progress.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>xxxx042F</td>
<td>Equate Symbol: IwmRsnCodeSecondaryWorkDeleted</td>
<td>There were secondary work requests queued to this server task. The caller was expected to process them using IWM4SSM before calling IWM4STEN. The secondary work requests were deleted.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>Equate Symbol: IwmRsnCodeSrbMode</td>
<td>Meaning: Caller is in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
<td>Meaning: Caller is disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td>Meaning: Caller is locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>Equate Symbol: IwmRsnCodeDatoff</td>
<td>Meaning: Caller invoked service while DATOFF</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td>Meaning: Caller invoked service but was in 24 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>Equate Symbol: IwmRsnCodeAscModeNotPrimary</td>
<td>Meaning: Caller invoked service but was not DAT on Primary ASC mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td>Meaning: Version number in parameter list is not valid or version length field is not valid.</td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol</td>
<td>Meaning</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0841</td>
<td>IwmRsnCodeXmemMode</td>
<td>Caller invoked service but was in cross-memory mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx084F</td>
<td>IwmRsnCodeWrongExecToken</td>
<td>Current dispatchable workunit is not associated with the input execution unit token.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0859</td>
<td>IwmRsnCodeEnclaveSubTaskExists</td>
<td>The current dispatchable workunit has residual subtasks propagated to the Enclave which are still associated with the Enclave.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>IwmRetCodeCompError</td>
<td>Component error.</td>
</tr>
</tbody>
</table>

Example

To remove the environment which was previously established using IWM4STBG, specify:

```plaintext
IWM4STEN WLMEUTKN=WLMEUTKN,RETCODE=RC,RSNCODE=RSN
```

* Storage areas

```plaintext
WLMEUTKN DS CL8 Contains the execution unit token that was specified on the prior invocation of IWM4STBG
RC    DS F Return code
RSN   DS F Reason code
```
Chapter 88. IWM4TAF — WLM Temporal Affinity Service

The IWM4TAF service should be used to inform WLM when a temporal affinity for a specific server region starts and when it ends. WLM will ensure that server regions will not be terminated as long as temporal affinities exist.

The caller must have previously connected to WLM using the IWM4CON as server or as queue manager.

Information
Note that this service was previously called IWMTAFF for 31-bit address space only (see "IWMTAFF — WLM Temporal Affinity Service" on page 947).

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31- and 64-bit. If in 64-bit addressing mode, code SYSSTATE AMODE64=YES before invoking this macro.
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
• This macro may not be used during task/address space termination.
• Before using this macro the caller must connect to WLM via IWM4CON Server_Manager=YES, Server_Type=Queue or IWM4CON Queue_Manager=YES.
Input Register Information

Before issuing the IWM4TAF macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

Parameters

The parameters are explained as follows:
name
An optional symbol, starting in column 1, that is the name on the IWM4TAF macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

AFFINITY=YES
AFFINITY=NO
A required parameter indicating whether a temporal affinity begins or ends

AFFINITY=YES
A new temporal affinity for the server region begins. WLM will ensure that the server regions is not terminated before all temporal affinity have ended.

AFFINITY=NO
A temporal affinity for the server region has ended. WLM will start to terminate server regions if all temporal affinities have ended.

, MF=S
, MF=(L,list addr)
, MF=(L,list addr,attr)
, MF=(L,list addr,0D)
, MF=(E,list addr)
, MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

, PLISTVER=IMPLIED_VERSION
, PLISTVER=MAX
, PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form.
using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, if you use the currently available parameters.

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0

REGION_TOKEN=region_token

An optional input parameter, which contains the region token. The region token is not required if the macro is invoked from the server region for which the temporal affinity should be started or stopped. The region token must be used if the services is used from the queueing manager. The region token is returned by the IWM4CON and IWM4SSL macro.

The caller must be supervisor state or have PSW key mask 0-7 authority to use this service with the REGION_TOKEN parameter.

Coding REGION_TOKEN=0 is equivalent to omitting the REGION_TOKEN keyword. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes

None.

Return and Reason Codes

When the IWM4TAF macro returns control to your program:

- GPR 15 (and retcode, when you code RETCODE) contains a return code.
IWM4TAF Macro

- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 92. Return and Reason Codes for the IWM4TAF Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
<td>None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Successful completion, unusual conditions noted.</td>
<td>None required.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0439</td>
<td>IwmRsnCodeNoAffinityFound</td>
<td>The service has been invoked to tell WLM that an existing server region affinity has been terminated but WLM has no affinity defined for this server region.</td>
<td>If region token was not specified make sure to use the service properly at the beginning and end of each affinity. If the region token has been defined make sure that it is used for the correct server region.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx043A</td>
<td>IwmRsnCodeRegionNotFound</td>
<td>The region token does not identify a valid server region.</td>
<td>Please specify the correct region token.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>IwmRsnCodeSrbMode</td>
<td>Caller is in SRB mode.</td>
<td>Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
<td>Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>IwmRsnCodeBadPl</td>
<td>Error accessing parameter list.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol</td>
<td>Meaning</td>
<td>Action</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| 8 | xxxx0824 | Equate Symbol: IwmRsnCodeAmode24
Meaning: Caller invoked service but was in 24 bit addressing mode.
Action: Request this function only when you are in 31 bit addressing mode. |
| 8 | xxxx0825 | Equate Symbol: IwmRsnCodeAscModeNotPrimary
Meaning: Caller invoked service but was not in primary ASC mode.
Action: Avoid requesting this function in this environment. |
| 8 | xxxx0827 | Equate Symbol: IwmRsnCodeResvdNot0
Meaning: Reserved field in parameter list was not zero.
Action: Check for use of keywords that are not supported by the MVS release on which the program is running. |
| 8 | xxxx0828 | Equate Symbol: IwmRsnCodeBadVersion
Meaning: Version number in parameter list is not valid.
Action: Check for possible storage overlay of the parameter list. |
| 8 | xxxx0840 | Equate Symbol: IwmRsnCodeServiceNotEnabled
Meaning: Caller’s space connection is not enabled for this service
Action: Make sure that SERVER_MANAGER=YES and SERVER_TYPE=QUEUE is specified on the IWM4CON request to enable this service. |
| 8 | xxxx0841 | Equate Symbol: IwmRsnCodeXmemMode
Meaning: Caller is in cross-memory mode.
Action: Request this function only when you are not in cross-memory mode. |
| 8 | xxxx0842 | Equate Symbol: IwmRsnCodeNoWLMConnect
Meaning: Caller’s space is not connected to WLM.
Action: Invoke the IWM4CON macro before invoking this macro. |
| 8 | xxxx084D | Equate Symbol: IwmRsnCodeNotAuthConnect
Meaning: The caller must be supervisor state or have PSW key mask 0-7 authority to use the requested WLM service. This applies only if the caller provides a region token for a server address space for which it wants to set the affinity.
Action: Avoid requesting this function in this environment. |
| 8 | xxxx08B1 | Equate Symbol: IwmRsnCodeTooManyTempAff
Meaning: No more than 2 GB temporal affinities supported.
Action: Avoid requesting more than 2 GB temporal affinities to an address space. |
Table 92. Return and Reason Codes for the IWM4TAF Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>—</td>
<td>IwmRetCodeCompError</td>
<td>Component error.</td>
<td>Contact your system programmer.</td>
</tr>
</tbody>
</table>
IWM4TAF Macro

Example

To start a temporal affinity from the server region, specify:

IWM4TAF AFFINITY=YES
RETCODE=RC,
RSNCODE=RSN
*
* Storage areas
*
<table>
<thead>
<tr>
<th>RC</th>
<th>DS</th>
<th>F</th>
<th>Return code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSN</td>
<td>DS</td>
<td>F</td>
<td>Reason code</td>
</tr>
</tbody>
</table>
Appendix A. SMF Type 99 Action Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STA_RECOVERY_RETRY</td>
<td>Retry.</td>
</tr>
<tr>
<td>2</td>
<td>STA_RECOVERY_PERC</td>
<td>Percolation.</td>
</tr>
<tr>
<td>10</td>
<td>RA_AUXP_DEC_MPL</td>
<td>Resource adjustment, too much auxiliary storage paging, decrease mpl.</td>
</tr>
<tr>
<td>3</td>
<td>STA_RECOVERY_REDRIVE_SET</td>
<td>Tell wlm to set to same policy again.</td>
</tr>
<tr>
<td>20</td>
<td>RA_AUXP_NO_ACTION</td>
<td>Resource adjustment, too much auxiliary storage paging, no action.</td>
</tr>
<tr>
<td>30</td>
<td>RA_MP_NO_ACTION</td>
<td>Resource adjustment, managed paging, no action.</td>
</tr>
<tr>
<td>40</td>
<td>RA_OU_DEC_MPL</td>
<td>Resource adjustment, overutilized, decrease mpl.</td>
</tr>
<tr>
<td>50</td>
<td>RA_OU_NO_ACTION</td>
<td>Resource adjustment, overutilized, no action.</td>
</tr>
<tr>
<td>60</td>
<td>RA_SWAP_FOR_MPL</td>
<td>Resource adjustment, working set management picked this address space to swap out.</td>
</tr>
<tr>
<td>70</td>
<td>RA_UP_DECREASE_MPL</td>
<td>Resource adjustment, unmanaged paging decrease mpl.</td>
</tr>
<tr>
<td>90</td>
<td>RA_UP_NO_ACTION</td>
<td>Resource adjustment, unmanaged paging no action.</td>
</tr>
<tr>
<td>100</td>
<td>RA_UU_INC_MPL</td>
<td>Resource adjustment, underutilized, increase mpl.</td>
</tr>
<tr>
<td>105</td>
<td>RA_UU_ADD_SRV_GR</td>
<td>Resource adjustment, underutilized, add server.</td>
</tr>
<tr>
<td>106</td>
<td>RA_UU_ADD_SRV_RR</td>
<td>Resource adjustment, underutilized, add server.</td>
</tr>
<tr>
<td>107</td>
<td>ADD_SRV_ASSESS</td>
<td>Resource adjustment or discretionary goal management, assess adding server(s).</td>
</tr>
<tr>
<td>108</td>
<td>ADD_SRV_ASSESS2</td>
<td>Resource adjustment or discretionary goal management, assess adding server(s).</td>
</tr>
<tr>
<td>110</td>
<td>RA_UU_NO_ACTION</td>
<td>Resource adjustment, underutilized, no action.</td>
</tr>
<tr>
<td>130</td>
<td>SWAP_DETECTED_WAIT</td>
<td>Detected wait swap.</td>
</tr>
<tr>
<td>140</td>
<td>SWAP_EXCHANGE</td>
<td>Exchange swap.</td>
</tr>
<tr>
<td>150</td>
<td>SWAP_LONG_WAIT</td>
<td>Long wait swap.</td>
</tr>
<tr>
<td>160</td>
<td>SWAP_UNILATERAL</td>
<td>Unilateral swap.</td>
</tr>
<tr>
<td>Code</td>
<td>Action Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>170</td>
<td>RA_MON_PAG_COST_HI</td>
<td>Resource adjustment, monitor this space because paging cost is high.</td>
</tr>
<tr>
<td>180</td>
<td>RA_MON_POLICY_DIR</td>
<td>Resource adjustment, policy code directed us to monitor this space.</td>
</tr>
<tr>
<td>190</td>
<td>RA_UNMON_ALL_P_OK</td>
<td>Resource adjustment, unmonitor this space because the last 10 plotted points were ok.</td>
</tr>
<tr>
<td>195</td>
<td>RA_UNMON_NO_CAPT</td>
<td>Resource adjustment, unmonitor this space because insufficient capture time accumulated in last 5 minutes to plot a point.</td>
</tr>
<tr>
<td>200</td>
<td>TX_END_UNMON</td>
<td>Unmonitor because of transaction end, initiator detach, or address space termination.</td>
</tr>
<tr>
<td>210</td>
<td>NS_STOR_TAR_ACTION</td>
<td>Storage target action, no specific reason.</td>
</tr>
<tr>
<td>220</td>
<td>PA_ADD_TRANS_DISP</td>
<td>Add transaction server dynamic internal service period.</td>
</tr>
<tr>
<td>222</td>
<td>PA_AS_BET_DISPS</td>
<td>Move address space between server internal service periods.</td>
</tr>
<tr>
<td>224</td>
<td>PA_AS_FROM_DISP</td>
<td>Move address space from server internal service period.</td>
</tr>
<tr>
<td>226</td>
<td>PA_AS2_TRX_DISP</td>
<td>Move address space to server internal service period.</td>
</tr>
<tr>
<td>227</td>
<td>PA_AS2_NONTRX_DISP</td>
<td>Move address space to server internal service period.</td>
</tr>
<tr>
<td>230</td>
<td>PA_DELETE_DISP</td>
<td>Delete server internal service period.</td>
</tr>
<tr>
<td>232</td>
<td>PA_ADDDISP_MT_EN_Q</td>
<td>Add a non transaction server dynamic internal service period for multi-threaded enclave queue servers.</td>
</tr>
<tr>
<td>233</td>
<td>PA_ADD_DISP_MT_EN</td>
<td>Add a non transaction server dynamic internal service period for multi-threaded enclave non_queue servers.</td>
</tr>
<tr>
<td>235</td>
<td>PA_ADDDISP_ST_EN_Q</td>
<td>Add a non transaction server dynamic internal service period for single-threaded enclave queue servers.</td>
</tr>
<tr>
<td>236</td>
<td>PA_ADD_DISP_ST_EN</td>
<td>Add a non transaction server dynamic internal service period for single-threaded enclave non-queue servers.</td>
</tr>
<tr>
<td>Action Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>PA_GREC_CAND Policy adjustment, goal receiver candidate selected.</td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>PA_NA_NO_MPL Policy adjustment, no action taken because period had an MPL out target of 0 and the delay was other than MPL.</td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>PA_DRV_PRO_SKIPPED Policy adjustment, processor action was skipped even though it is required.</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>PA_NA_NO_PROBLEM Policy adjustment, no action taken because receiver did not have a problem.</td>
<td></td>
</tr>
<tr>
<td>251</td>
<td>PA_ADDDISP_SCSP Add a non-transaction server dynamic internal service period for a single class/single period enclave server.</td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>PA_ADDDISP_SCSP_Q Add a non-transaction server dynamic internal service period for a single class/single period enclave and queue server.</td>
<td></td>
</tr>
<tr>
<td>253</td>
<td>PA_ADDDISP_SCMP Add a non-transaction server dynamic internal service period for a single class/multi-period enclave server.</td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>PA_ADDDISP_SCMP_Q Add a non-transaction server dynamic internal service period for a single class/multi-period enclave and queue server.</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>PA_ADDDISP_MCMP Add a non-transaction server dynamic internal service period for a multi-class/multi-period enclave server.</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>PA_ADDDISP_MCMP_Q Add a non-transaction server dynamic internal service period for a multi-class/multi-period enclave and queue server.</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>PA_NA_UNKNOW_DELAY Policy adjustment, no action taken because delay is not known.</td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>PA_NA_SYSPLEX_ONLY Policy adjustment, because resource only addressed on sysplex pass and this is the local pass.</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>PA_REC_CAND Policy adjustment, receiver candidate selected.</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>PA_RREC_CAND Policy adjustment, resource receiver candidate selected.</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>PA_USE_DISC_CENT Policy adjustment, use discretionary central.</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>PA_USE_DISC_EXP Policy adjustment, use discretionary expanded.</td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>PA_STOR_DONOR Policy adjustment, storage donor.</td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>SH_STOR_DONOR Shortage, storage donor.</td>
<td></td>
</tr>
<tr>
<td>307</td>
<td>SV_STOR_DONOR Storage donor from server.</td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>PA_DONOR_PERIOD Policy adjustment, donor period.</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>WLM_Q_REQ WLM queue sysevent issued. Begin/end are not traced.</td>
<td></td>
</tr>
<tr>
<td>311</td>
<td>WLM_Q_MISC WLM queue miscellaneous actions.</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>PA_CPC_MOVE_DOWN Policy adjustment, period is moved down to make room for CPU critical period.</td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>PA_CAL_PI_NO_FOREIGN_FACTOR Policy adjustment, calculate PI.</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>HSK_FROM_SPC_DP Housekeeping, move from small processor consumer priority, period is no longer small consumer.</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>HSK_TO_SPC_DP Housekeeping, move to small processor consumer priority.</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>HSK_XFROM_SPC_DP Housekeeping, exchange from small processor consumer priority to make room for another small consumer.</td>
<td></td>
</tr>
<tr>
<td>525</td>
<td>HSK_UNBUNCH_PRTY Housekeeping, unbunch priorities.</td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>PA_PCC_NO_OCC_PRTY Policy adjustment, CPU critical, no occupied priority to move blocker to.</td>
<td></td>
</tr>
<tr>
<td>527</td>
<td>PA_PCC_NO_UNO_PRTY Policy adjustment, CPU critical, no unoccupied priority to move blocker to.</td>
<td></td>
</tr>
<tr>
<td>528</td>
<td>PA_PCC_BLKR_MOVED Policy adjustment, CPU critical, blocker has been moved to a new priority.</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>PA_PCC_BLKR_VIOLTN Policy adjustment, CPU critical, blocker violates CPU critical rules at new priority.</td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>PA_PMDO_DON Policy adjustment, assess moving primary processor donor down to occupied priority.</td>
<td></td>
</tr>
<tr>
<td>SMF Code</td>
<td>Action Code</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>531</td>
<td>PA_PCC_DON_VIOLTN</td>
<td>Policy adjustment, moving the donor to the receivers priority violates CPU critical rules.</td>
</tr>
<tr>
<td>532</td>
<td>PA_PCC_BLKR_IS_DON</td>
<td>Policy adjustment, cannot move the blocker up because it is the donor.</td>
</tr>
<tr>
<td>533</td>
<td>PA_PCC_BLKR_IS_REC</td>
<td>Policy adjustment, cannot move the blocker down because it is the receiver.</td>
</tr>
<tr>
<td>534</td>
<td>PA_PCC_BLKR_NETVAL</td>
<td>Policy adjustment, moving blocker down fails net value check.</td>
</tr>
<tr>
<td>540</td>
<td>PA_PMDU_DON</td>
<td>Policy adjustment, assess moving primary processor donor down to unoccupied priority.</td>
</tr>
<tr>
<td>550</td>
<td>PA_PMD_DON_NETVAL</td>
<td>Policy adjustment, processor move down, rejected for no net value, donor trace, affected by resource donor.</td>
</tr>
<tr>
<td>552</td>
<td>PA_PMD_DON_NVL_SD</td>
<td>Policy adjustment, processor move down, rejected for no net value, donor trace, affected by secondary donor.</td>
</tr>
<tr>
<td>560</td>
<td>PA_PMD_GDON_NETVAL</td>
<td>Policy adjustment, processor move down, rejected for no net value, goal donor trace, affected by resource donor.</td>
</tr>
<tr>
<td>562</td>
<td>PA_PMD_GDON_NVL_SD</td>
<td>Policy adjustment, processor move down, rejected for no net value, goal donor trace, affected by secondary donor.</td>
</tr>
<tr>
<td>565</td>
<td>PA_PMD_GREC_NETVAL</td>
<td>Policy adjustment, processor move down, rejected for no net value, goal receiver trace, affected by resource donor.</td>
</tr>
<tr>
<td>567</td>
<td>PA_PMD_GREC_NVL_SD</td>
<td>Policy adjustment, processor move down, rejected for no net value, goal receiver trace, affected by secondary donor.</td>
</tr>
<tr>
<td>570</td>
<td>PA_PMD_RDON_NETVAL</td>
<td>Policy adjustment, processor move down, rejected for no net value, resource donor trace, affected by resource donor.</td>
</tr>
<tr>
<td>572</td>
<td>PA_PMD_RDON_NVL_SD</td>
<td>Policy adjustment, processor move down, rejected for no net value, resource donor trace, affected by secondary donor.</td>
</tr>
</tbody>
</table>
Table 93. SMF Type 99 Action Codes (continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>573</td>
<td>PA_PMD_REC_NETVAL</td>
<td>Policy adjustment, processor move down, rejected for no net value, receiver trace, affected by resource donor.</td>
</tr>
<tr>
<td>575</td>
<td>PA_PMD_REC_NVL_SD</td>
<td>Policy adjustment, processor move down, rejected for no net value, receiver trace, affected by secondary donor.</td>
</tr>
<tr>
<td>576</td>
<td>PA_PMD_RREC_NETVAL</td>
<td>Policy adjustment, processor move down, rejected for no net value, resource receiver trace, affected by resource donor.</td>
</tr>
<tr>
<td>578</td>
<td>PA_PMD_RREC_NVL_SD</td>
<td>Policy adjustment, processor move down, rejected for no net value, resource receiver trace, affected by secondary donor.</td>
</tr>
<tr>
<td>580</td>
<td>PA_PMD_SEC_DON</td>
<td>Policy adjustment, assess moving secondary processor donor down.</td>
</tr>
<tr>
<td>590</td>
<td>PA_PMU_DON_NETVAL</td>
<td>Policy adjustment, processor move up, rejected for no net value, donor trace.</td>
</tr>
<tr>
<td>595</td>
<td>PA_PMU_DON_SEC_REC</td>
<td>Policy adjustment, processor assess moving donor up as secondary receiver.</td>
</tr>
<tr>
<td>600</td>
<td>PA_PMU_GDON_NETVAL</td>
<td>Policy adjustment, processor move up, rejected for no net value, goal donor trace.</td>
</tr>
<tr>
<td>605</td>
<td>PA_PMU_GREC_NETVAL</td>
<td>Policy adjustment, processor move up, rejected for no net value, goal receiver trace.</td>
</tr>
<tr>
<td>610</td>
<td>PA_PMU_RDON_NETVAL</td>
<td>Policy adjustment, processor move up, rejected for no net value, resource donor trace.</td>
</tr>
<tr>
<td>613</td>
<td>PA_PMU_REC_NETVAL</td>
<td>Policy adjustment, processor move up, rejected for no net value, receiver trace.</td>
</tr>
<tr>
<td>616</td>
<td>PA_PMU_RREC_NETVAL</td>
<td>Policy adjustment, processor move up, rejected for no net value, resource donor trace.</td>
</tr>
<tr>
<td>620</td>
<td>PA_PMUO_REC</td>
<td>Policy adjustment, assess moving primary processor receiver up to occupied priority.</td>
</tr>
<tr>
<td>630</td>
<td>PA_PMUUA_REC</td>
<td>Policy adjustment, assess moving primary processor receiver up to unoccupied priority above donor.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>635</td>
<td>PA_PMUUB_REC</td>
<td>Policy adjustment, assess moving primary processor receiver up to unoccupied priority between donor and receiver's current priorities.</td>
</tr>
<tr>
<td>640</td>
<td>PA_PMU_SEC_REC</td>
<td>Policy adjustment, assess moving secondary processor receiver up.</td>
</tr>
<tr>
<td>650</td>
<td>PA_PMU_TO_SPC_DP</td>
<td>Policy adjustment, move up to small processor consumer priority.</td>
</tr>
<tr>
<td>651</td>
<td>PA_PMU_SPC_NXT_DP</td>
<td>Policy adjustment, move up small processor consumer to next priority.</td>
</tr>
<tr>
<td>655</td>
<td>PA_PMU_SPC_UP_FAIL</td>
<td>Policy adjustment, moving up small processor consumer failed because the move is blocked by CPU critical period.</td>
</tr>
<tr>
<td>660</td>
<td>PA_PRO_DECP_DON</td>
<td>Policy adjustment, decrease priority for donor.</td>
</tr>
<tr>
<td>665</td>
<td>PA_PRO_DECP_MPL</td>
<td>Policy adjustment, decrease priority because of an mpl increase.</td>
</tr>
<tr>
<td>670</td>
<td>PA_PRO_DECP_SEC</td>
<td>Policy adjustment, decrease priority for secondary donor or receiver.</td>
</tr>
<tr>
<td>675</td>
<td>PA_PRO_DECP_BLKR</td>
<td>Policy adjustment, decrease priority for blocker period.</td>
</tr>
<tr>
<td>690</td>
<td>PA_PRO_INCP_DON</td>
<td>Policy adjustment, increase priority for donor.</td>
</tr>
<tr>
<td>720</td>
<td>PA_PRO_GREC_NETVAL</td>
<td>Policy adjustment, no processor action because of insufficient net value, goal receiver trace.</td>
</tr>
<tr>
<td>730</td>
<td>PA_PRO_GREC_RECVAL</td>
<td>Policy adjustment, no processor action because of insufficient receiver value, goal receiver trace.</td>
</tr>
<tr>
<td>740</td>
<td>PA_PRO_INCP_DON</td>
<td>Policy adjustment, increase priority for donor.</td>
</tr>
<tr>
<td>750</td>
<td>PA_PRO_INCP_REC</td>
<td>Policy adjustment, increase priority for receiver.</td>
</tr>
<tr>
<td>760</td>
<td>PA_PRO_INCP_SEC</td>
<td>Policy adjustment, increase priority for secondary donor or receiver.</td>
</tr>
<tr>
<td>770</td>
<td>PA_PRO_INCP_BLKR</td>
<td>Policy adjustment, increase priority for blocker period.</td>
</tr>
<tr>
<td>Action Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>780 PA_PRO_INCP_SC</td>
<td>Policy adjustment, increase priority for small consumer period.</td>
<td></td>
</tr>
<tr>
<td>850 PA_PRO_NA_NO_DONOR</td>
<td>Policy adjustment, no processor action because no donor selected.</td>
<td></td>
</tr>
<tr>
<td>870 PA_PRO_NA_SPC_DP</td>
<td>Policy adjustment, no processor action because period is at or just moved from small processor consumer priority.</td>
<td></td>
</tr>
<tr>
<td>880 PA_PRO_RDON_CAND</td>
<td>Policy adjustment, processor resource donor candidate selected.</td>
<td></td>
</tr>
<tr>
<td>890 PA_PRO_REC_DEPEN</td>
<td>Policy adjustment, no further processor action because of receiver dependency relationship.</td>
<td></td>
</tr>
<tr>
<td>900 PA_PRO_REC_NETVAL</td>
<td>Policy adjustment, no processor action because insufficient net value, receiver trace.</td>
<td></td>
</tr>
<tr>
<td>910 PA_PRO_REC_RECVAL</td>
<td>Policy adjustment, no processor action because insufficient receiver value, receiver trace.</td>
<td></td>
</tr>
<tr>
<td>920 PA_PRO_RREC_NETVAL</td>
<td>Policy adjustment, no processor action because insufficient net value, resource receiver trace.</td>
<td></td>
</tr>
<tr>
<td>930 PA_PRO_RREC_RECVAL</td>
<td>Policy adjustment, no processor action because insufficient receiver value, resource receiver trace.</td>
<td></td>
</tr>
<tr>
<td>933 PA_PRO_SERVED_GDON</td>
<td>Policy adjustment, served goal donor selected.</td>
<td></td>
</tr>
<tr>
<td>936 PA_PRO_SERVED_GREC</td>
<td>Policy adjustment, served goal receiver selected.</td>
<td></td>
</tr>
<tr>
<td>938 PA_PRO_TO_SPC_DP</td>
<td>Policy moved to small processor consumer.</td>
<td></td>
</tr>
<tr>
<td>939 PA_PRO_SPC_UP_FAIL</td>
<td>Policy adjustment, small processor user move up failed.</td>
<td></td>
</tr>
<tr>
<td>940 PA_PRO_UNC_DON</td>
<td>Policy adjustment, unchanged donor.</td>
<td></td>
</tr>
<tr>
<td>950 PA_PRO_UNC_REC</td>
<td>Policy adjustment, unchanged receiver.</td>
<td></td>
</tr>
<tr>
<td>960 PA_PRO_UNC_SEC_DON</td>
<td>Policy adjustment, unchanged secondary donor.</td>
<td></td>
</tr>
<tr>
<td>970 PA_PRO_UNC_SEC_REC</td>
<td>Policy adjustment, unchanged secondary receiver.</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Details</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>975</td>
<td>PA_SDO_DONFAIL_SPC</td>
<td>Policy adjustment, select donor failed selecting period as the donor because period is small consumer.</td>
</tr>
<tr>
<td>976</td>
<td>PA_SDO_ADD_DGRP</td>
<td>Policy adjustment, move period from one donor group to another, add donor group.</td>
</tr>
<tr>
<td>978</td>
<td>PA_SDO_CLR_FLGS</td>
<td>Policy adjustment, select donor, clear cannot donate storage flags.</td>
</tr>
<tr>
<td>980</td>
<td>PA_TA_EA_MOV_UBA</td>
<td>Policy adjustment, tuning alias, efficiency-based adjustment, move unbound alias.</td>
</tr>
<tr>
<td>981</td>
<td>PA_TA_EA_MOV_BDEV</td>
<td>Policy adjustment, tuning alias, efficiency-based adjustment, move base device.</td>
</tr>
<tr>
<td>982</td>
<td>PA_TA_EA_TIME</td>
<td>Policy adjustment, tuning alias, efficiency-based adjustment, no action due to PAV subsystem time since last alias move not exceeding one minute.</td>
</tr>
<tr>
<td>983</td>
<td>PA_TA_EA_DONPIO</td>
<td>Policy adjustment, tuning alias, efficiency-based adjustment, donor not selected because donor projected increase in queued I/O requests exceeds threshold.</td>
</tr>
<tr>
<td>984</td>
<td>PA_TA_EA_IOSQL</td>
<td>Policy adjustment, tuning alias, efficiency-based adjustment, receiver not selected because of insufficient average queued I/O requests.</td>
</tr>
<tr>
<td>987</td>
<td>PA_TA_EA_DON_L1MIN</td>
<td>Policy adjustment, tuning alias, efficiency-based adjustment, donor not selected because donor donated recently.</td>
</tr>
<tr>
<td>988</td>
<td>PA_TA_EA_REC_L1MIN</td>
<td>Policy adjustment, tuning alias, efficiency-based adjustment, receiver not selected because receiver was helped recently.</td>
</tr>
<tr>
<td>989</td>
<td>PA_TA_EA_CUQDT</td>
<td>Policy adjustment, tuning alias, efficiency-based adjustment, receiver not selected due to excessive control unit queueing delay.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>990</td>
<td>PA_TA_GA_MOV_UBA Policy adjustment, tuning alias, goal-based adjustment, move unbound alias.</td>
<td></td>
</tr>
<tr>
<td>991</td>
<td>PA_TA_GA_MOV_BDEV Policy adjustment, tuning alias, goal-based adjustment, move base device.</td>
<td></td>
</tr>
<tr>
<td>992</td>
<td>PA_TA_GA_INV_RDEV Policy adjustment, tuning alias, goal-based adjustment, invalid receiver device.</td>
<td></td>
</tr>
<tr>
<td>993</td>
<td>PA_TA_GA_NA_DONPIO Policy adjustment, tuning alias, goal-based adjustment, donor not selected because donor projected increase in queued I/O requests exceeds threshold.</td>
<td></td>
</tr>
<tr>
<td>994</td>
<td>PA_TA_GA_NA_IOSQL Policy adjustment, tuning alias, goal-based adjustment, receiver not selected because of insufficient average queued I/O requests.</td>
<td></td>
</tr>
<tr>
<td>995</td>
<td>PA_TA_GA_DON_L1MIN Policy adjustment, tuning alias, goal-based adjustment, donor not selected because donor donated recently.</td>
<td></td>
</tr>
<tr>
<td>996</td>
<td>PA_TA_GA_REC_L1MIN Policy adjustment, tuning alias, goal-based adjustment, receiver not selected because receiver was helped recently.</td>
<td></td>
</tr>
<tr>
<td>997</td>
<td>PA_TA_RRPATOD When Tuning alias adjustment was entered.</td>
<td></td>
</tr>
<tr>
<td>998</td>
<td>PA_TA_GA_DONGTREC Policy adjustment, tuning alias, goal-based adjustment, no action due to donor's importance greater than receiver's or donor belongs to a system service class.</td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>PA_TA_GA_NA_CUQDT Policy adjustment, tuning alias, goal-based adjustment, receiver not selected due to excessive control until queueing delay.</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>PA_TA_EA_PASS_NO Policy adjustment, tuning alias, efficiency adjustment, pass number.</td>
<td></td>
</tr>
<tr>
<td>1900</td>
<td>PA_0C9_suppressed Policy adjustment.</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>PA_DEC_PSI_TAR Policy adjustment, decrease period protective processor storage target for this resource period.</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>PA_DEC_PSI_TAR_GP Policy adjustment, decrease period protective processor storage target for a resource period associated with this goal period. The goal period is different than the resource period.</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>PA_INC_PSI_TAR Policy adjustment, increase period protective processor storage target for this resource period.</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>PA_INC_PSI_TAR_GR Policy adjustment, increase period protective processor storage target to the resource receiver associated with this goal receiver. The goal receiver is different than the resource receiver.</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>PA_PSI_NA_NET_VAL Policy adjustment, no period protective processor storage action because insufficient net value. Resource receiver trace.</td>
<td></td>
</tr>
<tr>
<td>2031</td>
<td>PA_PSI_GREC_NETVAL Policy adjustment, no period protective processor storage action because insufficient net value. Goal receiver trace. The goal receiver is different than the resource receiver.</td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td>PA_PSI_NA_REC_VAL Policy adjustment, no period protective processor storage action because insufficient receiver value. Goal receiver trace.</td>
<td></td>
</tr>
<tr>
<td>2041</td>
<td>PA_PSI_RREC_RECVAL Policy adjustment, no period protective processor storage action because insufficient receiver value. Resource receiver trace. The resource receiver is different than the goal receiver.</td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td>PA_PSI_TAR_UNAB Policy adjustment, no period protective processor storage action because current target not absorbed.</td>
<td></td>
</tr>
<tr>
<td>2060</td>
<td>PA_REM_PSI_TAR Policy adjustment, remove period protective processor storage target for this resource period.</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>2061</td>
<td>PA_REM_PSI_TAR_GP Policy adjustment, remove period protective processor storage target for the resource period associated with this goal period. The goal period is different than the resource period.</td>
<td></td>
</tr>
<tr>
<td>2070</td>
<td>PLOT_X_REM_PSI_TAR Plot expansion, remove period protective processor storage target for this resource period.</td>
<td></td>
</tr>
<tr>
<td>2071</td>
<td>PLOT_X_REM_PSI_GP Plot expansion, remove period protective processor storage target for a resource period associated with this goal period. The goal period is different than the resource period.</td>
<td></td>
</tr>
<tr>
<td>2080</td>
<td>SH_DEC_PSI_TAR Storage shortage, decrease period protective processor storage target for this resource period.</td>
<td></td>
</tr>
<tr>
<td>2081</td>
<td>SH_DEC_PSI_TAR_GP Storage shortage, decrease period protective processor storage target for a resource period associated with this goal period. The goal period is different than the resource period.</td>
<td></td>
</tr>
<tr>
<td>2090</td>
<td>SH_REM_PSI_TAR Storage shortage, remove period protective processor storage target for this resource period.</td>
<td></td>
</tr>
<tr>
<td>2091</td>
<td>SH_REM_PSI_TAR_GP Storage shortage, remove period protective processor storage target from a resource period associated with this goal period. The goal period is different than the resource period.</td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td>TDH_AS_DEC_PSI_TAR Time driven housekeeping, decrease period protective processor storage target for this resource period.</td>
<td></td>
</tr>
<tr>
<td>2101</td>
<td>TDH_AS_DEC_PSI_GP Time driven housekeeping, decrease period protective processor storage target for a resource period associated with this goal period. The goal period is different than the resource period.</td>
<td></td>
</tr>
<tr>
<td>2110</td>
<td>TDH_AS_REM_PSI_TAR Time driven housekeeping, remove period protective processor storage target from this resource period.</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>2111</td>
<td>TDH_AS_REM_PSI_GP</td>
<td>Time driven housekeeping, remove period protective processor storage target from a resource period associated with this goal period. The goal period is different than the resource period.</td>
</tr>
<tr>
<td>2120</td>
<td>TDH_ME_DEC_PSI_TAR</td>
<td>Time driven minimal effect housekeeping, decrease period protective processor storage target for this resource period.</td>
</tr>
<tr>
<td>2121</td>
<td>TDH_ME_DEC_PSI_GP</td>
<td>Time driven minimal effect housekeeping, decrease period protective processor storage target for a resource period associated with this goal period. The goal period is different than the resource period.</td>
</tr>
<tr>
<td>2130</td>
<td>TDH_ME_REM_PSI_TAR</td>
<td>Time driven minimal effect housekeeping, remove period protective processor storage target from this resource period.</td>
</tr>
<tr>
<td>2131</td>
<td>TDH_ME_REM_PSI_GP</td>
<td>Time driven minimal effect housekeeping, remove period protective processor storage target from a resource period associated with this goal period. The goal period is different than the resource period.</td>
</tr>
<tr>
<td>2140</td>
<td>TDH_UA_DEC_PSI_TAR</td>
<td>Time driven unassessable housekeeping, decrease period protective processor storage target for this resource period.</td>
</tr>
<tr>
<td>2141</td>
<td>TDH_UA_DEC_PSI_GP</td>
<td>Time driven unassessable housekeeping, decrease period protective processor storage target for a resource period associated with this goal period. The goal period is different than the resource period.</td>
</tr>
<tr>
<td>2150</td>
<td>TDH_UA_REM_PSI_TAR</td>
<td>Time driven unassessable housekeeping, remove period protective processor storage target from this resource period.</td>
</tr>
<tr>
<td>Code</td>
<td>Action Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>2151</td>
<td>TDH_UA_REM_PSI_GP</td>
<td>Time driven unassessable housekeeping, remove period protective processor storage target from a resource period associated with this goal period. The goal period is different than the resource period.</td>
</tr>
<tr>
<td>2160</td>
<td>RV_HSK_INC_PSI_TAR</td>
<td>Reverse housekeeping, increment period protective processor storage target for this resource receiver.</td>
</tr>
<tr>
<td>2161</td>
<td>RV_HSK_INC_PSI_GR</td>
<td>Reverse housekeeping, increment period protective processor storage target for a resource receiver associated with this goal receiver. The goal receiver is different than the resource receiver.</td>
</tr>
<tr>
<td>2170</td>
<td>WSM_DEC_PSI_TAR</td>
<td>Working set management, decrease period protective processor storage target for this resource period.</td>
</tr>
<tr>
<td>2171</td>
<td>WSM_DEC_PSI_TAR_GP</td>
<td>Working set management, decrease period protective processor storage target for a resource period associated with this goal period. The goal period is different than the resource period.</td>
</tr>
<tr>
<td>2180</td>
<td>WSM_REM_PSI_TAR</td>
<td>Working set management, remove period protective processor storage target from this resource period.</td>
</tr>
<tr>
<td>2181</td>
<td>WSM_REM_PSI_TAR_GP</td>
<td>Working set management, remove period protective processor storage target from a resource period associated with this goal period. The goal period is different than the resource period.</td>
</tr>
<tr>
<td>2510</td>
<td>PA_DEC_PRT</td>
<td>Policy adjustment, decrease swap protect time.</td>
</tr>
<tr>
<td>2520</td>
<td>PA_INC_PRT</td>
<td>Policy adjustment, increase swap protect time.</td>
</tr>
<tr>
<td>2530</td>
<td>PA_PRT_NA_NET_VAL</td>
<td>Policy adjustment, no swap protect time action because insufficient net value.</td>
</tr>
<tr>
<td>2540</td>
<td>PA_PRT_NA_REC_VAL</td>
<td>Policy adjustment, no swap protect time action because insufficient receiver value.</td>
</tr>
</tbody>
</table>
Table 93. SMF Type 99 Action Codes (continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Action Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550</td>
<td>PA_PRT_NA_SRVR_UD</td>
<td>Policy adjustment, no swap protect time action because period is a server or a universal donor.</td>
</tr>
<tr>
<td>2555</td>
<td>PA_PRT_NA_ENCLAVE</td>
<td>Policy adjustment, no swap protect time action because no policy adjustment actions for enclave swap delay.</td>
</tr>
<tr>
<td>2560</td>
<td>PA_PRT_NO_WSS</td>
<td>Policy adjustment, no swap protect time action because no average working set size to calculate frame projections.</td>
</tr>
<tr>
<td>2570</td>
<td>PA_PRT_TAR_UNAB</td>
<td>Policy adjustment, no swap protect time action because current target not absorbed.</td>
</tr>
<tr>
<td>2580</td>
<td>PA_REM_PRT</td>
<td>Policy adjustment, remove swap protect time.</td>
</tr>
<tr>
<td>2590</td>
<td>RV_HSK_INC_PRT</td>
<td>Reverse housekeeping increment swap protect time.</td>
</tr>
<tr>
<td>2600</td>
<td>SH_DEC_PRT</td>
<td>Storage shortage, decrease swap protect time.</td>
</tr>
<tr>
<td>2610</td>
<td>SH_REM_PRT</td>
<td>Storage shortage, remove swap protect time.</td>
</tr>
<tr>
<td>2620</td>
<td>TDH_DEC_PRT</td>
<td>Time driven housekeeping, decrease swap protect time.</td>
</tr>
<tr>
<td>2630</td>
<td>TDH_REM_PRT</td>
<td>Time driven housekeeping, remove swap protect time.</td>
</tr>
<tr>
<td>2640</td>
<td>WSM_DEC_PRT</td>
<td>Working set management, decrease swap protect time.</td>
</tr>
<tr>
<td>2650</td>
<td>WSM_REM_PRT</td>
<td>Working set management, remove swap protect time.</td>
</tr>
<tr>
<td>3010</td>
<td>PA_CSI_NA_NET_VAL</td>
<td>Policy adjustment, no common area protective processor storage target action because insufficient net value.</td>
</tr>
<tr>
<td>3020</td>
<td>PA_CSI_NA_REC_VAL</td>
<td>Policy adjustment, no common area protective processor storage target action because insufficient receiver value.</td>
</tr>
<tr>
<td>3030</td>
<td>PA_CSI_TAR_UNAB</td>
<td>Policy adjustment, no common area protective processor storage target action because current target not absorbed.</td>
</tr>
<tr>
<td>3040</td>
<td>PA_INC_CSI_TAR</td>
<td>Policy adjustment, increase common area protective processor storage target.</td>
</tr>
</tbody>
</table>
Table 93. SMF Type 99 Action Codes (continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3050</td>
<td>Time driven housekeeping, decrease common area protective processor storage target.</td>
</tr>
<tr>
<td>3060</td>
<td>Time driven housekeeping, remove common area protective processor storage target.</td>
</tr>
<tr>
<td>3070</td>
<td>Increase protective processor storage target to reduce cross memory paging.</td>
</tr>
<tr>
<td>3080</td>
<td>Did not increase protective processor storage target for cross memory paging because of insufficient net value.</td>
</tr>
<tr>
<td>3090</td>
<td>Did not increase protective processor storage target for cross memory paging because of insufficient receiver value.</td>
</tr>
<tr>
<td>3095</td>
<td>Did not increase protective processor storage target for cross memory paging because address space faulted on was in a service period with short response time goals.</td>
</tr>
<tr>
<td>3100</td>
<td>Did not increase protective processor storage target for cross memory paging because target was unabsorbed.</td>
</tr>
<tr>
<td>3110</td>
<td>Time driven housekeeping, decrease shared area protective processor storage target.</td>
</tr>
<tr>
<td>3120</td>
<td>Policy adjustment, no shared area protective processor storage target action because current target not absorbed.</td>
</tr>
<tr>
<td>3130</td>
<td>Policy adjustment, no shared area protective processor storage target action because insufficient receiver value.</td>
</tr>
<tr>
<td>3140</td>
<td>Policy adjustment, no shared area protective processor storage target action because insufficient net value.</td>
</tr>
<tr>
<td>3150</td>
<td>Policy adjustment, increase shared area protective processor storage target.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>3160</td>
<td>PA_DEC_SHR_DEL Policy adjustment, decrease shared area protective processor storage target by delta in SPTE.</td>
</tr>
<tr>
<td>3510</td>
<td>B16M_SHORT_DEC_MPL Below 16 meg storage shortage, decrease mpl.</td>
</tr>
<tr>
<td>3520</td>
<td>PA_DEC_MPL Policy adjustment, decrease mpl.</td>
</tr>
<tr>
<td>3521</td>
<td>PA_DEC_MPL_GP Policy adjustment, decrease mpl for a resource period that is associated with this goal period. The goal period is different than the resource period.</td>
</tr>
<tr>
<td>3530</td>
<td>PA_INC_MPL Policy adjustment, increase mpl.</td>
</tr>
<tr>
<td>3531</td>
<td>PA_INC_MPL_TS Policy adjustment, increase mpl for transaction servers.</td>
</tr>
<tr>
<td>3540</td>
<td>PA_INC_MPL_GR Policy adjustment, increase mpl for storage managed enclave goal period.</td>
</tr>
<tr>
<td>3541</td>
<td>PA_INC_MPL_RR Policy adjustment, increase mpl for storage managed enclave resource period.</td>
</tr>
<tr>
<td>3550</td>
<td>PA_MPL_NA_NET_VAL Policy adjustment, no mpl action because insufficient net value.</td>
</tr>
<tr>
<td>3551</td>
<td>PA_MPL_NETVAL_RR Policy adjustment, no mpl action because insufficient net value for storage managed enclave server periods.</td>
</tr>
<tr>
<td>3552</td>
<td>PA_MPL_NETVAL_GR Policy adjustment, no mpl action because insufficient net value for storage managed enclave goal periods.</td>
</tr>
<tr>
<td>3560</td>
<td>PA_MPL_NA_REC_VAL Policy adjustment, no mpl action because insufficient receiver value.</td>
</tr>
<tr>
<td>3561</td>
<td>PA_MPL_RECVAL_RR Policy adjustment, no mpl action because insufficient receiver value for storage managed enclave servers.</td>
</tr>
<tr>
<td>3562</td>
<td>PA_MPL_RECVAL_GR Policy adjustment, no mpl action because insufficient receiver value for storage managed enclave goal periods.</td>
</tr>
<tr>
<td>3580</td>
<td>PA_MPL_NA_SHORTAGE Policy adjustment, no mpl action because system is in a storage shortage.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>3590</td>
<td>PA_SWAP_FOR_MPL</td>
</tr>
<tr>
<td>3600</td>
<td>TDH_DEC_MPL</td>
</tr>
<tr>
<td>3601</td>
<td>TDH_DEC_MPL_FOR_GR</td>
</tr>
<tr>
<td>3602</td>
<td>TDH_DEC_MPL_FOR_RR</td>
</tr>
<tr>
<td>3603</td>
<td>TDH_DEC_QMPL_GR</td>
</tr>
<tr>
<td>3604</td>
<td>TDH_DEC_QMPL_RR</td>
</tr>
<tr>
<td>3605</td>
<td>TDH_INC_QMPL_GR</td>
</tr>
<tr>
<td>3606</td>
<td>TDH_INC_QMPL_RR</td>
</tr>
<tr>
<td>3607</td>
<td>TDH_MOD_SERVINST</td>
</tr>
<tr>
<td>3608</td>
<td>TDH_STRT_MIN_SP</td>
</tr>
<tr>
<td>3609</td>
<td>TDH_RECOMM_FAILED</td>
</tr>
<tr>
<td>3610</td>
<td>RV_HSK_INC_MPL</td>
</tr>
<tr>
<td>3613</td>
<td>TDH_DEC_QMOV_GR</td>
</tr>
<tr>
<td>3614</td>
<td>TDH_DEC_QMOV_RR</td>
</tr>
<tr>
<td>3615</td>
<td>TDH_DEC_QSWP_GR</td>
</tr>
<tr>
<td>3616</td>
<td>TDH_DEC_QSWP_RR</td>
</tr>
<tr>
<td>3617</td>
<td>TDH_DEC_QSVT_GR</td>
</tr>
<tr>
<td>3618</td>
<td>TDH_DEC_QSVT_RR</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>3620</td>
<td>TDH_NA_INI_BAL Balancing of initiators, no action.</td>
</tr>
<tr>
<td>3621</td>
<td>TDH_MPL_VCAL_ERR Timer driven housekeeping, no decrease of mpl because invalid scope of projected velocity.</td>
</tr>
<tr>
<td>3622</td>
<td>TDH_MPL_SVLCAL_ERR Timer driven housekeeping, no decrease of mpl because invalid scope of projected sysplex velocity.</td>
</tr>
<tr>
<td>4010</td>
<td>ESPOL_NSW_LRU Change non-swap expanded access policy to lru.</td>
</tr>
<tr>
<td>4020</td>
<td>ESPOL_NSW_SP_AVAIL Change non-swap expanded access policy to space available.</td>
</tr>
<tr>
<td>4050</td>
<td>ESPOL_SWP_LRU Change swap expanded access policy to lru.</td>
</tr>
<tr>
<td>4060</td>
<td>ESPOL_SWP_SP_AVAIL Change swap expanded access policy to space available.</td>
</tr>
<tr>
<td>4090</td>
<td>HSK_ROLL_EXP_SPA Housekeep address space to space available because it is rolling expanded storage.</td>
</tr>
<tr>
<td>4200</td>
<td>STL_CR_AS_BLW_TRGT Stealing found a storage critical address space which is below its processor protective target and RSM took more frames as requested, first trace.</td>
</tr>
<tr>
<td>4201</td>
<td>STL_CR_AS_BLW_TRG2 Stealing found a storage critical address space which is below its processor protective target and RSM took more frames as requested, second trace.</td>
</tr>
<tr>
<td>4202</td>
<td>STL_CR_AS_BLW_TRG3 Stealing found a storage critical address space which is below its processor protective target and RSM took more frames as requested, third trace.</td>
</tr>
<tr>
<td>4203</td>
<td>STL_CR_REQ_BLW_PPS Steal request will bring a storage critical address space below its processor protective target.</td>
</tr>
<tr>
<td>4310</td>
<td>STOR_AFCOK_INC The available frame queue target got increased.</td>
</tr>
<tr>
<td>4320</td>
<td>STOR_AFCOK_DEC The available frame queue target got decreased.</td>
</tr>
<tr>
<td>4330</td>
<td>STOR_PRESTEALOK_INC The presteal target got increased.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>4340</td>
<td>STOR_PRESTEALOK_DEC</td>
</tr>
<tr>
<td>4510</td>
<td>ALL_OK_REM_ISI_TAR</td>
</tr>
<tr>
<td>4511</td>
<td>ALL_OK_REM_ISI_GP</td>
</tr>
<tr>
<td>4520</td>
<td>HSK_SL_DEC_ISI_TAR</td>
</tr>
<tr>
<td>4521</td>
<td>HSK_SL_DEC_ISI_GP</td>
</tr>
<tr>
<td>4530</td>
<td>HSK_SL_REM_ISI_TAR</td>
</tr>
<tr>
<td>4531</td>
<td>HSK_SL_REM_ISI_GP</td>
</tr>
<tr>
<td>4540</td>
<td>OK1_INC_ISI_TAR</td>
</tr>
<tr>
<td>4541</td>
<td>OK1_INC_ISI_TAR_GR</td>
</tr>
<tr>
<td>4550</td>
<td>PA_DEC_ISI_TAR</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>4551</td>
<td>PA_DEC_ISI_TAR_GP</td>
</tr>
<tr>
<td>4560</td>
<td>PA_INC_ISI_TAR</td>
</tr>
<tr>
<td>4561</td>
<td>PA_INC_ISI_TAR_GR</td>
</tr>
<tr>
<td>4570</td>
<td>PA_ISI_NA_NET_Val</td>
</tr>
<tr>
<td>4571</td>
<td>PA_ISI_GREC_NETVAL</td>
</tr>
<tr>
<td>4580</td>
<td>PA_ISI_NA_REC_VAL</td>
</tr>
<tr>
<td>4581</td>
<td>PA_ISI_GREC_RECVAL</td>
</tr>
<tr>
<td>4590</td>
<td>PA_REM_ISI_TAR</td>
</tr>
<tr>
<td>4591</td>
<td>PA_REM_ISI_TAR_GP</td>
</tr>
<tr>
<td>Action Code</td>
<td>SMF Type 99 Action Code</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>4592</td>
<td>PA_DEC_ISI_GDON</td>
</tr>
<tr>
<td>4600</td>
<td>PLOT_X_REM_ISI_TAR</td>
</tr>
<tr>
<td>4601</td>
<td>PLOT_X_REM_ISI_GP</td>
</tr>
<tr>
<td>4610</td>
<td>ROLL_EXP_REM_ISI</td>
</tr>
<tr>
<td>4611</td>
<td>ROLL_EXP_REM_ISIGP</td>
</tr>
<tr>
<td>4620</td>
<td>RV_HSK_INC_ISI_TAR</td>
</tr>
<tr>
<td>4621</td>
<td>RV_HSK_INC_ISI_GR</td>
</tr>
<tr>
<td>4630</td>
<td>SH_DEC_ISI_TAR</td>
</tr>
<tr>
<td>4631</td>
<td>SH_DEC_ISI_TAR_GP</td>
</tr>
</tbody>
</table>
Table 93. SMF Type 99 Action Codes (continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>4640</td>
<td>SH_REM_ISI_TAR</td>
<td>Storage shortage, remove individual protective processor storage target for this address space.</td>
</tr>
<tr>
<td>4641</td>
<td>SH_REM_ISI_TAR_GP</td>
<td>Storage shortage, remove individual protective processor storage target from an address space in a resource period associated with this goal period. The goal period is different than the resource period.</td>
</tr>
<tr>
<td>4650</td>
<td>TDH_ME_DEC_ISI_TAR</td>
<td>Time driven minimal effect housekeeping, decrease individual protective processor storage target for this address space.</td>
</tr>
<tr>
<td>4653</td>
<td>TDH_ME_DEC_ISI_GP</td>
<td>Time driven housekeeping minimal effect on goal period when housekeeping down the individual protective processor storage target for a transaction server period address space.</td>
</tr>
<tr>
<td>4660</td>
<td>TDH_ME_REM_ISI_TAR</td>
<td>Time driven minimal effect housekeeping, remove individual protective processor storage target for this address space.</td>
</tr>
<tr>
<td>4661</td>
<td>TDH_ME_REM_ISI_GP</td>
<td>Time driven minimal effect housekeeping, remove individual protective processor storage target from an address space in a resource period associated with this goal period. The goal period is different than the resource period.</td>
</tr>
<tr>
<td>4670</td>
<td>TDH_UA_DEC_ISI_TAR</td>
<td>Time driven unassessable housekeeping, decrease individual protective processor storage target for this address space.</td>
</tr>
<tr>
<td>4671</td>
<td>TDH_UA_DEC_ISI_GP</td>
<td>Time driven unassessable housekeeping, decrease individual protective processor storage target for an address space in a resource period associated with this goal period. The goal period is different than the resource period.</td>
</tr>
<tr>
<td>Code</td>
<td>Action Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>4680</td>
<td>TDH_UA_REM_ISI_TAR</td>
<td>Time driven unassessable housekeeping, remove individual protective processor storage target for this address space.</td>
</tr>
<tr>
<td>4681</td>
<td>TDH_UA_REM_ISI_GP</td>
<td>Time driven unassessable housekeeping, remove individual protective processor storage target from an address space in a resource period associated with this goal period. The goal period is different than the resource period.</td>
</tr>
<tr>
<td>4690</td>
<td>WSM_DEC_ISI_TAR</td>
<td>Working set management, decrease individual protective processor storage target for this address space.</td>
</tr>
<tr>
<td>4691</td>
<td>WSM_DEC_ISI_TAR_GP</td>
<td>Working set management, decrease individual protective processor storage target for an address space in a resource period associated with this goal period. The goal period is different than the resource period.</td>
</tr>
<tr>
<td>4700</td>
<td>WSM_INC_ISI_TAR</td>
<td>Working set management, increase individual protective processor storage target for this address space.</td>
</tr>
<tr>
<td>4701</td>
<td>WSM_INC_ISI_TAR_GR</td>
<td>Working set management, increase individual protective processor storage target for an address space in a resource receiver associated with this goal receiver. The goal receiver is different than the resource receiver.</td>
</tr>
<tr>
<td>4710</td>
<td>WSM_REM_ISI_TAR</td>
<td>Working set management, remove individual protective processor storage target for this address space.</td>
</tr>
<tr>
<td>4711</td>
<td>WSM_REM_ISI_TAR_GP</td>
<td>Working set management, remove individual protective processor storage target from an address space in a resource period associated with this goal period. The goal period is different than the resource period.</td>
</tr>
<tr>
<td>4720</td>
<td>Hsk_cr_inc_ici_tar</td>
<td>Housekeep storage critical address space increment central protective target.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4721</td>
<td>Hsk_cr_dec_ici_tar Housekeep storage critical address space decrement central protective target.</td>
<td></td>
</tr>
<tr>
<td>4722</td>
<td>Hsk_cr_inc_ipi_tar Housekeep storage critical address space increment processor protective target.</td>
<td></td>
</tr>
<tr>
<td>4723</td>
<td>Hsk_cr_dec_ipi_tar Housekeep storage critical address space decrement processor protective target.</td>
<td></td>
</tr>
<tr>
<td>4724</td>
<td>Hsk_cr_inc_ici_gp Housekeep storage critical space increment central protective target. Goal and resource periods are different.</td>
<td></td>
</tr>
<tr>
<td>4725</td>
<td>Hsk_cr_dec_ici_gp Housekeep storage critical space decrement central protective target. Goal and resource periods are different.</td>
<td></td>
</tr>
<tr>
<td>4726</td>
<td>Hsk_cr_inc_ipi_gp Housekeep storage critical space increment processor protective target. Goal and resource periods are different.</td>
<td></td>
</tr>
<tr>
<td>4727</td>
<td>Hsk_cr_dec_ipi_gp Housekeep storage critical space decrement processor protective target. Goal and resource periods are different.</td>
<td></td>
</tr>
<tr>
<td>4730</td>
<td>Hsk_cr_rem_ipi_tar Housekeep storage critical space remove protective processor target.</td>
<td></td>
</tr>
<tr>
<td>4740</td>
<td>Chp_cr_inc_ici_tar Change period increment central protective target.</td>
<td></td>
</tr>
<tr>
<td>4743</td>
<td>Chp_cr_inc_ipi_tar Change period increment processor protective Target.</td>
<td></td>
</tr>
<tr>
<td>4744</td>
<td>Chp_cr_inc_ipi_gp Change period increment processor protective Target, goal and resource periods are different.</td>
<td></td>
</tr>
<tr>
<td>4747</td>
<td>inc_ipi_tar_blw_bw The protective processor target cannot be incremented the new target would be below threshold for storage critical address spaces.</td>
<td></td>
</tr>
<tr>
<td>4750</td>
<td>pa_cr_no_action No storage donation action was taken, because the address space was storage critical.</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Notes</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4751</td>
<td>paaup_cr_no_action</td>
<td>No storage donation action was taken, because the address space was storage critical.</td>
</tr>
<tr>
<td>4752</td>
<td>palpd_cr_no_action</td>
<td>No storage donation action was taken, the address space was storage critical.</td>
</tr>
<tr>
<td>4760</td>
<td>pa_fst_outof_donor</td>
<td>Find_storage has to give up, because it did not find more donors.</td>
</tr>
<tr>
<td>4761</td>
<td>pa_fst_action</td>
<td>Find_storage, action bookkept.</td>
</tr>
<tr>
<td>4762</td>
<td>pa_fst_begin</td>
<td>Find_storage, begin.</td>
</tr>
<tr>
<td>4763</td>
<td>pa_fst_end</td>
<td>Find_storage, end.</td>
</tr>
<tr>
<td>4764</td>
<td>pa_fst_parms</td>
<td>Find_storage, trace parameters.</td>
</tr>
<tr>
<td>4768</td>
<td>pa_fst_isi_dnval_fd</td>
<td>Find_storage, check donation value failed.</td>
</tr>
<tr>
<td>4769</td>
<td>pa_fst_noisi_sdon</td>
<td>Find_storage, the resource donor is not a WSM individual storage donor.</td>
</tr>
<tr>
<td>4770</td>
<td>pa_fst_isi_no_bactn</td>
<td>Find_storage, check donation value failed.</td>
</tr>
<tr>
<td>4771</td>
<td>pa_fst_no_bst_5as</td>
<td>Find_storage, no best five individual donor address spaces found.</td>
</tr>
<tr>
<td>5500</td>
<td>PA_DCM_INC_TAR</td>
<td>Policy adjustment, increase I/O velocity target. Resource receiver trace.</td>
</tr>
<tr>
<td>5501</td>
<td>PA_DCM_NA_NOPROB</td>
<td>Policy adjustment, no action, insufficient delay. Resource receiver trace.</td>
</tr>
<tr>
<td>5502</td>
<td>PA_DCM_NA_MAXVEL</td>
<td>Policy adjustment, no action, actual velocity or current target velocity is at maximum. Resource receiver trace.</td>
</tr>
<tr>
<td>5503</td>
<td>PA_DCM_NA_MAXTARG</td>
<td>Policy adjustment, no action, new target velocity is at maximum. Resource receiver trace.</td>
</tr>
<tr>
<td>5504</td>
<td>PA_DCM_NA_TAR.UNAB</td>
<td>Policy adjustment, no action, current target velocity is not being achieved. Resource receiver trace.</td>
</tr>
<tr>
<td>5505</td>
<td>PA_DCM_NA_RECVAL</td>
<td>Policy adjustment, no action, insufficient receiver value. Resource receiver trace.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>5506</td>
<td>PA_DCM_NA_SVC_INC Policy adjustment, no action, current target velocity has caused service time to increase. Resource receiver trace.</td>
<td></td>
</tr>
<tr>
<td>5507</td>
<td>PA_DCM_NA_IOSCDT Policy adjustment, no action, service error. Resource receiver trace.</td>
<td></td>
</tr>
<tr>
<td>5508</td>
<td>PA_DCM_WLM_HUNG Policy adjustment, dynamic chpid management, WLM task has not run recently so it may be hung.</td>
<td></td>
</tr>
<tr>
<td>5510</td>
<td>PA_DCM_GREC Policy adjustment, dynamic chpid management, goal receiver trace. The goal receiver is different from the resource receiver.</td>
<td></td>
</tr>
<tr>
<td>5515</td>
<td>PA_DCM_NO_SCMT_ROW Policy adjustment, dynamic chpid management, period is beyond bounds of Service Class Measurement Table.</td>
<td></td>
</tr>
<tr>
<td>5516</td>
<td>PA_DCM_DROP_SUBSYS Policy adjustment, dynamic chpid management, subsystem dropped from tracking either because its no longer eligible for management or there was a problem retrieving current data from IOS.</td>
<td></td>
</tr>
<tr>
<td>5517</td>
<td>PA_DCM_NEWSUB_ERR Policy adjustment, dynamic chpid management, error from IOS service when trying to get data about a new subsystem to track.</td>
<td></td>
</tr>
<tr>
<td>5518</td>
<td>PA_DCM_GOALALG_ON Policy adjustment, dynamic chpid management goal algorithm has been enabled.</td>
<td></td>
</tr>
<tr>
<td>5519</td>
<td>PA_DCM_GOALALG_OFF Policy adjustment, dynamic chpid management goal algorithm has been disabled.</td>
<td></td>
</tr>
<tr>
<td>5520</td>
<td>HSK_DCM_BELOW_DEF Housekeeping, dynamic chpid management, velocity target eliminated because it is below the default velocity.</td>
<td></td>
</tr>
<tr>
<td>5521</td>
<td>HSK_DCM_NO_DELAY Housekeeping, dynamic chpid management, velocity target is reduced or eliminated because no period is experiencing delay.</td>
<td></td>
</tr>
<tr>
<td>5522</td>
<td>HSK_DCM_IOSCDT_ERR Housekeeping, dynamic chpid management, target is reduced or eliminate because no period is experiencing delay.</td>
<td></td>
</tr>
</tbody>
</table>
Table 93. SMF Type 99 Action Codes (continued)

<table>
<thead>
<tr>
<th>Action Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5530</td>
<td>IOV_SUBSYS</td>
</tr>
<tr>
<td>5531</td>
<td>IOV_GREC_SYS</td>
</tr>
<tr>
<td>5532</td>
<td>IOV_GREC_LOC</td>
</tr>
<tr>
<td>5533</td>
<td>IOV_GREC_REM</td>
</tr>
<tr>
<td>5534</td>
<td>IOV_GREC_NETV_SYS</td>
</tr>
<tr>
<td>5535</td>
<td>IOV_GREC_NETV_LOC</td>
</tr>
<tr>
<td>5536</td>
<td>IOV_GREC_NETV_REM</td>
</tr>
<tr>
<td>5537</td>
<td>IOV_GDON_NETV_SYS</td>
</tr>
<tr>
<td>5538</td>
<td>IOV_GDON_NETV_LOC</td>
</tr>
<tr>
<td>5539</td>
<td>IOV_GDON_NETV_REM</td>
</tr>
<tr>
<td>5540</td>
<td>IOV_RREC_NETV</td>
</tr>
<tr>
<td>5541</td>
<td>IOV_RDON_NETV</td>
</tr>
<tr>
<td>5542</td>
<td>IOV_GDON_MIMP_SYS</td>
</tr>
<tr>
<td>5543</td>
<td>IOV_GDON_MIMP_LOC</td>
</tr>
<tr>
<td>5544</td>
<td>IOV_GDON_MIMP_REM</td>
</tr>
<tr>
<td>5545</td>
<td>IOV_NORECEIVER</td>
</tr>
<tr>
<td>5546</td>
<td>IOV_NODONOR</td>
</tr>
<tr>
<td>5547</td>
<td>IOV_RC</td>
</tr>
<tr>
<td>5548</td>
<td>IOV_IREC_SYS</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>5549</td>
<td>IOV_IREC_LOC</td>
</tr>
<tr>
<td>5550</td>
<td>IOV_IREC_REM</td>
</tr>
<tr>
<td>5551</td>
<td>IOV_IDON_SYS</td>
</tr>
<tr>
<td>5552</td>
<td>IOV_IDON_LOC</td>
</tr>
<tr>
<td>5553</td>
<td>IOV_IDON_REM</td>
</tr>
<tr>
<td>5554</td>
<td>IOV_DEC_TAR</td>
</tr>
<tr>
<td>5555</td>
<td>IOV_BAD_SUBSYS</td>
</tr>
<tr>
<td>5556</td>
<td>IOV_RDON_MIMP</td>
</tr>
<tr>
<td>5557</td>
<td>IOV_ADD_CHPID</td>
</tr>
<tr>
<td>5558</td>
<td>IOV_DELETE_CHPID</td>
</tr>
<tr>
<td>5559</td>
<td>IOV_AVAILABILITY</td>
</tr>
<tr>
<td>6510</td>
<td>HSK_SL_DEC_ICI_TAR</td>
</tr>
<tr>
<td>6520</td>
<td>HSK_SL_REM_ICI_TAR</td>
</tr>
<tr>
<td>6530</td>
<td>OK1_INC_ICI_TAR</td>
</tr>
<tr>
<td>6540</td>
<td>PA_DEC_ICI_TAR</td>
</tr>
<tr>
<td>6550</td>
<td>PA_INC_ICI_TAR</td>
</tr>
<tr>
<td>6560</td>
<td>PA_REM_ICI_TAR</td>
</tr>
<tr>
<td>6570</td>
<td>PLOT_X_REM_ICI_TAR</td>
</tr>
<tr>
<td>6580</td>
<td>SH_DEC_ICI_TAR</td>
</tr>
<tr>
<td>6590</td>
<td>SH_REM_ICI_TAR</td>
</tr>
<tr>
<td>Action Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>6600 SWAPIN_DEC_ICI_TAR</td>
<td>Decrease protective central storage target at swap in because we cannot get enough frames to run address space at target.</td>
</tr>
<tr>
<td>6610 SWAPIN_REM_ICI_TAR</td>
<td>Remove protective central storage target at swap in because we cannot get enough frames to run address space at target.</td>
</tr>
<tr>
<td>6620 WSM_DEC_ICI_TAR</td>
<td>Working set management, decrease protective central storage target.</td>
</tr>
<tr>
<td>6630 WSM_INC_ICI_TAR</td>
<td>Working set management, increase protective central storage target.</td>
</tr>
<tr>
<td>6640 WSM_REM_ICI_TAR</td>
<td>Working set management, remove protective central storage target.</td>
</tr>
<tr>
<td>7110 SWAPIN_REM_RCS_TAR</td>
<td>Remove restrictive central target because we can swap address space in at ok1 point.</td>
</tr>
<tr>
<td>7120 SWAPIN_SET_RCS_TAR</td>
<td>Set restrictive central storage target at swap in because we cannot get enough frames to run address space at ok1.</td>
</tr>
<tr>
<td>7120 OTL_USE_DISC_CENT</td>
<td>Working set management, out too long use discretionary central.</td>
</tr>
<tr>
<td>7510 WSM_DEC_MPL</td>
<td>Working set management, decrease mpl.</td>
</tr>
<tr>
<td>7520 WSM_DEC_MPL_GP</td>
<td>Working set management, decrease mpl for a resource period associated with this goal period. The goal period and the resource period are different.</td>
</tr>
<tr>
<td>7530 WSM_END_A2B_CNT</td>
<td>Working set management, end a’s frames to b central storage interval.</td>
</tr>
<tr>
<td>7540 WSM_END_A2B_PSTOR</td>
<td>Working set management, end a’s frames to b processor stor interval.</td>
</tr>
<tr>
<td>7550 WSM_END_OK1</td>
<td>Working set management, end ok1 interval.</td>
</tr>
<tr>
<td>7560 WSM_END_OK1_BY_STL</td>
<td>Working set management, end ok1 interval.</td>
</tr>
<tr>
<td>7570 WSM_END_OK1_RUN_OK</td>
<td>Working set management, end ok1 interval.</td>
</tr>
<tr>
<td>Code</td>
<td>Action Code</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>7590</td>
<td>WSM_END_SWAPIN</td>
</tr>
<tr>
<td>7600</td>
<td>WSM_END_TRYLRU</td>
</tr>
<tr>
<td>7610</td>
<td>WSM_NA_MP1</td>
</tr>
<tr>
<td>7620</td>
<td>WSM_NA_NET_VAL</td>
</tr>
<tr>
<td>7630</td>
<td>WSM_NA_NPCR_VAL</td>
</tr>
<tr>
<td>7640</td>
<td>WSM_STRT_A2B_CNT</td>
</tr>
<tr>
<td>7650</td>
<td>WSM_STRT_A2B_PSTOR</td>
</tr>
<tr>
<td>7660</td>
<td>WSM_STRT_OK1</td>
</tr>
<tr>
<td>7670</td>
<td>WSM_START_OTL_IN</td>
</tr>
<tr>
<td>7690</td>
<td>WSM_STRT_SWAPIN</td>
</tr>
<tr>
<td>7700</td>
<td>WSM_STRT_TRYLRU</td>
</tr>
<tr>
<td>7710</td>
<td>WSM_USE_DISC_CENT</td>
</tr>
<tr>
<td>7720</td>
<td>WSM_USE_DISC_EXP</td>
</tr>
<tr>
<td>8010</td>
<td>PA_CAP_DECS</td>
</tr>
<tr>
<td>8020</td>
<td>PA_CAP_INCS</td>
</tr>
<tr>
<td>8025</td>
<td>PA_CAP_GETMAIN</td>
</tr>
<tr>
<td>8030</td>
<td>PA_DRGROUP_ADD</td>
</tr>
<tr>
<td>8040</td>
<td>PA_DRGROUP_DELETE</td>
</tr>
<tr>
<td>8050</td>
<td>PA_DRGROUP_MRK_DEL</td>
</tr>
<tr>
<td>8055</td>
<td>PA_DRGROUP_MRK_ALL</td>
</tr>
<tr>
<td>8060</td>
<td>PA_DRGROUP_EXCHG</td>
</tr>
<tr>
<td>Action Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>8070 PA_DRGROUP_MAX_INC</td>
<td>Dynamic resource group maximum service.</td>
</tr>
<tr>
<td>8075 PA_DRGROUP_MAX_NI</td>
<td>Dynamic resource group maximum service rate not increased.</td>
</tr>
<tr>
<td>8080 PA_DRGROUP_MAX_DEC</td>
<td>Dynamic resource group maximum service rate decreased.</td>
</tr>
<tr>
<td>8090 PA_DRGROUP_ADD_INT</td>
<td>Dynamic resource group add initiators.</td>
</tr>
<tr>
<td>8095 PA_DRGROUP_TEST</td>
<td>Dynamic resource test trace.</td>
</tr>
<tr>
<td>8500 HSK_FROM_SPC_IODP</td>
<td>Housekeeping, move from small I/O consumer priority, period is no longer small consumer.</td>
</tr>
<tr>
<td>8510 HSK_TO_SPC_IODP</td>
<td>Housekeeping, move to small I/O consumer priority.</td>
</tr>
<tr>
<td>8520 HSK_XFROM_SPC_IODP</td>
<td>Housekeeping, exchange from small I/O consumer priority to make room for another small consumer.</td>
</tr>
<tr>
<td>8525 HSK_UNBUNCH_IOPRTY</td>
<td>Housekeeping, unbunch I/O priorities.</td>
</tr>
<tr>
<td>8530 PA_IMDO_DON</td>
<td>Policy adjustment, assess moving primary I/O donor down to occupied priority.</td>
</tr>
<tr>
<td>8540 PA_IMDU_DON</td>
<td>Policy adjustment, assess moving primary I/O donor down to unoccupied priority.</td>
</tr>
<tr>
<td>8550 PA_IMD_DON_NETVAL</td>
<td>Policy adjustment, I/O move down, rejected for no net value, donor trace, affected by resource donor.</td>
</tr>
<tr>
<td>8552 PA_IMD_DON_NVL_SD</td>
<td>Policy adjustment, I/O move down, rejected for no net value, donor trace, affected by secondary donor.</td>
</tr>
<tr>
<td>8560 PA_IMD_GDON_NETVAL</td>
<td>Policy adjustment, I/O move down, rejected for no net value, goal donor trace, affected by resource donor.</td>
</tr>
<tr>
<td>8562 PA_IMD_GDON_NVL_SD</td>
<td>Policy adjustment, I/O move down, rejected for no net value, goal donor trace, affected by secondary donor.</td>
</tr>
<tr>
<td>8565 PA_IMD_GREC_NETVAL</td>
<td>Policy adjustment, I/O move down, rejected for no net value, goal receiver trace, affected by resource donor.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>8567</td>
<td>PA_IMD_GREC_NVL_SD Policy adjustment, I/O move down, rejected for no net value, goal receiver trace, affected by secondary donor.</td>
</tr>
<tr>
<td>8570</td>
<td>PA_IMD_RDON_NETVAL Policy adjustment, I/O move down, rejected for no net value, resource donor trace, affected by resource donor.</td>
</tr>
<tr>
<td>8572</td>
<td>PA_IMD_RDON_NVL_SD Policy adjustment, I/O move down, rejected for no net value, resource donor trace, affected by secondary donor.</td>
</tr>
<tr>
<td>8573</td>
<td>PA_IMD_REC_NETVAL Policy adjustment, I/O move down, rejected for no net value, receiver trace, affected by resource donor.</td>
</tr>
<tr>
<td>8575</td>
<td>PA_IMD_REC_NVL_SD Policy adjustment, I/O move down, rejected for no net value, receiver trace, affected by secondary donor.</td>
</tr>
<tr>
<td>8576</td>
<td>PA_IMD_RREC_NETVAL Policy adjustment, I/O move down, rejected for no net value, resource receiver trace, affected by resource donor.</td>
</tr>
<tr>
<td>8578</td>
<td>PA_IMD_RREC_NVL_SD Policy adjustment, I/O move down, rejected for no net value, resource receiver trace, affected by secondary donor.</td>
</tr>
<tr>
<td>8590</td>
<td>PA_IMU_DON_NETVAL Policy adjustment, I/O move up, rejected for no net value, donor trace.</td>
</tr>
<tr>
<td>8595</td>
<td>PA_IMU_DON_SEC_REC Policy adjustment, I/O assess moving donor up as secondary receiver.</td>
</tr>
<tr>
<td>8600</td>
<td>PA_IMU_GDON_NETVAL Policy adjustment, I/O move up, rejected for no net value, goal donor trace.</td>
</tr>
<tr>
<td>8605</td>
<td>PA_IMU_GREC_NETVAL Policy adjustment, I/O move up, rejected for no net value, goal receiver trace.</td>
</tr>
<tr>
<td>8610</td>
<td>PA_IMU_RDON_NETVAL Policy adjustment, I/O move up, rejected for no net value, resource donor trace.</td>
</tr>
<tr>
<td>8613</td>
<td>PA_IMU_REC_NETVAL Policy adjustment, I/O move up, rejected for no net value, receiver trace.</td>
</tr>
</tbody>
</table>
Table 93. SMF Type 99 Action Codes (continued)

<table>
<thead>
<tr>
<th>Action Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8616</td>
<td>PA_IMU_RREC_NETVAL Policy adjustment, I/O move up, rejected for no net value, resource donor trace.</td>
</tr>
<tr>
<td>8620</td>
<td>PA_IMUO_REC Policy adjustment, assess moving primary I/O receiver up to occupied priority.</td>
</tr>
<tr>
<td>8630</td>
<td>PA_IMUUA_REC Policy adjustment, assess moving I/O processor receiver up to unoccupied priority above donor.</td>
</tr>
<tr>
<td>8635</td>
<td>PA_IMUUB_REC Policy adjustment, assess moving I/O processor receiver up to unoccupied priority between donor and receiver's current priorities.</td>
</tr>
<tr>
<td>8640</td>
<td>PA_IMU_SEC_REC Policy adjustment, assess moving secondary I/O donor up.</td>
</tr>
<tr>
<td>8650</td>
<td>PA_IMU_TO_SPC_DP Policy adjustment, move up to small I/O consumer priority.</td>
</tr>
<tr>
<td>8660</td>
<td>PA_IO_DECP_DON Policy adjustment, decrease priority for donor.</td>
</tr>
<tr>
<td>8670</td>
<td>PA_IO_DECP_SEC Policy adjustment, decrease priority for secondary donor or receiver.</td>
</tr>
<tr>
<td>8690</td>
<td>PA_IO_DON_DEPEN Policy adjustment, no further I/O action because of donor dependency relationship.</td>
</tr>
<tr>
<td>8720</td>
<td>PA_IO_GREC_NETVAL Policy adjustment, no I/O action because insufficient net value, goal receiver trace.</td>
</tr>
<tr>
<td>8730</td>
<td>PA_IO_GREC_RECVAL Policy adjustment, no I/O action because insufficient receiver value, goal receiver trace.</td>
</tr>
<tr>
<td>8740</td>
<td>PA_IO_INCP_DON Policy adjustment, increase priority for donor.</td>
</tr>
<tr>
<td>8750</td>
<td>PA_IO_INCP_REC Policy adjustment, increase priority for receiver.</td>
</tr>
<tr>
<td>8760</td>
<td>PA_IO_INCP_SEC Policy adjustment, increase priority for secondary donor or receiver.</td>
</tr>
<tr>
<td>8850</td>
<td>PA_IO_NA_NO_DONOR Policy adjustment, no processor action because no donor selected.</td>
</tr>
<tr>
<td>8870</td>
<td>PA_IO_NA_SPC_DP Policy adjustment, no I/O action because period is at or just moved from small processor consumer priority.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>8880</td>
<td>PA_IO_RDON_CAND</td>
</tr>
<tr>
<td>8890</td>
<td>PA_IO_REC_DEPEN</td>
</tr>
<tr>
<td>8900</td>
<td>PA_IO_REC_NETVAL</td>
</tr>
<tr>
<td>8910</td>
<td>PA_IO_REC_RECVAL</td>
</tr>
<tr>
<td>8920</td>
<td>PA_IO_RREC_NETVAL</td>
</tr>
<tr>
<td>8930</td>
<td>PA_IO_RREC_RECVAL</td>
</tr>
<tr>
<td>8933</td>
<td>PA_IO_SERVED_GDON</td>
</tr>
<tr>
<td>8936</td>
<td>PA_IO_SERVED_GREC</td>
</tr>
<tr>
<td>8938</td>
<td>PA_IO_TO_SPC_DP</td>
</tr>
<tr>
<td>8940</td>
<td>PA_IO_UNC_DON</td>
</tr>
<tr>
<td>8950</td>
<td>PA_IO_UNC_REC</td>
</tr>
<tr>
<td>8960</td>
<td>PA_IO_UNC_SEC_DON</td>
</tr>
<tr>
<td>8970</td>
<td>PA_IO_UNC_SEC_REC</td>
</tr>
<tr>
<td>8975</td>
<td>PA_IO_NA_TOO_SOON</td>
</tr>
<tr>
<td>8980</td>
<td>PA_IO_NA_NO_CLUST</td>
</tr>
<tr>
<td>8985</td>
<td>PA_IO_NA_REC_INEL</td>
</tr>
<tr>
<td>8990</td>
<td>PA_IO_IMPLEMENT</td>
</tr>
<tr>
<td>9001</td>
<td>PA_BP_DON_PER</td>
</tr>
<tr>
<td>SMF Type 99 Action Code</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>9002 PA_BP_DON_PER_VAL</td>
<td>Buffer pool owning period, assess values of potential donation: current buffer pool size, donor period pi delta, receiver period pi delta.</td>
</tr>
<tr>
<td>9003 PA_BP_AFF_PER_VAL</td>
<td>Buffer pool affected/sharing period, assess values of potential donation: current buffer pool size, affected period pi delta, receiver period pi delta.</td>
</tr>
<tr>
<td>9004 PA_BP_AFF_PER_SUC</td>
<td>Success of buffer pool assessment for affected/sharing period: 1 = successful, 0 = unsuccessful.</td>
</tr>
<tr>
<td>9005 PA_BP_ONE_UNSUC</td>
<td>Assessment of buffer pool resource donation for all periods using a common buffer pool had a negative result, the assessment of at least one period using the common buffer pool failed.</td>
</tr>
<tr>
<td>9006 PA_BP_ALL_SUC</td>
<td>Assessment of buffer pool resource donation for all periods using a common buffer pool had a positive result (all assessments finished without error).</td>
</tr>
<tr>
<td>9010 PA_DEC_BP_TAR</td>
<td>Policy adjustment, decrease bp storage target.</td>
</tr>
<tr>
<td>9020 PA_INC_BP_TAR</td>
<td>Policy adjustment, increase bp storage target.</td>
</tr>
<tr>
<td>9030 PA_BP_NA_NET_VAL</td>
<td>Policy adjustment, no period bp storage action because insufficient net value.</td>
</tr>
<tr>
<td>9040 PA_BP_NA_REC_VAL</td>
<td>Policy adjustment, no period bp storage action because insufficient receiver value.</td>
</tr>
<tr>
<td>9050 PA_BP_TAR_UNAB</td>
<td>Policy adjustment, no bp storage action because current target not absorbed.</td>
</tr>
<tr>
<td>9060 PA_BP_NA_EXIT_FAIL</td>
<td>Policy adjustment, no bp storage action because exit called failed.</td>
</tr>
<tr>
<td>9070 PA_PRIREQ_LONG_DEL</td>
<td>Policy adjustment, priority requests are waiting for longer than 60 seconds.</td>
</tr>
<tr>
<td>9071 PA_PRIREQ_NO_CPU</td>
<td>Policy adjustment, could not find CPU for additional server to handle priority requests.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>9072</td>
<td>PA_PRIREQ_NO_STOR Policy adjustment, could not find storage for additional</td>
</tr>
<tr>
<td></td>
<td>server to handle priority requests.</td>
</tr>
<tr>
<td>9075</td>
<td>PA_PRIREQ_NA_PEND Policy adjustment, a previous recommendation to start up</td>
</tr>
<tr>
<td></td>
<td>a space still exists or the first space has not bound yet.</td>
</tr>
<tr>
<td>9079</td>
<td>PA_PRIREQ_START_SA Policy adjustment, priority request algorithms start a</td>
</tr>
<tr>
<td></td>
<td>server address space.</td>
</tr>
<tr>
<td>9170</td>
<td>WSM_DEC_BP_TAR Working set management, decrease bp storage target.</td>
</tr>
<tr>
<td>9180</td>
<td>PA_QMPL_NA_REC Qmpl recommendations not allowed.</td>
</tr>
<tr>
<td>9190</td>
<td>PA_QMPL_NA_STOR No qmpl actions taken because a critical shortage condition</td>
</tr>
<tr>
<td></td>
<td>exists.</td>
</tr>
<tr>
<td>9191</td>
<td>PA_QMPL_AUX_STOR Available auxilliary storage for server spaces.</td>
</tr>
<tr>
<td>9195</td>
<td>PA_QMPL_NA_RUA0 No qmpl actions taken because a ready user average is zero.</td>
</tr>
<tr>
<td>9200</td>
<td>PA_QMPL_NA_MPL No qmpl actions taken because a mpl problem exists for this</td>
</tr>
<tr>
<td></td>
<td>period.</td>
</tr>
<tr>
<td>9202</td>
<td>PA_QMPL_NA_IDLE No qmpl actions taken because already idle inits and there</td>
</tr>
<tr>
<td></td>
<td>is queued work. Let queued work be picked up by the idle inits before</td>
</tr>
<tr>
<td></td>
<td>starting more.</td>
</tr>
<tr>
<td>9205</td>
<td>PA_QMPL_NA_QUEUE No qmpl actions taken because the resource period isn't a</td>
</tr>
<tr>
<td></td>
<td>queue server.</td>
</tr>
<tr>
<td>9210</td>
<td>PA_QMPL_NA_PEND No qmpl actions taken because previous qmpl recommendation(</td>
</tr>
<tr>
<td></td>
<td>s) exists.</td>
</tr>
<tr>
<td>9220</td>
<td>PA_QMPL_NA_UNMGED No qmpl actions taken because queue is unmanaged.</td>
</tr>
<tr>
<td>9230</td>
<td>PA_QMPL_NA_REC_RR No qmpl actions taken because there is no receiver value.</td>
</tr>
<tr>
<td>9240</td>
<td>PA_QMPL_NA_REC_GR No qmpl actions taken because there is no receiver value.</td>
</tr>
<tr>
<td>9245</td>
<td>PA_QMPL_NA_SYSLOC No qmpl actions taken because there is a better system to</td>
</tr>
<tr>
<td></td>
<td>start initiators.</td>
</tr>
<tr>
<td>Code</td>
<td>Action Code</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>9246</td>
<td>PA_QMPL_NA_NOSYS</td>
</tr>
<tr>
<td>9250</td>
<td>PA_INC_QMPL_GR</td>
</tr>
<tr>
<td>9251</td>
<td>PA_DEC_QMPL_GR</td>
</tr>
<tr>
<td>9260</td>
<td>PA_INC_QMPL_RR</td>
</tr>
<tr>
<td>9261</td>
<td>PA_DEC_QMPL_RR</td>
</tr>
<tr>
<td>9270</td>
<td>PA_QMPL_NA_NETVAL</td>
</tr>
<tr>
<td>9280</td>
<td>PA_QMPL_NA_NO_REQ</td>
</tr>
<tr>
<td>9285</td>
<td>PA_QMPL_NA_GSMAX</td>
</tr>
<tr>
<td>9294</td>
<td>PA_QMPL_LIMIT_AVT</td>
</tr>
<tr>
<td>9295</td>
<td>ra_inc_qmpl_aff</td>
</tr>
<tr>
<td>9296</td>
<td>PA_QMPL_LIMIT_NUM</td>
</tr>
<tr>
<td>9297</td>
<td>PA_QMPL_IMPACT_PER</td>
</tr>
<tr>
<td>9298</td>
<td>PA_QMPL_CPU_DON</td>
</tr>
<tr>
<td>9299</td>
<td>PA_QMPL_INC_GSMAX</td>
</tr>
<tr>
<td>9300</td>
<td>PA_PPP_DECP_DON</td>
</tr>
</tbody>
</table>
Table 93. SMF Type 99 Action Codes (continued)

<table>
<thead>
<tr>
<th>Action Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9301</td>
<td>PA_PPP_POT_REC</td>
</tr>
<tr>
<td>9305</td>
<td>PA_LMP_WT_CHANGE</td>
</tr>
<tr>
<td>9306</td>
<td>PA_LMP_GWT_CHANGE</td>
</tr>
<tr>
<td>9307</td>
<td>PA_LMP_RWT_CHANGE</td>
</tr>
<tr>
<td>9308</td>
<td>PA_LMP_DON_NO_CAP</td>
</tr>
<tr>
<td>9309</td>
<td>PA_LMP_DIAG_FAIL</td>
</tr>
<tr>
<td>9310</td>
<td>PA_LMP_REC_RECVAL</td>
</tr>
<tr>
<td>9311</td>
<td>PA_LMP_GREC_RECVAL</td>
</tr>
<tr>
<td>9312</td>
<td>PA_LMP_RREC_RECVAL</td>
</tr>
<tr>
<td>9313</td>
<td>PA_LMP_REC_NETVAL</td>
</tr>
<tr>
<td>9314</td>
<td>PA_LMP_GREC_NETVAL</td>
</tr>
<tr>
<td>9315</td>
<td>PA_LMP_RREC_NETVAL</td>
</tr>
<tr>
<td>9316</td>
<td>PA_LMP_DON_NETVAL</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>9317</td>
<td>PA_LMP_GDON_NETVAL Lpar weight management, no weight change because of insufficient net value, goal donor trace.</td>
</tr>
<tr>
<td>9318</td>
<td>PA_LMP_RDON_NETVAL Lpar weight management, no weight change because of insufficient net value, resource donor trace.</td>
</tr>
<tr>
<td>9319</td>
<td>PA_LMP_DON_INV The selected donor can not donate weight because of either the LDE is too old or the image is at minimum weight or the LPAR CPU management is deactivated for the donor partition.</td>
</tr>
<tr>
<td>9320</td>
<td>PA_LMP_REC_MAX_WT The receiver may reach maximum weight if try to increase it's weight.</td>
</tr>
<tr>
<td>9321</td>
<td>PA_LMP_REC_TIMEINT The receiver weight cannot be increased because not enough time is elapsed from last weight change.</td>
</tr>
<tr>
<td>9322</td>
<td>PA_LMP_REC_INV The receiver weight cannot be increased because either failed or LPAR CPU management is deactivated for receiver.</td>
</tr>
<tr>
<td>9323</td>
<td>PA_LMP_DON_NETVOK Lpar weight management, system is candidate for possible weight change because of sufficient net value for this goal/resource donor period.</td>
</tr>
<tr>
<td>9324</td>
<td>PA_LMP_GDON_NETVOK Lpar weight management, system is candidate for possible weight change because of sufficient net value for this goal donor period.</td>
</tr>
<tr>
<td>9325</td>
<td>PA_LMP_RDON_NETVOK Lpar weight management, system is candidate for possible weight change because of sufficient net value for this goal donor period.</td>
</tr>
<tr>
<td>9326</td>
<td>PA_CPU_ONLINE_REQ Not enough CPUs are online. A request is queued invoke reconfig to bring required number of CPU on-line.</td>
</tr>
<tr>
<td>9327</td>
<td>PA_CPU_OFFLINE_REQ More CPUs than necessary are online. A request is queued invoke reconfig to bring a CPU offline.</td>
</tr>
<tr>
<td>9328</td>
<td>PA_LMP_DON_CAND Donor image candidate.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>9329</td>
<td>PA_LMP_RECVAL_OK Sufficient receiver value.</td>
</tr>
<tr>
<td>9330</td>
<td>PA_LPCAP_PMAW Logical partition is to be capped with a non-zero pricing management adjustment weight in order to enforce a soft cap.</td>
</tr>
<tr>
<td>9331</td>
<td>PA_LPCAP_PATTERN Logical partition is to have capping turned on and off to enforce a soft cap.</td>
</tr>
<tr>
<td>9332</td>
<td>PA_LPCAP_CAP_ON Logical partition was capped as part of enforcing a soft cap.</td>
</tr>
<tr>
<td>9333</td>
<td>PA_LPCAP_CAP_OFF Logical partition was uncapped as part of enforcing a soft cap.</td>
</tr>
<tr>
<td>9334</td>
<td>PA_LPCAP_ON_ERR An error occurred when trying to cap the logical partition as part of enforcing a soft cap.</td>
</tr>
<tr>
<td>9335</td>
<td>PA_LPCAP_OFF_ERR An error occurred when trying to uncap the logical partition as part of enforcing a soft cap.</td>
</tr>
<tr>
<td>9336</td>
<td>PA_LPCAP_NODATA Unable to cap or uncap the partition on this interval due to failure to obtain current partition data.</td>
</tr>
<tr>
<td>9337</td>
<td>PA_LPQUERY_ERR Failed to obtain current partition data.</td>
</tr>
<tr>
<td>9338</td>
<td>PA_LPCAP_CONFIGCAP WLM was capping the partition to enforce a soft cap. The partition was reconfigured to be capped all the time.</td>
</tr>
<tr>
<td>9339</td>
<td>PA_LPCAP_FIX_PMAW WLM and PR/SM information is not in sync. PR/SM has a different pricing management adjustment weight. WLM information updated to match PR/SM.</td>
</tr>
<tr>
<td>9340</td>
<td>PA_LPCAP_FIX_OFF WLM and PR/SM information is not in sync. According to PR/SM, WLM capping is not on. WLM information updated to match PR/SM.</td>
</tr>
<tr>
<td>9341</td>
<td>PA_LPCAP_FIX_ON WLM and PR/SM information is not in sync. According to PR/SM, WLM capping is on. WLM information updated to match PR/SM.</td>
</tr>
<tr>
<td>9342</td>
<td>PA_LMP_GREC_RECOK Sufficient receiver value - goal receiver.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>9343</td>
<td>PA_LMP_RREC_RECOK Sufficient receiver value - resource receiver.</td>
</tr>
<tr>
<td>9344</td>
<td>PA_LMP_REC_CAND Receiver image candidate.</td>
</tr>
<tr>
<td>9345</td>
<td>PA_LPCAP_PATTERN2 Logical partition is to have capping turned on and off to enforce a soft cap.</td>
</tr>
<tr>
<td>9346</td>
<td>PA_CPUS_ADJUSTED Number of required online CPUs was adjusted due to VARYCPUMIN value.</td>
</tr>
<tr>
<td>9347</td>
<td>PA_CPU_D204TIME CPU management processing skipped due to D204ElapsedTime being too small.</td>
</tr>
<tr>
<td>9398</td>
<td>PA_LMP_TEST LPAR Mgmt test race.</td>
</tr>
<tr>
<td>9399</td>
<td>PA_LMP_TEST1 LPAR Mgmt test race.</td>
</tr>
<tr>
<td>9401</td>
<td>PA_LP204_ERR Weight management function failed.</td>
</tr>
<tr>
<td>9402</td>
<td>PA_LMP_REC_LOWUTIL CPU utilization for receiver is below threshold.</td>
</tr>
<tr>
<td>9403</td>
<td>PA_PPP_MU_BLKD_PER A period which is blocked due to CPU delay and moves it up to the next occupied priority if there was only work of equal or less importance at this priority.</td>
</tr>
<tr>
<td>9404</td>
<td>PA_GSL_HIGH_DELAY1 That delay time delta computed is not valid. The delay samples for the interval will be ignored.</td>
</tr>
<tr>
<td>9405</td>
<td>PA_GSL_HIGH_DELAY2 That delay time delta computed is not valid. The delay samples for the interval will be ignored.</td>
</tr>
<tr>
<td>9406</td>
<td>PA_GSL_LPAR_TIMES Dispatch, delay and wait time non z/OS partition.</td>
</tr>
<tr>
<td>9407</td>
<td>PA_CA2_BLKD_PER_NS PACA2 detects a period which is blocked due to CPU delay and gets no service - uses the projected response time dist only.</td>
</tr>
<tr>
<td>9408</td>
<td>PA_CA2_BLKD_PER_CM PACA2 detects a period which is blocked due to CPU or MPL delay - uses the projected response time dist only.</td>
</tr>
<tr>
<td>9501</td>
<td>RA_PAE_MOV_UBA Resource adjustment, paging availability enhancement, move unbound alias.</td>
</tr>
<tr>
<td>9502</td>
<td>RA_PAE_MOV_BDEV Resource adjustment, paging availability enhancement, move base device alias.</td>
</tr>
<tr>
<td>Action Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>9531</td>
<td>SPV_PAE_INV_DEVNUM</td>
</tr>
<tr>
<td>9532</td>
<td>SPV_PAE_PLLIST_INVD</td>
</tr>
<tr>
<td>9988</td>
<td>PA_MD_WT_CPUU</td>
</tr>
<tr>
<td>9989</td>
<td>PA_MD_NO_CPUU</td>
</tr>
<tr>
<td>9991</td>
<td>PA_PAS_GREC_CPAS</td>
</tr>
<tr>
<td>9992</td>
<td>PA_PAS_GREC_PROJ</td>
</tr>
<tr>
<td>9993</td>
<td>PA_PAS_RREC_PROJ</td>
</tr>
<tr>
<td>9994</td>
<td>PA_PAS_RREC_SAMPD</td>
</tr>
<tr>
<td>9995</td>
<td>PA_PAS_GDON_CPAS</td>
</tr>
<tr>
<td>9996</td>
<td>PA_PAS_GDON_PROJ</td>
</tr>
<tr>
<td>9997</td>
<td>PA_PAS_RDON_PROJ</td>
</tr>
<tr>
<td>9998</td>
<td>PA_PAS_RDON_SAMPD</td>
</tr>
</tbody>
</table>
Appendix B. Application Validation Reason Codes

Table 94. SERVD validation reason codes

<table>
<thead>
<tr>
<th>Section</th>
<th>Reason</th>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVD</td>
<td>3201</td>
<td>0</td>
<td>Beginning or end of some section as governed by the offset and length fields lies beyond the end of the SERVD</td>
</tr>
<tr>
<td></td>
<td>3202</td>
<td>0</td>
<td>Beginning of some section as governed by the offset field lies within the middle of some other section</td>
</tr>
<tr>
<td></td>
<td>3203</td>
<td>0</td>
<td>End of some section as governed by the offset and length fields lies within the middle of some other section</td>
</tr>
<tr>
<td></td>
<td>3204</td>
<td>0</td>
<td>Some section, as governed by offset and length fields, straddles some other section</td>
</tr>
<tr>
<td></td>
<td>3303</td>
<td>0</td>
<td>The SERVD has either an SVDEF, SVNPA, SVDCR, SVAEA, or an SVSEA offset as zeros.</td>
</tr>
<tr>
<td>SERVDHDR</td>
<td>3301</td>
<td>0</td>
<td>Eyecatcher (SERVD_EYECATCHER) is not ‘SERVD’</td>
</tr>
<tr>
<td></td>
<td>3302</td>
<td>0</td>
<td>Version (SERVD_VERSION) is 0</td>
</tr>
<tr>
<td>SVAEA</td>
<td>3701</td>
<td>SVAEA</td>
<td>Beginning or end of some section as governed by the offset and length fields lies beyond the end of the SVAEA.</td>
</tr>
<tr>
<td></td>
<td>3702</td>
<td>SVAEA</td>
<td>Beginning of some section as governed by the offset field lies within the middle of some other section.</td>
</tr>
<tr>
<td></td>
<td>3703</td>
<td>SVAEA</td>
<td>End of some section as governed by the offset and length fields lies within the middle of some other section.</td>
</tr>
<tr>
<td></td>
<td>3704</td>
<td>SVAEA</td>
<td>Some section, as governed by offset and length fields, straddles some other section.</td>
</tr>
<tr>
<td>SVAEAHDR</td>
<td>3801</td>
<td>SVAEA</td>
<td>Eyecatcher (SVAEA_EYECATCHER) is not ‘SVAE’.</td>
</tr>
<tr>
<td></td>
<td>3802</td>
<td>SVAEA</td>
<td>Functionality level (SVAEA_FUNCTIONALITY_LEVEL) is zeros.</td>
</tr>
<tr>
<td></td>
<td>3803</td>
<td>SVAEA</td>
<td>Header length (SVAEA_SIZE_OF_HEADER) is incorrect. Does not match the compiled size.</td>
</tr>
<tr>
<td></td>
<td>3804</td>
<td>SVAEA</td>
<td>Application environment entry size (SVAEA_SIZE AE) is incorrect. Does not match the compiled size.</td>
</tr>
<tr>
<td></td>
<td>3805</td>
<td>SVAEA</td>
<td>Application environment offset (SVAEA_EXT_DATA_OFF) is incorrect. The offset is zero when SVAEA_EXT_DATA_LEN is non-zero.</td>
</tr>
<tr>
<td></td>
<td>3806</td>
<td>SVAEA</td>
<td>The functionality level is less than SVAEA_LEVEL003 and the application environment entry offset or number are non-zero.</td>
</tr>
<tr>
<td>SVAEAAE</td>
<td>B901</td>
<td>entry</td>
<td>Duplicate application environment entry.</td>
</tr>
<tr>
<td></td>
<td>3902</td>
<td>entry</td>
<td>Application environment (SVAEA_APPLICATION_ENVIRONMENT_NAME) is not specified.</td>
</tr>
<tr>
<td></td>
<td>3903</td>
<td>entry</td>
<td>Application environment (SVAEA_APPLICATION_ENVIRONMENT_NAME) name is incorrect.</td>
</tr>
<tr>
<td></td>
<td>3904</td>
<td>entry</td>
<td>Subsystem type (SVAEA_SUBSYSTEM_TYPE) is not specified or is incorrect.</td>
</tr>
</tbody>
</table>
Table 94. SERVD validation reason codes (continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Reason</th>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3905</td>
<td>entry</td>
<td>3A01</td>
<td>Extension entry refers to an object (SVAEAROB) that does not exist.</td>
</tr>
<tr>
<td>3906</td>
<td>entry</td>
<td>3A02</td>
<td>End of data (SVAEAEDO + SVAEAEDL) extends beyond the size of the extended data section.</td>
</tr>
<tr>
<td>3907</td>
<td>entry</td>
<td>3A03</td>
<td>Use extension information found and the functionality level is less than LEVEL003. For user extensions, you must be at least at functionality LEVEL003 (LEVEL003 in SVAEA_FUNCTIONALITY_LEVEL).</td>
</tr>
<tr>
<td>SVAEEXT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A01</td>
<td>entry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A02</td>
<td>entry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVDEF</td>
<td>0001</td>
<td>SVDEF</td>
<td>Beginning or end of some section as governed by the offset and length fields lies beyond the end of the SVDEF</td>
</tr>
<tr>
<td>0002</td>
<td>SVDEF</td>
<td></td>
<td>Beginning of some section as governed by the offset field lies within the middle of some other section</td>
</tr>
<tr>
<td>0003</td>
<td>SVDEF</td>
<td></td>
<td>End of some section as governed by the offset and length fields lies within the middle of some other section</td>
</tr>
<tr>
<td>0004</td>
<td>SVDEF</td>
<td></td>
<td>Some section, as governed by offset and length fields, straddles some other section</td>
</tr>
<tr>
<td>SVDEFFHDR</td>
<td>0101</td>
<td>SVDEF</td>
<td>Eyecatcher (SVDEFNAM) is not ‘SVDE’</td>
</tr>
<tr>
<td>0102</td>
<td>SVDEF</td>
<td></td>
<td>Functionality level is 0 (SVDEFLVL)</td>
</tr>
<tr>
<td>0103</td>
<td>SVDEF</td>
<td></td>
<td>Only checked if releases match - Policy entry size (SVDEFPS) does not match compiled size</td>
</tr>
<tr>
<td>0104</td>
<td>SVDEF</td>
<td></td>
<td>Only checked if releases match - Workload entry size (SVDEFWWS) does not match compiled size</td>
</tr>
<tr>
<td>0105</td>
<td>SVDEF</td>
<td></td>
<td>Only checked if releases match - Service class entry size (SVDEFCS) does not match compiled size</td>
</tr>
<tr>
<td>0106</td>
<td>SVDEF</td>
<td></td>
<td>Only checked if releases match - Resource group entry size (SVDEFGS) does not match compiled size</td>
</tr>
<tr>
<td>0107</td>
<td>SVDEF</td>
<td></td>
<td>Only checked if releases match - Report class entry size (SVDEFRS) does not match compiled size</td>
</tr>
<tr>
<td>0108</td>
<td>SVDEF</td>
<td></td>
<td>Only checked if releases match - Service class attribute entry size (SVDEFCAS) does not match compiled size</td>
</tr>
<tr>
<td>0109</td>
<td>SVDEF</td>
<td></td>
<td>Only checked if releases match - Resource group attribute section size (SVDEFGAS) does not match compiled size</td>
</tr>
<tr>
<td>010A</td>
<td>SVDEF</td>
<td></td>
<td>Only checked if releases match - Constant entry size (SVDEFCNS) does not match compiled size</td>
</tr>
<tr>
<td>010B</td>
<td>SVDEF</td>
<td></td>
<td>Only checked if releases match - Period entry size (SVDEFCPS) does not match compiled size</td>
</tr>
<tr>
<td>Section</td>
<td>Reason</td>
<td>Offset</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>010C</td>
<td>SVDEF Size of the extended data (SVDEF_EXT_DATA_LEN) is nonzero, but the offset to the extended data (SVDEF_EXT_DATA_OFF) is zero</td>
</tr>
<tr>
<td></td>
<td></td>
<td>010D</td>
<td>SVDEF It was tried to install a service definition with a level less than 23 but with more than 999 report classes.</td>
</tr>
<tr>
<td>SVDEFPOL</td>
<td>8201</td>
<td>section</td>
<td>Number of policies (SVDEFPN) is 0</td>
</tr>
<tr>
<td></td>
<td>8202</td>
<td>section</td>
<td>Number of policies (SVDEFPN) exceeds 99</td>
</tr>
<tr>
<td></td>
<td>8203</td>
<td>offset</td>
<td>Duplicate policy names were found</td>
</tr>
<tr>
<td></td>
<td>0201</td>
<td>entry</td>
<td>Name field (SVDEFPNM) has leading or imbedded blanks or contains a reserved character: <code>,* ? / .</code></td>
</tr>
<tr>
<td></td>
<td>0202</td>
<td>entry</td>
<td>Name field (SVDEFPNM) starts with the letters SYS</td>
</tr>
<tr>
<td>SVDEFWKL</td>
<td>8301</td>
<td>offset</td>
<td>Duplicate workload names were found</td>
</tr>
<tr>
<td></td>
<td>8302</td>
<td>section</td>
<td>Number of workloads (SVDEFWN) exceeds 999</td>
</tr>
<tr>
<td></td>
<td>0301</td>
<td>entry</td>
<td>Name field (SVDEFWNM) has leading or imbedded blanks or contains a reserved character: <code>,* ? / .</code></td>
</tr>
<tr>
<td></td>
<td>0302</td>
<td>entry</td>
<td>Name field (SVDEFWNM) starts with the letters SYS</td>
</tr>
<tr>
<td>SVDEFSCL</td>
<td>8401</td>
<td>offset</td>
<td>Duplicate service class names were found</td>
</tr>
<tr>
<td></td>
<td>8402</td>
<td>section</td>
<td>Number of service classes (SVDEFCN) exceeds 100</td>
</tr>
<tr>
<td></td>
<td>0401</td>
<td>entry</td>
<td>Name field (SVDEFCNM) has leading or imbedded blanks or contains a reserved character: <code>,* ? / .</code></td>
</tr>
<tr>
<td></td>
<td>0402</td>
<td>entry</td>
<td>Workload name (SVDEFCWN) not found in the SVDEF</td>
</tr>
<tr>
<td></td>
<td>0403</td>
<td>entry</td>
<td>Name field (SVDEFCNM) starts with the letters SYS</td>
</tr>
<tr>
<td></td>
<td>0404</td>
<td>entry</td>
<td>Base attribute for this service class not found in the SVDEF</td>
</tr>
<tr>
<td>SVDEFGRP</td>
<td>8601</td>
<td>offset</td>
<td>Duplicate resource group names were found</td>
</tr>
<tr>
<td></td>
<td>8602</td>
<td>section</td>
<td>Number of resource groups (SVDEFGN) exceeds 32</td>
</tr>
<tr>
<td></td>
<td>0601</td>
<td>entry</td>
<td>Name field (SVDEFGNM) has leading or imbedded blanks or contains a reserved character: <code>,* ? / .</code></td>
</tr>
<tr>
<td></td>
<td>0602</td>
<td>entry</td>
<td>Base attribute for this service class not found in the SVDEF</td>
</tr>
<tr>
<td>SVDEFRCL</td>
<td>8701</td>
<td>offset</td>
<td>Duplicate report class names were found</td>
</tr>
<tr>
<td></td>
<td>8702</td>
<td>section</td>
<td>Number of report classes (SVDEFRN) exceeds 2047</td>
</tr>
<tr>
<td></td>
<td>0701</td>
<td>entry</td>
<td>Name field (SVDEFRNM) has leading or imbedded blanks or contains a reserved character: <code>,* ? / .</code></td>
</tr>
<tr>
<td>SVDEFCLA</td>
<td>0801</td>
<td>entry</td>
<td>Named service class (SVDEFSCN) not found in service class list</td>
</tr>
<tr>
<td></td>
<td>0802</td>
<td>entry</td>
<td>Named policy (SVDEFSPN) not found in policy list</td>
</tr>
<tr>
<td></td>
<td>0803</td>
<td>entry</td>
<td>Named resource group (SVDEFCGN) not found in resource group list</td>
</tr>
<tr>
<td>Section</td>
<td>Reason</td>
<td>Offset</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>0804</td>
<td>entry</td>
<td>Number of periods (SVDEFCPN) out of bounds (must be from 1 to 8)</td>
</tr>
<tr>
<td></td>
<td>0805</td>
<td>entry</td>
<td>CPU critical option is used (YES) and the service class contains more than 1 period.</td>
</tr>
<tr>
<td></td>
<td>0806</td>
<td>entry</td>
<td>CPU critical option is used (YES) and the current functionality level in svdef is less than LEVEL011.</td>
</tr>
<tr>
<td></td>
<td>0807</td>
<td>entry</td>
<td>Service class is used in CICS or IMS and other subsystem type in a service definition that is LEVEL011 or above.</td>
</tr>
<tr>
<td>SVDEFRGA</td>
<td>0901</td>
<td>entry</td>
<td>Named resource group (SVDEFRGN) not found in resource group list</td>
</tr>
<tr>
<td></td>
<td>0902</td>
<td>entry</td>
<td>Named policy (SDVEFRPN) not found in policy list</td>
</tr>
<tr>
<td></td>
<td>0903</td>
<td>entry</td>
<td>Specified minimum value (SVDEFGMN) exceeds 999,999</td>
</tr>
<tr>
<td></td>
<td>0904</td>
<td>entry</td>
<td>Specified maximum value (SVDEFGMX) exceeds 999,999</td>
</tr>
<tr>
<td></td>
<td>0905</td>
<td>entry</td>
<td>Specified minimum value (SVDEFGMN) exceeds maximum value (SVDEFGMX)</td>
</tr>
<tr>
<td>SVDEFPDA</td>
<td>8501</td>
<td>entry</td>
<td>A period other than the last period has a duration (SVDEFDUR) of 0</td>
</tr>
<tr>
<td></td>
<td>8502</td>
<td>entry</td>
<td>A period other than the last period has a discretionary goal (SVDEFDSC)</td>
</tr>
<tr>
<td></td>
<td>8503</td>
<td>entry</td>
<td>Last period has a nonzero duration (SVDEFDUR)</td>
</tr>
<tr>
<td></td>
<td>0501</td>
<td>entry</td>
<td>More than one goal type specified (SVDEFTYP)</td>
</tr>
<tr>
<td></td>
<td>0502</td>
<td>entry</td>
<td>Only checked if releases match - no known goal type (SVDEFTYP) specified</td>
</tr>
<tr>
<td></td>
<td>0503</td>
<td>entry</td>
<td>Percentile or average response time goal specified (SVDEFPRC, SVDEFAVG), but response time units (SVDEFRTU) not between 1 and 4.</td>
</tr>
<tr>
<td></td>
<td>0504</td>
<td>entry</td>
<td>Percentile, average response time, or velocity goal specified (SVDEFPRC, SVDEFAVG, SVDEFVEL), but importance (SVDEFIMP) is not between 1 and 5.</td>
</tr>
<tr>
<td></td>
<td>0505</td>
<td>entry</td>
<td>Percentile or average response time goal (SVDEFPRC, SVDEFAVG) but response time value (SVDEFVAL) is less than 15 milliseconds.</td>
</tr>
<tr>
<td></td>
<td>0506</td>
<td>entry</td>
<td>Percentile or average response time goal (SVDEFPRC, SVDEFAVG) and response time is greater than 24 hours</td>
</tr>
<tr>
<td></td>
<td>0507</td>
<td>entry</td>
<td>Percentile goal (SVDEFPRC) and percentile value (SVDEFPER) exceeds 99</td>
</tr>
<tr>
<td></td>
<td>0508</td>
<td>entry</td>
<td>Velocity goal (SVDEFVEL), and value (SVDEFVAL) exceeds maximum of 99</td>
</tr>
<tr>
<td></td>
<td>0509</td>
<td>entry</td>
<td>Duration (SVDEFDUR) exceeds limit of 999,999,999</td>
</tr>
<tr>
<td></td>
<td>0510</td>
<td>entry</td>
<td>For service definition with functionality LEVEL011 or above, a service class cannot contain any periods that have higher importance levels than previous periods</td>
</tr>
<tr>
<td>Section</td>
<td>Reason</td>
<td>Offset</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>SVDEFCNS</td>
<td>0A01</td>
<td>section</td>
<td>CPU coefficient (SDVEFCPU) exceeds maximum of 999,000</td>
</tr>
<tr>
<td></td>
<td>0A02</td>
<td>section</td>
<td>I/O coefficient (SVDEFIOC) exceeds maximum of 999,000</td>
</tr>
<tr>
<td></td>
<td>0A03</td>
<td>section</td>
<td>MSO coefficient (SVDEFMSO) exceeds maximum of 999,999</td>
</tr>
<tr>
<td></td>
<td>0A04</td>
<td>section</td>
<td>SRB coefficient (SVDEFSRB) exceeds maximum of 999,000</td>
</tr>
<tr>
<td></td>
<td>0A05</td>
<td>section</td>
<td>The dynamic alias management option is set to YES and the functionality level in the SVDEFLVL is not set to LEVEL008 or higher</td>
</tr>
<tr>
<td></td>
<td>0A06</td>
<td>entry</td>
<td>The I/O priority management option is set to ‘YES’ and the functionality level in the SVDEFLVL is not set to LEVEL003 or higher.</td>
</tr>
<tr>
<td>SVDEFEXT</td>
<td>0B01</td>
<td>entry</td>
<td>Extension entry refers to an object (SVDEFROB) that does not exist</td>
</tr>
<tr>
<td></td>
<td>0B02</td>
<td>entry</td>
<td>End of data (SVDEFEDO + SVDEFEDL) extends beyond the size of the extended data section</td>
</tr>
<tr>
<td></td>
<td>0B03</td>
<td>entry</td>
<td>User extension information found and the functionality level is less than LEVEL002. For user extensions, you must be at least at functionality LEVEL002 (LEVEL002 in SVDEFLVL).</td>
</tr>
<tr>
<td>SVDCR</td>
<td>1901</td>
<td>SVDCR</td>
<td>Beginning or end of some section as governed by the offset and length fields lies beyond the end of the SVDCR</td>
</tr>
<tr>
<td></td>
<td>1902</td>
<td>SVDCR</td>
<td>Beginning of some section as governed by the offset field lies within the middle of some other section</td>
</tr>
<tr>
<td></td>
<td>1903</td>
<td>SVDCR</td>
<td>End of some section as governed by the offset and length fields lies within the middle of some other section</td>
</tr>
<tr>
<td></td>
<td>1904</td>
<td>SVDCR</td>
<td>Some section, as governed by offset and length fields, straddles some other section</td>
</tr>
<tr>
<td>SVDCRHDR</td>
<td>1A01</td>
<td>SVDCR</td>
<td>Eyecatcher (SVDCRNAM) is not ‘SVDC’</td>
</tr>
<tr>
<td></td>
<td>1A02</td>
<td>SVDCR</td>
<td>Functionality level is 0 (SVDCRLVL)</td>
</tr>
<tr>
<td></td>
<td>1A03</td>
<td>SVDCR</td>
<td>Only checked if releases match - Nesting level (SVDCRLN) does not match compiled nesting level limit (must be <= 4)</td>
</tr>
<tr>
<td></td>
<td>1A04</td>
<td>SVDCR</td>
<td>Only checked if releases match - Subsystem entry size (SVDCRSS) does not match compiled size</td>
</tr>
<tr>
<td></td>
<td>1A05</td>
<td>SVDCR</td>
<td>Only checked if releases match - Rule entry size (SVDCRRS) does not match compiled size</td>
</tr>
<tr>
<td></td>
<td>1A06</td>
<td>SVDCR</td>
<td>Only checked if releases match - Group entry size (SVDCRGS) does not match compiled size</td>
</tr>
<tr>
<td></td>
<td>1A07</td>
<td>SVDCR</td>
<td>Only checked if releases match - Group value entry size (SVDCRVS) does not match compiled size</td>
</tr>
<tr>
<td></td>
<td>1A08</td>
<td>SVDCR</td>
<td>Size of the extended data (SVDCR_EXT_DATA_LEN) is nonzero, but the offset to the extended data (SVDCR_EXT_DATA_OFF) is zero</td>
</tr>
</tbody>
</table>
Table 94. SERVD validation reason codes (continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Reason</th>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A09</td>
<td>SVDCR</td>
<td>WLM version number (SVDCRWVN) is wrong. The functionality level is LEVEL002 or greater, and the WLM version number is 0.</td>
<td></td>
</tr>
<tr>
<td>9B01</td>
<td>offset</td>
<td>Duplicate subsystem type names were found</td>
<td></td>
</tr>
<tr>
<td>1B01</td>
<td>entry</td>
<td>Service class for the subsystem type (SVDCRSCN) not found in the SVDEF</td>
<td></td>
</tr>
<tr>
<td>1B02</td>
<td>entry</td>
<td>Report class for the subsystem type (SVDCRSPN) not found in the SVDEF</td>
<td></td>
</tr>
<tr>
<td>1B03</td>
<td>entry</td>
<td>Number of classification rules (SVDCRSRN) is nonzero, but the offset (SVDCRSRO) is 0</td>
<td></td>
</tr>
<tr>
<td>1C01</td>
<td>entry</td>
<td>More than one qualifier type (SVDCRRQT) bit is on</td>
<td></td>
</tr>
<tr>
<td>1C02</td>
<td>entry</td>
<td>Group value specified (SVDCRRGI = '1'B) for an accounting information (SVDCRRAC) or subsystem parameter (SVDCRRSP) type rule - this is unsupported.</td>
<td></td>
</tr>
<tr>
<td>1C03</td>
<td>entry</td>
<td>Qualifier value (SVDCRRQV) has leading or imbedded blanks</td>
<td></td>
</tr>
<tr>
<td>1C04</td>
<td>entry</td>
<td>Substring (SVDCRRSU) wildcard (SVDCRRWI) or mask characters (SVDCRRSU) used on a rule that refers to a group (SVDCRRGI).</td>
<td></td>
</tr>
<tr>
<td>1C05</td>
<td>entry</td>
<td>Nesting level of rule (SVDCRRLV) exceeds maximum nesting level indicated in the header (SVDCRLN)</td>
<td></td>
</tr>
<tr>
<td>1C06</td>
<td>entry</td>
<td>Substring (SVDCRRSU) specified for a qualifier type that does not support substringing (hint: only accounting information (SVDCRRAC), subsystem parameter (SVDCRRSP), collection name (SVDCRRQT_COLL_NAME), correlation information (SVDCRRQT_CORR_INFO), procedure name (SVDCRRQT_PROC_NAME), or process name (SVDCRRQT_PROCESS_NAME) support substringing for this WLM MVS version).</td>
<td></td>
</tr>
<tr>
<td>1C07</td>
<td>entry</td>
<td>Substring specified for accounting information extends beyond the end of the maximum size accounting information (143 characters)</td>
<td></td>
</tr>
<tr>
<td>1C08</td>
<td>entry</td>
<td>Substring specified for subsystem parameter extends beyond the end of the maximum size subsystem parameter (255 characters) list</td>
<td></td>
</tr>
<tr>
<td>1C09</td>
<td>entry</td>
<td>Substring specified for collection name extends beyond the end of the maximum size collection name (18 characters) list</td>
<td></td>
</tr>
<tr>
<td>1C0A</td>
<td>entry</td>
<td>Substring specified for correlation information extends beyond the end of the maximum size correlation information (12 characters) list</td>
<td></td>
</tr>
<tr>
<td>1C0B</td>
<td>entry</td>
<td>Service class (SVDCRRCN) was not found in the SVDEF service class list</td>
<td></td>
</tr>
<tr>
<td>1C0C</td>
<td>entry</td>
<td>Service class (SVDCRRPN) was not found in the SVDEF report class list</td>
<td></td>
</tr>
<tr>
<td>1C0D</td>
<td>entry</td>
<td>Substring specified (SVDCRRSU) but value (SVDCRRSV) is 0</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Reason</td>
<td>Offset</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>1C0E</td>
<td>entry</td>
<td></td>
<td>Group specified (SVDCRRGI) but named group (SVDCRRQV) not found in group list</td>
</tr>
<tr>
<td>1C0F</td>
<td>entry</td>
<td></td>
<td>Classification rule was found that has indicators on in the SVDCR reserved for future qualifier bytes. The reserved for future qualifier types are in SVDCRRQT_BYTE3 and SVDCRRQT_BYTE4.</td>
</tr>
<tr>
<td>1C10</td>
<td>entry</td>
<td></td>
<td>No classification rule found. SVDCRRQT is zeros.</td>
</tr>
<tr>
<td>1C11</td>
<td>entry</td>
<td></td>
<td>LEVEL002 classification rules found and the functionality level in the SVDCRLVL is not LEVEL002.</td>
</tr>
<tr>
<td>1C12</td>
<td>entry</td>
<td></td>
<td>LEVEL003 classification rules found and the functionality level in the SVDCRLVL is not LEVEL003.</td>
</tr>
<tr>
<td>1C13</td>
<td>entry</td>
<td></td>
<td>For the procedure name the substring value is greater than 18 or the substring value plus the number of characters is greater than 18.</td>
</tr>
<tr>
<td>1C14</td>
<td>entry</td>
<td></td>
<td>LEVEL004 classification rules found and the functionality level in the SVDCRLVL is not LEVEL004.</td>
</tr>
<tr>
<td>1C15</td>
<td>entry</td>
<td></td>
<td>SVDCRRQV contains characters that are not allowed for a qualifier that takes numeric data. SVDCRRQV must contain a number (in EBCDIC) optionally preceded by one of the supported relational operators.</td>
</tr>
<tr>
<td>1C16</td>
<td>entry</td>
<td></td>
<td>Classification rule comment is found that has description information in the SVDCR, but SVDCR is not at LEVEL006.</td>
</tr>
<tr>
<td>1C17</td>
<td>entry</td>
<td></td>
<td>The PC (process name) classification type was found and the functionality level in the SVDCRLVL is not set to LEVEL007.</td>
</tr>
<tr>
<td>1C18</td>
<td>entry</td>
<td></td>
<td>For the process name the substring value is greater than 32 or the substring value plus the number of characters is greater than 32.</td>
</tr>
<tr>
<td>1C19</td>
<td>entry</td>
<td></td>
<td>Classification rules that uses LEVEL011 qualifier types were found and the functionality level in SVDCRLVL is set to less than LEVEL011.</td>
</tr>
<tr>
<td>1C1A</td>
<td>entry</td>
<td></td>
<td>The SCHEDULING_ENVIRONMENT (SE) qualifier type specified is greater than 16, or the substring value plus the number of character is greater than 16.</td>
</tr>
<tr>
<td>1C1B</td>
<td>entry</td>
<td></td>
<td>Subsystem type that doesn’t support storage protection has a classification rule whose storage protection option is set to YES.</td>
</tr>
<tr>
<td>1C1C</td>
<td>entry</td>
<td></td>
<td>The storage protection option is chosen within a classification rule, and the rule is using a service class with a short response time goal.</td>
</tr>
<tr>
<td>1C1D</td>
<td>entry</td>
<td></td>
<td>The storage protection option is chosen within a classification rule, and the rule is using a service class with more than one period.</td>
</tr>
<tr>
<td>1C1E</td>
<td>entry</td>
<td></td>
<td>The storage protection option is chosen within a classification rule, and the rule is using a service class with a discretionary goal.</td>
</tr>
<tr>
<td>1C1F</td>
<td>entry</td>
<td></td>
<td>LEVEL011 classification rule that uses storage critical option was found, and the functionality level in the SVDCRLVL is set to less than LEVEL011.</td>
</tr>
</tbody>
</table>
Table 94. SERVD validation reason codes (continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Reason</th>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1C20 entry LEVEL011 classification rule that uses transaction and region management options were found, and the functionality level in the SVDCRLVL is set to less than LEVEL011.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1C21 entry Subsystem type that doesn’t support transaction region option has a classification rule set to region management.</td>
</tr>
<tr>
<td>SVDCRGRP</td>
<td>9D01</td>
<td>entry</td>
<td>Duplicates exist in the list of groups</td>
</tr>
<tr>
<td></td>
<td>1D01</td>
<td>entry</td>
<td>Name field (SVDCRGNM) has leading or imbedded blanks or contains a reserved character: * ? / , . ’ () & + - = ; : , .</td>
</tr>
<tr>
<td></td>
<td>1D02</td>
<td>entry</td>
<td>More than one qualifier type (SVDCRGTY) bit is on</td>
</tr>
<tr>
<td></td>
<td>1D03</td>
<td>entry</td>
<td>Number of group values (SVDCRGVN) is 0</td>
</tr>
<tr>
<td></td>
<td>1D04</td>
<td>entry</td>
<td>Offset to group values (SVDCRGVO) is 0</td>
</tr>
<tr>
<td></td>
<td>1D05</td>
<td>entry</td>
<td>Group exists that has indicators on in the SVDCR that are reserved for future qualifier bytes (SVDCRGTY_BYTE3 and SVDCRGTY_BYTE4).</td>
</tr>
<tr>
<td></td>
<td>1D06</td>
<td>entry</td>
<td>No groups found. SVDCRGTY is zeroes.</td>
</tr>
<tr>
<td></td>
<td>1D07</td>
<td>entry</td>
<td>LEVEL002 classification groups found and the service definition functionality level (SVDCRLVL) is not LEVEL002.</td>
</tr>
<tr>
<td></td>
<td>1D08</td>
<td>entry</td>
<td>LEVEL003 classification rules (SVDCRGTY_PERFORM) found and the functionality level in the SVDCRLVL is not LEVEL003.</td>
</tr>
<tr>
<td></td>
<td>1D09</td>
<td>entry</td>
<td>LEVEL011 classification rules found and the functionality level in the SVDCRLVL is less than LEVEL011.</td>
</tr>
<tr>
<td>SVDCRGVS</td>
<td>9E01</td>
<td>entry</td>
<td>Duplicates exist in the list of group values for a given group</td>
</tr>
<tr>
<td></td>
<td>1E01</td>
<td>entry</td>
<td>Group value (SVDCRGVV) has leading or imbedded blanks</td>
</tr>
<tr>
<td></td>
<td>1E02</td>
<td>entry</td>
<td>LEVEL006 classification group comment found, but the functionality level in the SVDCRLVL is not set to LEVEL006.</td>
</tr>
<tr>
<td>SVDCREXT</td>
<td>1F01</td>
<td>entry</td>
<td>Extension entry refers to an object (SVDCRROB) that does not exist</td>
</tr>
<tr>
<td></td>
<td>1F02</td>
<td>entry</td>
<td>End of data (SVCREDO + SVCREDL) extends beyond the size of the extended data section</td>
</tr>
<tr>
<td></td>
<td>1F03</td>
<td>entry</td>
<td>User extension information found and the functionality level is less than LEVEL002. To use user extensions, you must be at least at LEVEL002 (LEVEL002 in SVDCRLVL).</td>
</tr>
<tr>
<td>SVNPA</td>
<td>2801</td>
<td>SVNPA</td>
<td>Beginning or end of some section as governed by the offset and length fields lies beyond the end of the SVDCR</td>
</tr>
<tr>
<td></td>
<td>2802</td>
<td>SVNPA</td>
<td>Beginning of some section as governed by the offset field lies within the middle of some other section</td>
</tr>
<tr>
<td></td>
<td>2803</td>
<td>SVNPA</td>
<td>End of some section as governed by the offset and length fields lies within the middle of some other section</td>
</tr>
</tbody>
</table>
Table 94. SERVD validation reason codes (continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Reason</th>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVNPA</td>
<td>2804</td>
<td>SVNPA</td>
<td>Some section, as governed by offset and length fields, straddles some other section</td>
</tr>
<tr>
<td>SVNPAHDR</td>
<td>2901</td>
<td>SVNPA</td>
<td>Eyecatcher (SVNPANAM) is not ‘SVNP’</td>
</tr>
<tr>
<td></td>
<td>2902</td>
<td>SVNPA</td>
<td>Functionality level is 0 (SVNPALVL)</td>
</tr>
<tr>
<td></td>
<td>2903</td>
<td>SVNPA</td>
<td>Only checked if releases match - Number of notepad entries (SVNPANPN) exceeds maximum allowed (500)</td>
</tr>
<tr>
<td></td>
<td>2904</td>
<td>SVNPA</td>
<td>Only checked if releases match - Notepad data entry size (SVDEFNDS) does not match compiled size</td>
</tr>
<tr>
<td>SVSEA</td>
<td>3B01</td>
<td>SVSEA</td>
<td>Beginning or end of some section as governed by the offset and length fields lies beyond the end of the SVSEA.</td>
</tr>
<tr>
<td></td>
<td>3B02</td>
<td>SVSEA</td>
<td>Beginning of some section as governed by the offset field lies within the middle of some other section.</td>
</tr>
<tr>
<td></td>
<td>3B03</td>
<td>SVSEA</td>
<td>End of some section as governed by the offset and length fields lies within the middle of some other section.</td>
</tr>
<tr>
<td></td>
<td>3B04</td>
<td>SVSEA</td>
<td>Some section, as governed by offset and length fields, straddles some other section.</td>
</tr>
<tr>
<td>SVSEAHDR</td>
<td>3C01</td>
<td>SVSEA</td>
<td>Eyecatcher (SVSEA_EYECATCHER) is not ‘SVSE’.</td>
</tr>
<tr>
<td></td>
<td>3C02</td>
<td>SVSEA</td>
<td>Functionality level (SVSEA_FUNCTIONALITY_LEVEL) is zeros.</td>
</tr>
<tr>
<td></td>
<td>3C03</td>
<td>SVSEA</td>
<td>Header length (SVSEA_SIZE_OF_HEADER) is incorrect. Does not match the compiled size.</td>
</tr>
<tr>
<td></td>
<td>3C04</td>
<td>SVSEA</td>
<td>Scheduling environment entry size (SVSEA_SIZE_SE) is incorrect. Does not match the compiled size.</td>
</tr>
<tr>
<td></td>
<td>3C05</td>
<td>SVSEA</td>
<td>Scheduling environment to resource connection size (SVSEA_SIZE_SR) is incorrect. Does not match the compiled size.</td>
</tr>
<tr>
<td></td>
<td>3C06</td>
<td>SVSEA</td>
<td>Resource size (SVSEA_SIZE_RE) is incorrect. Does not match the compiled size.</td>
</tr>
<tr>
<td></td>
<td>3C05</td>
<td>SVSEA</td>
<td>Scheduling environment extension size (SVSEA_SIZE_EXT) is incorrect. Does not match the compiled size.</td>
</tr>
<tr>
<td></td>
<td>3C08</td>
<td>SVSEA</td>
<td>The functionality level is less than SVSEA_LEVEL004 and the scheduling environment entry offset or number are non-zero.</td>
</tr>
<tr>
<td>SVSEASE</td>
<td>BD10</td>
<td>entry</td>
<td>Too many scheduling environment entries.</td>
</tr>
<tr>
<td></td>
<td>BD11</td>
<td>entry</td>
<td>Duplicate scheduling environment entry.</td>
</tr>
<tr>
<td></td>
<td>3D12</td>
<td>entry</td>
<td>Scheduling environment name (SVSEA_SE_SCHENV_NAME) is not specified.</td>
</tr>
<tr>
<td></td>
<td>3D13</td>
<td>entry</td>
<td>Scheduling environment name (SVSEA_SE_SCHENV_NAME) is incorrect.</td>
</tr>
<tr>
<td></td>
<td>3D14</td>
<td>entry</td>
<td>Scheduling environment name (SVSEA_SE_SCHENV_NAME) is reserved (cannot start with SYS).</td>
</tr>
<tr>
<td>SVSEASR</td>
<td>3D20</td>
<td>entry</td>
<td>In the scheduling environment to resource connection, the scheduling environment name (SVSEA_SR_SCHENV_NAME) is not specified.</td>
</tr>
<tr>
<td>Section</td>
<td>Reason</td>
<td>Offset</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>3D21</td>
<td>entry</td>
<td></td>
<td>In the scheduling environment to resource connection, the scheduling environment name (SVSEA_SR_SCHENV_NAME) is incorrect.</td>
</tr>
<tr>
<td>3D22</td>
<td>entry</td>
<td></td>
<td>In the scheduling environment to resource connection, the resource name (SVSEA_SR_RESOURCE_NAME) is not specified.</td>
</tr>
<tr>
<td>3D23</td>
<td>entry</td>
<td></td>
<td>In the scheduling environment to resource connection, the resource state (SVSEA_SR_RESOURCE_STATE) is not specified.</td>
</tr>
<tr>
<td>3D24</td>
<td>entry</td>
<td></td>
<td>In the scheduling environment to resource connection, the resource state (SVSEA_SR_RESOURCE_STATE) is not valid.</td>
</tr>
<tr>
<td>3D25</td>
<td>entry</td>
<td></td>
<td>In the scheduling environment to resource connection, the scheduling environment name (SVSEA_SR_SCHENV_NAME) is not in the list of defined scheduling environments.</td>
</tr>
<tr>
<td>3D26</td>
<td>entry</td>
<td></td>
<td>In the scheduling environment to resource connection, the resource name (SVSEA_SR_RESOURCE_NAME) is not in the list of defined resources.</td>
</tr>
<tr>
<td>SVSEARE</td>
<td>BD30</td>
<td>entry</td>
<td>Too many resource entries.</td>
</tr>
<tr>
<td></td>
<td>BD31</td>
<td>entry</td>
<td>Duplicate resource entry.</td>
</tr>
<tr>
<td>3D32</td>
<td>entry</td>
<td></td>
<td>Resource name (SVSEA_RE_RESOURCE_NAME) is not specified.</td>
</tr>
<tr>
<td>3D33</td>
<td>entry</td>
<td></td>
<td>Resource name (SVSEA_RE_RESOURCE_NAME) is incorrect.</td>
</tr>
<tr>
<td>3D34</td>
<td>entry</td>
<td></td>
<td>Resource name (SVSEA_RE_RESOURCE_NAME) is reserved (cannot start with SYS).</td>
</tr>
<tr>
<td>SVSEAEVT</td>
<td>3E01</td>
<td>entry</td>
<td>Extension entry refers to an object (SVSEAROB) that does not exist is not found.</td>
</tr>
<tr>
<td>3E02</td>
<td>entry</td>
<td></td>
<td>End of data (SVSEAEDO + SVSEAEDL) extends beyond the size of the extended data section.</td>
</tr>
<tr>
<td>3E03</td>
<td>entry</td>
<td></td>
<td>User extension information found and the functionality level is less than LEVEL004. For user extensions, you must be at least at functionality LEVEL004 (LEVEL004 in SVDEFLVL).</td>
</tr>
<tr>
<td>XML</td>
<td>4001</td>
<td></td>
<td>The codepage which has been specified in XML is invalid. Only EDCDIC code pages starting with 'IBM' are accepted by the 'codepage=' attribute.</td>
</tr>
<tr>
<td></td>
<td>4002</td>
<td></td>
<td>The XML does not have the required 'xmlns=' attribute in the 'ServiceDefinition' tag. The valid name spaces are listed in Appendix C, “Structure of the XML Service Definition (DTD),” on page 805.</td>
</tr>
<tr>
<td></td>
<td>4003</td>
<td></td>
<td>The name space specified in the 'xmlns=' attribute is invalid. The name space needs to have the following format: 'http://www.ibm.com/xmlns/prod/swm/yyyy/mm/ServiceDefinition.xsd'. The valid name spaces are listed in Appendix C, “Structure of the XML Service Definition (DTD),” on page 805.</td>
</tr>
</tbody>
</table>
Table 94. SERVD validation reason codes (continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Reason</th>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4004</td>
<td>The level of the service definition which has been specified in the level tag does not match the name space specified in the 'xmlns=' attribute. The valid name spaces and the corresponding levels are listed in Appendix C, “Structure of the XML Service Definition (DTD),” on page 805.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4005</td>
<td>unexpected tag</td>
<td>The tag located at the returned offset is not expected at this position in the XML.</td>
<td></td>
</tr>
<tr>
<td>4006</td>
<td>invalid keyword</td>
<td>The keyword located at the returned offset is not known by WLM.</td>
<td></td>
</tr>
<tr>
<td>4007</td>
<td>invalid content</td>
<td>The content located at the returned offset is too long for the tag where it has been specified.</td>
<td></td>
</tr>
<tr>
<td>4008</td>
<td>invalid content</td>
<td>The content located at the returned offset is not valid for the tag where it has been specified.</td>
<td></td>
</tr>
<tr>
<td>4009</td>
<td>The XML is not complete. The input buffer does not end with the service definition end tag.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix C. Structure of the XML Service Definition (DTD)

This section describes the following:

- The structure of the XML output of IWMDEXTR
- The layout of the XML service definition (DTD) that can be passed to IWMDINST

To obtain XML output, specify the TYPE=XML parameter for the IWMDEXTR service.

To install such an XML with the IWMDINST service, also specify the TYPE=XML parameter.

The following DTD defines the structure of an XML service definition:

```xml
<!ATTLIST ServiceDefinition
 xmlns CDATA #IMPLIED
 codepage CDATA #IMPLIED >

<!ELEMENT Name ( #PCDATA ) >
<!ELEMENT Description ( #PCDATA ) >
<!ELEMENT CreationDate ( #PCDATA ) >
<!ELEMENT CreationUser ( #PCDATA ) >
<!ELEMENT ModificationDate ( #PCDATA ) >
<!ELEMENT ModificationUser ( #PCDATA ) >
<!ELEMENT Level ( #PCDATA ) >
<!ELEMENT ReplId ( #PCDATA ) >
<!ELEMENT ProdId ( #PCDATA ) >

<!ELEMENT Notes ( Note* ) >
<!ELEMENT Note ( #PCDATA ) >

<!ELEMENT ResourceGroups ( ResourceGroup* ) >
<!ELEMENT ResourceGroup ( Name, Description?, CreationDate, CreationUser, ModificationDate, ModificationUser, Type?, CapacityMinimum?, CapacityMaximum? ) >

<!ELEMENT Type ( #PCDATA ) >
<!ELEMENT CapacityMaximum ( #PCDATA ) >
<!ELEMENT CapacityMinimum ( #PCDATA ) >

<!ELEMENT Workloads ( Workload* ) >
<!ELEMENT Workload ( Name, Description?, CreationDate, CreationUser, ModificationDate, ModificationUser, ServiceClasses ) >

<!ELEMENT ServiceClasses ( ServiceClass* ) >
<!ELEMENT ServiceClass ( Name, Description?, CreationDate, CreationUser, ModificationDate, ModificationUser, ServiceParameter, CPUCritical?, ResourceGroupName?, Goal ) >

<!ELEMENT ResourceGroupName ( #PCDATA ) >

<!ELEMENT Goal ( (AverageResponseTime | PercentileResponseTime | Velocity)*, Discretionary? ) >

<!ELEMENT AverageResponseTime ( Importance, Duration?, ResponseTime ) >
<!ELEMENT Importance ( #PCDATA ) >
<!ELEMENT Duration ( #PCDATA ) >
```

© Copyright IBM Corp. 1988, 2009
Appendix C. Structure of the XML Service Definition (DTD)
Table 95 lists the valid name spaces and the corresponding functionality levels:

<table>
<thead>
<tr>
<th>Name Space</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://www.ibm.com/xmlns/prod/zwlm/1997/03/ServiceDefinition.xsd</td>
<td>003</td>
</tr>
<tr>
<td>http://www.ibm.com/xmlns/prod/zwlm/1999/03/ServiceDefinition.xsd</td>
<td>007</td>
</tr>
</tbody>
</table>
Table 95. Valid Name Spaces and Corresponding Functionality Levels (continued)

<table>
<thead>
<tr>
<th>Name Space</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://www.ibm.com/xmlns/prod/zwlm/2005/12/ServiceDefinition.xsd</td>
<td>017</td>
</tr>
</tbody>
</table>
The following Table 96 shows C language interfaces with their associated Workload Management service. See the *z/OS XL C/C++ Run-Time Library Reference* for more information on these and other C language interfaces.

See also "Interfaces for Sysplex Routing Services" on page 813 for the four C interfaces for accessing the WLM sysplex routing services, and "Interface for Querying a Virtual Server" on page 813 for the C interface to querying a virtual server.

<table>
<thead>
<tr>
<th>C Language Interface</th>
<th>Associated WLM Service</th>
<th>Reference Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CheckSchEnv</td>
<td>IWMSEDES</td>
<td>Chapter 52, "IWMSEDES – Scheduling Environments Determine Execution Service," on page 441</td>
</tr>
<tr>
<td>ConnectExportImport</td>
<td>IWMCONN WORK_MANAGER=NO ROUTER=NO QUEUE_MANAGER=NO SERVER_MANAGER=NO EXPTIMPT=YES</td>
<td>"IWMCONN – Connecting to Workload Management" on page 823</td>
</tr>
<tr>
<td>ConnectServer</td>
<td>IWMCONN WORK_MANAGER=NO ROUTER=NO QUEUE_MANAGER=YES SERVER_MANAGER=YES</td>
<td>"IWMCONN – Connecting to Workload Management" on page 823</td>
</tr>
<tr>
<td>ConnectWorkMgr</td>
<td>IWMCONN WORK_MANAGER=YES ROUTER=NO QUEUE_MANAGER=YES SERVER_MANAGER=NO EXPTIMPT=YES</td>
<td>"IWMCONN – Connecting to Workload Management" on page 823</td>
</tr>
<tr>
<td>ContinueWorkUnit</td>
<td>IWMCREA TYPE=DEPENDENT</td>
<td>"IWMCREA – Create an Enclave" on page 848</td>
</tr>
<tr>
<td>CreateWorkUnit</td>
<td>IWMCREA TYPE=INDEPENDENT</td>
<td>"IWMCREA – Create an Enclave" on page 848</td>
</tr>
<tr>
<td>DeleteWorkUnit</td>
<td>IWMDELE</td>
<td>"IWMDELE – Delete an Enclave" on page 859</td>
</tr>
<tr>
<td>DisconnectServer</td>
<td>IWMDISC</td>
<td>"IWMDISC – Disconnecting from Workload Management" on page 842</td>
</tr>
<tr>
<td>ExportWorkUnit</td>
<td>IWMEXPT</td>
<td>Chapter 30, "IWMEXPT – Exporting a WLM Enclave," on page 283</td>
</tr>
<tr>
<td>ExtractWorkUnit</td>
<td>IWMEQRY</td>
<td>Chapter 28, "IWMEQRY – Querying Enclave State," on page 269</td>
</tr>
<tr>
<td>ImportWorkUnit</td>
<td>IWMIQRT</td>
<td>Chapter 32, "IWMIQRT – Importing an Enclave," on page 295</td>
</tr>
<tr>
<td>C Language Interface</td>
<td>Associated WLM Service</td>
<td>Reference Chapter</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>JoinWorkUnit</td>
<td>IWMJOIN</td>
<td>Chapter 21, “IWMEJOIN – Joining a WLM Enclave,” on page 219</td>
</tr>
<tr>
<td>LeaveWorkUnit</td>
<td>IWMELEAV</td>
<td>Chapter 22, “IWMELEAV – Leaving an Enclave,” on page 227</td>
</tr>
<tr>
<td>QueryMetrics</td>
<td>IWMWSYSQ</td>
<td>Chapter 67, “IWMWSYSQ – Querying System Information,” on page 545</td>
</tr>
<tr>
<td>QuerySchEnv</td>
<td>IWMESEQRY</td>
<td>Chapter 53, “IWMESEQRY – Scheduling Environments Query Service,” on page 447</td>
</tr>
<tr>
<td>QueryWorkUnitClassification</td>
<td>IWMECQRY</td>
<td>Chapter 18, “IWMECQRY – Querying Enclave Classification Attributes,” on page 199</td>
</tr>
<tr>
<td>UnDoExportWorkUnit</td>
<td>IWMUEXPT</td>
<td>Chapter 62, “IWMUEXPT – WLM Undo Export Service,” on page 513</td>
</tr>
<tr>
<td>UnDoImportWorkUnit</td>
<td>IWMUIMPT</td>
<td>Chapter 63, “IWMUIMPT – WLM Undo Import Service,” on page 519</td>
</tr>
<tr>
<td>_server_classify</td>
<td>IWMCLSFY</td>
<td></td>
</tr>
<tr>
<td>_server_classify_create</td>
<td>IWMCLSFY</td>
<td></td>
</tr>
<tr>
<td>_server_classify_init</td>
<td>IWMCONN, IWMDISC</td>
<td></td>
</tr>
<tr>
<td>_server_classify_pwu</td>
<td>IWMQINS, IWSSEL, INMS Vend, IWMEQORY, INMSREF, IWSMSTBGN, INMEDELE, IWMCREA, IWMCLSFY, IWMDISC</td>
<td></td>
</tr>
<tr>
<td>_server_thread_query</td>
<td>IWSMINFO</td>
<td></td>
</tr>
</tbody>
</table>
Interfaces for Sysplex Routing Services

The following table shows the C language interfaces that can be used to access WLM sysplex routing services.

Note: You need to include the header file IWMWDNSH before invoking these functions.

Table 97. C Language Interfaces for WLM Sysplex Routing Services

<table>
<thead>
<tr>
<th>C Language Interface</th>
<th>Associated WLM Sysplex Routing Service</th>
<th>Reference Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWMDNREG</td>
<td>IWMSRSRG</td>
<td>Chapter 60, “IWMSRSRG – Register a Server for Sysplex Routing,” on page 493</td>
</tr>
<tr>
<td>IWMDNDRG</td>
<td>IWMSRDRS</td>
<td>Chapter 58, “IWMSRDRS – Deregister a Server for Sysplex Routing,” on page 479</td>
</tr>
<tr>
<td>IWMDNGRP</td>
<td>IWMSRDNS</td>
<td>Chapter 57, “IWMSRDNS – Get Sysplex Routing Location List,” on page 473</td>
</tr>
<tr>
<td>IWMDNSRV</td>
<td>IWMSRSRS</td>
<td>Chapter 61, “IWMSRSRS – Determine Where to Route Work,” on page 501</td>
</tr>
</tbody>
</table>

Interface for Querying a Virtual Server

Products can use the query virtual server interface to obtain a virtual server’s ID and capacity. The C interface for this query is IWMQVS, and the assembler interface is SYSEVENT QVS. Both forms of this query return a QVS structure which maps the returned identification and capacity information. See z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO for more information.
Appendix E. WLM Services supporting 31–bit address space only

IWMAEDEF — Defining Dynamic Application Environments to Workload Management

The IWMAEDEF service defines dynamic application environments to WLM. The service can be used by queue manager address spaces to add new application environments after they connected to WLM and to delete the dynamic application environments before they disconnect from WLM.

Furthermore, the service can be used to define the method how server spaces should be resumed for static and dynamic application environments.

Before using this service, the caller must connect to WLM using the IWM4CON service, specifying Work_Manager=Yes, and Queue_Manager=Yes.

A queueing manager must not insert requests for a dynamic and static application environment with the same application environment name concurrently.

Note

It is recommended to use the new equivalent service IWM4AEDF introduced with z/OS V1R7. IWM4AEDF also supports 64-bit address space. For further information refer to Chapter 68, “IWM4AEDF — Defining Dynamic Application Environments to Workload Management,” on page 553.

Environment

The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.
Dispatchable unit mode: Task or SRB
Cross memory mode: Any HASN, any SASN. PASN must be the address space which connected to WLM (i.e. the address space that was home when IWM4CON was issued for Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue).
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded.
IWMAEDEF Macro

from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.

Restrictions

This macro supports multiple versions. Some keywords are unique to certain versions. Refer to the description of the PLISTVER parameter for further information.

Input Register Information

Before issuing the IWMAEDEF macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
IWMAEDEF CONNTKN=conntkn

,PARAMETERS=parameters
,FUNCTION=ADD,APPLENV=applenv
,DISTRIBUTE_WORK=FIRST_AVAILABLE,STATIC=NO

,FUNCTION=DELETE,APPLENV=applenv
,DISTRIBUTE_WORK=ROUND_ROBIN,STATIC=YES
```
 Parameters

The parameters are explained as follows:

 name
 An optional symbol, starting in column 1, that is the name on the IWMAEDEF macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

 ,APPLENV=applenv
 When FUNC=ADD is specified, a required input parameter, which contains the name of the static or dynamic application environment.

 To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

 CONNTKN=conntkn
 A required input parameter, which contains the connect token returned by the IWM4CON macro.

 To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

 ,DISTRIBUTE_WORK=FIRSTAVAILABLE
 ,DISTRIBUTE_WORK=ROUNDROBIN
 When FUNC=ADD is specified, an optional parameter that controls how Workload Management resumes bound server spaces that are waiting for work. The default is DISTRIBUTE_WORK=FIRSTAVAILABLE.

 ,DISTRIBUTE_WORK=FIRSTAVAILABLE
 Workload Management wakes up the server space that has been suspended first (default).

 ,DISTRIBUTE_WORK=ROUNDROBIN
 Workload Management wakes up the server space that has the smallest number of affinities. If there are several server spaces with the same number of affinities, workload management will start the server space with the smallest number of active server tasks.
IWMAEDEF Macro

,FUNC=DELETE
,FUNC=MODIFY
 A required parameter that indicates how the caller uses the service

,FUNC=ADD
 indicates that the caller wants to add a dynamic application environment to
 WLM.

,FUNC=DELETE
 indicates that the caller wants to delete its interest in the dynamic
 application environment.

,FUNC=MODIFY
 indicates that the caller wants to redefine the method how server spaces
 should be resumed for static and dynamic application environments.

,JCLPARMS=jclparms
,JCLPARMS=0
 When FUNC=ADD is specified, an optional input parameter, which contains the
 parameters which are passed to the start procedure of the server manager
 address spaces by WLM. The default is 0.

 To code: Specify the RS-type address, or address in register (2)-(12), of a
 115-character field.

,JCLPROC=jclproc
 When FUNC=ADD is specified, a required input parameter, which contains the
 name of the start procedure which is used by WLM to start server manager
 address spaces for the application environment.

 To code: Specify the RS-type address, or address in register (2)-(12), of an
 8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
 An optional input parameter that specifies the macro form.

 Use MF=S to specify the standard form of the macro, which builds an inline
 parameter list and generates the macro invocation to transfer control to the
 service. MF=S is the default.

 Use MF=L to specify the list form of the macro. Use the list form together with
 the execute form of the macro for applications that require reentrant code. The
 list form defines an area of storage that the execute form uses to store the
 parameters. Only the PLISTVER parameter may be coded with the list form of
 the macro.

 Use MF=E to specify the execute form of the macro. Use the execute form
 together with the list form of the macro for applications that require reentrant
 code. The execute form of the macro stores the parameters into the storage
 area defined by the list form, and generates the macro invocation to transfer
 control to the service.

,list addr
 The name of a storage area to contain the parameters. For MF=S and
 MF=E, this can be an RS-type address or an address in register (1)-(12).
IWMAEDEF Macro

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.
- 0, which supports all parameters except those specifically referenced in higher versions.
- 1, which supports both the following parameters and those from version 0:

DISTRIBUTE_WORK STATIC

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0, or 1

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SELECT_POLICY=select_policy
,SELECT_POLICY=0
When FUNC=ADD is specified, an optional input parameter, which tells WLM
how to select work if work requests are directly routed to the server address space. Only 0, 1 and 2 are valid select policies. 0 is the default which is also selected if an invalid policy is specified.

The select policy options 0, 1 and 2 have the following meaning:

- 0 Default, the oldest request on either the service class or server address space queue is selected first.
- 1 The request on the server address space queue (if present) is selected first independently of the times the requests have been inserted.
- 2 The request on the service class queue is always selected first.

The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of an one-byte field.

,SINGLE_SERVER=NO
,SINGLE_SERVER=YES
When FUNC=ADD is specified, an optional parameter indicating whether one or multiple server spaces should be started for the application environment. The default is SINGLE_SERVER=NO.

,SINGLE_SERVER=NO
Multiple server spaces should be started for the application environment (default).

,SINGLE_SERVER=YES
Only one server space should be started for the application environment.

,STATIC=NO
,STATIC=YES
When FUNC=MODIFY is specified, an optional parameter that controls whether a static or dynamic application environment should be updated. The default is STATIC=NO.

,STATIC=NO
indicates that the caller wants to modify a dynamic application environment (default).

,STATIC=YES
indicates that the caller wants to modify a static application environment.

ABEND Codes

None.

Return and Reason Codes

When the IWMAEDEF macro returns control to your program:

- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.
Table 98. Return and Reason Codes for the IWMAEDEF Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
<td>Meaning: Successful completion. Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
<td>Meaning: Caller is disabled. Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td>Meaning: Caller is locked. Action: Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0821</td>
<td>Equate Symbol: IwmRsnCodeBadConn</td>
<td>Meaning: Input connect token does not pass validity checking. Action: Make sure to use the connect token returned by the IWM4CON service requesting Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>Equate Symbol: IwmRsnCodeDatoff</td>
<td>Meaning: Caller invoked service while DATOFF Action: Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td>Meaning: Caller invoked service but was in 24 bit addressing mode. Action: Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>Equate Symbol: IwmRsnCodeAscModeNotPrimary</td>
<td>Meaning: Caller invoked service but was not in primary ASC mode. Action: Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>Equate Symbol: IwmRsnCodeRsrdNot0</td>
<td>Meaning: Reserved field in parameter list was non-zero. Action: Check for use of keywords that are not supported by the MVS release on which the program is running.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td>Meaning: Version number in parameter list is not valid. Action: Check for possible storage overlay of the parameter list.</td>
</tr>
</tbody>
</table>
Table 98. Return and Reason Codes for the IWMAEDEF Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx083F | Equate Symbol: IwmRsnCodePrimaryNotOwnConn
Meaning: Primary address space does not own the passed connect token.
Action: Ensure that the primary address space has previously connected to WLM using the IWM4CON macro. Ensure that the connect token returned by the IWM4CON macro is passed to the IWMAEDEF macro. |
| 8 | xxxx0840 | Equate Symbol: IwmRsnCodeServiceNotEnabled
Meaning: Caller's space connection is not enabled for this service
Action: Make sure that Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue is specified on the IWM4CON request to enable this service. |
| 8 | xxxx0842 | Equate Symbol: IwmRsnCodeNoWLMConnect
Meaning: Caller's space disconnected from WLM during processing of the request.
Action: None. |
| 8 | xxxx0890 | Equate Symbol: IwmRsnCodeApplEnvExists
Meaning: The caller tried to add an application environment that has already been defined. subsystem type.
Action: Check whether the correct application environment name is being used. Make sure that a unique application environment name is used when adding application environments. |
| 8 | xxxx0891 | Equate Symbol: IwmRsnCodeApplEnvNotFound
Meaning: The caller tried to delete or modify an application environment that does not exist.
Action: Check whether the correct application environment name is being used. |
| C | — | Equate Symbol: IwmRetCodeEnvError
Meaning: Environmental error. |
| C | xxxx0C01 | Equate Symbol: IwmRsnCodeNoStg
Meaning: Storage is not available for the request.
Action: Contact your system programmer. There is a common storage shortage. |
| 10 | — | Equate Symbol: IwmRetCodeCompError
Meaning: Component error.
Action: Contact your system programmer. |

Example

To add a dynamic application environment:

```plaintext
IWMAEDEF CONNTKN=CONNTOKEN, X
   FUNC=ADD, X
   APPLENV=APPLENV X
   JCLPROC=JCLPROC X
   RETCODE=RC, RSNCODE=RSN
```
IWMAEDEF Macro

Storage areas

CONNTOKEN DS FL4 Contains the connect token
 associated with the use of WLM
 Queuing services as returned by
 IWM4CON
APPLENV DS CL32 Contains the application
 environment name
JCLPROC DS CL8 Contains the name of the
 start procedure
RC DS F Return code
RSN DS F Reason code

IWMCN – Connecting to Workload Management

The purpose of this service is to connect a calling address space to WLM. This service returns a token which is needed to invoke other services. This service can be used to:

- Request that WLM Work Management services be available to the connecting address space and optionally to pass topology information to WLM.
- Request that WLM Work Queuing services be available to the connecting address space.
- Request that WLM Work Execution services be available to the connecting address space.
- Request that WLM Work Balancing services be available to the connecting address space.
- Request that WLM export and import services be available to the connecting address space.

Note that:

- The space which is connected is the current home address space.
- Only a single connection is allowed to be active for a given address space at any given time.
- For each connected task/space, WLM will establish a dynamic resource manager (RESMGR) to be associated with the current task/space. When it receives control, it will free any accumulated resources and delete any enclaves associated with the connect token. This implies that the resource manager will logically perform the disconnect function and the connect token can no longer be passed to WLM services.

Note

It is recommended to use the new equivalent service IWM4CON introduced with z/OS V1R6. IWM4CON also supports 64-bit address space. For further information refer to Chapter 69, “IWM4CON – Connecting to Workload Management,” on page 563.
IWMCONN Macro

Environment

The requirements for the caller are:

Minimum authorization: For WORK_MANAGER=YES or ROUTER=YES, QUEUE_MANAGER=YES or EXPTIMPT=YES, supervisor state or program key mask (PKM) allowing keys 0-7.

For SERVER_MANAGER=YES, problem state with any PSW key.

Dispatchable unit mode: Task

Cross memory mode: Non-XMEM when input key is a user key or SERVER_MANAGER = YES, otherwise XMEM, any P,S,H.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
6. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.

Restrictions

1. This macro may only be used on MVS/ESA (version 3 or higher), NOT versions 1 or 2 of MVS.
2. This macro may not be used during task/address space termination.
3. Only a single connection is allowed to be active for a given address space at any given time.
4. Specification of both Queue_Manager=Yes, and Server_Manager=Yes requires that Server_Type=Queue. Specification of Server_Type=Routing is rejected.
5. Specification of both Router=Yes, and Server_Manager=Yes requires that Server_Type=Routing. Specification of Server_Type=Queue is rejected.
6. If the callers recovery routine should get control as a result of requesting this service, the function cannot be guaranteed to be complete. It is possible that a token has been saved in the parameter list where the connect token would reside upon successful completion. This token may be passed to IWMDISC to prevent the address space from being disabled from future IWMCONN requests,
but the token should not be used for other services. IWMDISC in these circumstances may give a warning return code indicating that no connection was established, however.

7. If the key specified on IWMCONN is a user key (8-F) or SERVER_MANAGER=YES was specified, then the caller must be in non-cross-memory mode (P=S=H).

8. While not a restriction for IWMCONN, it should be noted that when the key specified is a user key (8-F), the Connect token may only be passed to IWMCLSFY, IWMRPT, or IWMMNTFY services, when the current primary matches primary at the time IWMCONN is invoked.

Input Register Information

Before issuing the IWMCONN macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.
IWMCONN Macro

Syntax

main diagram

parameters-1

parameters-2
Parameters

The parameters are explained as follows:

`name`
An optional symbol, starting in column 1, that is the name on the IWMCONN macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

`.APPLENV=applenv`
When `SERVER_MANAGER=YES` is specified, a required input parameter, which contains the application environment under which work requests are served.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

`.CONNTKN=conntkn`
A required output parameter, which will receive the connect token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

`.CONNTKNKEY=conntknkey`
When `CONNTKNKEYP=VALUE` and `WORK_MANAGER=YES` are specified, a required input parameter, which contains the key for which the various branch entry services using the `CONNTKN` returned by `Iwmconn` must have PSW update authority. These other services include Classify (Iwmclsfy), Report (Iwmrpt), Notify (Iwmnotify). Create (Iwmmcrea) is a PC interface and hence is excluded. The low order 4 bits (bits 4-7) contain the key value. The high order 4 bits (bits 0-3) must be zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8 bit field.

`.CONNTKNKEYP=VALUE`
`.CONNTKNKEYP=PSWKEY`
When `WORK_MANAGER=YES` is specified, a required parameter, which describes how the input key should be obtained.

`.CONNTKNKEYP=VALUE`
indicates that the key is being passed explicitly via `CONNTKNKEY`.

`.CONNTKNKEYP=PSWKEY`
indicates that the current PSW key should be used.

`.DYNAMIC=NO`
`.DYNAMIC=YES`
When `SERVER_MANAGER=YES` is specified, an optional parameter indicating whether the server manager connects to a dynamic or static application environment. The default is `DYNAMIC=NO`.

`.DYNAMIC=NO`
The server manager connects to a static application environment. This is the default.
IWMCONN Macro

,DYNAMIC=YES
 The server manager connects to a dynamic application environment.

,EWLM=NO
,EWLM=YES
 When WORK_MANAGER=YES is specified, an optional parameter, which
 indicates if this work manager intends to participate in cross-platform enterprise
 workload management (EWLM). The default is EWLM=NO.

,EWLM=NO
 The work manager interacts only with WLM and no interaction with EWLM
 takes place. This is the default.

,EWLM=YES
 The work manager participates in cross-platform enterprise workload
 management and interacts with EWLM.

,EXPTIMPT=NO
,EXPTIMPT=YES
 An optional parameter indicating whether the space needs access to the export
 and import services (IWMEXPT, IWMUEXPT, IWMIMPT, IWMUIMPT). The
 default is EXPTIMPT=NO.

,EXPTIMPT=NO
 The connecting address space will not use the export and import services.

,EXPTIMPT=YES
 The connecting address space will use the export and import services.

,GROUPNM=groupnm
,GROUPNM=NO_GROUPNM
 An optional input parameter, which contains the name of an application group,
 for example, a group of similar or cooperating subsystem instances. A group
 name can be up to 255 characters long. Provision of a data area initialized to
 all blanks is equivalent to specification of NO_GROUPNM. The default is
 NO_GROUPNM. This indicates that no group name is passed.

 To code: Specify the RS-type address, or address in register (2)-(12), of a
 character field.

,GROUPNM_LEN=groupnm_len
 When GROUPNM=groupnm is specified, a required input parameter, which
 contains the length of the group name. A group name can be up to 255
 characters long.

 To code: Specify the RS-type address, or address in register (2)-(12), of a
 fullword field.

,MANAGE_TASKS=NO
,MANAGE_TASKS=YES
 When SERVER_TYPE=QUEUE and SERVER_MANAGER=YES are specified,
 an optional parameter indicating that WLM will manage the server instances
 (tasks), selecting work from a work queue.

 If YES is specified the caller must use service IWMSINF to obtain the number
 of server instances to start from WLM.

 The meaning of PARALLEL_EU changes in this case. PARALLEL_EU is only
 used to determine the number of tasks to start if the application environment
 cannot be managed by WLM. Otherwise PARALLEL_EU can be used to limit
 the number of server tasks to start initially.
The server can define the SERVER_LIMIT parameter to specify a limit for the number of server tasks supported by the application.

,MANAGE_TASKS=NO
 The connecting address space starts the number of server instances as provided with PARALLEL_EU.

,MANAGE_TASKS=YES
 The connecting address space uses IWMSINF to obtain the number of server instances to start from WLM.

,MF=S
,LMF=(L,list addr)
,LMF=(L,list addr,attr)
,LMF=(L,list addr,0D)
,LMF=(E,list addr)
,LMF=(E,list addr,COMPLETE)
 An optional input parameter that specifies the macro form.

 Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

 Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

 Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,list addr
 The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
 An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 'XF0' to force the parameter list to a word boundary, or 'X0D' to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 'X0D'.

,COMPLETE
 Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,NODENM= nodenm
,NODENM=NO_NODENM
 An optional input parameter, which contains the node name to be used for classifying work requests when Work_Manager=Yes is specified or taken as default. The node name identifies a specific subcomponent of the generic subsystem type.

 When Server_Manager=Yes and Server_Type=Queue is specified, the node name should match the node name specified on the corresponding Connect for the Queue_Manager, for example, all servers associated with the Queue_Manager have identical node names.
IWMCONN Macro

If a product chooses to use both Work_Manager=Yes and Server_Manager=Yes on a single invocation of IWMCONN for a space, then the rules for Server_Manager apply, for example, the node name refers to the node name of the space playing the role of Queue_Manager.

If the caller connects to the WLM work queueing services, the combination of the subsystem type, node name and the subsystem name must be unique to that MVS system. Node name can be omitted. The default is NO_NODENM.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

`NUMBERASCB=numberascb`

When TOPOLOGY=topology and WORK_MANAGER=YES are specified, a required input parameter, which contains the number of ASCBs in the list passed via xTOPOLOGY. While there is no restriction on the number of entries in the list, the current support will only look at the first 10 entries. The number specified must be positive (hence also non-zero).

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

`PARALLEL_EU=parallel_eu`

When SERVER_MANAGER=YES is specified, a required input parameter, which contains the maximum number of tasks (TCBs) within the address space which will be used to concurrently process distinct work requests if MANAGE_TASKS=YES is not in effect. When Select (IWMSSEL) is used to obtain a work request, which might then be passed to another task (TCB) for processing under a Begin (IWMSTBGN) environment, this count represents the number of tasks (TCBs) which can be running concurrently against these work requests, i.e. the number of concurrent Begin environments. It is important that this count represent the actual number of tasks (TCBs) which can be utilized, and not merely some approximate upper bound, as this value will influence system algorithms.

If MANAGE_TASKS=YES is in effect, the application environment managed by WLM PARALLEL_EU is not used. In this case the parameter is only used as described above if no procedure name was defined for the application environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

`PLISTVER=IMPLIED_VERSION`
`PLISTVER=MAX`
`PLISTVER=0`
`PLISTVER=1,PLISTVER=2`
`PLISTVER=3`
`PLISTVER=4`

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
IWMCONN Macro

- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, which supports all parameters except those specifically referenced in higher versions.

- **1**, which supports the following parameters and those from version 0:

  ```
  APPLENV       QUEUE_MANAGER     SERVER_TYPE
  EXPTIMPT      ROUTER            SRV_MGR_EXIT@
  PARALLEL_EU   SERVER_DATA       WORK_MANAGER
  QMGR_EXIT@    SERVER_MANAGER
  ```

- **2**, which supports the following parameters and those from version 0 and 1:

  ```
  MANAGE_TASKS  SERVER_LIMIT
  ```

- **3**, which supports both the following parameters and those from version 0, 1, and 2:

  ```
  DYNAMIC       NODENM
  ```

- **4**, which supports both the following parameters and those from version 0, 1, 2, and 3:

  ```
  EWLM          GROUPNM           GROUPNM_LEN
  ```

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0, 1, 2, 3, or 4

.QMGR_EXIT@=qmgr_exit@

.QMGR_EXIT@=NO_QMGR_EXIT@

When QUEUE_MANAGER=YES and ROUTER=NO are specified, an optional input parameter that contains the address of the Queue Manager Connect Exit to be invoked when the system wishes to inform the queue manager of actions it should perform. The exit will be called in enabled, unlocked TCB mode with no FRRs set, but may be called in a cross-memory environment. The mapping of the parameter list for the exit and its invocation environment is given by the list form of the IWMQXIT macro.

The system may chose to discontinue calling the exit upon repetitive abnormal completions, i.e. where the system recovery routine is percolated to from an error within the exit. The exit must be callable from any address space and remain available after the queue manager disconnects or terminates. The default is NO_QMGR_EXIT@, which indicates that no queue manager exit is provided.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

.QUEUE_MANAGER=NO
IWMCONN Macro

,.QUEUE_MANAGER=YES
When ROUTER=NO is specified, an optional parameter indicating that WLM Work Queuing services be available to the connecting address space. For example:
- Insert (IWMQINS)
- Delete (IWMQDEL)

If YES is specified, the combination of the subsystem type and the subsystem name must be unique to that MVS system. The default is QUEUE_MANAGER=NO.

,.QUEUE_MANAGER=NO
The connecting address space will not use the WLM Work Queuing services.

,.QUEUE_MANAGER=YES
The connecting address space will be using the WLM Work Queuing services.

,.RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,.ROUTER=NO
,.ROUTER=YES
An optional parameter, which describes whether recommendations for sysplex routing to servers associated with the same subsystem type and name are requested. The default is ROUTER=NO.

,.ROUTER=NO
indicates that recommendations for sysplex routing via IWMSRFSV are not required.

,.ROUTER=YES
indicates that recommendations for sysplex routing via IWMSRFSV is required. Note that only server spaces which have the same Subsystem type and name AND which specified Server_Type=Routing are considered when IWMSRFSV is invoked.

If YES is specified, the combination of the subsystem type and the subsystem name must be unique to that MVS system.

,.RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,.SERVER_DATA=server_data
When SERVER_TYPE=ROUTING and SERVER_MANAGER=YES are specified, a required input parameter, which contains whatever data is needed to uniquely identify the server when recommended by MVS through use of the IWMSRFSV interface. The structure of this data is undefined to MVS, and will be returned to the program invoking IWMSRFSV when the server is returned.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

,.SERVER_LIMIT=server_limit
,.SERVER_LIMIT=1000
When MANAGE_TASKS=YES, SERVER_TYPE=QUEUE and
SERVER_MANAGER=YES are specified, an optional input parameter indicating the architectural limit of the application for the number of server instances which can be supported.

This parameter can be used to tell WLM the upper limit up to which WLM will recommend to start server instances. If the parameter is omitted or is set higher than 1000, WLM will use 1000 as upper limit instead. The default is 1000.

To code: Specify the RS-type address of a fullword field.

,SERVER_MANAGER=NO

,SERVER_MANAGER=YES

An optional parameter indicating whether the space needs access to a family of services specified by SERVER_TYPE. The default is SERVER_MANAGER=NO.

,SERVER_MANAGER=NO

The connecting address space will not use any of the various server related WLM services documented under SERVER_TYPE.

,SERVER_MANAGER=YES

The connecting address space will be acting in the role of a server and needs access to the family of services specified by SERVER_TYPE.

Specification of both Queue_Manager=Yes, and Server_Manager=Yes requires that Server_Type=Queue. Specification of Server_Type=Routing is rejected.

Specification of both Router=Yes, and Server_Manager=Yes requires that Server_Type=Routing. Specification of Server_Type=Queue is rejected.

,SERVER_TYPE=QUEUE

,SERVER_TYPE=ROUTING

When SERVER_MANAGER=YES is specified, an optional parameter, which describes what type of services are used by the server. The default is SERVER_TYPE=QUEUE.

,SERVER_TYPE=QUEUE

indicates that the server selects work from a queue, and thus requests that WLM Work Execution services be available to the connecting address space. For example:

- Select (IWMSSSEL)
- Begin (IWMSTBGN)
- End (IWMSTEND)

The server also has the WLM Work Queuing services available to the connecting address space when the corresponding Queue Manager with the same subsystem type and name is active on the same MVS image (see following macros for macro specific restrictions). For example:

- Insert (IWMQINS)
- Delete (IWMQDEL)

,SERVER_TYPE=ROUTING

indicates that the server receives work by way of routing, and may be selected by the IWMSRFSV (Find Server) macro interface. Note that the space which invokes the IWMSRFSV service must Connect with Router=Yes.

Termination of the router with the same subsystem type and name on the same MVS image will not cause notification to the server to terminate. This coordination, if required, must be handled through a different protocol than use of Connect.
When SERVER_TYPE=ROUTING and SERVER_MANAGER=YES are specified, a required input parameter that is to contain the address of the Server Manager Connect Exit to be invoked when the system wishes to inform the server of actions it should perform. This exit will be called in SRB mode, with a non cross-memory environment, where HASN=SASN=PASN=HASN at the time IWMCONN was invoked. The mapping of the parameter list for the exit and its invocation environment is given by the list form of the IWMSCXIT macro.

Note that it may be possible for the exit to be called before the caller has received control back from IWMCONN. The exit or any program it drives (synchronously or asynchronously) must synchronize with the program issuing IWMCONN to ensure that IWMCONN has returned a connect token prior to issuing IWMDISC (disconnect) or any other services that need the connect token.

The system may cause the space to become ineligible to be recommended by IWMSRFSV upon repetitive errors in calling the exit specified. The exit must be callable from the server address space and remain available after the server manager disconnects or the connecting server TCB terminates. The exit need not persist upon memory termination of the server.

To code: Specify the RS-type address, or address in register (2)-(12), of a pointer field.

,SRV_MGR_EXIT@=srv_mgr_exit@

,SUBSYS=subsys

A required input parameter, which contains the generic subsystem type (e.g. IMS, CICS, etc.). When WORK_MANAGER=YES is specified, this is the primary category under which classification rules are grouped.

If the caller connects to the WLM work queueing services by specifying QUEUE_MANAGER=YES, or requests sysplex routing by specifying ROUTER=YES, the combination of the subsystem type and the subsystem name must be unique to that MVS system.

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-character field.

,SUBSYSNM=subsysnm

A required input parameter, which contains the subsystem name to be used for classifying work requests when Work.Manager=Yes is specified or taken as default. The subsystem name identifies a specific instance of the generic subsystem type.

When Server_Manager=Yes and Server_Type=Queue is specified, the subsystem name should match the subsystem name specified on the corresponding Connect for the Queue_Manager, i.e. all servers associated with the Queue_Manager have identical subsystem names.

When Server_Manager=Yes and Server_Type=Routing is specified, the subsystem name should match the subsystem name specified on the corresponding Connect for Router=Yes, i.e. all servers associated with the Router have identical subsystem names.

If a product choses to use both Work_Manager=Yes and Server_Manager=Yes on a single invocation of IWMCONN for a space, then the rules for Server_Manager apply, i.e. the subsystem name refers to the subsystem name of the space playing the role of Queue_Manager or Router.
If the caller connects to the WLM work queueing services, or to sysplex routing services, the combination of the subsystem type and the subsystem name must be unique to that MVS system.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

```
,TOPOLOGY=topology
```

TOPOLOGY=NO_TOPOLOGY

When WORK_MANAGER=YES is specified, an optional input parameter, which represents a list of ASCB addresses for the address spaces which comprise the subsystem. This list should ONLY include address spaces which do NOT surface as the current home address space when IWMMINIT or IWMMRELA are used to establish the delay monitoring environments, but that may participate as dispatchable units (TCBs or SRBs) in serving work requests. If the current primary or home space is a space not surfaced in a monitoring environment and its execution can affect the response time of work flowing through the subsystem, then it should appear in the list. Neither current primary nor current home are defaults. While there are no limits on the number of address spaces, this information is less precise than that provided by monitoring environments. The default is NO_TOPOLOGY, which indicates that no topology information was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

```
WORK_MANAGER=YES

WORK_MANAGER=NO
```

An optional parameter indicating that WLM Work Management services be available to the connecting address space. For example:

- Classify (IWMCLSFY)
- Report (IWMRPT)
- Notify (IWMMNTFY)
- Enclave Create (IWMECREA)
- Modify Connect (IWMMMCN)

If NO is specified, the above services cannot be used, except for the form of Notify that does not pass an input connect token. The default is WORK_MANAGER=YES.

```
WORK_MANAGER=YES

WORK_MANAGER=NO
```

The connecting address space will not use the WLM Work Management services. Specifying this keyword may reduce the use of system resources.

ABEND Codes

None.

Return and Reason Codes

When the IWMCONN macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.
The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 99. Return and Reason Codes for the IWMCONN Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeWarning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
<tr>
<td>4 xxxx0401</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeNoWLM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: System does not support work manager services. This return code is only set when the MVS release is prior to MVS/ESA SP5.1.0 or prior to HBB6603 for IWMCONN QUEUE_MANAGER/SERVER_MANAGER services.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8 xxxx0801</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeSrbMode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is in SRB mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while in SRB mode.</td>
<td></td>
</tr>
<tr>
<td>8 xxxx0802</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeXmemUserKeyTkn</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is in cross-memory mode while the token was requested in user key.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while in cross-memory mode.</td>
<td></td>
</tr>
<tr>
<td>8 xxxx0803</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is disabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while disabled.</td>
<td></td>
</tr>
<tr>
<td>8 xxxx0804</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is locked.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while locked.</td>
<td></td>
</tr>
<tr>
<td>8 xxxx080B</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeBadPl</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Error accessing parameter list.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay. Also check if you call this macro in 64-bit address mode. Refer to the description of reason code xxxx089E for further information.</td>
<td></td>
</tr>
<tr>
<td>8 xxxx0810</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeEutFrr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller has EUT FRR established.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function with an EUT FRR set.</td>
<td></td>
</tr>
<tr>
<td>8 xxxx0812</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeBadAscb</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Bad ASCB address passed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay.</td>
<td></td>
</tr>
</tbody>
</table>
Table 99. Return and Reason Codes for the IWMCONN Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>Equate Symbol: iwmRsnCodeDatoff</td>
<td>Caller invoked service while DATOFF</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: iwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24 bit addressing mode.</td>
<td>Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>Equate Symbol: iwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not DAT on Primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0826</td>
<td>Equate Symbol: iwmRsnCodeTaskTerm</td>
<td>Caller invoked service while task termination is in progress for the TCB associated with the owner.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>Equate Symbol: iwmRsnCodeRsvdNot0</td>
<td>Reserved field in parameter list was non-zero.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: iwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0829</td>
<td>Equate Symbol: iwmRsnCodeBadOptions</td>
<td>Parameter list omits required parameters or supplies mutually exclusive parameters or provides data associated with options not selected.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx082C</td>
<td>Equate Symbol: iwmRsnCodeBadNumberAscb</td>
<td>NUMBERASCB variable is not a positive value.</td>
<td>Check for possible storage overlay of the parameter list or variable.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx082E</td>
<td>Equate Symbol: iwmRsnCodeConnectExists</td>
<td>Connect has already been established for the current home address space.</td>
<td>Avoid requesting this function when a connection already exists.</td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol</td>
<td>Meaning</td>
<td>Action</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>IwmRsnCodeServiceNotEnabled</td>
<td>Requested connection type cannot be established in the current execution environment. This occurs when SERVER_MANAGER=YES is specified and the program is run as a batch job in a WLM-managed job class.</td>
<td>Run the program as a started task.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0841</td>
<td>IwmRsnCodeXMemMode</td>
<td>Caller is in cross memory mode.</td>
<td>Invoke the function in non-cross memory mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0847</td>
<td>IwmRsnCodeOtherSpaceConnected</td>
<td>Another address space with the same subsystem type and name is connected to WLM on the MVS image and has the role of queue manager or router.</td>
<td>Avoid requesting this function with duplicate values.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0849</td>
<td>IwmRsnCodeWLMServBadAPPL</td>
<td>The application environment name (APPLENV=) specified is not the same as the one used by WLM to start the server.</td>
<td>Verify that the start parameters for the application environment are coded correctly in the WLM ISPF application, and that those parameters are used by the started JCL procedure.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx084A</td>
<td>IwmRsnCodeWLMServBadSSN</td>
<td>The subsystem name (SUBSYSNM=) specified is not the same as the one used by WLM to start the server.</td>
<td>Verify that the start parameters for the application environment are coded correctly in the WLM ISPF application, and that those parameters are used by the started JCL procedure.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx084B</td>
<td>IwmRsnCodeWLMServBadSST</td>
<td>The subsystem type (SUBSYS=) specified is not the same as the one used by WLM to start the server.</td>
<td>Verify that the start parameters for the application environment are coded correctly in the WLM ISPF application, and that those parameters are used by the started JCL procedure.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx084D</td>
<td>IwmRsnCodeNotAuthConnect</td>
<td>The caller must be supervisor state or have PSW key mask 0-7 authority to connect to the requested WLM services.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx084E</td>
<td>IwmRsnCodeWlmServBadType</td>
<td>For WLM started servers, the SERVER_TYPE= is not the one used to start the server.</td>
<td>Specify the correct SERVER_TYPE.</td>
</tr>
</tbody>
</table>
Table 99. Return and Reason Codes for the IWMCONN Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0853</td>
<td>IwmRsnCodeWlmQmBadType</td>
<td>There is a queue manager or router environment of the specified subsystem name, but of a different type than that specified by the caller.</td>
<td>Verify that the option for queue manager/router is specified correctly on IWMCONN. If the option is correct, then server address spaces for a different Server_Type exist and must terminate before the current space may connect as a queue manager or router.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0855</td>
<td>IwmRsnCodeBadNumEUMax</td>
<td>PARALLEL_EU variable is greater than the maximum of 1000.</td>
<td>Specify a value between 1 and 1000.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0856</td>
<td>IwmRsnCodeBadNumEUMin</td>
<td>PARALLEL_EU variable is less than the minimum of 1.</td>
<td>Specify a value between 1 and 1000.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx085C</td>
<td>IwmRsnCodeWrongNumEU</td>
<td>Caller invoked service with a PARALLEL_EU value which is different from the PARALLEL_EU of existing servers in the application environment</td>
<td>Ensure that all servers in the application environment specify the same PARALLEL_EU value.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0873</td>
<td>IwmRsnCodeWrongSrvLmt</td>
<td>Caller invoked service with a SERVER_LIMIT parameter setting which is different from the SERVER_LIMIT of existing servers in the application environment</td>
<td>Ensure that all servers in the application environment specify the same SERVER_LIMIT value.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0874</td>
<td>IwmRsnCodeWrongMngTsk</td>
<td>Caller invoked service with a MANAGE_TASKS parameter setting which is different from the MANAGE_TASKS of existing servers in the application environment</td>
<td>Ensure that all servers in the application environment specify the same MANAGE_TASKS value.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0878</td>
<td>IwmRsnCodeBadNumLimitMax</td>
<td>Caller invoked service with a SERVER_LIMIT parameter setting which exceeds the maximum number of tasks which can be started in a server address space.</td>
<td>Correct number or do not specify SERVER_LIMIT parameter in order to use the default.</td>
</tr>
</tbody>
</table>
IWMCONN Macro

Table 99. Return and Reason Codes for the IWMCONN Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0879</td>
<td>IwmRsnCodeBadNumLimitMin</td>
<td>Caller invoked service with a SERVER_LIMIT parameter setting which is less than what has been defined on the PARALLEL_EU parameter.</td>
<td>Ensure that SERVER_LIMIT is always greater or equal to PARALLEL_EU.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx087A</td>
<td>IwmRsnCodeNoQServer</td>
<td>The MANAGE_TASKS parameter is not allowed when QUEUE_SERVER=YES has been specified.</td>
<td>Ensure to use the parameters correctly.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx088E</td>
<td>IwmRsnCodeWlmServBadSSND</td>
<td>For WLM started servers, the NODENM= is not the one used to start the server.</td>
<td>Specify the correct NODENM.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx088F</td>
<td>IwmRsnCodeApplNotSSN</td>
<td>The application environment name is defined for use by a different subsystem node.</td>
<td>Check whether the correct application environment name is being used.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx089E</td>
<td>IwmRsnCodeServiceAModeMismatch</td>
<td>The caller is in 64-bit address mode and tried to invoke a service macro that is only enabled for a 31-bit environment.</td>
<td>Use the 64-bit enabled service macro (IWM4CON) or change the address mode of the caller to 31-bit.</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>IwmRetCodeEnvError</td>
<td>Environmental error.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>IwmRsnCodeNoStg</td>
<td>Storage is not available for the request.</td>
<td>There is a storage shortage. The function may work successfully at a later time.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C09</td>
<td>IwmRsnCodeNoResmgr</td>
<td>Resource manager could not be established.</td>
<td>No action required. This condition may be due to a storage shortage condition.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C14</td>
<td>IwmRsnCodeNoWorkShutDown</td>
<td>No work selected. Caller is to shutdown.</td>
<td>The server should shut down (terminate).</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C19</td>
<td>IwmRsnCodeNotSecAuthConnect</td>
<td>The caller is not authorized by SAF to connect to WLM with SERVER_MANAGER=YES.</td>
<td>The security administrator must grant access to the appropriate resource.</td>
</tr>
</tbody>
</table>
Table 99. Return and Reason Codes for the IWMCONN Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>xxxx0C1A</td>
<td>Equate Symbol: IwmRsnCodeApplNotDefined</td>
<td>The application environment name is not defined in the active WLM policy.</td>
<td>Check whether the correct application environment name is being used. If so, a service administrator must define the application environment in the WLM service definition.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C1B</td>
<td>Equate Symbol: IwmRsnCodeApplNotSST</td>
<td>The application environment name is defined for use by a different subsystem type in the active WLM policy.</td>
<td>Check whether the correct application environment name is being used. If so, a service administrator must change the application environment in the WLM service definition to specify the correct subsystem type.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C1F</td>
<td>Equate Symbol: IwmRsnCodeServerExists</td>
<td>A server exists for the specified application environment which only allows 1 such server in the sysplex.</td>
<td>Check whether the correct application environment name is being used. If so and the current server is shutting down, a retry may be successful after a delay.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C22</td>
<td>Equate Symbol: IwmRsnCodeEnvQuiesced</td>
<td>The specified application environment has been quiesced, server cannot be started for the request.</td>
<td>Restart the application environment and then retry the request.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
<td>Component error.</td>
<td>No action required. The function may be successful if invoked again.</td>
</tr>
</tbody>
</table>

Examples

To connect to workload management specifying: a key value of 8, and a list of 7 address spaces involved in processing work, specify:

```
IWMCONN  SUBSYS=GENSUB, SUBSYNM=SUBNAME,
    TOPOLOGY=LISTASCBS, NUMBERASCBS=NUMSPACE
    CONNTKN=CTKN, CONNTKNKEYP=VALUE, CONNTKNKEY=KEY,
    RETCODE=RC, RSNCODE=RSN,
```

Where the following are declared:

- **GENSUB** DS CL4 Generic subsystem type
- **SUBNAME** DS CL8 Subsystem name
- **LISTASCBS** DS CL28 List of 7 address spaces
- **NUMSPACE** DC F'7' Number of ASCBs
- **CTKN** DS FL4 Connect token
- **KEY** DS XL1 Key value
IWMDISC allows the caller to disconnect from the workload management services. This means that the input connect token can no longer be passed to workload management macros such as IWMCLSFY and IWMRPT. When a program disconnects, any enclaves associated with the input connect token are deleted from the system. Any SRBs running in the enclave are run as preemptible SRBs at the priority of the home address space. Any enclave TCBs are converted to ordinary TCBs.

You should issue this macro once during shutdown of the connecting address space.

Note

It is recommended to use the new equivalent service IW4DIS introduced with z/OS V1R6. IW4DIS also supports 64-bit address space. For further information refer to Chapter 70, “IW4DIS – Disconnecting from Workload Management,” on page 583.

Environment

The requirements for the caller are:

Minimum authorization:

When the corresponding Connect (IWMCONN) invocation specified WORK_MANAGER=YES or QUEUE_MANAGER=YES, ROUTER=YES, or EXPTIMPT=YES, supervisor state or program key mask (PKM) allowing keys 0-7.

When the corresponding Connect (IWMCONN) invocation specified WORK_MANAGER=NO, QUEUE_MANAGER=NO, ROUTER=NO, EXPTIMPT=NO, and SERVER_MANAGER=YES, problem state with any PSW key.

Dispatchable unit mode: Task or SRB

When the corresponding Connect (IWMCONN) invocation specified SERVER_MANAGER=YES, task mode.

Cross memory mode: The current Home address space must be the same as Home when the corresponding Connect was invoked. Any PASN, any SASN.

When the corresponding Connect (IWMCONN) invocation specified SERVER_MANAGER=YES, non-cross memory mode, P=S=H.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

When the corresponding Connect (IWMCONN) invocation specified SERVER_MANAGER=YES, SERVER_TYPE=ROUTING, NO FRRs may be set.

Control parameters: Control parameters must be in the primary address space.
Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

1. No FRRs may be set when calling to disconnect a space which is connected as a server manager with server type = routing.
2. If the key specified on IWMCNN was a user key (8-F), then the following must ALL be true:
 • caller must be in non-cross-memory mode (P=S=H). This implies that the current primary must match the primary at the time that IWMCNN was invoked. Running in a subspace is not supported.
 • must be in TCB mode (not SRB)
 • current TCB must match the TCB at the time that IWMCNN was invoked.
3. This service should not be invoked while in a RTM termination routine (resource manager) for the TCB owning the connect token since MVS will have its own resource cleanup routine and unpredictable results would occur. It is legitimate to use this service while in a recovery routine, however, or in mainline processing.

Input Register Information

Before issuing the IWMDISC macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.
IWMDISC Macro

Performance Implications
None.

Syntax

main diagram

```
    IWMDISC  CONNTKN=conntkn
              ,RETCODE=retcode
              ,RSNCODE=rsncode

    PLISTVER=IMPLIED_VERSION
    PLISTVER=MAX
    PLISTVER=0

    MF=S
    MF=(L,list addr)
    MF=(L,list addr,attr)
    MF=(L,list addr,0D)
    MF=(E,list addr)
    MF=(E,list addr,COMPLETE)
```

Parameters

The parameters are explained as follows:

name
- An optional symbol, starting in column 1, that is the name on the IWMDISC macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

CONNTKN=conntkn
- A required input parameter, which contains the connect token for the environment to be disconnected.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

```
    .MF=S
    .MF=(L,list addr)
    .MF=(L,list addr,attr)
    .MF=(L,list addr,0D)
    .MF=(E,list addr)
    .MF=(E,list addr,COMPLETE)
```

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code `attr`, the system provides a value of 0D.

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, if you use the currently available parameters.

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

None.
IWMDISC Macro

Return and Reason Codes

When the IWMDISC macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
<td>None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0401</td>
<td>IwmRsnCodeNoWLM</td>
<td>System does not support work manager services.</td>
<td>None required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This return code is only set when the MVS release is prior to MVS/ESA SP5.1.0.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0409</td>
<td>IwmRsnCodeNoConn</td>
<td>Input connection token does not reflect an active connection to WLM.</td>
<td>None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>IwmRsnCodeSrbMode</td>
<td>Caller is in SRB mode.</td>
<td>Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0802</td>
<td>IwmRsnCodeXmemUserKeyTkn</td>
<td>Caller is in cross-memory mode while the token was obtained in a user key.</td>
<td>Avoid requesting this function while in cross-memory mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
<td>Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
</tbody>
</table>
Table 100. Return and Reason Codes for the IWMDISC Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx0809 | **Equate Symbol:** iwmRsnCodeSrbUserKeyTkn | **Meaning:** Caller is in SRB mode, while the token was obtained in a user key (8-F).
Action: Avoid requesting this function in SRB mode for tokens associated with user key. |
| 8 | xxxx080A | **Equate Symbol:** iwmRsnCodeTcbNotOwnerUserKeyTkn | **Meaning:** Current TCB is not the owner, while the token was obtained in a user key (8-F).
Action: Avoid requesting this function under a TCB other than the owner for a token associated with user key. |
| 8 | xxxx080B | **Equate Symbol:** iwmRsnCodeBadPl | **Meaning:** Error accessing parameter list.
Action: Check for possible storage overlay. Also check if you call this macro in 64-bit address mode. Refer to the description of xxxx089E for further information. |
| 8 | xxxx0810 | **Equate Symbol:** iwmRsnCodeEutFrr | **Meaning:** Caller has EUT FRR established.
Action: Avoid requesting this function with an EUT FRR set. |
| 8 | xxxx0823 | **Equate Symbol:** iwmRsnCodeDatoff | **Meaning:** Caller invoked service while DATOFF
Action: Avoid requesting this function in this environment. |
| 8 | xxxx0824 | **Equate Symbol:** iwmRsnCodeAmode24 | **Meaning:** Caller invoked service but was in 24 bit addressing mode.
Action: Request this function only when you are in 31 bit addressing mode. |
| 8 | xxxx0825 | **Equate Symbol:** iwmRsnCodeAscModeNotPrimary | **Meaning:** Caller invoked service but was not DAT on Primary ASC mode.
Action: Avoid requesting this function in this environment. |
| 8 | xxxx0826 | **Equate Symbol:** iwmRsnCodeTaskTerm | **Meaning:** Caller invoked service while task termination is in progress for the TCB associated with the owner.
Action: Avoid requesting this function in this environment. |
| 8 | xxxx0827 | **Equate Symbol:** iwmRsnCodeRsvdNot0 | **Meaning:** Reserved field in parameter list was non-zero.
Action: Check for possible storage overlay of the parameter list. |
| 8 | xxxx0828 | **Equate Symbol:** iwmRsnCodeBadVersion | **Meaning:** Version number in parameter list is not valid.
Action: Check for possible storage overlay of the parameter list. |
IWMDISC Macro

Table 100. Return and Reason Codes for the IWMDISC Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx082F</td>
<td>IwmRsnCodeWrongHome</td>
<td>Caller invoked the service from the wrong home address space.</td>
<td>Invoke the function with the correct home address space.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0841</td>
<td>IwmRsnCodeXMemMode</td>
<td>Caller is in cross memory mode.</td>
<td>Invoke the function in non-cross memory mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx084D</td>
<td>IwmRsnCodeNotAuthConnect</td>
<td>The caller must be supervisor state or have PSW key mask 0-7 authority to disconnect from the requested WLM services.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx089E</td>
<td>IwmRsnCodeServiceAModeMismatch</td>
<td>The caller is in 64-bit address mode and tried to invoke a service macro that is only enabled for a 31-bit environment.</td>
<td>Use the 64-bit enabled service macro (IWM4DIS) or change the address mode of the caller to 31-bit.</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>IwmRetCodeCompError</td>
<td>Component error.</td>
<td>No action required. The function may be successful if invoked again.</td>
</tr>
</tbody>
</table>

IWMECREA – Create an Enclave

The purpose of this service is to create an Enclave where possibly multiple SRBs and/or TCBs may be simultaneously executing or scheduled. For the duration of each Enclave, all SRBs and TCBS associated with the Enclave are treated as part of a single work request. All SRBs and/or TCBs associated with the Enclave accumulate service as a single entity and are managed as a single entity. The address spaces where Enclave SRBs are dispatched, as defined by the ENV= parameter of IEAMSCHD, should be non-swappable.

For more information about managing address spaces with enclaves, see "Performance Management of Address Spaces with Enclaves" on page 48.

Note: An address space must be non-swappable if it has enclave SRBs dispatched and SYSEVENT ENCASSOC has not been issued.

For TYPE=INDEPENDENT Enclaves, a new work business unit of work is created and classified according to the input Connect token’s subsystem type and subsystem name, along with whatever other attributes are passed via the Classify parameter list. The current home address space is considered the owner.

For TYPE=DEPENDENT enclaves, SRM considers the enclave to be part of the current home address space’s transaction, which then becomes the owning space. This space need not be connected to WLM via IWMCONN.
For TYPE=MONENV enclaves, SRM considers the enclave to be part of the address space’s transaction which is delayed according to the input monitoring environment, as set when IWMMINIT or IWMMRELA was used. This space becomes the owning space. This space need not be connected to WLM via IWMCONN.

For both TYPE=MONENV and TYPE=DEPENDENT enclaves, SRM will change the enclave to TYPE=INDEPENDENT if the owning address space’s transaction ends.

For both TYPE=MONENV and TYPE=DEPENDENT enclaves, SRM will check the enclave for period switch when the owning address space is swapped in. If the owning address space is swapped out SRM will continue to accumulate service for any enclaves owned by the space, but will not check the address space and any owned enclave for period switch until the address space is swapped in again. The presence of enclaves does not make the address space appear to be ready from an SRM point of view.

Enclaves are deleted if the owning address space terminates.
TYPE=INDEPENDENT enclaves are deleted if the owning address space disconnects or the TCB which connected terminates.

Enclaves should only be created when this environment is ready for execution, and should not be used when prolonged queueing effects are possible prior to the scheduling of the first SRB (IEAMSCHD) or the first task join (IWMEJOIN). “Prolonged” would certainly include times measured in seconds. The service allows the caller to pass the queueing time prior to creation of the Enclave so that this may be separately reported.

Note
It is recommended to use the new equivalent service IWM4ECRE introduced with z/OS V1R6. IWM4ECRE also supports 64-bit address space. For further information refer to Chapter 71, “IWM4ECRE – Creating an Enclave,” on page 591.

Environment

The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

1. The macro IWMYCON must be included to use this macro.
2. The macro CVT must be included to use this macro.
IWMECREA Macro

3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant IWMRNSCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.

Restrictions

1. The Connect token from the input classify parameter list must be owned by the current home address space and must be associated with a system key (0-7), as specified on IWMCONN. The Classify parameter list and hence the Connect token is only relevant for TYPE=INDEPENDENT Enclaves.
2. Since this service may only be used by system-like code, some validity checking on the parameter list is not performed. These checks would only be needed if the macro were not used to invoke the service routine.
3. The variable length fields associated with the classify parameter list (the classify parameter list is only relevant for certain options) given by the CLSFY keyword have the following limitations in addition to those documented in IWMCLSFY:
 - SUBSYSMP is limited to 255 bytes
 - COLLECTION is limited to 18 bytes
 - CORRELATION is limited to 12 bytes
4. When TYPE(MONENV) is specified the following apply:
 - If the key specified on IWMMCREA was a user key (8-F), then primary or home addressability must exist to the performance block IWMMCREA obtained. This condition is satisfied by ensuring that the current primary or home address space matches primary (=home) at the time that IWMMCREA was invoked.
 - The caller must serialize to prevent any delay monitoring services from being invoked concurrently for the environment represented by the monitoring token.
 - Only limited checking is done against the input monitoring token.
 - TYPE=MONENV enclaves cannot be created for report-only monitoring environments.
5. This macro may only be used on z/OS R2 or higher levels for EXSTARTDEFER keyword.

Input Register Information

Before issuing the IWMECREA macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>
When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

```
main diagram
```

```
IWMECREA
  name
  TYPE=INDEPENDENT
  parameters-1

  ETOKEN=etoken
  RETCODE=retcode
  RSNCODE=rsncode

  PLISTVER=IMPLIED_VERSION
  ,MF=S
  , PLISTVER=MAX
  , PLISTVER=0
  , PLISTVER=1
  , PLISTVER=2
  , PLISTVER=3

parameters-1

  CLSFY=clsfy
  ARRIVALTIME=arrivaltime
  FUNCTION_NAME=function_name

  EXSTARDEFEQ=NO
  ,ESTRT=IMPLIED
  , WORKREQ_HDL=workreg_hdl
  , EXSTARDEFEQ=YES
  , EXSTARDEFEQ=YES
  , ESTRT=EXPLICIT
  , ESTRT=EXPLICIT_SINGLE
  , ESTRT=NEVER
```

Parameters

The parameters are explained as follows:

- **name**
 - An optional symbol, starting in column 1, that is the name on the IWMECREA macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

- **ACCESS=PRIMARY**
When TYPE=MONENV is specified, a required parameter, which describes how to access the monitoring environment.

ACCESS=HOME
When TYPE=MONENV is specified, a required parameter, which describes how to access the monitoring environment.

ACCESS=PRIMARY
indicates that the monitoring environment can be accessed in the caller’s primary address space. This would be appropriate if the monitoring environment was established (by IWMMCREA) to be used by routines in a specific system key or if it was established to be used in a specific user key in the current primary.

ACCESS=HOME
indicates that the monitoring environment must be accessed in the home address space, which is not the caller’s primary address space. This would be appropriate if the monitoring environment was established (by IWMMCREA) for use by a specific user key.

ARRIVALTIME=arrivaltime
When TYPE=INDEPENDENT is specified, a required input parameter, which contains the work arrival time in STCK format. This is the time at which the business work request is considered to have arrived and from which point the system evaluates elapsed time for the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64 bit field.

CLSFY=clsfy
When TYPE=INDEPENDENT is specified, a required input parameter, which contains the classification information in the format of the parameter list for IWMCLSFY. NOTE that this name is the data area name, not its pointer. IWMCLSFY MF(M) should be used to initialize the area prior to invocation of IWMECREA. The Classify parameter list must be from MVS/ESA SP5.2.0 or later.

Note that the variable length fields associated with the classify parameter list given by the CLSFY keyword have the following limitations in addition to those documented in IWMCLSFY:
- SUBSYSPM is limited to 255 bytes
- COLLECTION is limited to 18 bytes
- CORRELATION is limited to 12 bytes

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

ESTRT=IMPLIED

ESTRT=EXPLICIT

ESTRT=EXPLICIT_SINGLE

ESTRT=NEVER
When TYPE=INDEPENDENT is specified, an optional parameter, which denotes how the work manager indicates the start and end point of an EWLM work request when participating in cross-platform enterprise workload management (EWLM). The default is ESTRT=IMPLIED.

ESTRT=IMPLIED
If the work manager previously connected to WLM with IWMCNN EWLM=YES, a work request is started implicitly when the enclave is created. If IWMESTOP was not invoked before, the work request will be stopped implicitly when the enclave is deleted.

ESTRT=EXPLICIT
The work manager indicates the start and end point of an EWLM work
IWMECREA Macro

request by invoking the services IWMESTRT and IWMESTOP. Note that
this option is only meaningful, if the work manager previously connected to
WLM with IWMCONN EWLM=YES.

,ESTRT=EXPLICIT_SINGLE
Indicates the same as option ESTRT=EXPLICIT and, in addition, the
application ensures that only one work request is active. No nested calls to
IWMESTRT are allowed. If this option is specified the CPU consumption on
all EWLM enclave services (IWMEGCOR, IWMESTRT, IWMESTOP,
IWMEBLK, IWMEUBLK) will be reduced. If ESTRT=EXPLICIT_SINGLE is
specified on IWMECREA, the application must also add the
EWLMMODE=EXPLICIT_SINGLE parameter on all calls to IWMEGCOR,
IWMESTRT, IWMESTOP, IWMEBLK and IWMEUBLK. If this parameter is
used, the application has some restrictions on all calls to IWMEGCOR,
IWMESTRT, IWMESTOP, IWMEBLK and IWMEUBLK. Refer to the
 corresponding macro descriptions for details.

,ESTRT=NEVER
Indicates that this enclave will never use any EWLM-related enclave
services (IWMEGCOR, IWMESTRT, IWMESTOP, IWMEBLK, and
IWMEUBLK) after the enclave has been created, even if the work manager
has registered (IWN4CON or IWMCONN) with EWMLM=YES. Moreover
IWMECREA will not start an EWLM work request on the enclave and will
not do any EWLM-related processing.

,EOTOKEN=etoken
A required output parameter, which will receive the enclave token.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,EXSTARTDEFER=NO
,EXSTARTDEFER=YES
When TYPE=INDEPENDENT is specified, an optional parameter, which
indicates whether the Enclave execution start time should begin when the first
IWMSTBGN or IWMEJOIN is executed. The time between enclave create and
the first IWMSTBGN or IWMEJOIN is assumed to be the queue time. The
default is EXSTARTDEFER=NO

,EXSTARTDEFER=NO
indicates that the Enclave execution start time should not begin when the
first IWMSTBGN or IWMEJOIN is executed.

,EXSTARTDEFER=YES
indicates that the Enclave execution start time should begin when the first
IWMSTBGN or IWMEJOIN is executed.

,FUNCTION_NAME=function_name
When TYPE=INDEPENDENT is specified, a required input parameter, which
contains the descriptive name for the function for which the Enclave was
created.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
IWMECREA Macro

,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,MONTKN=montkn
When TYPE=MONENV is specified, a required input parameter, which contains the delay monitoring token which describes the current business unit of work. If the monitoring environment is related to an address space, then it must be the current home address space.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2
,PLISTVER=3
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
IWMECREA Macro

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- 0, which supports all parameters except those specifically referenced in higher versions.
- 1, which supports both the following parameters and those from version 0:
 - ACCESS
 - MONTKN
 - TYPE
- 2, which supports both the following parameters and those from version 0 and 1:
 - EXSTARTDEFER
- 3, which supports both the following parameters and those from version 0, 1, and 2:

ESTRT WORKREQ_HDL

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0, 1, 2, or 3

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

TYPE=INDEPENDENT
TYPE=DEPENDENT
TYPE=MONENV
An optional parameter, which indicates the type of Enclave being created. The default is TYPE=INDEPENDENT.

TYPE=INDEPENDENT
indicates that the Enclave represents a new business unit of work with its own business objectives.

TYPE=DEPENDENT
indicates that the Enclave represents a continuation of the business unit of work represented by the current home address space.

TYPE=MONENV
indicates that the Enclave represents a continuation of the business unit of work represented by the input monitoring environment.

,WORKREQ_HDL=workreq_hdl
When ESTRT=IMPLIED and TYPE=INDEPENDENT are specified, an optional output parameter that will receive the handle which represents the work
IWMECREA Macro

request. The application must pass this handle to the other work request services IWMESTOP, IWMEBLK, IWMEUBLK, and IWMEGCOR.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWMECREA macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 101. Return and Reason Codes for the IWMECREA Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Meaning: Successful completion. Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8 xxxx0803</td>
<td>—</td>
<td>IwmRsnCodeDisabled</td>
<td>Meaning: Caller is disabled. Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8 xxxx0804</td>
<td>—</td>
<td>IwmRsnCodeLocked</td>
<td>Meaning: Caller is locked. Action: Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8 xxxx080B</td>
<td>—</td>
<td>IwmRsnCodeBadPl</td>
<td>Meaning: Error accessing parameter list. Action: Check for possible storage overlay. Also check if you call this macro in 64-bit address mode. Refer to the description of xxxx089E for further information.</td>
</tr>
<tr>
<td>8 xxxx0820</td>
<td>—</td>
<td>IwmRsnCodeBadMonEnv</td>
<td>Meaning: Monitoring environment does not pass short form verification. Action: Check for possible storage overlay.</td>
</tr>
<tr>
<td>8 xxxx0821</td>
<td>—</td>
<td>IwmRsnCodeBadConn</td>
<td>Meaning: Connect token from the input classify parameter list does not pass validity checking. Action: Check for possible storage overlay.</td>
</tr>
</tbody>
</table>
Table 101. Return and Reason Codes for the IWMECREA Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx0824 | Equate Symbol: IwmRsnCodeAmode24
Meaning: Caller invoked service but was in 24 bit addressing mode.
Action: Request this function only when you are in 31 bit addressing mode. |
| 8 | xxxx0828 | Equate Symbol: IwmRsnCodeBadVersion
Meaning: Version number in parameter list is not valid.
Action: Check for possible storage overlay of the parameter list. |
| 8 | xxxx0836 | Equate Symbol: IwmRsnCodeMaxEnclave
Meaning: Enclave could not be created because the Enclave limit has been reached.
Action: Check for possible problems wherein Enclaves are not being deleted as expected or excessive numbers of Enclaves are being created in a loop. |
| 8 | xxxx0837 | Equate Symbol: IwmRsnCodeUserKeyConntkn
Meaning: Connect token from the input classify parameter list is associated with a user key.
Action: Invoke the function with a token associated with a system key. |
| 8 | xxxx0838 | Equate Symbol: IwmRsnCodeClsfyAreaTooBig
Meaning: Input area associated with classification information is larger than supported.
Action: Invoke the function with an area of the proper size. Check for possible storage overlay. |
| 8 | xxxx0839 | Equate Symbol: IwmRsnCodeClsfyPITooSmall
Meaning: Input Classify parameter list is too small.
Action: Invoke the function with an area of the proper size. Check for possible storage overlay. |
| 8 | xxxx083B | Equate Symbol: IwmRsnCodeHomeNotOwnConn
Meaning: Home address space does not own the connect token from the input classify parameter list.
Action: Invoke the function with the correct home address space. |
| 8 | xxxx0840 | Equate Symbol: IwmRsnCodeServiceNotEnabled
Meaning: Caller’s space connection is not enabled for this service.
Action: Avoid requesting this function under the input connection. IWMCNN options must be specified previously to enable this service. |
| 8 | xxxx085D | Equate Symbol: IwmRsnCodeMonenvNotHome
Meaning: The input monitoring environment is related to an address space other than home.
Action: None required. |
<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0892</td>
<td>IwmRsnCodeEWLMCorrNotAllowed</td>
<td>Passed classification information must not contain an EWLM correlator (EWLM_CORR).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: Do not pass an EWLM correlator within the classification information when invoking the service with ESTRT=EXPLICIT.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0894</td>
<td>IwmRsnCodeInvalidEWLMCorr</td>
<td>Passed classification information contains an ARM correlator (EWLM_CORR) that does not pass validity checking. The architected ARM correlator length field in the first two bytes of the EWLM_CORR is either less than 4 (X'0004') or greater than 512 (X'0200').</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: Check the specification of the EWLM correlator in the classification information.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0895</td>
<td>IwmRsnCodeEWLMServNotEnabled</td>
<td>Service is not enabled because caller invoked the IWMCONN service with EWLM=NO.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: Specify the parameter WORKREQ_HDL only when connected with EWLM=YES.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx089E</td>
<td>IwmRsnCodeServiceAModeMismatch</td>
<td>The caller is in 64-bit address mode and tried to invoke a service macro that is only enabled for a 31-bit environment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: Use the 64-bit enabled service macro (IWM4ECRE) or change the address mode of the caller to 31-bit.</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>IwmRetCodeEnvError</td>
<td>Environmental error.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>IwmRsnCodeNoStg</td>
<td>Storage is not available for the request.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: There is a storage shortage. The function may work successfully at a later time.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C0C</td>
<td>IwmRsnCodeClassifyFail</td>
<td>Received a non-zero return code from the classification service, IWMCLSFY.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: No action required. Reinvoking the function later may succeed.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C0D</td>
<td>IwmRsnCodeBadClsfy</td>
<td>Classification apparently can not access the current policy, possibly due to a policy switch in progress.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: Invoke the function when the conditions are alleviated.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C20</td>
<td>IwmRsnCodeDepClassifyFail</td>
<td>Unable to obtain classification attributes for a dependent enclave.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
</tbody>
</table>
Table 101. Return and Reason Codes for the IWMECREA Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>xxxx0C21</td>
<td>Equate Symbol: IwmRsnCodeNoMonEnvErr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Input monitoring token indicates no monitoring environment was established.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Component error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: No action required. The function may be successful if invoked again.</td>
</tr>
</tbody>
</table>

IWMEDELE – Delete an Enclave

The purpose of this service is to delete an enclave, so that no SRBs or TCBs exist within the enclave and no new SRBs may be scheduled into the enclave, nor may any TCBs join the enclave. Some residual enclave related CPU time will not be accounted back to the work request whenever active enclave SRBs/TCBs were present at the time IWMEDELE is invoked. SRBs scheduled to the enclave which have not completed will be converted to ordinary preemptable SRBs. TCBs joined to the enclave which have not completed will be converted to ordinary TCBs.

If IWMEDELE is invoked for an enclave which is registered, the enclave is considered only logically deleted while all its functionality stays in place. Physical deletion is deferred until all interested parties have deregistered the enclave. The caller does not receive any notice when the physical deletion of the enclave is done.

When an enclave is deleted, the work request is considered to have finished and all related resource accounting will be finalized.

IWMEDELE cannot be used to delete a foreign enclave. The IWMUIMPT macro must be used instead.

Note

It is recommended to use the new equivalent service IWM4EDEL introduced with z/OS V1R6. IWM4EDEL also supports 64-bit address space. For further information refer to Chapter 72, “IWM4EDEL – Deleting an Enclave,” on page 603.

Environment

The requirements for the caller are:

- **Minimum authorization**: Supervisor state or program key mask (PKM) allowing keys 0-7.
- **Dispatchable unit mode**: Task or SRB
- **Cross memory mode**: Any PASN, any HASN, any SASN
- **AMODE**: 31-bit
- **ASC mode**: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held. FRR environments may be established.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.
6. Since this service may only be used by system-like code, some validity checking on the parameter list is not performed. These checks would only be needed if the macro were not used to invoke the service routine.

Restrictions
This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to the PLISTVER parameter description for further information.

Input Register Information
Before issuing the IWEDELE macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>
Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWM4EDEL
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,CPUSERVICE=cpuservice
An optional output parameter, which will contain the CPU service accumulated
by the enclave on the local system.

To code: Specify the RS-type address, or address in register (2)-(12), of a
64-bit field.

,CPUTIME=cputime
An optional output parameter, which will contain the total CPU time
accumulated by the enclave on the local system.

To code: Specify the RS-type address, or address in register (2)-(12), of a
64-bit field.
IWMEDELE Macro

ETOKEN=etoken

A required input parameter, which contains the enclave token to be returned.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,**MF=S**
,**MF=(L,list addr)**
,**MF=(L,list addr,attr)**
,**MF=(L,list addr,0D)**
,**MF=(E,list addr,COMPLETE)**

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,**list addr**

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,**attr**

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of OF to force the parameter list to a word boundary, or OD to force the parameter list to a doubleword boundary. If you do not code **attr**, the system provides a value of OD.

,**COMPLETE**

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,**PLISTVER=IMPLIED_VERSION**
,**PLISTVER=MAX**
,**PLISTVER=0**
,**PLISTVER=1**
,**PLISTVER=2**

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- 0, which supports all parameters except those specifically referenced in higher versions.
- 1, which supports both the following parameters and those from version 0:

 RESPTIME_RATIO

- 2, which supports both the following parameters and those from version 0 and 1:

 ZAAPNFACtor ZAAPTIME ZIIPTIME
 ZAAPSERVICE ZIIPSERVICE

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0, 1, or 2

,RESPTIME_RATIO=resptime_ratio
An optional output parameter, which contains the response time ratio times 100: act.resp.time / goal * 100 if the enclave has a response time goal (limited to: 1<=RESPTIME_RATIO<=1000) 0 otherwise

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SYSPLEXCPUSRV=sysplexcpusrv
An optional output parameter, which will contain the CPU service accumulated by the enclave on the local system and on other systems through the use of the IWMEXPT and IWMIMPT services. If the IWMEXPT and IWMIMPT services were not used, SYSPLEXCPUSRV returns the same value as CPUSERVICE.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

,ZAAPNFACtor=zaapnfactor
An optional output parameter, which contains the normalization factor for application assist processors (zAAPs). If zAAPs are running at a different speed, multiply zAAP service and times with this factor and divide the result by 256 to normalize the values to the speed of regular CPs. Note however, that if there has been a speed change of zAAP processors during the life time of the enclave, this calculation will return incorrect data.
IWMEDeLE Macro

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

.ZAAPSERVICE=zaapservice
An optional output parameter, which contains the application assist processor (zAAP) service accumulated by the enclave on the local system. The value is not normalized to the speed of regular CPs, but is expressed in zAAP speed which might be different. You may use ZAAPNFACTOR to normalize the value to the speed of regular CPs. Note however, that if the zAAP speed changed during the life time of the enclave, this value cannot be normalized correctly.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

.ZAAPTIME=zaaptime
An optional output parameter, which contains the total application assist processor (zAAP) time accumulated by the enclave on the local system. The value is not normalized to the speed of regular CPs, but is expressed in zAAP speed which might be different. You may use ZAAPNFACTOR to normalize the value to the speed of regular CPs. Note however, that if the zAAP speed changed during the life time of the enclave, this value cannot be normalized correctly.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

.ZIIPSERVICE=ziipservice
An optional output parameter, which contains the integrated information processor (zIIP) service accumulated by the enclave on the local system. The service is normalized to standard processor speed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

.ZIIPTIME=ziiptime
An optional output parameter, which contains the total integrated information processor (zIIP) time accumulated by the enclave on the local system. The time is normalized to standard processor speed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

ABEND Codes
None.

Return and Reason Codes
When the IWMEDeLE macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.
<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Equate Symbol: IwmRetCodeOk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Equate Symbol: IwmRetCodeWarning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0411</td>
<td>Equate Symbol: IwmRsnCodeEnclActive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Input enclave had 1 or more SRBs scheduled or running, or 1 or more TCBs joined to the enclave.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is locked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>Equate Symbol: IwmRsnCodeBadPI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Error accessing parameter list.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller invoked service but was in 24 bit addressing mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Version number in parameter list is not valid.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx083A</td>
<td>Equate Symbol: IwmRsnCodeBadEnclave</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Enclave token does not pass verification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check for possible storage overlay of the enclave token, or asynchronous events which may have deleted the enclave.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0872</td>
<td>Equate Symbol: IwmRsnCodeForeignEnclave</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The enclave is foreign.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Use the IWMUIMPT macro to delete a foreign enclave.</td>
</tr>
</tbody>
</table>
Table 102. Return and Reason Codes for the IWM4EDEL Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
</tr>
</tbody>
</table>

Meaning: Component error.

Action: No action required. The function may be successful if invoked again.

Example

To allow the current task to join an Enclave:

```plaintext
IWM4EDEL ETOKEN=ENCTOKEN,RETCODE=RC,RSNCODE=RSN
```

* Storage areas
* ENCTOKEN DS CL8 Contains the Enclave token
* RC DS F Return code
* RSN DS F Reason code

IWMMMCHST – Monitoring Change State Of Work Unit

The purpose of this service is to reflect in a monitoring environment what the current state of a work request is with respect to delays.

Note

It is recommended to use the new equivalent service IWM4MCHS introduced with z/OS V1R6. IWM4MCHS also supports 64-bit address space. For further information refer to Chapter 74, “IWM4MCHS – Monitoring Change State Of Work Unit,” on page 617.

Environment

The requirements for the caller are:

Minimum authorization: Problem state. PSW key must either be 0 or match the value supplied on IWMMCREA.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Suspend locks are allowed.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded.
from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

1. Caller is responsible for error recovery
2. Only limited checking is done against the input monitoring token.
3. If the key specified on IWMMCREA was a user key (8-F), then the primary addressability must exist to the performance block IWMMCREA obtained. This condition is satisfied by ensuring that current primary matches primary at the time that IWMMCREA was invoked. If this service is invoked in a subspace, the condition may be satisfied by ensuring that the performance block is shared with the base space.
4. The caller must serialize to prevent any delay monitoring services from being invoked concurrently for the environment represented by the monitoring token.
5. This macro may only be used on z/OS R2 or higher levels for the following state/resources:
 - STATE(ACTIVE_APPL)
 - RESOURCE(SSL_THREAD)
 - RESOURCE(REG_THREAD)
 - RESOURCE(REG_TO_WRKTB)
 - RESOURCE(TYPE1)
 - RESOURCE(TYPE2)
 - RESOURCE(TYPE3)
 - RESOURCE(TYPE4)
 - RESOURCE(TYPE5)
6. This macro may only be used on z/OS R8 or higher versions for the following resources:
 - RESOURCE(BUFFER_POOL_IO)
7. This macro may only be used on z/OS R8 or higher versions for RESTKN keyword.

Input Register Information

Before issuing the IWMMCHST macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>
IWMMCHST Macro

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMCHST macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,COMPCODE=YES
,COMPCODE=NO
An optional parameter, which indicates whether completion status for this service is needed. The default is COMPCODE=YES.
IWMCHST Macro

,COMPCODE=YES
 indicates that completion status is needed.

,COMPCODE=NO
 indicates that completion status is not needed. Registers 0, 15 cannot be
 used as reason code and return code registers upon completion of the
 macro expansion. For this reason neither RETCODE NOR RSNCODE may
 be specified when COMPCODE(NO) is specified.

,MONTKN=montkn
 A required input parameter, which contains the delay monitoring token

 To code: Specify the RS-type address, or address in register (2)-(12), of a
 32-bit field.

,RESOURCE=LATCH
,RESOURCE=LOCK
,RESOURCE=IO
,RESOURCE=CONV
,RESOURCE=DISTRIB
,RESOURCE=SESS_LOCALMVS
,RESOURCE=SESS_NETWORK
,RESOURCE=SESS_SYSPLEX
,RESOURCE=TIMER
,RESOURCE=OTHER_PRODUCT
,RESOURCE=MISC
,RESOURCE=SSL_THREAD
,RESOURCE=REG_THREAD
,RESOURCE=REG_TO_WRKTB
,RESOURCE=TYPE1
,RESOURCE=TYPE2
,RESOURCE=TYPE3
,RESOURCE=TYPE4
,RESOURCE=TYPE5

 When STATE=WAITING is specified, a required parameter, which indicates the
 resource that the work manager is waiting for on behalf of the work request
 described by the monitoring environment.

 ,RESOURCE=LATCH
 indicates that the work manager is waiting on a latch.

 ,RESOURCE=LOCK
 indicates that the work manager is waiting on a lock.

 ,RESOURCE=IO
 indicates that the work manager is waiting on an activity related to an I/O
 request. This may either be an actual I/O operation or some function
 associated with an IO request that cannot be more precisely determined by
 the work manager, for example, locks, buffers, etc.

 ,RESOURCE=CONV
 indicates that the work manager is waiting on a conversation. This may be
 used in conjunction with IWMMMSWCH to identify where the target is
 located.

 ,RESOURCE=DISTRIB
 indicates that the work manager is waiting on a distributed request. This
 says at a high level that some function or data must be routed prior to
 resumption of the work request. This is to be contrasted with Waiting on
Conversation, which is a low level view of the precise resource that is needed. A distributed request could involve waiting on a conversation as part of its processing.

,RESOURCE=SESS_LOCALMVS
indicates that the work manager is waiting to establish a session somewhere in the current MVS image.

,RESOURCE=SESS_NETWORK
indicates that the work manager is waiting to establish a session somewhere in the network.

,RESOURCE=SESS_SYSPLEX
indicates that the work manager is waiting to establish a session somewhere in the sysplex.

,RESOURCE=TIMER
indicates that the work request is waiting on a timer.

,RESOURCE=OTHER_PRODUCT
indicates that the work manager is waiting on another product to complete its function.

,RESOURCE=MISC
indicates that the work manager is waiting on some unidentified resource, possibly among the previous categories.

,RESOURCE=SSL_THREAD
indicates that the work manager is waiting on an SSL thread.

,RESOURCE=REG_THREAD
indicates that the work manager is waiting on a regular processing thread.

,RESOURCE=REG_TO_WRKTB
indicates that the work manager is waiting for the registration to a worktable.

,RESOURCE=TYPE1
indicates that the work manager is waiting for resource type 1.

,RESOURCE=TYPE2
indicates that the work manager is waiting for resource type 2.

,RESOURCE=TYPE3
indicates that the work manager is waiting for resource type 3.

,RESOURCE=TYPE4
indicates that the work manager is waiting for resource type 4.

,RESOURCE=TYPE5
indicates that the work manager is waiting for resource type 5.

,RESTKN=restkn

RESTKN=NORESTKN
An optional input parameter, which contains the token of the managed resource previously registered with register resource (IWMMREG). The default is NORESTKN, which indicates that no resource token is provided.

RESTKN preserves the existing resource token, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.
IWMMCHST Macro

\texttt{,RETCODE=retcode}

An optional output parameter into which the return code is to be copied from GPR 15.

\textbf{To code:} Specify the RS-type address of a fullword field, or register (2)-(12).

\texttt{,RSNCODE=rsnocode}

An optional output parameter into which the reason code is to be copied from GPR 0.

\textbf{To code:} Specify the RS-type address of a fullword field, or register (2)-(12).

\texttt{,RUNTIME_VER=SHORT_FORM}

\texttt{,RUNTIME_VER=MINIMAL}

An optional parameter, which indicates what level of runtime verification will be performed. The default is \texttt{RUNTIME_VER=SHORT_FORM}.

\texttt{,RUNTIME_VER=SHORT_FORM}

indicates that checking should verify that a monitoring environment is established and passes a short form of verification prior to being used.

\texttt{,RUNTIME_VER=MINIMAL}

indicates that checking will only be done to verify that a monitoring environment may be established, assuming that it would be valid and useable if established.

\textbf{STATE=FREE}

\textbf{STATE=ACTIVE}

\textbf{STATE=ACTIVE_APPL}

\textbf{STATE=READY}

\textbf{STATE=IDLE}

\textbf{STATE=WAITING}

A required parameter, which indicates the current state for the work request.

\textbf{STATE=FREE}

indicates that the work manager has no work request associated with the monitoring environment.

\textbf{STATE=ACTIVE}

indicates that there is a program executing on behalf of the work request described by the monitoring environment. This is an indication from the perspective of the work manager using this service, who should not try to factor in MVS decisions in preempting work, etc.

\textbf{STATE=ACTIVE_APPL}

indicates that there is an application program executing on behalf of the work request described by the monitoring environment. This is an indication from the perspective of the work manager using this service, who should not try to factor in MVS decisions in preempting work. This state represents the application activity in contrast to the active (subsystem) state.

\textbf{STATE=READY}

indicates that there is a program ready to execute on behalf of the work request described by the monitoring environment, but the work manager has given priority to another work request.

\textbf{STATE=IDLE}

indicates that the work manager has no work requests that it is allowed to service within the monitoring environment. This represents a delay that is not under the control of the work manager itself and which it cannot eliminate. This may be caused by limits imposed by the installation or by the nature of the work request itself.
IWMMCHST Macro

STATE=WAITING indicates that the work manager is waiting for a resource on behalf of the work request described by the monitoring environment.

ABEND Codes

None.

Return and Reason Codes

When the IWMMCHST macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
<td>None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx0402</td>
<td>IwmRsnCodeNoMonEnv</td>
<td>Input monitoring token indicates no monitoring environment was established.</td>
<td>None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0820</td>
<td>IwmRsnCodeBadMonEnv</td>
<td>Monitoring environment does not pass short form verification.</td>
<td>Check for possible storage overlay.</td>
</tr>
</tbody>
</table>

IWMMCREA – Create Delay Monitoring Environment

The purpose of this service is to create a single delay monitoring environment or a number of delay monitoring environments so that work and resource managers may utilize other delay monitoring services to reflect to MVS the execution states and delays associated with work requests.

There are three types of monitoring environments available, management monitoring environments, report-only monitoring environments and buffer pool management only environments. Management monitoring environments provide both, performance management and performance reporting. Report-only monitoring environments can be used for performance reporting only. Buffer pool management only monitoring environments provide only buffer pool performance management for enclaves.
IWMMCREA Macro

Optionally, if you specify REPORTONLY=YES the monitoring environment is used for reporting purposes only.

Furthermore, if you specify BPMGMTONLY=YES, the monitoring environment is used for buffer pool management for enclaves only.

Note

It is recommended to use the new equivalent service IW4MCRE introduced with z/OS V1R6. IW4MCRE also supports 64-bit address space. For further information refer to Chapter 75, "IW4MCRE – Create Delay Monitoring Environment," on page 627.

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Requirement Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum authorization:</td>
<td>Supervisor state or program key mask (PKM) allowing keys 0-7.</td>
</tr>
<tr>
<td>Dispatchable unit mode:</td>
<td>Task</td>
</tr>
<tr>
<td>Cross memory mode:</td>
<td>Non-XMEM or XMEM. Any P.S.H.</td>
</tr>
<tr>
<td>AMODE:</td>
<td>31-bit</td>
</tr>
<tr>
<td>ASC mode:</td>
<td>Primary</td>
</tr>
<tr>
<td>Interrupt status:</td>
<td>Enabled for I/O and external interrupts No (EUT) FRR established.</td>
</tr>
<tr>
<td>Locks:</td>
<td>No locks may be held.</td>
</tr>
<tr>
<td>Control parameters:</td>
<td>Control parameters must be in the primary address space.</td>
</tr>
</tbody>
</table>

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWRSNCODE_MASK_CONST defined in IWYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.

Restrictions

1. This macro may not be used during task/address space termination.
2. If the key specified on IWMMCREA is a user key (8-F), then the caller must be in non-cross-memory mode (P=S=H)
3. While not a restriction for IWMMCREA, it should be noted that when the key specified is a user key (8-F), the delay monitoring token may only be passed (to any service whatsoever), when primary addressability exists to the performance block obtained by IWMMCREA. This condition may be satisfied by ensuring that the then current primary matches primary at the time that IWMMCREA was
IWMMCREA Macro

invoked. If these other services are invoked in a subspace, the condition may be satisfied by ensuring that the performance block is shared with the base space.

4. This service provides a task and address space resource managers to clean up any resources obtained during task and address space terminations. Once the calling task or address space terminates, the monitoring token returned by IWMMCREA must not be used for any services.

5. This macro supports multiple versions. Some keywords are only supported by certain versions. Refer to the PLISTVER parameter description for further information.

Input Register Information

Before issuing the IWMMCREA macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
name IWMMCRE

RECTYPE=SINGLE
MONTKN=montkn

RECTYPE=MULTIPLE, AMOUNT=amount, MONTKN_LIST=montkn_list, MONTKN_LISTLEN=montkn_listlen
```
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMCREA macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,AMOUNT=amount
When REQTYPE=MULTIPLE is specified, a required input parameter, which specifies the number of delay monitoring environments to be created.

While there is no restriction on the number of delay monitoring environments to be created, caller should only create the minimum number of delay monitoring environments that are needed.

If there are too many unused delay monitoring environments existing in the system, the storage and CPU overheads may be significant.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,BPMGMTONLY=NO
,BPMGMTONLY=YES
When REPORTONLY=NO is specified, an optional parameter, which indicates whether the monitoring environment is for buffer pool management purposes only (YES) or (NO). The default is BPMGMTONLY=NO.

,BPMGMTONLY=NO
indicates that the monitoring environment is not for buffer pool management purposes.

,BPMGMTONLY=YES
indicates that the monitoring environment is for buffer pool management purposes only.
When SUBSYSP=CONNECT is specified, a required input parameter, which contains the connect token associated with the subsystem.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,EWLM=NO

The monitoring environment cannot be used to report on ARM work requests.

,EWLM=YES

The monitoring environment participates in cross-platform Enterprise Workload Management and interacts with EWLM. An ARM application instance will be registered and started using the passed subsystem type (SUBSYS), subsystem name (SUBSYSNM), and the new parameter group name (GROUPNM, GROUPNM_LEN) - an already existing ARM registration for the same address space with identical SUBSYS, SUBSYSNM, GROUPNM and GROUPNM_LEN parameters will be reused. All ARM work requests associated with the created monitoring environment are reported for this ARM application instance.

,GROUPNM=groupnm

When EWLM=YES and SUBSYSP=VALUE are specified, an optional input parameter, which contains the name of an application group, for example, a group of similar or cooperating subsystem instances. A group name can be up to 255 characters long. Provision of a data area initialized to all blanks is equivalent to specification of NO_GROUPNM. NO_GROUPNM indicates that no group name is passed. This is the default.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,GROUPNM_LEN=groupnm_len

When GROUPNM=groupnm, EWLM=YES and SUBSYSP=VALUE are specified, a required input parameter, which contains the length of the group name. A group name can be up to 255 characters long.

To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.
IWMMCREA Macro

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

.list addr
 The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

.attr
 An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
 Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,MONTKN=montkn
 When REQTYPE=SINGLE is specified, a required output parameter, which will receive the delay monitoring token.

 To code: Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

,MONTKN_LIST=montkn_list
 When REQTYPE=MULTIPLE is specified, a required input parameter, which specifies an area into which a list of delay monitoring tokens will be placed.

 To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,MONTKN_LISTLEN=montkn_listlen
 When REQTYPE=MULTIPLE is specified, a required input parameter, which specifies the length (in bytes) of the area identified by the MONTKN_LIST keyword.

 Size of this area must be at least the size of MONTKN (see MONTKN keyword) times AMOUNT. If the user specified area is not large enough to return the delay monitoring tokens, a specific return/reason code will be returned and the request will not be processed.

 To code: Specify the RS-type address, or address in register (2)-(12), of a fullword field.

,MONTKNKEY=montknkey
 When MONTKNKEYP=VALUE is specified, a required input parameter, which contains the key in which the delay monitoring services will be invoked subsequently when using the output MONTKN. The low order 4 bits (bits 4-7) contain the key value. The high order 4 bits (bits 0-3) must be 0.
IWMCREA Macro

To code: Specify the RS-type address, or address in register (2)-(12), of an 8
bit field.

\texttt{,MONTKNKEYP=\textit{VALUE}}
\texttt{,MONTKNKEYP=PSWKEY}

A required parameter, which describes how the input key should be obtained.

\texttt{,MONTKNKEYP=\textit{VALUE}}
indicates that the key is being passed explicitly via MONTKNKEY.

\texttt{,MONTKNKEYP=PSWKEY}
indicates that the current PSW key should be used.

\texttt{,PLISTVER=IMPLIED_VERSION}
\texttt{,PLISTVER=MAX}
\texttt{,PLISTVER=0}
\texttt{,PLISTVER=1}

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

- \texttt{IMPLIED_VERSION}, which is the lowest version that allows all parameters
 specified on the request to be processed. If you omit the PLISTVER
 parameter, IMPLIED_VERSION is the default.

- \texttt{MAX}, if you want the parameter list to be the largest size currently possible.
 This size might grow from release to release and affect the amount of
 storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify
 PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
 the list-form parameter list is always long enough to hold all the parameters
 you might specify on the execute form, when both are assembled with the
 same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

- \texttt{0}, which supports all parameters except those specifically referenced in
 higher versions.

- \texttt{1}, which supports both the following parameters and those from version 0:

 \begin{tabular}{ll}
 BPMGMTONLY & GROUPNM \\
 EWLM & GROUPNM_LEN \\
 \end{tabular}

To code: Specify one of the following:

- \texttt{IMPLIED_VERSION}
- \texttt{MAX}
- A decimal value of 0, or 1

\texttt{,REPORTONLY=NO}
\texttt{,REPORTONLY=YES}

An optional parameter, which indicates whether the monitoring environment is for
reporting purposes only (YES) or (NO). The default is REPORTONLY=NO.

\texttt{,REPORTONLY=NO}
indicates that the monitoring environment is for management and reporting
purposes.

\texttt{,REPORTONLY=YES}
indicates that the monitoring environment is for reporting purposes only.

\texttt{REQTYPE=SINGLE}
IWMMCREA Macro

REQTYPE=MULTIPLE
An optional parameter that indicates whether the request is to create a single delay monitoring environment or to create multiple delay monitoring environments. The default is REQTYPE=SINGLE.

REQTYPE=SINGLE
The request is to create a single delay monitoring environment.

REQTYPE=MULTIPLE
The request is to create a number of delay monitoring environments.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SUBSYS=subsys
When SUBSYSP=VALUE is specified, a required input parameter, which contains the generic subsystem type (e.g. IMS, CICS, etc.).

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-character field.

,SUBSYSNM=subsysnm
When SUBSYSP=VALUE is specified, a required input parameter, which contains the subsystem name.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,SUBSYSP=CONNECT
,SUBSYSP=VALUE
A required parameter, which describes how the calling subsystem is providing identification.

,SUBSYSP=CONNECT
indicates that the connect token is being passed.

,SUBSYSP=VALUE
indicates that the subsystem name is being passed directly.

ABEND Codes
None.

Return and Reason Codes
When the IWMMCREA macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.
Table 104. Return and Reason Codes for the IWMMCRE Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Meaning: Successful completion. Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted. Action: None required.</td>
</tr>
<tr>
<td>4 xxxx0401</td>
<td></td>
<td>IwmRsnCodeNoWLM</td>
<td>Meaning: System does not support delay monitoring services. The delay monitoring token returned is useable in other services. However use of this token will NOT result in the action requested of those services. This return code is only set when the MVS release is prior to MVS/ESA SP5.1.0. Action: None required.</td>
</tr>
<tr>
<td>4 xxxx0409</td>
<td></td>
<td>IwmRsnCodeNoConn</td>
<td>Meaning: Connect token does not reflect a successful Connect. The delay monitoring token returned is useable in other services. However use of this token will NOT result in the action requested of those services. Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8 xxxx0801</td>
<td></td>
<td>IwmRsnCodeSrbMode</td>
<td>Meaning: Caller is in SRB mode. Action: Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8 xxxx0802</td>
<td></td>
<td>IwmRsnCodeXmemUserKeyTkn</td>
<td>Meaning: Caller is in cross-memory mode while the token was requested in user key. Action: Avoid requesting this function while in cross-memory mode.</td>
</tr>
<tr>
<td>8 xxxx0803</td>
<td></td>
<td>IwmRsnCodeDisabled</td>
<td>Meaning: Caller is disabled. Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8 xxxx0804</td>
<td></td>
<td>IwmRsnCodeLocked</td>
<td>Meaning: Caller is locked. Action: Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8 xxxx0808</td>
<td></td>
<td>IwmRsnCodeBadPl</td>
<td>Meaning: Error accessing parameter list. Action: Check for possible storage overlay.</td>
</tr>
<tr>
<td>8 xxxx0810</td>
<td></td>
<td>IwmRsnCodeEutFrr</td>
<td>Meaning: Caller has EUT FRR established. Action: Avoid requesting this function with an EUT FRR set.</td>
</tr>
</tbody>
</table>
Table 104. Return and Reason Codes for the IWM4CRE Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0821</td>
<td>IwmRsnCodeBadConn</td>
<td>Input connect token does not pass validity checking.</td>
<td>Check for possible storage overlay.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>IwmRsnCodeDatoff</td>
<td>Caller invoked service while DATOFF</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24 bit addressing mode.</td>
<td>Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not DAT on Primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0826</td>
<td>IwmRsnCodeTaskTerm</td>
<td>Caller invoked service while task termination is in progress for the TCB associated with the owner.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>IwmRsnCodeSrvdNot0</td>
<td>Reserved field in parameter list was non-zero.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0829</td>
<td>IwmRsnCodeBadOptions</td>
<td>Parameter list omits required parameters or supplies mutually exclusive parameters or provides data associated with options not selected.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0844</td>
<td>IwmRsnCodeBadMonTknListLen</td>
<td>The storage area length specified on the MONTKN_LISTLEN parameter is not large enough to contain the data being returned. No data is returned.</td>
<td>Invoke the function with an output area sufficient to receive the data.</td>
</tr>
</tbody>
</table>

C | --- | IwmRetCodeEnvError | Environmental error. |
Table 104. Return and Reason Codes for the IWM4MCRE Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>C xxxx0C01</td>
<td></td>
<td>IwmRsnCodeNoStg</td>
<td>Storage is not available for the request.</td>
<td>There is a storage shortage. The function may work successfully at a later time.</td>
</tr>
<tr>
<td>C xxxx0C09</td>
<td></td>
<td>IwmRsnCodeNoResmgr</td>
<td>Resource manager could not be established.</td>
<td>No action required. This condition may be due to a storage shortage condition.</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>IwmRetCodeCompError</td>
<td>Component error.</td>
<td>No action required. The function may be successful if invoked again.</td>
</tr>
</tbody>
</table>

IWMMINIT – Initialize Monitoring Environment

IWMMINIT allows the caller to supply MVS with some or all of the work request attributes needed for the monitoring environment. The attributes include userid, transaction name, transaction class, source LU, and LU 6.2 token.

There are two types of monitoring environments available, management monitoring environments and report-only monitoring environments. Management monitoring environments provide both performance management and performance reporting. Report-only monitoring environments can be used for performance reporting only.

Use the REPORTONLY=YES parameter to specify the monitoring environment will be used for reporting purposes only.

If you are invoking IWMMINIT with the REPORTONLY=YES parameter, ASSOCIATE=ENCLAVE or ASSOCIATE=ADDRESS_SPACE must be specified to associate the monitoring environment with an enclave or an address space.

For management monitoring environments, if possible, invoke IWMMINIT immediately following IWMCLSFY, and pass the service class for the work request. Without the associated service class in the monitoring environment, delay information cannot be accumulated and reported accurately.

IWMMINIT can be issued multiple times for the same work request. The first time you invoke IWMMINIT for a work request, you must specify MODE=RESET, otherwise the previous work request's attributes are associated with this work request. Any subsequent time you invoke IWMMINIT from the same address space for the same monitoring token for the same work request, specify MODE=RETAIN. If the caller subsystem work manager consists of multiple address spaces (with multiple monitoring tokens), the first time IWMMINIT is invoked in each address space for a given work request must specify MODE=RESET. Any subsequent invocations for the same work request should specify MODE=RETAIN.
IWMMINIT Macro

If you are invoking IWM4MINI multiple times for the same work request, only one of the invocations should specify EXSTARTTIME=exstarttime. It is up to you to decide at which point in the subsystem work manager’s processing you consider the real execution start time.

Optionally, with this macro, you can use the OWNER_TOKEN and OWNER_DATA parameters to specify a token for the user/owner of the monitoring environment for your own use.

Note
It is recommended to use the new equivalent service IWM4MINI introduced with z/OS V1R6. IWM4MINI also supports 64-bit address space. For further information refer to Chapter 78, “IWM4MINI – Initialize Monitoring Environment,” on page 651.

Environment

The requirements for the caller are:

Minimum authorization: Either problem state or supervisor state. PSW key must either be 0 or match the value supplied on IWMMCREA.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN If the key specified on IWMMCREA was a user key (8-F), then primary addressability must be the same as when IWMMCREA was invoked.

AMODE: 31-bit

ASC mode: Primary Any P,S,H.

Interrupt status: Enabled for I/O and external interrupts

Locks: Locked or unlocked

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

1. All parameter areas must reside in current primary, except that the TCB (if specified) must reside in current home.
2. Caller is responsible for error recovery.
3. Only limited checking is done against the input monitoring token.
4. If the key specified on IWMMCREA was a user key (8-F), then the primary addressability must exist to the performance block IWMMCREA obtained. This condition is satisfied by ensuring that current primary matches primary at the
IWMMINIT Macro

IWMinit CREAs Invoked. If this service is invoked in a subspace, the
condition may be satisfied by ensuring that the performance block is shared with
the base space.
5. The caller must serialize to prevent any delay monitoring services from being
invoked concurrently for the environment represented by the monitoring token.
6. This macro may only be used on z/OS R2 or higher levels for REPORTONLY
and ASSOCIATE keywords.
7. The BPMGMTONLY keyword may only be used on systems running z/OS R8 or
higher.
8. This macro supports multiple versions. Some keywords are only supported by
certain versions. Refer to the PListver parameter description for further
information.

Input Register Information
Before issuing the IWMMINIT macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

```
 name  IWMMINIT  MONTKN=montkn
```
IWMMINIT Macro

parameters-1

parameters-2

\[
\text{RETCode} = \text{retcode}, \quad \text{RSNCode} = \text{rsncode}
\]

\[
\text{MF} = (M, \text{list addr}, \text{NOCHECK})
\]

\[
\text{COMPLETE}
\]

Appendix E. WLM Services supporting 31–bit address space only
Parameters

The parameters are explained as follows:

\textit{name}

An optional symbol, starting in column 1, that is the name on the IWM4MINI macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

\textit{,ARRIVALTIME=arrivaltime}

When ARRIVALTIMEP=YES and MODE=RESET are specified, a required input parameter, which contains the work arrival time in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

\textit{,ARRIVALTIMEP=CURRENT}

\textit{,ARRIVALTIMEP=YES}

When MODE=RESET is specified, a required parameter, which indicates whether the work arrival time is passed.

\textit{,ARRIVALTIMEP=CURRENT}

indicates that the current time should be supplied by the service.

\textit{,ARRIVALTIMEP=YES}

indicates that the work arrival time is passed.

\textit{,ASID=asid}

When ASSOCIATE=ADDRESS_SPACE and REPORTONLY=YES are specified, a required input parameter which contains the address space ID.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-bit field.

\textit{,ASSOCIATE=ENCLAVE}

\textit{,ASSOCIATE=ADDRESS_SPACE}

When REPORTONLY=YES is specified, a required parameter, which indicates whether the monitoring environment should be associated to an enclave or an address space.

\textit{,ASSOCIATE=ENCLAVE}

indicates that the monitoring environment should be associated to an enclave.

\textit{,ASSOCIATE=ADDRESS_SPACE}

indicates that the monitoring environment should be associated to an address space.
When BPMGMTONLY=YES and REPORTONLY=NO are specified, a required parameter, which indicates whether the monitoring environment should be associated only to an enclave.

ASSOCIATE=ENCLAVE
indicates that the monitoring environment should be associated to an enclave.

BPMGMTONLY=NO
BPMGMTONLY=YES
When REPORTONLY=NO is specified, an optional parameter, which indicates whether the monitoring environment is for bufferpool management purposes only (YES) or not (NO). The default is BPMGMTONLY=NO.

CONTINUEP=YES
CONTINUEP=NO
A required parameter, which indicates whether it is known (YES) or not (NO) that there exists another monitoring environment for this same work request.

DISPTYPE=TCB
DISPTYPE=SRB
When MODE=RESET is specified, a required parameter, which describes the nature of the MVS dispatchable units which participate in processing work requests associated with the delay monitoring environment established by this service.

DISPTYPE=TCB
indicates that work requests run in TCB mode under a TCB within the current home address space. Note that in cross-memory mode, this may be different from the current primary address space.

DISPTYPE=SRB
indicates that work requests run in SRB mode within the current home address space.

DISPTYPE=SAVEDTYPE
DISPTYPE=TCB
DISPTYPE=SRB
When MODE=RETAIN is specified, a required parameter, which describes the nature of the MVS dispatchable units which participate in processing work requests associated with the delay monitoring environment established by this service.
IWMMINIT Macro

,DISPTYPE=SAVEDTYPE
indicates that the information saved when MODE(RESET) was used is still applicable.

,DISPTYPE=TCB
indicates that work requests run in TCB mode under a TCB within the current home address space. Note that in cross-memory mode, this may be different from the current primary address space.

,DISPTYPE=SRB
indicates that work requests run in SRB mode within the current home address space.

,DURATION=EXECUTION
,DURATION=BEGIN_TO_END
When MODE=RESET is specified, an optional parameter, which indicates the duration of the work request over which the delays are to be represented. The default is DURATION=EXECUTION.

,DURATION=EXECUTION
indicates that the monitoring environment will reflect delays from the point where an application or transaction program is given control, i.e. the execution phase. Typically a monitoring environment with this scope would be passed to IWMMNTFY to pass the execution time for the work request.

,DURATION=BEGIN_TO_END
indicates that the monitoring environment will reflect delays from the arrival of the work request into the MVS sysplex until its completion. Ordinarily use of this option would be in close proximity to the time when the work request is classified. Typically a monitoring environment with this duration would be passed to IWMRPT to report the total elapsed time for the work request.

,DURATION=PREV_VALUE
,DURATION=EXECUTION
,DURATION=BEGIN_TO_END
When MODE=RETAIN is specified, an optional parameter, which indicates the duration of the work request over which the delays are to be represented. The default is DURATION=PREV_VALUE.

,DURATION=PREV_VALUE
indicates that the duration for delays has been specified on a previous invocation.

,DURATION=EXECUTION
indicates that the monitoring environment will reflect delays from the point where an application or transaction program is given control, for example, the execution phase. Typically a monitoring environment with this duration would be passed to IWMMNTFY to pass the execution time for the work request.

,DURATION=BEGIN_TO_END
indicates that the monitoring environment will reflect delays from the arrival of the work request into the MVS sysplex until its completion. Ordinarily use of this option would be in close proximity to the time when the work request is classified. Typically, a monitoring environment with this duration is passed to IWMRPT to report the total elapsed time for the work request.

,ENCLAVETOKEN=enclavetoken
When ASSOCIATE=ENCLAVE and REPORTONLY=YES are specified, a required input parameter, which contains the enclave token.
To code: Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

\texttt{\textbf{,EWLM_PACORR=ewlm_pacorr}}

\texttt{\textbf{,EWLM_PACORR=NO_EWLM_PACORR}}

When MODE=RESET is specified, an optional input parameter, which contains the cross-platform enterprise workload management (EWLM) parent correlator associated with the work request.

\textbf{Note:}

- If EWLM_PACORR is specified and the correlator does not contain a valid ARM correlator, reason code IwmRsnCodeInvalidEWLMCorr is returned to the caller. Refer to \textbf{Table 82 on page 664} for further information. If the correlator is a valid ARM correlator, but cannot be understood by EWLM (no EWLM format), it is ignored.
- The parameters EWLM_PACORR and EWLM_PACTKN are mutually exclusive.

The default is NO_EWLM_PACORR. It indicates that no EWLM parent correlator is passed.

\textbf{To code:} Specify the RS-type address, or address in register (2)-(12), of a character field.

\texttt{\textbf{,EWLM_PACTKN=ewlm_pactkn}}

\texttt{\textbf{,EWLM_PACTKN=NO_EWLM_PACTKN}}

When MODE=RESET is specified, an optional input parameter, which contains the cross-platform Enterprise Workload Management (EWLM) parent correlator token associated with the work request.

If EWLM_PACTKN is specified and the correlator token does not contain a valid correlator token, reason code IwmRsnCodeInvalidEWLMCorr is returned to the caller. Refer to \textbf{Table 82 on page 664} for further information. The default is NO_EWLM_PACTKN. It indicates that no EWLM correlator token is passed.

\textbf{To code:} Specify the RS-type address, or address in register (2)-(12), of a character field.

\texttt{\textbf{,EXSTARTTIME=exstarttime}}

When EXSTARTTIMEP=YES, BPMGMTONLY=NO and REPORTONLY=NO are specified, a required input parameter, which contains the start execution time in STCK format.

\textbf{To code:} Specify the RS-type address, or address in register (2)-(12), of a 64-bit field.

\texttt{\textbf{,EXSTARTTIMEP=NO}}

\texttt{\textbf{,EXSTARTTIMEP=CURRENT}}

\texttt{\textbf{,EXSTARTTIMEP=NO}}

When BPMGMTONLY=NO and REPORTONLY=NO are specified, a required parameter, which indicates whether the execution start time value is passed.

\texttt{\textbf{,EXSTARTTIMEP=NO}}

indicates that the execution start time value is not passed.

If MODE(RETAIN) is specified, EXSTARTTIMEP(NO) preserves the existing execution start time, if any.

\texttt{\textbf{,EXSTARTTIMEP=CURRENT}}

indicates that the current time should be supplied by the service.
IWMMINIT Macro

,EXSTARTTIMEP=YES
indicates that the start execution time value is passed.

,FROM=NONE
,FROM=LOCALMVS
,FROM=SYSPLEX
,FROM=NETWORK
When CONTINUEP=YES is specified, a required parameter.

,FROM=NONE
indicates that there is no other environment.

,FROM=LOCALMVS
indicates that such an environment should exist on the current MVS.

,FROM=SYSPLEX
indicates that such an environment should exist in the current syplex, but is not expected to be on the current MVS image.

,FROM=NETWORK
indicates that such an environment may exist, but is not expected to be in the current syplex.

,LU62TKN=lu62tkn
,LU62TKN=NO_LU62TKN
An optional input parameter, which contains LU 6.2 token for the work request. This is not an SNA term, but it is comprised of the following fields which are defined by SNA for the FMH5.

• Logical Unit of Work Identifier length byte, in binary, which may have the values 0 or 10-26 decimal (inclusive)

• Logical Unit of Work Identifier
 – Length byte for the network qualified LU name, in binary, which may have the values 1-17 decimal (inclusive)
 – Network qualified LU network name (1-17 bytes)
 – Logical Unit of Work Instance Number, in binary (6 bytes)
 – Logical Unit of Work Sequence Number, in binary (2 bytes)

• Conversation Correlator Field (0 to 9 bytes)
 – Length byte for the Conversation Correlator, in binary, which may have the values 0-8 decimal (inclusive)
 – Conversation Correlator of the sending transaction (1-8 bytes)

The Conversation Correlator Field (which includes its length byte) may be dropped when its length byte is 0. The default is NO_LU62TKN. indicates that no LU 6.2 token was passed.

If MODE(RETAIN) is specified, NO_LU62TKN will preserve the existing LU6.2 token, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,LU62TKN_FMT=LU_NO_CC_27
,LU62TKN_FMT=FULL_LU_NO_CC_27
,LU62TKN_FMT=FULL_LU_0_CC_28
,LU62TKN_FMT=FULL_LU_CC_36
,LU62TKN_FMT=OTHER
When LU62TKN=lu62tkn is specified, a required parameter, which indicates the format/length of the LU 6.2 token.

,LU62TKN_FMT=LU_NO_CC_27
indicates that a fixed length token of 27 bytes is provided, with no
conversation correlator (not even its length byte). The LU name may be 1-17 bytes. Bytes at the end of the token are padded with hexadecimal zeros, if necessary, to form a full 27 bytes.

\texttt{,LU62TKN_FMT=FULL_LU_NO_CC_27}

indicates that the fully qualified LU name (17 bytes) is used, but no conversation correlator (not even its length byte) is provided. This format is architected to be 27 bytes long.

\texttt{,LU62TKN_FMT=FULL_LU_0_CC_28}

indicates that the fully qualified LU name (17 bytes) is used, and the conversation correlator length byte is present and has the value 0. This format is architected to be 28 bytes long.

\texttt{,LU62TKN_FMT=FULL_LU_CC_36}

indicates that the fully qualified LU name (17 bytes) is used, and the conversation correlator is provided with a length of 8 (maximum allowed). This format is architected to be 36 bytes long.

\texttt{,LU62TKN_FMT=OTHER}

indicates that the format of the LU 6.2 token is different from those specified by the remaining keywords.

\texttt{,LU62TKN_LEN=lu62tkn_len}

When LU62TKN_FMT=OTHER and LU62TKN=lu62tkn are specified, a required input parameter, which contains the length of the LU62 token. Valid values are in the range 1-36 decimal (inclusive).

\textit{To code:} Specify the RS-type address, or address in register (2)-(12), of an one-byte field.

\texttt{,MODE=RESET}

\texttt{,MODE=RETAIN}

A required parameter, which indicates how previous attributes established for a monitoring environment should be treated. This does not refer to (or include) attributes established in IWM4MCRE.

\texttt{,MODE=RESET}

indicates that previous attributes should be discarded.

\texttt{,MODE=RETAIN}

indicates that previous attributes should be retained unless explicitly specified.

\texttt{MONTKN=montkn}

A required input parameter, which contains the delay monitoring token

\textit{To code:} Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

\texttt{,OWNER_DATA=owner_data}

\texttt{,OWNER_DATA=NO_OWNER_DATA}

An optional input parameter, which contains data maintained by the user/owner of the monitoring environment. The format is undefined to MVS. The default is NO_OWNER_DATA which indicates that no owner data is provided.

If MODE(RETAIN) is specified, NO_OWNER_DATA will preserve the existing owner data, if any.

\textit{To code:} Specify the RS-type address, or address in register (2)-(12), of a 32 bit field.

\texttt{,OWNER_TOKEN=owner_token}
IWMMINIT Macro

,OWNER_TOKEN=NO_OWNER_TOKEN
An optional input parameter, which contains a token maintained by the user or
owner of the monitoring environment. The format is undefined to MVS. The
default is NO_OWNER_TOKEN which indicates that no owner token is
provided.

If MODE(RETAIN) is specified, NO_OWNER_TOKEN preserves the existing
owner token, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
An optional input parameter that specifies the version of the macro. The values
are:

- IMPLIED_VERSION, which is the lowest version that allows all parameters
 specified on the request to be processed. If you omit the PLISTVER
 parameter, IMPLIED_VERSION is the default.
- MAX, if you want to indicate the latest version currently possible.
- 0, which supports all parameters except those specifically referenced in
 higher versions.
- 1, which supports both the following parameters and those from version 0:
 BPMGMTONLY EWLM_PACORR EWLM_PACTKN

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0, or 1

REPORTONLY=NO
REPORTONLY=YES
An optional parameter, which indicates whether the monitoring environment is for
reporting purposes only (YES) or not (NO). The default is REPORTONLY=NO.

,REPORTONLY=NO
indicates that the monitoring environment is not for reporting purposes only.

,REPORTONLY=YES
indicates that the monitoring environment is for reporting purposes only.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SCOPE=SHARED
,SCOPE=SINGLE
A required parameter, which indicates the scope of work passed.
,SCOPE=SHARED
 indicates that multiple work requests, possibly from different service classes, could be described.

,SCOPE=SINGLE
 indicates that only a single work request is described.

,SERVCLS=servcls

,SERVCLS=NO_SERVCLS
 When BPMGMTONLY=NO and REPORTONLY=NO are specified, an optional input parameter, which contains the service class token. The default is NO_SERVCLS which indicates that no service class token was passed.

 If MODE(RETAIN) is specified, NO_SERVCLS preserves the existing service class token, if any.

 To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,SOURCELU=sourcelu

,SOURCELU=NO_SOURCELU
 An optional input parameter, which contains the LU name associated with the requestor. This may be the fully qualified NETID.LUNAME, for example, network name (1-8 bytes), followed by a period, followed by the LU name for the requestor (1-8 bytes). It may also be the 1-8 byte local LU name, with no network qualifier. The SOURCELU field may be from 1-17 characters. In the assembler form, the macro determines the length of the field as follows:
 1. If the field is specified by register notation, it will be assumed to be 17 characters (padded with blanks) and a full 17 characters will be copied.
 2. If the field is specified using an RS form name, then the length will be determined using the L' assembler function. When the length is less than 17 characters, the macro will pad with blanks. When the length is greater than or equal to 17 characters, the macro copies the first 17 bytes.

 In the PL/AS form, the rules for the PL/AS compiler determines when to pad with blanks, for example, less than 17 characters implies padding, 17 or more implies a 17 character copy.

 This is intended to be the same value as used in IWMCLSFY, and may be distinct from the LU name contained within the LU 6.2 token. For environments where the LU name may be available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_SOURCELU when MODE(RESET) is specified. Providing an area of all blanks when MODE(RETAIN) is specified will cause that to be used. The default is NO_SOURCELU which indicates that no source LU name was passed.

 If MODE(RETAIN) is specified, NO_SOURCELU preserves the existing source LU name, if any.

 To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,TCB=tcb

,TCB=NO_TCB
 When DISPTYPE=TCB and MODE=RESET are specified, an optional input parameter, which defines the TCB within the current home address space which will serve the work request. Note that this name is not the pointer to the TCB, but the name of the data area containing the TCB. A typical invocation might replace xTCB with TCB.
Generally, the input TCB specified should be the TCB under which the work request (for example, a transaction program) runs and under which the delay information is recorded (in spite of the fact that task switches may occur). The default is NO_TCB which indicates that no TCB is currently associated with the monitoring environment for this work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,TCB=tcb
,TCB=NO_TCB

When DISPTYPE=TCB and MODE=RETAIN are specified, an optional input parameter, which defines the TCB within the current home address space which will serve the work request. Note that this name is not the pointer to the TCB, but the name of the data area containing the TCB. A typical invocation might replace xTCB with TCB.

Ordinarily the input TCB specified should be the TCB under which the work request (e.g., transaction program) runs and under which the delay information is recorded (in spite of the fact that task switches may occur). The default is NO_TCB which indicates that no TCB is currently associated with the monitoring environment for this work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a character field.

,TRXCLASS=trxclass
,TRXCLASS=NO_TRXCLASS

An optional input parameter, which contains a class name within a subsystem. For environments where the transaction class is available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_TRXCLASS when MODE(RESET) is specified. Providing an area of all blanks when MODE(RETAIN) is specified will cause that to be used. The default is NO_TRXCLASS, indicates that no class name was passed.

If MODE(RETURN) is specified, NO_TRXCLASS will preserve the existing transaction class, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,TRXNAME=trxname
,TRXNAME=NO_TRXNAME

An optional input parameter, which contains the transaction name. For environments where the transaction name is available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_TRXNAME when MODE(RESET) is specified. Providing an area of all blanks when MODE(RETAIN) is specified will cause that to be used. The default is NO_TRXNAME, indicates that no transaction name was passed.

If MODE(RETAIN) is specified, NO_TRXNAME will preserve the existing transaction name, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,TTRACETOKEN=ttrace_token
,TTRACETOKEN=NO_TTRACETOKEN

An optional input parameter, which contains the transaction trace token. The default is NO_TTRACETOKEN which indicates that no transaction trace token was passed.
IWMMINIT Macro

If MODE(RETAIN) is specified, NO_TTRACETOKEN preserves the existing transaction trace token, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

\USERID=userid
\USERID=NO_USERID

An optional input parameter, which contains the local userid associated with the work request. For environments where the user id is available on some, but not all flows, provision of a data area initialized to all blanks is equivalent to specification of NO_USERID when MODE(RESET) is specified. Providing an area of all blanks when MODE(RETAIN) is specified will cause that to be used. The default is NO_USERID. indicates that no userid was passed.

If MODE(RETAIN) is specified, NO_USERID preserves the existing user id, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWMMINIT macro returns control to your program:

- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 105. Return and Reason Codes for the IWMMINI Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0402</td>
<td>IwmRsnCodeNoMonEnv</td>
<td>Monitoring token indicates that no monitoring environment exists.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters</td>
</tr>
<tr>
<td>8</td>
<td>xxxx081E</td>
<td>IwmRsnCodeBadLU62TknLen</td>
<td>The length byte of the LU62 token has an invalid value. Only values 1-36 (decimal) are valid.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0820</td>
<td>IwmRsnCodeBadMonEnv</td>
<td>Monitoring environment does not pass short form verification.</td>
</tr>
</tbody>
</table>
IWMMINIT Macro

Table 105. Return and Reason Codes for the IWM4MINI Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0894</td>
<td>Equate Symbol: IwmRsnCodeInvalidEWLMCorr</td>
<td>Meaning: Passed correlator information (EWLM_PACORR or EWLM_PACTKN) does not pass validity checking, that means: the architected ARM correlator length field in the first two Bytes of the correlator (token) is either less than 4 ('0004'x) or greater than 512 ('0200'x). Action: Check the specification of the correlator information.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0895</td>
<td>Equate Symbol: IwmRsnCodeEWLMServNotEnabled</td>
<td>Meaning: Service is not enabled because the Monitoring Environment was not created with EWLM=YES (either on IWM4CON or IWM4MCRE). Action: Specify the parameter EWLM_PACORR or EWLM_PACTKN only when the Monitoring Environment was created with EWLM=YES (either on IWM4CON or IWM4MCRE).</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>IwmRetCodeEnvError: Environmental error</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C07</td>
<td>Equate Symbol: IwmRsnCodeNoArrTime</td>
<td>Meaning: No arrival time was supplied to the service and STCK gave a non-zero condition code.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C08</td>
<td>Equate Symbol: IwmRsnCodeNoExTime</td>
<td>Meaning: No execution start time was supplied to the service and STCK gave a non-zero condition code.</td>
</tr>
</tbody>
</table>

Examples

IWMMINIT MONTKN=(R9),ARRIVALTIMEP=YES, ARRIVALTIME=(R3),EXSTARTTIMEP=YES, EXSTARTTIME=(R4),DISPETYPE=TCB,TCB=(R7), SCOPE=SINGLE,TRXNAME=WLTRXNAME,SOURCELU=SOURCELU, CONTINUEP=YES,LU62TKN_FMT=OTHER,LU62TKN_LEN=LU62TKNLEN, LU62TKN=LU62TKN1,MODE=RESET,FROM=NONE, REPORTONLY=NO,RETCODE=RCODE,RSNCODE=RSN

IWMQDEL – Deleting a Request from the Queue for An Execution Address Space

This service deletes a work request that was previously inserted using the IWMQINS service, if it has not been selected using the IWMSSEL service.

Note

It is recommended to use the new equivalent service IWM4QDE introduced with z/OS V1R6. IWM4QDE also supports 64-bit address space. For further information refer to Chapter 80, "IWM4QDE – Deleting a Request from the Queue for An Execution Address Space," on page 675.
Environment

The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys 0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space which connected to WLM (i.e. the address space that was home when IWMCNN was issued for Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue).

AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

None.

Input Register Information

Before issuing the IWMQDEL macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>
IWMQDEL Macro

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

```
name_IWMQDEL'Connortkn__,WLMWUTKN=wlmwutkn___RETCODE=retcode___

,RSNCODE=rsncode___,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)
```

Parameters

The parameters are explained as follows:

`name`
An optional symbol, starting in column 1, that is the name on the IWMQDEL
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

`CONNTKN=conntkn`
A required input parameter, which contains the connect token associated with
the use of WLM Work Queuing services as returned by IWMCONN (specifying
Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue).

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

`,MF=S`
`,MF=(L,list addr)`
`,MF=(L,list addr,attr)`
`,MF=(L,list addr,0D)`
`,MF=(E,list addr)`
`,MF=(E,list addr,COMPLETE)`
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.
Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,,list addr
 The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,,attr
 An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,,COMPLETE
 Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,,PLISTVER=IMPLIED_VERSION
,,PLISTVER=MAX
,,PLISTVER=0
 An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:
 • IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
 • MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.
 • 0, if you use the currently available parameters.

 To code: Specify one of the following:
 • IMPLIED_VERSION
 • MAX
 • A decimal value of 0

,,RETCODE=retcode
 An optional output parameter into which the return code is to be copied from GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).
IWMQDEL Macro

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,WLMWUTKN=wlmwutkn
A required input parameter, specifying the work unit to be deleted. This token must be a token that was returned on a prior IWMQINS request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMQDEL macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 106. Return and Reason Codes for the IWMQDEL Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeWarning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0408</td>
<td>Equate Symbol: IwmRsnCodeWorkNotFound:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: No work matching the input search criteria was found.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is locked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>IwmRsnCodeBadPl</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0821</td>
<td>IwmRsnCodeBadConn</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>IwmRsnCodeDatoff</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>IwmRsnCodeAmode24</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>IwmRsnCodeAscModeNotPrimary</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>IwmRsnCodeRsvdNot0</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
</tr>
<tr>
<td>8</td>
<td>xxxx083F</td>
<td>IwmRsnCodePrimaryNotOwnConn</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>IwmRsnCodeServiceNotEnabled</td>
</tr>
</tbody>
</table>
Table 106. Return and Reason Codes for the IWMQDEL Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0848</td>
<td>Equate Symbol: IwmRsnCodeBadWorkUnitToken</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The work unit token is not valid.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check the specification of the WLMWUTKN parameter.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx089E</td>
<td>Equate Symbol: IwmRsnCodeServiceAModeMismatch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The caller is in 64-bit address mode and tried to invoke a service macro that is only enabled for a 31-bit environment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Use the 64-bit enabled service macro (IWM4QDE) or change the address mode of the caller to 31-bit.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Component error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Contact your system programmer.</td>
</tr>
</tbody>
</table>

Example

To delete a work request from the WLM queue manager queues:

```plaintext
IWMQDEL CONNTKN=CONNTOKEN, RC=RCC,RSNCODE=RSN
WLMWUTKN=WLMWUTKN,RETCODE=RC,RSNCODE=RSN
```

* Storage areas

* CONNTOKEN DS FL4 Contains the connect token associated with the use of WLM

* Queueing services as returned by IWMCONN

* (specifying QUEUE_MANAGER=YES or SERVER_MANAGER=YES)

* SERVER_TYPE=QUEUE

WLMWUTKN DS CL16 Work unit token
RC DS F Return code
RSN DS F Reason code

IWMQINS – Inserting a Request Onto the Queue for An Execution Address space

The IWMQINS service inserts a work request onto workload management queues so its execution in a server address space can be managed by WLM.

Before using this service, the caller must connect to WLM using the IWMCONN service, specifying Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue.

The IWMQINS service requires the use of enclaves to manage the performance goals and reporting of work. It requires the use of application environments to associate types of work requests with servers capable of processing them.
Note
It is recommended to use the new equivalent service IWM4QIN introduced with z/OS V1R6. IWM4QIN also supports 64-bit address space. For further information refer to Chapter 81, "IWM4QIN – Inserting a Request Onto the Queue for an Execution Address Space," on page 681.

Environment
The requirements for the caller are:

Minimum authorization:	Supervisor state or program key mask (PKM) allowing keys 0-7.
Dispatchable unit mode:	Task or SRB
Cross memory mode:	Any HASN, any SASN. PASN must be the address space which connected to WLM (i.e. the address space that was home when IWMCONN was issued for Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue).
AMODE:	31-bit
ASC mode:	Primary
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No locks may be held.
Control parameters:	Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.
5. All character data, unless otherwise specified, is assumed to be left justified and padded with blanks on the right, as needed, to occupy the specified number of bytes.

Restrictions
None.

Input Register Information
Before issuing the IWMQINS macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:
IWMQINS Macro

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram

```
/SM590000/SM590000

name

IWMQINS=CONNTKN=conntkn,EETOKEN=etoken,USERDATA=userdata

APPLENV=applenv

SECUSER=NO

SECUSER=YES,USERID=userid

WLMWUTKN=wlmwutkn

SERVER_TOKEN=0

SERVER_TOKEN=server_token

REGION_TOKEN=0

REGION_TOKEN=REGION_TOKEN=region_token

RETCODE=retcode

RSNCODE=rsncode

MF=S

MF=(L,list addr)

MF=(E,list addr)

attr

COMPLETE

PLISTVER=IMPLIED_VERSION

PLISTVER=MAX

PLISTVER=0

PLISTVER=1

PLISTVER=2

PLISTVER=3

DYNAMIC=NO

DYNAMIC=YES

DEPENDENT=NO

DEPENDENT=YES
```
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMQINS macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,APPLENV=applenv
A required input parameter, which contains an application environment name. An application environment is defined in the workload manager service definition and instructs WLM how to create a server address space.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

CONNTKN=conntkn
A required input parameter, which contains the connect token returned by the IWMCONN macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32-bit field.

,DEPENDENT=NO,DEPENDENT=YES
An optional parameter indicating whether the insert is for a dependent or a standard request. The default is DEPENDENT=NO.

,DEPENDENT=NO
The request is for an independent (standard) work request (default).

,DEPENDENT=YES
The insert is for a dependent work request which is required by already active server tasks to complete their processing. The request is prioritized above requests which are not marked as dependent.

,DYNAMIC=NO,DYNAMIC=YES
An optional parameter indicating whether the insert is for a dynamic or static application environment. The default is DYNAMIC=NO.

,DYNAMIC=NO
The server manager connects to a static application environment according to the WLM service definition. This is the default.

,DYNAMIC=YES
The server manager connects to a dynamic application environment according to a prior definition via IWMAEDEF (IWM4AEDF for 64-bit environments) service.

,ETOKEN=etoken
A required input parameter, which contains the enclave token associated with the work request. An enclave token is obtained using either the IWMECREA or IWMESQRY macro.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

,MF=S,
,MF=(L,list addr),
,MF=(L,list addr,attr),
,MF=(L,list addr,0D)
IWMQINS Macro

\[.MF=(E, list \ addr) \]
\[.MF=(E, list \ addr, COMPLETE) \]

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

\[.list \ addr \]

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

\[.attr \]

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

\[.COMPLETE \]

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

\[.PLISTVER=IMPLIED_VERSION \]
\[.PLISTVER=MAX \]
\[.PLISTVER=0 \]
\[.PLISTVER=1 \]
\[.PLISTVER=2 \]
\[.PLISTVER=3 \]

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.

- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.
IWMQINS Macro

• 0, which supports all parameters except those specifically referenced in higher versions.
• 1, which supports both the following parameters and those from version 0:

 SERVER_TOKEN

• 2, which supports both the following parameters and those from version 0 and 1:

 REGION_TOKEN

• 3, which supports both the following parameters and those from version 0, 1, and 2:

 DYNAMIC

To code: Specify one of the following:
• IMPLIED_VERSION
• MAX
• A decimal value of 0, 1, 2, or 3

,REGION_TOKEN=region_token

,REGION_TOKEN=0

An optional input parameter, which contains a region token returned by the IWM4CON and IWMSSEL macro. Use REGION_TOKEN to queue a work request to a specific server region. Such a work request is considered to be part of a set of work requests which all need access to the same status information which is kept in the virtual storage of the server region.

The following qualifications apply when specifying a region token:
• The application is responsible for passing the region token to the queueing manager so that it can insert the work request to the region.
• WLM has to know that temporal affinities for work requests to a specific server region exist in order not to stop the server region. The application must use the IWMTAFF macro to tell WLM when a temporal affinity starts and when it ends.

Coding REGION_TOKEN=0 is equivalent to omitting the REGION_TOKEN keyword. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

,RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SECUSER=NO

,SECUSER=YES

An optional parameter, which specifies whether the security environment of the user should be associated with the request at run time. The default is SECUSER=NO.
IWMQINS Macro

,SECUSER=NO
 No security environment to be established.

,SECUSER=YES
 Use the specified userid to establish a security environment.

,SERVER_TOKEN=server_token
,SERVER_TOKEN=0
 An optional input parameter, which contains a server token returned by the
 IWMSSEL macro. Use SERVER_TOKEN to queue a secondary work request to
 the same server task that selected a prior work request. A secondary work
 request is considered to be an extension of the prior work request.

 The following qualifications apply when specifying a server token:
 • The server task is responsible for passing the server token to the queueing
 manager so that it can insert a secondary work request.
 • Coordination is required between the queueing manager and the server task
 so that the server task knows when to expect secondary work requests. The
 server task uses the IWMSSEM macro to select secondary work requests. It
 must select all secondary work requests before it can resume normal
 selection using IWMSSEL.
 • The same application environment and enclave token passed for the original
 work request must be passed for each secondary work request.
 • A secondary work request cannot be deleted using the IWMQDEL macro.
 IWMQINS does not return a work unit token (WLMWUTKN).
 • The SECUSER keyword is ignored.

 Coding SERVER_TOKEN=0 is equivalent to omitting the SERVER_TOKEN
 keyword. The default is 0.

 To code: Specify the RS-type address, or address in register (2)-(12), of a
 32-character field.

,USERDATA=userdata
 A required input parameter, which contains data to pass to the server address
 space. This user data is returned to the caller of the IWMSSEL or IWMSSEM
 macro. The format is undefined to MVS.

 To code: Specify the RS-type address, or address in register (2)-(12), of a
 16-character field.

,USERID=userid
 When SECUSER=YES is specified, a required input parameter, which contains
 the requester's userid.

 To code: Specify the RS-type address, or address in register (2)-(12), of an
 8-character field.

,WLMWUTKN=wlmwutkn
 An optional output parameter, which will receive the work unit token. This token
 can be passed to the IWMQDEL service to delete the work request.

 To code: Specify the RS-type address, or address in register (2)-(12), of a
 16-character field.

ABEND Codes
 None.
Return and Reason Codes

When the IWMQINS macro returns control to your program:
- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 107. Return and Reason Codes for the IWMQINS Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
<td>None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>IwmRetCodeWarning</td>
<td>Successful completion, unusual conditions noted.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>xxxx042E</td>
<td>IwmRsnCodeServerNotFound</td>
<td>The server token does not identify an existing server task. The server task may have terminated since the token was obtained.</td>
<td>If the server task has not terminated, check that the correct token is specified.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx043A</td>
<td>IwmRsnCodeRegionNotFound</td>
<td>The region token does not identify a valid server region.</td>
<td>Please specify the correct region token.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
<td>Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>IwmRsnCodeBadPl</td>
<td>Error accessing parameter list.</td>
<td>Check for possible storage overlay. Also check if you call this macro in 64-bit address mode. Refer to the description of reason code xxxx089E for further information.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0821</td>
<td>IwmRsnCodeBadConn</td>
<td>Input connect token does not pass validity checking.</td>
<td>Make sure to use the connect token returned by the IWMCONN service requesting Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue.</td>
</tr>
</tbody>
</table>
Table 107. Return and Reason Codes for the IWMQINS Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>Equate Symbol: IwmRsnCodeDatoff</td>
<td>Caller invoked service while DATOFF</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24 bit addressing mode.</td>
<td>Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>Equate Symbol: IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not in primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0827</td>
<td>Equate Symbol: IwmRsnCodeRsvdNot0</td>
<td>Reserved field in parameter list was non-zero.</td>
<td>Check for use of keywords that are not supported by the MVS release on which the program is running.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx083A</td>
<td>Equate Symbol: IwmRsnCodeBadEnclave</td>
<td>Enclave token in parameter list is not valid.</td>
<td>Check the specification of the ETOKEN parameter.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx083F</td>
<td>Equate Symbol: IwmRsnCodePrimaryNotOwnConn</td>
<td>Primary address space does not own the passed connect token.</td>
<td>Ensure that the primary address space has previously connected to WLM using the IWMCONN macro. Ensure that the connect token returned by the IWMCONN macro is passed to the IWMQINS macro.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>Equate Symbol: IwmRsnCodeServiceNotEnabled</td>
<td>Caller’s space connection is not enabled for this service</td>
<td>Make sure that Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue is specified on the IWMCONN request to enable this service.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0842</td>
<td>Equate Symbol: IwmRsnCodeNoWLMConnect</td>
<td>Caller’s space disconnected from WLM during processing of the insert request.</td>
<td>None.</td>
</tr>
</tbody>
</table>
IWMQINS Macro

Table 107. Return and Reason Codes for the IWMQINS Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0845</td>
<td>Equate Symbol: IwmRsnCodeWrongEnclave</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The caller tried to queue a secondary request to a specific server task using the SERVER_TOKEN parameter. The caller’s enclave token does not match the enclave token of the last work request selected by the server task.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Check that the correct enclave token was specified. Check that the server task is invoking the IWMSSEL and IWMSSEM macros in the correct sequence.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>xxxx089E</td>
<td>Equate Symbol: IwmRsnCodeServiceAModeMismatch</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The caller is in 64-bit address mode and tried to invoke a service macro that is only enabled for a 31-bit environment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Use the 64-bit enabled service macro (IWM4QIN) or change the address mode of the caller to 31-bit.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeEnvError</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Environmental error.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>Equate Symbol: IwmRsnCodeNoStg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Storage is not available for the request.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Contact your system programmer. There is a common storage shortage.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C16</td>
<td>Equate Symbol: IwmRsnCodeServerUnavail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: A server cannot be started to process the work request. This is probably caused by one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. An error in the JCL procedure used to start the server address space.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Repeated, unexpected terminations of the server address space.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In either of these cases, workload management stops the application environment. A DISPLAY WLM command shows this state as INTERNALLY STOPPED.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Look at the system log to determine what caused the error:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. If it is a JCL error, correct the error in the procedure.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. If it is repeated terminations of the server address space, correct the application error causing the termination.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In either case, the server environment can then be resumed using the VARY operator command: V WLM,APPLENV=nnn,RESUME where nnn is the applicable application environment name.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: A re-IPL of some or all of the systems in the sysplex does not reset the stopped state of the application environment. The VARY command is the only way to resume the environment.</td>
<td></td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol</td>
<td>Meaning and Action</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
<td>--------------------</td>
</tr>
</tbody>
</table>
| C xxxxC1A | | IwmRsnCodeApplNotDefined | **Meaning:** The application environment name is not defined in the active WLM policy.
Action: Check whether the correct application environment name is being used. If so, a service administrator must define the application environment in the WLM service definition. |
| C xxxxC1B | | IwmRsnCodeApplNotSST | **Meaning:** The application environment name is defined for use by a different subsystem type in the active WLM policy.
Action: Check whether the correct application environment name is being used. If so, a service administrator must change the application environment in the WLM service definition to specify the correct subsystem type. |
| C xxxxC1D | | IwmRsnCodeQMngrNotActive | **Meaning:** The required Queue Manager is not active.
Action: The Queue Manager with the same subsystem type and name as the server must be started and connected to workload management before the request can be honored. |
| C xxxxC22 | | IwmRsnCodeApplEnvQuiesced | **Meaning:** For server applications connecting to WLM with subsystem type IWEB only: The application environment has been quiesced. The work request is not inserted to the WLM work queue.
Action: Resume the application environment. |
| C xxxxC40 | | IwmRsnCodeNoSafCheckPossible | **Meaning:** MLS is active but a security check could not be performed probably for one of the following reasons:
- No security decision could be made. The RACF router was not loaded; the request, resource, subsystem combination could not be found in the RACF ROUTER table...
- A resource or class name is not defined to RACF or the class has not been RAClisted.
- The class was RAClisted, but the data space cannot be accessed due to an ALESERV failure.
- The class was RAClisted, but the data space has been deleted.
- No security decision could be made. The RACF router was not loaded; the request, resource, subsystem combination could not be found in the RACF ROUTER table.
Action: Contact your RACF Security Administrator. Check if RACF is properly installed, configured and tuned. Correct the eventual problems. |
Table 107. Return and Reason Codes for the IWMQINS Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>xxxx0C41</td>
<td>IwmRsnCodeSafCheckFailed</td>
<td>MLS is active. Queue Manager and Server Manager are not authorized to communicate.</td>
<td>Normally none. If QM and SM really must communicate, contact your RACF Security Administrator. Set the appropriate Security Labels.</td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C42</td>
<td>IwmRsnCodeAletError</td>
<td>Error while accessing access list with ALESERV probably because of one of the following: 1.</td>
<td>Delete unused entries and reissue the request in first case. Free some storage and retry the request in second case. Contact your System Programmer if none works.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>IwmRetCodeCompError</td>
<td>Component error.</td>
<td>Contact your system programmer.</td>
</tr>
</tbody>
</table>

Example

To insert a work request onto the WLM queue manager queues:

```plaintext
IWMQINS CONNTKN=CONNTOKEN,ETOKEN=ENCTOKEN, X
USERDATA=USERDATA,APPLENV=APPLENV,SECUSER=NO, X
WLMWUTKN=WLMWUTKN,RETCODE=RC,RSNCODE=RSN
```

* Storage areas
 * CONNTOKEN DS FL4 Contains the connect token
 * associated with the use of WLM
 * ENCTOKEN DS CL8 Contains the Enclave token
 * associated with the work
 * USERDATA DS CL16 Contains data maintained by the user
 * APPLENV DS CL32 Contains the application environment name
 * WLMWUTKN DS CL16 Work unit token
 * RC DS F Return code
 * RSN DS F Reason code
The IWMSLIM service should be used to tell WLM the total number of server instances which are supported by the application. WLM will ensure that no more server instances will be started in the system.

In addition the caller can define a minimum number of servers which should be made available by WLM regardless of whether work is available to execute or not. If the user defines multiple service classes to give the work of the application different service goals, the caller can define that the minimum number of servers is spread across these service classes to ensure that servers are available for all work executed by the application.

The caller must have previously connected to WLM using the IWMCONN service specifying SERVER_MANAGER=YES and SERVER_TYPE=QUEUE. It is recommended to use the IWMSLIM service directly after IWMCONN. If any server uses this service to define limits, the limits apply for all servers of the application environment regardless of whether other servers use the service or not.

If a server defines new limits during execution, WLM attempts to meet the new limit definitions as soon as possible. If the maximum limit for servers is reduced during execution it is not predictable when WLM is able to meet the new maximum definition. This depends highly on the execution time of the running work requests. Therefore changing the limits during execution should be used very carefully and primarily during times of low application utilization.

Note
It is recommended to use the new equivalent service IWM4SLI introduced with z/OS V1R6. IWM4SLI also supports 64-bit address space. For further information refer to Chapter 82, "IWM4SLI – Application Environment Limit Service," on page 693.

Environment
The requirements for the caller are:

Minimum authorization:	Problem state. Any PSW key
Dispatchable unit mode:	Task
Cross memory mode:	PASN=HASN=SASN
AMODE:	31-bit
ASC mode:	Primary
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No locks may be held.
Control parameters:	Control parameters must be in the primary address space.

Programming Requirements
1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

1. This macro may not be used during task/address space termination.
2. Only a single invocation is allowed to be active for a given address space at any given time.
3. Before using this macro the caller must connect to WLM via IWMCONN Server_Manager=YES, Server_Type=Queue.
4. The macro must be used directly after using IWMCONN.

Input Register Information

Before issuing the IWMSLIM macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSLIM macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

AE_SERVERMAX=ae_servermax

AE_SERVERMAX=0
An optional input parameter, which indicates the architectural limit for the total number of server instances which can run concurrently across the application environment for a given subsystem type and subsystem name.

This parameter represents a physical limit, such as the maximum number of available connections to a back-end subsystem. WLM will not start more than this number of server instances, even if goals cannot be met because of the limit. This value should be an integral multiple of the PARALLEL_EU value defined on the IWMCONN service. If AE_SERVERMAX is not an even multiple of PARALLEL_EU, WLM will round this value down to the next integral multiple.

The maximum limit and the number of service classes to execute work requests should be defined carefully. If the number of service classes exceeds the quotient of AE_SERVERMAX divided by PARALLEL_EU WLM cannot start enough server address spaces to execute the work requests for all service classes. The default is 0, indicating that no maximum limit has been specified.

To code: Specify the RS-type address of a halfword field.

AE_SERVERMIN=ae_servermin

AE_SERVERMIN=0
An optional input parameter, which indicates the minimum number of servers which should be up and running at all times.

This parameter can be used to tell WLM that a certain amount of server tasks should always be kept available to select work. This value should be an integral multiple of the PARALLEL_EU value defined on IWMCONN service. If AE_SERVERMIN is not an even multiple of PARALLEL_EU, WLM will round this value down to the next integral multiple. The default is 0, indicating that no limit has been specified.

To code: Specify the RS-type address of a halfword field.
When AE_SERVERMIN=ae_servermin is specified, an optional parameter, which indicates whether WLM will distribute the minimum number of servers as evenly as possible across the service classes being used to process the work requests. The default is AE_SPREADMIN=NO.

AE_SPREADMIN=NO

The server tasks specified in AE_SERVERMIN will be distributed to service classes as needed in order to meet goals.

AE_SPREADMIN=YES

The server tasks specified in AE_SERVERMIN will be distributed as evenly as possible to all service classes being used to execute work requests.

MF=S

MF=(L,list addr)

MF=(L,list addr,attr)

MF=(L,list addr,0D)

MF=(E,list addr)

MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

attr

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

COMPLETE

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

PLISTVER=IMPLIED_VERSION

PLISTVER=MAX

PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:
IWMSLIM Macro

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.
- **0**, if you use the currently available parameters.

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0

,RETCODE=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes

None.

Return and Reason Codes

When the IWMSLIM macro returns control to your program:
- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 108. Return and Reason Codes for the IWMSLIM Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
<td>None required.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>IwmRetCodeInvocError</td>
<td>Invalid invocation environment or parameters.</td>
<td></td>
</tr>
<tr>
<td>Return Code</td>
<td>Reason Code</td>
<td>Equate Symbol</td>
<td>Meaning</td>
<td>Action</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>---------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>Equate Symbol: IwmRsnCodeSrbMode</td>
<td>Caller is in SRB mode.</td>
<td>Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
<td>Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>Equate Symbol: IwmRsnCodeBadPl</td>
<td>Error accessing parameter list.</td>
<td>Check for possible storage overlay. Also check if you call this macro in 64-bit address mode. Refer to the description of reason code xxxx089E for further information.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24 bit addressing mode.</td>
<td>Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>Equate Symbol: IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not in primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>Equate Symbol: IwmRsnCodeServiceNotEnabled</td>
<td>Caller's space connection is not enabled for this service</td>
<td>Make sure that SERVER_MANAGER=YES and SERVER_TYPE=QUEUE is specified on the IWMCONN request to enable this service.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0841</td>
<td>Equate Symbol: IwmRsnCodeXmemMode</td>
<td>Caller is in cross-memory mode.</td>
<td>Request this function only when you are not in cross-memory mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0842</td>
<td>Equate Symbol: IwmRsnCodeNoWLMConnect</td>
<td>Caller's space is not connected to WLM.</td>
<td>Invoke the IWMCONN macro before invoking this macro.</td>
</tr>
</tbody>
</table>
IWMSLIM Macro

Table 108. Return and Reason Codes for the IWMSLIM Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx089E</td>
<td>IwmRsnCodeServiceAModeMismatch</td>
<td>Meaning: The caller is in 64-bit address mode and tried to invoke a service macro that is only enabled for a 31-bit environment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: Use the 64-bit enabled service macro (IWM4SLI) or change the address mode of the caller to 31-bit.</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>IwmRetCodeCompError</td>
<td>Meaning: Component error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action: Contact your system programmer.</td>
</tr>
</tbody>
</table>

Example

To specify application limits to WLM.

```plaintext
IWMCNNT WORK_MANAGER=YES,
SERVER_MANAGER=YES,
PARALLEL_EU=EUNITS,
SERVER_TYPE=QUEUE,
CONNTKN=CTKN,
CONNTKNKEY=PSWKEY,
RETCODE=RC,
RSNCRD=RSN

IWMSLIM AE_SERVERMAX=MAXRSRS,
AE_SERVERMIN=MINSRS,
RETCODE=RC,
RSNCRD=RSN
```

* Storage areas
 * EUNITS DS F Number of Tasks which will be started per address space.
 * MAXRSRS DS H Maximum Number of Servers supported by the application.
 * MINSRS DS H Minimum number of servers which should be up and running all time
 * CTKN DS FL4 Connect Token
 * RC DS F Return code
 * RSN DS F Reason code
IWMSSEL – Selecting a Request from a Caller’s Work Manager Queue

The IWMSSEL service selects the next work request from the queue associated with the caller’s application environment. The caller must have previously connected to WLM using the IWMCONN service specifying SERVER_MANAGER=YES.

If there are no queued work requests waiting for selection the calling task will be suspended, pending arrival of work to do. The caller cannot rely upon asynchronous exits receiving control while the task is suspended.

After a work request is selected, the caller uses the IWMSTBGN and IWMSTEND services to indicate the start and end of processing of the request.

Note

It is recommended to use the new equivalent service IWM4SSL introduced with z/OS V1R6. IWM4SSL also supports 64-bit address space. For further information refer to Chapter 84, “IWM4SSL – Selecting a Request from a Caller’s Work Manager Queue,” on page 713.

Environment

The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMYPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNSCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

None.
IWMSSEL Macro

Input Register Information
Before issuing the IWMSSEL macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications
None.

Syntax

main diagram

```
\text{IWMSSEL} = \text{USERDATA} = \text{userdata}, \text{WLMEUTKN} = \text{wlmeutkn}, \text{SERVER_TOKEN} = \text{server_token}, \text{REGION_TOKEN} = \text{region_token}, \text{RETCODE} = \text{retcode}
```

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications
None.

Syntax

main diagram

```
\text{IWMSSEL} = \text{USERDATA} = \text{userdata}, \text{WLMEUTKN} = \text{wlmeutkn}, \text{SERVER_TOKEN} = \text{server_token}, \text{REGION_TOKEN} = \text{region_token}, \text{RETCODE} = \text{retcode}
```

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications
None.

Syntax

main diagram

```
\text{IWMSSEL} = \text{USERDATA} = \text{userdata}, \text{WLMEUTKN} = \text{wlmeutkn}, \text{SERVER_TOKEN} = \text{server_token}, \text{REGION_TOKEN} = \text{region_token}, \text{RETCODE} = \text{retcode}
```

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications
None.

Syntax

main diagram

```
\text{IWMSSEL} = \text{USERDATA} = \text{userdata}, \text{WLMEUTKN} = \text{wlmeutkn}, \text{SERVER_TOKEN} = \text{server_token}, \text{REGION_TOKEN} = \text{region_token}, \text{RETCODE} = \text{retcode}
```

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications
None.

Syntax

main diagram

```
\text{IWMSSEL} = \text{USERDATA} = \text{userdata}, \text{WLMEUTKN} = \text{wlmeutkn}, \text{SERVER_TOKEN} = \text{server_token}, \text{REGION_TOKEN} = \text{region_token}, \text{RETCODE} = \text{retcode}
```

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications
None.

Syntax

main diagram

```
\text{IWMSSEL} = \text{USERDATA} = \text{userdata}, \text{WLMEUTKN} = \text{wlmeutkn}, \text{SERVER_TOKEN} = \text{server_token}, \text{REGION_TOKEN} = \text{region_token}, \text{RETCODE} = \text{retcode}
```

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications
None.
Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSSEL macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

, MF=S
, MF=(L, list addr)
, MF=(L, list addr, attr)
, MF=(L, list addr, 0D)
, MF=(E, list addr)
, MF=(E, list addr, COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

, list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

, attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

, COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

, PLISTVER=IMPLIED_VERSION
, PLISTVER=MAX
, PLISTVER=0
, PLISTVER=1
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
IWMSEL Macro

- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, which supports all parameters except those specifically referenced in higher versions.

- **1**, which supports both the following parameters and those from version 0:

  ```
  SERVER_TOKEN
  ```

 To code: Specify one of the following:
 - IMPLIED_VERSION
 - MAX
 - A decimal value of 0 or 1

  ```
  REGION_TOKEN=region_token
  ```

 An optional output parameter, which contains a region token. A queueing manager can use the region token to queue work requests to a specific server region. These work requests are considered to belong to a set of work requests all needing access to the status information which exists only in the virtual storage of the server region. They are selected using the IWMSEL macro. It is assumed that the application uses the service IWMTAFF to tell WLM when the temporary affinity to the defined server region begins and ends.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

  ```
  RETCODE=retcode
  ```

 An optional output parameter into which the return code is to be copied from GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

  ```
  RSNCODE=rsncode
  ```

 An optional output parameter into which the reason code is to be copied from GPR 0.

 To code: Specify the RS-type address of a

  ```
  SERVER_TOKEN=server_token
  ```

 An optional output parameter, which contains a server token. A queueing manager can use the server token to queue secondary work requests to this server task. Secondary work requests are considered to be extensions of the work request selected by IWMSEL. They are selected using the IWMSEM macro. See the IWMSEM macro for more information.

 To code: Specify the RS-type address, or address in register (2)-(12), of a 32-character field.

  ```
  USERDATA=userdata
  ```

 A required output parameter, which contains the user data previously passed to WLM via IWMQINS.

 To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.
IWMSEL Macro

^.WLMEUTKN^=wlmutekn
A required output parameter, which will receive the execution unit token. This
token must be passed on subsequent IWMSTBGN and IWMSTEND requests.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWMSEL macro returns control to your program:
• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code
RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 109. Return and Reason Codes for the IWMSEL Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 0 | — | Equate Symbol: IwmRetCodeOk
Meaning: Successful completion.
Action: None required. |
| 8 | — | Equate Symbol: IwmRetCodeInvocError
Meaning: Invalid invocation environment or parameters. |
| 8 | xxxx0801 | Equate Symbol: IwmRsnCodeSrbMode
Meaning: Caller is in SRB mode.
Action: Avoid requesting this function while in SRB mode. |
| 8 | xxxx0803 | Equate Symbol: IwmRsnCodeDisabled
Meaning: Caller is disabled.
Action: Avoid requesting this function while disabled. |
| 8 | xxxx0804 | Equate Symbol: IwmRsnCodeLocked
Meaning: Caller is locked.
Action: Avoid requesting this function while locked. |
| 8 | xxxx080B | Equate Symbol: IwmRsnCodeBadPl
Meaning: Error accessing parameter list.
Action: Check for possible storage overlay. Also check if you call this macro in 64-bit address mode. Refer to the
description of reason code xxxx089E for further information. |
| 8 | xxxx0823 | Equate Symbol: IwmRsnCodeDatoff
Meaning: Caller invoked service while DATOFF
Action: Avoid requesting this function in this environment. |
Table 109. Return and Reason Codes for the IWMSSEL Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
</table>
| 8 | xxxx0824 | Equate Symbol: IwmRsnCodeAmode24
Meaning: Caller invoked service but was in 24 bit addressing mode.
Action: Request this function only when you are in 31 bit addressing mode. |
| 8 | xxxx0825 | Equate Symbol: IwmRsnCodeAscModeNotPrimary
Meaning: Caller invoked service but was not in primary ASC mode.
Action: Avoid requesting this function in this environment. |
| 8 | xxxx0827 | Equate Symbol: IwmRsnCodeRsvdNot0
Meaning: Reserved field in parameter list was non-zero.
Action: Check for possible storage overlay of the parameter list. |
| 8 | xxxx0828 | Equate Symbol: IwmRsnCodeBadVersion
Meaning: Version number in parameter list is not valid.
Action: Check for possible storage overlay of the parameter list. |
| 8 | xxxx0840 | Equate Symbol: IwmRsnCodeServiceNotEnabled
Meaning: Caller’s space connection is not enabled for this service.
Action: Make sure that SERVER_MANAGER=YES is specified on the IWMCONN request to enable this service. |
| 8 | xxxx0841 | Equate Symbol: IwmRsnCodeXmemMode
Meaning: Caller is in cross-memory mode.
Action: Request this function only when you are not in cross-memory mode. |
| 8 | xxxx0842 | Equate Symbol: IwmRsnCodeNoWLMConnect
Meaning: Caller’s space is not connected to WLM.
Action: Invoke the IWMCONN macro before invoking this macro. |
| 8 | xxxx0854 | Equate Symbol: IwmRsnCodeTooManySelect
Meaning: The caller is attempting to select more work units than it has tasks to execute the work.
Action: Wait until an execution task has issued IWMSTEND before attempting to select more work units. |
| 8 | xxxx0864 | Equate Symbol: IwmRsnCodeSecondaryWorkExists
Meaning: There are secondary work requests queued to this server task. The caller was expected to process them using IWMSSEM before calling IWMSSEL.
Action: Select all secondary work requests before issuing IWMSSEL. |
Table 109. Return and Reason Codes for the IWMSSEL Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx089E</td>
<td>Equate Symbol: IwmRsnCodeServiceAModeMismatch
 Meaning: The caller is in 64-bit address mode and tried to invoke a service macro that is only enabled for a 31-bit environment.
 Action: Use the 64-bit enabled service macro (IWM4SSL) or change the address mode of the caller to 31-bit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeEnvError
 Meaning: Environmental error.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C01</td>
<td>Equate Symbol: IwmRsnCodeNoStg
 Meaning: Storage is not available for the request.
 Action: Caller must disconnect by invoking the IWMDISC macro.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C14</td>
<td>Equate Symbol: IwmRsnCodeNoWorkShutDown
 Meaning: No work selected. Caller is to shutdown.
 Action: Caller must disconnect by invoking the IWMDISC macro.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>xxxx0C3B</td>
<td>Equate Symbol: IwmRsnCodeStopTask
 Meaning: WLM decided to stop the server instance.
 Action: Calling task must shutdown, but server address space must remain active.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError
 Meaning: Component error.
 Action: Contact your system programmer.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example

To select a work request from the WLM queue manager queues:

```
IWMSSEL USERDATA=USERDATA, X, WLMUTKN=WLMUTKN, RETCODE=RC, RSNCODE=RSN
```

* Storage areas
 * USERDATA DS CL16 Contains the user-defined data that was passed to IWMQINS
 * WLMUTKN DS CL8 Work unit token that must be passed to IWMSTBGN and IWMSTEND
 * RC DS F Return code
 * RSN DS F Reason code

IWMSSEM – WLM Server Select Secondary Service

The IWMSSEM service selects the next secondary work request from the queue associated with the caller’s server task.

If there are no queued secondary work requests waiting for selection the calling task will be suspended, pending arrival of work to do. The caller cannot rely upon asynchronous exits receiving control while the task is suspended.
Secondary work requests are considered to be extensions of an original work request selected using IWMSSEL. The caller must invoke WLM services in the following sequence:

- The caller invokes the IWMSSEL macro to select an initial work request. IWMSSEL returns a token identifying the server task. The caller is responsible for passing the server token to the queueing manager so that it can insert secondary work requests.
- The caller invokes the IWMSSTBGN macro to establish an environment for processing the work request selected using IWMSSEL. This environment also covers all secondary work requests.
- The caller invokes the IWMSSEM macro to select each secondary work request. The queueing manager is responsible for indicating the last secondary work request so that the server task knows when not to try to select another one.
- After the last secondary work request has been processed, the caller invokes the IWMSSTEND macro to remove the environment created by IWMSSTBGN.
- The caller invokes IWMSSEL to select a new primary work request, and repeats the above flow.

In the above flow, IWMSSEL, IWMSSTBGN, IWMSSEM, and IWMSSTEND must be invoked from the same task.

Note

It is recommended to use the new equivalent service IWM4SSM introduced with z/OS V1R6. IWM4SSM also supports 64-bit address space. For further information refer to Chapter 85, "IWM4SSM – WLM Server Select Secondary Service," on page 721.

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Minimum authorization:</th>
<th>Problem state. Any PSW key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatchable unit mode:</td>
<td>Task</td>
</tr>
<tr>
<td>Cross memory mode:</td>
<td>PASN=HASN=SASN</td>
</tr>
<tr>
<td>AMODE:</td>
<td>31-bit</td>
</tr>
<tr>
<td>ASC mode:</td>
<td>Primary</td>
</tr>
<tr>
<td>Interrupt status:</td>
<td>Enabled for I/O and external interrupts</td>
</tr>
<tr>
<td>Locks:</td>
<td>No locks may be held.</td>
</tr>
<tr>
<td>Control parameters:</td>
<td>Control parameters must be in the primary address space.</td>
</tr>
</tbody>
</table>

Programming Requirements

1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded.
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions

None.

Input Register Information

Before issuing the IWMSSEM macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications

None.

Syntax

main diagram

Parameters

The parameters are explained as follows:
IWMSESEM Macro

name
An optional symbol, starting in column 1, that is the name on the IWMSESEM macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.
Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.
Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.
Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
IWMSESSEM Macro

the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

• 0, if you use the currently available parameters.

To code: Specify one of the following:
- IMPLIED_VERSION
- MAX
- A decimal value of 0

.RETCODE=retcode
An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

.RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

USERDATA=userdata
A required output parameter, which contains the user data previously passed to WLM via IWMQINS.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWMSESSEM macro returns control to your program:
• GPR 15 (and retcode, when you code RETCODE) contains a return code.
• When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 110. Return and Reason Codes for the IWMSESSEM Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>IwmRetCodeOk</td>
<td>Successful completion.</td>
<td>None required.</td>
</tr>
<tr>
<td>8xxxx0801</td>
<td>xxxx0801</td>
<td>IwmRsnCodeSrbMode</td>
<td>Caller is in SRB mode.</td>
<td>Avoid requesting this function while in SRB mode.</td>
</tr>
</tbody>
</table>

Appendix E. WLM Services supporting 31–bit address space only 931
Table 110. Return and Reason Codes for the IWMSSEM Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>IwmRsnCodeDisabled</td>
<td>Caller is disabled.</td>
<td>Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>IwmRsnCodeLocked</td>
<td>Caller is locked.</td>
<td>Avoid requesting this function while locked.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx080B</td>
<td>IwmRsnCodeBadPl</td>
<td>Error accessing parameter list.</td>
<td>Check for possible storage overlay. Also check if you call this macro in 64-bit address mode. Refer to the description of reason code xxxx089E for further information.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24 bit addressing mode.</td>
<td>Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not in primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0840</td>
<td>IwmRsnCodeServiceNotEnabled</td>
<td>Caller’s space connection is not enabled for this service</td>
<td>Make sure that SERVER_MANAGER=YES is specified on the IWMCONN request to enable this service.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0841</td>
<td>IwmRsnCodeXmemMode</td>
<td>Caller is in cross-memory mode.</td>
<td>Request this function only when you are not in cross-memory mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0842</td>
<td>IwmRsnCodeNoWLMConnect</td>
<td>Caller’s space is not connected to WLM.</td>
<td>Invoke the IWMCONN macro before invoking this macro.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0862</td>
<td>IwmRsnCodeNoPriorSelect</td>
<td>The caller has not previously selected work using the IWMSSEL macro.</td>
<td>Invoke the IWMSSEL macro before invoking this macro.</td>
</tr>
</tbody>
</table>
Table 110. Return and Reason Codes for the IWMSSEM Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx0863 | Equate Symbol: IwmRsnCodeNoExecEnv
 Meaning: The caller has not established an execution environment using IWMSTBGN.
 Action: Invoke the IWMSTBGN macro before invoking this macro. |
| 8 | xxxx089E | Equate Symbol: IwmRsnCodeServiceAModeMismatch
 Meaning: The caller is in 64-bit address mode and tried to invoke a service macro that is only enabled for a 31-bit environment.
 Action: Use the 64-bit enabled service macro (IWM4SSM) or change the address mode of the caller to 31-bit. |
| C | — | Equate Symbol: IwmRetCodeEnvError
 Meaning: Environmental error. |
| C | xxxx0C14 | Equate Symbol: IwmRsnCodeNoWorkShutDown
 Meaning: No work selected. Caller is to shutdown.
 Action: Caller must disconnect by invoking the IW DISC macro. |
| 10 | — | Equate Symbol: IwmRetCodeCompError
 Meaning: Component error.
 Action: Contact your system programmer. |
IWMSTBGN – Beginning a Request from a Caller’s Work Manager Queue

IWMSTBGN establishes the environment to process a work request that was previously selected using IWMSSEL. The caller must invoke IWMSTBGN from the task in the server address space that will process the request. IWMSTBGN establishes a business unit-of-work relationship by joining the caller's task to the enclave associated with the request. IWMSTBGN creates a security environment if there is a user ID associated with the request previously selected.

Use IWMSTBGN together with IWMSTEND to begin and end the processing of a work request. A task can process only one work request at a time.

Note that a task may only join an Enclave if it is not already part of an Enclave. In particular, a subtask which inherited the Enclave attribute from its mother task (which may happen either as a result of the mother task issuing IWMEJOIN or IWMSTBGN) is not allowed to use IWMEJOIN to explicitly join an Enclave. This restriction is independent of whether the specified Enclave is the same Enclave as it is in, or a different Enclave from the one it is in. Such a subtask which inherited the Enclave attribute is also not allowed to use IWMELEAV to explicitly leave the Enclave. The subtask would only leave the Enclave upon its own (task) termination or when the Enclave is deleted (IWMEDELE). Also, a task which successfully establishes a Begin environment (IWMSTBGN) may not invoke Enclave Join, nor is the task allowed to use Enclave Leave while this Begin environment exists.

Note

It is recommended to use the new equivalent service IWM4STBG introduced with z/OS V1R6. IWM4STBG also supports 64-bit address space. For further information refer to Chapter 86, “IWM4STBG – Beginning a Request from a Caller's Work Manager Queue,” on page 727.

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Requirement Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum authorization</td>
<td>Problem state. Any PSW key</td>
</tr>
<tr>
<td>Dispatchable unit mode</td>
<td>Task</td>
</tr>
<tr>
<td>Cross memory mode</td>
<td>PASN=HASN=SASN</td>
</tr>
<tr>
<td>AMODE</td>
<td>31-bit</td>
</tr>
<tr>
<td>ASC mode</td>
<td>Primary</td>
</tr>
<tr>
<td>Interrupt status</td>
<td>Enabled for I/O and external interrupts</td>
</tr>
</tbody>
</table>
IWMSTBGN Macro

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
1. The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the IWMSTBGN macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications
None.
IWMSTBGN Macro

Syntax

main diagram

name

IWMSTBGN, WI MEUTKN=wlmeutkn, ETOKEN=etoken, RETCODE=retcode

PLISTVER=IMPLIED_VERSION

RSNCODE=rsncode

PLISTVER=MAX

PLISTVER=0

PLISTVER=1

MF=S

MF=(L, list addr, attr)

MF=(E, list addr, COMPLETE)

Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSTBGN macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

,ETOKEN=etoken
An optional output parameter, which will receive the Enclave token.

To code: Specify the RS-type address, or register (2)-(12), of an 8-character field.

,MF=S
,MF=(L, list addr)
,MF=(L, list addr, attr)
,MF=(L, list addr, 0D)
,MF=(E, list addr)
,MF=(E, list addr, COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.
IWMSTBGN Macro

, list addr
 The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

, attr
 An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

, COMPLETE
 Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

, PLISTVER=IMPLIED_VERSION
, PLISTVER=MAX
, PLISTVER=0
, PLISTVER=1
 An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:
 • IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
 • MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.
 • 0, which supports all parameters except those specifically referenced in higher versions.
 • 1, which supports both the following parameters and those from version 0:
 ETOKEN

To code: Specify one of the following:
 • IMPLIED_VERSION
 • MAX
 • A decimal value of 0

, RETCODE=retcode
 An optional output parameter into which the return code is to be copied from GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

, RSNCODE=rsncode
 An optional output parameter into which the reason code is to be copied from GPR 0.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).
IWMSTBGN Macro

WLMEUTKN=wlmeutkn
A required input parameter, execution unit token that was returned by a prior invocation of IWMSSEL.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMSTBGN macro returns control to your program:
- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 111. Return and Reason Codes for the IWMSTBGN Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 —</td>
<td></td>
<td>IwmRetCodeOk</td>
<td>Meaning: Successful completion. Action: None required.</td>
</tr>
<tr>
<td>4 —</td>
<td>xxxx041F</td>
<td>IwmRetCodeWarning</td>
<td>Meaning: Successful completion, unusual conditions noted. Action: None required.</td>
</tr>
<tr>
<td>4 —</td>
<td></td>
<td>IwmRsnCodeExecEnvChanged</td>
<td>Meaning: The execution environment has changed while the requested function is in progress. Action: None required.</td>
</tr>
<tr>
<td>8 —</td>
<td></td>
<td>IwmRetCodeInvocError</td>
<td>Meaning: Invalid invocation environment or parameters. Action: Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8 xxxx0801</td>
<td></td>
<td>IwmRsnCodeSrbMode</td>
<td>Meaning: Caller is in SRB mode. Action: Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8 xxxx0803</td>
<td></td>
<td>IwmRsnCodeDisabled</td>
<td>Meaning: Caller is disabled. Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8 xxxx0804</td>
<td></td>
<td>IwmRsnCodeLocked</td>
<td>Meaning: Caller is locked. Action: Avoid requesting this function while locked.</td>
</tr>
</tbody>
</table>
IWMSTBGN Macro

Table 111. Return and Reason Codes for the IWMSTBGN Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx080B | Equate Symbol: IwmRsnCodeBadPl | **Meaning:** Error accessing parameter list.
Action: Check for possible storage overlay. Also check if you call this macro in 64-bit address mode. Refer to the description of reason code xxxx089E for further information. |
| 8 | xxxx0810 | Equate Symbol: IwmRsnCodeEutFrr | **Meaning:** Caller has EUT FRR established.
Action: Avoid requesting this function with an EUT FRR set. |
| 8 | xxxx0823 | Equate Symbol: IwmRsnCodeDatoff | **Meaning:** Caller invoked service while DATOFF
Action: Avoid requesting this function in this environment. |
| 8 | xxxx0824 | Equate Symbol: IwmRsnCodeAmode24 | **Meaning:** Caller invoked service but was in 24 bit addressing mode.
Action: Request this function only when you are in 31 bit addressing mode. |
| 8 | xxxx0825 | Equate Symbol: IwmRsnCodeAscModeNotPrimary | **Meaning:** Caller invoked service but was not DAT on Primary ASC mode.
Action: Avoid requesting this function in this environment. |
| 8 | xxxx0826 | Equate Symbol: IwmRsnCodeTaskTerm | **Meaning:** Caller invoked service while task termination is in progress for the task associated with the owner.
Action: Avoid requesting this function while task termination is in progress. |
| 8 | xxxx0828 | Equate Symbol: IwmRsnCodeBadVersion | **Meaning:** Version number in parameter list is not valid or version length field is not valid.
Action: Check for possible storage overlay of the parameter list. |
| 8 | xxxx083A | Equate Symbol: IwmRsnCodeBadEnclave | **Meaning:** Enclave token does not pass verification.
Action: Check for possible storage overlay of the Enclave token, or asynchronous events which may have deleted the Enclave. |
| 8 | xxxx0840 | Equate Symbol: IwmRsnCodeServiceNotEnabled | **Meaning:** Caller’s space connection is not enabled for this service
Action: Make sure that SERVER_MANAGER=YES is specified on the IWMCONN request to enable this service. |
Table 111. Return and Reason Codes for the IWMSTBGN Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning:</th>
<th>Action:</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0841</td>
<td>IwmRsnCodeXmemMode</td>
<td>Caller is in cross-memory mode.</td>
<td>Request this function only when you are not in cross-memory mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0842</td>
<td>IwmRsnCodeNoWLMConnect</td>
<td>Caller’s space is not connected to WLM.</td>
<td>Invoke the IWMCONN macro before invoking this macro.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0850</td>
<td>IwmRsnCodeBeginEnvOutstanding</td>
<td>Caller is already operating under an outstanding Begin environment.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0851</td>
<td>IwmRsnCodeSecEnvOutstanding</td>
<td>Caller is already operating under an outstanding security environment.</td>
<td>Avoid requesting this function while there is a task level security environment outstanding.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0852</td>
<td>IwmRsnCodeExecTokenNotCorrect</td>
<td>The execution unit token does not identify a previously selected work unit.</td>
<td>Verify that you have coded the WLMEUTKN parameter correctly.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0857</td>
<td>IwmRsnCodeAlreadyInEnclave</td>
<td>Current dispatchable workunit is already in an Enclave.</td>
<td>Avoid requesting this function while the caller is already in an Enclave.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx085A</td>
<td>IwmRsnCodeSelectedWorkActive</td>
<td>The selected work element associated with the input execution unit token is already in execution.</td>
<td>You may have invoked IWMSTBGN from multiple tasks in the server address space passing the same WLMEUTKN. Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx089E</td>
<td>IwmRsnCodeServiceAModeMismatch</td>
<td>The caller is in 64-bit address mode and tried to invoke a service macro that is only enabled for a 31-bit environment.</td>
<td>Use the 64-bit enabled service macro (IWM4STBGN) or change the address mode of the caller to 31-bit.</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>IwmRetCodeEnvError</td>
<td>Environmental error.</td>
<td></td>
</tr>
</tbody>
</table>

IWMSTBGN Macro

C—

IWMSTBGN Macro

__940__
z/OS V1R11.0 MVS Programming: Workload Management Services
Table 11. Return and Reason Codes for the IWMSTBGN Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>C xxxx0C17</td>
<td>—</td>
<td>Equate Symbol: IwmRsnCodeSecEnvCreateFailed</td>
<td>Meaning: A user security environment cannot be created. Action: Verify that the userid is defined to RACF or check the SAF installation exit routine to enable the function.</td>
</tr>
</tbody>
</table>

Example

Suppose a work request was selected using IWMSSEL and the execution unit token returned by IWMSSEL is WLMEUTKN.

To establish the environment to process the work request:

```plaintext
IWMSTBGN WLMEUTKN=WLMEUTKN,RETCODE=RC,RSNCODE=RSN
```

* Storage areas

* WLMEUTKN DS CL8 Contains the execution unit token that was returned by
 * IWMSSEL
 * IWMSSEL
RC DS F Return code
RSN DS F Reason code

IWMSTEND – End a Request from a Caller’s Work Manager Queue

IWMSTEND removes the environment which was previously established using IWMSTBGN to process a work request. The caller must invoke IWMSTEND from the same task that invoked IWMSTBGN. IWMSTEND removes the caller’s task from the enclave associated with the request. IWMSTEND deletes the security environment if one was previously established by IWMSTBGN.

Note

It is recommended to use the new equivalent service IWM4STEN introduced with z/OS V1R6. IWM4STEN also supports 64-bit address space. For further information refer to Chapter 87, “IWM4STEN – Ending a Request from a Caller’s Work Manager Queue,” on page 735.

Environment

The requirements for the caller are:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum authorization</td>
<td>Problem state. Any PSW key</td>
</tr>
<tr>
<td>Dispatchable unit mode</td>
<td>Task</td>
</tr>
<tr>
<td>Cross memory mode</td>
<td>PASN=HASN=SASN</td>
</tr>
<tr>
<td>AMODE</td>
<td>31-bit</td>
</tr>
<tr>
<td>ASC mode</td>
<td>Primary</td>
</tr>
<tr>
<td>Interrupt status</td>
<td>Enabled for I/O and external interrupts</td>
</tr>
<tr>
<td>Locks</td>
<td>No locks may be held.</td>
</tr>
</tbody>
</table>
IWMSTEND Macro

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be included in the library concatenation, since it is included by IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions
The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the IWMSTEND macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work register by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications
None.

Syntax

```
maint diagram
```

```
IWMSTEND WLMETK=wlmeutkn RETCODE=retcode RSNCODE=rsncode
```

```
```
Parameters

The parameters are explained as follows:

name

An optional symbol, starting in column 1, that is the name on the IWMSTEND macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

MF=S

MF=(L,list addr)

MF=(L,list addr,attr)

MF=(L,list addr,0D)

MF=(E,list addr)

MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

list addr

The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

attr

An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of 0F to force the parameter list to a word boundary, or 0D to force the parameter list to a doubleword boundary. If you do not code attr, the system provides a value of 0D.

COMPLETE

Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

PLISTVER=IMPLIED_VERSION

PLISTVER=MAX

PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When
IWMSTEND Macro

using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:

- **IMPLIED_VERSION**, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
- **MAX**, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.

- **0**, if you use the currently available parameters.

To code: Specify one of the following:

- IMPLIED_VERSION
- MAX
- A decimal value of 0

,**RETCODE**=retcode

An optional output parameter into which the return code is to be copied from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,**RSNCODE**=rsncode

An optional output parameter into which the reason code is to be copied from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

WLMEUTKN=wlmeutkn

A required input parameter, execution unit token that was specified on the prior invocation of IWMSTBGN.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8-character field.

ABEND Codes

None.

Return and Reason Codes

When the IWMSTEND macro returns control to your program:

- GPR 15 (and retcode, if you coded RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.
Table 112. Return and Reason Codes for the IWMSTEND Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 0 | — | *(Equate Symbol: IwmRetCodeOk)* | **Meaning:** Successful completion.
Action: None required. |
| 4 | — | *(Equate Symbol: IwmRetCodeWarning)* | **Meaning:** Successful completion, unusual conditions noted.
Action: None required. |
| 4 | xxxx041C | *(Equate Symbol: IwmRsnCodeNotEnclave)* | **Meaning:** The current dispatchable workunit is not associated with an Enclave.
Action: None required. |
| 4 | xxxx041F | *(Equate Symbol: IwmRsnCodeExecEnvChanged)* | **Meaning:** The execution environment has changed while the requested function is in progress.
Action: None required. |
| 4 | xxxx042F | *(Equate Symbol: IwmRsnCodeSecondaryWorkDeleted)* | **Meaning:** There were secondary work requests queued to this server task. The caller was expected to process them using IWMISSEM before calling IWMSTEND. The secondary work requests were deleted.
Action: Select all secondary work requests before issuing IWMSTEND. |
| 8 | — | *(Equate Symbol: IwmRetCodeInvocError)* | **Meaning:** Invalid invocation environment or parameters.
Action: None required. |
| 8 | xxxx0801 | *(Equate Symbol: IwmRsnCodeSrbMode)* | **Meaning:** Caller is in SRB mode.
Action: Avoid requesting this function while in SRB mode. |
| 8 | xxxx0803 | *(Equate Symbol: IwmRsnCodeDisabled)* | **Meaning:** Caller is disabled.
Action: Avoid requesting this function while disabled. |
| 8 | xxxx0804 | *(Equate Symbol: IwmRsnCodeLocked)* | **Meaning:** Caller is locked.
Action: Avoid requesting this function while locked. |
| 8 | xxxx080B | *(Equate Symbol: IwmRsnCodeBadPl)* | **Meaning:** Error accessing parameter list.
Action: Check for possible storage overlay. Also check if you call this macro in 64-bit address mode. Refer to the description of reason code xxxx089E for further information. |
| 8 | xxxx0810 | *(Equate Symbol: IwmRsnCodeEutFrr)* | **Meaning:** Caller has EUT FRR established.
Action: Avoid requesting this function with an EUT FRR set. |
<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>xxxx0823</td>
<td>Equate Symbol: IwmRsnCodeDatoff</td>
<td>Caller invoked service while DATOFF</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0824</td>
<td>Equate Symbol: IwmRsnCodeAmode24</td>
<td>Caller invoked service but was in 24 bit addressing mode.</td>
<td>Request this function only when you are in 31 bit addressing mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0825</td>
<td>Equate Symbol: IwmRsnCodeAscModeNotPrimary</td>
<td>Caller invoked service but was not DAT on Primary ASC mode.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0828</td>
<td>Equate Symbol: IwmRsnCodeBadVersion</td>
<td>Version number in parameter list is not valid or version length field is not valid.</td>
<td>Check for possible storage overlay of the parameter list.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0841</td>
<td>Equate Symbol: IwmRsnCodeXmemMode</td>
<td>Caller invoked service but was in cross-memory mode.</td>
<td>Avoid requesting this function in cross-memory mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx084F</td>
<td>Equate Symbol: IwmRsnCodeWrongExecToken</td>
<td>Current dispatchable workunit is not associated with the input execution unit token.</td>
<td>Check for possible storage overlay of the execution unit token.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0859</td>
<td>Equate Symbol: IwmRsnCodeEnclaveSubTaskExists</td>
<td>The current dispatchable workunit has residual subtasks propagated to the Enclave which are still associated with the Enclave.</td>
<td>Avoid requesting this function in this environment.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx089E</td>
<td>Equate Symbol: IwmRsnCodeServiceAModeMismatch</td>
<td>The caller is in 64-bit address mode and tried to invoke a service macro that is only enabled for a 31-bit environment.</td>
<td>Use the 64-bit enabled service macro (IWM4STEN) or change the address mode of the caller to 31-bit.</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
<td>Component error.</td>
<td>Contact your system programmer.</td>
</tr>
</tbody>
</table>
Example

To remove the environment which was previously established using IWMSTBGN:

```
IWMSTEND WLMEUTKN=WLMEUTKN,RETCODE=RC,RSNCODE=RSN
```

* Storage areas

* WLMEUTKN DS CL8 Contains the execution unit token that was specified on the prior invocation of
 * IWMSTBGN

RC DS F Return code
RSN DS F Reason code

IWMSTEND Macro

IWMTAFF — WLM Temporal Affinity Service

The IWMTAFF service should be used to inform WLM when a temporal affinity for a specific server region starts and when it ends. WLM will ensure that server regions will not be terminated as long as temporal affinities exist.

The caller must have previously connected to WLM using the IWMCONN as server or as queue manager.

Note

It is recommended to use the new equivalent service IWM4TAF introduced with z/OS V1R6. IWM4TAF also supports 64-bit address space. For further information refer to Chapter 88, “IWM4TAF — WLM Temporal Affinity Service,” on page 741.

Environment

The requirements for the caller are:

Minimum authorization:	Problem state. Any PSW key
Dispatchable unit mode:	Task
Cross memory mode:	PASN=HASN=SASN
AMODE:	31-bit
ASC mode:	Primary
Interrupt status:	Enabled for I/O and external interrupts
Locks:	No locks may be held.
Control parameters:	Control parameters must be in the primary address space.

Programming Requirements

1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable when specified, may be non-zero and represents diagnostic data which is NOT part of the external interface. The high order halfword should thus be excluded.
IWMTAFF Macro

from comparison with the reason code values described above. The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this purpose.

Restrictions

- This macro may not be used during task/address space termination.
- Before using this macro the caller must connect to WLM via IWMCONN
 Server_Manager=YES, Server_Type=Queue or IWMCONN
 Queue_Manager=YES.

Input Register Information

Before issuing the IWMTAFF macro, the caller does not have to place any information into any register unless using it in register notation for a particular parameter, or using it as a base register.

Output Register Information

When control returns to the caller, the GPRs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reason code if GR15 return code is non-zero</td>
</tr>
<tr>
<td>1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>15</td>
<td>Return code</td>
</tr>
</tbody>
</table>

When control returns to the caller, the ARs contain:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Used as work registers by the system</td>
</tr>
<tr>
<td>2-13</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14-15</td>
<td>Used as work registers by the system</td>
</tr>
</tbody>
</table>

Some callers depend on register contents remaining the same before and after issuing a service. If the system changes the contents of registers on which the caller depends, the caller must save them before issuing the service, and restore them after the system returns control.

Performance Implications

None.

Syntax

main diagram
Parameters

The parameters are explained as follows:

`name`
An optional symbol, starting in column 1, that is the name on the IWMTAFF macro invocation. The name must conform to the rules for an ordinary assembler language symbol.

AFFINITY=YES

AFFINITY=NO
A required parameter indicating whether a temporal affinity begins or ends

AFFINITY=YES
A new temporal affinity for the server region begins. WLM will ensure that the server regions is not terminated before all temporal affinity have ended.

AFFINITY=NO
A temporal affinity for the server region has ended. WLM will start to terminate server regions if all temporal affinities have ended.

`MF=S`
`MF=(L,list addr)`
`MF=(L,list addr,attr)`
`MF=(L,list addr,0D)`
`MF=(E,list addr)`
`MF=(E,list addr,COMPLETE)`
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline parameter list and generates the macro invocation to transfer control to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with the execute form of the macro for applications that require reentrant code. The list form defines an area of storage that the execute form uses to store the parameters. Only the PLISTVER parameter may be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form together with the list form of the macro for applications that require reentrant code. The execute form of the macro stores the parameters into the storage area defined by the list form, and generates the macro invocation to transfer control to the service.

`list addr`
The name of a storage area to contain the parameters. For MF=S and MF=E, this can be an RS-type address or an address in register (1)-(12).

`attr`
An optional 1- to 60-character input string that you use to force boundary alignment of the parameter list. Use a value of OF to force the parameter list to a word boundary, or OD to force the parameter list to a doubleword boundary. If you do not code `attr`, the system provides a value of 0D.
IWMTAFF Macro

,COMPLETE
 Specifies that the system is to check for required parameters and supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
 An optional input parameter that specifies the version of the macro. PLISTVER determines which parameter list the system generates. PLISTVER is an optional input parameter on all forms of the macro, including the list form. When using PLISTVER, specify it on all macro forms used for a request and with the same value on all of the macro forms. The values are:
 • IMPLIED_VERSION, which is the lowest version that allows all parameters specified on the request to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION is the default.
 • MAX, if you want the parameter list to be the largest size currently possible. This size might grow from release to release and affect the amount of storage that your program needs.
 If you can tolerate the size change, IBM recommends that you always specify PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that the list-form parameter list is always long enough to hold all the parameters you might specify on the execute form, when both are assembled with the same level of the system. In this way, MAX ensures that the parameter list does not overwrite nearby storage.
 • 0, if you use the currently available parameters.

 To code: Specify one of the following:
 • IMPLIED_VERSION
 • MAX
 • A decimal value of 0

,REGION_TOKEN=region_token
,REGION_TOKEN=0
 An optional input parameter, which contains the region token. The region token is not required if the macro is invoked from the server region for which the temporal affinity should be started or stopped. The region token must be used if the service is used from the queueing manager. The region token is returned by the IWM4CON and IWMSSEL macro.

 The caller must be supervisor state or have PSW key mask 0-7 authority to use this service with the REGION_TOKEN parameter.

 Coding REGION_TOKEN=0 is equivalent to omitting the REGION_TOKEN keyword. The default is 0.

 To code: Specify the RS-type address, or address in register (2)-(12), of a 16-character field.

,RETCODE=retcode
 An optional output parameter into which the return code is to be copied from GPR 15.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rscncode
 An optional output parameter into which the reason code is to be copied from GPR 0.

 To code: Specify the RS-type address of a fullword field, or register (2)-(12).
ABEND Codes

None.

Return and Reason Codes

When the IWMTAFF macro returns control to your program:

- GPR 15 (and retcode, when you code RETCODE) contains a return code.
- When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the equate symbol associated with each reason code. IBM support personnel may request the entire reason code, including the xxxx value.

Table 113. Return and Reason Codes for the IWMTAFF Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeOk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeWarning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Successful completion, unusual conditions noted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: None required.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx0439</td>
<td>Equate Symbol: IwmRsnCodeNoAffinityFound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The service has been invoked to tell WLM that an existing server region affinity has been terminated but WLM has no affinity defined for this server region.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: If region token was not specified make sure to use the service properly at the beginning and end of each affinity. If the region token has been defined make sure that it is used for the correct server region.</td>
</tr>
<tr>
<td>4</td>
<td>xxxx043A</td>
<td>Equate Symbol: IwmRsnCodeRegionNotFound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: The region token does not identify a valid server region.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Please specify the correct region token.</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeInvocError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Invalid invocation environment or parameters.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0801</td>
<td>Equate Symbol: IwmRsnCodeSrbMode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is in SRB mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while in SRB mode.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0803</td>
<td>Equate Symbol: IwmRsnCodeDisabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while disabled.</td>
</tr>
<tr>
<td>8</td>
<td>xxxx0804</td>
<td>Equate Symbol: IwmRsnCodeLocked</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Caller is locked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Avoid requesting this function while locked.</td>
</tr>
</tbody>
</table>
Table 113. Return and Reason Codes for the IWMTAFF Macro (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol</th>
<th>Meaning and Action</th>
</tr>
</thead>
</table>
| 8 | xxxx080B | Equate Symbol: IwmRsnCodeBadPl | Meaning: Error accessing parameter list.
Action: Check for possible storage overlay. Also check if you call this macro in 64-bit address mode. Refer to the description of reason code xxxx089E for further information. |
| 8 | xxxx0824 | Equate Symbol: IwmRsnCodeAmode24 | Meaning: Caller invoked service but was in 24 bit addressing mode.
Action: Request this function only when you are in 31 bit addressing mode. |
| 8 | xxxx0825 | Equate Symbol: IwmRsnCodeAscModeNotPrimary | Meaning: Caller invoked service but was not in primary ASC mode.
Action: Avoid requesting this function in this environment. |
| 8 | xxxx0828 | Equate Symbol: IwmRsnCodeBadVersion | Meaning: Version number in parameter list is not valid.
Action: Check for possible storage overlay of the parameter list. |
| 8 | xxxx0840 | Equate Symbol: IwmRsnCodeServiceNotEnabled | Meaning: Caller's space connection is not enabled for this service
Action: Make sure that SERVER_MANAGER=YES and SERVER_TYPE=QUEUE is specified on the IWMCONN request to enable this service. |
| 8 | xxxx0841 | Equate Symbol: IwmRsnCodeXmemMode | Meaning: Caller is in cross-memory mode.
Action: Request this function only when you are not in cross-memory mode. |
| 8 | xxxx0842 | Equate Symbol: IwmRsnCodeNoWLMConnect | Meaning: Caller's space is not connected to WLM.
Action: Invoke the IWMCONN macro before invoking this macro. |
| 8 | xxxx084D | Equate Symbol: IwmRsnCodeNotAuthConnect | Meaning: The caller must be supervisor state or have PSW key mask 0-7 authority to use the requested WLM service. This applies only if the caller provides a region token for a server address space for which it wants to set the affinity.
Action: Avoid requesting this function in this environment. |
| 8 | xxxx089E | Equate Symbol: IwmRsnCodeServiceAModeMismatch | Meaning: The caller is in 64-bit address mode and tried to invoke a service macro that is only enabled for a 31-bit environment.
Action: Use the 64-bit enabled service macro (IWM4TAF) or change the address mode of the caller to 31-bit. |
IWMTAFF Macro

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Equate Symbol Meaning and Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>—</td>
<td>Equate Symbol: IwmRetCodeCompError</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meaning: Component error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action: Contact your system programmer.</td>
</tr>
</tbody>
</table>

Example

To start a temporal affinity from the server region, specify the following:

```plaintext
IWMTAFF AFFINITY=YES
  RETCODE=RC,
  RSNCODE=RSN
```

* Storage areas
 *

<table>
<thead>
<tr>
<th>RC</th>
<th>DS</th>
<th>F</th>
<th>Return code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSN</td>
<td>DS</td>
<td>F</td>
<td>Reason code</td>
</tr>
</tbody>
</table>
IWMTAFF Macro
Appendix F. Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.
Notices

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM's application programming interfaces.

Policy for unsupported hardware

Various z/OS® elements, such as DFSMS™, HCD, JES2, JES3, and MVS™, contain code that supports specific hardware servers or devices. In some cases, this device-related element support remains in the product even after the hardware devices pass their announced End of Service date. z/OS may continue to service element code; however, it will not provide service related to unsupported hardware devices. Software problems related to these devices will not be accepted for
service, and current service activity will cease if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be issued.

Programming Interface Information

This book documents intended Programming Interfaces that allow the customer to write programs to obtain the services of z/OS.

Trademarks

The following terms are trademarks for the IBM Corporation in the United States and/or other countries:
- IBM
- The IBM logo
- ibm.com
- AD/Cycle
- C/370
- CBPO
- CICS
- CICS/ESA
- DB2
- DFSMS/MVS
- ESCON
- Extended Services
- Hiperbatch
- Hiperspace
- IBMLink
- IMS/ESA
- MVS/ESA
- OS/390
- PR/SM
- RACF
- Resource Link
- Resource Measurement Facility
- RETAIN
- RMF
- S/390
- SAA
- Sysplex
- System/390
- System z9
- System z10
- Virtualization Engine
- VTAM
- z/Architecture
- z/OS
- zSeries
- z/VM
- z/VSE

IBM, the IBM logo, ibm.com and DB2 are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.
Notices

Other company, product, and service names may be trademarks or service marks of others.
Appendix G. Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision, to use software products successfully. The major accessibility features in z/OS enable users to:
- Use assistive technologies such as screen readers and screen magnifier software
- Operate specific or equivalent features using only the keyboard
- Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user interfaces found in z/OS. Consult the assistive technology documentation for specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E Primer, z/OS TSO/E User's Guide and z/OS ISPF User's Guide Vol I for information about accessing TSO/E and ISPF interfaces. These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library Server versions of z/OS books in the Internet library at:
http://www.ibm.com/systems/z/os/zos/bkserv/
Index

Special characters
$SRMBEST 121
$SRMDI00 121
$SRMDInn 121
$SRMDUMP 121
$SRMGOD1-5 121
$SRMGOOD 121
$SRMSnnn 121

Numerics
64-bit address space
 WLM services supporting 15

A
accessibility 959
Address Space Paging Plots 129
administrative application services
definition 15
 installing a service definition 109
summary 15
 using 109
application environment
definition 77
audit information
 SMF type 99 14

C
C interfaces 811
calculation of server weights 97
cap slices 125
CheckSchEnv, C interface 811
classification rules
 querying 116
client
definition 93
command
 syntax diagrams xxxvi
ConnectExportImport, C interface 811
ConnectServer, C interface 811
ConnectWorkMgr, C interface 811
ContinueWorkUnit, C interface 811
CreateWorkUnit, C interface 811

D
DeleteWorkUnit, C interface 811
dependent enclave 36
 using 52
disability 959
DisconnectServer, C interface 811
dispatching priority 124
distributed work
 services 29

DNS C interfaces 813
donors 122
DTD - XML service definition 805

E
enclave
creating 33, 36
delays 33
deleting 53
dependent 36
dependent, using 52
independent 36
independent, using 51
leaving 35
managing work in 51
multisystem 37
performance management of address spaces 48
querying classification information 33, 52
querying enclave status of dispatchable units 53
resource accounting 49
resource use 33
scheduling SRBs 33
using 33
work-dependent 36
work-dependent, using 52
enclave services
definition 6
 summary 7
ENF event code
 for reporting intervals 99
ENF event code 41 99
ENQ SYSZWLM QNAME 114
Enterprise Workload Manager 8
EWLM 8
execution delay monitoring services
definition 4
 single address space transaction manager 22
 summary 5
ExportWorkUnit, C interface 811
extracting a service definition
 example 115
ExtractWorkUnit, C interface 811

I
ImportWorkUnit, C interface 811
independent enclave 36
 using 51
installing a service definition
 example 114
interfaces, C 811
internal service class
 names 121
IWM4AEFD macro 553, 563
IWM4CON
 using 69, 81

© Copyright IBM Corp. 1988, 2009
SMF record Type 99
 examples 131
 plots 126
subsystem work manager
 guidance information 19
 services 3
swap protect time 124
syntax diagrams
 how to read xxxvi
sysplex routing services
 de-registering 95
 definition 11, 93
 example 95
 routing work 94
 server registration 94
 summary 11
 using 93
 workload distribution 96
sysplex routing services, C interfaces 813
system paging delay plot 126

U
 UnDoExportWorkUnit, C interface 811
 UnDoImportWorkUnit, C interface 811

W
 WLM services
 supporting 64-bit address space 15
 work manager services
 definition 3
 single address space work manager 19
 summary 4
 work-dependent enclave 36
 using 52
 workload reporting services
 definition 13
 when to use 99

X
 XML output of IWMDEXTR 805
 XML service definition (DTD) 805
Readers’ Comments — We’d Like to Hear from You

z/OS
MVS Programming: Workload
Management Services
Version 1 Release 11

Publication No. SA22-7619-19

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy, organization, subject matter, or completeness of this book. The comments you send should pertain to only the information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.
Submit your comments using one of these channels:
• Send your comments to the address on the reverse side of this form.
• Send a fax to the following number: FAX (Germany): 07031+16-3456
 FAX (Other Countries): (+49)+7031-16-3456
• Send your comments via e-mail to: s390id@de.ibm.com

If you would like a response from IBM, please fill in the following information:

Name
Address

Company or Organization

Phone No.
E-mail address