
This is a major revision of SA22-7627-20.

This edition applies to Version 1 Release 11 of z/OS (5694-A01) and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this document, or you may address your comments to the following address:

International Business Machines Corporation
MHVRCFS, Mail Station P181
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):
Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrdfs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
• Title and order number of this document
• Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

Figures ... xiii

Tables ... xv

About this document ... xvii
 Who should use this document xvii
 How to use this document .. xvii
 Where to find more information xvii
 Information updates on the web xviii
 The z/OS Basic Skills Information Center xviii

Summary of changes ... xix

Chapter 1. System Operations 1-1
 Starting, Loading, and Initializing the System 1-2
 Starting the System .. 1-2
 Preparing the System Hardware 1-2
 Loading the System Software 1-3
 Logging On to the System 1-6
 Initializing the System Software 1-7
 Starting and Specifying Parameters for the Job Entry Subsystem 1-9
 Controlling the System ... 1-9
 Displaying Current System Status 1-10
 Displaying the Status of Devices and Availability of Paths 1-10
 Sending Commands to Systems in a Sysplex 1-11
 Using Commands That Have Sysplex Scope 1-11
 Sharing System Commands 1-14
 Setting the Time and Changing the System Parameters 1-18
 Using the System Restart Function 1-18
 Responding To IEA502A .. 1-19
 Responding To BLW004A .. 1-20
 Activating a Workload Management Service Policy 1-20
 Switching Workload Management Modes 1-21
 Controlling Time-Sharing ... 1-21
 Controlling Jobs ... 1-22
 Starting a Job .. 1-22
 Stopping a Job .. 1-22
 Cancelling a Job ... 1-22
 Passing Information to a Job 1-22
 Restarting a Job ... 1-22
 Deferred Restart ... 1-23
 Controlling Started Tasks .. 1-24
 Controlling System Information Recording 1-25
 System Management Facilities 1-25
 System Trace .. 1-26
 The Generalized Trace Facility 1-26
 Master Trace .. 1-26
 Component Trace ... 1-27
 Logrec Recording Medium 1-27
 Controlling Automatic Tape Switching 1-27
 Defining Automatically Switchable Devices 1-28
 Displaying Information About Automatically Switchable Devices 1-28
 Interacting with System Functions 1-29

© Copyright IBM Corp. 1988, 2009
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters .</td>
<td>4-373</td>
</tr>
<tr>
<td>Tape Library Dataserver Considerations</td>
<td>4-374</td>
</tr>
<tr>
<td>Tape Multi-volume Considerations</td>
<td>4-375</td>
</tr>
<tr>
<td>PAGEADD Command .</td>
<td>4-376</td>
</tr>
<tr>
<td>Syntax .</td>
<td>4-377</td>
</tr>
<tr>
<td>Parameters .</td>
<td>4-377</td>
</tr>
<tr>
<td>PAGEDEL Command .</td>
<td>4-378</td>
</tr>
<tr>
<td>Syntax .</td>
<td>4-379</td>
</tr>
<tr>
<td>Parameters .</td>
<td>4-379</td>
</tr>
<tr>
<td>QUIESCE Command .</td>
<td>4-381</td>
</tr>
<tr>
<td>Syntax .</td>
<td>4-381</td>
</tr>
<tr>
<td>REPLY Command .</td>
<td>4-382</td>
</tr>
<tr>
<td>Using System Symbols in REPLY Commands</td>
<td>4-382</td>
</tr>
<tr>
<td>Scope in a Sysplex .</td>
<td>4-383</td>
</tr>
<tr>
<td>Syntax .</td>
<td>4-383</td>
</tr>
<tr>
<td>Replying to System Information Requests</td>
<td>4-383</td>
</tr>
<tr>
<td>Replying to System Requests During Recovery Processing</td>
<td>4-384</td>
</tr>
<tr>
<td>Replying to System Security WTORs</td>
<td>4-384</td>
</tr>
<tr>
<td>Setting the Time-of-Day Clock .</td>
<td>4-384</td>
</tr>
<tr>
<td>Specifying Component Trace Options</td>
<td>4-386</td>
</tr>
<tr>
<td>Specifying Dump Options .</td>
<td>4-386</td>
</tr>
<tr>
<td>Specifying SMF Options .</td>
<td>4-387</td>
</tr>
<tr>
<td>Specifying System Parameters .</td>
<td>4-387</td>
</tr>
<tr>
<td>RESET Command .</td>
<td>4-389</td>
</tr>
<tr>
<td>Scope in a Sysplex .</td>
<td>4-389</td>
</tr>
<tr>
<td>Syntax .</td>
<td>4-389</td>
</tr>
<tr>
<td>Forcing a Hung Console Offline</td>
<td>4-389</td>
</tr>
<tr>
<td>Changing Service Classes or Quiescing Work</td>
<td>4-390</td>
</tr>
<tr>
<td>ROUTE Command .</td>
<td>4-395</td>
</tr>
<tr>
<td>Restrictions .</td>
<td>4-395</td>
</tr>
<tr>
<td>How MVS Displays Aggregated Response from ROUTE</td>
<td>4-396</td>
</tr>
<tr>
<td>Using System Symbols in ROUTE Commands</td>
<td>4-397</td>
</tr>
<tr>
<td>Syntax .</td>
<td>4-397</td>
</tr>
<tr>
<td>Parameters .</td>
<td>4-397</td>
</tr>
<tr>
<td>SEND Command .</td>
<td>4-403</td>
</tr>
<tr>
<td>Scope in a Sysplex .</td>
<td>4-403</td>
</tr>
<tr>
<td>Syntax .</td>
<td>4-403</td>
</tr>
<tr>
<td>Communicating with Other Operators</td>
<td>4-403</td>
</tr>
<tr>
<td>Communicating with Specified Users</td>
<td>4-404</td>
</tr>
<tr>
<td>Communicating with All Logged-On Terminal Users</td>
<td>4-405</td>
</tr>
<tr>
<td>Saving Messages in the Broadcast Data Set</td>
<td>4-407</td>
</tr>
<tr>
<td>Listing the Notices Section of the Broadcast Data Set</td>
<td>4-408</td>
</tr>
<tr>
<td>Deleting a Message from the Broadcast Data Set (Notices Section) . .</td>
<td>4-409</td>
</tr>
<tr>
<td>SET Command .</td>
<td>4-410</td>
</tr>
<tr>
<td>Scope in a Sysplex .</td>
<td>4-411</td>
</tr>
<tr>
<td>Syntax .</td>
<td>4-412</td>
</tr>
<tr>
<td>Parameters .</td>
<td>4-412</td>
</tr>
<tr>
<td>SETALLOC command .</td>
<td>4-422</td>
</tr>
<tr>
<td>Syntax .</td>
<td>4-422</td>
</tr>
<tr>
<td>Parameters .</td>
<td>4-423</td>
</tr>
<tr>
<td>SETAPPC Command .</td>
<td>4-433</td>
</tr>
<tr>
<td>Syntax .</td>
<td>4-433</td>
</tr>
<tr>
<td>Parameters .</td>
<td>4-433</td>
</tr>
<tr>
<td>SETCEE Command .</td>
<td>4-439</td>
</tr>
<tr>
<td>Syntax .</td>
<td>4-439</td>
</tr>
<tr>
<td>Parameters .</td>
<td>4-439</td>
</tr>
</tbody>
</table>
Figures

1-1. Format of the LOAD Parameter ... 1-4
1-2. Example of a Successful Response to a DISPLAY AUTOSWITCH Command ... 1-29
1-3. Boxed Device Recovery Procedure ... 1-34
1-4. Data structure of a basic sampling entry 1-47
1-5. Data structure of a guest program parameter under a TCB 1-49
1-6. Data structure of a guest program parameter under an SRB 1-49
1-7. Data structure of a diagnostic sampling entry 1-50
1-8. DASD Devices Shared Between Two Systems 1-59
1-9. DASD Device Shared Between Three Systems 1-68
3-1. Comparison of the Display Screens of Full-Capability and Output-Only Display Consoles ... 3-5
3-2. Example of DISPLAY CONSOLES,BACKLOG Command Output 3-18
3-3. Example of DISPLAY CONSOLES,ROUT=5 Command Output 3-24
3-4. Format of a Console Screen in Message Stream Mode 3-36
4-1. One System Command Format ... 4-15
4-2. A Second System Command Format .. 4-16
4-3. Display Output Illustration (Column Descriptions) 4-175
4-4. Display Output from D A,WTOR (Membername) 4-175
4-5. Display Output for D A,WTOR (Membername and Identifier) 4-175
4-6. Display Output for D A,WTOR (Membername and JOBNAME) 4-175
4-7. Display Output from D A,SYM1 .. 4-175
4-8. Display Output from D A,SYMTTEST .. 4-176
4-9. Display Output from D A,SYMBOLS .. 4-176
Tables

1-1. Possible Values IMSI Characters 1-5
1-2. MVS System Commands With Sysplex Scope 1-12
1-3. Correcting Boxed Conditions 1-35
1-4. Interpreting the information in a .MAP file from hardware data collection 1-45
3-1. IBM Defaults for PFKs 3-9
3-2. Checking the Commands Defined for Each PFK 3-10
3-3. Comparison of System Commands and CONSOLE Parameters in CONSOLxx 3-20
3-4. Comparison of System Commands and INIT Statements in CONSOLxx 3-21
3-5. Comparison of VARY HARDCOPY Commands and HARDCOPY Statements in CONSOLxx 3-22
3-6. Command Groups Used to Determine Command Authority .. 3-25
3-7. MVS Commands, RACF Access Authorities, and Resource Names 3-27
3-8. Message Routing Codes 3-38
4-1. System Command Summary 4-2
4-2. Syntax conventions 4-14
4-3. Specifying FORCE with EMIF 4-19
4-4. CANCEL Command Tasks 4-21
4-5. Summary of the CHNGDUMP Command 4-27
4-6. Example of How CHNGDUMP Commands Affect Dump Modes and Options 4-35
4-7. Summary of the CONFIG Command 4-48
4-8. Summary of the CONTROL Command 4-58
4-9. Sysplex Scope for CONTROL Command 4-59
4-10. Summary of the DISPLAY Command 4-101
4-11. Sysplex Scope for DISPLAY Command 4-103
4-12. Displaying System Activity: Information for the LIST Operand 4-168
4-13. Displaying System Activity: Information for the ALL Operand 4-168
4-14. Displaying System Activity: Information for a Specific Name 4-170
4-15. Examples of START Commands to Start Jobs 4-171
4-16. Examples of DISPLAY Commands 4-172
4-17. Summary of the DUMPDS Command 4-301
4-18. FORCE Command Tasks 4-311
4-19. Summary of the MODE Command 4-324
4-20. MODE Parameters Allowed for Machine Check Interruptions 4-325
4-21. Summary of the MODIFY Command 4-330
4-22. Examples of START Commands to Start Jobs 4-332
4-23. Examples of MODIFY Commands 4-333
4-24. Possible Volume and Device Combinations on MOUNT Command 4-374
4-25. Summary of the REPLY Command 4-382
4-26. Summary of the RESET Command 4-389
4-27. Summary of the SEND Command 4-403
4-28. Sysplex Scope for SET Command 4-411
4-29. Syntax for the SET command 4-412
4-30. Summary of the SETLOGR Command 4-463
4-31. Sysplex Scope for the SETLOGR Command 4-463
4-32. SETLOGR FORCE Command 4-464
4-33. 1–Character Parameter Limit Multipliers 4-474
4-34. Acceptable Parameter Statements and Their Applicability 4-482
4-35. Summary of the SETRRS Command 4-501
4-36. Comparison of SET SMS with SETSMS 4-507
4-37. Incorrect Combinations of SETSMS Parameters 4-508
4-38. Summary of the SETXCF Command 4-536
4-39. Sysplex Scope for the SETXCF Command 4-536
4-40. Summary of the SLIP Command 4-561
4-41. Summary of the SLIP Set parameters 4-570
About this document

This document describes how to use MVS™ system operator commands for the z/OS (5694-A01) operating systems. Although you can also perform many of the tasks described in this book using JES2 or JES3 commands, this book describes only the MVS (base control program) system commands. For information about commands for other z/OS elements, such as communications server (IP and SNA), DFSMS™, JES2, JES3, and RACF®, see [z/OS Information Roadmap](#). For information about commands for other software products that run on z/OS, see [z/OS Software Products Collection](#).

Who should use this document

This document is intended for anyone using a console and system commands to control the operating system. This document assumes that the user understands the hardware controls and features of the installation. It also assumes that the user understands the general organization and functions of a z/OS operating system.

How to use this document

To describe the basic tasks within these general tasks and to provide a convenient system commands reference, this document is organized as follows:

- **Chapter 1, “System Operations,” on page 1-1** describes the tasks of running the system from the time the system comes up to the time the system goes down for a normal or abnormal reason.

- **Chapter 2, “System Reconfiguration,” on page 2-1** describes the reconfiguration actions of hardware units and partitions. The chapter shows how to physically or logically reconfigure the hardware units of a system; and for a partitionable processor complex, how to partition the complex into two sides or merge the two sides together.

- **Chapter 3, “System Console Operations,” on page 3-1** describes the consoles that MVS supports as operators’ consoles. "Console Characteristics and Operations” on page 3-1 describes the operations and characteristics that you cannot define, including the operations that are common on all operator’s consoles. "Defining and Changing Console Characteristics” on page 3-20 describes the console characteristics that you can define, including the commands that operators and system programmers can use to tailor the consoles and console operations to the installation’s requirements. "Defining and Changing Console Characteristics” on page 3-20 also describes how to restrict the use of system commands based on which operator issues the command and/or which MCS or SMCS console the operator uses.

- **Chapter 4, “MVS System Commands Reference,” on page 4-1** summarizes the function, syntax, and parameters of all the MVS system commands that you can use to control both the system and the MCS and SMCS consoles.

Where to find more information

Where necessary, this document references information in other documents, using shortened versions of the document title. For complete titles and order numbers of the documents for all products that are part of z/OS, see [z/OS Information Roadmap](#).
Information updates on the web

For the latest information updates that have been provided in PTF cover letters and Documentation APARs for z/OS®, see the online document at:

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ZDOCAPAR

This document is updated weekly and lists documentation changes before they are incorporated into z/OS publications.

The z/OS Basic Skills Information Center

The z/OS Basic Skills Information Center is a Web-based information resource intended to help users learn the basic concepts of z/OS, the operating system that runs most of the IBM mainframe computers in use today. The Information Center is designed to introduce a new generation of Information Technology professionals to basic concepts and help them prepare for a career as a z/OS professional, such as a z/OS system programmer.

Specifically, the z/OS Basic Skills Information Center is intended to achieve the following objectives:

• Provide basic education and information about z/OS without charge
• Shorten the time it takes for people to become productive on the mainframe
• Make it easier for new people to learn z/OS.

To access the z/OS Basic Skills Information Center, open your Web browser to the following Web site, which is available to all users (no login required):

http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp
Summary of changes

Summary of Changes
for SA22-7627-21
z/OS Version 1 Release 11

This document contains information previously presented in z/OS MVS System Commands, SA22-7627-20, which supports z/OS Version 1 Release 10.

New information:

- **SETXCF FUNCTIONS command** is supported to enable or disable optional functions provided by the XCF and XES components of z/OS. See "SETXCF FUNCTIONS Command" on page 4-543.
- **CHNGDUMP command** supports new parameters: SDUMP,AUXMGMT and SDUMP,MAXSNDSP. See "CHNGDUMP Command" on page 4-27.
- **MODIFY command** supports a COND=FORCE new parameter to determine whether the current sysplex root file system is failing or unowned. See "Replacing the sysplex root file system in the shared file system configuration (z/OS UNIX)" on page 4-363.
- **DISPLAY ALLOC,GRPLOCKS command** is supported to display information about the current Device Allocation group locks that are being held. See "Displaying MVS Device Allocation Group Locks Information" on page 4-105.
- **DISPLAY ALLOC,OPTIONS command** is supported to display the current MVS Device Allocation settings that are in use or the system defaults. See "Displaying MVS Device Allocation Settings Information" on page 4-106.
- **DISPLAY GRS, ANALYZE, LATCH displays information about GRS latch contention.** See "Displaying Global Resource Serialization Information" on page 4-136.
- **DISPLAY IKJTSO command** supports a new parameter LOGON. See "Displaying TSO/E Parmlib Information" on page 4-154.
- **SETALLOC command** is supported to dynamically modify Device Allocation settings. See "SETALLOC command" on page 4-422.
- **SETHS command** supports a new RESUMEIO parameter to resume normal I/O activity to all DASD devices. See "SETHS Command" on page 4-450.
- **MODIFY AXR command** supports a new REXXLIB parameter to indicate that information about data sets in the REXXLIB concatenation is to be returned to the invoker. See "Communicating with System REXX" on page 4-336.
- **New examples are demonstrated in the Communicating with System REXX™ section.** See "Communicating with System REXX" on page 4-336.
- **MODIFY CEA,CEA= command** is supported to redrive the CEAPRMxx parmlib member for various parameter changes and corrections without taking down CEA. See "Processing the common event adapter (CEA) parameters" on page 4-345.
- **MODIFY CEA,DIAG,COMPTABLE command** is supported to refresh the CEA component table as part of correcting an internal problem. See "Refreshing the common event adapter (CEA) component information" on page 4-345.
- **MODIFY CEA,DIAG,REXXDEBUG= command** is supported to manage CEA REXX exec tracing. See "Managing common event adapter (CEA) REXX exec tracing" on page 4-346.
• F CEA, DROP IPCS command is supported to forcibly disconnect the CEA instrumentation from the IPCS sysplex dump directory data set. See “Disconnecting the common event adapter (CEA) from the IPCS sysplex dump directory data set” on page 4-348.

• SETXCF FORCE command supports a new parameter PNDSTR. See “SETXCF FORCE Command” on page 4-540.

Changed information:

• Descriptions of the OPNOTIFY and INTERVAL parameters in the SETXCF COUPLE command have been updated. See “SETXCF COUPLE Command” on page 4-536.

• The default value of the DISPLAY MSGFLD command is changed to STATUS. See “Displaying Message Flood Automation Information” on page 4-189.

• Description of the [’arg1arg2...argn’][’arg1 arg2 ...argn’] parameter in the MODIFY AXR command has been updated. See “Communicating with System REXX” on page 4-336.

• Descriptions of the MSGFLD parameter in the SET command have been updated. See “SET Command” on page 4-410.

• References information about modify dfs and modify zfs commands has been updated. See “MODIFY Command” on page 4-330.

• Multiple updates to the “Replacing the sysplex root file system in the shared file system configuration (z/OS UNIX)” on page 4-363. The MODIFY OMVS command is used to dynamically replace the sysplex root file system.

• Note information is added to indicate that the SETMF command is used to alter the message flood automation parameters or actions. See “SETMF Command” on page 4-470.

Moved information: The table Table 3-7 on page 3-27 is moved into the book from z/OS MVS Planning: Operations.

Deleted information: The Message Flood Automation SETMF FREE command is removed because the function is no longer necessary.

You may notice changes in the style and structure of some content in this document—for example, headings that use uppercase for the first letter of initial words only, and procedures that have a different look and format. The changes are ongoing improvements to the consistency and retrievability of information in our documents.

This document contains terminology, maintenance, and editorial changes. Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

Summary of Changes for SA22-7627-20
z/OS Version 1 Release 10
as updated April 2009

This document contains information previously presented in z/OS MVS System Commands, SA22-7627-19, which supports z/OS Version 1 Release 10.

New information:

• DEVSERV QLIB command supports a new parameter CATS. See “DEVSERV Command” on page 4-81.
• DEVSERV QDASD command supports a new parameter ATTRIBUTE. See "DEVSERV Command" on page 4-81.
• START HWISTART command restarts the base control program internal interface (BCPi) address space. See "START Command" on page 4-630.
• New notes and examples are added to the Range=(start, end) parameter in the SLIP command. See "SLIP Command" on page 4-561.
• The "SETXCF FUNCTIONS Command" section is added in the SETXCF command. See "SETXCF Command" on page 4-536.
• New description under the "DSNAME=LIBRARY=" keyword is added in the "Updating the APF List" section. See "SETPROG Command" on page 4-487.
• More explanations for the SDUMP, Q=Yes or NO keyword are added in the CHNGDUMP command. See "CHNGDUMP Command" on page 4-27.

Changed information:
• The SETIOS command contains the updated note paragraph in the EKM,PRIMARY= and EKM,SECONDARY= and STORAGE,IOSBLKS= parameters. See "SETIOS Command" on page 4-451.
• The START command contains the updated Sub=subsystemname descriptions. See "START Command" on page 4-630.
• The MODIFY command contains the updated value of the MLA keyword. See "MODIFY Command" on page 4-330.
• The SETPROG command contains the updated descriptions of the LNKLST keyword. See "SETPROG Command" on page 4-487.
• The SLIP command contains the updated descriptions of the STDATA keyword. See "SETPROG Command" on page 4-487.
• Changed "devicetype" to "deviceclass" in the Displaying Device Status and Allocation section in the DISPLAY command. See "DISPLAY Command" on page 4-101.
• The TRACE command contains the updated descriptions of the BUFSIZ keyword. See "TRACE Command" on page 4-658.
• The SETSMS command contains the updated descriptions of the BMFTIME(NNNNN) keyword. See "SETSMS Command" on page 4-506.
• The DISPLAY command contains the updated descriptions of the Storage or STOR keyword. See "DISPLAY Command" on page 4-101.
• The CONTROL command contains the updated "Deleting Message Queues" section. See "CONTROL Command" on page 4-58.
• The VARY command contains the updated "Command Syntax" section of the VARY WLM keyword. See "VARY Command" on page 4-670.
• Changed "FCX" to "zHPF" in CONFIG, DISPLAY, and SETIOS commands. See "CONFIG Command" on page 4-48, "DISPLAY Command" on page 4-101, and "SETPROG Command" on page 4-451.

This document contains terminology, maintenance, and editorial changes, including changes to improve consistency and retrievability.

Summary of Changes
for SA22-7627-19
z/OS Version 1 Release 10
as updated October 2008

This document contains information previously presented in z/OS MVS System Commands, SA22-7627-18, which supports z/OS Version 1 Release 10.
New information:

- New hardware instrumentation services (HIS) function is now supported by System z10™ and later machines. For more information about the HIS function, see "Setting up hardware event data collection" on page 1-39 and "Accessing the output from a hardware event data collection run" on page 1-41.
- DISPLAY HIS command displays the hardware event data collection status for the hardware instrumentation services (HIS). See "Displaying hardware event data collection status" on page 4-151.
- MODIFY hisproc, parameters command starts, configures, and stops the event data collection. See "Start, configure, and stop hardware event data collection" on page 4-352.
- START hisproc command starts the hardware instrumentation services (HIS). See "Starting Hardware Instrumentation Services (HIS)" on page 4-639.
- STOP hisproc command stops the hardware instrumentation services (HIS). See "Stopping the Hardware Instrumentation Services (HIS)" on page 4-650.

This document contains terminology, maintenance, and editorial changes, including changes to improve consistency and retrievability.

Summary of Changes
for SA22-7627-18
z/OS Version 1 Release 10

This document contains information previously presented in z/OS MVS System Commands, SA22-7627-17, which supports z/OS Version 1 Release 9.

New information:
- CMDSD DUMP command schedules a dump for the master and console address space. See "CMDS Command" on page 4-46.
- DEVSERV QPAVS command supports a new option HPAV. See "DEVSERV Command" on page 4-81.
- DISPLAY CONSOLES,SHAREDMODE command displays the status of all MCS, SMCS and subsystem consoles that are available in shared mode. See "Displaying Console Status Information" on page 4-119.
- DISPLAY IOS,RECOVERY command displays the current IOS recovery options. See "Displaying IOS Recovery Options" on page 4-164.
- DISPLAY OPDATA,MODE command displays the status of migration. See "Displaying Operator Information (OPDATA)" on page 4-209.
- DISPLAY PROG,REFRPROT command displays the status of the REFRPROT option. See "Displaying the status of the REFRPROT option" on page 4-221.
- DISPLAY SMS,CFLS command supports two new options: ALL or lockstructurename. See "Displaying Storage Management Subsystem Information" on page 4-234.
- DISPLAY SMS,{PDSE | PDSE1},HSPSTATS command displays PDSE cache information. See "Displaying Storage Management Subsystem Information" on page 4-234.
- DISPLAY U,[TAPE],UNAVAILABLE,[devno] command displays the unavailable devices. See "Displaying Device Status and Allocation" on page 4-260.
- MODIFY OMVS,NEWROOT= command replaces the sysplex root file system in the shared file system configuration. See "Replacing the sysplex root file system in the shared file system configuration (z/OS UNIX)" on page 4-363.
• MOUNT command displays information about tape multi-volume considerations. See "Tape Multi-volume Considerations" on page 4-375.

• SETIOS RECOVERY command sets the IOS recovery options. See "SETIOS Command" on page 4-451.

• SETCON MODE command dynamically migrates from the shared mode and distributed mode of console service. See "SETCON Command" on page 4-501.

• SETRRS ARCHIVELOGGING command allows to disable and enable RRS archive logging on a given system. See "SETRRS ARCHIVELOGGING Command" on page 4-441.

• VARY devspec,AVALIABLE|UNAVAILABLE command marks the specified device as available or unavailable for allocation. See "Allowing or Preventing Allocation from using an Offline Tape Device" on page 4-693.

• VARY SMS,CFLS(lockstructurename),QUIESE|ENABLE command allows to quiesce or enable usage of a VSAM RLS secondary lock structures. See "Changing the state of coupling facility cache structures and volumes" on page 4-698.

• VARY XCF command supports two new options: REIPL and SADMP. See "Removing a System from the XCF Sysplex" on page 4-721.

Changed information:

• The IBM default definition for PFKs is added back to the document. See Table 3-1 on page 3-9.

• DEVSERV QPAVS command supports 5-digit device numbers. See "DEVSERV Command" on page 4-81.

• The response to the DISPLAY CONSOLES command is changed. See "Displaying Console Status Information" on page 4-119.

• The responses to the DISPLAY OMVS,FILE and DISPLAY OMVS,P command contain changed information. See "Displaying z/OS UNIX System Services Status" on page 4-192.

• DISPLAY SMS,SMSVSAM[,ALL] command is updated to display status of the SMSVSAM address space or spaces and all known VSAM RLS lock structures. See "Displaying Storage Management Subsystem Information" on page 4-234.

• If possible, use PAGEDEL REPLACE option instead of the DELETE option. See "PAGEDEL Command" on page 4-378.

• The mm keyword is optional on the SET TIMEZONE command. See "SET Command" on page 4-410.

• SETXCF START,REALLOCATE contains updates in support of APAR OA22668. See "SETXCF START Command" on page 4-546.

• The existing VARY SMS,SMSVSAM,FORCEDELETELOCKSTRUCTURE command is updated to VARY SMS,SMSVSAM,FORCEDELETELOCKSTRUCTURE(lockstructurename). The updated command allows disconnection of a specific lock table or all lock tables known to VSAM RLS. See "Changing the state of coupling facility cache structures and volumes" on page 4-698.

Deleted information: The following commands are not supported and the corresponding topics are removed.

• CONTROL D,H
• CONTROL D,U
• CONTROL T
• DISPLAY CONSOLES,HCONONLY
“Steps to Remove RRS from XCF” has been moved from the SETRRS ARCHIVELOGGING Command on page 4-501 to z/OS MVS Programming: Resource Recovery.

This document contains terminology, maintenance, and editorial changes, including changes to improve consistency and retrievability.

Summary of changes for SA22-7627-17
z/OS Version 1 Release 9
as updated April 2008

This document contains information previously presented in z/OS MVS System Commands, SA22-7627-16, which supports z/OS Version 1 Release 9.

New information:

- **DISPLAY M=ESTOR**
- **MODE VS**
- **MSGRT**
- **STOPTR**
- **SWITCH CN**
- **TRACK**

New information:

- Devserv QLIB command displays the distributed library names too when a composite library is specified. See “Using the DEVSEVR QLIB option” on page 4-82.
- DEVSEVR QPAVS command supports a new parameter HPAV. See “DEVSEVR Command” on page 4-81.
- Display HS, CONFIG, EXCEPTION command displays the exception reason followed by a list of devices. See “Displaying Basic HyperSwap Information” on page 4-152.
- Display SMS, SMSVSAM, DIAG(CONTENTION) command displays the status of latch contention related to SMSVSAM. See “Displaying Storage Management Subsystem Information” on page 4-234.
- “MODE Command” on page 4-324 allows for the following new types of machine check interruption: SS, IC, CO, and CS.
- SETIOS EKM command supports IPv6 in-band encryption management. See “SETIOS Command” on page 4-451.
- SETOMVS AUTOCVT=ON/OFF command provides a dynamic way of changing the value of the AUTOCVT statement in the BPXPRMxx parmlib member. See “SETOMVS Command” on page 4-473.
- SETPROG EXIT,ADD command is updated with a condition that jobname= may not be effective. See “Updating Dynamic Exits” on page 4-489.
- SETPROG LNKLST command allows for new data sets on the NOCHECK, ATTOP, and AFTER= options. See “Updating LNKLST Concatenations” on page 4-493.
- Vary SMS, PDSE/PDSE1, MONITOR command has new parameters DISPLAY and DUMPNEXT. See “Modifying processing of PDSE monitor” on page 4-702.
- The “Summary of SLIP SET parameters” table contains two new parameters STOPGTF and MSGID. See “Types of SLIP SET Parameters” on page 4-570.
- A new section “Tape Multi-volume Considerations” on page 4-375 is added to “MOUNT Command” on page 4-373.
• A new example is added to illustrate how to delete a device-specific MIH time interval setting. See “SETIOS Command” on page 4-451.

Changed information:

• CHNGDUMP SET command contains changed information about the SDUMP,BUFFERS= keyword. See “Setting the Dump Modes and Options” on page 4-37.

• DISPLAY UNI command contains changed information about the ENVIRONMENT and STORAGE parameters. See “Displaying Unicode Services” on page 4-263.

• “SETUNI Command” on page 4-525 contains changed information about multiple parameters.

• The options supported by the SETHS command are ENABLE, DISABLE, and SWAP. See “SETHS Command” on page 4-450.

• VARY HARDCPY command contains changed information about the UNCOND keyword. See “Controlling Hardcopy Processing” on page 4-683.

This document contains terminology, maintenance, and editorial changes, including changes to improve consistency and retrievability.

Summary of changes

for SA22-7627-16

z/OS Version 1 Release 9

This document contains information previously presented in z/OS MVS System Commands, SA22-7627-15, which supports z/OS Version 1 Release 8.

New information:

• DISPLAY HS command displays information about the HyperSwap™ function and the status of device pairs in the PPRC configuration. See “Displaying Basic HyperSwap Information” on page 4-152.

• DISPLAY LOGGER,STATUS,RECALLS command displays the outstanding data set recalls, together with the status of the system logger. See “Displaying the System Logger and its Log Streams” on page 4-178.

• DISPLAY WLM,AM,ALL command displays a list of address spaces that are registered with ARM, together with the registered applications and the started application instances. See “Displaying Workload Manager Information” on page 4-266.

• MODIFY AXR command allows the operator to communicate with System REXX, either by obtaining status or by initiating the execution of a REXX exec. See “Communicating with System REXX” on page 4-336.

• MODIFY CEA,DISPLAY command displays information about the Common Event Adapter (CEA) address space. See “Displaying the common event adapter (CEA) environment” on page 4-346.

• MODIFY CEA,MODE command is used to adjust the mode of operation for Common Event Adapter (CEA). See “Adjusting the common event adapter (CEA) mode of operation” on page 4-348.

• SEND ..., CN=INTERNAL command allows to send a message to consoles defined with the INTIDS=Y attribute. See “Communicating with Other Operators” on page 4-403.

• SETHS command manages the HyperSwap function. See “SETHS Command” on page 4-450.
• SETLOGR FORCE,NORECALL,DSN= command stops the system logger from waiting on an outstanding asynchronous recall request for the named data set. See "SETLOGR Command" on page 4-463.

• SETPROG REFRRPROT,NOREFRPROT enables or disables protection of REFRR program. See "SETPROG Command" on page 4-487.

• SETXCF START,MAINTMODE,CFNAME= command places the specified coupling facility or facilities in maintenance mode. See "SETXCF START Command" on page 4-546.

• SETXCF STOP,MAINTMODE,CFNAME= command removes the specified coupling facility or facilities from maintenance mode. See "SETXCF STOP Command" on page 4-555.

• "Setting a SLIP Trap" on page 4-568 contains a new option STDATA on the ACTION=STRACE parameter. This new option allows to specify a list of direct or indirect address pairs.

• "Starting the Common Event Adapter Address Space" on page 4-636 contains new information about the CEA address space.

• START membername,REUSASID=YES command specifies that a reusable ASID is assigned to the started address space, when REUSASID(YES) is specified in the DIAGxx parmlib member. See "Starting a System Task from a Console" on page 4-631.

• START LLA,REUSASID=YES specifies that a reusable ASID should be assigned to the LLA address space. See "Starting the Library Lookaside (LLA) Address Space" on page 4-640.

• START VLF|DLF,REUSASID=YES specifies that a reusable ASID should be assigned to the VLF or DLF address space. See "Starting the Virtual Lookaside Facility or Data Lookaside Facility" on page 4-644.

• TRACE ST,BUFSIZE command allows to specify the total storage for all system trace buffers. See "TRACE Command" on page 4-658.

Changed information:
• DISPLAY IPLINFO command displays the license value as specified in the IEASYSxx parmlib. See "Displaying IPL Information" on page 4-165.

• MODIFY BPXOINIT,RECOVER=LATCHES command contains the following changed information:
 – It can be used to terminate a system task that holds latches, if the task is not critical.
 – The system issues message BPXM067I or BPXM057I, depending on whether the contention can be resolved.

 See "Controlling z/OS UNIX System Services (z/OS UNIX)" on page 4-338.

• SLIP SET command contains the following changed information:
 – When using the SYSLIST parameter to request dumps of remote systems within a sysplex, you can specify direct or indirect addresses in place of system names.
 – SLIP SET,MSGID= command does not cause the SLIP action processor to get control, if branch entry WTOs are issued when the FRRs do not use the normal stack.

 See "Setting a SLIP Trap" on page 4-568.

• SWITCH SMF command contains changed information about using log streams recording. See "SWITCH Command" on page 4-657.

• TRACE ST command contains the following changed information:
More central storage can be set aside for system trace buffer for each processor.

The specification of branch tracing and mode tracing is separated. See "TRACE Command" on page 4-658.

Deleted information:

- SET SMS=xx command does not support subparameters, such as AKP, LOG_OF_LOGS, and so on. These subparameters and their descriptions are removed. See "SET Command" on page 4-410.

This document contains terminology, maintenance, and editorial changes, including changes to improve consistency and retrievability.
Chapter 1. System Operations

The tasks of starting, running, and stopping the MVS operating system involve controlling the MVS system software and most of the installation’s hardware, including processors, channel paths, and I/O devices. This book is for people who need reference information about these tasks and the MVS system commands. They include:

- Those who develop procedures for the daily operations, including system programmers and lead operators
- Operators who want to learn how to use a console to control MVS and how to change some of the console’s characteristics

System planners and system programmers should refer to the z/OS MVS Planning: Operations for information on planning:
- System and sysplex operation management
- MCS consoles
- SMCS consoles
- Extended MCS consoles

This chapter describes how to operate an MVS system using MVS system commands. Subsystem (JES2 or JES3) commands can perform many of the same functions as MVS system commands but are described in z/OS JES2 Commands and z/OS JES3 Commands.

The tasks of operating the MVS system that are described in this chapter include:
- “Starting, Loading, and Initializing the System” on page 1-2
- “Controlling the System” on page 1-9
- “Controlling Time-Sharing” on page 1-21
- “Controlling Jobs” on page 1-22
- “Controlling Started Tasks” on page 1-24
- “Controlling System Information Recording” on page 1-25
- “Controlling Automatic Tape Switching” on page 1-27
- “Interacting with System Functions” on page 1-29
- “Command Flooding” on page 1-35
- “Setting up hardware event data collection” on page 1-39
- “Accessing the output from a hardware event data collection run” on page 1-41
- “Responding to Failing Devices” on page 1-50
- “Quiescing the System” on page 1-51
- “Stopping the System” on page 1-51
- “Recovery from Hardware Problems” on page 1-51

Controlling MVS involves issuing commands on a console and responding to messages that appear on the console screen. Other books that describe controlling MVS include:
- z/OS MVS JCL Reference, which documents two job control language statements (the COMMAND statement and the JCL command statement) that you can use to enter system commands through the input job stream.
- z/OS MVS Planning: Operations, which contains information about using MCS and extended MCS consoles as well as MVS message and command processing.
- z/OS MVS Planning: Global Resource Serialization, which contains information about controlling a global resource serialization (GRS) ring.
Starting, Loading, and Initializing the System

Before the system can do work, you must:
1. Start the system.
2. Prepare the system hardware.
3. Load the system software.
4. Initialize the system software. At this point, your installation might require you to logon to the console. See “Logging On to the System” on page 1-6.
5. Set the time and date, as required.
6. Start the job entry subsystem (JES2 or JES3).
7. Specify all job entry subsystem parameters.

The following sections describe in detail how to start, load, and initialize the system.

Starting the System

Your installation may choose to use the system console as the only console required to initialize the system. This console is connected to the processor controller. From here, you load the system software and specify the load parameter. Then you use this console to initialize the system. The initialization programs may require initial values, specify an alternate master catalog, and, perhaps, set the time and date.

If your installation uses MCS consoles, then you may use two separate consoles to initialize the system. The first device is the system console, which is connected to the processor controller. From this console, you load the system software and specify the LOAD parameter. Later, during normal operations, this console is used to monitor and service the hardware.

The second device is called the NIP (nucleus initialization program) console. In HCD, you can specify a list of device numbers to use as NIP consoles. The initialization programs use the first online and ready device in the list. NIP consoles must be devices that are locally connected to the system using control units that do not support systems network architecture (SNA) protocols. This means that SMCS consoles cannot be used as NIP consoles. If that device is also specified on a CONSOLE statement in CONSOLxx, it is initialized as an MCS console and appears to “change” to an MCS console when console initialization is complete. If no NIP consoles are defined, or no NIP consoles are online when MVS is loaded, MVS tries to use the system console during initialization.

Preparing the System Hardware

To prepare the system hardware for work:
1. Turn on power for the processor.
2. Perform the initial microprogram load (IML) function for the processor.
3. Specify the central storage configuration.
4. Ensure that all volumes required by the system are online.
5. Turn on power for all devices you plan to use as multiple-console support (MCS) consoles.
6. Switch into the configuration all control units for devices that the system needs.

For more information on these procedures, see the processor operator’s guide or your installation’s operations procedures.
Once the system hardware is ready, you can use the hardware management console (HMC) to load the system software. Consider the following information for loading system software through the HMC:

1. This task is available in Operator, Advanced Operator, System Programmer, or Service Representative mode.
2. Other products and documentation may refer to this operation as an initial program load (IPL).
3. For daily or routine loading of images, you can customize activation profiles to specify how you want to load images, then use a profile with the Activate task to perform all the operations necessary to make an image operational, including loading it with a control program.

Load (except for a coupling facility image) causes a program to be read from a designated device and initiates the execution of that program. If the CPC is operating in logically partitioned (LPAR) mode, the logical partition is the target of the load. Otherwise, if the CPC is operating in basic mode, the CPC is the target of the load.

To perform a load, do the following:

1. Open the Task List from the Views area.
2. Open CPC Recovery from the Task List Work Area.
3. Open Groups from the Views area.
4. Open the group that contains the CPC image that you want to load.
5. Select one object.
 Load is considered a disruptive task. If the object is locked, you must unlock it before continuing.
6. Drag and drop the selected object on Load in the CPC Recovery tasks area. The Load window is displayed with the information that was last used when the CPC image was loaded.
7. Review the information on the window to verify that the object you will load is the correct one. If the information is correct, select the OK push button. The Load Task Confirmation window is displayed.
8. Review the information on the window to verify that the object you will load is the correct one. If the information is correct, select the Yes push button. The Load Progress window displays indicating the progress of the load and the outcome.
9. Select the OK push button to close the window when the load completes successfully. Otherwise, if the load does not complete successfully, follow the directions on the window to determine the problem and how to correct it.

Use the online Help to get additional information for loading a CPC image.

Once the system hardware is ready, you can use the system console to load the system software. Load the system as follows, using the following fields on the system control (SYSCTL) frame. (This example uses the IBM® 3090™ for illustration.)

1. **T=TARGET CP**: Specifies the target processor for initialization.
2. **A=INITIALIZE SYSTEM CONTROL PROGRAM, A1**: Specifies the device number that contains the system residence volume (IPL volume).
3. **A=INITIALIZE SYSTEM CONTROL PROGRAM, A2:** Specifies the LOAD parameter. For more information, see "Explanation of the A=INITIALIZE SYSTEM CONTROL PROGRAM, A2 Field."

4. **A=INITIALIZE SYSTEM CONTROL PROGRAM, A3:** Specifies the operator load function to IPL the MVS operating system. For more information, see "Explanation of the A=INITIALIZE SYSTEM CONTROL PROGRAM, A3 Field" on page 1-6.

Explanation of the A=INITIALIZE SYSTEM CONTROL PROGRAM, A2 Field

This field specifies the LOAD parameter. The format of the LOAD parameter is:

```
   IODF DASD  LOADxx  PROMPT FEAT.  ALT NUCx
```

- **IODF device number:** The first four characters (characters 1 through 4 of the LOAD parameter) specify the hexadecimal device number for the device that contains the I/O definition file (IODF) VSAM data set. This is also the device on which the search for the LOADxx member of SYSn.IPLPARM or SYS1.PARMLIB begins. The device number can be in the range X'0000' to X'FFFF'. If the number is less than 4 digits, specify leading zeros before the device number. If you do not specify the device number, the system uses the device number of the system residence (SYSRES) volume.

- **LOADxx suffix:** The next two characters (characters 5 and 6 of the LOAD parameter) specify the suffix of the LOADxx parmlib member that the system is to use. The LOADxx member contains information about the name of the IODF data set, which master catalog to use, and which IEASYSxx members of SYS1.PARMLIB to use.

 - **prompt feature:** The default for the LOADxx suffix is zeros. The system reads the LOADxx and NUCLSTxx members from SYSn.IPLPARM or SYS1.PARMLIB on the volume specified on the LOAD parameter (or the SYSRES volume, if a volume is not specified). Once the system opens the master catalog, the system reads all other members from the SYS1.PARMLIB data set that is pointed to by the master catalog. This SYS1.PARMLIB might be different from the SYS1.PARMLIB data set to which the LOAD parameter points.

 - **nucleus suffix:** For more information about LOADxx, see the description of LOADxx in *MVS Initialization and Tuning Reference*.

- **prompt feature:** The next character (character 7 of the LOAD parameter) specifies the prompting and message suppression characteristics that the system is to use at IPL. This character is commonly known as an initialization message suppression indicator (IMSI).

Suppressing Informational Messages: Some IMSI characters suppress informational messages from the system console, which can speed up the initialization process and reduce message traffic to the console. It can also cause you to miss some critical messages, so you should always review the hardcopy log after initialization is complete.
When the system suppresses informational messages, it displays the following messages:

- Messages with descriptor codes 1, 2, 3, 11, or 12
- Write-to-operator with reply (WTOR) messages
- Command responses
- Synchronous messages that can indicate problems during initialization.

It does not display the contents of a parmlib member, even if the L option has been specified.

Prompting for Operator Responses: You can specify an IMSI character that tells the system to issue a MASTER CATALOG prompt, a SYSTEM PARAMETERS prompt, both, or none:

- If the system issues a MASTER CATALOG prompt, the operator response overrides the values that are specified on the SYSCAT parameter in the LOADxx parmlib member.
- If the system issues a SYSTEM PARAMETERS prompt, the operator response overrides the values that are specified on the SYSPARM parameter in LOADxx. Also, if LOADxx specifies the IEASYMxx parameter which in turn specifies a SYSPARM parameter for IEASYSxx, then the operator response also overrides the values that the SYSPARM parameter in IEASYMxx specifies.
- If the system *does not* prompt the operator, the system uses the values specified in LOADxx. If the SYSCAT and SYSPARM statements are not specified in LOADxx, the system issues one or both prompts to obtain the missing information.

Prompting for the Name of the Master Catalog: If you choose an IMSI character that tells the system not to prompt for the master catalog name, the system uses the name specified on the SYSCAT parameter in the LOADxx parmlib member.

The default for the system parameter prompt is to use IEASYS00 in SYS1.PARMLIB, and the default for the master catalog prompt is to use SYSCATLG in SYS1.NUCLEUS.

The following table shows the possible values for the IMSI character. The default value is *period (.)*.

<table>
<thead>
<tr>
<th>IMSI Character</th>
<th>Display Informational Messages</th>
<th>Prompt for Master Catalog Response</th>
<th>Prompt for System Parameters Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>period (.) or blank</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>A</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>D</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>M</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>P</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>T</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

4. The last character (character 8 of the LOAD parameter) specifies the alternate nucleus identifier (0-9). Use this character at the system programmer’s direction. If you do not specify an alternate nucleus identifier, the system loads the standard (or primary) nucleus (IEANUC01) and an architectural extension of the
nucleus (IEANUC11 or IEANUC21), unless the NUCLEUS statement is specified in the LOADxx member. For more information, see z/OS MVS Initialization and Tuning Reference.

Also consider the following:

1. Decide whether to accept the system prompt indicator default. The default causes the system to suppress messages and not prompt the operator. You might miss critical messages during initialization, so you should review the hardcopy log.

 New installations might want to select prompt feature A (display all messages and prompt the operator) or M (display all messages but do not prompt operator) on the system control frame while validating changes and analyzing system errors during the initialization process. Specifying either A or M might increase message traffic.

2. Omit the LOAD parameter when you accept all the IBM-supplied defaults.

3. Each character in the LOAD parameter is positional. If you change any of the defaults you must retype the characters or use periods (....) to hold the positions.

4. You cannot leave any leading spaces blank, unless the defaults are accepted for the rest of the LOAD parameter.

Explanation of the A=INITIALIZE SYSTEM CONTROL PROGRAM, A3 Field

This field specifies the operator load function to IPL the MVS operating system.

Selecting the operator load function causes the hardware to read an IPL (initial program loader) program into storage from the system residence volume. For this reason, loading and initializing the system is often called the “IPL procedure” or just “IPL”. Likewise, “IPLing” the system means loading and initializing the system.

The IPL program is what actually loads the system software; if the IPL program does not get into storage or does not receive control properly, the entire load process stops and the processor pauses. If the IPL program does not finish properly, it puts the system into a disabled wait state with an error code in the low-order 12 bits of the program status word (PSW). To continue loading the system, display the PSW, note the error code, and follow the instructions for that code given in z/OS MVS System Codes. The processor operations documentation tells you how to display the PSW.

Logging On to the System

Your installation can control the use of the system commands and access to the MCS and SMCS consoles through the security authorization facility (SAF) and the Resource Access Control Facility (RACF). Your installation can require operators to use the LOGON command to log on to the system and identify themselves.

Your installation can specify the LOGON attribute for MCS and SMCS consoles in two ways. First, a default LOGON attribute can be specified for all consoles active on a system by specifying the LOGON keyword on the DEFAULT statement in the CONSOlx parmlib member. Second, individual consoles can override the default LOGON attribute by specifying the LOGON keyword on the CONSOLE statement in the CONSOlx parmlib member. For more information on specifying LOGON consult z/OS MVS Planning: Operations and z/OS MVS Initialization and Tuning Reference.
Your installation can specify that LOGON is required by specifying LOGON(REQUIRED) on the DEFAULT statement (for all MCS and SMCS consoles) or on the CONSOLE statement (for a single console). When LOGON is a system requirement, you can issue commands only through a master authority console until RACF is fully initialized and able to process logon requests. Until RACF is initialized, you cannot issue any commands from any non-master authority console.

Once RACF is fully initialized, all operators are required to logon. The message IEE187I prompts you for a userid and password. Optionally, you might enter a group id and a security label. See “LOGON Command” on page 4-322 for more information.

IBM suggests that SMCS consoles be LOGON(REQUIRED), either using the system-wide DEFAULT LOGON specification or the CONSOLE LOGON specification of the console.

Your installation can specify that LOGON is automatic by specifying LOGON(AUTO) on the DEFAULT statement (for all MCS and SMCS consoles) or on the CONSOLE statement (for a single console). When LOGON is not a system requirement, after the security product is fully initialized, the system will automatically issue an MCS LOGON command to each active MCS or SMCS console; system operators may log on to these consoles but are not required to do so. Automatic logon affects only full capability consoles.

Your RACF administrator creates RACF user profiles for each operator. Each operator can have access to different commands, consoles, data sets, and other RACF-protected resources, according to the person’s responsibilities. The RACF administrator also creates RACF resource profiles that protect all operator commands. If you need more information on creating profiles for operators, consoles, MVS commands, and other resources, see the z/OS Security Server RACF Security Administrator’s Guide.

Your installation can specify that LOGON is optional by specifying LOGON(OPTIONAL) on the DEFAULT statement (for all consoles on the system) or on the CONSOLE statement (for a single console). Code the OPTIONAL parameter when your installation has selected consoles defined in RACF to require the operator to log on.

z/OS MVS Planning: Operations has more information about controlling system commands and consoles in a secure environment.

Initializing the System Software

Once the software is loaded into storage, it must be given specific starting values before it can do work. These values are supplied through a LOADxx parmlib member specified by the LOAD parameter on the system control (SYSCTL) frame, or, depending on the installation hardware level, through the system console or the NIP console during the initialization process.

In certain situations, the system prompts you to specify an alternate master catalog; then it prompts for system parameters that are not specified in LOADxx. The following two sections explain how to respond to those prompts.

Specifying an Alternate Master Catalog

During system initialization, unless the SYSCAT parameter is specified in the LOAD parameter, the system issues the following message:
IEA347A SPECIFY MASTER CATALOG PARAMETER

You must respond to this message. You can respond in one of two ways:

- If your installation uses the default member of SYS1.NUCLEUS, SYSCATLG, to find the master catalog, press the ENTER key.
- If your installation uses an alternate member of SYS1.NUCLEUS, SYSCATnn, to find an alternate master catalog, enter two characters for nn.

Specifying System Parameters Not Defined in LOADxx

The LOAD parameter can supply values not defined at system installation time. If this is not done, you must supply them as system parameters in response to the following system message:

IEA101A SPECIFY SYSTEM PARAMETERS FOR product-name

You must respond to this message. You can respond with specific system parameters, such as

REPLY 00,CLPA,SYSP=83,LNK=(04,05,PQ),SYSNAME=AQ

However, a typographical error made in this response can lead to undesirable system operation. To help avoid this situation, the system programmer can specify system parameters in IEASYSxx parmlib members. If this has been done, you can respond to message IEA101A in one of the following ways:

- To use the system parameters specified in the IEASYS00 parmlib member, press the ENTER key.
- To use system parameters specified by IEASYSxx parmlib members along with IEASYS00, use the SYSP operand on the REPLY command to specify the 2-character suffixes that identify the IEASYSxx parmlib members.

For example, to use the parameters specified in parmlib members IEASYSAA and IEASYSBBB along with IEASYS00, enter:

REPLY 00,SYSP=(AA,BB)

Note: Depending on the specific system parameter, a parameter value specified in the alternate parmlib members supplements or overrides the value specified in IEASYS00.

If the reply is longer than one line (there are 80 characters per line), you can follow the last parameter with a comma or a blank and CONT. For details on how to continue system parameters, see "Specifying System Parameters" on page 4-387 in the description of the REPLY command in this book.

For details about parmlib members, see [z/OS MVS Initialization and Tuning Reference](#).

Setting the Time and Date

If the time-of-day (TOD) clock on the target processor is not set or if your installation specifies the OPERATOR PROMPT parameter in the CLOCKxx member of SYS1.PARMLIB that the system uses for initialization, the system prompts you during initialization to set the correct time and date with message IEA886A and/or message IEA888A. Message IEA886A asks you to specify values for the time and date. Message IEA888A displays the time and date and lets you accept or change these values. In response to either message, set an accurate time and date according to your installation’s requirements.

For example, suppose the system issues:

IEA886A UTC DATE=1991.301,CLOCK=22.31.53
*00 IEA888A LOCAL DATE=1991.301,CLOCK=17.31.53 REPLY U, OR UTC/LOCAL TIME
The values in this message indicate that the local time is 5:31:53 P.M. on October 28, 1991 and that Coordinated Universal Time (UTC) is five hours later than local time in your time zone. If the local time at your installation is really 8:00:00 A.M. on October 29, 1991, reply as follows:

R 00,DATE=1991.302,CLOCK=13.00.00,GMT

The system responds with:

IEA888A UTC DATE=1991.302,CLOCK=13.00.00
+00 IEA888A LOCAL DATE=1991.301,CLOCK=08.00.00 REPLY U, OR UTC/LOCAL TIME

Note that the system sets the local time but not the local date from the time and date you specify. To set the local date, reply as follows:

R 00,DATE=1991.302

If the new UTC and local time values are still not accurate enough, you can reply with new UTC time values now (and as many times as you need) to bring the system’s values closer to what your installation requires. When you are satisfied with the system’s values, reply as follows:

R 00,U

See “REPLY Command” on page 4-382.

Initializing MCS and SMCS Consoles

Message IEE612I appears on an MCS and SMCS console when it completes initialization.

If you enter the command DISPLAY C,K (or D C,K), the system displays a summary of the CONTROL commands. You can use these commands to change the characteristics of the console. See “Displaying CONTROL Command Functions” on page 4-117 for information about the DISPLAY C,K command.

Starting and Specifying Parameters for the Job Entry Subsystem

Even after the system is initialized, it cannot accept work until the job entry subsystem (JES2 or JES3) is started. The system automatically starts JES2 or JES3 if your installation provides this capability. Otherwise, you must issue the START command. For further information about starting JES, see either z/OS JES2 Commands or z/OS JES3 Commands. See “START Command” on page 4-630.

Controlling the System

Controlling the operating system effectively, includes the following tasks:

- Display current system status, such as the number of active jobs and teleprocessing functions, so you can take appropriate actions to operate the system efficiently and to correct potential problems.
- Display the status of devices and availability of paths.
- Communicate among several consoles.
- Communicate within a sysplex. In a sysplex, several MVS systems function together to process work, and you might need to know about the operations of more than one system in a sysplex.
- Set the time and change the system parameters.
- Use the system restart function to control certain system functions.
- Respond to message IEA502A.
- Respond to message BLW004A.
Activate a workload management service policy for a sysplex.

MVS provides system and subsystem commands that display job and system status either when requested or continually at a regular interval. Other commands route status information to one or more consoles and provide communication among operators in a multiple-console environment, as well as communication with time-sharing users. Many commands let you display information about all the systems in a sysplex, and some commands allow you to control any target system in the sysplex.

The following sections describe in detail how to control the system.

Displaying Current System Status

Using the DISPLAY command, you can display overview information about all current system activity and detailed information about active batch jobs, started tasks, system address spaces, and/or logged-on time-sharing users. (The DISPLAY command in Chapter 4 describes the overview and detailed information you can display.) The command produces a one-time display of status as it is at the time you enter the command.

To help you keep up with the system’s needs, you can enter the DISPLAY R command to display system requests waiting for replies or actions, mount requests not yet fulfilled, and devices waiting for operator intervention. You can use the information in the display to take any necessary actions. See “Displaying System Requests” on page 4-221 for information about the DISPLAY R command.

Using the MONITOR command, you can keep track of jobs starting and stopping. In response to the MONITOR command, the system displays the job identification whenever a job starts or stops. Using this command, you can also request that the system notify you of TSO logons, JCL failures, and data set allocations. See “MONITOR Command” on page 4-371. You can also use the SETCON MONITOR command to enable or disable monitoring messages for jobs, TSO/E sessions, and data set allocations. See “SETCON Command” on page 4-441.

Displaying the Status of Devices and Availability of Paths

There are three commands that you can use to display the status of devices and the availability of the paths these devices are on.

The DISPLAY U command allows you to keep track of the availability for allocation of the following devices attached to the system:

- Channel-to-channel (CTC) links
- Direct access storage devices (DASDs)
- Graphic devices
- Magnetic tape units
- Communication equipment
- Unit record devices

This command displays device status and the job names and ASIDs of device users. Knowing what jobs and ASIDs are using a particular device allows you to determine whether you can take the device offline. See “Displaying Device Status and Allocation” on page 4-260 for information about the DISPLAY U command.

The DISPLAY M command allows you to keep track of the availability of channel paths and devices on these paths. See “Displaying System Configuration Information” on page 4-184 for information about the DISPLAY M command.
The **DEVSERV PATHS** command can help you solve hardware or configuration problems. The display includes the status of paths, the channel path ids, the logical mode of devices, the number of data sets allocated on volumes, and volume serial labels. Because the DEVSERV command causes the system to issue an I/O request on paths to a device or devices, the resulting display reflects the current physical state of the path. Comparable displays from the DISPLAY M command reflect less recent information from the last use of MVS control blocks. For example, assume that an I/O device is performing below normal and you suspect that some paths to the device are offline. The DISPLAY M command might tell you that there are four paths online to the device. The DEVSERV PATHS command might tell you that there is actually only one online path. The DEVSERV command is more current and thus more accurate. See "**DEVSERV Command" on page 4-81" for information about the DEVSERV command.

Sending Commands to Systems in a Sysplex

You can use the **CONTROL V** command to direct commands from a console to a specific system in a sysplex. The CMDSYS parameter on the **CONTROL V** command specifies which system receives all commands (not specifically routed elsewhere by the **ROUTE** command) entered from a particular console. See "**CONTROL Command" on page 4-58."

You can use the **ROUTE** command to send commands to be processed on other systems in the sysplex. See "**ROUTE Command" on page 4-395."

You can use the **VARY CN** command to specify from what systems in a sysplex a specified console receives unsolicited messages. Use the **MSCOPE**, **AMSCOPE**, and **DMSCOPE** parameters for purposes of control. See "**VARY CN command" on page 4-675."

Some commands have an L=name parameter. You can use this parameter to specify the name of a console on a different system in the sysplex. These commands can communicate with the named console and receive messages from that system.

Using Commands That Have Sysplex Scope

Commands that have sysplex scope have the following characteristics:

- They affect resources that are shared throughout the sysplex. Examples of such resources include the Sysplex Timer®, the coupling facility, couple data sets, and certain DASD volumes.

- You can issue them from any system in the sysplex; the results are identical.

- The results of issuing them are sysplex wide **without the need to use ROUTE **`ALL`. You should not use any form of the **ROUTE** command to issue a command with sysplex scope because doing so is redundant. Here’s why:
 - You use **ROUTE** to have a command issued on a particular system, group of systems, or all systems in the sysplex. Using the **ROUTE** command is the logical equivalent of walking up to a console attached to each system you route to, and issuing the command from that console.
 - You do not need to issue a command with sysplex scope on a particular system, group of systems, or all systems in the sysplex. You issue the command once from any system.

Note that a command can have sysplex scope when you use particular parameters, and not have sysplex scope when you use other parameters.
Commands that have sysplex scope are so noted in the documentation for that command, and include those in the following table. If a command has All under “Conditions”, then the command has sysplex scope under all circumstances and for all variations.

Table 1-2. MVS System Commands With Sysplex Scope

<table>
<thead>
<tr>
<th>Command</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHNGDUMP</td>
<td>Has sysplex scope only when all systems are connected to the same coupling facilities, and you specify ,SDUMP,SYSFAIL,STRLIST=.</td>
</tr>
<tr>
<td>CONTROL C,A</td>
<td>All</td>
</tr>
<tr>
<td>CONTROL C,D</td>
<td>Has sysplex scope only when you specify L=.</td>
</tr>
<tr>
<td>CONTROL M</td>
<td>Has sysplex scope only when you do not specify MLIM, UEXIT, LOGLIM, or APPLID.</td>
</tr>
<tr>
<td>CONTROL other</td>
<td>Other parameters of CONTROL have sysplex scope only when you specify L=.</td>
</tr>
<tr>
<td>DISPLAY CF</td>
<td>Has sysplex scope only when displaying information about the coupling facility and only for those systems connected to the coupling facility. Does not have sysplex scope when displaying an individual system’s coupling facility configuration information (coupling facility channels and paths).</td>
</tr>
<tr>
<td>DISPLAY CNGRP</td>
<td>All</td>
</tr>
<tr>
<td>DISPLAY CONSOLES</td>
<td>Has sysplex scope unless you specify DISPLAY C,B or DISPLAY C,U.</td>
</tr>
<tr>
<td>DISPLAY DUMP</td>
<td>Has sysplex scope only when you issue the OPTIONS parameter to display the results of a CHNGDUMP ...SDUMP,SYSFAIL,STRLIST= command.</td>
</tr>
<tr>
<td>DISPLAY EMCS</td>
<td>Has sysplex scope, except when you specify STATUS=B or STATUS=ERR. When you specify STATUS=FULL, consoles from all systems will be displayed (for consoles that are not active on the system where this command is processed, some information will not be displayed).</td>
</tr>
<tr>
<td>DISPLAY GRS</td>
<td>Has sysplex scope unless you specify SUSPEND. Also, note the following about DISPLAY GRS,C and DISPLAY GRS,RES: the output generated by these commands includes both system-specific information (S=SYSTEM) and sysplex information (S=SYSTEMS). The S=SYSTEM information is valid only for the system on which you issue the command. The S=SYSTEMS information is identical regardless of the system on which you issue the command.</td>
</tr>
<tr>
<td>DISPLAY LOGGER</td>
<td>Has sysplex scope when you use either L or C,SYSPLEX options.</td>
</tr>
<tr>
<td>DISPLAY OPDATA</td>
<td>Has sysplex scope for the PREFIX operand, the MODE operand, and the MONITOR operand (except for SPACE and DSNNAME, and all MONITOR operands issued from a TSO user).</td>
</tr>
<tr>
<td>DISPLAY PFK</td>
<td>Has sysplex scope only when you specify CN=.</td>
</tr>
<tr>
<td>Command</td>
<td>Conditions</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>DISPLAY R</td>
<td>Has sysplex scope, but the output might be different on different consoles, because the output of DISPLAY R is dependent on the routing criteria for the console specified by CN=. If you do not specify CN=, the routing criteria of the console issuing the command is used. If you issue the command in a program (by using the MGCRE macro) the console you specify in the macro is used. If you specify a console ID of 0, all retained messages are included in the command response.</td>
</tr>
<tr>
<td>DISPLAY WLM</td>
<td>All</td>
</tr>
<tr>
<td>DISPLAY XCF,ARMSTATUS</td>
<td>Has sysplex scope provided all systems are using the same ARM couple data set.</td>
</tr>
<tr>
<td>DISPLAY XCF,CF</td>
<td>Has sysplex scope provided all systems in the sysplex are connected to the same coupling facilities.</td>
</tr>
<tr>
<td>DISPLAY XCF,Couple</td>
<td>Has sysplex scope as long as all systems are using the same types of couple data sets, as specified on the TYPE parameter (SYSPLEX, ARM, CFRM, SFM, LOGR, and WLM.) If you do not specify the TYPE parameter, only system-specific data is displayed.</td>
</tr>
<tr>
<td>DISPLAY XCF,GROUP</td>
<td>All</td>
</tr>
<tr>
<td>DISPLAY XCF,POLICY</td>
<td>Has sysplex scope as long as all systems are using the same types of couple data sets, as specified on the TYPE parameter (ARM, CFRM, SFM, and LOGR.)</td>
</tr>
<tr>
<td>DISPLAY XCF,STRUCTURE</td>
<td>Has sysplex scope provided all systems in the sysplex are connected to the same coupling facilities.</td>
</tr>
<tr>
<td>DISPLAY XCF,SYSPLEX</td>
<td>All</td>
</tr>
<tr>
<td>MONITOR</td>
<td>Has sysplex scope only when you specify L=.</td>
</tr>
<tr>
<td>MOUNT</td>
<td>Has sysplex scope only when you issue the command against an automatically switchable tape device.</td>
</tr>
<tr>
<td>REPLY</td>
<td>All</td>
</tr>
<tr>
<td>RESET CN</td>
<td>Issue the command from the system where the console was active to avoid inconsistent sysplex results.</td>
</tr>
<tr>
<td>SEND</td>
<td>Has sysplex scope only when sending to consoles; does not have sysplex scope when sending to TSO users.</td>
</tr>
<tr>
<td>SET CNGRP</td>
<td>Has sysplex scope provided all systems are sharing the same parmlib data set.</td>
</tr>
<tr>
<td>SET DAE</td>
<td>Has sysplex scope only when all systems are sharing the same DAE data set and the same parmlib data set.</td>
</tr>
<tr>
<td>SETLOGR FORCE</td>
<td>Has sysplex scope when you use DELETE,LSName options.</td>
</tr>
<tr>
<td>SET GRSRNL</td>
<td>Has sysplex scope only when all systems are sharing the same parmlib data set.</td>
</tr>
<tr>
<td>SET SMS</td>
<td>Has sysplex scope when you are issuing the command to change the name of the ACDS or COMMDS. All systems in the sysplex must be in the same SMS complex, and using the same parmlib data set. If you are issuing the command to start or restart SMS on a system, only the system on which you issue the command is affected.</td>
</tr>
<tr>
<td>SETCON MODE</td>
<td>All</td>
</tr>
</tbody>
</table>
Sharing System Commands

MVS allows two or more systems in a multisystem environment to share commands while retaining unique values in those commands. When two or more systems share commands, you can view a multisystem environment as a single system image from which you can perform operations for several different systems.

This section explains how to share system commands in a multisystem environment, using:

- **System symbols**, which represent unique values in shared commands
- **Wildcards**, which identify multiple resource names in commands.

Using System Symbols in Commands

System symbols represent the values in shared commands that are unique on different systems. Each system defines its own values to system symbols, and replaces the system symbols with those values when processing shared commands.

To use system symbols in system commands, first see the section that describes system symbols in [z/OS MVS Initialization and Tuning Reference](#) to understand the types of system symbols, the elements that comprise them, and the general rules.

Table 1-2. MVS System Commands With Sysplex Scope (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETSMS</td>
<td>Has sysplex scope only if you are changing the SCDS, ACDS, or COMMDS, and only if all systems in the sysplex are in the same SMS complex.</td>
</tr>
<tr>
<td>SETXCF FORCE</td>
<td>Has sysplex scope only when all systems are connected to the same coupling facility.</td>
</tr>
<tr>
<td>SETXCF COUPLE</td>
<td>Has sysplex scope only when you specify PSWITCH, ACOUPLE, or PCOUPLE, and all systems have access to the specified couple data set.</td>
</tr>
<tr>
<td>SETXCF STARTSTOP</td>
<td>Have sysplex scope only when you specify POLICY or REBUILD.</td>
</tr>
<tr>
<td>STOPMN</td>
<td>Has sysplex scope only when you specify L=.</td>
</tr>
<tr>
<td>UNLOAD</td>
<td>Has sysplex scope only when you issue the command against an automatically switchable tape device.</td>
</tr>
<tr>
<td>VARY CN</td>
<td>Has sysplex scope unless all of the following are true:</td>
</tr>
<tr>
<td></td>
<td>- You issue VARY CN(conspec),ONLINE without specifying SYSTEM=.</td>
</tr>
<tr>
<td></td>
<td>- You do not specify SYSTEM= in the CONSOLxx parmlib member that defines this console.</td>
</tr>
<tr>
<td></td>
<td>- The console has never been active in the sysplex.</td>
</tr>
<tr>
<td>VARY SMS, STORGRP</td>
<td>VOLUME</td>
</tr>
<tr>
<td></td>
<td>- You specify (storgrp</td>
</tr>
<tr>
<td></td>
<td>- You specify (storgrp</td>
</tr>
</tbody>
</table>
for using them. Second, see the section on sharing system commands in [z/OS MVS Planning: Operations](#) for information about planning to share commands. Then read the rest of this section.

Display Static System Symbols: You can enter the DISPLAY SYMBOLS command to display the static system symbols and associated substitution texts that are in effect for a system. See “Displaying Static System Symbols” on page 4-256 for more information.

Know the Rules for Using System Symbols: The system enforces the following rules when you use system symbols in system commands. They apply in addition to the general rules for system symbols that are described in [z/OS MVS Initialization and Tuning Reference](#).

1. Substitution in a command begins after the command name. This means that you cannot use symbolic variables to resolve to a command prefix or to a command name. The command “&Asyspref &mycmd” would result in an error message, for example.

2. If the issuing console has command association (CMDSYS) to another system, the issuing system first transports the command to the associated system. Substitution of any symbolic variables takes place on the receiving system.

3. If a command has a prefix defined with the command prefix facility (CPF), the issuing system first transports the command to the system defined for that prefix. Substitution of any symbolic variables takes place on the receiving system.

4. After echoing and logging a command, the system examines the command name. Certain commands receive special treatment:

 - The system will not perform substitution for symbolics in a VARY CN(*),ACTIVATE command.
 - A DUMPDS command will not undergo substitution. The DUMPDS command processor handles its own substitutions, at the time when it actually takes a dump.
 - For security reasons, the LOGON command does not support symbolic substitution.
 - For a REPLY command, substitution of any symbolic variables in the reply text takes place on the system originally issuing the WTOR.

 However, if the WTOR is synchronous (SYNCH = YES was specified, and the synchronous WTO/R service displays the WTOR), the system does not perform substitution of the reply text. But, if the system issues the WTOR early during the initial program load (IPL), that is, while the nucleus initialization program (NIP) is still in use:

 - The system performs substitution after it processes the requested symbolics it reads from the parmlib. This means that the system will substitute symbolic variables in replies to WTORs it issues after issuing the IEA347A SPECIFY MASTER CATALOG PARAMETER message.
 - The system will not issue message IEE296I for NIP-time replies that are changed by symbolic substitution. Message IEE600I will reflect the changed text.

 - For a ROUTE command, the system issuing the command performs the substitutions up through the specification of the destination system(s). Each destination system completes the substitution of the text for the command. For example, if you code the command

   ```
   RO T=&T1,&SYSGRP1,F JOB&SYSCLONE,parms
   ```
the system issuing that ROUTE command will substitute the variables &T1 and &SYSGRP1

and each system in the system group that &SYSGRP1 names will issue the command

F JOB&SYSCLONE,parms

and each of those receiving systems will substitute its own value for &SYSCLONE. See “Using System Symbols in ROUTE Commands.”

- You cannot use symbolic variables on an “L=” operand to aggregate the command response when sending a command to more than one system. The system will not substitute for the “L=” operand.
- For commands other than REPLY and ROUTE, the system issuing the command performs the substitution for the text after the command name, including comments.

5. You cannot use system symbols in commands that control batch jobs. Consider converting batch jobs to started tasks, which can specify system symbols.

6. If substitution results in changing any command text, the system logs the “new” text again and issues message IEE295I.

 The system makes the original (pre-substitution) command text available to the command installation exits and the subsystem interface (SSI). However, current programs, if not modified, will see the substituted text.

 When the system calls the command installation exits or SSI, if those exits make any change to the command text, the system logs them again and issues message IEE295I. However, it does not perform substitution again. It frees the original command text, which means that it is no longer available in the system.

Cautions in Using System Symbols: The preceding rules mean that some forms of command input will probably not produce the results you want:

1. Symbolic variables before or in a command name remain unsubstituted. The system will process the command with the “&variable;” in the text, and probably generate a “COMMAND INVALID” error message.

2. If a command exit changes the text and adds a new symbolic variable, the system executes the command before substituting for the variable.

3. The following considerations apply when a command affects systems other than the one issuing it:
 - Except for REPLY, the substitution will reflect the issuing system. For example, if SYSVAR1 = (1,2)

 on the system issuing the following VARY command, but SYSVAR1 = (3,4)

 on a system with the console “consname” attached, the command

 VARY CN(consname).ROUT=&SYSVAR1

 would result in the console “consname” receiving codes 1 and 2. If this (unlikely) command is what you want, you should ROUTE it to the system with consname attached.
 - The same logic applies to commands that accept the “L=name-a” parameter, that is, where you want the command output messages directed to a console (and display area) other than the one issuing the commands. Substitution of
symbolic variables in commands occur on the systems where the commands are issued, not where the “L=” console is attached.

- Do not use symbolic variables in the “L=” parameter on the ROUTE command. See the ROUTE command description in this manual.
- Understand the implications of using system symbols in commands that flow through several systems in a multisystem environment. See “Sharing Commands That Flow Through Multiple Systems” in z/OS MVS Planning: Operations for more information.

Determine Where to Use System Symbols: System symbols offer the greatest advantage when two or more systems require different resources. This section provides examples of how to specify system symbols when naming resources in system commands.

Data Sets:

Assume that you want to display, on all systems in a sysplex, the local page data sets that fit the following naming convention:

```
SY&SYSCLONE..PAGE.LOCAL
```

Instead of entering a different command to display the unique page data sets on each system, you could enter the following command to display all the data sets that fit the naming convention:

```
ROUTE *ALL,D ASM,PAGE=SY&SYSCLONE..PAGE.LOCAL
```

When each system processes the command, it substitutes the text that it has defined for the &SYSCLONE system symbol. For example, if a sysplex consists of two systems named SYS1 and SYS2, accepting the default value for &SYSCLONE produces the following data sets:

```
D ASM,PAGE=SYS1.PAGE.LOCAL on system SYS1
D ASM,PAGE=SYS2.PAGE.LOCAL on system SYS2
```

Jobs:

When specifying system symbols in the source JCL for job names, first determine if the jobs run as batch jobs or started tasks. If a job is a started task, you can specify system symbols in the source JCL. If a job runs in batch, you cannot specify system symbols in the source JCL; consider changing the job to run as a started task.

Then, if a started task is to have multiple instances, determine if you want the started task to have a different name for each instance. If each instance of a task has a different name, your installation can easily identify the system on which each instance runs.

For started tasks, you can also specify system symbols on the JOBNAME parameter on the START command that starts the task. For more information about using system symbols in START commands, see “START Command” on page 4-630.

Using Wildcards in Commands

Wildcards allow you to use a single specification to indicate a number of resources whose names match the wildcard pattern.

System commands use three kinds of wildcards:
• **Multiple-character trailing asterisk (*)**: The * indicates zero, one, or more characters, up to the maximum length of the string. This * must be at the end and cannot appear alone. For example, ABC* matches ABC or ABCVWXYZ or ABC1 or ABCZZZ. Use this wildcard in:
 – CANCEL
 – DISPLAY
 – MODIFY
 – SETPROG
 – SLIP parameters, as indicated in their descriptions
 – STOP

• **Multiple-character asterisk (*) within the value**: The * indicates zero, one, or more characters, up to the maximum length of the string. This * can be in any position and can appear alone to indicate all values. For example:
 – A*BC matches ABC or ACBC or AWXYZBC or A3BC
 – * matches all values
 – *BC matches BC or WXYZBC or ZZZBC

 Use this wildcard in the JOBLIST and DSPNAME parameters of the SLIP command.

• **Single-character question mark (?)**: The ? indicates any single character. The ? can be in any position. For example:
 – A?C matches ABC or A1C
 – ABC?E?? matches ABCXEYZ or ABC1E23
 – ?BC matches ABC and ZBC

 Use this wildcard in SLIP parameters, as indicated in their descriptions.

In some SLIP command parameters, you can use more than one type of wildcard. For example:

• A?C* matches ABC or AXCYZ or A5CZ2
• A*C? matches ABCD or AZZZZC1 or A123CZ or ACD

You can use wild cards to reduce the number of system commands needed for a task. For example, you can enter one command to display information about all jobs and started tasks beginning with the characters XYZ:

`DISPLAY A,XYZ*`

Setting the Time and Changing the System Parameters

Using the SET command, you can set the local time and date and change some system parameters. See "SET Command" on page 4-410.

Using the System Restart Function

You can use the system restart function to:

• Restart the system after you have entered a QUIESCE command. (See "Quiescing the System" on page 1-51)

• Restart the system from a restartable wait state that is specified in [z/OS MVS System Codes](#)

• Restart the system when it behaves abnormally and you cannot terminate the suspected unit of work with the CANCEL or FORCE commands. A system behaving abnormally may be one that enters a nonvalid wait state or a disabled loop. A nonvalid wait state exists when the wait state code in the PSW (IC) is not listed in [z/OS MVS System Codes](#) and is not in the range of wait state codes (FF0-FFE) reserved for other authorized applications. Symptoms of a disabled loop are:
– Nonproductive processing occurs and the PSW (IC) frequently displays the same addresses.
– All I/O and external interrupts are masked off for the system.

System Restart Procedure
To initiate the system restart function press the RESTART key on the hardware operator’s console or specify one of several restart actions on an operator frame. Refer to the hardware documentation for your system for more detailed information about your configuration. If the system has been quiesced or is in a valid restartable wait state, the system restarts and continues processing the interrupted unit of work. If the system had not been quiesced or is not in a valid restartable wait state then, depending upon your system configuration, the system displays either message IEA502A or BLW004A.

If the system does not recover as a result of your restart actions, follow your installation’s procedures for recording system problems. When you have recorded the system information, consult with your system programmer before taking further action.

Responding To IEA502A
Reply reason code ‘0’ when you suspect that a unit of work is causing a wait state that is not valid or a disabled loop and you cannot terminate the suspected unit of work by using the CANCEL or FORCE commands.
1. The system displays message IEA500A and waits for operator response.
 IEA500A supplies information about the unit of work in progress.
2. Reply ABEND to abnormally terminate the interrupted program and invoke the necessary recovery routines if the information describes the unit of work you suspect has a problem.
3. Reply RESUME to end further restart processing and allow the interrupted work to continue if the information does not describe the unit of work that you suspect has a problem.

Repeat this process of invoking restart with REASON 0 until you interrupt the work you suspect. Only then should you reply ABEND to abnormally terminate the current work.

Note: The system terminates the work in progress without displaying any information about it if you request the restart function with REASON 0 on a processor that cannot communicate with an operator.

Reply reason code ‘1’ when you suspect a system problem that is not related to the work currently in progress. The system diagnoses and repairs some problems that might be causing it to behave abnormally. Among its actions, the system:

• Makes itself dispatchable.
• Checks the number of message buffers. The system notifies you if the maximum number of buffers has been exceeded.
• Checks system activity. The system notifies you if there are no batch jobs or time-sharing users.
• Restarts I/O on all channel paths.
• Checks and repairs critical data areas.
Note: Using reason code ‘1’ might cause the system to immediately terminate some address spaces. Use reason code ‘1’ only under the direction of a system programmer.

Normally, the system notifies you of anything it diagnoses or repairs when you request the restart function with reason code ‘1’. You only get this information on a processor that can communicate with an operator.

Responding To BLW004A

The system displays message BLW004A and waits for operator response. BLW004A supplies information about the unit of work in progress.

1. Reply ABEND to abnormally terminate the interrupted program and invoke the necessary recovery routines if the information describes the unit of work you suspect has a problem.

 Repeat this process of invoking restart procedure replying to BLW004A until you interrupt the work that has the problem.

2. Reply RESUME to end further restart processing and allow the interrupted work to continue if the message indicates that there are no batch jobs or time-sharing users.

3. Reply RESUME to end further restart processing and allow the interrupted work to continue if the message indicates that the WTO buffer limit has been exceeded.

4. Reply REPAIR if you suspect a system problem that is not related to the work currently in progress. The system diagnoses and repairs some problems that might be causing the abnormal behavior.

Note: Replying REPAIR might cause the system to immediately terminate some address spaces. Reply REPAIR only at the direction of the system programmer.

Activating a Workload Management Service Policy

Important

Beginning with z/OS V1R3, WLM compatibility mode is no longer available. Accordingly, the information below that pertains specifically to WLM compatibility mode is no longer valid. It has been left here for reference purposes, and for use on backlevel systems.

You can use the VARY WLM command to activate a named service policy for a sysplex. The service policy must be defined in the workload management service definition and must have been previously installed on the WLM couple data set.

You can also activate a workload management service policy by using the online ISPF administrative application. Refer to *z/OS MVS Planning: Workload Management* for more information or see your service administrator.

This command activates the named service policy on all systems in the sysplex, regardless of the workload management service policy. However, only systems operating in workload management mode will manage towards that service policy. If there is an active service policy on a system running in compatibility mode, and you use the MODIFY command to switch that system into goal mode, workload management uses the service policy you activated.
Switching Workload Management Modes

Important
Beginning with z/OS V1R3, WLM compatibility mode is no longer available. Accordingly, you can no longer switch from one mode to another, as described below. The information has been left here for reference purposes, and for use on backlevel systems.

You can use the MODIFY WLM command to switch the workload management mode in effect on a system. This command switches the mode of the system where you issue the command.

Before switching into goal mode on any system in the sysplex, your service definition should be complete and installed in the workload management couple data set, and a service policy should have been activated.

For complete information on how to use the VARY command to activate a workload management service policy, see “Activating a Service Policy” on page 4-719.

Controlling Time-Sharing

Time-sharing allows programmers at remote terminals to develop, test, and execute programs without the turnaround delays that occur when they submit jobs to a computer center. With time-sharing, a large number of jobs can share the resources of a system concurrently, and remote terminal users can exercise primary control over the execution of their jobs. Therefore, we can define time-sharing as the shared, conversational, and concurrent use of a computing system by a number of users at remote terminals.

Time-sharing in z/OS is provided by TSO/E. For more information about TSO/E see z/OS TSO/E User’s Guide

You can display information about logged-on time-sharing users by using the DISPLAY command. You can keep track of terminal users logging on and off the system by using the MONITOR command. In response to the MONITOR command, the system displays the user id for each LOGON and LOGOFF. To stop the system’s monitoring of terminal use, issue the STOPMN command.

To communicate with time-sharing users you can use the SEND command to:
• Send messages to specific users or all users who are receiving messages
• Send messages to specific users or to all users logging on to the system
• Save messages in the broadcast data set
• List messages in the broadcast data set
• Delete messages from the broadcast data set

The broadcast data set, SYS1.BRODCAST, has mail and notices sections.
Controlling Jobs

A job is the basic unit of work for the system. Job control language (JCL) identifies a job to an operating system and describes the job's resource requirements. The JOB JCL statement identifies a job's beginning and contains such information as:

- Job name
- Job account number
- Job class
- Job priority.

Using job-related commands, you can start, stop, or cancel a job. You can also modify a job's parameters and performance group and restart a job that has failed. There are two kinds of jobs in the system: queued jobs and jobs that are selected on demand. Queued jobs are managed by JES. Jobs that are selected on demand (referred to as demand-selected) are created as the result of START, MOUNT, and LOGON commands.

Starting a Job

Using the START command, you can start jobs from the console. You can also use the START command to cause the JES internal reader facility to read a job from a tape or direct access volume.

Stopping a Job

Using the STOP command, you can stop a job if the programmer has coded a stop routine in the program.

Cancelling a Job

Using the CANCEL and FORCE commands, you can cancel a job that is executing. If the job is not currently executing, use a subsystem command to cancel it.

Passing Information to a Job

Use the MODIFY command to pass information to a job. This information may be used by the currently running program. Note that you can only pass information that is already defined in the currently running program.

Note to Programmers: For more information, see the section on communicating with a program using EXTRACT or QEDIT in z/OS MVS Programming: Authorized Assembler Services Guide.

Restarting a Job

Once a job is executing, it might end abnormally because of a hardware, programming, or system error. This might happen any time during program execution. Valuable machine time would be lost if an abnormal end occurred during one of the last job steps of a multistep program or in the middle of a long job step, and execution had to start again at the first job step. There are two ways of avoiding this problem: automatic restart and deferred restart.

For JES2 jobs and JES3 jobs, the checkpoint/restart feature of the system allows a job that ends abnormally to restart either at the beginning of a job step or at a checkpoint within the current step. The programmer submitting the job provides for an automatic restart or a deferred restart.
Automatic Restart
If the programmer submitting the job has provided for an automatic restart and the job ends abnormally, you receive the following system message:

* id IEF225D SHOULD jobname.stepname.procedure checkid RESTART

This message allows you to prevent repeated restarts at the same checkpoint or job step.

When this message appears, use the REPLY command to respond YES, HOLD, or NO, as follows:

- Reply YES if the restart is to be performed at a specific checkpoint or job step for the first time. (If it is a job step restart and the step to be restarted used a card input data set that was not part of the SYSIN stream, you must return to the appropriate hoppers all cards read by the job step before it ended abnormally. If it is a checkpoint restart, follow the programmer’s instructions for replacing the input cards.)
- Reply HOLD if you want to defer the restart: for example, to permit another job to run first. You must issue the appropriate subsystem command when you are ready to restart the job. Also, if you want, you can cancel the job. However, cancelling the job can cause unrecoverable paging space or the failure of certain data sets to be deleted if the job was using virtual I/O.
- Reply NO if a restart at a specific checkpoint or job step has been requested repeatedly. When your reply is NO, and the programmer wants a restart to be performed, he must resubmit the job for a deferred restart.

If the programmer specifies VIRTUAL=REAL (V=R), the job is processed entirely in central storage; it is not paged out. For a V=R job, the restart might be delayed while the system waits for the allocation of storage. If another job is using the required storage, you get no message, only a delay. Enter the DISPLAY A,L command to see if a system task or another job is using the storage required by the job with a V=R region. You can then stop or cancel the conflicting task or job.

Note: Any operator commands in the input stream of the job step being restarted are not executed.

Deferred Restart
If the programmer submitting the job has provided for a deferred restart and the job ends abnormally, the programmer must resubmit the job for the deferred restart. To restart the job, the programmer must provide a restart deck for submission to the system through the system input reader. The JCL statements to be included in the restart deck are described in detail in the z/OS MVS JCL User’s Guide.

If you change the device configuration of your system after a job ends abnormally, restart the job carefully. For example, enough devices must be available to satisfy the needs of the job step being restarted. The system under which a step restart is run need not be the same as it was for the job’s original execution. However, a checkpoint restart should be run under the original system unless the alternate system can meet the following restrictions:

- The job entry subsystem is the same.
- The release number is the same.
- The link pack area modules in use at the checkpoint reside in the same storage locations.
- An area of storage identical to the original area is available to a V=R job.
If the required storage is not available, the system cancels the restart and you receive the following message:

IEF209I VIRTUAL STORAGE UNAVAILABLE FOR jobname.stepname.procedure

Required storage might not be available for one of the following reasons:

- The link pack area expands into the required storage. This expansion can occur if an IPL has been performed between the original execution of the job and the restart. If it does occur, contact your system programmer for a respecification of the system parameters and reIPL using the new values.

- The system storage area expands into the required storage. When this expansion occurs, contact your system programmer for a respecification of the SQA and CSA system parameter and reIPL using the new values.

When a job restarts correctly, you receive two messages: IEF006I JOB RESTARTING and IEF008I JOB RESTARTED. If, for V=R jobs, these messages do not appear, enter DISPLAY A,L to see if a system task or other job is using the required storage. You can then stop or cancel the conflicting job. The system might ask you to mount data volumes other than those required at the beginning of the job. In addition, any card input data sets that have been used by the failing job step must again be made available to the system.

For more information on deferred restart, see [z/OS DFSMSdfp Checkpoint/Restart](#).

Controlling Started Tasks

A started task, like a job, is a basic unit of work for the system. However, started tasks differ from jobs in that started tasks are always demand-selected; that is, the operator or a program must take action to initiate a started task.

There are several ways to initiate started tasks:

- With a START command, described in Chapter 4 of this book.
- Via TSO/E logons. For information on using TSO/E logons, refer to the TSO/E publications.
- With ASCRE (address space create) macros in programs. For information on how to use the ASCRE macro, refer to [z/OS MVS Programming: Extended Addressability Guide](#).

Both the START command and the ASCRE macro create an address space. A START command and an ASCRE macro started via a START command each will look for a program that has a procedure in SYS1.PROCLIB; that program will be the first to run in the ASCRE-created address space. Essentially, using ASCRE is similar to a started task.

For a started task, the system:

- Locates the JCL that starts the task
- Defines the task’s address space
- Processes the JCL.

For a started task, operators can do the following:

<table>
<thead>
<tr>
<th>Task</th>
<th>For information, refer to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel the started task</td>
<td>"CANCEL Command" on page 4-21</td>
</tr>
<tr>
<td>Display status about the started task</td>
<td>"DISPLAY Command" on page 4-101</td>
</tr>
</tbody>
</table>
Controlling System Information Recording

The system records information that is later used for billing, accounting, or diagnostics. Among the facilities that record system information are:

- System management facilities (SMF)
- System trace
- The generalized trace facility (GTF)
- Master trace
- Component trace
- The logrec recording medium

The system also records information in the system log and/or the operations log. See [z/OS MVS Planning: Operations](#) for more information.

In addition to these facilities, JES2 and JES3 have their own event trace facilities. These trace facilities are described in detail in [z/OS JES2 Commands](#) and [z/OS JES3 Commands](#).

System Management Facilities

System management facilities (SMF) consists of system routines and optional user-written exit routines that collect, format, and record system and job-related information.

The information gathered by SMF and user-written exit routines is recorded on direct access volumes in one of the SMF data sets. These data sets, called primary and secondary data sets, must be online at system initialization. At that time, SMF uses the primary data set as the active recording data set unless it is full. If the primary data set is full, SMF checks each data set in the order it is listed until it finds one that is not full. SMF then uses this data set as the active recording data set and requests that the operator dump all data sets that are not empty.

When the active recording data set becomes full, SMF automatically switches recording from the active SMF data set to an empty secondary SMF data set, passes control to the SMF dump exit, IEFU29, and issues a message to indicate that the data set needs to be dumped. Use the SMF dump program, IFASMFDP, to dump the full SMF data set and to reset the status of the dumped data set to empty so that it can be used again for recording.

Error Recovery

If an I/O error occurs while SMF is writing to one of the SMF data sets, you receive a message and SMF switches to one of the empty secondary data sets.
Switching the SMF Data Sets

To prepare an SMF data set for dumping before it becomes full, the operator normally uses the SWITCH SMF command to switch from the current data set to another data set. For the switch to be successful, there must be an inactive data set that is empty. Therefore, use the DISPLAY SMF command to verify that there is at least one alternate data set before issuing the SWITCH or HALT command.

The HALT EOD command also prepares an SMF data set for dumping, but use it only when you intend to quiesce the system in preparation to shut down. Do not use HALT when you intend to keep the system running. HALT EOD will close the system log and stop SMF recording.

Restarting SMF

Because SMF runs in its own address space, you can restart SMF with the SET SMF command. When you enter that command, this message appears:

```
IEE980I  SMF  IS  BEING  RESTARTED
```

When the restart is complete and recording starts, the following message appears:

```
IEE360I  SMF  NOW  RECORDING  ON  SYS1.MANx
```

If the SET SMF command abends while updating the SMF parameters, it might be necessary to terminate the SMF address space and restart SMF. If the system programmer determines that it is necessary to terminate the address space, issue:

```
FORCE  SMF,ARM
```

To restart SMF after the SMF address space terminates, issue the SET SMF command again, specifying a SMFPRMxx parmlib member containing different parameters.

System Trace

System trace is a part of the operating system that records, for diagnostic purposes, events that occur during system initialization and operation. To record events, system trace provides three types of tracing: address space, branch, and explicit tracing. System trace can be used between subsystem initialization and the start of the generalized trace facility (GTF). For information on controlling system trace, see "TRACE Command" on page 4-658.

The Generalized Trace Facility

The generalized trace facility (GTF), like system trace, gathers information used to determine and diagnose problems that occur during system operation. Unlike system trace, however, GTF can be tailored to record very specific system and user program events. For information about starting and stopping GTF, see "START Command" on page 4-630 and "STOP Command" on page 4-647. For information about using GTF, see z/OS MVS Diagnosis: Tools and Service Aids.

Master Trace

Master trace is a diagnostic aid that maintains a trace table of console messages in virtual storage. When master trace is active, the master trace table is embedded in dumps that have the TRT option or contain the master scheduler’s private address space. Master trace can eliminate the need to submit a portion of the system log to IBM if there are problems in message processing. It also can ensure that the messages accompanying a dump are the ones that correspond to the problem. The
TRACE command controls master trace. For a more detailed description of master trace, see z/OS MVS Diagnosis: Tools and Service Aids.

Component Trace

Component trace is a diagnostic aid that system programmers can use to trace the action of certain system components. Component trace enables the programmer to use the TRACE command to start and stop component trace. The components that use the component trace command must first invoke the define component trace service and define the name of the component requesting the service and the name of the start/stop routine that will get control when the TRACE operator command is issued.

Logrec Recording Medium

When an error occurs, the system records information about the error in either the logrec data set or a sysplex-wide logrec log stream. The diagnostic information provides a history of all hardware failures, selected software errors, and selected system conditions.

Use the records in the logrec data set or the logrec log stream as a companion to dump data. The information in the records will point the system programmer in the right direction while supplying symptom data about the failure.

For more information about log streams, see z/OS MVS Programming: Assembler Services Guide. For more information about initializing a logrec data set or setting up a logrec log stream, see z/OS MVS Diagnosis: Tools and Service Aids.

Controlling Automatic Tape Switching

In a sysplex, there are MVS operational considerations for two types of tape devices:

- A dedicated tape device is varied online to one system at a time. For a second system to use that same device, an operator issues VARY commands (first VARY OFFLINE, then VARY ONLINE) to make the device available to the second system.

- An automatically switchable tape device can be online to more than one system at a time. For one system to use an automatically switchable tape device, then another system to use the same device, an operator does not have to issue any VARY commands. In many ways, automatically switchable tape devices are similar to JES3-managed devices. They require that the systems in the sysplex communicate with each other.

Through system commands, the operations staff plays a key role in setting up and maintaining automatic tape switching (that is, using automatically switchable tape devices). For example, a device is automatically switchable after the following operational actions are taken:

1. The device is defined as automatically switchable.
 The VARY AUTOSWITCH command, as described in “Defining Automatically Switchable Devices” on page 1-28, turns the AUTOSWITCH attribute on and off.

2. The device is varied online through the VARY ONLINE command.

3. Before z/OS Release 2, the connection between participating systems and the coupling facility is active and an IEF AUTOS structure is defined in the active coupling facility resource management (CFRM) policy.
Systems in a sysplex store the status of online automatically switchable tape devices in IEFAUTOS.

With z/OS Release 2 and higher, the ATS STAR design improves the availability and system management characteristics of the previous automatic tape switching function. ATS STAR does not use the IEFAUTOS structure but instead uses global resource serialization and XCF services to maintain serialization when it allocates shared tape devices. To maximize the performance of the ATS STAR function, use the global resource serialization STAR configuration rather than the ring configuration.

Defining Automatically Switchable Devices

To define a device as automatically switchable, the device must be in a varied-offline state. Use the following command:

```
VARY device,AUTOSWITCH,ON
```

The detailed description of this command is in [“Defining a Tape Device as Automatically Switchable” on page 4-687](#).

The AUTOSWITCH definition lasts for the duration of the IPL. Only if the device has been defined through HCD does the definition persist longer than the duration of the IPL. If HCD turns the attribute on, and the VARY AS command turns the attribute off, the attribute will be on again at the next reIPL.

The ESCON® manager and the IEEVARYD programmable interface can also set the AUTOSWITCH attribute on and off.

Displaying Information About Automatically Switchable Devices

The DISPLAY U,,AUTOSWITCH command summarizes the status of automatically switchable devices. The display includes the following information:

- The name of the system to which the device is allocated
- The name of the job
- Volume serial number, if one is mounted and the device is allocated.

If a device is offline to the issuing system, the display shows “OFFLINE” in the status field and the display provides no other information about the device.

The following example shows information that appears in response to DISPLAY U,,AUTOSWITCH. Ten devices are defined automatically switchable in the sysplex. Four of those devices (identified by “A” in STATUS column) are allocated to jobs running on SYS5 and SYS6; two of the devices (identified by “OFFLINE” in the STATUS column) are varied offline to the issuing system; and the status of the other four devices is not known.
The syntax of the DISPLAY U,,AUTOSWITCH command is in “Displaying Device Status and Allocation” on page 4-260.

If you want to find out the status of a device that is assigned to a nonparticipating system, issue the DISPLAY U,,, command on each system that could have varied the device online, including the participating systems.

Interacting with System Functions

Most resource allocation, error recovery, and system monitoring functions in MVS are automatic. Sometimes, however, the system requests your assistance, takes certain actions that you must understand and/or correct, or issues messages that make you aware of internal processing. So that you can plan your actions carefully and respond appropriately to system messages, you need to know how to interact with the following system functions:

- Device allocation
- Hot I/O detection
- Device boxing

Device Allocation

Device allocation is the assignment of input/output devices and volumes to job steps. Requests for device allocation come from data definition (DD) statements and dynamic device allocation requests.

Data definition (DD) statements can be entered into the system by:

- Job input to the JES reader
- Jobs submitted through the TSO SUBMIT command
- Started tasks
- The MOUNT command
- TSO LOGONs
- APPC transactions

Dynamic device allocation/unallocation requests, in contrast, originate within executing programs.

While performing device allocations, the system might ask you to:

- Mount or dismount volumes
- Make decisions (for example, to bring a device online immediately or to wait)
To control the amount of work you have to do related to device allocation, you might want to restrict device allocation requests.

To control device allocation requests from data definition (DD) statements, you might restrict each of the forms of input for these statements (for example, by holding the reader, or by setting a maximum LOGON count). Because they originate within executing programs, however, you cannot control dynamic device allocation/unallocation requests.

Device Assignment
Operationally, the assignment of devices is influenced by:

- The online/offline status of the device. Generally, to be allocated to job steps, devices must be online. Exceptions are (1) when the online test executive program (OLTEP) or a similar testing program is running and (2) when teleprocessing devices are allocated. You can bring offline devices online with the VARY command or in response to the allocation recovery message, IEF238D.
- The MOUNT attribute. The MOUNT attribute, which applies only to tape or DASD devices, is influenced by the MOUNT and UNLOAD system commands, and, during initialization, by entries in the VATLSTxx parmlib member. Allocation requests that can be satisfied by mounted devices are processed quickly and without your intervention.
- The USE attribute. A parameter of the MOUNT command, the USE attribute affects the type of data sets that can be allocated on a tape or DASD volume. The USE attribute can also be set during initialization by entries in the VATLSTxx member of parmlib. Having a proper mix of volumes with various USE attributes reduces the amount of volume mounting.

The information from data definition (DD) statements determines the input/output resources to assign to a job or job step and the volumes that are required. If a requested volume is not mounted, the system issues a mount message asking you to mount a specific volume or scratch volume. If you mount the wrong volume, the system finds out as soon as it reads the volume label. The system unloads the volume and repeats the mount message.

When you know that several jobs are going to need a volume, use the MOUNT command to reserve that volume on a device. Allocation processing is faster when the required volume is reserved rather than removable. The system does not demount volumes reserved by a MOUNT command until you issue an UNLOAD command.

Notes: Do not use the MOUNT command for devices managed by JES3. See [z/OS JES3 Commands](#).

Never mount a blank tape volume unless specifically directed to do so because the system scans the entire volume for a tape label and this scanning wastes time. If an unlabeled tape is needed, write a tapemark to avoid unnecessary scanning. After you mount the tape volume and ready the drive, the system reads the volume label. If an incorrect volume is mounted, the system unloads the incorrect volume and repeats the mounting message.

Notes:
1. Occasionally, you receive two mount messages for the same volume, one starting with IEF and the other with IEC. Treat the two messages as though they were one. The second is a reminder.
2. When referring to I/O devices in the devnum parameter of system commands, use the unique 3-digit or 4-digit device number for each device. You can precede the device number with a slash (/). The slash is optional on many commands, but required for 4-digit device numbers on some commands, such as MOUNT and START.

3. Your installation can define symbolic group names of one to eight characters to be used by programmers in data definition (DD) statements. The number of devices associated with a symbolic name can range from one to the total number of devices in your installation. The symbolic name allows the devices to be grouped according to the attributes your installation considers significant. Do not use these symbolic names in system commands.

4. Make sure there are sufficient work volumes available to satisfy requests for temporary data sets at peak loads. A shortage of work volumes can cause the system to request additional scratch volumes. Balance work volumes across channel paths to increase system efficiency.

Automatic Volume Recognition

Automatic volume recognition (AVR) allows you to mount labeled volumes on unused drives not managed by JES3. The system recognizes and remembers these volumes, and assigns the drives to later job steps as required.

Hot I/O Detection

Hot I/O refers to the repeated I/O interruptions that result from hardware malfunctions. Because it can cause the system to loop or to fill the system queue area with I/O control blocks, hot I/O needs to be detected quickly and corrected.

When the number of repeated interruptions exceeds an installation-defined threshold value, the system assumes there is a hot I/O condition. If your installation has set up hot I/O recovery defaults that the system can use, the system issues message IOS109E and attempts to recover from the hot I/O condition. (See the IECIOSxx parmlib member in [z/OS MVS Initialization and Tuning Reference](https://www.ibm.com).) If your installation has not set up hot I/O recovery defaults, the system issues one of the following messages, if possible, or loads one of the following restartable wait states and prompts you to take action:

- **IOS118A** or **IOS111D** — HOT NON-RESERVED DIRECT ACCESS DEVICE (Wait state 111)
- **IOS119A** or **IOS112D** — HOT RESERVED DIRECT ACCESS DEVICE (Wait state 112)
- **IOS117A** or **IOS110D** — HOT NON-DIRECT ACCESS DEVICE (Wait state 110)

When you take action, try to solve the problem at the lowest possible level. That is, try to correct the problem at the device first and then at the control unit. You could power the device off and on. If that does not help, you could reset the control unit if the affected device is not a direct access device. If these actions do not correct the problem, you might have to physically disconnect the device or control unit.

Whatever action you take, tell the system what you are doing by responding to the prompting message or restartable wait state. Use LookAt or use the [z/OS MVS System Messages, Vol 9 (IGF-IWM)](https://www.ibm.com) for information about IOS messages, and [z/OS MVS System Codes](https://www.ibm.com) for a detailed explanation of the restartable wait states and your response to them.

"Hot I/O" on page 1-63 describes how z/OS handles a hot I/O condition.
Device Boxing

In certain error recovery situations and in response to certain commands, the MVS system can “box” an I/O device. Once a device enters a boxed state, the system:

- Immediately terminates I/O in progress on the device
- Rejects future I/O requests (by a user or by the system) to the device as permanent I/O errors
- Rejects any attempts to allocate the device
- Puts the device in pending-offline status

The system boxes a device:

- When it detects hot I/O on the device and the device cannot be recovered
- When, because of a channel path error, it takes the last path to the device offline
- When, because of a channel path error, it releases a reserve or assign on the device
- When it releases an unconditional reserve for the device
- When you issue a VARY OFFLINE command with the FORCE option for the device
- When you issue a CONFIG OFFLINE command with the FORCE option for a channel path, and the command releases a hardware reserve or assign, or removes the last path to the device

Notes:

1. Because you might release a reserve or assign on a device and cause a data integrity exposure, be sure to use the VARY OFFLINE and CONFIG OFFLINE commands with FORCE only in emergency situations.
2. When you fix whatever caused the system to box a device, you can take the device out of the boxed state at any time by issuing VARY device ONLINE. Once the VARY command takes effect, the device is again available for IOS and any subsequent allocations (i.e., an allocation done in another step or job, or another dynamic allocation). Note that after the VARY command takes effect, the device is not considered for the current allocation.
 You can make a boxed alias unit control block (UCB) of a parallel access volume available using the DEVSERV, QPAVS command.
3. You cannot take a boxed device out of the boxed state by replying with the device name to the allocation recovery message, IEF238D.

Boxed Device - Operator Actions

Device boxing is used by the MVS system during error recovery as a means of maintaining data integrity and preventing data corruption. A device is also boxed if the operator issues the VARY devnum,OFFLINE,FORCE command. When a device is boxed, all outstanding I/O operations for the device are ended with permanent error status, and no new allocations to the device are allowed.

It is very important to understand that in the case of shared DASD, the boxed device is boxed only to the system that originated the boxing. The device is still accessible from other systems. **This may lead to incorrect (or incomplete) data on the DASD volume.** Such a situation must be reported to the owner of the data on the boxed-DASD.

- If the data-files are shared with other systems, it is recommended to put the device in offline status on all the sharing systems. Use VARY OFFLINE or OFFLINE,FORCE commands.
After the data sets are checked and recovered, the DASD volume may be put back online.

A device that is boxed and offline can be brought back online with the VARY devnum,ONLINE command. This will enable the UCW and perform online processing to the device. Assuming that the error condition has been resolved, the device will come online. If the error condition still exists, the device may remain in the boxed state.

A device that is allocated boxed may be brought back online with the VARY devnum,ONLINE,UNCOND command, if account procedures allow. Note that in this case, if the boxed device is DASD, volume verification (that is, VOLSER checking) is not performed. In this case, the VOLSER information can be obtained by entering a VARY devnum,ONLINE command to the DASD device or then entering a MOUNT command.

A DASD device that was offline (either boxed or not boxed) has the VOLSER details obtained from the device through the VARY devnum,ONLINE command. The VOLSER information is placed in the UCB as part of the vary online operation, if the vary online is successful, that is, that no out-of-line situations exist, for example, it is not a duplicate volume.

Recovery for a Failing Alias Unit Control Block (UCB)
For a parallel access volume, the status of a base UCB affects the status of its alias UCBs. The status of an alias UCB, however, might not affect the status of its base UCB. When the system detects a problem with an alias UCB, a recovery action applies to the base and its alias UCBs. If an alias UCB becomes boxed, you can unbox the alias with the following DEVSERV command:

```
DEVSERV QPAVS,devn,UNBOX
```

Error messages that display in the following situations are the only indication that an alias UCB is boxed:
- The device is varied online
- A hardware change is activated
- The system is in recovery

Boxed Tapes under Tape Management System Control
If a boxed tape drive is controlled by a tape management system, the drive will remain in the A-BOX state. Unless the tape management system is taken down, the VARY devnum,ONLINE,UNCOND command must be used to return the tape drive to the online state.

Tape Boxed Due to Lost Assign
If tape CHPIDs, control unit, switches, or ESCON connections are incorrectly handled, a tape ASSIGN may be reset (lost). When this occurs on the last path to the tape drive, the MVS system will box the device.

If an ASSIGN lost condition occurs while a tape was loaded, the MVS system may not be able to unload the tape. If this happens, as indicated by the cartridge remaining in the drive after the job has completed, perform the following actions at the tape unit:
- Place the READY/NOT READY switch to the NOT READY position.
- Toggle the UNLOAD switch, and the tape should unload.
Printer Boxed Due to Lost Assign

If printer CHPIDs, control unit, switches, or ESCON connections are incorrectly handled, a printer ASSIGN may be reset (lost). When this occurs on the last path to the printer, the MVS system will box the device.

1. Locate the device boxed message to determine the reason for the BOX condition:
 - I/O Error
 - Lost Reserve or Lost Assign
 - Lost Last Path (No Paths)
 - UR Boxed
 - Subchannel Recovery
 - Vary Force
 - Hot I/O

2. Correct the cause of the BOX condition before proceeding. (See next chart).

3. Recover boxed device:

 Issue 'D U,,devnum,1' to Determine Device Status

```
F-BOX
Vary Device Online
'V devnum,ONLINE'
(DASD VOLSER checking,
Device Characteristics,
UCB Initialization)

O-BOX
Cause Device to go Offline
'S DEALLOC'
'D U,,devnum,1'

A-BOX
Determine Allocation
'D U,ALLOC,devnum,1'

Integrity Exposure?
No
Yes, Unsure

System Resource? *
No
Yes

Remove Allocations
'C JOBNAMEX'
'C JOBNAMEY'
'D U,,devnum,1'

IPL, or Leave
Device in
Allocated
State until
integrity
exposure
resolved

'O-BOX'

'O-BOX'
Resource Contention?
'D GRS,C'

Note: * System Resource - Any System Address Space (D A,ALL = *) or Subsystem
```

Figure 1-3. Boxed Device Recovery Procedure

The following procedures are recommended for use when a boxed condition is reported.
Table 1-3. Correcting Boxed Conditions

<table>
<thead>
<tr>
<th>Cause</th>
<th>Operator Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O Error</td>
<td>Correct the cause of the I/O error condition and then attempt to bring the device online.</td>
</tr>
<tr>
<td>Lost Reserve or Assign</td>
<td>For tape, if mount status=private, determine if any jobs were run or accesses made to the volume from any other system while it is in the boxed state. If yes, an integrity problem may exist and the device should not be varied online until the integrity of the volume can be assured. If no, you may attempt to un-BOX the device by varying it online. If the printer Assign was lost, it is possible the printer was assigned to another host. If so, first vary the printer offline from the other host and then vary online the printer to this host. Otherwise, attempt to vary the printer online to this host.</td>
</tr>
<tr>
<td>Lost Last Path</td>
<td>Return the paths to an operational state and then vary the device online.</td>
</tr>
<tr>
<td>Subchannel Recovery</td>
<td>Identify and repair resource, then vary the device online.</td>
</tr>
<tr>
<td>U/R ‘Boxed’</td>
<td>Correct the cause of the I/O error condition and then attempt to bring the device online.</td>
</tr>
<tr>
<td>VARY FORCE command</td>
<td>Determine why the operator entered the VARY devnum,OFFLINE,FORCE command. Correct the condition on the system and vary the device back online.</td>
</tr>
<tr>
<td>Hot I/O</td>
<td>Identify and repair device, then vary the device back online.</td>
</tr>
<tr>
<td>Shared Tapes</td>
<td>Identify and repair device, then enter VARY devnum,ONLINE,UNCOND to unbox the device and bring it online</td>
</tr>
</tbody>
</table>

Command Flooding

Commands that run in the *MASTER* or CONSOLE address space are divided into six command classes. In each class, only 50 commands can execute at one time. Any additional commands in that class must wait for execution.

To manage the number of commands that are awaiting execution, the system operator can issue the CMDS command to display the status of commands, remove selected commands that are awaiting execution, or cancel commands that are executing. When a command is removed before execution, the command issuer receives message IEE065I COMMAND NOT EXECUTED, CMD=command instead of the usual command response message. When a command is canceled, the command is terminated with an ABEND code 422, reason code 00010301.

Class M1 Commands

Class M1 commands are commands that are attached in the *MASTER* address space, and are considered essential to clearing a backlog of other commands:

- DISPLAY GRS
- DISPLAY MPF
- DISPLAY MSGFLD
- DISPLAY SLIP
- DISPLAY XCF
- DUMP
• DUMPDS
• QUIESCE
• SET
• SETMF
• SETXCF
• SLIP
• VARY XCF

Class M2 Commands

Class M2 commands are ordinary attached commands that run in the *MASTER* address space:
• ACTIVATE
• CONFIG
• DEVSERV
• DISPLAY ALLOC
• DISPLAY APPC
• DISPLAY ASCH
• DISPLAY ASM
• DISPLAY CEE
• DISPLAY CF
• DISPLAY CNGRP
• DISPLAY DIAG
• DISPLAY DLF
• DISPLAY DUMP
• DISPLAY ETR
• DISPLAY HIS
• DISPLAY IOS
• DISPLAY IKJTSO
• DISPLAY IPLINFO
• DISPLAY LLA
• DISPLAY LOGGER
• DISPLAY LOGREC
• DISPLAY MATRIX
• DISPLAY MMS
• DISPLAY OMVS
• DISPLAY PARMLIB
• DISPLAY PROD
• DISPLAY PROG
• DISPLAY RRS
• DISPLAY RTLS
• DISPLAY SMF
• DISPLAY SMS
• DISPLAY SSI
• DISPLAY SYMBOLS
• DISPLAY TCPIP
Class M3 Commands

Class M3 commands are ordinary attached commands that run in the *MASTER* address space. These commands can take a long time to execute, thus they require a command class different from Class M2:
Class C1 Commands
Class C1 commands are command that are attached in the CONSOLE address space, and are considered essential to clearing a backlog of other commands:
- DISPLAY CONSOLES
- DISPLAY EMCS
- DISPLAY R
- LOGOFF
- LOGON (MCS)
- REPLY
- VARY CN
- VARY CONSOLE

Class C2 Commands
Class C2 commands are ordinary attached commands that run in the CONSOLE address space:
- CHNGDUMP
- CONTROL M
- DISPLAY A
- DISPLAY C,K
- DISPLAY JOBS
- DISPLAY OPDATA
- DISPLAY PFK
- DISPLAY TS
- RESET CN
- SETCON

Class C3 Commands
Class C3 commands are ordinary attached commands that run in the CONSOLE address space. These commands can take a long time to execute, thus they require a different command class than Class C2:
- ROUTE

Inline Commands
Inline commands are not attached, but execute under the SVC 34 issuer's task. These are not subject to the limits, and cannot be displayed, removed, or canceled, using the CMDS command:
- CANCEL
- CMDS
- CONTROL (except K M)
- DISPLAY NET
- DISPLAY T
- DISPLAY TP
- FORCE
- HALT NET
- HOLD TP
Setting up hardware event data collection

Hardware instrumentation services (HIS) is a function that collects hardware event data for IBM System z10™ or later machines.

Before you start the HIS data collection, you may first need to authorize to the sampling facilities and counter set types you want to use through the support element (SE) console. For information about how to set up the authorization of the sampling facilities and counter sets, see Support Element Operations Guide for System z10 machine on the Resource Link™ home page at http://www.ibm.com/servers/resourcelink.

Steps for setting up a hardware event data collection:

1. Define a user ID for the HIS started task, hisproc. Define the user id with an OMVS segment that specifies:
 - Any UID
 - A default HOME directory

 For example, you might define the user ID as follows:

 ADDUSER hisproc OMVS(UID(25) HOME('/user'))

 See the following publications:
 - z/OS Security Server RACF Security Administrator’s Guide
 - The ADDUSER section of z/OS Security Server RACF Command Language Reference

 Note that hisproc is the name of the PROC that you use to start the data collection. The system has provided an HIS PROC in the SYS1.PROCLIB for users to start the data collection. You can use either the system-provided HIS PROC or a user-defined PROC to start the HIS address space.

2. Create the HOME directory of the user ID in a local file system. For example, for the user defined in the example in the first step, you can create the HOME directory by issuing the following mkdir command under OMVS:

 mkdir /user

 Then grant read/write/exec authority to the hisproc user on the HOME directory, which is /user in the example, with the following chmod command:

 chmod 777 /user

 Note that if instrumentation is to be run concurrently on multiple LPARs with a shared file system, a unique HOME directory (or user-specified path) must be created for each LPAR sharing the file system.

 If you are collecting .SMP files, a large amount of space is needed in the file system containing the .SMP files. You might first need to specify sufficient disk...
space for the file system. For more information about calculating the disk space for sampling output, see “Sampling function output in a .SMP file” on page 1-46.

3. Enable SMF record type 113 using either the SET SMF or SETSMF command. For example, you might enable SMF record type 113 as follows:
 a. Issue SET SMF=xx to select the SMFPRMxx parmlib member you want to update with information for SMF record type 113.
 b. Reply to the message issued in response to the SET SMF=xx command to change any SMFPRMxx parameters. For example, you might reply with the following information:
 nn,sys(type(113)),intval(01),maxdorm(0100)

 Then, reply nn,u to continue.

 This reply will prompt the system to collect type 113 records, give you 1 minute collection intervals, and the data will only stay in the buffers for 1 minute before being written to the MANA or MANB data set. You can change other SMFPRMxx parameters on the SET SMF command response or the SETSMF command. See SMFPRMxx (system management facilities (SMF) parameters) in z/OS MVS Initialization and Tuning Reference.

4. Start the HIS started task with the following command:
 START hisproc

 This command does the following:
 • Starts the Hardware Instrumentation Services (HIS) address space for the system
 • Creates a new instrumentation started task, hisproc for the system

 See “Starting Hardware Instrumentation Services (HIS)” on page 4-639 for complete information about the START hisproc command.

 Note that it is important to assign a sufficiently high dispatch priority to the instrumentation started task hisproc, so that the task can write sampling data to the .SMP output files in a timely manner.

5. Configure and start a run of data collection on a system with the following command:
 F hisproc,BEGIN

 Note that you must explicitly start each run of hardware data collection - you cannot set up data collection to start running automatically.

 You can specify in advance the duration of a run of data collection you want by using the DURATION parameter of F hisproc,BEGIN.

 If you configure a new processor online in a system after you've already issued the F hisproc,BEGIN command to start a data collection run for that system, HIS might not collect data for that processor. To ensure that data is collected for all the processors on a system, bring the processors online before beginning a hardware data event collection run. The system does not collect data on a processor that is configured offline.

 Note that z/OS IRD processor management can configure processors offline or online automatically. A processor is online at the start of the instrumentation run, but it might be configured offline (and sometimes online again) during the run. The system does not collect data on the offline processor.

 See “Start, configure, and stop hardware event data collection” on page 4-352 for complete information about the MODIFY hisproc command.
6. To explicitly stop the run of data collection on a system, use the following command:

 `F hisproc,END`

Alternatively, you can use the DURATION parameter on the `F hisproc,BEGIN` command to specify when you want a data collection run to end.

The system writes all the collected data to the UNIX® System Services output files at the path specified and to the SMF data set that is set up by the installation.

You can also use the `STOP hisproc` command to stop a run of data collection. Note that if you use the STOP command, you must restart the address space again with the `START` command before starting the next run of data collection.

See "Start, configure, and stop hardware event data collection" on page 4-352 for complete information about the `MODIFY hisproc` command.

Accessing the output from a hardware event data collection run

During a run of hardware data collection, the system writes the raw data to SMF record type 113, subtype 2 at 15 minute intervals, and the system also writes the data to one or more of the following UNIX System Services output files:

- Delta counter data file. The system writes the delta data to the UNIX System Services .CNT output file at the end of the run. The delta data is the data from between when the instrumentation run was initiated and the end of the run, showing the delta incremental values of the instrumentation run on the specified processor.

- Load map file, which is optional. The system creates one .MAP file, if requested, at the end of the data collection run. This file contains the load module mapping information for the active system on which the data collection was done.

- Sample data files, which are optional. The system creates one .SMP sample file for each active logical processor in the system. Sample data contains the addresses of the instructions being executed and the state information about a specific logical processor. Sample data is written out continuously when the data collection buffers become full.

For each data collection run, the system generates UNIX System Services output files in the HOME directory or the user-specified directory that follow the naming conventions below:

 - SYSHISyyyyymmdd.hhmms.CNT
 - SYSHISyyyyymmdd.hhmms.MAP
 - SYSHISyyyyymmdd.hhmms.SMP.cpu#

 The files your data collection run generates will depend on the `F hisproc` parameters you specify when you start the run.

 - **yyyyymmdd**
 - The year, month, and day when the `F hisproc` command was processed.
 - **hhmmss**
 - The hour, minute, and second when the `F hisproc` command was processed.

 CNT | MAP | SMP.cpu#

 Identifies the file, as follows:

 - CNT identifies a counter set data file
 - MAP identifies a load module mapping output file
• SMP.cpu# identifies a sampling function data file. cpu# is the CPU number, in hexadecimal. There is one .SMP file for each active CPU.

For example, the system creates the following UNIX System Services files for a system with 3 CPUs at 11:30:16 on 2007/05/15:

SYSHIS20070515.113016.CNT
SYSHIS20070515.113016.MAP
SYSHIS20070515.113016.SMP.0 (for cpu 0)
SYSHIS20070515.113016.SMP.1 (for cpu 1)
SYSHIS20070515.113016.SMP.2 (for cpu 2)

The following table shows when HIS generates the .CNT, .MAP, and .SMP files, based on the F hisproc, BEGIN parameters you specify:

<table>
<thead>
<tr>
<th>.CNT file</th>
<th>.MAP file</th>
<th>.SMP file</th>
</tr>
</thead>
<tbody>
<tr>
<td>By default, HIS generates a .CNT file, unless MAPONLY is specified.</td>
<td>HIS generates a .MAP file if you use any of the following F hisproc, BEGIN parameters:</td>
<td>By default, HIS generates a .SMP file, unless CTRONLY or MAPONLY is specified.</td>
</tr>
</tbody>
</table>
| • Note that HIS generates only the .CNT file and does not generate .SMP and .CNT output files if you specify CTRONLY. | • MAPASID
• MAPJOBS
• MAPONLY - Note that HIS does not generate .SMP and .CNT output files if you specify MAPONLY. | N/A |

To access the output that HIS generates in your UNIX System Services files in your HOME directory or the user-specified directory, use the OBROWSE command on the file, or else use OGET to copy the files to MVS and access the output data there.

Interpreting the UNIX System Services output files

Counter sets output in a .CNT file

Usually, the system generates a .CNT output file after the data collection run. You can request the system to generate only the delta counter data information in your data collection run by specifying CTRONLY parameter on the F hisproc, BEGIN command. HIS returns the delta data in an UNIX System Services output file (SYSHISyyyyymmdd.hhmmss.CNT) in your HOME directory or the user-specified directory.

There are four types of counter sets from which you can collect the .CNT output files:

• Basic counter set
• Problem state counter set
• Extended counter set
• Crypto activity counter set

See "Start, configure, and stop hardware event data collection" on page 4-352 for more information about how to select the type of the counter data set on the MODIFY hisproc command.
The following shows one example of the .CNT output file that is embedded in the message text of HIS019I. The output contains counter values for the BASIC, PROBLEM-STATE, CRYPTO-ACTIVITY, and EXTENDED counter sets on a system with two processors.

HIS019I EVENT COUNTERS INFORMATION
FILE NAME: SYSHIS20080908.163110.CNT
COMMAND: MODIFY HIS,B,TT='testrun',CTR=ALL,ST=D,DL=STOP,PATH='/nalick',DU R=10
LOST SAMPLES: 0
COUNTER VERSION NUMBER 1: 1 COUNTER VERSION NUMBER 2: 1

COUNTER SET= BASIC
COUNTER IDENTIFIERS:
0: CYCLE COUNT
1: INSTRUCTION COUNT
2: L1 I-CACHE DIRECTORY-WRITE COUNT
3: L1 I-CACHE PENALTY CYCLE COUNT
4: L1 D-CACHE DIRECTORY-WRITE COUNT
5: L1 D-CACHE PENALTY CYCLE COUNT

START TIME: 2008/09/08 16:31:10 START TOD: C2F789571AF55401
END TIME: 2008/09/08 16:41:10 END TOD: C2F78936C019485
COUNTER VALUES (HEXADECIMAL) FOR CPU 00:
 0- 3 00000180D2CC5BC 0000007008180344 000000001C70800B 00000075EC930CC
 4- 7 000000049969CA6E 0000038293A6087

START TIME: 2008/09/08 16:31:10 START TOD: C2F789571C2D7F81
END TIME: 2008/09/08 16:41:10 END TOD: C2F78936C048085
COUNTER VALUES (HEXADECIMAL) FOR CPU 01:
 0- 3 0000016C91D5805D 000000530A6E94CA 00000000135AA167 00000053E4933A1
 4- 7 000000003BE07874 0000002E1D147B8A

COUNTER SET= PROBLEM-STATE
COUNTER IDENTIFIERS:
32: PROBLEM-STATE CYCLE COUNT
33: PROBLEM-STATE INSTRUCTION COUNT
34: PROBLEM-STATE L1 I-CACHE DIRECTORY-WRITE COUNT
35: PROBLEM-STATE L1 I-CACHE PENALTY CYCLE COUNT
36: PROBLEM-STATE L1 D-CACHE DIRECTORY-WRITE COUNT
37: PROBLEM-STATE L1 D-CACHE PENALTY CYCLE COUNT

START TIME: 2008/09/08 16:31:10 START TOD: C2F789571AF55401
END TIME: 2008/09/08 16:41:10 END TOD: C2F78936C019485
COUNTER VALUES (HEXADECIMAL) FOR CPU 00:
 32- 35 0000001271B1AFO 00000002EDD5B3C 000000001A9091F7 00000075EC90718
 36- 39 00000000140615F 0000038293A466E

START TIME: 2008/09/08 16:31:10 START TOD: C2F789571C2D7F81
END TIME: 2008/09/08 16:41:10 END TOD: C2F78936C048085
COUNTER VALUES (HEXADECIMAL) FOR CPU 01:
 32- 35 00000000B0BA6310 00000000C7E9FF8 0000000010FAECB 00000053E492778
 36- 39 000000000CC437A 000002E1D145C4B

COUNTER SET= CRYPTO-ACTIVITY
COUNTER IDENTIFIERS:
64: PRNG FUNCTION COUNT
65: PRNG CYCLE COUNT
66: PRNG BLOCKED FUNCTION COUNT
67: PRNG BLOCKED CYCLE COUNT
68: SHA FUNCTION COUNT
69: SHA CYCLE COUNT
70: SHA BLOCKED FUNCTION COUNT
71: SHA BLOCKED CYCLE COUNT
72: DEA FUNCTION COUNT
73: DEA CYCLE COUNT
74: DEA BLOCKED FUNCTION COUNT

Chapter 1. System Operations 1-43
75: DEA BLOCKED CYCLE COUNT
76: AES FUNCTION COUNT
77: AES CYCLE COUNT
78: AES BLOCKED FUNCTION COUNT
79: AES BLOCKED CYCLE COUNT

START TIME: 2008/09/08 16:31:10 START TID: C2F789571AF55401
END TIME: 2008/09/08 16:41:10 END TID: C2F78936C019485
COUNTER VALUES (HEXADECIMAL) FOR CPU 00:
64- 67 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
68- 71 0000000005ABB85D 00000000012EF94870F 0000000000000000 0000000000000000
72- 75 0000000005E0C165 000000000632A0775E 0000000000000000 0000000000000000
76- 79 0000000000ACF18D 00000000005E0C165 0000000000000000 0000000000000000

START TIME: 2008/09/08 16:31:10 START TID: C2F789571C27F81
END TIME: 2008/09/08 16:41:10 END TID: C2F78936C048085
COUNTER VALUES (HEXADECIMAL) FOR CPU 01:
64- 67 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
68- 71 0000000005FB20 00000000013F0CA4C6D 0000000001B7CA 00000040FA5733
72- 75 00000000060F2989 00000007812E3E13 00000000063797 0000000000C4C7899
76- 79 000000000B2557F 00000023091B160E 0000000005C644 0000000000E46F64

COUNTER SET= EXTENDED
COUNTER IDENTIFIERS:
MODEL DEPENDENT INFORMATION NOT AVAILABLE

START TIME: 2008/09/08 16:31:10 START TID: C2F789571AF55401
END TIME: 2008/09/08 16:41:10 END TID: C2F78936C019485
COUNTER VALUES (HEXADECIMAL) FOR CPU 00:
128-131 000000001A301883 000000001613A3AB 0000000015B0BA9 0000000270406BD
132-135 000000000000004E 000000000005A7B1 000000000C4C7899 00000000040FA5733
136-139 000000000E70E461 00000000003ED589 00000000018EA8C2 000000000BD00347
140-143 00000000069C7278 00000000003098AB 0000000000000000 000000075EC936ED
144-147 0000000000FD0A6A 000000000049 0000000000000000 0000000000000000
148-151 00000000069C7278 00000000003098AB 0000000000000000 000000075EC936ED

START TIME: 2008/09/08 16:31:10 START TID: C2F789571C27F81
END TIME: 2008/09/08 16:41:10 END TID: C2F78936C048085
COUNTER VALUES (HEXADECIMAL) FOR CPU 01:
128-131 000000001173E666 000000000E57A2E2 000000000151A481 0000000270406BD
132-135 0000000000000049 000000000003DABA 000000000894E77C 00000000094CC64
136-139 000000000E70E461 0000000000223355 0000000001191A4E 00000000075EC936ED
140-143 00000000069C7278 00000000003098AB 0000000000000000 000000053E4935C3
144-147 0000000000FD0A6A 000000000049 0000000000000000 0000000000000000
148-151 00000000069C7278 00000000003098AB 0000000000000000 000000053E4935C3

Load module mapping output in a .MAP file
You can request load module mapping output information in your data collection run using any of the following parameters on the F hisproc,BEGIN command:

- MAPONLY
- MAPASID
- MAPJOB

HIS returns the load module mapping data in a UNIX System Services output file (SYSHISyyyyymmdd.hhmms.map) in your HOME directory or the user-specified directory.

This load module mapping data contains information about the virtual address ranges of various modules loaded on the system. You can request this module address information for one address space, for several address spaces, or for all active address spaces using the F hisproc,BEGIN MAPASID and MAPJOB
parameters. The .MAP file also provides information about the virtual addresses of Nucleus CSECTs, and modules loaded into LPA. Modules may also be further divided into CSECTs.

The data in a .MAP file is useful for understanding the other information HIS returns in a data collection runs. For example, HIS generates .SMP files containing virtual addresses. The module map allows you to determine how many of these samples are associated with a specific module, which helps you estimate the relative amount of activity in the module. For example, assume that module A is an LPA module that starts at x'00CC7000' and ends at x'00CC73FF'. When you look at the sample data provided by HIS, you may see that 50,000 of the 1,000,000 samples provided by HIS have virtual addresses between x'00CC7000' and x'00CC73FF'. Based on this, you can estimate that 5% of our CPU time is spent in module A during the time that HIS is capturing data.

The following example shows very important portions of a possible .MAP output:

```
I SYS SY1
I SMFIBM2
I OS z/OS
I FMI0HB7750
I DATE08091
I TIME1631192
I MAP V1R1
I LP1000000000
I MACO00000297
 BDY PRIVATE 00000000008FFFFF
 BDY CSA 0090000000B2FFF
 . . .
 CNNUC IECVPRNT00FD700000FD74F7
 ENNUC PRTDSE 00FD7006
 ENNUC PRTSIO 00FD700C
 . . .
 MPPLPAIGG019T80000E460000BDE53F
 MPPLPAIGG019TX0000540000BDE5DF
 . . .
 MMPLPAIEFACTRT06663CD0006663EBF VOLSER=CTTPAKDSN=ARTMVS.EXITS.LOAD
 CMPLPAIEFACTRT06663CD0006663EBF
 MMPLPAZBREARR24CA6663EBF
 . . .
 MX0002IEAXM125B0000025B001FC7PC000000000000000BDE53F
 CX0082IEAXM125B0000025B001167
 . . .
 MX0003IAXDINIT25B0000025B0087RASP VOLSER=ZD110 DSN=SYS1.NUCLEUS
 CX0003IAXDI 25B0000025B0087
 . . .
 MX0040+PATHNAM314DD00003146EFFUSERTST1/usr/lpp/java/bin/libzip.so
 MX0040CREESTART314D000314D0D0F
```

The following shows explanations that can help you interpret a .MAP file.

Table 1-4. Interpreting the information in a .MAP file from hardware data collection

<table>
<thead>
<tr>
<th>Field name</th>
<th>Offset</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record type</td>
<td>0</td>
<td>1</td>
<td>Text</td>
<td>I=Information, B=Boundary, M=Module, C=CSECT, E=Entry Point</td>
</tr>
</tbody>
</table>
Table 1-4. Interpreting the information in a .MAP file from hardware data collection (continued)

<table>
<thead>
<tr>
<th>General Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory area 1</td>
</tr>
<tr>
<td>ASID 2</td>
</tr>
<tr>
<td>Name 6</td>
</tr>
<tr>
<td>Start address 14</td>
</tr>
<tr>
<td>End address 22</td>
</tr>
<tr>
<td>Job name 30</td>
</tr>
<tr>
<td>Long name 38</td>
</tr>
</tbody>
</table>

Sampling function output in a .SMP file

The system generates one .SMP file for each active logical processor. You can choose the sampling function type that the system performs during a data collection run by specifying the SAMPTYPE parameter on the F hisproc.BEGIN command. The system can perform two types of sampling functions:

- Basic sampling
- Diagnostic sampling

See "Start, configure, and stop hardware event data collection" on page 4-352 for more information about how to specify the sampling function type on the MODIFY hisproc command.

HIS returns sampling data entries in a UNIX System Services output file (SYSHISyyymmd.hhmmss.SMP.cpu#) in the HOME directory or the user-specified directory. The .SMP files are not printable.
If collecting .SMP files, large amounts of space might be needed in the file system containing the .SMP files. You might need to specify the disk space needed for the file system that the sampling data is written in when you set up a hardware event data collection. Sampling buffers are 4KB in size. The last 64 bytes of each buffer are reserved for system use. A basic sample is 32 bytes in length. A diagnostic sample is 64 bytes in length. The required disk space depends on the amount of samples that need to be captured.

For basic sampling, the number of samples that fit in each 4KB buffer is \((4096-64)/32 = 126\). If only the basic sampling is requested, the disk space can be calculated by the formula: \((\text{Number of basic samples} / 126) \times 4K\).

If diagnostic sampling is requested, basic sampling is also automatically included. Hence a combined basic and diagnostic sampling takes three times as much disk space as basic sampling alone.

Basic sampling entry

The basic sampling function is the standard part of the CPU-measurement sampling facility and is the default sampling function type. If the system performs basic sampling function, HIS returns the basic sampling entry data in a .SMP output file. The following figure shows the data structure of a basic sampling entry.

In the basic sampling data entry:

Data entry format code

Bits 0–15 of the data entry contains the format code of the data entry.

Reserved (R)

Bits 16-19 of the data entry are reserved for programming use. Zeros are stored in this field.

Number of unique instructions (U)

Bits 20-23 of the data entry specify the number of unique, completed instructions that were executed simultaneously during the sampling cycle when the unique cycle indicator is on.

DAT mode (T)

Bit 26 of the data entry contains the DAT mode bit in the PSW of the CPU.
Wait state (W)
Bit 27 of the data entry contains the wait state bit in the PSW of the CPU.

Problem state (P)
Bit 28 of the data entry contains the problem state bit in the PSW of the CPU.

Address-space control (AS)
Bits 29-30 of the data entry contain the address-space control in the PSW of the CPU.

Invalid indication (I)
Bit 31 of the data entry indicates whether the entry is valid or not. When the bit is zero, the entry is valid; when the bit is one, the entry is not valid. An entry is set to not valid when sample data in the entry is not consistent.

Reserved
Byte offsets 4-5 of the data entry are reserved. Zeros are stored in this field.

Primary ASN
Byte offsets 6-7 of the data entry contains the primary ASN in bits 48-63 of control register

Instruction address
Byte offsets 8-15 of the data entry contains the instruction address of an instruction that the logical processor was executing during the sampling cycle.

Guest program parameter
Byte offsets 16-23 of the data entry contains the program parameter set by the most recent SET PROGRAM PARAMETER instruction executed by the processor running at the virtual-machine level.

Note that the program parameter of z/OS is always stored in the guest program parameter field.

Host program parameter
Byte offsets 24-31 of the data entry contains the program parameter set by the most recent SET PROGRAM PARAMETER instruction executed by the processor running under VM.

The z/OS dispatcher stores the 8-byte guest program parameter instruction at each dispatch to identify the currently executing address space or task to the hardware. This program parameter with the address space or task ID is included in the basic sampling output.

Note: The z/OS system only uses the guest program parameter. The key fields in the guest program parameter are: Wait (W), SRB mode (S), TCB address, WEB address, and HOME ASN. The Task ID token and Partial WEB Address fields provide additional information for identifying the dispatched work units (task or SRB).

If running under a TCB, the data structure of the guest program parameter is shown as follows:
If running under an SRB, the data structure of the guest program parameter is shown as follows:

<table>
<thead>
<tr>
<th>0</th>
<th>Reserved</th>
<th>TCB address</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>S</td>
<td>Task ID token</td>
</tr>
</tbody>
</table>

Figure 1-5. Data structure of a guest program parameter under a TCB

If running under an SRB, the data structure of the guest program parameter is shown as follows:

<table>
<thead>
<tr>
<th>0</th>
<th>WEB address</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>S Home ASN</td>
</tr>
</tbody>
</table>

Figure 1-6. Data structure of a guest program parameter under an SRB

In the structure of a guest program parameter:

W (1 bit)
Wait is dispatched. The processor is going into a waiting state.

TCB address (24 bits)
The address of the TCB for which the instruction address is being recorded in the sample entry.

S (1 bit)
SRB mode. If the value of S is one, the work is processed in SRB mode. This bit is always zero when running in task mode.

Home ASN (15 bits)
The HOME ASID of the task or SRB for which the instruction address is being sampled.

Task ID token (16 bits)
The Task ID token provides additional identify information on the task to differentiate it from other tasks within the same ASID.

WEB address (32 bits)
WEB address of the SRB for which the instruction address is being recorded in the sample entry.

Partial WEB address (16 bits)
Partial WEB address provides additional identify information on the SRB to better differentiate it from other SRBs within the same ASID.

Diagnostic sampling entry
The diagnostic sampling function is optional. The diagnostic sampling function provides details of the internal hardware design. If you want to use the diagnostic sampling function, you must first authorize to the diagnostic sampling function on the SE console. When diagnostic sampling is requested, basic sampling is also automatically selected. A basic sampling entry is automatically written ahead of each diagnostic sampling entry. HIS returns both the basic sampling entry data and the diagnostic sampling entry data in a .SMP output file. A basic sampling entry is automatically written ahead of each diagnostic sampling entry. The data format of a diagnostic sampling entry varies on different models. The following figure shows the general data structure of a diagnostic sampling entry.

Chapter 1. System Operations 1-49
In the diagnostic sampling entry:

Data entry format code
Bits 0–15 of the data entry contains the format code of the data entry.

Reserved (R)
Bits 16-19 of the data entry are reserved for programming use. Zeros are stored in this field.

Invalid indication (I)
Bit 31 of the data entry indicates whether the entry is valid or not valid. When the bit is zero, the entry is valid; when the bit is one, the entry is not valid. An entry is set to not valid when sample data in the entry is not consistent.

Structure
Byte offsets 4-64 of the data entry contains the various structures for the diagnostic sampling entries on different models.

Responding to Failing Devices

Whenever a device fails, you can use the SWAP command to invoke dynamic device reconfiguration (DDR), which allows you to move or swap a demountable volume from the device.

Using the SWAP command, you can also turn on or off system-initiated swapping requests. When DDR is on, the system dynamically performs the swapping function whenever the originally-allocated device encounters device errors. DDR tells you to mount the volume on another available device. When the swapping function is turned off, you can invoke operator-initiated DDR by issuing the SWAP command and specifying the “from” and “to” device numbers. (See the SWAP command in Chapter 4)

When swapping tape devices, the “from” and “to” devices should have the same density whenever possible. Swapping devices of unlike but compatible densities (for example, 1600 and 1600/6250) can cause the failure of jobs that are in device allocation at the time of the swap.

On JES3 systems, DDR interfaces with JES3 to ensure that the “to” device has not been assigned to another job or function. When the swap is complete, DDR notifies JES3.

The following devices are supported by DDR:
- 3400 series tape drives.
• 2501, 2540, 3505, 3525, 1403, and 3211 unit record devices. These devices are not swapped by system-initiated DDR; you must issue the SWAP command to swap these devices.

The following devices are not supported by DDR:
• Graphic or teleprocessing devices.
• Shared DASD devices, unless the device is swapped to itself.
• Any device holding a permanently-resident volume, such as a system residence or page data set volume.

Quiescing the System
Issuing the QUIESCE command causes the system to suspend the processing of all active jobs and to prevent the starting of any new ones. The system enters the MANUAL state, the MANUAL indicator is on, and no processing is being done. Quiescing the system does not affect any job step timings (for accounting purposes). Issue the QUIESCE command from any console with MASTER authority. You can continue processing by performing the restart function.

Do not issue a SYSTEM RESET after quiescing the system if you intend to issue a RESTART after the quiesce. Issuing a SYSTEM RESET will cause the system to enter an enabled wait state.

Stopping the System
When all processing (including subsystem processing) has finished, use the HALT command to ensure that all system statistics and data records in storage are collected for system recording facilities.

Recovery from Hardware Problems
Recovery is the attempt by the hardware, operating system, operator, automation, or any combination of these, to correct system malfunctions and return the system to a state in which it can do productive work. Recovery from some hardware errors is automatic; that is, the hardware recovers without any actions from the operating system or intervention by the operator or automation. Recovery from other hardware errors requires overt actions from the operating system, operator, and/or automation. For example, to keep the system in operation, the operator or the system can configure offline a failing unit, such as a storage element, a processor, or a channel path. The system continues processing, possibly with some degradation.

The process of recovery includes the following:
• Hardware to operating system communication and corrective actions
• Operator to operating system communication and recovery actions

Hardware Problems
This chapter describes the following categories of hardware malfunctions:
• Central processor (CPU) errors
• Service processor damage
• Storage errors
• Channel subsystem errors
• I/O device errors
For each of these categories, the discussion includes the effect on system operation and the recovery actions taken, if any. This chapter also presents some additional recovery actions.

Hardware to Operating System Recovery Actions

When CPU errors, service processor damage, storage errors, or channel subsystem errors occur, except for some I/O errors, the hardware notifies the operating system with a machine check interruption. Machine check interruptions fall into one of three classes depending on the severity of the error. The classes are:

- **Soft (or repressible) errors**: Least severe type. Generally these errors do not affect the operation of the task currently in control. Soft errors can be disabled (repressed) so that they do not cause a machine check interruption.
- **Hard errors**: Malfunctions that affect the processing of the current instruction or make incorrect the contents of hardware areas, such as registers.
- **Terminating errors**: Malfunctions that affect the operation of a CPU.

Hard and terminating errors are also referred to as *exigent errors*.

Information Provided with Machine Checks

When the hardware detects a failure, it stores the following information about the failure:

- The machine check interrupt code (MCIC), which contains:
 - Information about the severity of the error
 - The time of the error, in relation to the current instruction stream
 - An indication of whether the processor has successfully stored additional information about the error

The MCIC is the major interface between the hardware and the operating system, which uses the MCIC to determine what action to take.

- The save areas that contain the values of the general, floating point, control, and access registers, the CPU timer, and the clock comparator.
- The machine check old program status word (PSW), which contains the PSW at the time of error.
- The fixed logout area, which is implemented on only some processor complex models.

Reference Book

See the *Principles of Operation* for the format and content of the MCIC, register and timer save areas, extended interrupt information, machine check old PSW, and fixed logout area.

CPU Errors

CPU errors result from a malfunction of a hardware element, such as a timing facility, instruction-processing hardware, or microcode. When a CPU error occurs, the recovery processing has, in general, two stages depending on the severity and type of error:

1. When possible, the hardware retries the failing operation a certain number of times. If the retry works, the hardware may issue a recovery machine check
interruption, which is repressible, so that the operating system can record the error in the logrec data set. After recording, the operating system returns control to the interrupted task.

2. If the error is too severe for hardware retry or the retries fail, the hardware issues either a hard or ending machine check interruption. The system determines the severity of the error and takes the appropriate action, which may range from ending the interrupted task to ending the entire system.

The next topics describe the following CPU errors:

- Soft CPU errors
- Hard CPU errors
- Ending CPU errors

Then the recovery actions of alternate CPU recovery (ACR) are described.

Soft CPU Errors

The CPU errors that can result in a soft machine check are:

- **System Recovery (SR)**: A malfunction has occurred, but the hardware has successfully corrected or circumvented it.
- **Degradation (DG)**: A continuous degradation of system performance has been detected.

The operating system does not inform the operator about the occurrence of soft machine checks until the threshold for a given type is reached. The default threshold set for an SR machine check is 50, and for a DG machine check it is 1. When a threshold for a type of machine check is reached, the system issues message IGF931E.

The MODE command allows the operator to change the threshold value for either SR or DG machine checks, and to specify what processing should be done when the threshold is reached.

- The operator can specify that at the threshold the CPU be disabled for that type of machine check, that is, be put in quiet mode.
- If the MODE command specifies RECORD=ALL for a particular type of machine check, the system does not enter quiet mode; it records all instances of the specified type of machine check in the logrec data set. The operating system issues message IGF931E when the number of machine checks reaches a multiple of the threshold. For example, if REPORT=3 is specified, message IGF931E appears after the third, sixth, ninth, twelfth machine checks, and so on.

Numerous IGF931E messages appearing on the console might indicate a performance degradation. In this case, the installation might want to configure offline the processor that is experiencing the errors. Hardware support personnel can repair the offline processor.

Hard CPU Errors

A hard machine check indicates that the current instruction could not complete. The system records the error in the logrec data set. Then the system either abnormally ends the interrupted task or retries the interrupted task at a predefined retry point. Even though the task may be ended, the system usually continues to run.

The CPU errors that cause hard machine checks are:

- **System Damage (SD)**: A malfunction has caused the processor to lose control over the operation it was performing to the extent that the cause of the error cannot be determined.
• **Instruction Processing Damage (PD):** A malfunction has occurred in the processing of an instruction.

• **Invalid PSW or Registers (IV):** The hardware was unable to store the PSW or registers at the time of error, as indicated by validity bits in the MCIC. Any error, even a soft machine check, associated with these validity bits is treated as a hard machine check because the operating system does not have a valid address to use to resume operation. The error goes through recovery processing.

• **Timing Facility Damage:** Damage to the following has been detected:
 - TOD clock (TC)
 - Processor timer (PT)
 - Clock comparator (CC)
 - External Time Reference (ETR)

 The four types of ETR-related machine checks are: primary synchronization damage, ETR attachment damage, switch to local, and ETR synchronization check.

To overcome the effects of numerous hard machine checks, the MODE command allows the operator to define machine check thresholds for each type. When reached, the thresholds cause the failing processor to be configured offline by alternate CPU recovery (ACR). Thus, the operator can control whether, and to what extent, the system monitors the frequency of hard machine checks, and can define a separate threshold and time interval for each.

The default threshold value for most hard machine checks is 5. The default for PD machine checks is 16. The default for ETR machine checks is 5 in 300 seconds.

Terminating Errors on CPUs

A terminating machine check occurs when the operating system or the hardware considers a failure severe enough that a processor cannot continue operation.

In a uniprocessor (UP), the operating system enters a disabled non-restartable wait state, such as X'A01' or X'A26', and issues the following message:

```
IGF910W UNRECOVERABLE MACHINE FAILURE, RE-IPL SYSTEM
```

In a multiprocessor (MP), the action taken is as follows:

- If the hardware determines that a processor cannot continue operation, it places the processor in a check-stop state and attempts to signal the other processor(s) by issuing a malfunction alert (MFA) external interruption. The hardware issues an MFA when:
 - It cannot store the machine check logout data about the error.
 - It cannot load the machine check new PSW.
 - It is disabled for hard machine checks when a hard error is detected.

- If the operating system determines that a processor cannot continue operation, it attempts to signal the other processor(s) by issuing a Signal Processor (SIGP) instruction to cause an emergency-signal (EMS) external interruption. The operating system issues an SIGP instruction when:
 - The system is processing one machine check when another machine check occurs that cannot be handled.
 - A hard-machine-check threshold, which is an installation option established by entering the MODE command, has been reached.
 - Channel subsystem damage is detected.
 - The content of the MCIC is incorrect.
When a processor receives either an MFA or EMS external interruption for these conditions, the system receives control. The system, in turn, invokes ACR processing, which takes the malfunctioning processor offline and initiates recovery processing for that processor.

In a multiprocessor environment, an MFA or EMS is received by all the other online processors. On the first processor to receive the signal, the system tests and sets a flag before starting to process the error. When the other processors receive the interruption, the system sees that the error is already being processed and returns to the interrupted task.

Terminating Errors on Multiprocessors: In a multiprocessor, failure of some hardware elements may cause a terminating error on more than one CPU. It is possible that a terminating error may occur on a CPU while alternate CPU recovery (ACR) is still processing a terminating error on another CPU. In either case, the system puts the system into non-restartable wait state X'050'.

Alternate CPU Recovery (ACR)
ACR is a function that is initiated on an operative CPU when that CPU receives a signal that another CPU has had an ending error. ACR has two major functions:
- To configure offline the malfunctioning CPU
- To initiate the release of system resources held on the malfunctioning CPU

If the failing CPU has an Integrated Cryptographic Feature (ICRF), the ICRF is also taken offline.

ACR initiates the release of any resources held on the failing CPU by causing control to pass to the recovery routines for the work on the failing CPU. ACR allows the operating system to continue its normal operation on the remaining CPU(s), although the task that was interrupted by the error on the failing CPU might be ended.

When ACR is complete, it issues message IEA858E stating that ACR is complete and identifying the CPU that was configured offline. At this point, the operator can try to configure the failing CPU back online using a CONFIG CPU(x),ONLINE command. The configuration online might, or might not, be successful depending on the error that caused the CPU to be configured offline.

Some hardware malfunctions might cause a subsequent CONFIG CPU(x),ONLINE command to that CPU to fail, or might cause the problem to recur when the CPU is brought back online. In these cases, hardware support personnel need to service the CPU before it can be successfully brought back into the system.

However, if a CPU was configured offline because a threshold was reached or because of an operating system problem, a subsequent request to configure the CPU back online might work.

Service Processor Damage

Permanent Failure
When the system detects that the service processor is permanently, completely failing, the system receives a service processor damage machine check. The system also notifies subsystems about the damage.

For a permanent failure, the system issues the following message:
THE PROCESSOR CONTROLLER HAS FAILED. SOME CRITICAL SYSTEM FUNCTIONS HAVE BEEN DISABLED. AN ORDERLY SHUTDOWN OF THE ENTIRE SYSTEM SHOULD IMMEDIATELY BE ATTEMPTED IN ORDER TO MINIMIZE THE IMPACT OF THIS FAILURE.

After this message, the operator can optionally perform an orderly shutdown of the system. Processing can continue, but when a function of the service processor is required, the system may become inoperative. To recover, the operator then performs an initial microprogram load (IML).

Temporary Failure

If a service processor fails temporarily or partially and is in I/O Support Processor (IOSP) concurrent maintenance mode, the system continues operating but cannot perform certain functions.

For a temporary failure, a message with the prefix ARRP is issued to the operator.

In IOSP concurrent maintenance mode, certain functions of the operating system will not work or will work incompletely.

Storage Errors

The hardware detects and corrects storage errors where possible. The system is informed of the error by a machine check interrupt. The system invokes recovery routines.

If the storage error is detected during an I/O operation, however, the operation is ended with either a channel data check or a channel control check, depending on whether the error was encountered during data transfer or fetching of the channel control word (CCW) and indirect data address word (IDAW). No machine check interrupt is generated in this case. Error recovery procedures (ERPs) recover from this type of error.

Soft Storage Errors

The soft storage errors are system recovery (SR) errors with the storage error corrected flag set in the MCIC to indicate that the storage controller was able to repair the error.

When a storage error corrected (SC) condition occurs, along with storage degradation (DS), the system attempts to stop using the affected frame. This action eliminates performance degradation that would result from hardware correction of later occurrences of the same error. It also minimizes the chance that the same problem will later occur as a storage error uncorrected.

If the frame contains pageable data, the system moves that data to another frame, and the original frame is marked offline. If the data in the frame cannot be moved, the frame is marked pending offline, and is subsequently taken offline if the frame is released or if its contents are made pageable. Note that, before the system takes a frame offline, it tests the frame; if it has no errors, the frame is returned to available status.

The threshold for SR machine checks affects the ability of the system to deal with storage error corrected conditions. The default threshold is 50 SR machine checks. The operator can change the SR threshold with the MODE operator command. When the threshold is reached, the system disables SR machine checks. This action prevents a subsequent storage error corrected from being presented. The system then does not take any action to remove the affected frame.
Hard Storage Errors
This section deals with these types of hard storage errors:

- **Storage error uncorrected**: Indicates that the hardware could not repair a storage error.
- **Key in storage error uncorrected**: Indicates that the hardware could not repair a storage key that was in error.

When a hard storage error occurs, the operating system attempts recovery. For a storage key problem in a frame containing a virtual page, the operating system tries to reset the key. If the reset fails and the page is not fixed, the operating system moves the page to a new frame, setting the key in the new frame as required.

If recovery cannot repair the error, the operating system either takes the storage frame offline or marks it pending offline. *Pending offline* means that the operating system will take the frame offline when the frame becomes free.

A **storage error uncorrected** condition represents the potential loss of critical data. When this condition occurs with a PD machine check, the system in most cases ends the affected unit of work. If the recovery routines complete successfully so that the affected storage frame is freed, the frame is marked offline and system processing continues. The recovery processing, however, could try to refer to the storage that originally caused the machine check, thus causing further errors. Such action could result in the PD threshold for machine checks being reached, thus taking a CPU offline.

The default threshold for PD machine checks is 16 in 5 minutes. The operator can change this threshold by means of the MODE operator command.

Effects of Storage Errors
Errors in critical areas of storage may cause the hardware system or the operating system to become inoperative. Those areas of storage and the effect of an error are as follows:

- **Hardware storage area (HSA)**: An uncorrectable storage error in the HSA causes the system to enter a check-stop state. The system can be recovered by two actions:
 1. Power-on reset (POR) or a SYSIML CLEAR service language command
 2. IPL
- **Nucleus**: A storage error in nucleus pages requires an IPL for recovery. If the IPL fails, recovery requires either a power-on reset or a SYSIML CLEAR, followed by an IPL.
- **Link pack area (LPA), system queue area (SQA), and local SQA (LSQA)**: A storage error in SQA could have the same effects as a nucleus storage error. For a storage error in LPA, the operating system handles recovery. Normally, only the associated job is ended with the remainder of the system unaffected.

High Speed Buffer (Cache)
A processor cache error can result in the loss of the processor and possibly the system. The storage frame corresponding to any changed data in the cache is marked with an uncorrectable storage error. Because the cache might contain critical system data, recovery might require an IPL.
Channel Subsystem Errors

If the channel subsystem fails, the hardware generates a channel subsystem damage machine check interrupt. The resultant processing enters the entire system into non-restartable wait state X'A19' and issues message IOS019W.

Channel Report Words (CRWs)

When the channel subsystem detects an error, it does the following:

- Builds a CRW that describes the error
- Queues the CRW for retrieval by the operating system
- Generates a machine check interrupt with the CRW pending indicator set in the machine check interrupt code (MCIC)

The operating system records the CRW in a logrec data set error record. The CRW contains a code that indicates the source of the error: the channel path, the subchannel, channel configuration alert, or the monitoring facility.

Reference Book

See Principles of Operation for additional information on CRWs.

Channel Path Recovery

If the CRW indicates that a channel path caused the machine check, the system attempts to recover the channel path or route I/O down an alternate channel path. If multiple CRWs indicate errors on different channel paths, a failure in the hardware elements common to those channel paths may be indicated.

The channel path conditions fall into two categories:

- Expected: An expected channel path condition occurs as a result of a previous recovery action taken for an unexpected channel path error, and indicates the result of the action.
- Unexpected: An unexpected channel path error occurs with no warning.

The channel path conditions indicated in a CRW are:

- A terminating error condition on the channel path.
- A permanent error on the channel path; a system reset to the channel path has not been done.
- A permanent error on the channel path; a system reset to the channel path has been done.
- An initialized condition on a channel path, that is, an error recovered by the channel subsystem; a system reset to the channel path has been done.

Terminating Error: A terminating error condition is unexpected only; it is never the result of a previous recovery action. A terminating error condition indicates that the channel path is not permanently lost, but cannot be used until the error condition is reset. In this case, the system attempts to reset the channel path. The CRW that results from this reset is an expected CRW, and it will indicate whether the reset corrected the problem in the channel path.

For a failing channel path that has a device with an outstanding reserve, the system handles the condition in three different ways, depending on whether the device supports dynamic pathing, supports unconditional reserve, or does not support unconditional reserve. The system actions are:
For a dynamic pathing device with multiple paths, no action is taken until the expected CRW is received.

For a non-dynamic pathing device that supports unconditional reserve, such as a 3350 Direct Access Storage, the system issues an unconditional reserve command to the device to move the reserve to an alternate path.

For a non-dynamic pathing device that does not support unconditional reserve, such as a 3330 Disk Storage, or for a reserved/assigned device with only one path, the system issues message IOS063E (or IOS062E) to request that the operator stop I/O to the shared devices (see Figure 1-8 and the accompanying description). The system then tries to recover the channel path.

Note: Since stopping I/O to shared devices may require a certain level of multi-system disruption and coordination, users may wish to avoid this processing. Through the use of the TERMINAL BOX_LP(device_class1,...,device_classN) statement in the IECIOSxx Parmlib member, users can cause devices in the specified device class to be BOXED rather than having to undergo multi-system disruption to recover the channel path to the device. For more information on the use of the TERMINAL statement in IEAIOSxx, see z/OS MVS Initialization and Tuning Reference.

Figure 1-8. DASD Devices Shared Between Two Systems

Figure 1-8 shows two DASD devices that are shared between two systems. When system 1 encounters a channel path error on channel path 01, indicated by message IOS063E (or IOS062E), the operator should stop I/O to the shared devices from system 2 to maintain data integrity during recovery of the channel path.
Recovery Actions for a Channel Path Error with Shared DASD or Assignable Devices:

1. Identify which devices on channel path 01 on system 1 are shared with system 2.
2. Enter the IOACTION STOP command on system 2 to stop I/O on the shared devices. The device numbers may not be the same on both systems.
3. Restart system 1.
4. Wait for the system to issue message IOS204E (or IOS201E), indicating that channel path recovery is complete.
5. Enter the IOACTION RESUME command on system 2 to allow I/O to resume to the shared devices.

Notes:

1. Do not leave devices in the stopped state any longer than necessary to perform recovery. A shortage of SQA storage can result from stopping I/O for extended periods.
2. Before stopping a device, enter the D U,DASD,ALLOC,xxx command to determine which system resource's I/O will be affected. If any system oriented I/O will be stopped, the system could appear frozen. This situation will last until I/O resumes to the device.

Permanent Error Condition: A permanent error condition, whether expected following a Reset to a channel path in an ending condition or unexpected, results in the system taking that channel path offline. Any active I/O requests are retried on alternate paths if available. If the failing channel path was the last path to any devices, those devices are boxed. Boxing means:
 • The operating system ends I/O to the device.
 • Any new I/O request for the device causes a permanent I/O error.
 • The operating system does not allocate the device.
 • If the device was online, the operating system marks it pending offline. A pending offline device goes offline when the following occur, in this order:
 1. The device becomes no longer allocated to any job.
 2. The operating system allocates any device.

If the device was offline, it remains offline.

Initialized Condition: An initialized condition means that a previous recovery action has successfully recovered the channel path and the channel path is available for use. This condition can be expected only. The initialized condition indicates that the channel subsystem has been successful in recovering the channel path to a state where it is again usable.

For devices that support the Dynamic Path Selection (DPS) feature, such as the 3380 Direct Access Storage and 3480 Magnetic Tape Subsystem, DPS validation is called to restore dynamic pathing arrays for each DPS device attached to that channel path. For each non-dynamic pathing device that does not support unconditional reserve and that had an outstanding reserve on the failing channel path, a reserve command is issued to the device. Any previously active I/O requests are restarted.

Channel Path Alert Conditions
The operating system communicates with the operator when two other indicators are set in a CRW: channel path temporary and configuration alert temporary. In either case, the operating system performs no recovery processing.
- Channel path temporary: The operating system issues message IOS162A to inform the operator that the channel subsystem could not identify the device requesting service.
- Configuration alert temporary: The operating system issues message IOS163A to inform the operator that the channel subsystem could not associate a valid subchannel with the device requesting service.

Subchannel Recovery
If the CRW indicates that a subchannel caused the machine check, the operating system examines the error recovery code in the CRW. If the CRW indicates that the subchannel is available, the channel subsystem has recovered from a previous malfunction. I/O functions in progress and presentation of status by the device have not been affected. No program action is required.

If the CRW indicates that the subchannel is installed parameter initialized, the operating system determines if the device associated with the subchannel is still valid. If it is, the operating system enables the subchannel again. If, however, the device related to the subchannel is not valid, the operating system marks the device as unusable and issues message IOS151I.

Monitoring Facility Recovery
For a channel monitoring error, the operating system schedules a recovery routine.

I/O Device Errors
An error can occur in an I/O device. The following topics cover:
- “I/O Errors” on page 1-62
- “Missing Interrupts” on page 1-63
- “Hot I/O” on page 1-63
- “Recovery for Hung Devices” on page 1-65
- “Recovery for Failing Devices” on page 1-65
- “Shared Device Recovery” on page 1-66
- “3880/3380 Considerations” on page 1-68
- “DASD Maintenance and Recovery” on page 1-69
- “Recovery for a Failing Alias Unit Control Block (UCB)” on page 1-33

I/O Errors
Errors that are related to an I/O request are usually indicated in the status data provided with the I/O interrupt. These errors are:
- Device not operational on any path
- Device status errors, such as a unit check
- Subchannel status errors: interface control check, channel control check, and channel data check

The operating system processing of the interrupt may include:
- Invoking a driver exit
- Interfacing with attention routines and volume verification processing
- Invoking a device-dependent ERP for error recovery
- Processing an unconditional reserve
- Redriving the I/O request on a channel path other than the one that generated the interrupt
- Requesting an operator action by message IOS115A or by restartable wait state X’115'
• Issuing message IOS050I to inform the operator that a subchannel status error occurred

Missing Interrupts

At predefined intervals, the operating system checks devices of a specific type to determine if expected I/O interrupts have occurred. If an expected interrupt has not occurred across two of these checks, that interrupt is considered missing. The operating system then issues message IOS071I or IOS076E, writes a logrec data set error record, and tries to correct the problem. For recurring missing interrupts, the operating system issues message IOS075E together with message IOS076E or IOS077E to indicate the recurring condition on a particular device.

A feature of the IBM 3990-6 and 9340 attached devices allows MVS/ESA™ to automatically identify a system in a multisystem environment that is holding a reserve. After every start pending MIH condition, the system attempts to determine whether the device is not responding because of a reserve to another system. If the device is reserved to another system, message IOS431I is issued to identify the system by its central processor serial number. If the system holding the reserve is a member of the same sysplex as the system detecting the MIH condition, message IOS431I includes the system name and the LPAR ID, if there is one.

For JES2 systems, when the reserve is held by a system in the same sysplex, the system attempts to obtain information about the job causing the reserve by routing a D GRS,DEV=devnum command to that system. JES2 systems which have JES3 installed must have JES2 started with the NOJES3 option (CON=(xx,NOJES3) in order to identify the job holding the reserve. Message ISG020I identifies the jobs holding the reserve on the failing system. The installation can use this information to determine what to do.

Some causes of missing interrupts are:
- An idle unit control block (UCB) with I/O requests queued to it
- An outstanding I/O operation that should have completed
- An outstanding mount for a tape or disk

The intervals used by the operating system to determine whether an expected interrupt is missing varies from 15 seconds for DASD to 12 minutes for 3330 Disk Storage. An installation can define in the IECIOSxx parmlib member the time intervals for all devices in the I/O configuration. These intervals override the IBM-supplied defaults.

Notes:

1. During IOS recovery processing, the system will override your time interval specification and may issue MIH messages and MIH logrec error records at this IOS determined interval.
2. During IPL (if the device is defined to be ONLINE) or during the VARY ONLINE process, some devices may present their own MIH timeout values, via the primary/secondary MIH timing enhancement, contained in the self-describing data for the device. The primary MIH timeout value is used for most I/O commands; however, the secondary MIH timeout value may be used for special operations such as long-busy conditions for long running I/O operations. Any time a user specifically sets a device or device class to have an MIH timeout value that is different from the IBM-supplied default for the device class, the value will override the device-established primary MIH time value. This implies that if an MIH time value that is equal to the MIH default for the device class is explicitly requested, IOS will **not** override the device-established primary MIH time value.
time value. To override the device-established primary MIH time value, you must explicitly set a time value that is not equal to the MIH default for the device class.

Note that overriding the device-supplied primary MIH timeout value may adversely affect MIH recovery processing for the device or device class. Please refer to the specific device's reference documentation to determine if the device supports self-describing MIH time values.

<table>
<thead>
<tr>
<th>Reference Book</th>
</tr>
</thead>
<tbody>
<tr>
<td>See z/OS MVS Initialization and Tuning Reference for the IECIOSxx member.</td>
</tr>
</tbody>
</table>

Note: If there are missing interrupts on the devices that contain the system residence (SYSRES) or the page volumes, the operator may not receive any message, because the needed operating system routines are pageable. The operator can learn about the missing interrupts by initiating restart reason 1.

Hot I/O

A hot I/O condition occurs when a device, control unit, or channel path causes continuous unsolicited I/O interrupts. The operating system attempts to recover from a hot I/O condition so that a reIPL is not required. For diagnostic purposes, the operating system indicates all hot I/O incidents in logrec data set error records.

The operating system first tries recovery at the device level by issuing the Clear Subchannel (CSCH) instruction in an attempt to clear the hot I/O condition. If the condition is cleared, processing continues normally. If the condition persists, the next recovery action is determined by one of the following:

- The parameters the installation defined in the IECIOSxx parmlib member for hot I/O recovery
- Operator response to the appropriate hot I/O message or restartable wait state for the class of device:
 - Message IOS117A, (IOS110D, or wait state X'110') for non-DASD, non-dynamic pathing device
 - Message IOS118A, (IOS111D, or wait state X'111') for DASD or dynamic pathing device that is not reserved
 - Message IOS119A, (IOS112D, or wait state X'112') for DASD or dynamic pathing device that is reserved

Because IPLs related to hot I/O are generally caused by incorrect operator actions, an installation should use the IECIOSxx parmlib member to make hot I/O recovery more automatic and reduce the need for immediate operator intervention. The following example parameters, when defined in the IECIOSxx parmlib member, tell the operating system how to handle automatic recovery from hot I/O.

<table>
<thead>
<tr>
<th>Reference Books</th>
</tr>
</thead>
<tbody>
<tr>
<td>See z/OS MVS Initialization and Tuning Reference for the IECIOSxx parmlib member.</td>
</tr>
</tbody>
</table>
Example IECIOSxx Parameters for Hot I/O Recovery: The following examples show how to specify the hot I/O recovery parameters in the IECIOSxx parmlib member. The values shown are also the IBM default values.

HOTIO DVTHRSH=100
 Specifies 100 repeated interrupts as the threshold for the operating system recognizing the condition.

HOTIO DFLT110=(BOX,)
 For a non-DASD, non-dynamic pathing device. Box the device on the first occurrence of this condition. On recursion, prompt the operator.

HOTIO DFLT111=(CHPK,BOX)
 For a DASD or dynamic pathing device that is not reserved. Attempt channel path recovery for the device on first occurrence of this condition. On recursion, box the device.

HOTIO DFLT112=(CHPK,OPER)
 For a DASD or dynamic pathing device that is reserved. Attempt channel path recovery for the device on first occurrence of this condition. On recursion, prompt the operator.

Hot I/O Recommendations: Although it does require more operator intervention, additional experience has shown that a higher level of availability can be achieved by specifying hot I/O recovery options (CHPK,OPER) for all three classes of devices: DFLT110, DFLT111, and DFLT112. These options will allow the possibility of automatic recovery before the system requests operator involvement.

Operator involvement might require that the message be issued using the Disabled Console Communication Facility (DCCF). This will occur when a DASD device is attached on the channel path that is undergoing Hot I/O recovery. Unless the installation is prepared to deal with messages issued in DCCF mode, IBM recommends that operator involvement not be requested by the Hot I/O actions.

For non-DASD devices (DFLT110), CHPK,OPER would allow one automated recovery attempt and then request direction from the operator, depending on how critical the device is. If the device is non-critical to the operation of the system, such as a printer, the operator could then reply BOX. If the device is critical, such as a 3705 Communication Controller, and is properly equipped with multiple paths, such as through a type three channel adapter on the 3705, the operator could reply CHPF. Note that the operator should ensure that all critical devices on the same channel path (CHP) have multiple paths before replying CHPF.

You can choose recovery options other than the defaults or the general recommendations, because of considerations unique to the installation. For example, if all DASDs are configured with multiple paths, each through a different CHP, you might consider specifying CHPK,CHPF for both DFLT111 and DFLT112. This will allow one attempt to recover without loss of resources, then an attempt to recover by removing the CHP attached to the failing device or control unit, but without losing a critical device. If the installation contains DASD devices with only one path, the considerations are the same as for non-DASD.

Note: Since CHPK processing may require a certain level of multi-system disruption and coordination (to stop sharing processors), the CHPK option may not be suitable for all device classes in a particular Hot I/O device grouping. For instance, CHPK processing may be suitable for reserved DASD devices, but may not be suitable for assigned single-path tape devices. CHPK can be avoided on a device class basis by using the HOTIO BOX_LP(device_class1,...,device_classN) parameter in the IECIOSxx parmlib.
member. Using the BOX_LP parameter forces a device to be BOXED for Hot I/O conditions that cause CHPK processing to occur.

Recovery for Hung Devices

When a device appears to be hung, an operator can consider varying the device offline to try releasing the hang condition at the device. However, the VARY OFFLINE command may obtain resources critical to the system and may attempt to issue I/O. Depending on the condition that caused the device to hang in the first place, this may cause the VARY OFFLINE command to also hang.

To avoid this problem, the operator can choose to use the VARY OFFLINE command with the FORCE parameter to mark the device offline and boxed. The FORCE parameter will not obtain resources or issue I/O, so it will complete regardless of any hardware problems with the device. Since the device is boxed, all I/O will be posted back to the I/O issuer in permanent error, which should cause all system resources previously held to be released.

See [“Boxed Device - Operator Actions” on page 1-32](#) for more information on boxing devices. See [“VARY Command” on page 4-670](#) for more information on the FORCE option.

Recovery for Failing Devices

When a device fails, operators can enter the SWAP command to perform dynamic device reconfiguration (DDR). DDR allows the operator to move or swap a demountable volume from a device. When DDR is active, the system dynamically requests the swapping whenever a device encounters device errors. DDR tells the operator to mount the volume on another available device.

Operators can invoke DDR by issuing the SWAP command and specifying the *from* and *to* device numbers. See [“SWAP Command” on page 4-655](#) for more details.

Reference Book

See [“z/OS MVS System Commands”](#) for the SWAP command.

When swapping tape devices, the *from* and *to* devices should have the same density, whenever possible. Swapping devices of unlike but compatible densities can fail the jobs in device allocation at the time of the swap.

On JES3 systems, DDR checks with JES3 to ensure that the *to* device has not been assigned to another job or function. When the swap is complete, DDR notifies JES3.

When a data check occurs in an IBM 3495 Tape Library Dataserver, the system cleans the tape device and retries the failing operation. If the error persists, the system initiates a swap to another eligible system-managed tape library device without involving the operator. The system will try to swap to up to five other devices. If these efforts fail, it issues an error message to the operator and fails the job.

The following devices are supported by DDR:

- 3400 series Magnetic Tape Units.
- Unit record devices. These devices are not swapped by system-initiated DDR; the operator must enter the SWAP command to swap these devices.
- 1403 Printer
- 2501 Card Reader
- 2540
- 3211 Printer
- 3505 Card Reader
- 3525 Card Punch

- Direct access devices. When using a 3348 Model 70F Data Module, operators must ensure that the 3340 has the fixed-head feature installed. When swapping a 3340/3344 with the fixed-head feature, be sure that the device also has the fixed-head feature installed.
- 3330 Disk Storage
- 3333 Disk Storage and Control
- 3340 Direct Access Storage
- 3344 Direct Access Storage

The following devices are not supported by DDR:
- 3344 and 3350 Direct Access Storage with fixed-head are not supported by system-requested DDR.
- 3375 Direct Access Storage.
- 3380 Direct Access Storage.
- Shared DASD devices, unless the device is swapped to itself.
- Any device holding a permanently-resident volume, such as a system residence or page data set volume.
- Graphic or teleprocessing devices.

Shared Device Recovery

When a system, for example system A, is sharing devices with other systems, events on any one system can affect the ability of any or all the systems to access the shared devices. For example, if one of the sharing systems has an allegiance to a shared device, an I/O operation from system A to that device will receive a device busy condition. In this case, the I/O operation is held in system A’s channel subsystem until the other system ends its allegiance. At that time, system A’s I/O to that device can then be processed normally.

However, a problem either on the system that has the allegiance or in the I/O hardware could result in the allegiance not being freed. This could prevent the processing of any pending I/O operations from any of the sharing systems to the device(s) affected by the allegiance. The indication to any sharing systems that had an I/O operation hung by such a condition would normally be message IOS071I, indicating a start pending to the device.

There are a number of other conditions that can cause message IOS071I for a shared device:
- Poor performance of programs using the device
- Contention for the device
- Long reserves
- Application errors
- Operator errors

Operator Actions: If message IOS071I occurs for a shared device, the operator should check the operating condition of the sharing systems. If any system is not operational, it could be the cause of the start-pending because the system could still hold an allegiance that it had when it became non-operational. Operator action depends on the condition of the non-operational system:
• If the system is in the check-stop state or in a non-restartable wait state, the operator should immediately initiate an interface reset to that device from the system console of the non-operational system. If the interface reset fails to release the device, the operator should issue a system reset from the system console of the non-operational system.

These actions should be taken before trying to recover the non-operational system, to allow the other operational systems that are sharing I/O with the non-operational system to continue with as little disruption as possible.

• If the system is in the stopped state, the operator should try to determine why it is stopped and, if appropriate, start it again.

• If the system issued message IOS431I, take the actions described in the operator response for that message.

Unconditional Reserve/Alternate Path Recovery: Alternate path recovery permits recovery from control unit or channel-path failures that cause a DASD or string of DASDs to be no longer accessible to the system. Alternate path recovery is performed only after the operating system guarantees ownership of the device by ensuring that the device is reserved to this system.

When the operating system can guarantee ownership of the device, alternate path recovery is performed. This consists of issuing an unconditional reserve (UR) CCW on a non-failing, online path to the device. If the UR CCW is successful, the operating system issues message IOS428I. If the UR CCW fails or if there are no alternate paths to the device, the operating system issues message IOS429I and boxes the device.

If ownership of the device cannot be established, the operating system issues message IOS427A to determine which recovery action is to be performed.

To maintain volume data integrity during a shared DASD recovery process, the operator must stop I/O from the sharing systems until the recovery process is complete.

The operator should use the IOACTION STOP command to stop I/O to the device with less disruption to system processing than cancelling jobs or stopping processors.

See [Figure 1-9 on page 1-68] for an illustration of three systems sharing a device. Use the following recovery scenario when system 1 issues message IOS427A, indicating a device failure.

1. Determine the device number on each sharing system.
2. To stop I/O requests for the device, enter IOACTION STOP,DEV=devnum on system 2 and system 3.
 If the IOACTION STOP command fails because the device is reserved or reserve pending, and repeated attempts to stop the I/O using the command continue to fail, then end the reserving task or stop the system.
3. Reply UR to message IOS427A and wait for recovery completion messages on system 1.
4. After the recovery completion messages, enter IOACTION RESUME,DEV=devnum or IOACTION RESUME,ALL on system 2 and system 3 to return I/O processing to normal.
Notes:

1. Do not leave devices in the stopped state any longer than necessary to perform recovery. A shortage of SQA storage can result from stopping I/O for extended periods.

2. Before stopping a device, enter the `D U,DASD,ALLOC,devnum` command to determine which system resource’s I/O will be affected. If any system oriented I/O will be stopped, the system could appear frozen. This situation will last until I/O resumes to the device.

3880/3380 Considerations

The 3380 Direct Access Storage Model AA4 with the 3880 Storage Control is designed to allow concurrent maintenance at the storage director (SD) level. Prior to attempting concurrent maintenance, all paths from all processor complexes through the failing SD to the devices must be varied offline. Failure to vary all paths offline may result in various error symptoms, including interface control checks, path inoperative conditions, and out-of-sync conditions between the 3380 array and the operating system.

Prior to returning a repaired SD to the system, an IML of the SD or a power down-up sequence must be performed to establish a correct copy of the dynamic pathing support array in the 3380 for the repaired SD. The operator should enter `VARY PATH ONLINE` commands for all paths to all devices through the repaired SD.

Out-of-Sync Conditions: The enable/disable switch on the 3880 A box should NEVER be set to disable when any paths to the device are online. Setting the switch to disable could cause an out-of-sync condition between the array and the operating system. This out-of-sync condition can occur whenever the dynamic path group information maintained in the 3880 A box is reset without notification to the operating system. Any of these operator actions could cause an out-of-sync condition:

- IMLing the 3880 Storage Control
- Disabling the 3880 interface switch
- Disabling the 3380 interface switch
In addition, certain 3880/3380 hardware failures can affect the arrays.

Recovery from an Out-of-Sync Condition: Array out-of-sync conditions may be indicated by missing interrupts or path-inoperative I/O errors. The system provides automatic detection and recovery through the dynamic pathing validation support. This code detects potential out-of-sync conditions, such as missing interrupts, and then validates the physical path group information. If the dynamic pathing validation code finds a mismatch between the hardware and software path group information, it invokes recovery to rebuild the dynamic path selection arrays.

Dynamic Pathing Support (DPS) Out-of-Sync Recovery: DPS validation is invoked because of an error condition usually symptomatic of a DPS array out-of-sync condition. MIH-start-pending messages are the most common symptom. The system detects and DPS validation repairs the DPS arrays for only one device at a time.

Usually more than one device is affected, because the cause is typically related to:
- An action on the 3880 SD, such as an IML or interface disable/enable
- An action on the channel path, such as an IFRST

Depending on the device activity and the rate of RESERVE macros per volume, the system could take several minutes to several hours to repair the DPS arrays for all affected devices. While the arrays are out-of-sync, performance is impacted because of the loss of the dynamic path reconnect function. In addition, the installation is exposed to a failure or operator action on another path that might then result in undetected loss of reserves (a data integrity exposure) or boxing of the device.

It is therefore recommended that whenever a DPS array out-of-sync condition is detected for one device, as indicated by message IEA452I, the operator should enter a VARY PATH ONLINE command to all devices associated with the suspected component.

For example, if message IEA452I indicates that the DPS arrays for device 100 through 10F on channel path 22 have to be repaired, the operator would then enter a command to vary the path through CHP 22 for all associated devices that have a path already online.

```
VARY PATH((100-10F),22),ONLINE
```

DASD Maintenance and Recovery

DASD can experience failures such as defective disk surfaces, drives, and actuators. When these failures occur, data becomes inaccessible to the operating system and could be lost. To prevent the loss of the data, an installation should consider using the following to monitor possible error conditions and correct any before they cause outages.
- The Environmental Record Editing and Printing (EREP) System Exception Report
- Device Support Facilities (ICKDSF)

When a DASD error does occur, such as a defective track, an installation can use z/OS DFSMSdss to retrieve the data from the defective areas and copy it to a back-up DASD.
Reference Books

See the following:
- IBM Disk Storage Management Guide: Error Handling
- ICKDSF User’s Guide
- EREP User’s Guide
- z/OS DFSMSdss Storage Administration

Additional Recovery Actions

This section includes these topics:
- Recovery by CPU restart

Recovery by CPU Restart

The operator can initiate recovery from some system incidents, such as loops and uncoded wait states, by issuing a restart to the processor that has the problem. The restart reason that is entered as part of the restart process directs the system to perform one of two recovery actions:

Restart reason 0
The system tries to display message IEA500A on the first two consoles defined as master or alternate and locally attached to the system issuing the message. The message identifies the current unit of work on the target processor. The operator can reply either:
- RESUME to allow the current unit of work to continue
- ABEND to end that unit of work with an abend X'071'

If the operating system cannot communicate with the either console to issue message IEA500A, it ends the current unit of work with an abend X'071'.

Restart reason 1
The operating system:
- Interrupts the current unit of work on the target processor
- Detects and attempts to repair errors in critical system areas
- Writes a logrec data set error record for completion code X'071' with reason code 4 when repair actions were taken
- Reports the results of some of the actions taken in message IEA501I
- Returns control to the interrupted unit of work

Note: Restart of the CPU in a restartable wait state ignores the restart reason.

Reference Books

See Chapter 4, “MVS System Commands Reference,” on page 4-1 for information about restart.
Chapter 2. System Reconfiguration

Reconfiguration is the process of adding hardware units to, or removing hardware units from, a configuration. Units can be either:

- **Online**: Units in use by a system are called *online*. When both physically and logically online, a unit is available to be used by the system.

- **Offline**: Units not in use by a system are called *offline*. When either physically or logically offline, a unit is not available to be used by the system.

An installation can use reconfiguration to:

- Adapt a system to changing work loads by configuring units online or offline as required.
- Perform maintenance on a part of a complex while the other part continues normal operation.
- Possibly recover system operation by configuring failing units offline.

Hardware unit or units may be put offline before initialization of the system or systems. To do this, an operator can deselect through the system console such units as central processors (CPU), storage elements, or channel paths. Note that an operator should never deselect a unit during system operation, because the operating system is not notified of the removal.

During system operation, the operating system configures failing units offline with or without any intervention. When intervention is needed, the operator:

- Can enter a CONFIG command that identifies the CONFIGxx member of Parmlib that specifies the reconfiguration. (See [z/OS MVS Initialization and Tuning Reference](#)).
- Can enter a CONFIG or VARY command that directly configures units online or offline. (See Chapter 4, “MVS System Commands Reference,” on page 4-1)

For maintenance of hardware, prepare reconfiguration actions to configure hardware units offline for repair and back online so the system can use them. Also, hardware units and channel paths are reconfigured offline then online during reconfiguration of partitionable systems.

Dynamic I/O Configuration

Dynamic I/O configuration lets you change your I/O configuration without causing a system outage. In other words, you can select a new I/O configuration definition without performing a power-on-reset (POR) of the hardware or an initial program load (IPL) of the z/OS system. Using I/O definition files (IODFs) created through hardware configuration definition (HCD), dynamic I/O configuration allows you to add, delete, or modify the definitions of channel paths, control units, and I/O devices to the software and hardware I/O configurations. You can change the I/O configuration definitions to both software and hardware or software only. (See [z/OS HCD Planning](#))

Dynamic I/O configuration has the following benefits:

- Increases system availability by allowing you to change the I/O configuration while z/OS is running, thus eliminating the POR and IPL for selecting a new or changed I/O configuration definition.
• Allows you to make I/O configuration changes when your installation needs them rather than wait for a scheduled outage to make the changes.
• Minimizes the need to over-define an I/O configuration by logically defining hardware devices that do not physically exist.

Logical and Physical Reconfiguration

Logical reconfiguration allows or prevents use of a resource by the operating system. Physical reconfiguration allows or prevents use of a resource by the hardware. An operator can enter a CONFIG command on the console with master authority to logically and physically reconfigure the following hardware units, if applicable for the particular processor complex:
• CPUs
• Central storage elements
• Central storage increments
• Channel paths
• I/O devices

Also, when an operator issues a CONFIG CPU command to reconfigure a processor, the system logically reconfigures any Integrated Cryptographic Feature (ICRF) attached to the processor.

Note: Physical reconfiguration may not be supported for all hardware units by all processor models. (See Functional Characteristics).

Reconfiguration Support According to Processor Types

The reconfiguration functions supported by z/OS depend on the configuration of the processor complex, as follows.

Uniprocessor (UP)

Depending on the processor type, an installation can configure offline some or all of the following:
• Central storage elements
• Central storage increments
• Channel paths
• I/O devices

In a UP system, the purpose of reconfiguration is to configure offline failing units to allow the system to continue operation.

Multiprocessor (MP)

Depending on the processor type, an installation can configure offline some or all of the following:
• Central processors, including any associated ICRFs
• Central storage elements
• Central storage increments
• Channel paths
• I/O devices
Reconfiguring a Central Processor

When configuring a central processor offline, the operating system stops dispatching work to the processor and takes it logically offline. Then the system stops the processor removes it physically from the configuration, if physical central processor reconfiguration is supported by the machine.

Actions to Reconfigure a Central Processor Offline

1. Enter a CONFIG CPU(x),OFFLINE command on a console with master authority. The system responds on the console on which the command was entered.
 The operating system rejects a CONFIG CPU(x),OFFLINE command when:
 • The target processor is the only online processor.
 • The target processor is the only processor with an operative timer.
 • Alternate CPU recovery (ACR) occurs during OFFLINE processing.
 • Any active jobs have processor (CPU) affinity with the target processor.

2. If you enter a CONFIG command for a central processor and currently scheduled jobs have CPU affinity for that processor, the system issues message IEE718I to list the jobs. Do the following:
 a. Prevent the operating system from scheduling any additional jobs, by replying YES to message IEE718D.
 b. Either wait for the active jobs to complete or cancel them.
 Note that replying YES to message IEE718D leaves the target central processor unavailable for affinity job scheduling. If you want to restore the central processor to its original state, enter CONFIG CPU(x),ONLINE to restore the original central processor status and make the target central processor available for affinity job scheduling.
 c. Reenter the CONFIG CPU(x),OFFLINE command.

Reconfiguring a Central Processor with an ICRF

The operator cannot directly reconfigure an ICRF. When the operator uses the CONFIG command to reconfigure a central processor with an associated ICRF, the system changes the online/offline status of both the central processor and the associated ICRF as follows:

• When the operator enters a CONFIG CPU(x), ONLINE and Integrated Cryptographic Service Facility/MVS (ICSF/MVS) is active in the processor complex, the system brings the ICRF online.
• When the operator enters a CONFIG CPU(x), OFFLINE command the system takes the ICRF offline.
• When the operator enters a CONFIG CPU(x), ONLINE and ICSF/MVS is not active, the ICRF is not brought online until ICSF/MVS is started.
Actions to Bring Online a Central Processor and its ICRF

Central processor x (CPU x) is to be brought online. The processor has an associated ICRF and ICSF/MVS is installed and active in the processor complex.

Enter one of the following commands on a console with master authority; the system responds on the console on which the command was entered:

CONFIG CPU(x)
CONFIG CPU(x), ONLINE

When the command completes, the system issues the following messages:

IEE504I CPU(x), ONLINE
IEE504I CRYPTO(x), ONLINE

Removing the Last ICRF

When a CONFIG command is entered to remove a central processor associated with the last online ICRF, the system issues the following messages:

IEE109I CONFIG CPU(x), OFFLINE COMMAND WOULD REMOVE LAST CRYPTO
IEE325D REPLY U TO CONTINUE CONFIG COMMAND. REPLY C TO CANCEL

After U is replied to message IEE325D, the system takes the central processor and the ICRF offline.

From that point on, the system abnormally ends any jobs that request cryptographic services using ICSF/MVS. This applies to new jobs and to jobs running in the processor complex at the time the system took the ICRF offline.

Actions to Take Offline a Central Processor and its ICRF

Central processor x is to be taken offline. The processor has an associated ICRF.

Enter the following command on a console with master authority; the system responds on the console on which the command was entered:

CONFIG CPU(x), OFFLINE

When the command completes, the system issues the following messages:

IEE505I CPU(x), OFFLINE
IEE505I CRYPTO(x), OFFLINE

Reconfiguring Central Storage

To place storage offline and then bring it online to be used again, commands can reconfigure central storage increments and central storage elements.

Under PR/SM™, storage may be reconfigured between logical partitions. See PR/SM Planning Guide for a description of storage reconfiguration between logical partitions.
Physical View of Central Storage

Central storage is physically divided into storage elements (SE). The central storage elements are composed of storage increments. Each storage increment may be composed of two sub-increments:

- One sub-increments contains the even-numbered frames of the increment, such as, 0-kilobyte, 8-kilobyte, 16-kilobyte, and so on.
- The other contains the odd-numbered frames, such as, 4-kilobyte, 12-kilobyte, 20-kilobyte and so on.

The sub-increments of an increment may reside in different storage elements, as follows:

<table>
<thead>
<tr>
<th>SE0</th>
<th>SE2</th>
<th>SE1</th>
<th>SE3</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-32M Even Frames</td>
<td>30-32M Odd Frames</td>
<td>62-64M Even Frames</td>
<td>62-64M Odd Frames</td>
</tr>
<tr>
<td>Reconfigurable</td>
<td>Reconfigurable</td>
<td>HSA and Preferred</td>
<td>HSA and Preferred</td>
</tr>
<tr>
<td>Preferred</td>
<td>Preferred</td>
<td>Reconfigurable</td>
<td>Reconfigurable</td>
</tr>
<tr>
<td>26-28M Even Frames</td>
<td>26-28M Odd Frames</td>
<td>58-60M Even Frames</td>
<td>58-60M Odd Frames</td>
</tr>
<tr>
<td>Preferred</td>
<td>Preferred</td>
<td>Reconfigurable</td>
<td>Reconfigurable</td>
</tr>
<tr>
<td>24-26M Even Frames</td>
<td>24-26M Odd Frames</td>
<td>56-58M Even Frames</td>
<td>56-58M Odd Frames</td>
</tr>
<tr>
<td>Preferred</td>
<td>Preferred</td>
<td>Reconfigurable</td>
<td>Reconfigurable</td>
</tr>
<tr>
<td>6-8M Even Frames</td>
<td>6-8M Odd Frames</td>
<td>38-40M Even Frames</td>
<td>38-40M Odd Frames</td>
</tr>
<tr>
<td>SQA and Preferred</td>
<td>Preferred</td>
<td>Reconfigurable</td>
<td>Reconfigurable</td>
</tr>
<tr>
<td>4-6M Even Frames</td>
<td>4-6M Odd Frames</td>
<td>36-38M Even Frames</td>
<td>36-38M Odd Frames</td>
</tr>
<tr>
<td>Preferred</td>
<td>Preferred</td>
<td>Reconfigurable</td>
<td>Reconfigurable</td>
</tr>
<tr>
<td>2-4M Even Frames</td>
<td>2-4M Odd Frames</td>
<td>34-36M Even Frames</td>
<td>34-36M Odd Frames</td>
</tr>
<tr>
<td>Preferred</td>
<td>Preferred</td>
<td>Reconfigurable</td>
<td>Reconfigurable</td>
</tr>
<tr>
<td>0-2M Even Frames V=R and</td>
<td>0-2M Odd Frames V=R and</td>
<td>32-34M Even Frames</td>
<td>32-34M Odd Frames</td>
</tr>
<tr>
<td>Preferred</td>
<td>Preferred</td>
<td>Reconfigurable</td>
<td>Reconfigurable</td>
</tr>
</tbody>
</table>

Specifying the RSU Parameter

To prepare for reconfiguration of central storage, specify an RSU parameter in the IEASYSxx parmlib member or as a parameter during system initialization. The RSU parameter specifies the number of storage units in central storage that the operating system should keep available for reconfiguration.
The RSU storage increments are reconfigurable or non-preferred. The remaining central storage increments are non-reconfigurable or preferred.

The default RSU value is 0. If the installation does not specify an RSU value, the default means that the operating system designates ALL installed central storage as preferred. With RSU=0, the system cannot be reconfigured.

Reconfigurable Storage Increments
The central storage that is shared by all processors in a configuration is logically divided into storage increments. For the following example, the installation specified RSU=8 to make half of the storage increments reconfigurable.

<table>
<thead>
<tr>
<th>Storage Increment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>60M</td>
<td>Hardware storage area (HSA) and preferred</td>
</tr>
<tr>
<td>56M</td>
<td>Reconfigurable</td>
</tr>
<tr>
<td>52M</td>
<td>Reconfigurable</td>
</tr>
<tr>
<td>48M</td>
<td>Reconfigurable</td>
</tr>
<tr>
<td>44M</td>
<td>Reconfigurable</td>
</tr>
<tr>
<td>40M</td>
<td>Reconfigurable</td>
</tr>
<tr>
<td>36M</td>
<td>Reconfigurable</td>
</tr>
<tr>
<td>32M</td>
<td>Reconfigurable</td>
</tr>
<tr>
<td>28M</td>
<td>Reconfigurable</td>
</tr>
<tr>
<td>24M</td>
<td>Preferred</td>
</tr>
<tr>
<td>20M</td>
<td>Preferred</td>
</tr>
<tr>
<td>16M</td>
<td>Preferred</td>
</tr>
<tr>
<td>12M</td>
<td>System queue area (SQA) and Preferred</td>
</tr>
<tr>
<td>8M</td>
<td>Preferred</td>
</tr>
<tr>
<td>4M</td>
<td>Preferred</td>
</tr>
<tr>
<td>0M</td>
<td>V=R and Preferred</td>
</tr>
</tbody>
</table>

The HSA cannot be in a storage increment that will be reconfigured. The HSA resides in the five highest megabytes of central storage.

RSU Example
Assume that a processor complex has 128 megabytes of central storage and that the storage increment size is 4 megabytes. Such a system has 32 storage increments.

If the system initializes one side with RSU=16, the operating system allocates as reconfigurable the 16 storage increments (64 megabytes) of the offline side.

RSU Parameter Specification
The RSU values recommended for the least system overhead and maximum capability for reconfiguration are as follows:
Assignment of Storage Frames

Storage containing fixed pages cannot be reconfigured. The operating system assigns storage frames as follows:

<table>
<thead>
<tr>
<th>Storage</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-preferred and preferred</td>
<td>Normal page allocation requests</td>
</tr>
<tr>
<td>Non-preferred and preferred</td>
<td>Short-term page fixes</td>
</tr>
<tr>
<td>Preferred</td>
<td>Long-term page fixes for non-swappable jobs</td>
</tr>
</tbody>
</table>

However, if a long-term page fix for a non-swappable job requires storage but the preferred storage units are full, the operating system may convert some non-preferred storage to preferred storage. If so, the amount of storage available for reconfiguration will be less than that specified in the RSU parameter. The operating system issues message IAR005I to notify the operator.

If the operator then tries to configure storage offline in preparation for partitioning, the system tries to free enough central storage to support the request. Central storage and the address ranges assigned to that storage cannot be configured offline either logically or physically until the required amount of storage is available.

The operating system normally tries to assign requests for long-term fixed pages to preferred storage frames when the requesting job was initiated as non-swappable. However, an authorized job can be initiated as swappable and, while running, issue a SYSEVENT macro to make itself non-swappable for a short period of time. The job may request long-term fixed pages that are assigned to non-preferred storage. Usually this request is not a problem because the job shortly makes itself swappable again. The system can free the storage that backs the long-term fixed pages when the job is swapped out when the storage is required for storage reconfiguration.

However, a long-running job may make itself non-swappable for long times and also request short-term fixed pages that cannot be freed until the job ends normally. Some of these requests may be satisfied from non-preferred storage. Because the frames cannot be freed by paging them out or by swapping out the job, storage reconfiguration may not be possible.

To resolve this problem, specify such jobs in the program properties table (PPT) in the SCHEDxx parmlib member.
Actions to Reconfigure Central Storage

Enter at the console with master authority or in a CONFIGxx parmlib member:
1. CONFIG STOR(E=id),OFFLINE command to configure a central storage element offline
2. CONFIG STOR(E=id),ONLINE command to configure a central storage element online

The system responds on the console on which the command was entered or on the master console for the system processing the CONFIGxx member.

When configuring a central storage element offline, the system may issue message IEE575A to indicate that central storage configuration is waiting to complete. The system may cancel the message in less than a minute. The system may issue and cancel the message several times.

If the message remains on the display for a long time, it indicates that the operating system cannot find sufficient reconfigurable central storage to satisfy the configuration request.

If the system displays message IEE575A for a long time:
1. Enter a DISPLAY M=STOR command to identify the job using the central storage that cannot be freed.
2. Do one of the following:
 a. Cancel any jobs that are using the storage to allow the storage configuration to complete.
 b. Reply C to end the storage configuration process.

Any central storage already configured offline remains offline. If desired, bring this central storage element back online by entering a CONFIG STOR(E=x),ONLINE command.

Reconfiguring Channel Paths

Channel paths may be reconfigured for partitioning and merging. Under PR/SM, channel paths may be reconfigured to move a channel path from one logical partition to another.

Reconfigure channel paths carefully. Reconfiguration can remove connections to DASDs or MCS consoles that are critical to the operation of z/OS. If this occurs, system operation will fail.
Actions to Reconfigure Channel Paths

To configure channel paths, enter the following:

- To configure channel paths individually offline or online:

  ```
  CONFIG CHP(x),OFFLINE  
  CONFIG CHP(x),ONLINE  
  ```

- To configure all channel paths owned by a side of a partitionable processor complex:

  ```
  CONFIG CHP(ALL,x),OFFLINE  
  CONFIG CHP(ALL,x),ONLINE  
  ```

 These commands are particularly useful when partitioning or merging the complex.

- To configure a range of channel paths:

  ```
  CONFIG CHP(x-y),OFFLINE  
  CONFIG CHP(x-y),ONLINE  
  ```

The system determines which devices are connected to a channel path and if that path is the last path to a device. To configure offline the last path to a device, enter a CONFIG command with one of the following operands:

- UNCOND operand: To configure offline the last path to an unallocated, online device
- FORCE operand: To configure offline the last path to a device regardless of the state of the device.

To make sure that FORCE is intended, the operating system issues message IEE800D to ask whether to continue or stop the CONFIG command processing.

Enter all the CONFIG commands at a console with master authority. The system responds on the console on which the command was entered.

Reconfiguring I/O Devices

To reconfigure I/O devices, enter a VARY ONLINE/OFFLINE command at the console with master authority. For a VARY OFFLINE command for a device that is currently in use, the operating system marks the device ‘pending offline’. The operating system makes no further allocations to the device unless the volume mounted on the device is specifically requested.

Because vary offline processing cannot complete until a device is unallocated, either wait until the jobs using the device complete or cancel them.

Before reconfiguring a complex from single-image mode to physically-partitioned mode, complete or cancel any tape volume mounts for devices to be reconfigured. Then enter a CONFIG CHP(ALL,n),OFFLINE,UNCOND command.

If a tape mount is pending when the CONFIG command is entered, the tape drive(s) might not start after they are mounted and the system has been partitioned. Another way to avoid this problem is to enter a VARY device online command for the tape drive(s).
Reconfiguring a Coupling Facility

A coupling facility can be reconfigured to perform maintenance or to upgrade its level of control code. Before reconfiguring a coupling facility, you should have a plan in place for its orderly shutdown, during which time structures that are in the coupling facility can be either relocated to another coupling facility or deallocated (with a possible data loss). Applications using the coupling facility for its structure(s) should have documented procedures for how to relocate or deallocate them.

Refer to Parallel Sysplex® Configuration Assistant at http://www.ibm.com/s390/pso/psotool for help with the configuration of a coupling facility.
Chapter 3. System Console Operations

The tasks of starting, running, and stopping an MVS system involve:

1. Operating the system itself—that is, controlling the system software and most installation hardware (including processors, channel paths, and I/O devices)
2. Operating the MCS (multiple-console support) and SMCS (SNA multiple-console support) consoles

"Console Characteristics and Operations" describes the physical characteristics and techniques for operating the various consoles that MVS supports as operators’ consoles. It describes the characteristics and operations that you cannot control, including those operations that are common to all operator’s consoles.

"Defining and Changing Console Characteristics" on page 3-20 continues the console descriptions of "Console Characteristics and Operations" by describing the console characteristics that you can control. It describes the commands that operators and system programmers can use to tailor the consoles and console operations to the installation’s requirements.

Console Characteristics and Operations

General Characteristics of Display Consoles

Many different input and output (I/O) devices can function as consoles in an MVS system. Three logical conditions determine how or if the devices function. A device can be:

1. Online: If allocated, the system assigns functions with these two limitations:
 - The device must be capable of performing the function.
 - The device cannot be assigned as a console because it is allocated to some other function.
 If unallocated, the device can be assigned as a console.
2. Offline: The device is generally unavailable for the system to use.
3. Console: The system can use the device to send messages to you, and you can use the device to issue system commands (if the device has input capability), but you cannot use the device for other input/output purposes.

You can use a device as a multiple console support (MCS) if the device number for the console on a CONSOLE statement, in the CONSOLxx parmlib member, is the same as the device number specified in the IODF. SMCS consoles are also defined in CONSOLxx, but are not specified in HCD.

Subsystem Use of Consoles

Many different devices can function as consoles in an MVS system if they are specified as consoles in a CONSOLxx parmlib member. If the console is allocated to a subsystem — CONSOLE DEVNUM(SUBSYSTEM) — there is no corresponding device definition in the IODF. You should familiarize yourself with subsystem consoles if your configuration includes them; some of them can affect MVS operations in important ways. It is called a subsystem-allocatable console and is defined to the subsystem.

For a subsystem-allocatable console, the definition

CONSOLE DEVNUM(SUBSYSTEM)
must appear in the CONSOlx xx parmlib member.

Multiple-Console Configuration

You can divide the functions and message traffic of the system among a number of consoles. These consoles make up a **multiple-console configuration** controlled and serviced by MCS.

In distributed mode, a multiple-console configuration for a system or sysplex consists of up to 99 active consoles per system; in shared mode the constraint is 99 consoles per sysplex. These consoles can have different levels of authority. For more information, see [z/OS MVS Planning: Operations](#).

Any console with master console authority allows you to:

- Enter all operator commands
- Change the definition of the hardcopy message set or assign the hardcopy medium

Other MCS and SMCS consoles are used for specific types of operator-system communication when it is more convenient to have a console located away from the processor. An MCS or SMCS console might, for example, be located close to tape or remote teleprocessing devices to make it easier for the operator in that area to see the magnetic tapes. An MCS or SMCS console without master authority cannot enter all commands (see “System Commands Grouped According to System Command Authority” on page 3-24), and can receive only those messages that are specifically routed to that console.

Your installation might further limit how you can use a console by assigning an operating use that prevents the console from accepting commands.

A console you use both to issue commands and receive messages is in **full-capability** operating mode. A console that only receives status displays is in **status display** mode. A console that only monitors system activities and assists in system security is in **message stream** mode. Both message stream and status display consoles do not accept commands.

The different console modes help limit the number of consoles that operators can use to issue commands, and yet provide operators the information that they need to do their work.

At IPL, the system looks to the CONSOlx xx member of parmlib to determine the operating modes of the consoles. It also looks for the following attributes:

- System command groups — the categories of commands that the system accepts from that console
- Message routing codes — the messages the console receives, determined by routing code
- Message levels — the messages the console receives, determined by message level
- Hardcopy medium — the system log (SYSLOG) or operations log (OPERLOG) that receives the hardcopy message set
- PFK definitions — the commands that console’s PFKs issue

Features on Display Consoles

MCS display consoles can operate in full-capability, status display, or message stream mode. SMCS only operate in full-capability mode. Each one has a keyboard
to enter commands and responses to messages and to signal the system that you are entering information. Each one also has a cursor, which appears on the screen as a movable point of light (either an underscore, a horizontal bar, or a vertical bar). The cursor points out the position on the screen that the system will examine for your next action. This action might be positioning a typed character, entering a command, requesting message deletion, or requesting a display. Special keys located on the console keyboard control cursor movement.

A display console can also have some or all of the following features:

Selector Pen

The selector pen is a light-sensitive device that is available on some display consoles. When you put the pen over specific areas of the display console screen, it senses the light from the screen and signals the system. The system then determines the screen location over which you have put the pen and takes appropriate action. The action the system takes might involve entering operator commands, deleting messages from the screen, cancelling processes, or presenting displays.

Audible Alarm

An audible alarm is available on display consoles. The system sounds this alarm when certain changes in conditions occur, such as when you enter an invalid CONTROL command. WTO macros with descriptor codes of 1, 2, or 11, and all WTOR macros will cause the audible alarm to sound on operator consoles so-equipped.

Program Function Keyboard

The program function keyboard is an input device that is available on some display consoles. You can define each key on the program function keyboard to enter one or more operator commands; you can enter a command or a group of commands by pressing one key.

Extended Highlighting

Extended highlighting refers to blinking, reverse video, and underscored presentation of messages that require operator action.

Color

Four or more colors are available on some devices, with certain colors identifying certain kinds of messages that require action.

Intensity

Some messages that require operator action appear brighter.

Display Screen Areas

The operating mode of the console controls the appearance of a display screen. Figure 3-1 on page 3-5 illustrates the differences among the three different kinds of consoles. The display screens can have these functional areas:

Message Area
This area contains system and problem program messages and copies of certain operator commands. The size of the message area depends on the console.

Display Areas

These areas contain formatted, multiple-line displays of information about some part of the system. The displays are written to the console in response to certain commands, such as the DISPLAY command. The default on consoles in full-capability mode is one display area, the default on consoles in status display mode is two display areas. For consoles operating in full-capability mode, unless a status display is requested, the display area is used for general messages.

PFK Display Line

This line contains a display of program function key (PFK) numbers that you use when entering commands with the selector pen. This line is available on a 3277 model 2.

Instruction Line

This line contains console control messages. For example, if you make an error entering a CONTROL command, an error message appears in the instruction line.

Entry Area

This area contains one or two lines that you use to enter commands and reply to messages.

Warning Line

This line warns you of conditions that could require action. For example, a warning message appears in this line when the message area is full and one or more messages are waiting to appear. The warning line is not available on output-only consoles in status display operating mode.

Operator Information Area

This line, the bottom-most line on the screen, is separated from the rest of the screen by a horizontal line. The operator information area, which is not controlled by MCS or SMCS, contains messages and symbols that keep you informed of the operational status of the terminal. It is not available on some terminals.

Figure 3-1 shows the screens on consoles in the three different operating modes. You can change the display areas on the consoles in full-capability mode and status display mode. The screen on the console in message stream mode always appears as in the figure.
Commands that manage consoles and console traffic use the L= operand to modify the screen area. For example, use the L= operand to delete messages or to delete lines from the screen area.

Commands that direct output use the L= operand to direct the output to an out-of-line area that is defined to the console. If there is no out-of-line area defined to the console, or if the area ID specified is z, the message is displayed inline.

For more information on the syntax and use of the L= operand for specific commands, see the description of the specific command in this book.

For a discussion of the L= operand in a sysplex, see z/OS MVS Planning Operations.
Special Screen Characters
The system uses five special screen characters to indicate the status of certain
screen messages. These special characters appear in position three, four, or five of
the lines in the message area:

- A vertical line (|) in position three indicates that required action has been taken
 for the message and the system has deleted the message.
- A horizontal bar (-) in position three indicates that the message is for information
 only and requires no action from you.
- An asterisk (*) in position four indicates that the message is a system message
 that requires action from you.
- An at sign (@) in position four indicates that the message is a problem program
 message that requires action from you.
- A plus sign (+) in position five indicates that the message is a problem program
 message that requires no action from you.

Messages Sent to Display Consoles
The MVS system and any program running under the MVS system can issue
messages. A displayed message can appear by itself or with information about the
message. Each message consists of:

- An identifier, which is a three-letter prefix to identify the system component that
 produced the message and a message serial number to identify the individual
 message. The identifier may contain other information.
- A message text to provide information, describe an error, or request an operator
 action.

Messages sent to your consoles can appear in one of the following formats:

```
f message
or
hh.mm.ss sysname jobident f message
```

Fields that are always present in a message are:

- **f** A blank, which means that no action is required, or a special screen
 character. See “Special Screen Characters” on page 3-6
- **message** Message identifier and text

Fields that you might chose to add to a message are:

- **jobident** Job name or job id for the task that issued the message.
- **sysname** Name of the system that issued the message
- **hh.mm.ss** Time stamp, given as the hour (00-23), minute (00-59), second
 (00-59)

To add any combination of job identification, system name, and time stamp to all
console messages, see “Controlling the Format of Messages” on page 3-40. For
more information about console messages, use LookAt or the MVS System
Messages books.
Operations on Display Consoles in Full-Capability Mode

Although some of the procedures for operating and controlling display consoles involve special functions and conditions, most console procedures are quite general. These general procedures are described in this topic and include:

- How to perform basic keyboard actions
- How to enter commands with the keyboard
- How to enter commands with program function keyboard
- How to enter commands with the selector pen
- How to change information in the entry area

Performing Basic Keyboard Actions

While the basic operating procedures are similar for all types of display consoles, the physical characteristics of each console require you to perform certain actions (such as, the ENTER, CANCEL, cursor detect, and selector pen detect actions) in different ways. The descriptions of operating procedures later in this section refer to these actions.

To perform the ENTER action, press the ENTER key.

To perform the CANCEL action, on a 3278 or 3279 display console, hold down the ALT key and press the PA2 key. On all other display consoles, press the CANCEL (PA2) key.

The cancel action:
- Erases the entry area
- Moves the cursor to the first position in the entry area
- Rewrites the message area and the instruction line
- Removes deletable-message indicators (if any are displayed)
- Removes message line numbers (if line numbers are displayed)

To perform a CURSOR DETECT action, position the cursor under the desired character and press the ENTER key.

To perform a SELECTOR PEN DETECT action, on 3277, 3278, or 3279 display consoles, any of which has a selector pen, place the selector pen over the desired indicator. Then, press the pen against the screen.

To retrieve the previous command, press the PA1 key.

How to Enter Commands

You can enter commands with the keyboard, the program function keys, or the selector pen (together with the PFK display line).

Entering Commands with the Keyboard

To enter commands with the keyboard through display consoles, use the following procedures. Use the same procedures to reply to WTOR messages:
1. Move the cursor to the first position in the entry area.
2. Type in the command.
3. Enter the command by performing the ENTER action.

Moving the Cursor: Move the cursor to the first position in the entry area by one of the following methods:
- Press the cursor control keys.
- Press the tab key, the back-tab key, or the new line key.
Press the ENTER key when the cursor is in the entry area or under the ENTER indicator in the instruction line. Pressing the ENTER key passes any data in the entry area to the system.

Perform a cancel action. This action might also change the display.

Typing the Command: Type in the command just as you would on a typewriter. As you type each character, the corresponding character appears in the entry area, and the cursor advances to the next character position. When you reach the end of the first line of a two-line entry area, the cursor advances automatically to the first character position of the next line, so that you can continue the command. The maximum number of characters that you can enter is 126.

You have the option of entering one command or several commands. When you wish to enter more than one command, use the MVS command delimiter. The MVS command delimiter is defined during system initialization in the CONSOLxx parmlib member. When the MVS command delimiter has not been defined during system initialization, you cannot enter more than one command at a time.

Most commands can be entered in either lowercase or uppercase. The system converts the commands to uppercase, if required. However, information within a command that is contained within single quotation marks (for example, a reply to a WTOR message) is not converted to uppercase by the system. If the system requires the information within the single quotation marks in uppercase, be sure to type it in uppercase when you enter the command. When an MVS command delimiter has been defined during system initialization, you cannot use the defined delimiter within single quotation marks.

Entering the Command: When you enter the command, the cursor must be in the entry area or under the ENTER indicator in the instruction line, but it need not be at the end of the command. Pressing the ENTER key or selecting the ENTER indicator causes the command to be read and processed by the system. Commands other than the CONTROL command disappear from the entry area and reappear in the message area. If the message area is full, the command may not appear immediately; to have it displayed, you may have to delete some messages.

The PA1 Key

Each time you press the PA1 key, you see a command that you entered previously. The maximum number of times you can press the PA1 key to see previous commands is specified by your installation with the RBUF option on the CONSOLxx parmlib member. If you exceed this maximum, you see the same commands again.

Correcting Command Entry Errors: If you make errors entering a CONTROL command, the audible alarm sounds, and the command appears in the entry area. The location of the cursor indicates the error:

- If the error is an invalid operand, the cursor appears under the invalid operand:

  ```
  CONTROL X,N
  ```

- If the error is an invalid erase request, the cursor appears under the first invalid request:

  ```
  CONTROL E,31,19
  ```

- If the CONTROL command exceeds 126 characters, the cursor appears at location 127 in the entry area.

To correct any of these errors, use the procedures described under "Changing Information in the Entry Area" on page 3-13.
If the system detects an error in a command other than a CONTROL command, it writes the command in the message area with an error message. Follow the procedures indicated for the error message in the *MVS System Messages* books.

Entering Commands with Program Function Keys

The program function keyboard is a group of keys called PFKs. They are located on or near the operator console keyboard. PFKs are used as a shortcut for entering commands. Some PFKs have commands defined for them at IPL. The definitions might be those in a PFK table that your system programmer assigned to the console, or the PFKs might have the defaults assigned by IBM. You can redefine the PFK commands; see “Defining PFKs using PFK Tables” and “Defining PFKs Using the CONTROL Command” on page 3-45 in “Defining and Changing Console Characteristics” on page 3-20.

Each PFK can be either **conversational** or **nonconversational**. The commands associated with a conversational PFK appear in the entry area one at a time when you press the key. You can change them before entering them. Commands associated with a nonconversational PFK are entered immediately when you press the key.

If your system programmer does not define and activate a PFK table for your PFKs, IBM supplies the following definitions (in nonconversational mode):

<table>
<thead>
<tr>
<th>PFK</th>
<th>Command Comment</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONTROL E,1</td>
<td>Erase one line from screen</td>
</tr>
<tr>
<td>2</td>
<td>CONTROL E</td>
<td>Erase one segment from screen</td>
</tr>
<tr>
<td>3</td>
<td>CONTROL E,D</td>
<td>Erase status display from screen</td>
</tr>
<tr>
<td>4</td>
<td>CONTROL D,F</td>
<td>Frame display forward in area</td>
</tr>
<tr>
<td>5</td>
<td>CONTROL S,DEL=N</td>
<td>Hold in-line output</td>
</tr>
<tr>
<td>6</td>
<td>CONTROL S,DEL=RD</td>
<td>Resume in-line output</td>
</tr>
<tr>
<td>7</td>
<td>DISPLAY A,L</td>
<td>List active jobs and TSO users</td>
</tr>
<tr>
<td>8</td>
<td>DISPLAY R,L</td>
<td>List all outstanding operator action requests</td>
</tr>
<tr>
<td>9 and up</td>
<td></td>
<td>No definition provided</td>
</tr>
</tbody>
</table>

Note: The IBM-supplied sample IEESPFK illustrates the sequence and syntax of the statements that can be specified in a PFKTABxx member of SYS1.PARMLIB.

Identifying PFK Definition Errors: When the system tries to execute an invalid CONTROL N,PFK command, the audible alarm sounds, and the command appears in the entry area. The location of the cursor indicates the error:

- If the cursor is positioned under the first letter of a keyword (CMD, KEY, PFK, or CON), that keyword or its trailing equal sign is incorrect.
- If the cursor is positioned under the number of the PFK being defined, that number is either not a numeric character or not the number of a PFK that was designated for command entry in the PFK table, or it is the number of a PFK you are trying to associate with a list of key numbers when it is already part of a list of key numbers.
- If the cursor is positioned under a number following the KEY operand, the key number indicated is either a non-numeric character, the number of the PFK that is being defined, the number of a PFK that has already been defined as a list of key numbers, or the number of a PFK that has no command associated with it in a PFK table.
To correct these errors, follow the procedures described under “Changing Information in the Entry Area” on page 3-13.

Checking the Commands Defined for Each PFK: Use the DISPLAY PFK command to determine the commands defined for a console’s PFKs, the PFK definitions in a specific PFK table, or the PFKs in effect for a specific console. The display can appear in the message area or can be routed to a display area or to another console. Unless you specify another console, the definitions always refer to the console on which you issue the command.

Table 3-2. Checking the Commands Defined for Each PFK

<table>
<thead>
<tr>
<th>If you want to know</th>
<th>Use this command</th>
</tr>
</thead>
<tbody>
<tr>
<td>The names of all available PFK tables</td>
<td>DISPLAY PFK, TABLE</td>
</tr>
<tr>
<td>The PFKs in effect at your console</td>
<td>DISPLAY PFK</td>
</tr>
<tr>
<td>The definitions in a specific PFK table</td>
<td>DISPLAY PFK, TABLE=nnnnnnnn, where nnnnnnn is the name of the table</td>
</tr>
<tr>
<td>The PFK definitions in effect for a specific console</td>
<td>DISPLAY PFK, CN=name, where name is the console name</td>
</tr>
</tbody>
</table>

“Summary of the PFK Definitions for the Cluster” later in this chapter shows the complete output of the DISPLAY PFK, TABLE=nnnnnnnn command.

Example 1

To display the commands associated with the PFKs on the console on which you issue the command, enter:

```
DISPLAY PFK
```

In response to this command, the following message usually appears in the message area:

```
IEE235I hh:mm:ss PFK DISPLAY
PFK DEFINITIONS FOR CONSOLE nnnnnnnn TABLE - MASTCMDS IN PFKTAB02
KEY# CON -------------------DEFINITION---------------------------
```

The definitions for each key appear under the headings; nnnnnnnnn identifies the console on which the command is issued.

If no PFKs are defined for the console named CON04, the following message appears in the message area instead:

```
IEE235I hh:mm:ss PFK DISPLAY
NO PFK DEFINITIONS FOR CON04
```

Example 2

To determine the definitions in effect for the PFKs on CON04, enter:

```
DISPLAY PFK, CN=CON04
```

In response to this command, a message such as the following might appear in the message area:

```
IEE235I hh:mm:ss PFK DISPLAY
PFK DEFINITIONS FOR CON04 TABLE - MASTCMDS IN PFKTABJC
```

where the PFK table in effect for console CON04 is MASTCMDS in the PFKTABJC parmlib member.
The definition for each key appears under the headings. If, however, no PFKs are defined for the console, the following message appears:

IEE235I hh:mm:ss PFK DISPLAY
NO PFK DEFINITIONS FOR CONSOLE CON04

Entering Commands Assigned to PFKs in Conversational Mode: In conversational mode, the system causes commands assigned to PFKs to appear in the entry area. You can change and then enter them, enter them unchanged, or cancel them. The cursor appears under the third character of the command or where designated with an underscore when the PFK was assigned a command. You can change or complete the command by positioning the cursor under the first character you want to change, typing in the change, and performing an ENTER action.

To enter commands in conversational mode,
1. Press the PFK associated with the command that you want to enter, causing the first command associated with the key to appear in the entry area.
2. According to your requirements:
 - Enter the command by performing an ENTER action. The next command associated with the PFK (if any) then appears in the entry area.
 - Change the command from the keyboard, then enter the command. (See “Changing Information in the Entry Area” on page 3-13)
 - Cancel the command that appears in the entry area by performing a CANCEL action. The next command associated with the PFK (if any) then appears in the entry area.
 - Cancel the request initiated by the first press of the PFK by pressing any PFK while the command is still in the entry area.

The result of cancelling a request in this way is shown in the following example. In the example, PFK 1 is assigned the commands START PGM1 and START PGM2.

<table>
<thead>
<tr>
<th>PFK pressed</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFK 1</td>
<td>START PGM1 command is displayed</td>
</tr>
<tr>
<td>Any PFK</td>
<td>START PGM1 command is canceled, and a blank line is displayed</td>
</tr>
<tr>
<td>PFK1</td>
<td>START PGM2 command is displayed</td>
</tr>
</tbody>
</table>

Altering a command in the entry area works only for the command entry in progress; the system retains the original definition for future use of the PFK. To redefine a PFK, use the procedures described in “Defining and Changing Console Characteristics” on page 3-20 under “Defining Commands Using the CONTROL Command.”

Entering Commands Assigned to PFKs in Nonconversational Mode: Press the PFK associated with the commands that you want to enter. All of the commands are entered in the order in which they were associated with the key, just as if you had typed each command and performed the ENTER action.

Notes:
1. PFKs that are defined as conversational function in the conversational mode even though the console is in nonconversational mode. Use these keys as if you were in conversational mode, as described earlier under “Entering Commands Assigned to PFKs in Conversational Mode” on page 3-11.
2. Although the commands are entered in order, their execution may overlap. Therefore, assign commands requiring sequential execution in conversational mode.

Responses to PFK Errors: If you press a PFK that is not designated for command entry, the following message appears in the instruction line:

IEE721I PFK nn NOT SUPPORTED

If you press a PFK that has been designated for command entry but for which no command has been defined, the following message appears in the instruction line:

IEE722I PFK nn NOT DEFINED

Displaying the PFK Numbers on 3277 Model 2 Consoles: You can display the PFK numbers on 3277-2 consoles and then point to them with the selector pen. Pointing to a number has the same effect as pressing that key. To display the PFK numbers, use the CONTROL D,PFK command. To erase the numbers in the PFK line, use the CONTROL E,PFK command.

Example

To request a display in the PFK display line (this line is located immediately above the instruction line), enter:

CONTROL D,PFK

In response to this command, a display similar to the following appears in the PFK display line:

```
1  2  3  4  5  6  7  8  9  10  11  12
```

Only those numbers that have been designated for PFK command entry appear in the display. Once you have requested this display, you can leave it on the screen; the PFK display line is not used for any other purpose, even when the key numbers are not displayed. To erase the display, enter:

CONTROL E,PFK

Entering Commands with the Selector Pen

Use the selector pen to enter commands that appear in the entry area. The commands can be in the entry area either because you typed them there or because you pressed a PFK that is in conversational mode. The PFK numbers available for selector pen command entry are defined in the active PFK table or are IBM defaults.

On a 3277 model 2, the selector pen can be used with the PFK display line to enter commands. The numbers appearing in the display line represent PFK numbers, and selecting a number with the selector pen has the same effect as pressing a PFK.

In **nonconversational mode**, all of the commands associated with a PFK are entered in the order in which they were associated with the key number. All commands (except CONTROL commands) appear in the message area when screen space is available. No commands appear in the entry area.

To enter commands on the 3277 model 2 in nonconversational mode:

1. Display the PFK numbers in the PFK display line by entering the CONTROL D,PFK command.
2. Select the PFK number associated with the command(s) you want to enter.
3. Press the selector pen against the screen over the selected number. The command is automatically entered.

To select commands on the 3277 model 2 in conversational mode, follow the same three steps. The system does not automatically enter the command; rather, the first command associated with the PFK number appears in the entry area. To enter the command, follow the steps described in the next section "Entering Commands with the selector Pen in Conversational mode".

Entering Commands with the Selector Pen in Conversational Mode: In conversational mode, each command associated with a PFK number is presented in the entry area, one command at a time, where you can enter it as is, change it and enter it, or cancel it. Changing a command in the entry area works only for the command entry in progress; the system retains the original definition for that PFK.

To enter commands with the selector pen in conversational mode:

1. Enter the command by performing the ENTER action or by selecting ENTER. The next command associated with the PFK (if any) then appears in the entry area.

2. Change the command from the keyboard before entering it as described later in this chapter under "Changing Information in the Entry Area" on page 3-13.

3. Cancel the command in the entry area by performing a CANCEL action. The next command (if any) then appears in the entry area.

4. Cancel the request initiated by the first selection of the PFK number by pressing the selector pen against the screen over any other PFK number while a command associated with the first key number is still in the entry area.

Changing Information in the Entry Area

You can change information in the entry area to correct a typing error or to change a command during conversational command entry or message deletion. You might not need to completely retype a command to correct or change it. (Both conversational command entry and message deletion are described in this section.) You can blank out the entry area without entering a command to the system.

Pressing the PA1 key displays a command that you entered previously. When you see that command, you can make corrections or changes (as described in this section) and press the Enter key to issue the command.

Substituting Characters: If you make a mistake when typing in the entry area move the cursor to the first character you want to change and type the correct characters.

Example

If you type in the following reply to a WTOR message:

```
R 22, 'DISPLAY REQUESTED'
```

and then note (before performing the enter action) that you have typed the word DISPLAY incorrectly, you can move the cursor under the L, and type PL. The reply then reads:

```
R 22, 'DISPLAY REQUESTED'
```

In the same example, if you decide that the correct response is NO, moving the cursor under the D in DISPLAY and typing NO leaves the following in the entry area:
R 22,'NO' PLAY REQUESTED'

To correct this situation, move the cursor under the P and press the ERASE EOF key. This key erases the remainder of the entry area (from the cursor to the last character position), leaving the following in the entry area:
R 22,'NO'

Inserting Characters: To insert one or more characters within data in the entry area:
1. Position the cursor at the character position following the point where the missing data should appear.
2. Press the INS MODE key (the insert mode marker appears on the console).
3. Type in the missing data.
4. On some consoles, you must press the RESET key to return the keyboard to its normal input mode.

Example

To insert the console identifier 10 in the following command:
DISPLAY JOBS,L=CONSC

Move the cursor back to the C, press the INS MODE key, type in 10, and press the RESET key. The command then reads:
DISPLAY JOBS,L=CONSO1C

Note that the characters to the right of the inserted characters shift to make room for the inserted characters. If required, characters shift to the second line of the entry area.

Deleting Characters: To delete a character, position the cursor at the character to be deleted and press the DEL key.

All characters that follow the deleted one shift to the left to fill the space formerly occupied by the deleted character. Delete one character at a time.

Example

To delete the extra S from the following command:
DISPLAY JOBS,L=CONSSOLEC

Position the cursor at either S and press the DEL key. The command then reads:
DISPLAY JOBS,L=CONSOLEC

Blanking the Entry Area

The ERASE INPUT Key

To remove all of the data that you have typed in the entry area without causing it to be passed to the system, press the ERASE INPUT key. This key erases the entry area and moves the cursor to the first position in the entry area.

Note: Do not use the ERASE INPUT key on the 3279 models 2A, 2C, and 3A. On these devices, the ERASE INPUT key blanks out the entry areas and all fields with data displayed in red.
The PA2(CANCEL) Key

To clear the entry area and restore the screen, press the PA2 key.

Handling Consoles in Error Conditions

Several types of errors can occur that directly affect the operation of display consoles. In some cases, the error becomes apparent by a sudden screen failure, the appearance of error messages, or the locking of the keyboard. In other cases, the error might not be immediately apparent. Errors can be caused by a programming problem (system error), a console malfunction (hardware error), or a hardware error not related to the console.

System Errors
When a system error occurs, one or more of the following can happen:

- The screen is blanked out, and then an error message appears in the message area.
- An error message appears in the WARNING line.
- There is an abnormal lack of console activity.

Responding to an Error Message in the Message Area: An error message at the bottom of the message area indicates that a recoverable system error has occurred. Perform the action specified by the error message, and then perform a CANCEL action. This should restore the screen. It is good practice to review the messages at this time to make sure that no messages were lost during error recovery.

Responding to an Error Message in the WARNING Line: An error message in the WARNING line might indicate that an unrecoverable system error has occurred and that the system needs to be loaded again. If so, follow normal procedures for IPL, and notify your system programmer.

Responding to an Inactive Console: An inactive console condition is characterized by a lack of message traffic or a lack of system response to commands. The inactivity could be caused simply by a low level of system activity, or it could be the result of a problem in the message handling portion of the control program.

If an MCS or SMCS console appears inactive, check the system response by requesting a display of the time:

```
DISPLAY T
```

The system should respond within a few seconds with the time and date. If it does not, perform one of the following actions:

- Issue the CONTROL C,D command to cancel any status displays being presented on the inactive console.

If neither of these procedures returns the console to normal activity, assume that there is some other problem related to the console. Check for a console hardware error. If the system must be loaded again, follow normal procedures for IPL. Report the occurrence of this problem to your system programmer.

Console Hardware Errors

When a console hardware error occurs, one or more of the following can happen:
• Error messages are centered on the screen (the remainder of the screen is blank).
• The screen is blank (and no error message appears).
• The screen appears normal, but the keyboard is locked and you cannot enter commands.

Responding to Error Messages Centered on the Screen: If a console hardware error occurs, one of the following sets of messages can appear centered on the screen:

```
IEE170E RETRYABLE ERROR. RECENT ACTION MAY NEED TO BE REPEATED
IEE170E PRESS THE CANCEL KEY TO RESTORE THE SCREEN
-- or --
IEE171E CONDITIONAL ERROR. RECENT ACTION MAY NEED TO BE REPEATED
IEE171E PRESS CANCEL TO CONTINUE
```

Perform a CANCEL action. The CANCEL action should restore most of the screen, including messages displayed inline in the message area, the instruction line, and the warning line. The entry area and the PFK line, however, are blanked out, any out-of-line displays are erased, and the cursor is positioned to the first data entry position. Also, message numbering (if active) is terminated.

Note: If you do not perform a CANCEL action, the system rewrites the screen (same effect as CANCEL) after about 30 seconds. If a console hardware error results from keyboard input when you perform the CANCEL action, the system sees the error as a permanent I/O error.

Responding to a Blank Screen: If the console screen goes blank, the console has failed.

Note: It is normal for the screen of a 3277 to go blank for a few seconds if the back-tab key is pressed when the cursor is not in the entry area.

Responding to a Locked Keyboard: Sometimes the system is unable to blank out the screen. If you find that you cannot enter commands through a console that otherwise appears normal, try to restore the screen by performing a CANCEL action.

Note: Inhibited input, with or without keyboard locking, can also occur when the system abends or goes into a wait state, or when a problem occurs in the message handling portion of the control program. See the procedures described for an inactive console under "System Errors" on page 3-15.

Responding to Console Message Backups
The MVS system keeps some WTO and WTOR messages in buffers in virtual storage. The WTO buffers hold the messages that the system has not yet displayed at the eligible consoles; the WTOR buffers each hold one WTOR message that the system has already displayed but that an operator has not responded to. The maximum number of WTO and WTOR buffers are determined by the MLIM and RLIM parameters on the INIT statement in the CONSOLxx parmlib member. If these parameters are not coded, the system defaults (as described in z/OS MVS Initialization and Tuning Reference) are in effect.

To avoid WTO message buffer shortages, you can raise your WTO buffer limit (MLIM) and adjust message deletion specifications on your consoles. To avoid
WTOR message buffer shortage, raise your WTOR buffer limit (RLIM) and reply to WTORs more frequently. Procedures for responding to WTO and WTOR buffers shortages follow in this section.

Responding to WTO Buffer Shortages: When WTO message buffer use reaches 80 percent of the limit specified at IPL, the system issues the following message:

IEA405E WTO BUFFER SHORTAGE - 80% FULL

The system also issues a DISPLAY CONSOLES,BACKLOG (D C,B) command to provide information helpful in determining the cause of the buffer shortage.

If the problem continues and WTO buffer use reaches its limit, the system issues the following action message:

IEA404A SEVERE WTO BUFFER SHORTAGE - 100% FULL

When MLIM is reached, the system obtains buffers in backup storage. When this backup storage is exhausted, the system issue the following message:

IEA652A WTO STORAGE EXHAUSTED - WTOS WILL BE DISCARDED

At this point, any new WTOs will be thrown away.

When the system notifies you that the WTO buffers are 80% full, determine the reason for the buffer shortage and correct the problem. Possible reasons are:

- A console is not ready and WTO messages are filling the console message buffers because:
 - An intervention required condition exists.
 - The console has been powered off.
 - Some part of the path to the device is not working; for example, an I/O interface is disabled.
 - One or more consoles may have their displays held.
- A console is not in roll mode, and messages are filling the console message buffers.
- A console is in roll or wrap mode but the update time is too long, and messages are filling the console message buffers.
- A buffer limit specified at IPL is too low to handle the message traffic in the system. (Either the value on the MLIM parameter in the CONSOLxx member is too low, or the system default for RLIM is too low.)
- A program is issuing messages at too rapid a rate and might be in a loop. When a job uses a high percentage of the WTO buffers, the system issues message CNZ3011I which identifies the jobname and the address space.

To determine the extent of the problem and the responsible console or consoles, examine the output from the DISPLAY CONSOLES,BACKLOG (D C,B) command. When messages are backed up for a console, it might be necessary to delete the queue of messages for the console using a CONTROL Q command. You might need to issue CONTROL Q several times to clear the console completely.

When there are too many messages from one job/address space, consider cancelling the job or jobs specified in message CNZ3011I. If cancelling a job would cause a serious impact, look at the messages the job is issuing. If the job seems to be in a loop, then activate an MPF member to suppress or delete the repeating message. Another option is to temporarily remove the message’s routing code from all the consoles.
When a high number of buffers is in use for messages from another system in the sysplex, you can route a D C,B command to the other system to determine if a job on the other system is generating too many messages. You can protect your system from a runaway job on another system in the sysplex by using the V CN,DMSCOPE= command.

Figure 3-2 shows an example of the DISPLAY CONSOLES,BACKLOG output. The system displays information about all consoles, on this system only, that have any outstanding WTO messages. The output in the figure includes the following line:

MSG: CURR=1356 LIM=1500 RPLY:CURR=1 LIM=10 SYS=1 PFK=NONE

In this line, MSG: CURR=1356 LIM=1500 tells you the current use of WTO buffers and the specified limit. RPLY: CURR=1 LIM=1500 tells you the number of WTOR messages that have been displayed and are awaiting operator reply, and the specified limit. The line confirms that more than 80% of the specified WTO buffer limit is reached; 1356 WTO buffers are full and the specified limit is 1500. The display in Figure 3-2 on page 3-18 indicates, through NBUF, the number of buffers queued to each console. In this example, DAVE, with 1217 message buffers filled, is the source of the problem. The buffer limit of 1500 seems adequate, so DAVE is probably failing and causing undisplayed messages to fill the message buffers.

If the buffer limit is not adequate, issue the CONTROL M,MLIM= command to increase the WTO buffer limit for the duration of the IPL. Your system programmer might code the MLIM parameter on the INIT statement in the CONSOLxx member to raise the WTO buffer limit for the next IPL.

When the number of buffers in use drops below 60% of the limit specified at IPL time, the system issues the following message:

IEA406I WTO BUFFER SHORTAGE RELIEVED

Notes:

1. All lines of an out-of-line multi-line status display that have not been presented occupy message buffers. Therefore, you should erase these displays when they are no longer needed.

2. The current buffer count can be larger than the specified limit. Even though the buffer count is greater than or equal to the limit, the system always gives a privileged task a buffer unless the storage available for buffers is exhausted.
3. The system does not use the MLIM and RLIM parameter values specified in the CONSOLxx parmlib member until either the hardcopy medium (SYSLOG or OPERLOG) becomes active or NIP processing is complete. After NIP processing, multiple consoles become active and buffer space becomes important.

Responding to WTOR Buffer Shortages: When WTOR message buffer use reaches 80 percent of the limit specified at IPL, the system issues the following message:

```
IEA230E WTOR BUFFER SHORTAGE - 80% FULL
```

If the problem continues and WTO buffer use reaches its limit, the system issues the following action message:

```
IEA231A WTOR BUFFER SHORTAGE CRITICAL - 100% FULL
```

When the system notifies you that the WTOR buffers are 80% full, you should reply to the WTOR messages that are outstanding. If any of the WTORs have rolled off the screen (console roll mode is DEL=R), use the DISPLAY R,R command to retrieve the text of the outstanding requests.

To raise the limit of WTOR buffers for the duration of the IPL, issue the CONTROL M,RLIM command. If WTOR buffer use often reaches 80 percent of the limit, the limit for WTOR messages specified at IPL might be too low to handle the WTOR message traffic in the system. Your system programmer should code the RLIM parameter on the INIT statement in the CONSOLxx member to raise the WTOR buffer limit for the next IPL.

Processing MVS Messages at the System Console During System Recovery

During system recovery, MVS might try to communicate with you. Your installation might have defined the system console, or any other MCS console as members of a console group in CNGRPxx to receive synchronous messages. Synchronous messages are WTO or WTOR messages that can be issued during initialization or recovery situations. The operator must respond to the WTOR messages before the system will continue. In a sysplex, a console can display synchronous messages only if it is attached to the system that issues the message. If your installation has not specified a console group or a console is not active, the system issues the message to the system console.

The MVS message on the system console does not time out; the message remains on the screen until you enter a reply. See [z/OS MVS Planning: Operations](https://www.ibm.com/docs/en/zos) for more information about consoles and console recovery.

Placing a Console in Offline Status

When an MCS or SMCS console or the system log must be bypassed for any reason, you must enter a VARY command to place the console offline. Command activity from the console is immediately suspended. If the console is a printer, messages continue to be displayed until all waiting messages have been issued.

The VARY command does not cause the functions of the bypassed console to be assigned to another console.
Interchanging Your Consoles on a Control Unit

If a device has been specified as a 3270 model X to hardware configuration definition (HCD), you can replace it with another device and redefine it through the HCD panels. For information about using HCD, see z/OS HCD User's Guide.

Defining and Changing Console Characteristics

This chapter describes:
- Using Operator Commands to Change CONSOLxx Statements
- Changing Console Characteristics
- Controlling System Messages and Commands
- Defining Program Function Keys (PFKs)
- Processing Hardcopy

When your system comes up, the definitions in certain members of SYS1.PARMLIB are in effect. After IPL, you can use CONTROL, MONITOR, SET, and VARY commands to change some of the definitions; however, the effect of the command lasts only for the duration of the IPL.

Using Operator Commands to Change CONSOLxx Statements

Several operator commands are available to modify the statements in the CONSOLxx parmlib member.

The CONSOLE Statement of CONSOLxx

A CONSOLE statement in the CONSOLxx parmlib member establishes the device as an MCS or SMCS console and defines certain console values or attributes. These values are specified by system programmers or are IBM defaults. After IPL, operators can use certain commands to change these attributes. The effects of these commands last only for the duration of the IPL; at the next IPL, the values will be those in the parmlib members or the IBM defaults.

CONSOLxx contains console definitions for the system or sysplex.

Table 3-3. Comparison of System Commands and CONSOLE Parameters in CONSOLxx

<table>
<thead>
<tr>
<th>MVS Commands</th>
<th>CONSOLE Parameters with DEFAULT</th>
<th>Characteristic that the Parameter Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL A</td>
<td>AREA</td>
<td>Size of the out-of-line display areas</td>
</tr>
<tr>
<td>CONTROL N,PFK</td>
<td>PFKTAB</td>
<td>PFK table</td>
</tr>
<tr>
<td>CONTROL S,CON</td>
<td>CON(N)</td>
<td>Conversational or nonconversational mode</td>
</tr>
<tr>
<td>CONTROL S,DEL</td>
<td>DEL(RD)</td>
<td>Message deletion mode</td>
</tr>
<tr>
<td>CONTROL S,MFORM</td>
<td>MFORM(M)</td>
<td>Format in which the messages appear</td>
</tr>
<tr>
<td>CONTROL S,RNUM</td>
<td>RNUM(5)</td>
<td>Number of message lines included in one message roll</td>
</tr>
<tr>
<td>CONTROL S,RTME</td>
<td>RTME(2)</td>
<td>Number of seconds between message roll/wrap</td>
</tr>
<tr>
<td>CONTROL S,SEG</td>
<td>SEG</td>
<td>Number of lines in the message area that can be deleted by a CONTROL E,SEG command</td>
</tr>
<tr>
<td>CONTROL V,CMDSYS</td>
<td>CMDSYS</td>
<td>Systems where commands on a console can be directed for processing</td>
</tr>
</tbody>
</table>
Table 3-3. Comparison of System Commands and CONSOLE Parameters in CONSOLxx (continued)

<table>
<thead>
<tr>
<th>MVS Commands</th>
<th>CONSOLE Parameters with DEFAULT</th>
<th>Characteristic that the Parameter Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL V,LEVEL</td>
<td>LEVEL</td>
<td>Message levels for the console</td>
</tr>
<tr>
<td>CONTROL V,USE</td>
<td>USE(FC)</td>
<td>Console operating mode</td>
</tr>
<tr>
<td>MONITOR</td>
<td>MONITOR</td>
<td>Monitoring of certain events</td>
</tr>
<tr>
<td>VARY CN,AMSCOPE</td>
<td>MSCOPE</td>
<td>Systems that direct messages to a console</td>
</tr>
<tr>
<td>VARY CN,DMSCOPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VARY CN,MSCOPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VARY CN,AUTH</td>
<td>AUTH(INFO)</td>
<td>Command groups</td>
</tr>
<tr>
<td>VARY CN,LOGON</td>
<td>LOGON</td>
<td>Defines the LOGON attribute</td>
</tr>
<tr>
<td>VARY CN,LU</td>
<td>LU</td>
<td>Defines the predefined LU for an SMCS console only</td>
</tr>
<tr>
<td>VARY CN,ROUT</td>
<td>ROUTCODE</td>
<td>Routing codes for the console</td>
</tr>
<tr>
<td>VARY CN,AROUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VARY CN,DROUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VARY CN,INTIDS</td>
<td>INTIDS</td>
<td>Whether to receive messages directed to console ID zero</td>
</tr>
<tr>
<td>VARY CN,UNKNIDS</td>
<td>UNKNIDS</td>
<td>Whether to receive messages directed to unknown console IDs (such as 1-byte console IDs)</td>
</tr>
</tbody>
</table>

The INIT Statement in the CONSOLxx Member

The INIT statement contains initialization values for the system. You code only one INIT statement in the CONSOLxx member for all the consoles.

Table 3-4 describes each MVS command that has a corresponding parameter on the INIT statement in CONSOLxx, the parameter, and the characteristic that the command and parameter affect. The value in parentheses indicates the default.

Table 3-4. Comparison of System Commands and INIT Statements in CONSOLxx

<table>
<thead>
<tr>
<th>MVS Command</th>
<th>Parameter on INIT Statement with default value</th>
<th>Characteristic that the Parameter Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL M,AMRF</td>
<td>AMRF(Y)</td>
<td>Establishes whether the action message retention facility is to be active</td>
</tr>
<tr>
<td>CONTROL M,APPLID</td>
<td>APPLID</td>
<td>Sets the APPLID used by SMCS on this system</td>
</tr>
<tr>
<td>CONTROL M,GENERIC</td>
<td>GENERIC</td>
<td>Sets the GENERIC used by SMCS for the entire sysplex</td>
</tr>
<tr>
<td>CONTROL M,MLIM</td>
<td>MLIM(1500)</td>
<td>Limits the number of buffers for WTO messages that the system has not yet displayed</td>
</tr>
<tr>
<td>CONTROL M,LOGLIM</td>
<td>LOGLIM(1000)</td>
<td>Limits the number of buffers for messages that the system sends to the system log</td>
</tr>
</tbody>
</table>
Table 3-4. Comparison of System Commands and INIT Statements in CONSOLxx (continued)

<table>
<thead>
<tr>
<th>MVS Command</th>
<th>Parameter on INIT Statement with default value</th>
<th>Characteristic that the Parameter Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL M,RLIM</td>
<td>RLIM(10)</td>
<td>Limits the number of WTOR messages that the system has displayed but that the operator has not replied to</td>
</tr>
<tr>
<td>CONTROL M,UEXIT</td>
<td>UEXIT(Y)</td>
<td>Establishes whether the installation exit IEAVMXIT is to be active</td>
</tr>
<tr>
<td>MONITOR</td>
<td>MONITOR</td>
<td>Establishes how the system displays mount and demount messages in response to the MONITOR command</td>
</tr>
<tr>
<td>SET CNGRP</td>
<td>CNGRP(NO)</td>
<td>Specifies the CNGRPxx parmlib members that the system is to use</td>
</tr>
<tr>
<td>SET MMS</td>
<td>MMS(NO)</td>
<td>Specifies the MMSLSTxx parmlib member that holds the translation tables that are available for your system</td>
</tr>
<tr>
<td>SET MPF</td>
<td>MPF(NO)</td>
<td>Specifies the MPFLSTxx parmlib members that the system is to use</td>
</tr>
<tr>
<td>SET PFK</td>
<td>PFK(NONE)</td>
<td>Specifies the PFKTABxx parmlib member that holds the PFK tables that are available for your consoles</td>
</tr>
<tr>
<td>TRACE CT,PARM=</td>
<td>CTRACE(CTIOPS00)</td>
<td>Specifies the CTnOPSxx parmlib member that contains tracing options for the operations services (OPS) component</td>
</tr>
</tbody>
</table>

The HARDCOPY Statement in the CONSOLxx Member

Table 3-5 describes each VARY HARDCPY command operand, the corresponding parameter in CONSOLxx parmlib member, and the task the command and parameter performs. The value in parentheses indicates the default.

Table 3-5. Comparison of VARY HARDCPY Commands and HARDCOPY Statements in CONSOLxx

<table>
<thead>
<tr>
<th>VARY HARDCPY Command Parameters</th>
<th>Parameters on HARDCOPY Statement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSLOG or OPERLOG</td>
<td>DEVNUM</td>
<td>Establishes whether the hardcopy medium is SYSLOG or OPERLOG</td>
</tr>
<tr>
<td>ROUT</td>
<td>ROUTCODE</td>
<td>Establishes the routing codes for messages included in the hardcopy message set</td>
</tr>
<tr>
<td>NOCMDS, INCMD, STCMD, or CMD</td>
<td>CMDLEVEL</td>
<td>Establishes whether the hardcopy message set includes operator commands, responses, or status displays</td>
</tr>
</tbody>
</table>
The HARDCOPY statement is optional; CONSOLxx contains only one statement for each system. If the HARDCOPY default is used, the system uses the following defaults:

- The hardcopy medium is SYSLOG.
- The system uses a minimum set of routing codes (1, 2, 3, 4, 7, 8, 10, and 42) to select messages for the hardcopy message set.
- CMDLEVEL(CMDS) is used to select the level of commands included in the hardcopy message set.

The DEFAULT statement in CONSOLxx: The system programmer uses the DEFAULT statement to control certain default values for MCS and SMCS consoles in the configuration. DEFAULT lets the system programmer specify console attributes that control the following for console configuration:

- Console security by specifying operator logon options
- Certain console screen functions for all consoles (ability for operators to hold moving or wrapping messages on the screen)
- Routing for messages without routing codes or other message queueing information, and routing for synchronous messages that bypass normal message queueing
- Determining the maximum value for operator REPLY ids.

Unlike values in CONSOLE and INIT, operators cannot change individual DEFAULT statement values. Operators must re-IPL the system with the CONSOLxx member that contains the new DEFAULT statement.

Displaying Information About Console Characteristics
To learn the current characteristics of the console, use the DISPLAY CONSOLES command. The output is message CNZ4100I, which contains information about the system's use of consoles as well as information about each console's characteristics. [Figure 3-3](#) shows the output of the command. For a complete description of message CNZ4100I, use LookAt or use the MVS System Messages books.
In the example, the command is to display all consoles that accept messages with a routing code of 5. FRED and WILMA are active consoles on SY2 that match the specified criteria. Their console information is displayed in the command output. BARNEY is a console that is not active, but it does accept messages with a routing code of 5 on all systems. Therefore, the command output only displays BARNEY’s type, status, all systems on which it is defined, and all systems where it matched the specified criteria. BETTY is active on SY1 and does not accept messages with a routing code of 5 on SY1, but it does accept them on other systems where it is not active. Therefore, the command output only displays the same summarized information as BARNEY.

Note: To display the console information associated with BARNEY for each system where he accepts messages with a routing code of 5, include the FULL keyword.

Changing Console Characteristics

You can change the characteristics of MCS and SMCS consoles dynamically through MVS commands.

Note that using VARY command can only change the console characteristics when the console is active. The exceptions to this are LU and LOGON characteristics, which can be changed for inactive SMCS consoles. See “VARY Command” on page 4-670 for more information.

System Commands Grouped According to System Command Authority

If an MVS operator command is not RACF-protected (for example, if the RACF OPERCMDS class is not active, or if no OPERCMDS profile covers the command), the authority to issue the MVS command is granted based on the command group. There are five command groups:

Figure 3-3. Example of DISPLAY CONSOLES,ROUT=5 Command Output

In the example, the command is to display all consoles that accept messages with a routing code of 5. FRED and WILMA are active consoles on SY2 that match the specified criteria. Their console information is displayed in the command output. BARNEY is a console that is not active, but it does accept messages with a routing code of 5 on all systems. Therefore, the command output only displays BARNEY’s type, status, all systems on which it is defined, and all systems where it matched the specified criteria. BETTY is active on SY1 and does not accept messages with a routing code of 5 on SY1, but it does accept them on other systems where it is not active. Therefore, the command output only displays the same summarized information as BARNEY.

Note: To display the console information associated with BARNEY for each system where he accepts messages with a routing code of 5, include the FULL keyword.

Changing Console Characteristics

You can change the characteristics of MCS and SMCS consoles dynamically through MVS commands.

Note that using VARY command can only change the console characteristics when the console is active. The exceptions to this are LU and LOGON characteristics, which can be changed for inactive SMCS consoles. See “VARY Command” on page 4-670 for more information.

System Commands Grouped According to System Command Authority

If an MVS operator command is not RACF-protected (for example, if the RACF OPERCMDS class is not active, or if no OPERCMDS profile covers the command), the authority to issue the MVS command is granted based on the command group. There are five command groups:
- Informational commands (INFO)
- System control commands (SYS)
- I/O control commands (IO)
- Console control commands (CONS)
- Master level authority commands (MASTER)

If RACF is used to control who can issue commands, the RACF OPERCMDS settings override the command group (AUTH) settings. For example, if the user has access to the correct OPERCMDS profile, a job submitted in a class with AUTH(INFO) will issue a MODIFY command. Similarly, if the user does not have access to the proper OPERCMDS profile, a job submitted in an AUTH(ALL) jobclass will be unable to issue a MODIFY command.

The commands in each group are shown in Table 3-6. The command groups are ordered from the lowest to the highest JES authority level, as described in z/OS JES2 Commands or z/OS JES3 Commands.

You can enter informational commands from any full-capability console. However, to enter system control, I/O control, or console control commands from a secondary console, that particular command group must be assigned to that console. If you enter a command at a console where it is not authorized, MVS rejects the command and sends an error message to the issuing console.

At a master authority console, you can enter all operator commands. Any console with AUTH(MASTER) in the CONSOLxx parmlib member has master authority.

Using RACF, the installation can allow the operators to log on to any MCS or SMCS console. IBM recommends logon for SMCS. The operator’s RACF profile and group authority determines what commands can be issued from the console. For a list of MVS commands and their profile names, see “MVS Commands, RACF Access Authorities, and Resource Names” on page 3-27.

Table 3-6. Command Groups Used to Determine Command Authority

<table>
<thead>
<tr>
<th>Command Group</th>
<th>Commands</th>
</tr>
</thead>
</table>
| INFO | CMDSD DISPALY
| | CMDSD SHOW
| | CONTROL (See Note 3 on page 3-26)
| | DEVSERV DISPLAY (See Note 1 on page 3-26)
| | LOG LOGOFF LOGON MONITOR |
| | REPLY (See Note 4 on page 3-26)
| | ROUTE SEND STOPMN |
Table 3-6. Command Groups Used to Determine Command Authority (continued)

<table>
<thead>
<tr>
<th>Command Group</th>
<th>Commands</th>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS (system control)</td>
<td>ACTIVATE, CANCEL, CHNGDUMP, DUMPDS, HALT (See Note 2), HOLD, LIBRARY, MODE, MODIFY, PAGEADD, PAGEDEL, RELEASE, RESET, SET</td>
<td>1. CONS command group when message routing is specified.</td>
</tr>
<tr>
<td></td>
<td>SETAPPC, SETCEE, SET GRSRNL, SETETR, SETIOS, SETLOAD, SETMF, SETOMVS, SETPROG, SETRRS ARCHIVELOGGING, SETRRS CANCEL, SETRRS SHUTDOWN, SETSMF, SETSMS, SETUNI, SLIP, START, STOP, SWITCH SMF, TRACE (with CT, ST, or STATUS), WRITELOG</td>
<td>2. HALT NET and VARY NET are related to the Virtual Telecommunications Access Method (VTAM®)</td>
</tr>
<tr>
<td></td>
<td>VARY {NET} (See Note 2), {OFFLINE} (See Note 5), {ONLINE} (See Note 5), {PATH} (See Note 5), {name or [/]devnum}</td>
<td>3. CONTROL is in the INFO command group except when</td>
</tr>
<tr>
<td></td>
<td>CONTROL (See Note 3)</td>
<td>v Purging the message queues of any other full-capability MCS or SMCS console — MASTER.</td>
</tr>
<tr>
<td></td>
<td>VARY CN(...)[OFFLINE][ONLINE] (See Note 5)</td>
<td>v Message routing is specified — CONS.</td>
</tr>
<tr>
<td></td>
<td>TRACE (with MT) VARY {CN(...)[,AUTH=...]}, {CN(...)[,LOGON=...]}, {CN(...)[,LU=...]}, {CONSOLE[,...]}, {GRS }, {HARDCPY }, {OFFLINE,FORCE }, {XCF }</td>
<td>v Changing or displaying the status of the action message retention facility — MASTER.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v Changing or displaying the number of allowed message buffers — MASTER.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v Changing or displaying the status of WTO user exit IBAVMXIT — MASTER.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v In a sysplex, changing the maximum time to wait for aggregated command responses — MASTER.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v Increasing the number of reply IDs — MASTER.</td>
</tr>
<tr>
<td>IO (I/O control)</td>
<td>ASSIGN, MOUNT, SETHS, SWAP, UNLOAD</td>
<td>4. An operator can reply to any message that the console is eligible to receive. Any console with master authority can reply to any message.</td>
</tr>
<tr>
<td></td>
<td>VARY {NET} (See Note 2), {OFFLINE} (See Note 5), {ONLINE} (See Note 5), {PATH} (See Note 5), {name or [/]devnum}</td>
<td>5. VARY CN,OFFLINE and VARY CN,ONLINE require CONS. Without the CN keyword, VARY OFFLINE and VARY ONLINE require IO authority.</td>
</tr>
<tr>
<td>CONS (console control)</td>
<td>CONTROL (See Note 3)</td>
<td></td>
</tr>
<tr>
<td>MASTER (master control)</td>
<td>CMDs ABEND, CMDs DUMP, CMDs REMOVE, CONFIG, CONTROL (See Note 3), DUMP, FORCE, IOACTION, QUIESCE, RESET CN, SETCONSET, SETGRS, SETLOG, SETLOGRC, SETSSI, SETXCF</td>
<td></td>
</tr>
</tbody>
</table>
MVS Commands, RACF Access Authorities, and Resource Names

Table 3-7 lists all MVS commands, the RACF access authority associated with them, the RACF resource name for the profile, and any explanatory notes:

<table>
<thead>
<tr>
<th>Command/Keyword</th>
<th>Authority</th>
<th>Resource-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVATE</td>
<td>UPDATE</td>
<td>MVS.ACTIVATE</td>
</tr>
<tr>
<td>CANCEL device</td>
<td>UPDATE</td>
<td>MVS.CANCEL.DEV.device</td>
</tr>
<tr>
<td>CANCEL jobname</td>
<td>UPDATE</td>
<td>MVS.CANCEL.JOB.jobname</td>
</tr>
</tbody>
</table>

The previous command is for a job that is not a started task.

<table>
<thead>
<tr>
<th>Command/Keyword</th>
<th>Authority</th>
<th>Resource-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANCEL jobname.id</td>
<td>UPDATE</td>
<td>MVS.CANCEL.STC.mbrname.id</td>
</tr>
<tr>
<td>CANCEL id</td>
<td>UPDATE</td>
<td>MVS.CANCEL.STC.mbrname.id</td>
</tr>
</tbody>
</table>

The previous command is for a started task for which an identifier is provided.

<table>
<thead>
<tr>
<th>Command/Keyword</th>
<th>Authority</th>
<th>Resource-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANCEL jobname</td>
<td>UPDATE</td>
<td>MVS.CANCEL.STC.mbrname.jobname</td>
</tr>
</tbody>
</table>

The previous command is for a started task for which an identifier was not provided. mbrname is the name of the member containing the JCL source.

<table>
<thead>
<tr>
<th>Command/Keyword</th>
<th>Authority</th>
<th>Resource-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANCEL jobname</td>
<td>UPDATE</td>
<td>MVS.CANCEL.ATX.jobname</td>
</tr>
</tbody>
</table>

The previous command is for APPC transaction programs.

<table>
<thead>
<tr>
<th>Command/Keyword</th>
<th>Authority</th>
<th>Resource-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANCEL U=userid</td>
<td>UPDATE</td>
<td>MVS.CANCEL.TSU.userid</td>
</tr>
<tr>
<td>CHNGDUMP</td>
<td>UPDATE</td>
<td>MVS.CHNGDUMP</td>
</tr>
<tr>
<td>CMDS DISPLAY</td>
<td>READ</td>
<td>MVS.CMDS.DISPLAY</td>
</tr>
<tr>
<td>CMDS DUMP</td>
<td>CONTROL</td>
<td>MVS.CMDS.DUMP</td>
</tr>
<tr>
<td>CMDS SHOW</td>
<td>READ</td>
<td>MVS.CMDS.SHOW</td>
</tr>
<tr>
<td>CMDS REMOVE</td>
<td>CONTROL</td>
<td>MVS.CMDS.REMOVE</td>
</tr>
<tr>
<td>CMDS ABEND</td>
<td>CONTROL</td>
<td>MVS.CMDS.ABEND</td>
</tr>
<tr>
<td>CONFIG</td>
<td>CONTROL</td>
<td>MVS.CONFIG</td>
</tr>
<tr>
<td>CONTROL A</td>
<td>READ</td>
<td>MVS.CONTROL.A</td>
</tr>
</tbody>
</table>

Note: The access authority for all CONTROL commands except CONTROL M is normally READ, but the L=name (console name) operand can change the access level. When L=name specifies a console that is not full-capability and is not the issuing console, the access authority is UPDATE. When L=name specifies a console that is full-capability and is not the issuing console, the access authority is CONTROL.

<table>
<thead>
<tr>
<th>Command/Keyword</th>
<th>Authority</th>
<th>Resource-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL C</td>
<td>READ</td>
<td>MVS.CONTROL.C</td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td>See the note for the CONTROL A command for exceptions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command/Keyword</th>
<th>Authority</th>
<th>Resource-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL D</td>
<td>READ</td>
<td>MVS.CONTROL.D</td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td>See the note for the CONTROL A command for exceptions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command/Keyword</th>
<th>Authority</th>
<th>Resource-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL E</td>
<td>READ</td>
<td>MVS.CONTROL.E</td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td>See the note for the CONTROL A command for exceptions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command/Keyword</th>
<th>Authority</th>
<th>Resource-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL M</td>
<td>CONTROL</td>
<td>MVS.CONTROL.M</td>
</tr>
<tr>
<td>CONTROL N</td>
<td>READ</td>
<td>MVS.CONTROL.N</td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td>See the note for the CONTROL A command for exceptions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command/Keyword</th>
<th>Authority</th>
<th>Resource-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL Q</td>
<td>READ</td>
<td>MVS.CONTROL.Q</td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td>See the note for the CONTROL A command for exceptions.</td>
</tr>
<tr>
<td>Command/Keyword</td>
<td>Authority</td>
<td>Resource-Name</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>CONTROL S</td>
<td>READ</td>
<td>MVS.CONTROL.S</td>
</tr>
<tr>
<td>Note: See the note for the CONTROL A command for exceptions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROL V</td>
<td>READ</td>
<td>MVS.CONTROL.V</td>
</tr>
<tr>
<td>Note: See the note for the CONTROL A command for exceptions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEVSERV</td>
<td>READ</td>
<td>MVS.DEVSERV</td>
</tr>
<tr>
<td>DISPLAY A</td>
<td>READ</td>
<td>MVS.DISPLAY.A</td>
</tr>
<tr>
<td>DISPLAY ALLOC,GRPLOCKS</td>
<td>READ</td>
<td>MVS.DISPLAY.ALOC</td>
</tr>
<tr>
<td>DISPLAY ALLOC,OPTIONS</td>
<td>READ</td>
<td>MVS.DISPLAY.ALOC</td>
</tr>
<tr>
<td>DISPLAY APPC</td>
<td>READ</td>
<td>MVS.DISPLAY.APPC</td>
</tr>
<tr>
<td>DISPLAY ASCH</td>
<td>READ</td>
<td>MVS.DISPLAY.ASCH</td>
</tr>
<tr>
<td>DISPLAY ASM</td>
<td>READ</td>
<td>MVS.DISPLAY.ASM</td>
</tr>
<tr>
<td>DISPLAY CEE</td>
<td>READ</td>
<td>MVS.DISPLAY.CEE</td>
</tr>
<tr>
<td>DISPLAY CNGRP</td>
<td>READ</td>
<td>MVS.DISPLAY.CNGRP</td>
</tr>
<tr>
<td>DISPLAY CONSOLES</td>
<td>READ</td>
<td>MVS.DISPLAY.CONSOLES</td>
</tr>
<tr>
<td>DISPLAY DIAG</td>
<td>READ</td>
<td>MVS.DISPLAY.DIAG</td>
</tr>
<tr>
<td>DISPLAY DLF</td>
<td>READ</td>
<td>MVS.DISPLAY.DLF</td>
</tr>
<tr>
<td>DISPLAY DMN</td>
<td>READ</td>
<td>MVS.DISPLAY.DMN</td>
</tr>
<tr>
<td>DISPLAY DUMP</td>
<td>READ</td>
<td>MVS.DISPLAY.DUMP</td>
</tr>
<tr>
<td>DISPLAY EMCS</td>
<td>READ</td>
<td>MVS.DISPLAY.EMCS</td>
</tr>
<tr>
<td>DISPLAY ETR</td>
<td>READ</td>
<td>MVS.DISPLAY.ETR</td>
</tr>
<tr>
<td>DISPLAY GRS</td>
<td>READ</td>
<td>MVS.DISPLAY.GRS</td>
</tr>
<tr>
<td>DISPLAY HIS</td>
<td>READ</td>
<td>MVS.DISPLAY.HIS</td>
</tr>
<tr>
<td>DISPLAY HS</td>
<td>READ</td>
<td>MVS.DISPLAY.HS</td>
</tr>
<tr>
<td>DISPLAY IOS</td>
<td>READ</td>
<td>MVS.DISPLAY.IOS</td>
</tr>
<tr>
<td>DISPLAY IPLINFO</td>
<td>READ</td>
<td>MVS.DISPLAY.IPLINFO</td>
</tr>
<tr>
<td>DISPLAY JOBS</td>
<td>READ</td>
<td>MVS.DISPLAY.JOB</td>
</tr>
<tr>
<td>DISPLAY LOGGER</td>
<td>READ</td>
<td>MVS.DISPLAY.LOGGER</td>
</tr>
<tr>
<td>DISPLAY LOGREC</td>
<td>READ</td>
<td>MVS.DISPLAY.LOGREC</td>
</tr>
<tr>
<td>DISPLAY M</td>
<td>READ</td>
<td>MVS.DISPLAY.M</td>
</tr>
<tr>
<td>DISPLAY MMS</td>
<td>READ</td>
<td>MVS.DISPLAY.MMS</td>
</tr>
<tr>
<td>DISPLAY MPF</td>
<td>READ</td>
<td>MVS.DISPLAY.MPF</td>
</tr>
<tr>
<td>DISPLAY MSGFLD</td>
<td>READ</td>
<td>MVS.DISPLAY.MSGFLD</td>
</tr>
<tr>
<td>DISPLAY NET</td>
<td>READ</td>
<td>MVS.DISPLAY.NET</td>
</tr>
<tr>
<td>DISPLAY OPDATA</td>
<td>READ</td>
<td>MVS.DISPLAY.OPDATA</td>
</tr>
<tr>
<td>DISPLAY PARMILIB</td>
<td>READ</td>
<td>MVS.DISPLAY.PARMILIB</td>
</tr>
<tr>
<td>DISPLAY PFK</td>
<td>READ</td>
<td>MVS.DISPLAY.PFK</td>
</tr>
<tr>
<td>DISPLAY PROD</td>
<td>READ</td>
<td>MVS.DISPLAY.PROD</td>
</tr>
<tr>
<td>DISPLAY PROG</td>
<td>READ</td>
<td>MVS.DISPLAY.PROG</td>
</tr>
<tr>
<td>Command/Keyword</td>
<td>Authority</td>
<td>Resource-Name</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>DISPLAY PROG,EXIT</td>
<td>READ</td>
<td>MVS.DISPLAY.PROG,EXIT</td>
</tr>
<tr>
<td>DISPLAY R</td>
<td>READ</td>
<td>MVS.DISPLAY.R</td>
</tr>
<tr>
<td>DISPLAY RRS</td>
<td>READ</td>
<td>MVS.DISPLAY.RRS</td>
</tr>
<tr>
<td>DISPLAY RTLS</td>
<td>READ</td>
<td>MVS.DISPLAY.RTLS</td>
</tr>
<tr>
<td>DISPLAY SLIP</td>
<td>READ</td>
<td>MVS.DISPLAY.SLIP</td>
</tr>
<tr>
<td>DISPLAY SMF</td>
<td>READ</td>
<td>MVS.DISPLAY.SMF</td>
</tr>
<tr>
<td>DISPLAY SMS</td>
<td>READ</td>
<td>MVS.DISPLAY.SMS</td>
</tr>
<tr>
<td>DISPLAY SSI</td>
<td>READ</td>
<td>MVS.DISPLAY.SSI</td>
</tr>
<tr>
<td>DISPLAY SYMBOLS</td>
<td>READ</td>
<td>MVS.DISPLAY_SYMBOLS</td>
</tr>
<tr>
<td>DISPLAY T</td>
<td>READ</td>
<td>MVS.DISPLAY.TRACE</td>
</tr>
<tr>
<td>DISPLAY TRACE</td>
<td>READ</td>
<td>MVS.DISPLAY.TRACE</td>
</tr>
<tr>
<td>DISPLAY TS</td>
<td>READ</td>
<td>MVS.DISPLAY.JOB</td>
</tr>
<tr>
<td>DISPLAY U</td>
<td>READ</td>
<td>MVS.DISPLAY.U</td>
</tr>
<tr>
<td>DISPLAY WLM</td>
<td>READ</td>
<td>MVS.DISPLAY.WLM</td>
</tr>
<tr>
<td>DISPLAY XCF</td>
<td>READ</td>
<td>MVS.DISPLAY.XCF</td>
</tr>
<tr>
<td>DUMP</td>
<td>CONTROL</td>
<td>MVS.DUMP</td>
</tr>
<tr>
<td>DUMPDS</td>
<td>UPDATE</td>
<td>MVS.DUMPDS</td>
</tr>
<tr>
<td>FORCE device</td>
<td>CONTROL</td>
<td>MVS.FORCE.DEV.device</td>
</tr>
<tr>
<td>FORCE jobname</td>
<td>CONTROL</td>
<td>MVS.FORCE.JOB.jobname</td>
</tr>
</tbody>
</table>

The previous command is for a job that is **not** a started task.

| FORCE jobname.id | CONTROL | MVS.FORCE.STC.mbrname.id |
| FORCE id | CONTROL | MVS.FORCE.STC.mbrname.id |

The previous command is for a started task for which an identifier was provided.

| FORCE jobname | CONTROL | MVS.FORCE.JOB.jobname |

The previous command is for a started task for which an identifier was **not** provided. *mbrname* is the name of the member containing the JCL source.

FORCE U=userid	CONTROL	MVS.FORCE.TSU.userid
FORCE device,ARM	CONTROL	MVS.FORCEARM.DEV.device
FORCE jobname,ARM	CONTROL	MVS.FORCEARM.JOB.jobname

The previous command is for a job that is **not** a started task.

| FORCE [jobname,]identifier,ARM | CONTROL | MVS.FORCEARM.STC.mbrname.id |

The previous command is for a started task for which an identifier was provided.

| FORCE jobname,ARM | CONTROL | MVS.FORCEARM.STC.mbrname.jobname |

The previous command is for a started task for which an identifier was **not** provided. *mbrname* is the name of the member containing the JCL source.

FORCE U=userid,ARM	CONTROL	MVS.FORCEARM.TSU.userid
HALT EOD	UPDATE	MVS.HALT.EOD
HALT NET	UPDATE	MVS.HALT.NET
IOACTION	CONTROL	MVS.IOACTION
LIBRARY	UPDATE	MVS.LIBRARY
Table 3-7. MVS Commands, RACF Access Authorities, and Resource Names (continued)

<table>
<thead>
<tr>
<th>Command/Keyword</th>
<th>Authority</th>
<th>Resource-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG</td>
<td>READ</td>
<td>MVS.LOG</td>
</tr>
<tr>
<td>MODE</td>
<td>UPDATE</td>
<td>MVS.MODE</td>
</tr>
<tr>
<td>MODIFY jobname</td>
<td>UPDATE</td>
<td>MVS.MODIFY.JOB.jobname</td>
</tr>
<tr>
<td>The previous command is for a job that is not a started task.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODIFY userid</td>
<td>UPDATE</td>
<td>MVS.MODIFY.JOB.userid</td>
</tr>
<tr>
<td>MODIFY jobname</td>
<td>UPDATE</td>
<td>MVS.MODIFY.STC.mbname.id</td>
</tr>
<tr>
<td>MODIFY jobname.id</td>
<td>UPDATE</td>
<td>MVS.MODIFY.STC.mbname.jobname</td>
</tr>
<tr>
<td>The previous command is for a started task for which an identifier was provided.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODIFY jobname</td>
<td>UPDATE</td>
<td>MVS.MODIFY.STC.mbname.id</td>
</tr>
<tr>
<td>The previous command is for a started task for which an identifier was not provided. mbname is the name of the member containing the JCL source.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: MODIFY might actually affect more than one job. For example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• If START ABC.DEF and START ABC.GHI are issued, MODIFY ABC.* affects both jobs, and one authorization request is issued for each.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• If the START ABC command is issued twice, two started tasks named ABC start running on the system. MODIFY ABC affects both jobs, and one authorization request is issued for each.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONITOR</td>
<td>READ</td>
<td>MVS.MONITOR</td>
</tr>
<tr>
<td>MOUNT</td>
<td>UPDATE</td>
<td>MVS.MOUNT</td>
</tr>
<tr>
<td>PAGEADD</td>
<td>UPDATE</td>
<td>MVS.PAGEADD</td>
</tr>
<tr>
<td>PAGEDEL</td>
<td>UPDATE</td>
<td>MVS.PAGEDEL</td>
</tr>
<tr>
<td>QUIESCE</td>
<td>CONTROL</td>
<td>MVS.QUIESCE</td>
</tr>
<tr>
<td>REPLY</td>
<td>READ</td>
<td>MVS.REPLY</td>
</tr>
<tr>
<td>RESET</td>
<td>UPDATE</td>
<td>MVS.RESET</td>
</tr>
<tr>
<td>RESET CN</td>
<td>CONTROL</td>
<td>MVS.RESET.CN</td>
</tr>
<tr>
<td>ROUTE system</td>
<td>READ</td>
<td>MVSROUTE.CMD.system</td>
</tr>
<tr>
<td>Note: When a system name is specified on the ROUTE command, system is the name of the system that is the target of the command.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROUTE *ALL</td>
<td>READ</td>
<td>MVSROUTE.CMD.ALLSYSTEMS</td>
</tr>
<tr>
<td>ROUTE *OTHER</td>
<td>READ</td>
<td>MVSROUTE.CMD.OTHERSYSTEMS</td>
</tr>
<tr>
<td>ROUTE sysgrpname</td>
<td>READ</td>
<td>MVSROUTE.CMD.sysgrpname</td>
</tr>
<tr>
<td>ROUTE (sys1,...,sysN)</td>
<td>READ</td>
<td>MVSROUTE.CMD.sys1</td>
</tr>
<tr>
<td>ROUTE (group1,...,groupN)</td>
<td>READ</td>
<td>MVSROUTE.CMD.group1</td>
</tr>
<tr>
<td>SEND</td>
<td>READ</td>
<td>MVS SEND</td>
</tr>
<tr>
<td>SET APPC</td>
<td>UPDATE</td>
<td>MVS.SET.APPC</td>
</tr>
<tr>
<td>SET ASCH</td>
<td>UPDATE</td>
<td>MVS.SET.ASCH</td>
</tr>
<tr>
<td>SET CEE</td>
<td>UPDATE</td>
<td>MVS.SET.CEE</td>
</tr>
</tbody>
</table>
Table 3-7. MVS Commands, RACF Access Authorities, and Resource Names (continued)

<table>
<thead>
<tr>
<th>Command/Keyword</th>
<th>Authority</th>
<th>Resource-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SET CLOCK</td>
<td>UPDATE</td>
<td>MVS.SET.TIMEDATE</td>
</tr>
<tr>
<td>SET CNGRP</td>
<td>UPDATE</td>
<td>MVS.SET.CNGRP</td>
</tr>
<tr>
<td>SET CNIDTR</td>
<td>UPDATE</td>
<td>MVS.SET.CNIDTR</td>
</tr>
<tr>
<td>SET DAE</td>
<td>UPDATE</td>
<td>MVS.SET.DAE</td>
</tr>
<tr>
<td>SET DATE</td>
<td>UPDATE</td>
<td>MVS.SET.TIMEDATE</td>
</tr>
<tr>
<td>SET DEVSUP</td>
<td>UPDATE</td>
<td>MVS.SET.DEVSUP</td>
</tr>
<tr>
<td>SET GRSRNL</td>
<td>UPDATE</td>
<td>MVS.SET.GRSRNL</td>
</tr>
<tr>
<td>SET ICS</td>
<td>UPDATE</td>
<td>MVS.SET.ICS</td>
</tr>
<tr>
<td>SET IOS</td>
<td>UPDATE</td>
<td>MVS.SET.IOS</td>
</tr>
<tr>
<td>SET IPS</td>
<td>UPDATE</td>
<td>MVS.SET.IPS</td>
</tr>
<tr>
<td>SET MMS</td>
<td>UPDATE</td>
<td>MVS.SET.MMS</td>
</tr>
<tr>
<td>SET MPF</td>
<td>UPDATE</td>
<td>MVS.SET.MPF</td>
</tr>
<tr>
<td>SET MSGFLD</td>
<td>UPDATE</td>
<td>MVS.SET.MSGFLD</td>
</tr>
<tr>
<td>SET OPT</td>
<td>UPDATE</td>
<td>MVS.SET.OPT</td>
</tr>
<tr>
<td>SET PFK</td>
<td>UPDATE</td>
<td>MVS.SET.PFK</td>
</tr>
<tr>
<td>SET PROG</td>
<td>UPDATE</td>
<td>MVS.SET.PROG</td>
</tr>
<tr>
<td>SET RESET</td>
<td>UPDATE</td>
<td>MVS.SET.TIMEDATE</td>
</tr>
<tr>
<td>SET RTLS</td>
<td>UPDATE</td>
<td>MVS.SET.RTLS</td>
</tr>
<tr>
<td>SET SCH</td>
<td>UPDATE</td>
<td>MVS.SET.SCH</td>
</tr>
<tr>
<td>SET SLIP</td>
<td>UPDATE</td>
<td>MVS.SET.SLIP</td>
</tr>
<tr>
<td>SET SMF</td>
<td>UPDATE</td>
<td>MVS.SET.SMF</td>
</tr>
<tr>
<td>SET SMS</td>
<td>UPDATE</td>
<td>MVS.SET.SMS</td>
</tr>
<tr>
<td>SETALLOC</td>
<td>UPDATE</td>
<td>MVS.SETALLOC.ALOC</td>
</tr>
<tr>
<td>SETAPPC</td>
<td>UPDATE</td>
<td>MVS.SETAPPC.APPC</td>
</tr>
<tr>
<td>SETCEE</td>
<td>UPDATE</td>
<td>MVS.SETCEE.CEE</td>
</tr>
<tr>
<td>SETCON MONITOR (MN)</td>
<td>CONTROL</td>
<td>MVS.SETCON.MONITOR</td>
</tr>
<tr>
<td>SETCON TRACKING (TR)</td>
<td>CONTROL</td>
<td>MVS.SETCON.TRACKING</td>
</tr>
<tr>
<td>SETDMN</td>
<td>UPDATE</td>
<td>MVS.SETDMN.DMN</td>
</tr>
<tr>
<td>SETETR</td>
<td>UPDATE</td>
<td>MVS.SETETR.ETR</td>
</tr>
<tr>
<td>SETGRS MODE=STAR</td>
<td>UPDATE</td>
<td>MVS.SETGRS.TOLINT</td>
</tr>
<tr>
<td>ENQMAXA</td>
<td>UPDATE</td>
<td>MVS.SETGRS.RESMIL</td>
</tr>
<tr>
<td>ENQMAXU</td>
<td>UPDATE</td>
<td>MVS.SETGRS.MODE.STAR</td>
</tr>
<tr>
<td>CNS</td>
<td>UPDATE</td>
<td>MVS.SETGRS.SYNCHRES</td>
</tr>
<tr>
<td>SETIOS</td>
<td>UPDATE</td>
<td>MVS.SETIOS.IOS</td>
</tr>
<tr>
<td>SETHS</td>
<td>UPDATE</td>
<td>MVS.SETHS</td>
</tr>
<tr>
<td>SETLOAD</td>
<td>UPDATE</td>
<td>MVS.SETLOAD.LOAD</td>
</tr>
</tbody>
</table>

Note: For examples of how to define RACF profiles for SET PROG, SETPROG APF, SETPROG EXIT, SETPROG LNKLST and SETPROG LPA, see Chapter 6 Examples and MVS Planning Aids for Operations in [z/OS MVS Planning: Operations](#).
Table 3-7. MVS Commands, RACF Access Authorities, and Resource Names (continued)

<table>
<thead>
<tr>
<th>Command/Keyword</th>
<th>Authority</th>
<th>Resource-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETLOGR</td>
<td>UPDATE</td>
<td>MVS.SETLOGR.LOGR</td>
</tr>
<tr>
<td>SETLOGRC</td>
<td>CONTROL</td>
<td>MVS.SETLOGRC.LOGRC</td>
</tr>
<tr>
<td>SETMF</td>
<td>UPDATE</td>
<td>MVS.SETMF.MF</td>
</tr>
<tr>
<td>SETOMVS</td>
<td>UPDATE</td>
<td>MVS.SETOMVS.OMVS</td>
</tr>
<tr>
<td>SETPROG</td>
<td>UPDATE</td>
<td>MVS.SETPROG</td>
</tr>
<tr>
<td>Note: For examples of how to define RACF profiles for SETPROG, SETPROG APF, SETPROG EXIT, SETPROG LNKLST and SETPROG LPA, see Chapter 6 Examples and MVS Planning Aids for Operations in z/OS MVS Planning: Operations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SETRRS ARCHIVELOGGING</td>
<td>UPDATE</td>
<td>MVS.SETRRS.ARCHIVELOGGING</td>
</tr>
<tr>
<td>SETRRS CANCEL</td>
<td>UPDATE</td>
<td>MVS.SETRRS.CANCEL</td>
</tr>
<tr>
<td>SETRRS SHUTDOWN</td>
<td>UPDATE</td>
<td>MVS.SETRRS.SHUTDOWN</td>
</tr>
<tr>
<td>SETSMF</td>
<td>UPDATE</td>
<td>MVS.SETSMF.SMF</td>
</tr>
<tr>
<td>SETSMS</td>
<td>UPDATE</td>
<td>MVS.SETSMS.SMS</td>
</tr>
<tr>
<td>SETSSI ACTIVATE</td>
<td>CONTROL</td>
<td>MVS.SETSSI.ACTIVATE.subname</td>
</tr>
<tr>
<td>SETSSI ADD</td>
<td>CONTROL</td>
<td>MVS.SETSSI.ADD.subname</td>
</tr>
<tr>
<td>SETSSI DEACTIVATE</td>
<td>CONTROL</td>
<td>MVS.SETSSI.DEACTIVATE.subname</td>
</tr>
<tr>
<td>SETUNI</td>
<td>UPDATE</td>
<td>MVS.SETUNI.UNI</td>
</tr>
<tr>
<td>SETXCF</td>
<td>UPDATE</td>
<td>MVS.SETXCF.XCF</td>
</tr>
<tr>
<td>SLIP</td>
<td>UPDATE</td>
<td>MVS.SLIP</td>
</tr>
<tr>
<td>START mbrname[.identifier]</td>
<td>UPDATE</td>
<td>MVS.START.STC.mbrname[.id]</td>
</tr>
<tr>
<td>The previous command is for a started task for which an identifier was provided. mbrname is the name of the member containing the JCL source.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>START mbrname,JOBNAME=jobname</td>
<td>UPDATE</td>
<td>MVS.START.STC.mbrname.jobname</td>
</tr>
<tr>
<td>The previous command is for a started task for which an identifier was not provided. mbrname is the name of the member containing the JCL source.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>START commands that use one or more of the following keywords:</td>
<td>UPDATE</td>
<td>The resource name substitutes DDALERT for one or more of the keywords.</td>
</tr>
<tr>
<td>• DSN or DSNAME</td>
<td></td>
<td>MVS.START.jobname.qualifier.DDALERT</td>
</tr>
<tr>
<td>• DISP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PROTECT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An example of the previous MVS START command is as follows:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>START jobname.qualifier,DSN=dsname.qualifier,DISP=SHR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STOP jobname</td>
<td>UPDATE</td>
<td>MVS.STOPJOB.jobname</td>
</tr>
<tr>
<td>The previous command is for a job that is not a started task.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STOP userid</td>
<td>UPDATE</td>
<td>MVS.STOPJOB.userid</td>
</tr>
<tr>
<td>STOP jobname</td>
<td>UPDATE</td>
<td>MVS.STOP.STC.mbrname.id</td>
</tr>
<tr>
<td>STOP jobname.id</td>
<td>UPDATE</td>
<td>MVS.STOP.STC.mbrname.id</td>
</tr>
<tr>
<td>STOP id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The previous command is for a started task for which an identifier was provided. mbrname is the name of the member containing the JCL source.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STOP jobname</td>
<td>UPDATE</td>
<td>MVS.STOP.STC.mbrname.jobname</td>
</tr>
</tbody>
</table>
The previous command is for a started task for which an identifier was not provided. mbrname is the name of the member containing the JCL source.

Note: STOP might actually affect more than one started task if more than one unit of work with the same name is active at the same time. If so, there is one call to RACF for command authorization for each unit of work.

<table>
<thead>
<tr>
<th>Command/Keyword</th>
<th>Authority</th>
<th>Resource-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOPMN</td>
<td>READ</td>
<td>MVS.STOPMN</td>
</tr>
<tr>
<td>SWAP</td>
<td>UPDATE</td>
<td>MVS.SWAP</td>
</tr>
<tr>
<td>SWITCH SMF</td>
<td>UPDATE</td>
<td>MVS.SWITCH.SMF</td>
</tr>
<tr>
<td>TRACE CT</td>
<td>UPDATE</td>
<td>MVS.TRACE.CT</td>
</tr>
<tr>
<td>TRACE MT</td>
<td>CONTROL</td>
<td>MVS.TRACE.MT</td>
</tr>
<tr>
<td>TRACE ST</td>
<td>UPDATE</td>
<td>MVS.TRACE.ST</td>
</tr>
<tr>
<td>TRACE STATUS</td>
<td>UPDATE</td>
<td>MVS.TRACE.STATUS</td>
</tr>
<tr>
<td>UNLOAD</td>
<td>UPDATE</td>
<td>MVS.UNLOAD</td>
</tr>
<tr>
<td>VARY CN</td>
<td>UPDATE</td>
<td>MVS.VARY.CN</td>
</tr>
<tr>
<td>VARY CN,ACTIVATE</td>
<td>READ</td>
<td>MVS.VARY.CN</td>
</tr>
<tr>
<td>VARY CN,AUTH</td>
<td>UPDATE</td>
<td>MVS.VARY.CN</td>
</tr>
<tr>
<td>VARY CN,DEACTIVATE</td>
<td>READ</td>
<td>MVS.VARY.CN</td>
</tr>
<tr>
<td>VARY CN,LOGON</td>
<td>UPDATE</td>
<td>MVS.VARY.CN</td>
</tr>
<tr>
<td>VARY CN,LU</td>
<td>UPDATE</td>
<td>MVS.VARY.LU</td>
</tr>
<tr>
<td>VARY CN,OFFLINE,FORCE</td>
<td>CONTROL</td>
<td>MVS.VARYFORCE.CN</td>
</tr>
<tr>
<td>VARY CONSOLE</td>
<td>UPDATE</td>
<td>MVS.VARY.CONSOLE</td>
</tr>
<tr>
<td>VARY CONSOLE,AUTH</td>
<td>UPDATE</td>
<td>MVS.VARY.CONSOLE</td>
</tr>
<tr>
<td>VARY GRS</td>
<td>CONTROL</td>
<td>MVS.VARY.GRS</td>
</tr>
<tr>
<td>VARY HARDCPY</td>
<td>CONTROL</td>
<td>MVS.VARY.HARDCPY</td>
</tr>
<tr>
<td>VARY NET</td>
<td>UPDATE</td>
<td>MVS.VARY.NET</td>
</tr>
<tr>
<td>VARY OFFLINE</td>
<td>UPDATE</td>
<td>MVS.VARY.DEV</td>
</tr>
<tr>
<td>VARY OFFLINE,FORCE</td>
<td>CONTROL</td>
<td>MVS.VARYFORCE.DEV</td>
</tr>
<tr>
<td>VARY ONLINE</td>
<td>UPDATE</td>
<td>MVS.VARY.DEV</td>
</tr>
</tbody>
</table>

Note: Issue VARY CN,ACTIVATE only from the system console.

Note: VARY CN,AUTH requires both profiles.

Note: For the VARY CN,DEACTIVATE command, READ applies only when that command is issued from the system console; otherwise, UPDATE applies.

Note: VARY CN,LOGON requires both profiles.

Note: VARY CN,LU requires both profiles.

Note: If VARY CN,OFFLINE is specified, the rules for VARY CN apply (the system checks for UPDATE access to MVS.VARY.CN, not MVS.VARY.DEV).

Note: If VARY CN,ONLINE is specified, the rules for VARY CN apply (the system checks for UPDATE access to MVS.VARY.CN, not MVS.VARY.DEV).
Changing the Authorization of a Console
You can change the system command groups that a console is authorized to enter.

You change the authorization of consoles by:

- **Using the VARY Command:**
 The VARY CN,AUTH= command defines which system command groups may be entered through the consoles specified on the AUTH= keyword.

 Example
 To assign master level authority to a console named REMOTE, enter:
  ```
  VARY CN(REMOTE),AUTH=MASTER
  ```
 Enter this command through any console that has master authority. If you try to enter this command from a console without master authority, the command is rejected and a message appears to indicate that the switch did not take place.

 In console services shared mode, the effect of this command lasts for the duration of the IPL; in distributed mode, the effect of the command lasts only for the duration of the console being active.

Defining Console Use
MCS consoles can operate in one of the following ways:

- Status Display Console
- Message Stream Console
- Full-capability Console

Note: In this book, the term output-only mode refers to status display mode and message stream mode.

Note: SMCS consoles are not permitted to be status display or message stream consoles. SMCS consoles may only be full-capability consoles.

Using a Status Display Console: A status display console has output capability only; it cannot be used to enter commands. The system uses the screen to receive status displays.

A console in status display mode provides a convenient area for displaying system status information and frees a full capacity console for use by other system messages.

You can divide the screen of the status display console into display areas, according to your needs.
Controlling Displays on Status Display Consoles: Because a status display console has no input capability, you must enter each request concerning the console on a separate full-capability console. Use the routing location operand with each command to designate the console and display area at which an action is to take place.

The routing location operand can be entered only from a console with CONS (console control) command group authority. Command group authority is described under “System Commands Grouped According to System Command Authority” on page 3-24.

Using a Message Stream Console: A message stream console has output capability only; it cannot be used to enter commands. The system uses the screen to present general messages.

A console in message stream mode provides an area for presentation of messages. The messages sent to a message stream console depend on the routing codes or message levels assigned to that console. Message stream consoles can provide system monitoring capabilities in tape or disk libraries, or can assist in system security.

Deleting Messages from Message Stream Consoles

When a console enters message stream mode, roll-deletable message deletion goes into effect automatically. (See “Defining Automatic Message Deletion” later in this section.) All messages except action messages are automatically removed from the screen.

Using a Full-Capability Console

A full-capability console has both input and output capability; the console can be used both to enter commands and to receive status displays and messages. There can be many full-capability consoles in the system or sysplex.

You can divide the screen on a full-capability console so that part of the screen receives general messages and the other part receives status displays. When a status display is not on the screen, MCS uses the status display area for general messages.

Changing Full-Capability to Message Stream or Status Display Mode

The screens of the message stream console and the status display console appear identical; they do not have any entry area. However, the screens of the consoles in message stream mode receive general messages and the screens of the status display consoles receive formatted status displays.

When you change a full-capability console to message stream or status display mode, the PFK display line, the instruction line, and the entry area are incorporated into the message area or the display area. Figure 3-4 shows the 3277 model 2, in message stream mode. Once a display console enters message stream or status display mode, it can accept no more input; you must use another console to enter commands. Examples at the end of this section illustrate how the display on a full-capability console changes to the display on a status display or message stream console.
The system gives you the following choices for operating mode for MCS consoles:

- **FC** Full-capability
- **MS** Message stream
- **SD** Status display

SMCS consoles may only be FC (full-capability) mode consoles. The operating mode of an SMCS console cannot be changed.

If a console is an input/output device, the default operating mode is full-capability mode.

You can check the console operating mode by entering the CONTROL V, REF command. In response to this command, the specifications appear in the entry area. You can change the specifications using the procedures described under "Changing Information in the Entry Area" on page 3-13.

You define the operating mode of a console by:

- **Using the CONTROL Command:**
 Use the USE operand on the CONTROL V command to change the operating mode of a console.

Example 1

To define the console with a console name of CON8 as a full-capability console, enter:

```
CONTROL V,USE=FC,L=CON8
```

In console services shared mode, the effect of this command lasts for the duration of the IPL; in distributed mode, the effect of the command lasts only for the duration of the console being active.

Note: When you use the CONTROL command to change the console operating mode, you might also have to change other console characteristics. If the
new definition for the console operating mode is incompatible with other characteristics, the system rejects the CONTROL command.

Example 2

To change the console in Example 1 from full-capability mode to status display mode, enter:

```
CONTROL V,USE=SD,L=CON8
```

In response to this command, any information on the screen disappears, and the system reestablishes the display area specifications that were defined in the CONSOLxx parmlib member. If you were changing the console from full-capability mode to message stream mode, information on the screen would disappear and the message area would expand, as in [Figure 3-4 on page 3-36](#).

Example 3

To return CON8 to full-capability mode, enter the following command from a full-capability console:

```
CONTROL V,USE=FC,L=CON8
```

In response to this command, the message area of the console with a console name of CON8 returns to its full-capability size, and the console specifications return to those established the last time the console was in full-capability mode for this IPL or those established in the CONSOLxx member.

The display area specifications also return to the specifications established the last time the console was in full-capability mode.

Controlling System Messages and Commands

Messages are the system's chief means of communication with you. Messages range from **informational**, which are important but do not require a response, to **immediate action**, which are not only important but require that you perform the requested action at once. The action might be required because the message issuer waits until the action is performed, or because taking the action as soon as possible can improve system performance. Less urgent, but still important, are the **eventual action** and **critical eventual action** messages. The message issuer is not waiting for you to perform the action, but a number of unanswered requests might degrade system performance.

The size of the screen's message area varies, depending on the type of display console. When the message area becomes full, you need to delete messages to make room for new ones. You can delete messages, or have the system do it for you automatically. (See “Deleting Messages from the Console Screen” later in this chapter.) Once an action message is deleted from the screen, you cannot see the entire message again unless the action message retention facility is active and you have issued a DISPLAY R command.

So that you do not have to delete messages too often, make sure that you manage message traffic carefully on all consoles. For example, if you find that a console screen often fills with action messages, think about:

- Adjusting routing codes and assigning message levels. Any console should receive only messages for which the operator of that console is directly responsible.
• Activating the action message retention facility so you can put the console in roll mode without losing action messages.

Defining Routing Codes for a Console

Most messages have one or more routing codes. The system uses these codes, decimal numbers from 1 to 128, to determine which console or consoles should receive a message. The system programmer assigns routing codes to the consoles attached to your system so that a specific message type is routed to the proper console. Table 3-8 lists the routing codes.

Routing codes do not appear with a message at a console; routing codes 1 through 28 do, however, appear on the system log. To determine the routing codes each console receives, use the DISPLAY CONSOLES,A command. Figure 3-3 on page 3-24 shows the display that appears in response to this command.

Table 3-8. Message Routing Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary operator action</td>
</tr>
<tr>
<td>2</td>
<td>Primary operator information</td>
</tr>
<tr>
<td>3</td>
<td>Tape pool</td>
</tr>
<tr>
<td>4</td>
<td>Direct access pool</td>
</tr>
<tr>
<td>5</td>
<td>Tape library</td>
</tr>
<tr>
<td>6</td>
<td>Disk library</td>
</tr>
<tr>
<td>7</td>
<td>Unit record pool</td>
</tr>
<tr>
<td>8</td>
<td>Teleprocessing control</td>
</tr>
<tr>
<td>9</td>
<td>System security</td>
</tr>
<tr>
<td>10</td>
<td>System error/maintenance/system programmer information</td>
</tr>
<tr>
<td>11</td>
<td>Programmer information</td>
</tr>
<tr>
<td>12</td>
<td>Emulators</td>
</tr>
<tr>
<td>13-20</td>
<td>Reserved for customer use</td>
</tr>
<tr>
<td>21-28</td>
<td>Reserved for subsystem use</td>
</tr>
<tr>
<td>29</td>
<td>Disaster Recovery</td>
</tr>
<tr>
<td>30-40</td>
<td>Reserved for IBM</td>
</tr>
<tr>
<td>41</td>
<td>Information about JES3 job status</td>
</tr>
<tr>
<td>42</td>
<td>General information about JES2 or JES3</td>
</tr>
<tr>
<td>43-64</td>
<td>Reserved for JES2 or JES3</td>
</tr>
<tr>
<td>65-96</td>
<td>Messages associated with particular processors</td>
</tr>
<tr>
<td>97-128</td>
<td>Messages associated with particular devices</td>
</tr>
</tbody>
</table>

One way to limit the messages that arrive at a console is to assign a routing code or codes to a console. The console then receives only the messages that are appropriate.

To learn what the routing codes for a console are, enter the DISPLAY CONSOLES command. Figure 3-3 on page 3-24 shows the display that appears in response to this command.

You define routing codes for a console by:

- **Using the VARY Command:**

 Use operands on the VARY command to add to the existing set (AROUT operand), subtract from the existing set (DROUT), or redefine the set (ROUT).

Example
To assign the routing codes 1, 2, 9, and 10 for a console named CON81D, enter:

```
VARY CN(CON81D),ROUT=(1,2,9,10)
```

In console services shared mode, the effect of this command lasts for the duration of the IPL; in distributed mode, the effect of the command lasts only for the duration of the console being active.

Defining Message Levels for a Console

Assigning routing codes is one way to limit message traffic to a console. You can further reduce the number of messages that appear on a console by directing certain messages to consoles by message levels. The system differentiates among these kinds of message levels:

- Write-to-operator with reply (WTOR) messages, which demand an immediate reply.
- System failure and immediate action messages (descriptor codes 1 and 2), which indicate that a task is awaiting your action.
- Critical eventual action messages (descriptor code 11), which indicate a potential system problem.
- Eventual action messages (descriptor code 3), which do not require immediate attention.
- Broadcast messages, which are normally sent to every active console regardless of the routing code you assigned to the console.
- Informational messages, which generally indicate system status. (Most messages are informational.)

Assignment by message level means that a console can accept combinations of action, broadcast, and informational messages that the system sends to a console. You can choose among the following message level options:

- **R** Write to operator (WTOR) messages are to appear
- **I** Immediate action messages (descriptor codes 1 and 2) are to appear
- **CE** Critical eventual action messages (descriptor code 11) are to appear
- **E** Eventual action messages (descriptor code 3) are to appear
- **IN** Informational messages are to appear
- **NB** Broadcast messages are **not** to appear
- **ALL** All messages, including broadcast messages, are to appear.

If the LEVEL parameter in the CONSOLxx member is not coded, the system sends all messages, including broadcast messages, to the console.

To display the routing codes and message levels for a console, issue the DISPLAY CONSOLES command. Figure 3-3 on page 3-24 shows the display that appears in response to this command.

To display the routing codes and message levels that appear only on the system log and **not on any console**, issue the DISPLAY CONSOLES,HC command.

You define the level of messages for a console by:

- **Using the CONTROL Command:**

 Use the LEVEL operand on the CONTROL V command to assign message levels to a console.

 Example 1

 To direct only WTOR messages and immediate action messages to the console with console name CON06, enter:

  ```
  CONTROL V,LEVEL(R,I),L=CON06
  ```
When you change message levels so that some informational or broadcast messages will not appear at any console, the system rejects the CONTROL V command. If you want to override this rejection, use the UNCOND operand. These messages appear only in the hardcopy log, and on any extended MCS consoles that are receiving the hardcopy message set. The system displays this message to warn you of the message loss:

IEE828E SOME MESSAGES NOW SENT TO HARDCOPY ONLY

Example 2

To assign to the console with console name CON12 (and device number 81D) the informational messages directed to the tape libraries (routing code 5) and disk libraries (routing code 6), enter:

```
VARY 81D,CONSOLE,ROUT=(5,6)
CONTROL V,LEVEL=IN,L=CON12
```

Controlling the Format of Messages

On a display console, a message can appear by itself or with information about the message, such as job and system identification and the time the message was issued. [“Messages Sent to Display Consoles” on page 3-6](#) describes the format of messages and describes the optional information that the system can include with each message:

- **J** The jobname/job id of its issuer
- **S** The name of the system that issued the message
- **T** A time stamp
- **M** Only the message text displays
- **X** Suppress system and job name of its issuer when S and/or J are specified

You request that additional information precede each message the system sends a console by:

- **Using the CONTROL Command:**

 Use the MFORM operand on the CONTROL S command to change the format of messages.

 Example

 To request that the system add to all messages that appear at console CON2 a time stamp, the name of the system that issued the message, and the jobname or ID of its issuer, enter:

  ```
  CONTROL S,MFORM=(J,T,S),L=CON2
  ```

 In console services shared mode, the effect of this command lasts for the duration of the IPL; in distributed mode, the effect of the command lasts only for the duration of the console being active.

Controlling the Message Processing Facility (MPF)

The message processing facility (MPF) controls message processing. It controls the suppression and retention of messages, the installation exits that gain control when certain messages are issued, and message presentation (that is, the color, intensity and highlighting of messages) at certain consoles.

The operator can:

- See what MPF member or members are active with the DISPLAY command
- Change the active MPF member or members with the SET command.

For MPF to suppress messages, hardcopy processing must be active. The suppressed messages do not appear on any console; they do appear on the hardcopy log, and any extended MCS consoles that are receiving the hardcopy message set.
Message Presentation

Message presentation refers to the way the system uses color, intensity, and highlighting (including blinking, reverse-video, and underscoring) to identify messages that require action. The presentation depends on the type of device you are using.

Using the SET Command:

Enter the SET MPF command to change the MPFLSTxx member or members that the system is to use.

Example

To specify MPFLST03 and MPFLST06 as the MPF members for the system to use, enter:

```
SET MPF=(03,06)
```

The effect of this command lasts only for the duration of the IPL.

Displaying Information About Messages Awaiting Action: Many systems now handle so much work so quickly that you cannot always keep up with the messages that demand operator response. These messages roll off the screen before you can respond. The action message retention facility keeps these messages, including the WTO Rs and JES3 messages, so that you can see them at a later time. (While you are examining the messages that you missed, you might, of course, miss more messages. Experience with your system will help you determine how frequently you need to check for retained action messages.)

The DISPLAY R command allows you to display all outstanding action messages or a subset of these messages. For example, to display all outstanding action messages at your console, enter DISPLAY R,M. To display all the outstanding critical eventual-action messages (descriptor code 11), enter DISPLAY R,CE. See Z/OS MVS Planning: Operations for use of the DISPLAY R command.

Controlling the Action Message Retention Facility

During its initialization, the system can start the action message retention facility (AMRF). When active, the facility retains in a buffer area all action messages (those messages with descriptor codes 1, 2, 3, and 11) except those specified by the installation in the active MPFLSTxx member.

If the first system IPLs and AMRF is active, then AMRF is active on every system that you subsequently IPL into the sysplex.

When you have performed the action required by a message displayed on the screen, the system deletes the message; or you can use the CONTROL C command to delete the message. You can remove action messages from the screen that require later action, then retrieve them in their entirety later by using the DISPLAY R command. Periodically, you should display the retained messages and delete the ones for which action has been taken so that the action message retention buffer does not fill up.

To change the messages that the action message retention facility is to retain, activate an MPFLSTxx member that contains the message retention options you want. The system default is to have the action message retention facility on.
To learn the status of the action message retention facility, issue the CONTROL M,REF command.

You change the status of the action message retention facility by:

- **Using the CONTROL Command**

 Use the CONTROL M,AMRF command to turn the action message retention facility on or off.

 Example

 To deactivate the action message retention facility, enter:

 CONTROL M,AMRF=N

Controlling Message Flood Automation

Message flood automation detects and handles message floods caused by device or software failures. It uses policy created by the installation to decide when a message flooding situation is happening and what actions to take.

The operator can:

- Change the active MSGFLDxx parmlib member with the SET command
- See the status of Message Flood Automation and the MSGFLDxx member that is active with the DISPLAY command
- Turn Message Flood Automation on and off and alter the active Message Flood Automation policy with the SETMF command

Using the SET command: Enter the SET MSGFLD command to change the MSGFLDxx member that the system is to use.

Example:

To specify MSGFLD03 as the Message Flood Automation member for the system to use, enter:

```
SET MSGFLD=03
```

The effect of this command lasts only for the duration of the IPL.

Using the DISPLAY command: Enter the DISPLAY MSGFLD command to obtain information about Message Flood Automation.

Example:

To determine the status of Message Flood Automation, enter:

```
DISPLAY MSGFLD,STATUS
```

Using the SETMF command: Enter the SETMF command to alter the state or policy of Message Flood Automation.

Example:

To enable Message Flood Automation processing, enter:

```
SETMF ON
```

Activating WTO and WTOR Installation Exit Routines

The system programmer at your installation codes installation exit routines that gain control when the system issues certain messages. A WTO installation exit can change routing codes, descriptor codes, and message texts, as well as perform
other message processing; it can override MPF processing. Information about coding these installation exits appears in z/OS MVS Installation Exits.

The most effective message control involves coding and installing the installation exit IEAVMXIT, which can gain control when any WTO or WTOR message is issued.

To learn whether IEAVMXIT is active or not, issue the CONTROL M,REF command. The system displays (in the entry area) the status of the action message retention facility, the status of installation exit IEAVMXIT, and the limit of the number of WTO and WTOR buffers.

Your installation might have other exit routines to process messages. MPFLSTxx parmlib members contain the IDs of messages and the installation exits that process these messages. To activate processing by these installation exits, see “Controlling the Message Processing Facility (MPF)” on page 3-40.

You can activate the installation exit IEAVMXIT, if it is installed, by:

- **Using the CONTROL Command:**
 Use the UEXIT operand on the CONTROL command to control whether the installation exit IEAVMXIT is active.

 Example
 To deactivate IEAVMXIT, enter:
  ```
  CONTROL M,UEXIT=N
  ```
 The effect of the command lasts only for the duration of the IPL.

Checking Message Processing, Retention, and Presentation Options
Issue the DISPLAY MPF,MSG command to see:

- Which messages are being suppressed by MPF
- Which action messages are not being retained by the action message retention facility
- Which installation exits receive control for selected messages
- The status of the general WTO installation exit IEAVMXIT
- Whether this message is automated by MPF
- The MPFLSTxx member that identifies the message ID, color attribute, or command installation exit definition
- A list of the subsystems receiving foreign messages and DOMs

Issue the DISPLAY MPF,COLOR command to see:

- What color, intensity, and highlighting capabilities are in effect

Issue the DISPLAY MPF command to see all of this information for the messages that are defined in the MPFLSTxx parmlib member.

Defining Program Function Keys (PFKs)
You can define program function keys for a console by activating a PFK table or by using the CONTROL N,PFK= command.
Defining PFKs Using PFK Tables

You define a console’s PFKs by activating a PFK table — a table that your installation has defined. The PFK table resides, optionally with other PFK tables, in a PFKTABxx parmlib member. The entries in this table:

- Assign one or more commands to a PFK
 The text of one or more commands are to be associated with a PFK. Later, when you press this PFK, the commands are entered into the system.
- Assign one or more other PFKs to a PFK
 The commands associated with other PFKs are to be associated with one PFK.

Entries in the PFK table also determine whether conversational or nonconversational mode is to be in effect for a command defined to a PFK. In nonconversational mode, the commands associated with a key are entered immediately when you press the key. In conversational mode, pressing a PFK causes the command to appear in the entry area, but no enter action takes place. You can change, enter, or cancel the command according to your requirements.

In conversational mode, the cursor normally appears under the third non-blank character when the command is in the entry area. If you want the cursor to appear in a different location, when you define the command, type an underscore before the character under which the cursor is to appear. The system deletes the space occupied by the underscore in the actual command. For example, if you add the following entry to a PFK table:

```
PFK(5) CMD('D U,L=\_XXX') CON(Y)
```

pressing PFK 5 causes the following to appear in the entry area:

```
D U,L=XXX
```

If you want an underscore to appear in the command, code two consecutive underscores. The system will treat them as a single underscore, and will not use them for cursor placement. Example:

If the PRKTAB table contains:

```
PFK(17) CMD('E _XXXXXXXX,SRVCLASS=BAT__HI'),CON(Y)
```

when you press PFK17, the entry area will contain:

```
E _XXXXXXXX,SRVCLASS=BAT_HI
```

with the cursor under the first X.

Selector pens also use the definitions in PFK tables.

You can use some MVS commands to display information about the PFKs at your console, or to change the PFKs that are available for your consoles. The following commands relate to the previous example:

- Display the PFK definitions in the PFK table named MVSCMDS.
 `DISPLAY PFK,TABLE=MVSCMDS`
- List the names of all PFK tables in the active PFKTABxx member.
 `DISPLAY PFK,TABLE`
- Assign the commands in the PFK table named JES2CMDS to the PFKs on your console.
 `CONTROL N,PFK=JES2CMDS`
• Activate another PFKTABxx member, in this case PFKTAB02.

 SET PFK=02

 This command assumes that you have a PFK table in PFKTAB02 and that you want to replace MVSCMDS with another PFK table. (Other consoles might be using tables in the former PFKTABxx member. PFK definitions for these consoles are not affected by the action of this SET command.)

Defining PFKs Using the CONTROL Command

Use the CONTROL N,PFK= command to change the definition for PFKs. This command performs three tasks:

• Assigns one or more commands to a PFK

• Assigns one or more other PFKs to a PFK

• Assigns a PFK table to your console.

With the CONTROL N,PFK= command you can also determine whether conversational or nonconversational mode is to be in effect for the commands defined to the PFK. Nonconversational mode is the default. For example, if you define PFK 5 as follows:

 CONTROL N,PFK=(5, CMD='DISPL U,L=CON9A'), CON=N

pressing PFK 5 has the same effect as typing DISPLAY U,L=CON9A and pressing the ENTER key.

On the other hand, if you specify conversational mode by entering:

 CONTROL N,PFK=(5, CMD='DISPL U,L=CON9A'), CON=Y

pressing PFK 5 causes the command D U,L=CON9A to appear in the entry area but no enter action takes place. You can change, enter, or cancel the command according to your requirements.

The system does not accept PFK assignments that may result in an endless loop. Examples of commands that the system will not accept are:

• You **cannot** assign a PFK to itself. For example, the system does not accept CONTROL N,PFK=(9.KEY=9).

• If a PFK is being assigned a list of PFKs (that is, a key list), that PFK **cannot** appear in the key list for another PFK. For example, if PFK 5 is already associated with keys 3 and 4, the system does not accept CONTROL N,PFK=(6.KEY=5,8).

• If a PFK is already in a key list, you **cannot** assign a key list to that PFK. For example, if key 4 is associated with keys 5 and 6, the system does not accept CONTROL N,PFK=(5.KEY=7,8).

Remember that the assignment of the command to the PFK through the CONTROL command lasts only for the duration of the IPL.

Example 1

If PFK 3 is associated with commands SET OPT=PM and SEND 14,BRDCST, and PFK 4 is associated with the command START GTF,MOMSE=INT,BUF=387,TIME=YES,DEBUG=YES, you can associate all three of these commands with PFK 5 by entering:

 CONTROL N,PFK=(5.KEY=3,4), CON=Y

The commands associated with PFK 5 are now:
The system schedules the commands in that order, but might not execute them in that order.

Example 2

To remove a definition previously set for PFK 5, leaving PFK 5 undefined, enter:
CONTROL N,PFK=(5,CMD='')

The PFKTABxx and PFKs

The PFKTABxx parmlib members contain the PFK tables that have the definitions your installation has assigned to PFKs. To associate your console's PFKs with the definitions in a particular PFK table:

- The PFK parameter on the INIT statement in the active CONSOLxx member must identify the PFKTABxx member that contains the table.
- The PFKTAB parameter on the CONSOLE statement in CONSOLxx must identify the name of the PFK table.
- The particular table must contain entries; each entry supplies a command or commands associated with a PFK.

You use CONSOLxx and PFKTABxx members to set the PFK definitions at IPL. You can also change the PFK definitions for the duration of the IPL:

To change a PFK table:

1. Enter SET PFK=xx, if necessary, to change the PFKTABxx member in effect for the console. Other consoles using the former PFKTABxx member are not affected by the SET command you issue for your console.
2. Enter CONTROL N,PFK=nnnnnnnnn to assign the PFK table that contains the PFK definitions you want to use for the console.

To change a PFK key:

- Enter CONTROL N,PFK=(nn1,CMD='...') to change a specific PFK key definition for the console where the command is entered.

During IPL, the system looks for the PFK parameter in CONSOLxx member. If the system does not find the PFK parameter, it issues the message:
IEA180I USING IBM DEFAULT DEFINITIONS. NO PFK TABLES REQUESTED

In this case, PFKs 1 through 8 have the defaults that IBM supplies. These defaults are shipped in sample IEESPFK.

To define PFKs for your consoles, see "Defining PFKs Using PFK Tables" on page 3-44.

Processing Hardcopy

Logging provides a permanent record of system activity. Your installation can record system messages and, optionally, commands and command responses, by using the system log (SYSLOG), the operations log (OPERLOG), or both. Your installation can also allow an extended MCS console to receive the same set of messages as
SYSLOG and OPERLOG. The log that receives messages is called the hardcopy medium. The group of messages that is recorded is called the hardcopy message set.

The hardcopy message set is defined at system initialization and persists for the life of the system. See [z/OS MVS Planning: Operations](https://pubs.vm.ibm.com/mvs/27-0487-00/mvsplan_mvspln_2.pdf) for the characteristics of the hardcopy message set.

The Hardcopy Message Set

Unless you specify otherwise, the hardcopy message set includes all messages, except those that are explicitly omitted through the WTO macro or installation exits. You can request that the hardcopy message set not include messages with certain routing codes. The minimum set of routing codes is 1, 2, 3, 4, 7, 8, 10, and 42. If you attempt to eliminate any of these, the system includes messages with these routing codes in the hardcopy message set anyway.

To see information about the kinds of messages that the system includes in the hardcopy message set, but does not send to any console, issue the DISPLAY CONSOLES,HC command.

Selecting Messages for the Hardcopy Message Set: You control which messages are included in the hardcopy message set by:

- Using the VARY Command:

 Use the VARY ,HARDCPY command to specify the routing codes of messages that are included in the hardcopy message set. You can add to the existing set (AROUT operand), subtract from the existing set (DROUT), or redefine the set (ROUT).

 Example

 To stop including all routing codes except the minimum set, enter:

 VARY ,HARDCPY,DROUT=(5,6,9,11-41,43-128)

 The system would give the same response if you entered the VARY ,HARDCPY,ROUT=NONE command.

 The effect of this command lasts only for the duration of the IPL.

Selecting Commands and Command Responses for the Hardcopy Message Set: Unless you specify otherwise, the system includes all operator and system commands, responses, and status displays in the hardcopy message set. To request that some commands and command responses not be included in the hardcopy message set, the system gives you the following choices on the VARY ,HARDCPY command:

- **NOCMDS**

 The system does not include operator commands or their responses in the hardcopy message set.

- **INCMDS**

 The system includes all operator commands and their responses, excluding any status displays, in the hardcopy message set.

- **STCMDS** or **CMDS**

 The system includes all operator and system commands, their responses, and status displays in the hardcopy message set. As of z/OS V1R8, STCMDS and CMDS are equivalent.

To see which commands and command responses the system includes in the hardcopy message set, issue the DISPLAY CONSOLES command. Figure 3-3 on page 3-24 shows the display that appears in response to this command.
Note:
You control which commands and command responses are included in the hardcopy message set by:

- **Using the VARY Command:**
 Use the VARY ,HARDCPY command to change the commands or the command responses that are included in the hardcopy message set.

 Example
 To request that the hardcopy message set include all operator commands and responses except status displays, enter:
  ```
  VARY ,HARDCPY,INCMDS
  ```
 The effect of this command lasts only for the duration of the IPL.

The Hardcopy Medium
You can specify whether the hardcopy medium is the system log (SYSLOG) or the operations log (OPERLOG). If you use SYSLOG as the hardcopy medium, start a writer that includes the system log message class (A for MVS, unless otherwise specified in your installation). The SYSLOG spool file is managed by JES and can be viewed using the spool display and search facility (SDSF). The external writer will write it to an SMF-managed file.

The System Log: The system log (SYSLOG) is a direct access data set that stores messages and commands. It resides in the primary job entry subsystem’s spool space. It can be used by application and system programmers (through the WTL macro) to record communications about programs and system functions. You can use the LOG command to add an entry to the system log.

Several kinds of information can appear in the system log:
- Job time, step time, and data from the JOB and EXEC statements of completed jobs entered by user-written routines
- Operating data entered by programs using a write to log (WTL) macro instruction
- Descriptions of unusual events that you enter using the LOG command
- The hardcopy message set

When MVS has JES3 as its job entry subsystem, the system log can record console activity. If used to record console activity, the system log is referred to in JES3 messages as DLOG.

In CONSOLxx, you can use the HCFORMAT keyword on the HARDCOPY statement to specify whether hardcopy records should have a 2-digit or 4-digit year.

The system log is queued for printing when the number of messages recorded reaches a threshold specified at system initialization. You can force the system log data set to be queued for printing before the threshold is reached by issuing the WRITELOG command.

If the system log is defined as the only hardcopy medium and SYSLOG fails, hardcopy is suspended and the system issues message CNZ4201E. To avoid the loss of hardcopy, IBM recommends both SYSLOG and OPERLOG be defined as hardcopy.

The Operations Log: The operations log (OPERLOG) is an MVS system logger application that records and merges the hardcopy message set from each system in
a sysplex that activates OPERLOG. Use OPERLOG as your hardcopy medium when you need a permanent log about operating conditions and maintenance for all systems in a sysplex.

For more information on OPERLOG, see z/OS MVS Setting Up a Sysplex.

Assigning the Hardcopy Medium: Assign the hardcopy medium by using the VARY command.

Use the HARDCPY operand on the VARY command to assign SYSLOG or OPERLOG as the hardcopy medium. You can assign both SYSLOG and OPERLOG as the hardcopy medium by issuing the command separately.

Example:

To specify the hardcopy medium as SYSLOG, issue:

```
VARY SYSLOG,HARDCPY
```

The effect of this command lasts only for the duration of the IPL.

To display information about the hardcopy medium, enter:

```
DISPLAY CONSOLES,HARDCOPY
```

The resulting display tells you the following information:

- Whether the hardcopy medium is SYSLOG, OPERLOG, or both
- The criteria that have been defined by the installation for selecting messages for the hardcopy message set
- The number of messages waiting to be placed on the hardcopy medium
Chapter 4. MVS System Commands Reference

This chapter describes the functions, syntax, and parameters of all the MVS base control program (BCP) system commands. You can use these commands to control both the system itself and multiple console support (MCS) or SNA multiple console support (SMCS) consoles.

Table 4-1 on page 4-2 sums up the MVS BCP system commands and their functions. The figure shows the operator command groups for each command and tells whether you can enter the command from the job stream, an MCS or SMCS console, or an extended MCS console session. An extended MCS console session is established either by the TSO/E CONSOLE command as an interactive TSO/E session or by a program issuing the MCSOPER macro so the program can receive messages and issue commands. See z/OS TSO/E System Programming Command Reference for information about the TSO/E CONSOLE command. See z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU for information about the MCSOPER macro.

An installation can use RACF to control which consoles and commands operators can use. For more information, see z/OS MVS Planning: Operations.

Operator commands may contain the following characters:

- A to Z
- 0 to 9
- ‘ # $ () + , . / ¢ < | ! ; ¬ % _ > ? : @ “ =

The system translates characters that are not valid into null characters (X'00').

You can enter operator commands in uppercase or lowercase. Unless enclosed in apostrophes, lowercase letters are converted to uppercase. Therefore, when a lowercase response is required, you must enclose the text in apostrophes. Also, when an apostrophe appears in the text of a command and the text is enclosed in apostrophes, you must enter two apostrophes in the text. For example, you would enter:

```
SEND 'Your job''s done'
```

You can enter system commands through a multiple console support (MCS) console, an SNA multiple console support (SMCS) console, an extended MCS (EMCS) console, or through the input stream (submitted JCL). Table 4-1 on page 4-2 indicates from which types of consoles a command is accepted. Superscripts denote footnotes that can be found on the last page of the table. All examples in this book show the format for MCS and SMCS console entry.

Notes:

1. If you enter a system command through a submitted JCL in a JES2 system, enter "$VS,'system command' when you enter the command between jobs, and enter //b system command when you enter the command within a job.
2. Do not use the JES backspace character within a system command.

Following the summary figure is a section on command syntax and format. The syntax rules are shown in “How to read syntax conventions” on page 4-13.

The rest of this chapter consists of a description of each command in more detail. The descriptions are in alphabetical order by command name. Each description lists the functions that the command performs followed by the command’s syntax and
parameters. The syntax and parameters of complex commands follow subsets of the listed functions. Descriptions of the parameters and keywords appear in the order in which they appear in the syntax.

Table 4-1. System Command Summary

<table>
<thead>
<tr>
<th>Command (Abbr)</th>
<th>Function</th>
<th>Acceptable From</th>
<th>Command Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVATE</td>
<td>Build the interface to and invoke the hardware configuration definition (HCD) application program interface.</td>
<td>MCS, SMCS or extended MCS console</td>
<td>SYS</td>
</tr>
<tr>
<td>CANCEL (C)</td>
<td>Cancel a MOUNT command</td>
<td>MCS, SMCS or extended MCS consoles or job stream</td>
<td>SYS</td>
</tr>
<tr>
<td></td>
<td>Cancel a time-sharing user</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancel a cataloged procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancel a job in execution</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancel a started catalog procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancel an external writer allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancel the writing of a SYSOUT data set by an external writer session</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancel a running APPC/MVS transaction program</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancel a z/OS UNIX System Services process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNGDUMP (CD)</td>
<td>Override dump options specified in parmlib, on the ABEND, CALLRTM, and SETRP macros, and in the SDUMP parameter list</td>
<td>MCS, SMCS or extended MCS consoles or job stream</td>
<td>SYS</td>
</tr>
<tr>
<td>CMDS</td>
<td>DISPLAY or SHOW information about commands that are executing or waiting for execution</td>
<td>MCS, SMCS or extended MCS consoles or job stream</td>
<td>INFO MASTER</td>
</tr>
<tr>
<td></td>
<td>ABEND or REMOVE executing commands or commands waiting for execution</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DUMP the address space where commands typically run (Master and Console)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONFIG (CF)</td>
<td>Place processors online or offline</td>
<td>MCS, SMCS or extended MCS consoles</td>
<td>MASTER</td>
</tr>
<tr>
<td></td>
<td>Place central storage elements online or offline</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Place amounts of central storage online or offline</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Place ranges of central storage online or offline</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Place channel paths online or offline</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Place Vector Facilities online or offline MCS, SMCS or extended MCS console</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4-1. System Command Summary (continued)

<table>
<thead>
<tr>
<th>Command (Abbr)</th>
<th>Function</th>
<th>Acceptable From</th>
<th>Command Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL (K)</td>
<td>Change display area specifications</td>
<td>MCS and SMCS consoles</td>
<td>INFO</td>
</tr>
<tr>
<td></td>
<td>Delete certain messages</td>
<td>INFO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Halt printing of a status display</td>
<td>INFO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control area displays</td>
<td>INFO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remove information from the screens</td>
<td>INFO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Activate, deactivate, or display the status of the action message retention facility</td>
<td>MASTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change or display the number of allowed message and reply buffers</td>
<td>MASTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change or display message deletion or format specifications</td>
<td>INFO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change or display the status of WTO user exit IEAVMXIT</td>
<td>MASTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Define commands for PFKs</td>
<td>INFO or MASTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Purge message queue of a console</td>
<td>INFO or MASTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change operating mode of console</td>
<td>INFO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select the message levels for a console</td>
<td>INFO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase the RMAX value</td>
<td>INFO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In a sysplex, change the maximum time MVS waits before aggregating messages from routed commands</td>
<td>MASTER</td>
<td></td>
</tr>
<tr>
<td>DEVSERV (DS)</td>
<td>Display current status of devices and corresponding channel paths</td>
<td>MCS, SMCS or extended MCS consoles or job stream</td>
<td>INFO</td>
</tr>
</tbody>
</table>
Table 4-1. System Command Summary (continued)

<table>
<thead>
<tr>
<th>Command (Abbr)</th>
<th>Function</th>
<th>Acceptable From</th>
<th>Command Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPLAY (D)</td>
<td>Display APPC/MVS configuration information</td>
<td>MCS, SMCS</td>
<td>INFO</td>
</tr>
<tr>
<td></td>
<td>Display ASCH configuration information</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display IOS configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display console configuration information</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display z/OS UNIX System Services information</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display MVS message service and current available languages</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display status of external time reference (ETR) ports</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display status of hardware instrumentation services (HIS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display status information for trace</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display system requests and status of the AMRF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display CONTROL command functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display configuration information</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display status of HyperSwap function and device pairs in the PPRC configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display device allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display current system status</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display system information requests</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display local and Greenwich mean time and date</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display status or contents of SYS1.DUMP data sets and captured data sets</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display dump options in effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display SMF options in effect or SMF data sets</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display information about the cross system coupling facility information (XCF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display information about operation information (OPDATA) in a sysplex, or display the status</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of the tracking facility, or display the settings made by the SETCON MONITOR command</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display information about the SMS configuration or the status of SMS volumes or storage groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>or SMS trace options</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display information about all subsystems defined to MVS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4-1. System Command Summary (continued)

<table>
<thead>
<tr>
<th>Command (Abbr) (continued)</th>
<th>Function</th>
<th>Acceptable From</th>
<th>Command Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPLAY (D)</td>
<td>Display page data set information</td>
<td>MCS, SMCS or extended MCS consoles or job stream</td>
<td>INFO</td>
</tr>
<tr>
<td></td>
<td>Display current MIH time intervals for individual devices, or for device classes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display SLIP trap information</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display commands defined for PFKs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display the messages MPF is processing and color, intensity, and highlighting display options in effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display entries in the list of APF-authorized program libraries</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display dynamic exits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display information about the LNKLIST set</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display information about modules dynamically added to the LPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display state of the systems, a particular system’s CTCs, the status of an RNL change, or the contents of RNLs in the global resource serialization complex</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display the status of the active workload management service policy for systems or application environments</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display information about registered products and the product enablement policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display information about system logger and log stream resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display information about message flood automation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display information about MVS Device Allocation group locks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display information about MVS Device Allocation settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display information about Global resource serialization. Including configuration and usage information, as well as ENQ and Latch contention and dependency analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUMP</td>
<td>Request a dump of virtual storage to be stored in a SYS1.DUMP data set</td>
<td>MCS, SMCS or extended MCS console</td>
<td>MASTER</td>
</tr>
<tr>
<td>DUMPDS (DD)</td>
<td>Change the system’s list of SYS1.DUMP data sets</td>
<td>MCS, SMCS or extended MCS console</td>
<td>SYS</td>
</tr>
<tr>
<td></td>
<td>Clear full SYS1.DUMP data sets and make them available for dumps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command (Abbr)</td>
<td>Function</td>
<td>Acceptable From</td>
<td>Command Group</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>FORCE</td>
<td>Force termination of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A MOUNT command</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A job in execution</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• An external writer allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The writing of a SYSOUT data set by an external writer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A non-cancellable job, time-sharing user, or started task</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A running APPC/MVS transaction program</td>
<td></td>
<td>MASTER</td>
</tr>
<tr>
<td>HALT (Z)</td>
<td>Record statistics before stopping the system (Must first stop subsystem processing with a subsystem command)</td>
<td>MCS, SMCS or extended MCS console 4</td>
<td>SYS</td>
</tr>
<tr>
<td>IOACTION (IO)</td>
<td>Stop or resume I/O activity to DASD</td>
<td>MCS, SMCS or extended MCS console 4</td>
<td>MASTER</td>
</tr>
<tr>
<td>LIBRARY (LI)</td>
<td>Eject a volume from a library of removable storage media.</td>
<td>MCS and SMCS consoles</td>
<td>SYS</td>
</tr>
<tr>
<td></td>
<td>Reactivate processing for certain installation exits without stopping or restarting the object access method (OAM).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Set or display the media type of scratch volumes that the system places into the cartridge loader of a device within a tape library.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display tape drive status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOG (L)</td>
<td>Enter comments in the system log</td>
<td>MCS, SMCS or extended MCS consoles or job stream 4</td>
<td>INFO</td>
</tr>
<tr>
<td>LOGOFF</td>
<td>To log off MCS and SMCS consoles</td>
<td>MCS and SMCS consoles</td>
<td>INFO</td>
</tr>
<tr>
<td>LOGON</td>
<td>To access the MCS and SMCS consoles</td>
<td>MCS and SMCS console</td>
<td>INFO</td>
</tr>
<tr>
<td>MODE</td>
<td>Control recording of or suppress system recovery and degradation machine check interruptions on the logrec data set</td>
<td>MCS, SMCS or extended MCS console 4</td>
<td>SYS</td>
</tr>
<tr>
<td></td>
<td>Control the monitoring of hard machine check interruptions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4-1. System Command Summary (continued)

<table>
<thead>
<tr>
<th>Command (Abbr)</th>
<th>Function</th>
<th>Acceptable From</th>
<th>Command Group</th>
</tr>
</thead>
</table>
| MODIFY (F) | Change characteristics of a job by modifying the job parameters
 Specify criteria an external writer uses to select data sets for processing
 Cause an external writer to pause for operator intervention
 Manage the data collection in hardware instrumentation services (HIS)
 Build a new LLA directory
 Display information about the catalog address space or request the catalog address space to perform a specified service.
 Modify TSO/VTAM time-sharing Rebuild a new LNKLST directory
 Display the status of the DLF, or change DLF parameters or processing mode | MCS, SMCS or extended MCS consoles or job stream | SYS |
| MONITOR (MN) | Continuously display data set status
 Continuously display job status
 Monitor time-sharing users logging on and off the system | MCS, SMCS or extended MCS consoles or job stream | INFO |
| MOUNT (M) | Mount volumes | MCS, SMCS or extended MCS consoles or job stream | I/O |
| PAGEADD (PA) | Add local page data sets
 Specify data sets as non-VIO page data sets | MCS, SMCS or extended MCS consoles or job stream | SYS |
| PAGEDEL (PD) | Delete, replace, or drain a local page data set (PLPA, common page data sets, and the last local page data set cannot be deleted, replaced or drained) | MCS, SMCS or extended MCS consoles or job stream | SYS |
| QUIESCE | Put system in MANUAL state without affecting step timing | MCS, SMCS or extended MCS consoles or job stream | MASTER |
| REPLY (R) | Reply to system information requests
 Reply to system requests during recovery processing
 Specify component trace options after issuing TRACE CT
 Specify system parameters
 Set the time-of-day clock and specify the installation performance specification
 Specify SMF options
 Specify DUMP options | MCS, SMCS or extended MCS consoles or job stream | INFO |
Table 4-1. System Command Summary (continued)

<table>
<thead>
<tr>
<th>Command (Abbr)</th>
<th>Function</th>
<th>Acceptable From</th>
<th>Command Group</th>
</tr>
</thead>
</table>
| **RESET (E)** | Change performance group of a job currently in execution
Assign work to a new workload management service class. Also, quiesce and resume executing work.
Force a hung console device offline. | MCS, SMCS or extended MCS consoles or job stream | SYS MASTER |
| **ROUTE (RO)** | Direct a command to another system, to all systems, or to a subset of systems in the sysplex | MCS, SMCS or extended MCS consoles or job stream | INFO |
| **SEND (SE)** | Communicate with other operators
Communicate with specific time-sharing users
Communicate with all time-sharing users
Save messages in the broadcast data set for issuance at TSO LOGON time or when requested
List messages accumulated in the notices section of the broadcast data set
Delete a message from the notices section of the broadcast data set | MCS, SMCS or extended MCS consoles or job stream | INFO |
Table 4-1. System Command Summary (continued)

<table>
<thead>
<tr>
<th>Command (Abbr)</th>
<th>Function</th>
<th>Acceptable From</th>
<th>Command Group</th>
</tr>
</thead>
</table>
| SET (T) | Add modules to, or delete modules from, the LPA dynamically. Change:
• the local time and date
• the system resources manager (SRM) parameters
• the MPF parameters
• the dump analysis and elimination (DAE) parameters
• SLIP processing by changing the active IEASLPxx parmlib member
• SMS parameters by selecting member IGDSMSxx in, start SMS if not started at IPL, or restart SMS if it cannot be restarted automatically
• available PFK tables
• MIH time intervals by changing the active IECSIOSxx parmlib member
• excessive spin-loop timeout interval recovery actions
• RNLs by selecting new GRSRNLMxx parmlib members
• the APPC/MVS address space information
• the APPC/MVS transaction scheduler information
• the PPT information
• the active console group definitions in the sysplex
• the MMS parameters
• the command installation exits the system is to use
• the product enablement policy the system is to use
• the exclusion list that the tracking facility is to use
Restart SMF or change SMF parameters by changing the active SMFPRMxx parmlib member
Start or stop the common storage and tracking functions
Start, refresh, or stop MMS. Update:
• the APF list and dynamic exits
• the format or contents of the APF list
• the LNKLKST set for LNKLST concatenation
Specify the MSGFLDxx parmlib member for the system to use | MCS, SMCS or extended MCS consoles or job stream | SYS |
| SETALLOC | Modify a Device Allocation parameter that was set at IPL by an ALLOCxx parmlib member or after IPL by a previous SETALLOC command. | MCS, SMCS or extended MCS console | SYS |
| SETCON | Activate console environment functions | MCS, SMCS or extended MCS console | MASTER |
Table 4-1. System Command Summary (continued)

<table>
<thead>
<tr>
<th>Command (Abbr)</th>
<th>Function</th>
<th>Acceptable From</th>
<th>Command Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETETR</td>
<td>Enable external time reference (ETR) ports that have been disabled</td>
<td>MCS, SMCS or</td>
<td>SYS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>extended MCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>console ^4</td>
<td></td>
</tr>
<tr>
<td>SETGRS</td>
<td>• Migrate a currently active global resource</td>
<td>MCS, SMCS or</td>
<td>MASTER</td>
</tr>
<tr>
<td></td>
<td>• Modify the current RESMIL or TOLINT values</td>
<td>extended MCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Set the system values for</td>
<td>console ^4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– GRSQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– SYNCHRES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– ENQMAXA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– ENQMAXU</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Change the contention notifying system (CNS) in a global resource</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>serialization complex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SETHS</td>
<td>Manage HyperSwap.</td>
<td>MCS, SMCS or</td>
<td>I/O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>extended MCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>console ^4</td>
<td></td>
</tr>
<tr>
<td>SETIOS</td>
<td>Respecify, add, or delete MIH time intervals,</td>
<td>MCS, SMCS or</td>
<td>SYS</td>
</tr>
<tr>
<td></td>
<td>update DCM</td>
<td>extended MCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>enable/disable FICON® statistics, and</td>
<td>console ^4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>enable/disable the MIDAW facility, all without</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>changing the active IECIOSxx parmlib member</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SETLOAD</td>
<td>Switch dynamically from one parmlib concatenation to another</td>
<td>MCS, SMCS or</td>
<td>SYS</td>
</tr>
<tr>
<td></td>
<td>without having to initiate an IPL</td>
<td>extended MCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>console ^4</td>
<td></td>
</tr>
<tr>
<td>SETLOGR</td>
<td>Take action on system logger log stream</td>
<td>MCS, SMCS or</td>
<td>MASTER</td>
</tr>
<tr>
<td></td>
<td>resources.</td>
<td>extended MVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>console ^4</td>
<td></td>
</tr>
<tr>
<td>SETLOGRC</td>
<td>Change the logrec recording medium.</td>
<td>MCS, SMCS or</td>
<td>MASTER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>extended MCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>console ^4</td>
<td></td>
</tr>
<tr>
<td>SETMF</td>
<td>Change the message flood automation state or parameters.</td>
<td>MCS, SMCS or</td>
<td>SYS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>extended MCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>console ^4</td>
<td></td>
</tr>
<tr>
<td>SETOMVS</td>
<td>Change the options that OS/390® UNIX System Services uses.</td>
<td>MCS, SMCS or</td>
<td>SYS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>extended MVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>console ^4</td>
<td></td>
</tr>
<tr>
<td>SETPROG</td>
<td>Update APF list</td>
<td>MCS, SMCS or</td>
<td>SYS</td>
</tr>
<tr>
<td></td>
<td>Update dynamic exits</td>
<td>extended MCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Update the LNKLST set</td>
<td>console ^4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dynamically add modules to, or delete modules</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>from, the LPA.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SETRRS</td>
<td>Control RRS processing:</td>
<td>MCS, SMCS or</td>
<td>SYS</td>
</tr>
<tr>
<td></td>
<td>• SETRRS ARCHIVELOGGING will disable or</td>
<td>extended MCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>enable archive logging on a given system</td>
<td>console ^4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SETRRS CANCEL will end RRS processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SETRRS SHUTDOWN will end RRS without</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>resulting in a X'058' abend</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SETSMF (SS)</td>
<td>Change SMF parameters without changing the</td>
<td>MCS, SMCS or</td>
<td>SYS</td>
</tr>
<tr>
<td></td>
<td>the active SMFPRMxx parmlib member</td>
<td>extended MCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>consoles or job</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>stream ^6</td>
<td></td>
</tr>
</tbody>
</table>
Table 4-1. System Command Summary (continued)

<table>
<thead>
<tr>
<th>Command (Abbr)</th>
<th>Function</th>
<th>Acceptable From</th>
<th>Command Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETSMS</td>
<td>Change SMS parameters without changing the active IGDSMSxx parmlib member</td>
<td>MCS, SMCS or extended MCS console</td>
<td>SYS</td>
</tr>
<tr>
<td>SETSSI</td>
<td>Dynamically add, activate or deactivate a subsystem.</td>
<td>MCS, SMCS or extended MCS console</td>
<td>MASTER</td>
</tr>
<tr>
<td>SETUNI</td>
<td>Control the Unicode environment.</td>
<td>MCS, SMCS or extended MCS console</td>
<td>SYS</td>
</tr>
<tr>
<td>SETXCF</td>
<td>Control the cross-system coupling facility (XCF)</td>
<td>MCS, SMCS or extended MCS console</td>
<td>MASTER</td>
</tr>
<tr>
<td>SLIP (SL)</td>
<td>Set SLIP traps</td>
<td>MCS, SMCS or extended MCS consoles or job stream</td>
<td>SYS</td>
</tr>
<tr>
<td></td>
<td>Modify SLIP traps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delete SLIP traps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>START (S)</td>
<td>Start a job from a console</td>
<td>MCS, SMCS or extended MCS consoles or job stream</td>
<td>SYS</td>
</tr>
<tr>
<td></td>
<td>Start the advanced program-to-program communication (APPC/MVS) address space</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start the APPC/MVS scheduler (ASCH) address space</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start the data facility storage management subsystem (DFSMS/MVS™) license compliance facility</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start the generalized trace facility (GTF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start hardware instrumentation services (HIS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start the library lookaside (LLA) address space</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start the object access method (OAM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start resource recovery services (RRS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start the system object model (SOM®)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start TSO/VTAM time-sharing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start the virtual lookaside facility (VLF) or the data lookaside facility (DLF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start an external writer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4-1. System Command Summary (continued)

<table>
<thead>
<tr>
<th>Command (Abbr)</th>
<th>Function</th>
<th>Acceptable From</th>
<th>Command Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOP (P)</td>
<td>Stop a job in execution
Stop an address space
Stop an ASCH initiator
Stop an initiator
Stop the data lookaside facility (DLF)
Stop the generalized trace facility (GTF)
Stop hardware instrumentation services (HIS)
Stop the library lookaside (LLA) address space
Stop the object access method (OAM)
Stop the system object model (SOM)
Stop TSO/VTAM time-sharing
Stop the virtual lookaside facility (VLF)
Stop an external writer</td>
<td>MCS, SMCS or extended MCS consoles or job stream</td>
<td>SYS</td>
</tr>
<tr>
<td>STOPMN (PM)</td>
<td>Stop continual display of data set status
Stop continual display of job status
Stop monitoring the activity of time-sharing users.</td>
<td>MCS, SMCS or extended MCS consoles or job stream</td>
<td>INFO</td>
</tr>
<tr>
<td>SWAP (G)</td>
<td>Move a volume from one device to another</td>
<td>MCS, SMCS or extended MCS consoles</td>
<td>I/O</td>
</tr>
<tr>
<td>SWITCH (I)</td>
<td>Manually switch recording of SMF data from one data set to another</td>
<td>MCS, SMCS or extended MCS console</td>
<td>SYS</td>
</tr>
<tr>
<td>TRACE</td>
<td>Start, stop, or modify system trace
Start, stop, or modify master trace
Start, stop, or modify component trace
Display the status of system trace, master trace, or component trace</td>
<td>MCS, SMCS or extended MCS console</td>
<td>SYS
MES
MASTER
MASTER
SYS</td>
</tr>
<tr>
<td>UNLOAD (U)</td>
<td>Remove a volume from system use</td>
<td>MCS, SMCS or extended MCS consoles or job stream</td>
<td>I/O</td>
</tr>
</tbody>
</table>
Table 4-1. System Command Summary (continued)

<table>
<thead>
<tr>
<th>Command (Abbr)</th>
<th>Function</th>
<th>Acceptable From</th>
<th>Command Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARY (V)</td>
<td>Control the hardcopy message set and the hardcopy medium.</td>
<td>MCS, SMCS, or extended MCS consoles or job stream</td>
<td>MASTER, I/O, or CONS³</td>
</tr>
<tr>
<td></td>
<td>Change the status of a console</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change the SMS status of a storage group or volume for one or more MVS systems in the SMS complex</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Place I/O devices online or offline</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assign and control consoles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Place I/O paths online or offline</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remove a system from a sysplex</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Place I/O paths online after C.U.I.R service</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change a system's participation in a global resource serialization complex</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change routing codes for a console</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Activate a workload management service policy for a sysplex</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control an application environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRITELOG (W)</td>
<td>Schedule printing of system log</td>
<td>MCS, SMCS or extended MCS consoles or job stream</td>
<td>SYS</td>
</tr>
<tr>
<td></td>
<td>Change system log output class</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Close the system log and discontinue the log function</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restart system log after closing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. CONS command group when message routing is specified.
2. For information about VTAM commands, see [z/OS Communications Server: SNA Operation](https://www.ibm.com/docs/en/zos).
3. This command is in a different command authority group depending on the parameters specified on the command. See [Table 3-6 on page 3-25](#) for more information.
4. An extended MCS console can be either an interactive TSO/E session or a program that issues the MCSOPER macro.

Command Syntax Notation

You must follow certain syntactical rules when you code the MVS commands described in this chapter. Use "How to read syntax conventions" to help you with the syntax.

How to read syntax conventions

This section describes how to read syntax conventions. It defines syntax notations and provides syntax examples that contain these items.
Command Syntax Notation

<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
<th>Syntax example</th>
<th>Sample entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apostrophes</td>
<td>Apostrophes indicate a parameter string and must be entered as shown.</td>
<td>SEND 'message',NOW</td>
<td>SEND 'listings ready',NOW</td>
</tr>
<tr>
<td>Comma</td>
<td>Commas must be entered as shown.</td>
<td>DISPLAY C,K</td>
<td>DISPLAY C,K</td>
</tr>
<tr>
<td>Ellipsis ...</td>
<td>Ellipsis indicates that the preceding item or group of items can be repeated one or more times. Do not enter the ellipsis.</td>
<td>VARY (devspec[,devspec]...),ONLINE</td>
<td>VARY (282,283,287),ONLINE</td>
</tr>
<tr>
<td>Parentheses and special characters</td>
<td>Parentheses and special characters must be entered as shown.</td>
<td>DUMP COMM=(text)</td>
<td>DUMP COMM=(PAYROLL)</td>
</tr>
<tr>
<td>Underline</td>
<td>Underline indicates a default option. If you select an underlined alternative, you do not have to specify it when you enter the command.</td>
<td>K M[,AMRF={Y</td>
<td>N}]</td>
</tr>
<tr>
<td>Lowercase parameter</td>
<td>Lowercase indicates a variable term. Substitute your own value for the item.</td>
<td>MOUNT devnum</td>
<td>MOUNT A30 or mount a30</td>
</tr>
<tr>
<td>Uppercase parameter</td>
<td>Uppercase indicates the item must be entered using the characters shown. Enter the item in either upper or lowercase.</td>
<td>DISPLAY SMF</td>
<td>DISPLAY SMF or display smf</td>
</tr>
<tr>
<td>Single brackets</td>
<td>Single brackets represent single or group-related items that are optional. Enter one or none of these items.</td>
<td>DISPLAY SLIP=xxxx</td>
<td>DISPLAY SLIP=W292</td>
</tr>
<tr>
<td>Stacked brackets</td>
<td>Stacked brackets represent group-related items that are optional. Enter one or none of these items.</td>
<td>[TERMINAL]</td>
<td>NOTERMINAL</td>
</tr>
<tr>
<td>Single braces</td>
<td>Single braces represent group-related items that are alternatives. You must enter one of the items. You cannot enter more than one.</td>
<td>{COMCHECK</td>
<td>COMK}</td>
</tr>
<tr>
<td>Stacked braces</td>
<td>Stacked braces represent group related items that are alternatives. You must enter one of the items. You cannot enter more than one.</td>
<td>MN {DSNAME}</td>
<td>MN SPACE</td>
</tr>
</tbody>
</table>
Table 4-2. Syntax conventions (continued)

<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Or-bar (</td>
<td>An or-bar indicates a</td>
<td>ACTIVATE RECOVER=SOURCE</td>
</tr>
<tr>
<td>)</td>
<td>mutually exclusive choice. When used with brackets, enter one or none of the items. When used with braces, you must enter one of the items.</td>
<td></td>
</tr>
<tr>
<td>Stacked items with or-bars (</td>
<td>Stacked items with or-bars indicates a mutually-exclusive choice. Enter one or none of these items.</td>
<td>CD RESET [,SDUMP] ,SYSABEND ,SYSUDUMP ,SYSMDUMP ,ALL</td>
</tr>
</tbody>
</table>

System Command Formats

Two system command formats are defined.

Typical Format

Most system commands can use the format shown in Figure 4-1.

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>[operand [,operand] …]</th>
<th>[comments]</th>
</tr>
</thead>
<tbody>
<tr>
<td>optional command prefixes or blanks</td>
<td>1 or more blanks</td>
<td>no embedded blanks</td>
</tr>
</tbody>
</table>

Figure 4-1. One System Command Format

The following restrictions apply to commands using this format:
1. Enter only one command per line. Use a maximum of 126 characters from a console, or 80 characters through a submitted JCL.
2. To include a comment on a command when you have specified no operands, insert the following after the command: a blank, then a comma, then another blank, and then the comment. The comment may contain embedded blanks.

A Second Format

Figure 4-2 shows a format required by some system commands including DISPLAY PROD, DISPLAY PROG, DISPLAY RTLS, and SETPROG.
This second format provides the opportunity to include a comment after the command and each operand within the command. These restrictions apply:

1. You may, but do not have to use a comma between operands. Examples:
 - D PROG APF
 - D PROG,APF

2. This format requires that each comment be contained between a slash-asterisk and asterisk-slash pair. Comments may contain embedded blanks. Examples:
 - D PROG APF /* comments */
 - D PROG /+comment */ APF /* comment */
ACTIVATE Command

Use the ACTIVATE command to activate or test a new I/O configuration definition dynamically.

Restrictions

For a list of restrictions on the ACTIVATE command, see z/OS HCD Planning.

Attention: An ACTIVATE command may still be active as a task in IOSAS after the command task has been abended with a CMDS ABEND.

Syntax

The complete syntax for the ACTIVATE command is:

```
ACTIVATE {[,IODF=xx][,EDT=xx][,PROC=procname][,CFID=id]
    [,,RECOVER=SOURCE|TARGET][,ACTIOCDS=xx]
    [,,SOFT=[VALIDATE|=NOVALIDATE]]
    [,TEST]
    [,FORCE
    [,FORCE={DEVICE
        (CANDIDATE
        (DEVICE,CANDIDATE)
        (CANDIDATE,DEVICE)
```

Note: Do not specify a comma before the first parameter following ACTIVATE.

Parameters

IODF=xx
Specifies the two-character suffix of the target IODF data set name (IODFx) that contains the configuration definition the system is to activate. When this keyword is omitted, the system defaults to the active IODF data set name.

EDT=xx
Specifies the eligible devices table (EDT) that the system is to construct from the target IODF. If you omit this keyword, the system uses the active EDT identifier.

PROC=procname
Indicates the eight-byte name of the processor definition in the target IODF. If you omit this keyword, the system will use the active processor name.

CFID=id
Specifies the eight-byte configuration identifier that indicates the operating system definition in the target IODF. If you omit this keyword, the system defaults the configuration identifier as follows:

- When the target IODF has only one configuration identifier, it becomes the default, otherwise, the current configuration identifier is the default.

RECOVER=
Allows the installation to continue a dynamic change that did not complete due to a hardware, software, or PR/SM failure. You can specify:

- SOURCE to retry the original I/O configuration
- TARGET to retry the new I/O configuration
- default:
 - Retry TARGET IODF if ACTIVATE failed during advance
ACTIVATE Command

- Retry SOURCE IODF if ACTIVATE failed while backing out.

ACTIOCDS=xx
Specifies the two-character IOCDS name that the system is to activate. Upon successful completion of the ACTIVATE command, the default IOCDS for the next power-on-reset will be xx. It does not make the I/O configuration definition stored in the IOCDS the active one.

For the IOCDS activate process to be successful, the processor token in the target IOCDS must match the current processor token in the Hardware System Area (HSA). This means that the IOCDS that is being activated has an I/O configuration definition that matches the I/O configuration currently active in the channel subsystem.

When you specify ACTIOCDS, you cannot specify TEST.

SOFT
Specifies a dynamic change to the software I/O configuration, which updates the I/O configuration only to the operating system. To change a software and hardware I/O configuration dynamically, omit the SOFT keyword.

When you specify SOFT, you cannot specify FORCE.

When you specify SOFT without any parameters, it is the same as specifying SOFT=VALIDATE.

=VALIDATE or =NOVALIDATE
Allows you to specify whether or not the system is to validate that any specified hardware elements to be deleted are offline and available, and that there is sufficient HSA space available to accommodate the hardware changes.

When a dynamic change is made to the I/O configuration for a processor complex running in LPAR mode, a change to the software I/O configuration is performed for the first N-1 logical partitions, followed by a hardware and software change for the Nth logical partition. By specifying the SOFT keyword (or SOFT=VALIDATE) when changing the I/O configuration on the N-1 logical partitions, you can determine early on whether there will be sufficient HSA space available for the subsequent software and hardware I/O configuration changes on the Nth logical partition.

Specifying SOFT=VALIDATE also ensures that the required processing for changes to coupling facility elements (CF control units or CF channel paths) will be executed. SOFT=VALIDATE is a requirement in all N-1 partitions when you make changes to coupling facility elements.

TEST
Specifies test mode to check, but not to change, the configuration. The system checks include whether:

- The dynamic change will fit into the current HSA
- The target IODF exists
- The target IODF contains the target EDT
- The target IOCDS is a valid data set
- The device support code supports devices being dynamically added or deleted
- The devices to be deleted are offline
- The paths to be deleted are offline

If you are performing a full dynamic activate, the system provides a list showing which channels and devices will be added, deleted, or changed during activation.
Warning If you run the ACTIVATE command with the TEST option and the system detects no errors, there is still no guarantee that ACTIVATE will work without TEST.

When you specify TEST, you cannot specify ACTIOCDS or FORCE.

FORCE
Specify that the system makes it possible to delete hardware resources that might offset other partitions.

You must specify FORCE if your processor complex is running in LPAR mode, and you want to activate a target IODF to delete one or more I/O components. You can also specify FORCE to activate a target IODF to delete a logical partition from a device candidate list. These deletions may be explicit or implicit due to changes in the definitions for some I/O components. When you specify FORCE, you cannot specify SOFT or TEST.

If your processor complex has Enterprise Systems Connection (ESCON) Multiple Image Facility (EMIF) capability, you can specify FORCE to get the results described in Table 4-3.

For information about ESCON Multiple Image Facility (EMIF), see z/OS HCD Planning. For information about access lists and candidate lists, see z/OS HCD User’s Guide.

Table 4-3. Specifying FORCE with EMIF

<table>
<thead>
<tr>
<th>To do the following:</th>
<th>Specify FORCE as follows:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete no I/O components, and do either of the following:</td>
<td>Do not specify FORCE.</td>
</tr>
<tr>
<td>• Delete no logical partitions from the access or candidate list of a channel path.</td>
<td></td>
</tr>
<tr>
<td>• Delete one or more logical partitions from the access or candidate list of a channel path offline to all of those logical partitions. IBM recommends that you take the channel path offline before issuing the command.</td>
<td></td>
</tr>
<tr>
<td>Delete no I/O components, and delete one or more logical partitions from the access or candidate list of a channel path online to any of those logical partitions. IBM does not recommend this action.</td>
<td>FORCE=CANDIDATE</td>
</tr>
<tr>
<td>Delete one or more I/O components, and do either of the following:</td>
<td>FORCE or FORCE=DEVICE</td>
</tr>
<tr>
<td>• Delete no logical partitions from the access or candidate list of a channel path.</td>
<td></td>
</tr>
<tr>
<td>• Delete one or more logical partitions from the access or candidate list of a channel path offline to all of those logical partitions. IBM recommends that you take the channel path offline before issuing the command.</td>
<td></td>
</tr>
<tr>
<td>Delete one or more I/O components, and delete one or more logical partitions from the access or candidate list of a channel path online to any of those logical partitions. IBM does not recommend this action.</td>
<td>FORCE=(DEVICE,CANDIDATE) or FORCE=(CANDIDATE,DEVICE)</td>
</tr>
<tr>
<td>Delete one or more logical partitions from the device candidate list and delete no other I/O components.</td>
<td>FORCE or FORCE=DEVICE</td>
</tr>
</tbody>
</table>
ACTIVATE Command

Note: Before activating the new configuration, you may have to configure offline affected channel paths or vary offline affected devices. See z/OS HCD Planning for details about avoiding disruptions to I/O operations during dynamic changes.

Example 1

To ACTIVATE the A0 IOCDS, enter:

ACTIVATE ACTIOCDS=A0

Example 2

To ACTIVATE the configuration definition COMPUT22, contained in the IODF with suffix 03, enter:

ACTIVATE IODF=03,CFID=COMPUT22

Example 3

To perform a test ACTIVATE to processor definition PROC1001 contained in the currently active IODF, enter:

ACTIVATE PROC=PROC1001,TEST

Example 4

To ACTIVATE an IODF with suffix 04, which deletes one or more I/O components from the I/O configuration, enter:

ACTIVATE IODF=04,FORCE
 or
 ACTIVATE IODF=04,FORCE=DEVICE
CANCEL Command

Use the CANCEL command to end an active job, started task, or time-sharing user immediately. The table that follows summarizes the tasks that the CANCEL command can perform. Following the table are usage notes, the complete command syntax, definition of parameters, and examples of use.

If the program that supports the job or started task was designed to recognize the STOP command, use the STOP command before using the CANCEL command. If the CANCEL command fails several times, consider using the FORCE command.

<table>
<thead>
<tr>
<th>Task - Immediately Terminate:</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>A job in execution</td>
<td>CANCEL jobname</td>
</tr>
<tr>
<td>A running Advanced Program-to-Program Communication/MVS transaction program</td>
<td></td>
</tr>
<tr>
<td>A started task</td>
<td></td>
</tr>
<tr>
<td>A address space identifier of the work unit you want to cancel</td>
<td>CANCEL ASID=asid</td>
</tr>
<tr>
<td>A time-sharing user</td>
<td>CANCEL U=userid</td>
</tr>
<tr>
<td>A started task</td>
<td></td>
</tr>
<tr>
<td>A MOUNT command</td>
<td></td>
</tr>
<tr>
<td>An external writer allocation</td>
<td></td>
</tr>
<tr>
<td>The output processing for a job</td>
<td></td>
</tr>
<tr>
<td>A z/OS UNIX process</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. If your system was part of a global resource serialization ring (GRS=START, GRS=JOIN or GRS=TRYJOIN was specified at IPL) and the system is either inactive or quiesced (by entering the VARY GRS(system name),QUIESCE command), the CANCEL command might not work for jobs that own any global resources. Use DISPLAY GRS to determine GRS status.

2. If a job is running, you can end it using either the CANCEL system command or the appropriate subsystem command. However, if the job is not running, you must CANCEL the job using the subsystem command.

3. The CANCEL command issues an ABEND with either code 122 or 222 to abnormally end a job step or time-sharing user. The ABEND is asynchronous and might result in additional errors, depending on which programs were active at the time of the request. You might need to issue additional CANCEL commands to completely end the job.

4. Entering the CANCEL command during device allocation terminates the external writer as well as the unit of work. Entering this command when the external writer is processing output for a job terminates the output processing but leaves the external writer to process other data sets.

5. When you cancel a MOUNT command for a tape unit, the MOUNT command can end before the volume has been mounted. If the MOUNT command has ended and the mount request is not satisfied, issue the UNLOAD command to free the tape unit.
CANCEL Command

Syntax

The complete syntax for the CANCEL command is:

```
CANCEL {jobname}[,DUMP][,A=asid][,ARMRESTART]
{U=userid}
{[jobname.]identifier}
```

Parameters

`jobname`

The name of the batch job, started task, or APPC/MVS transaction program to be canceled.

The job name for a given started task can be assigned based on a variety of inputs. These inputs are examined in the following order, so that if item #1 is not specified, item #2 is used. If neither #1 nor #2 is specified, then #3 is used, and so on.

1. The jobname specified in the JOBNAME= parameter of the START command
 or
 The identifier specified on the START command.
2. The jobname specified on the JOB JCL statement within the member.
3. The device number specified on the START command, or the device number associated with the device type specified on the START command
 or
 The device number associated with the device type specified on the START command.
4. The device number associated with the IEFRDER DD statement within the member.
5. The member name.

`U=userid`

The user ID of the time-sharing user you want to cancel.

If the user is just logging on and does not yet have a unique name, you must find out the address space identifier for the user (see the explanation under `A=asid`) and use the following version of the command:

```
CANCEL U="LOGON",A=asid
```

`[jobname.]identifier`

The identifier for the unit of work that you want to cancel, optionally preceded by the job name.

The following types of identifiers can be used:

- The identifier that was specified on the START command.
- `[/devnum]`, the device number specified when the START or MOUNT command was entered. The device number is 3 or 4 hexadecimal digits, optionally preceded by a slash (/). You can precede the device number with a slash to prevent ambiguity between the device number and a device type or identifier.
- `devicetype`, the type of device specified when the START or MOUNT command was issued.
If no identifier was specified on the START command, the system assigns temporary identifier “STARTING” to the unit of work, until the system can assign an identifier according to the following order of precedence:

1. If an identifier was not specified on the START command, the identifier is the device type (for example, 3410) or device number (for example, X’0000’) specified on the START or MOUNT command.

2. If an identifier, a device type, or a device number was not specified on the START or MOUNT command, the identifier is the device type specified on an IEFRDER DD statement (invoking a cataloged procedure) in the JCL.

3. If none of the above was specified, the identifier defaults to the job name.

When you specify jobname.identifier, then identifier can be represented by any of the following:

- An asterisk
- One or more characters from the beginning of the identifier, followed by an asterisk
- The entire identifier

When you specify an asterisk, the system responds with message IEE422I.

Attention: When you use the asterisk format, the command affects all started tasks that begin with the specified characters. Device numbers are assumed to be four-digit numbers; for example, /13* would match on 1301, 1302, and so on, but would not match on 13C, because 13C is interpreted as 013C.

Specifying both the job name and the entire identifier causes the command to take effect if one and only one work unit with that combination of job name and identifier is running. For the case where more than one work units with the same combination of job name and identifier are running, see “A=asid” below.

DUMP

A dump is to be taken. The type of dump (SYSABEND, SYSUDUMP, or SYSMDUMP) depends on the JCL for the job. A dump request is only valid when made while the job is running. Dumps are not taken during job allocation or deallocation.

Note: You can use DUMP with any of the other CANCEL parameters.

A=asid

The hexadecimal address space identifier of the work unit you want to cancel.

If more than one work unit is running with the same job name, identifier, combination of job name and identifier, or user ID that you specified on the CANCEL command, the system rejects the command because it does not know which work unit to cancel. To avoid this, you must add the parameter A=asid to your original CANCEL command in order to specify the address space identifier of the work unit.

Note: If the asterisk format is used, you will not be prompted for A=asid. Rather, all work units meeting the specified criteria will be canceled.

You can use the CANCEL operator command to cancel z/OS UNIX address spaces. Each address space is equivalent to a z/OS UNIX process.

To find out the address space identifier for a unit of work, you can use the DISPLAY command as follows:

DISPLAY JOBS,ALL

Lists the address space identifiers for all batch jobs and started tasks.
CANCEL Command

DISPLAY ASCH,ALL
Lists the address space identifiers for all APPC/MVS transaction programs.

DISPLAY TS,ALL
Lists the address space identifiers for all logged-on time-sharing users.

DISPLAY OMVS,ASID=ALL
or
DISPLAY OMVS,A=ALL
Lists the address space identifiers for all z/OS UNIX processes.

Note:
A=asid can be used with any of the other CANCEL parameters except if you specify jobname.identifier with an asterisk (for example, CANCEL aor2.tl*).

ARMRESTART
Indicates that the batch job or started task should be automatically restarted after the cancel completes, if it is registered as an element of the automatic restart manager. If the job or task is not registered or if you do not specify this parameter, MVS will not automatically restart the job or task.

Example 1

Cancel the job named EXAMPLE and take a dump.

```
c example,dump
```

Example 2

Cancel the job named EXAMPLE. Whether you get a dump or not depends on the system routine in control when you enter the command.

```
c example
```

Example 3

Of all jobs named EXAMPLE in the system, cancel only the one whose address space identifier is 7F.

```
c example,a=7F
```

Example 4

Log off the system the user just logging on who has an address space identifier of 3D but does not yet have a unique user identifier.

```
c u=*logon*,a=3d
```

Example 5

Log user A237 off the system.

```
c u=a237
```

Example 6

Log user A237 off the system and take a dump.

```
c u=a237,dump
```

Example 7

Cancel the MOUNT command that requests a volume to be mounted on device number 232, enter:
Example 8

Cancel the MOUNT command that requests a volume to be mounted on a 3330 device type.

Example 9

End the device allocation for a writer with device number 00E.

Example 10

End the output processing being done for device number 00E and cause another output data set to be processed.

Example 11

End the output processing being done for device number 3480 and cause another output data set to be processed.

Example 12

Of all the transaction programs running with the job name MAIL, end only the one whose address space identifier is 2C, which is the APPC/MVS scheduler (ASCH) initiator ASID.

Example 13

End the device allocation for a writer on device number F00E.

Example 14

There are several tasks running with jobname AOR2. End all of those tasks.

Example 15

There are several tasks running with jobname AOR2. Some of those tasks have identifiers beginning T1. End only those specific tasks.

Example 16

The following example shows an operator session that cancels a process that is running the shell command `sleep 6000` for the TSO/E user CHAD.
CANCEL Command

<table>
<thead>
<tr>
<th>OMVS</th>
<th>ACTIVE</th>
<th>USER</th>
<th>JOBNAME</th>
<th>ASID</th>
<th>PID</th>
<th>PPID</th>
<th>STATE</th>
<th>START</th>
<th>CT SECS</th>
<th>LATCHWAITPID=</th>
<th>CMD=</th>
<th>CMD=</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CHAD</td>
<td>CHAD</td>
<td>001D</td>
<td>262147</td>
<td>1</td>
<td>RI</td>
<td>17.00.10</td>
<td>1.203</td>
<td>0</td>
<td>sleep</td>
<td>6000</td>
</tr>
<tr>
<td>CHAD</td>
<td>CHAD</td>
<td>001B</td>
<td>131076</td>
<td>5</td>
<td>262147</td>
<td>IW</td>
<td>17.00.10</td>
<td>.111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHAD</td>
<td>CHAD3</td>
<td>0041</td>
<td>262147</td>
<td>5</td>
<td>17.00.10</td>
<td>.596</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHAD</td>
<td>CHAD</td>
<td>001B</td>
<td>131076</td>
<td>5</td>
<td>262147</td>
<td>IW</td>
<td>17.00.10</td>
<td>.111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you want to cancel only the process that is running the shell command **sleep 6000**, enter:

```
CANCEL CHAD3
```

If you want to cancel the TSO/E user CHAD altogether, enter:

```
CANCEL U=CHAD
```
CHNGDUMP Command

Use the CHNGDUMP command to change the mode and system dump options list for any dump type, or to request structures to be dumped when one or more systems connected to a coupling facility fail. The dump types are SDUMP, SYSABEND, SYSUDUMP, and SYSMDUMP. If you issue multiple CHNGDUMP commands, the changes to the system dump options are cumulative. Table 4-5 summarizes the information that the CHNGDUMP command provides. Use it to access the pages on which you can find details about a particular use of the CHNGDUMP command.

Table 4-5. Summary of the CHNGDUMP Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHNGDUMP DEL</td>
<td>“Removing Options from or Resetting the System Dump Options Lists” on page 4-28</td>
</tr>
<tr>
<td>CHNGDUMP RESET</td>
<td>“Resetting Dump Mode to ADD and the Dump Options to Initial Values” on page 4-34</td>
</tr>
<tr>
<td>CHNGDUMP SET</td>
<td>“Setting the Dump Modes and Options” on page 4-37</td>
</tr>
</tbody>
</table>

Dump Options and Modes

The system checks the dump mode and dump options each time the system or a user requests a dump. The dump mode determines whether the system accepts either a dump request or the options a dump request specifies. The starting dump mode for all four dump types is ADD.

The dump options, whether taken from a system dump options list or from a dump request, specify, for each dump type, the data areas to dump. MVS sets up system dump options lists each time you initialize the system. These lists specify the dump mode and dump options in effect for each dump type. The system finds the starting dump options lists for the SYSABEND, SYSUDUMP, and SYSMDUMP dump types in parmlib members IEAABD00, IEADMP00, and IEADMR00 respectively. Because the SDUMP dump type has no corresponding parmlib member, it starts with an empty dump options list.

Dump Modes

In addition to ADD, other possible dump modes are OVER and NODUMP. The meaning of each mode is:

- ADD — When a dump is requested for a dump type that is in ADD mode, the system merges the options specified on the dump request with the options specified in the system dump options list for that dump type. The merged options determine the data areas to dump. If an option specified on the dump request conflicts with an option in the options list, the system uses the option in the options list.

- OVER — When a dump is requested for a dump type that is in OVER (override) mode, the system ignores the options specified on the dump request and uses only the options specified in the system dump options list for that dump type combined with the override options to determine the data areas to dump.

- NODUMP — When a dump is requested for a dump type that is in NODUMP mode, the system ignores the request and does not take a dump.
Changing the Dump Mode and Options

You can change the dump mode or options for a dump type. Before making a change, however, issue DISPLAY DUMP,OPTIONS to see the current mode and options.

Changing the mode of a dump type can also affect its system dump options list as follows:

- If you change the mode for a dump type from OVER to ADD, the system adds the dump type's parmlib options to the dump type's system dump options list. The dump type's system dump options list then contains both the dump type's parmlib options and any options set by previous CHNGDUMP commands.
- If you change the mode for a dump type from ADD to OVER, the system removes the dump type's parmlib options from the dump type's system dump options list. The dump type's system dump options list then contains only the options set by previous CHNGDUMP commands.
- If you change the mode for a dump type to NODUMP, the system empties the dump type's system dump options list.

If you make an error entering a CHNGDUMP command, the system rejects the entire command and issues an error message.

Scope in a Sysplex

The CHNGDUMP command has sysplex scope only when all systems are connected to the same coupling facilities, and you specify SDUMP,SYSFIL,SYSTRLIST=. See "Using Commands That Have Sysplex Scope" on page 1-11 for an explanation of sysplex scope.

Syntax

The syntax for each variation of the CHNGDUMP command (CD DEL, CD RESET, and CD SET) is shown immediately preceding its respective parameter list.

CHNGDUMP or CD

Removing Options from or Resetting the System Dump Options Lists

Use the CHNGDUMP DEL command to remove specified options from a dump options list or to reset all dump options lists to values specified at system initialization.

```bash
CD DEL[,]SDUMP=(option[,option]...) [,Q={YES|NO}] [,TYPE={XMEM|XMEME}] [,ALL] [,SYSFAIL,STRLIST={ALL|STRNAME=strname[,STRNAME=strname]...})} [[,SYSABEND][,SDATA=(option[,option]...) ]} [[,SYSUDUMP] [,PDATA=(option[,option]...) ]} [,ALL] [[,SYSMDUMP=(option[,option]...) ]} [,ALL] [,ALL] ]
```
Parameters

DEL
Set the dump mode for each dump type to ADD and reset all system dump options lists to the values established during system initialization. (The system gets the initial dump options for SYSABEND, SYSUDUMP, and SYSMDUMP from parmlib members IEAABD00, IEADMP00, and IEADMR00 respectively. The system empties the SDUMP dump options list.)

SDUMP
Set the dump mode for the SDUMP dump type to ADD, and empty the SDUMP system dump options list.

SDUMP,SYSFAIL,STRLIST={ALL or STRNAME=strname,...}
To delete STRNAME specifications from the dump options list. You can delete any or all structure name specifications from the dump options list. For a complete description of the keyword specifications see the SET,SDUMP parameter on page 4-40.

SDUMP=(options)
Remove the specified options from the SDUMP system dump options list. If the SDUMP dump mode is OVER, and previous CHNGDUMP commands have removed all dump options from the SDUMP dump options list, this command has no effect and leaves the SDUMP dump options list empty. See Options for SDUMP, SYSABEND, SYSUDUMP, and SYSMDUMP on page 4-31 for SDUMP options you can specify.

SDUMP,Q=YES or NO
Specifies whether or not SDUMP is to quiesce the system—set it to nondispatchable (Q=YES) or leave the system dispatchable (Q=NO)—while dumping the contents of the SQA or CSA. For further information, see “Setting the Dump Modes and Options” on page 4-37.

SDUMP,TYPE=XMEM
Turn off “cross memory” in the SDUMP system dump options list.

SDUMP,TYPE=XMEME
Turn off “cross memory at the time of the error” in the SDUMP system dump options list.

SDUMP,ALL
Same as DEL,SDUMP.

SYSABEND
Set the dump mode for the SYSABEND dump type to ADD, and reset the SYSABEND system dump options list to the values established during system initialization. (The system gets the initial dump options for SYSABEND from the IEAABD00 parmlib member.)

SYSABEND,SDATA=(options)
Remove any of the specified SDATA options that previous CHNGDUMP commands put in the SYSABEND system dump options list. Parmlib options do not change. If the SYSABEND dump mode is OVER and previous CHNGDUMP commands have removed all SDATA and PDATA dump options from the SYSABEND dump options list, reset the list to the parmlib options. See Options for SDUMP, SYSABEND, SYSUDUMP, and SYSMDUMP on page 4-31 for SYSABEND options you can specify.

SYSABEND,PDATA=(options)
Remove any of the specified PDATA options that previous CHNGDUMP commands put in the SYSABEND system dump options list. Parmlib
CHNGDUMP Command

options do not change. If the SYSABEND dump mode is OVER and previous CHNGDUMP commands have removed all SDATA and PDATA dump options from the SYSABEND dump options list, reset the list to the parmlib options. See ["Options for SDUMP, SYSABEND, SYSUDUMP, and SYSMDUMP" on page 4-31] for SYSABEND options you can specify.

SYSABEND,ALL
Same as DEL,SYSABEND.

SYSUDUMP
Set the dump mode for the SYSUDUMP dump type to ADD, and reset the SYSUDUMP system dump options list to the values established during system initialization. (The system gets the initial dump options for SYSUDUMP from the IEADMP00 parmlib member.)

SYSUDUMP,SDATA=(options)
Remove any of the specified SDATA options that previous CHNGDUMP commands put in the SYSUDUMP system dump options list. Parmlib options do not change. If the SYSUDUMP dump mode is OVER and previous CHNGDUMP commands have removed all SDATA and PDATA dump options from the SYSUDUMP dump options list, reset the list to the parmlib options. See ["Options for SDUMP, SYSABEND, SYSUDUMP, and SYSMDUMP" on page 4-31] for SYSUDUMP options you can specify.

SYSUDUMP,PDATA=(options)
Remove any of the specified PDATA options that previous CHNGDUMP commands put in the SYSUDUMP system dump options list. Parmlib options do not change. If the SYSUDUMP dump mode is OVER and previous CHNGDUMP commands have removed all SDATA and PDATA dump options from the SYSUDUMP dump options list, reset the list to the parmlib options. See ["Options for SDUMP, SYSABEND, SYSUDUMP, and SYSMDUMP" on page 4-31] for SYSUDUMP options you can specify.

SYSUDUMP,ALL
Same as DEL,SYSUDUMP.

SYSMDUMP
Set the dump mode for the SYSMDUMP dump type to ADD, and reset the SYSMDUMP system dump options list to the values established during system initialization. (The system gets the initial dump options for SYSMDUMP from the IEADMR00 parmlib member.)

SYSMDUMP=(options)
Remove any of the specified options that previous CHNGDUMP commands put in the SYSMDUMP system dump options list. Parmlib options do not change. If the SYSMDUMP dump mode is OVER and previous CHNGDUMP commands have removed all dump options from the SYSMDUMP dump options list, reset the list to the parmlib options. See ["Options for SDUMP, SYSABEND, SYSUDUMP, and SYSMDUMP" on page 4-31] for SYSMDUMP options you can specify.

SYSMDUMP,ALL
Same as DEL,SYSMDUMP.

ALL
Same as DEL.
Options for SDUMP, SYSABEND, SYSUDUMP, and SYSMDUMP

The options that you can specify on the CHNGDUMP command follow. The default options for the IEAABD00, IEADMP00, and IEADMR00 parmlib members are CB, DM, ENQ, ERR, IO, JPA, LPA, LSQA, NUC, PSW, REGS, RGN, SA, SPLS, SQA, SUM, SWA, and TRT:

SDUMP options:

ALLNUC All of the DAT-on nucleus, including page-protected areas, and all of the DAT-off nucleus.

ALLPSA or NOALLPSA or NOALL Prefix storage area for all processors. NOALLPSA or NOALL specifies that these areas are not to be dumped.

COUPLE XCF related information in the sysplex.

CSA Common storage area.

GRSQ Global resource serialization (ENQ/DEQ/RESERVE) queues.

Notes:
1. When the GRS is running in STAR mode, the output of the GRSDATA subcommand is dependent on the GRSQ option setting of the parmlib member GRSCNFxx. For more information about the GRSCNFxx GRSQ setting, see the z/OS MVS Planning: Global Resource Serialization.
2. GRSQ is used for cases where ENQ resources need to be collected. See the “Formatting global resource serialization dump data” section in z/OS MVS Diagnosis: Reference for more information about problems related to GRS itself.

LPA Link pack area.

LSQA Local system queue area.

NUC Non-page-protected areas of the DAT-on nucleus.

PSA Prefix storage area of the dumping processor.

RGN Entire private area.

SERVERS Requests that the registered IEASDUMP.SERVER dynamic exits receive control.

Be warned, however, this setting also causes all synchronous dumps to be converted into asynchronous dumps, which can result in unexpected behavior if the dump requestor was expecting the dump to complete before control was returned to the program. The use of this option is therefore not recommended for general use, so IBM has defaulted the SERVERS option for all operator initiated and SLIP trap SVC dumps.

SQA or NOSQA System queue area. NOSQA specifies that this data not be dumped.

SUMDUMP or SUM Requests the summary dump function. For a description of NOSUM the summary dump function, see z/OS MVS Programming.
CHNGDUMP Command

NOSUM or NOSUMDUMP
Requests that the function not be performed.

SWA Scheduler work area.

TRT GTF, system trace, and master trace data.

WLM Workload management related information in the sysplex.

XESDATA XES-Related information in the sysplex.

SDATA options for SYSABEND dump type: Request application related system storage, including key 0 areas, that the application program or programmer can see.

ALLSDATA Sets all of the other SDATA options except NOSYM and ALLVNUC.

ALLVNUC All of the DAT-on nucleus, including page-protected areas.

CB Format of task-related control blocks.

DM Data management control blocks.

ENQ Global resource serialization control blocks for the current task.

ERR RTM control blocks.

IO I/O supervisor control blocks.

LSQA Local system queue area.

NOSYM Symptom dump is not to be produced.

NUC Non-page-protected areas of the DAT-on nucleus.

PCDATA Program call data for the current task.

SQA System queue area.

SUM Summary dump data.

SWA Scheduler work area.

TRT GTF and system trace data. (For an authorized user, system trace data is for all address spaces in the system. For an unauthorized user, system trace data is for the user’s address space only. The GTF data is for the user’s address space only.)

SDATA options for SYSUDUMP dump type: Request application related system storage, including key 0 areas, that the application program or programmer can see.

ALLSDATA Sets all of the other SDATA options except NOSYM and ALLVNUC.

ALLVNUC All of the DAT-on nucleus, including page-protected areas.

CB Format of task-related control blocks.

DM Data management control blocks.

ENQ Global resource serialization control blocks for the current task.

ERR RTM control blocks.

IO I/O supervisor control blocks.

LSQA Local system queue area.

NOSYM Symptom dump is not to be produced.
NUC Non-page-protected areas of the DAT-on nucleus.
PCDATA Program call data for the current task.
SQA System queue area.
SUM Summary dump data.
SWA Scheduler work area.
TRT GTF and system trace data. (For an authorized user, system trace
data is for all address spaces in the system. For an unauthorized
user, system trace data is for the user’s address space only. The
GTF data is for the user’s address space only.)

PDATA options for SYSABEND dump type: Request areas of application storage
that are accessible using problem program keys.

- **ALLPDATA** Sets all of the PDATA options.
- **ALLPA** Sets both the LPA and JPA options.
- **JPA** Job pack area.
- **LPA** Link pack area for this job.
- **PSW** Program status word.
- **REGS** General registers.
- **SA** Save area trace (long form).
- **SAH** Save area trace (short form).
- **SPLS** Allocated storage subpools.
- **SUBTASKS** Program data for the main task and all subtasks of this job.
 (SUBTASKS is always included for abends with a system
 completion code of X’22’.)

PDATA options for SYSUDUMP dump type: Request areas of application storage
that are accessible using problem program keys.

- **ALLPDATA** Sets all of the PDATA options.
- **ALLPA** Sets both the LPA and JPA options.
- **JPA** Job pack area.
- **LPA** Link pack area for this job.
- **PSW** Program status word.
- **REGS** General registers.
- **SA** Save area trace (long form).
- **SAH** Save area trace (short form).
- **SPLS** Allocated storage subpools.
- **SUBTASKS** Program data for the main task and all subtasks of this job.
 (SUBTASKS is always included for abends with a system
 completion code of X’22’.)

SYSMDUMP options:

- **ALL** Sets all of the other SYSMDUMP options except NOSYM and
 ALLNUC.
CHNGDUMP Command

ALLNUC
All of DAT-on nucleus, including page-protected areas, and all of the DAT-off nucleus.

CSA
The portions of the common storage area that are not fetch-protected.

GRSQ
Global resource serialization (ENQ/DEQ/RESERVE) queues.

Notes:

1. when the GRS is running in STAR mode, the output of the GRSDATA subcommand is dependent on the GRSQ option setting of the parmlib member GRSCNFxx. For more information about the GRSCNFxx GRSQ setting, see the z/OS MVS Planning: Global Resource Serialization.

2. GRSQ is used for cases where ENQ resources need to be collected. Problems related to GRS itself requires more information. See the "Formatting global resource serialization dump data" topic in z/OS MVS Diagnosis: Reference for more information.

LPA
Link pack area for this job.

LSQA
Local system queue area.

NOSYM
Symptom dump is not to be produced.

NUC
Non-page-protected areas of the DAT-on nucleus.

RGN
Entire private area.

SQA
System queue area.

SUM
Requests the summary dump function. For a description of the summary dump function, see z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU.

SWA
Scheduler work area.

TRT
System trace data. (For an authorized user, system trace data is for all address spaces in the system. For an unauthorized user, system trace data is for the user’s address space only.)

Resetting Dump Mode to ADD and the Dump Options to Initial Values

Use the CHNGDUMP RESET command to reset the dump mode to ADD and the dump options list to values established during system initialization.

```
CD RESET[,SDUMP ]

,,SYSABEND
,,SYSUDUMP
,,SYSMDUMP
,ALL
```

RESET

Set the dump mode for each dump type to ADD, and reset the system dump options list for each type to the values established during system initialization. (The system gets the initial dump options for SYSABEND, SYSUDUMP, and SYSMDUMP from parmlib members IEAABD00, IEADMP00, and IEADMR00 respectively. The system empties the SDUMP dump options list.)

RESET,SDUMP or SYSABEND or SYSUDUMP or SYSMDUMP

Set the dump mode for the specified dump type to ADD, and reset the dump options list to values established during system initialization.
type’s system dump options list to the values established during system initialization. (The system gets the initial dump options for SYSABEND, SYSUDUMP, and SYSDUMP from parmlib members IEAADBD00, IEADMP00, and IEADMRR00 respectively. The system empties the SDUMP dump options list.)

RESET,ALL
Same as **RESET**.

Example: How CHNGDUMP Commands Affect Dump Modes and Options

Table 4-6 (using SYSABEND) shows how dump modes and system dump options are set during system initialization and then changed by CHNGDUMP commands or options specified on ABEND macro dump requests. The figure assumes that parmlib member IEAADBD00 specifies dump options CB, DM, ENQ, ERR, IO, LSQA, SUM, and TRT. The figure lists system and operator actions and explains each action the system takes.

- The **FUNCTION** column lists the IPL process, CHNGDUMP commands, and dump requests (from the ABEND macro instruction) as they occur.
- The **OPTIONS** column identifies the SYSABEND dump options in effect at each point in the example.
- The **MODE** column identifies the dump mode in effect at each point in the example.

<table>
<thead>
<tr>
<th>FUNCTION (* indicates operator commands/actions)</th>
<th>OPTIONS</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>* IPL</td>
<td>CB</td>
<td>ADD</td>
</tr>
<tr>
<td>During IPL, parmlib options are set on, and mode is set to ADD.</td>
<td>DM LSQA ENQ SUM ERR TRT</td>
<td>ADD</td>
</tr>
<tr>
<td>ABEND SDATA=(NUC,SWA)</td>
<td>CB</td>
<td>ADD</td>
</tr>
<tr>
<td>Because mode is ADD, options specified on dump request are added to options set on in options list to determine areas to dump.</td>
<td>DM NUC ENQ SUM ERR SWA IO</td>
<td>ADD</td>
</tr>
<tr>
<td>* CD SET,SYSABEND,SDATA=PCDATA</td>
<td>CB</td>
<td>ADD</td>
</tr>
<tr>
<td>An additional option is set on in options list.</td>
<td>DM PCDATA ENQ SUM ERR IO</td>
<td>ADD</td>
</tr>
<tr>
<td>ABEND</td>
<td>CB</td>
<td>ADD</td>
</tr>
<tr>
<td>Because dump request specified no additional options, only options set on in options list determine areas to dump.</td>
<td>DM PCDATA ENQ SUM ERR IO</td>
<td>ADD</td>
</tr>
<tr>
<td>ABEND SDATA=(NUC,SWA)</td>
<td>CB</td>
<td>ADD</td>
</tr>
<tr>
<td>Because mode is ADD, options specified on dump request are added to options set on in options list to determine areas to dump.</td>
<td>DM PCDATA ENQ SUM ERR SWA IO LSQA</td>
<td>ADD</td>
</tr>
</tbody>
</table>
CHNGDUMP Command

Table 4-6. Example of How CHNGDUMP Commands Affect Dump Modes and Options (continued)

<table>
<thead>
<tr>
<th>FUNCTION (* indicates operator commands/actions)</th>
<th>OPTIONS</th>
<th>MODE</th>
</tr>
</thead>
</table>
| * CD SET, SYSABEND, OVER, SDATA=(CB, IO) | CB
 I0
 PCDATA | OVER |
| **Mode is changed to OVER and parmlib options are deleted from options lists. Only options set by previous CD commands remain on in options list; CD commands are cumulative. Options in options list are combined with override options to determine areas to dump.** | | |
| ABEND SDATA=(SWA, TRT) | CB
 I0
 PCDATA | OVER |
| **Because mode is OVER, options specified on dump request are ignored. Options set on in options list determine areas to dump.** | | |
| * CD SET, SYSABEND, SDATA=(ENQ, LSQA), OVER | CB
 ENQ
 I0
 LSQA
 PCDATA | OVER |
| **Two more options are set on in options list, and mode is unchanged.** | | |
| **Mode is changed to ADD (the default) for SYSABEND, parmlib options are set on, and CD command options are set on. Previous CD command options remain on.** | | |
| ABEND SDATA=(CB, SWA, NUC) | CB
 DM
 ENQ
 ERR
 I0
 LSQA
 NUC
 PCDATA
 SUM
 TRT | ADD |
| **Because mode is ADD, options specified on dump request are added to options set on in options list to determine areas to dump.** | | |
| * CD SET, SYSABEND, NODUMP | | NODUMP |
| **Mode is changed to NODUMP. All options in options list are set off.** | | |
| ABEND SDATA=(CB, SWA, NUC) | | NODUMP |
| **Because mode is NODUMP, request is ignored.** | | |
| * CD SET, SYSABEND, SDATA=SQA | CB
 DM
 ENQ
 ERR
 I0
 LSQA
 SQA
 SUM
 TRT | ADD |
| **Mode is changed to ADD. Parmlib options on this CD command are set.** | | |
| * CD DEL, SYSABEND, SDATA=(DM, IO) | CB
 ENQ
 ERR
 LSQA
 SQA
 SUM
 TRT | ADD |
| **Because DEL is specified, specified options in options list are set off.** | | |
| * CD DEL, SYSABEND, SDATA=(SQA, LSQA, TRT, CB, ENQ, ERR, SUM) | | ADD |
| **Specified options are set off in options list.** | | |
| ABEND SDATA=(SQA) | SQA | ADD |
| **The option specified in the dump request determines the area to dump. There are no options on in the options list.** | | |

4-36 z/OS V1R11.0 MVS System Commands
FUNCTION (* indicates operator commands/actions)	**OPTIONS**	**MODE**
* CD RESET,SYSABEND | CB IO DM LSQA ENQ SUM ERR TRT | ADD

Mode and options list are reset to values established at system initialization.

Setting the Dump Modes and Options

Use the following form of the CHNGDUMP command to set the dump modes and put specified options in the dump options lists.

```plaintext
CD SET,{NODUMP}
   {OVER}
   {ADD}
   {SDUMP=(option[,option]...)}
      [,Q={YES|NO}]
      [,TYPE={XMEM|XMEME}]
      [,BUFFERS={nnnnK|nnnM}]
      [,AUXMGMT={ON|OFF}]
      [,MAXSNDP=ssss]
      [,MAXSPACE=xxxxxxxxMM]
      [,MSGTIME=yyyyy]
      [,SYSAFAIL,STRLIST=(s-option[,s-option]...)]
      [,NODUMP|OVER|ADD]

{(SYSABEND)[,SDATA=(option[,option]...)][,NODUMP] }
{(SYSUDUMP) [,PDATA=(option[,option]...)] ,OVER }
{SYSMDUMP=(option[,option]...)[,NODUMP] }

{ABDUMP,TIMENQ=yyyyy}
```

Where **s-option** represents:

- **STRNAME=strname**
- [,**CONNAME=conname**]
- [,**ACCESSTIME={ENFORCE|NOLIMIT|NOLIM}**]
- [,**LOCKENTRIES**]
- [,**USERCNTLS**]
- [,**EVENTQS**]
- [,**EMCONTROLS={ALL|(list)}**]
- [,**{COCLASS|STGCLASS|LISTNUM}={ALL|(list)}**]
 - ([**{SUMMARY**}])

SET

Set the dump mode and put specified options in the system dump options list.
CHNGDUMP Command

NODUMP
Set the SDUMP, SYSABEND, SYSUDUMP, and SYSMDUMP dump modes to NODUMP, and remove all options from the system dump options lists for these dump types.

ADD
Set the SDUMP, SYSABEND, SYSUDUMP, and SYSMDUMP dump modes to ADD. If any of these dump types were previously in OVER mode, add its parmlib dump options to its system dump options list.

OVER
Set the SDUMP, SYSABEND, SYSUDUMP, and SYSMDUMP dump modes to OVER. If any of these dump types were previously in ADD mode, remove its parmlib options from its system dump options list.

SDUMP
Set the SDUMP dump mode to ADD.

SDUMP,NODUMP
Set the SDUMP dump mode to NODUMP.
You cannot specify other parameters when specifying NODUMP. For example, you can specify CD SDUMP,NODUMP, but not CD SDUMP,Q=YES,NODUMP.

SDUMP,OVER or ADD
Set the SDUMP dump mode to the specified mode.

SDUMP,SYSFAIL,STRLIST=(structure names and options)
Set structures to be dumped when a single system fails or when all the systems connected to a coupling facility fail. SYSFAIL may not be specified with other dump options, and must be specified with STRLIST. The syntax for the STRLIST specification is identical to the DUMP command. SYSFAIL and STRLIST may be specified in ADD or OVER mode. In either mode, the STRLIST parameter list is saved and when a system fails or when all the systems fail, a dump is requested that includes the specified structures.

SDUMP=(options)
Put the specified options in the SDUMP system dump options list. See "Options for SDUMP, SYSABEND, SYSUDUMP, and SYSMDUMP" on page 4-31 for SDUMP options you can specify.

SDUMP,TYPE=XMEM
Set the SDUMP system dump options list to “cross memory.” Specifying TYPE=XMEM causes SVC dump to dump the cross memory address spaces that the caller has when SVC dump gets control.

SDUMP,TYPE=XMEME
Set the SDUMP system dump options list to “cross memory at the time of the error.” Specifying TYPE=XMEME causes SVC dump to dump cross memory address spaces that the caller has when the error causing the dump occurs.

SDUMP, Q=YES or NO
Specifies whether or not SDUMP is to quiesce the system—set it to nondispatchable (Q=YES) or leave the system dispatchable (Q=NO)—while dumping the contents of the SQA, CSA or collecting Global Exit data.

By quiescing most system activity during SVC dump global storage capture, the dump will contain a more consistent image of the state of the system.
However, when collecting large amounts of data, the system can appear to be hung or sluggish. Using Q=NO reduces the impact to system availability, but may impact serviceability.

The CHNGDUMP quiesce (Q=YES|NO) setting overrides any QUIESCE specification made on the SDUMP or SDUMPX macro invocation.

However, if no Q= setting was specified for the CHNGDUMP command during the IPL, the QUIESCE specification on the SDUMP or SDUMPX macro invocation prevails. Note that if the QUIESCE option is omitted on the macro invocation, then the default is QUIESCE=YES.

SDUMP,BUFFERS=nmmnK or nnnM

Provides a target value of real storage frames to be reserved for the exclusive use of SVC dump processing. The value can be expressed in kilobytes (0K to 9999K) or in megabytes (0M to 999M). The default is 0K. Depending on real storage utilization, the target value might be different from the actual number of frames available by the time an SVC dump occurs.

A large BUFFERS value can improve the performance of collecting SVC dump data; however, it tends to negatively impact the general system performance, because it might reduce the number of real storage frames available to other applications.

SDUMP,AUXMGMT=ON or OFF

Specifies when SDUMP data captures should stop.

ON

No new dumps are allowed when auxiliary storage usage reaches 50%. New dumps are allowed again only after the auxiliary storage usage drops below 35%. Current SDUMP data capture stops when auxiliary storage usage exceeds 68%, generating a partial dump.

For systems where large SVC dumps are typically generated, it is suggested to set MAXSPACE as 8000 megabytes.

OFF

SVC dump virtual storage management is under control of the MAXSPACE limitations. Dumps in progress are stopped only when a critical auxiliary storage shortage is detected, or MAXSPACE is exceeded. See the "Obtaining SVC dumps" topic in z/OS MVS Diagnosis: Tools and Service Aids for more discussion about using the AUXMGMT and MAXSPACE keywords.

SDUMP,MAXSNDSP=sss

Specifies the maximum time interval that an SVC dump keeps a system non-dispatchable, where sss is the number of seconds. The default value is 15 seconds.

If the system is reset to be dispatchable because the system has been kept non-dispatchable longer than sss seconds, a SNAPTRC is issued. You can use the WORKSHEET option in IPCS to view this SNAPTRC.

SDUMP,MAXSPACE=xxxxxxxxM

Specifies the maximum amount of virtual storage that SVC dump can use to capture volatile virtual storage data, summary dump data, and component-specific data before writing the dump to DASD. The default value is 500 megabytes. The value that can be specified may range from 1
CHNGDUMP Command

to 99999999 (with, or without, an M suffix). The new value takes effect immediately. If the value specified is lower than the space used, SVC dump will not continue to capture data.

The CHNGDUMP command only provides two ways to change the MAXSPACE value: by using the SET,SDUMP invocation as described here; or by using the RESET,SDUMP invocation that resets all initial SDUMP parameters, including setting the MAXSPACE value to 500M.

SDUMP,MSGTIME=yyyyy

Specifies how long message IEA793A appears on the console, where yyyyy is a number of minutes from 0 — 99999. The default is 99999. When the system deletes the message, it also deletes the captured dump.

You cannot delete this option with CHNGDUMP DEL. To change the value of MSGTIME, issue the CHNGDUMP command in the SET mode with a new value. If you change the MSGTIME value after the message IEA793A appears, the new value will be in affect immediately. If you set the MSGTIME value to 0, the system will not issue the message and it deletes the captured dump.

STRLIST= or STL=(STRNAME=strname...)

Used to include in the dump a list of coupling facility structures. Following are the structure-related keywords:

STRNAME= or STRNM=strname

Designates a particular coupling facility list or cache structure. strname is the name of the coupling facility structure to be included in the dump. Any dump options for this structure are replaced when you issue this command. If strname does not begin with a letter or is longer than 16 characters the system issues syntax error message IEE866I. If a structure does not exist, or the update fails for any reason, the system issues message IEE816I. You may include more than one STRNAME=strname within the parentheses, separated by commas.

CONNAME= or CONNM=conname

When specified for a coupling facility cache structure, requests the user registry information for this user be included in the dump. conname is the name of a connected user. If the connected user represented by the conname does not exist, the dump will not contain user registry information.

ACCESSTIME= or ACC={ENFORCE or ENF or NOLIMIT or NOLIM}

Indicates whether the dump time limit specified on the ACCESTIME parameter of the IXLCONN macro is in effect. When ACCESTIME=ENFORCE is specified, the system holds structure dump serialization no longer than the time interval specified on the IXLCONN macro. This is the default. If ACCESTIME=0 is specified on the IXLCONN macro and ACCESTIME=ENFORCE is specified on the dump request, the structure will not be included in the dump.

When ACCESTIME=NOLIMIT is specified, the dump time limit is not in effect and the system will hold structure dump serialization until processing is completed.

LOCKENTRIES or LOCKE

When specified for a coupling facility list structure, the system includes in the dump the lock table entries for the requested structure. Since
lock table entries do not exist for coupling facility cache structures, this keyword is ignored when specified for a coupling facility cache structure.

USERCNTLS or UC
Requests that the user attach controls be included in the dump.

`(list)`
Represents a list of values, ranges of values, or values and ranges of values.

`(start1-end1,value2,start3-end3, ...)`

COCLASS= or COC=ALL or (list)
Specifies which cast-out classes are included in the dump. For each cast-out class, the cast-out class controls are dumped and the directory information for each of the entries within the requested cast-out classes are dumped (if SUMMARY is not specified).

COCLASS is valid only for a coupling facility cache structure. If specified for a coupling facility list structure, the structure is not included in the dump.

When COCLASS=ALL is specified, the cast-out class controls for all cast-out classes are dumped along with the directory information for all entries within the classes (if SUMMARY is not specified).

When COCLASS=(list) is specified, the cast-out class controls for (list) are dumped along with the directory information for the entries in the requested cast-out classes (if SUMMARY is not specified). The values specified in a range are the decimal cast-out class values in the range 0–65535. When a requested class does not exist, it is not dumped.

STGCLASS= or SC=ALL or (list)
Specifies which storage classes are included in the dump. For each storage class, the storage class controls are dumped and the directory information for each of the entries within the requested storage classes are dumped (if SUMMARY was not specified).

STGCLASS is valid only for a coupling facility cache structure. If specified for a coupling facility list structure, the structure will not be included in the dump.

When STGCLASS=ALL is specified, the storage class controls for all storage classes are dumped along with the directory information for all entries within the classes (if SUMMARY is not specified).

When STGCLASS=(list) is specified, the storage class controls for (list) are dumped along with the directory information for the entries in the requested storage classes (if SUMMARY is not specified). The values specified are the decimal storage class values, 0–255. When a requested class does not exist, it is not dumped.

LISTNUM= or LNUM=ALL or (list)
Specifies which lists are included in the dump. The list controls are dumped along with the entry controls for the entries on each requested list (if SUMMARY is not specified).

LISTNUM is only valid for a coupling facility list structure. If specified for a coupling facility cache structure, the structure is not included in the dump.
CHNGDUMP Command

When `LISTNUM=ALL` is specified, the list controls for all lists in the coupling facility list structure are dumped along with the entry controls (if `SUMMARY` is not specified).

When `LISTNUM=(list)` is specified, the list controls for `(list)` are included in the dump along with the entry controls for those lists. The values specified are the decimal list values, 0–4294967295. The system ignores a zero in the case of `LISTNUM`. No error results. When a requested list does not exist, it is not dumped.

You may use the following keyword to further modify the `STGCLASS`, `COCLASS` and `LISTNUM` keywords:

ADJUNCT= or **ADJ={CAPTURE or CAP or DIRECTIO or DIO}**

Indicates that the adjunct data for each entry specified by the range is included in the dump. When you do not specify this keyword, or when adjunct data does not exist for this structure, the dump does not include the adjunct data.

`ADJUNCT` may not be specified with `SUMMARY`. If they are both specified, a syntax error is issued.

When `ADJUNCT=CAPTURE` is specified, the adjunct data is captured in the facility dump space along with the directory information while dumping serialization is held.

When `ADJUNCT=DIRECTIO` is specified, the adjunct data is written directly to the dump data set after the directory information is captured. The adjunct data is not captured in the structure dump table. The adjunct data may be changing as dumping proceeds.

ENTRYDATA= or **EDATA={UNSERIALIZE or UNSER or SERIALIZE or SER}**

Indicates that the entry data for each entry within the requested range is included in the dump. When this keyword is not specified or when entry data does not exist for the structure, entry data is not included in the dump.

`ENTRYDATA` may not be specified with `SUMMARY`. If they are both specified, a syntax error is issued.

When `ENTRYDATA=UNSERIALIZE` is specified, the entry data is dumped after structure dump serialization is released. The entry data may be changing relative to the entry controls that were captured while structure dump serialization was held.

When `ENTRYDATA=SERIALIZE` is specified, the entry data is dumped while serialization is held. If `ACCESSTIME=ENFORCE` is specified and the dump time limit expires before the entry data is written to the dump data set, the system continues to write the entry data to the dump data set even though serialization is not held.

SUMMARY or SUM

Indicates that a summary of the range of classes or lists is dumped. The directory information for the entries is excluded from the dump.

`SUMMARY` may not be specified with `ADJUNCT` or `ENTRYDATA`. If it specified with either of these keywords, a syntax error is issued.

Notes:

1. A syntax error is issued if `STRNAME` is not the first keyword.
2. If CONNAME and ACCESSTIME are specified more than one time for a structure, the first CONNAME and the last ACCESSTIME are used.

3. When a list number, a storage class, a cast-out class, or an entry is specified in the STRLIST more than once, it will be dumped more than once. An example of this is when STGCLASS=ALL is specified with COCLASS=ALL. All entries in the coupling facility cache structure are dumped twice. Once grouped by storage class and again grouped by cast-out class.

4. When neither LISTNUM, STGCLASS, or COCLASS is specified, no list or class controls are dumped and no entries are dumped.

5. If you request a large amount of dump data, the system may not be able completely to dump all the data. You can expect to successfully dump up to a maximum of 47 structures if you specify no more than a total of 6 ranges. If you must specify more than 6 ranges, you must specify fewer structures. For each structure less than 47 that you specify, you can specify another 10 ranges, as follows:

<table>
<thead>
<tr>
<th>Number of Structures</th>
<th>Number of Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>6</td>
</tr>
<tr>
<td>46</td>
<td>16</td>
</tr>
<tr>
<td>45</td>
<td>26</td>
</tr>
<tr>
<td>44</td>
<td>36</td>
</tr>
</tbody>
</table>

If the system cannot dump all the data you requested, it prioritizes the data according to your specifications on the command in the following manner:

a. The system will attempt to dump the first requested structure first.
 1) Within that structure, the system processes the LOCKENTRIES, USERCNTLS, COCLASS, STGCLASS, and LISTNUM parameters in the order that they are specified. COCLASS, STGCLASS, and LISTNUM may be specified more than once for a single structure.
 2) The system dumps requested serialized data before requested unserialized data starting with the first requested data in the structure and proceeding through the last data that was requested as serialized.

b. The system then dumps the next-requested structure data starting with the first requested data in the structure and proceeding through the last data that was requested as serialized.

c. The system continues in this manner until all serialized data in all requested structures has been prioritized for dumping.

d. The system then dumps any remaining data that was requested as unserialized that may not have been dumped beginning with the first-requested structure.
6. The CONT parameter allows the operator to provide input to the CHNGDUMP command that spans more than one line of input. You can specify the CONT parameter after any comma within the STRLIST parameter list. If a line of input ends with a comma and any closing parentheses are missing, the system assumes the CONT parameter.

SYSABEND

Set the SYSABEND dump mode to ADD.

SYSABEND,NODUMP

Set the SYSABEND dump mode to NODUMP.

You cannot specify other parameters when specifying NODUMP. For example, you can specify CD SYSABEND,NODUMP, but not CD SYSABEND,PDATA=option,NODUMP.

SYSABEND,OVER or ADD

Set the SYSABEND dump mode to the specified mode.

SYSABEND,SDATA=(option[,option]...)

Put the specified SDATA options in the SYSABEND system dump options list. See "Options for SDUMP, SYSABEND, SYSUDUMP, and SYSMDUMP" on page 4-31 for SYSABEND options you can specify.

SYSABEND,PDATA=(option[,option]...)

Put the specified PDATA options in the SYSABEND system dump options list. See "Options for SDUMP, SYSABEND, SYSUDUMP, and SYSMDUMP" on page 4-31 for SYSABEND options you can specify.
SYSUDUMP
Set the SYSUDUMP dump mode to ADD.

SYSUDUMP,NODUMP
Set the SYSUDUMP dump mode to NODUMP.
You cannot specify other parameters when specifying NODUMP. For example, you can specify CD SYSUDUMP,NODUMP, but not CD SYSUDUMP,PDATA=option,NODUMP.

SYSUDUMP,OVER or ADD
Set the SYSUDUMP dump mode to the specified mode.

SYSUDUMP,SDATA=(option[,option]...)
Put the specified SDATA options in the SYSUDUMP system dump options list. See "Options for SDUMP, SYSABEND, SYSUDUMP, and SYSMDUMP" on page 4-31 for SYSUDUMP options you can specify.

SYSUDUMP,PDATA=(option[,option]...)
Put the specified PDATA options in the SYSUDUMP system dump options list. See "Options for SDUMP, SYSABEND, SYSUDUMP, and SYSMDUMP" on page 4-31 for SYSUDUMP options you can specify.

SYSMDUMP
Set the SYSMDUMP dump mode to ADD.

SYSMDUMP,NODUMP
Set the SYSMDUMP dump mode to NODUMP.
You cannot specify other parameters when specifying NODUMP. For example, you can specify CD SYSMDUMP,NODUMP, but not CD SYSMDUMP=option,NODUMP.

SYSMDUMP,OVER or ADD
Set the SYSMDUMP dump mode to the specified mode.

SYSMDUMP=(option[,option]...)
Put the specified options in the SYSMDUMP system dump options list. See "Options for SDUMP, SYSABEND, SYSUDUMP, and SYSMDUMP" on page 4-31 for SYSMDUMP options you can specify.

ABDUMP,TIMEENQ=yyyy
Sets the approximate number of seconds that ABDUMP processing waits for obtaining required resources. The value may be changed up to the maximum of 9999. If this command is used to change the value from the IBM default interval of 240 seconds, place the command into a COMMNDxx member of PARMILB. That establishes the setting as the installation default when the system is IPLed. See "z/OS MVS System Messages, Vol 6 [GOS-IEA]" for the discussion in message IEA848I, DEADLOCK AVOIDED to find more information.

Whenever the TIMEENQ value is changed, the new value takes effect immediately. A value of 0 does not force an SVC dump to occur, because the resources required might be immediately available. You can not use CHNGDUMP DEL to delete this option.
Use the CMDS command to display executing and waiting MVS commands, to delete commands that are waiting for execution, or to cancel commands that are executing.

Syntax

The complete syntax for the CMDS command is:

```
CMDS [ABEND,CMDCcccccccc, ID=nnnn[,CLASS=classname][,JOB=jobname]]
  [DISPLAY,D[,CLASS=classname][,CMD=cccccccc][,ID=nnnn][,JOB=jobname]]
  [DUMP]
  [REMOVE,R[,CLASS=classname][,CMD=cccccccc][,ID=nnnn][,JOB=jobname]]
  [SHOW,S[,CLASS=classname][,CMD=cccccccc][,ID=nnnn][,JOB=jobname]]
```

Notes:
1. The ABEND parameter requires that you specify the CMD= and ID= subparameters.
2. The REMOVE parameter requires that you specify at least one subparameter.
3. You may specify the optional subparameters of the default or specified parameter in any order.

Parameters

CMDS
- **ABEND** — abnormally end a command that is currently executing.
 This parameter requires subparameters CMD= and ID=.
 The system terminates, with ABEND code 422, reason code 00010301, the command that CMD=cccccccc and ID=nnnn identifies.
 Use the ABEND option with extreme caution, being careful to avoid leaving the system in an inconsistent state. Use this parameter only as a last resort, such as when a command is hanging in execution.
 The system issues message IEE064I in response to this command. It does not send any response message to the console that issued the abended command.
 Attention: An ACTIVATE command may still be active as a task in IOSAS after the command task has been abended with a CMDS ABEND.
- **DISPLAY | D** — display the numbers and brief information about the commands that are currently executing and those that are waiting for execution.
 The system issues message IEE062I in response to this command.
- **DUMP** — schedule a dump for the master and console address space.
- **REMOVE | R** — remove commands that are waiting for execution, as specified by the subparameters. You cannot use this option to cancel any commands that are executing.
 The REMOVE parameter requires you specify at least one of the keyword subparameters CLASS=, CMD=, ID=, or JOB=.
 The system issues message IEE064I in response to this command, and sends message IEE065I to the console that issued the removed command.
- **SHOW | S** — display full information about the specific command(s) specified by the subparameters.
The system issues message IEE063I in response to this command.

The CMDS command uses the following keyword subparameters to limit the number of commands to show or remove:

- **CLASS=** classname
 The command class in which the commands belong.
 If you do not specify this parameter, commands in all classes will be displayed or removed.
 The classes are:
 1. Class M1 commands may be essential to clearing a backlog of Class M2 commands.
 2. Class M2 commands are ordinary attached commands that run in the MASTER address space.
 3. Class M3 is only for SEND commands executed in the MASTER address space.
 4. Class C1 commands might be needed to clear a backlog of Class C2 commands.
 5. Class C2 commands are ordinary attached commands that run in the CONSOLE address space.
 6. Class C3 is only for the ROUTE command executed in the CONSOLE address space.

 For a list of the commands by class, see “Command Flooding” on page 1-35.

- **CMD=** command verb
 The name of the command, as displayed by the SHOW option. For example,
 \[\text{CMDS REMOVE,CMD=CONFIG}\]
 will delete all CONFIG commands that are waiting for execution.

 You can use command abbreviations instead of full command names.

- **ID=** number
 - The command’s sequence number, which appears in the output from a CMDS DISPLAY or CMDS SHOW command (messages IEE062I or IEE063I).

- **JOB=** jobname of the command issuer, as displayed by the SHOW option. For example,
 \[\text{CMDS REMOVE,JOB=JOB1111}\]
 will remove all commands issued by JOB1111.

 If you specify more than one of the keyword parameters, the command must meet all specified criteria. For example,
 \[\text{CMDS REMOVE,CMD=VARY,JOB=JOB1111}\]
 will remove waiting VARY commands that job JOB1111 issued.

Note: Some commands remain active indefinitely, so the system will display them whenever CMDS is issued. For example, if any SLIP commands have been issued and SLIP traps are in effect, one SLIP command will be “executing” until all traps are deleted. This is also true for many SET commands, such as SET SLIP and SET MPF.
The CONFIG ESTOR command is not supported on systems at z/OS V1R7 and higher.

The CONFIG VF command is not supported on systems at z/OS V1R6 and higher.

The CONFIG CPUAD...,ONLINE,VFON | VOFF command is not supported on systems at z/OS V1R6 and higher.

Use the CONFIG command to change or check the configuration of the system. You can use the CONFIG command to change the online or offline status of available processors, storage amounts, storage ranges, central storage elements, and channel paths:
1. Directly
2. In response to a configuration display
3. With the options in a CONFIGxx parmlib member that you specify

Table 4-7 summarizes the information that the CONFIG command provides. Use it to access the pages on which you can find details about a particular use of the CONFIG command.

Table 4-7. Summary of the CONFIG Command

<table>
<thead>
<tr>
<th>Command:</th>
<th>Topic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIG CHP</td>
<td>"Reconfiguring the System Directly" on page 4-49</td>
</tr>
<tr>
<td>CONFIG CPUAD</td>
<td>"Reconfiguring the System Directly" on page 4-49</td>
</tr>
<tr>
<td>CONFIG STORAGE</td>
<td>"Reconfiguring the System Directly" on page 4-49</td>
</tr>
<tr>
<td>CONFIG MEMBER</td>
<td>"Reconfiguring the System with a CONFIGxx Parmlib Member" on page 4-55</td>
</tr>
<tr>
<td>CONFIG OFFLINE</td>
<td>"Reconfiguring the System in Response to a Configuration Display" on page 4-56</td>
</tr>
<tr>
<td>CONFIG ONLINE</td>
<td>"Reconfiguring the System in Response to a Configuration Display" on page 4-56</td>
</tr>
</tbody>
</table>

The CONFIG command reconfigures (both logically and physically) available processors, central storage ranges, amounts, and elements, and channel paths.

Note: To configure an Integrated Cryptographic Facility (ICRF) online or offline, you have to configure online or offline the processor to which the ICRF is attached and, when configuring an ICRF online, Integrated Cryptographic Service Facility/MVS (ICSF/MVS) must be active. You can enter the CONFIG command only from a console with master authority.

Syntax

The syntax for each variation of the CONFIG command is shown immediately preceding its respective parameter list.

CONFIG or CF
Reconfiguring the System Directly

Use the CONFIG command to change the online or offline status of any of the following, directly, that is, without invoking a configuration display or a CONFIGxx parmlib member: available processors, and Integrated Cryptographic Facilities (ICRFs), attached to online processors, storage amounts, storage ranges, central storage elements, logical partitions, or channel paths.

See [Chapter 2, “System Reconfiguration,” on page 2-1] for more information about how to reconfigure the resources associated with a processor or a processor complex. See PR/SM Planning Guide for more information about logical partitions.

The parameters are:

- **CPUAD or CPU**
 The system is to reconfigure one or more processors. The system is also to reconfigure one or more ICRFs attached to specified online processors.

 (x,[x]...)
 One or more processor identifiers. The processor identifier is a one-to-two-digit hexadecimal value.

- **ONLINE or ON**
 The system is to bring the specified processor(s) online. If necessary, the system synchronizes the processor’s TOD clocks. If Integrated Cryptographic Service Facility/MVS (ICSF/MVS) is active, the system brings online any ICRF attached to each processor.

- **OFFLINE or OFF**
 The system is to take offline the specified processor(s) and any ICRF attached to the processor(s).

- **STORAGE or STOR**
 The system is to reconfigure central storage, both logically and physically. Note that storage reconfiguration is not supported on all processors and that central storage reconfiguration in a PR/SM environment without enhanced dynamic storage reconfiguration must be specified by storage element ID. The starting and ending addresses of the central storage for which you want the status display.

 ddddddddX
 The amount of central storage to be reconfigured. Specify up to eight decimal digits followed by a multiplier (M-megabytes, G-gigabytes, T-terabytes, P-petabytes) for this amount. Check the configuration of your processor to see which size storage increments are supported. The value for dddddddd must be a multiple of the storage increment size (usually 2, 4, or 8), and cannot exceed 16383P.
Instead of specifying a decimal amount, you may specify a hexadecimal amount, with or without a multiplier, in the format X'xxxxxx'. For example:

- X'123456789A00000'
- X'123'M

You may use underscores in any hexadecimal specification for better clarity. Underscores in the specification are ignored during processing.

dddddddX-dddddddX

The starting and ending addresses of the central storage section to be reconfigured. Specify up to eight decimal digits followed by a multiplier (M-megabytes, G-gigabytes, T-terabytes, P-petabytes) for each address. The value for each ddddddd must be a multiple of the storage increment size (usually 2, 4, or 8), and cannot exceed 16383P. The starting and ending addresses must not be the same.

Instead of specifying the range using decimal numbers, you may specify it in hexadecimal, with or without a multiplier, in the format X'xxxxxx'-X'xxxxxx'. For example:

- X'123456789A00000'-X'123456789B00000'
- X'123'M-X'124'M

You may use underscores in any hexadecimal specification for better clarity. Underscores in the specification are ignored during processing.

E=id

The storage element to be reconfigured, identified by the storage element id. Use this parameter only under the direction of a system programmer to take a storage element offline or online.

ONLINE or ON

The system is to bring the specified storage range or storage element online. The system rejects the command if you specify:

- An address higher than the storage limit set at system initialization
- An address or an element id for storage that is not available to the system

OFFLINE or OFF

The system is to take the specified storage range or storage element offline.

Notes:

1. There can be a delay between the time you enter CONFIG STOR ... OFFLINE and the time the system issues a message indicating the storage is offline. This delay occurs when there is activity in the specified storage; all activity in the storage must stop before the command can take effect. If the storage does not go offline within a short time, a message appears that lets you cancel the command.

2. When you issue CONFIG STOR ... OFFLINE without E=id, the system rejects the command if you specify storage that is either part of the hardware system area (HSA) or assigned permanently to the system. Generally, you can take non-preferred (reconfigurable) storage offline, but, you cannot take preferred (non-reconfigurable) storage offline.

3. When you issue CONFIG STOR ... OFFLINE with E=id, the system moves any storage associated with the HSA or permanently assigned to the system to another storage element. The system saves the addresses of the former storage and displays their address ranges.
4. In order to configure a range of storage online through the CONFIG STOR(xx-xx),ONLINE command, the subject storage must be in a storage element that is online. If a storage element is offline, the only way to bring online any storage within that element is to configure the entire element online, through CONFIG STOR(E=id),ONLINE.

CHP
The system is to reconfigure one or more channel paths.

Note that if you have systems running on a processor at the z990 level or higher, you can automatically reconfigure channel paths on and offline using the hardware management console (HMC) instead of issuing the CONFIG command. On a z990, you may have multiple logical channel subsystems, which means that if an ESCON card fails, you need to reconfigure 15 channels being used across 30 different partitions in each logical channel subsystem. Automatic CHPID reconfiguration lets you issue a reconfiguration request centrally from HMC, which in turn triggers the z/OS systems in each partition to issue the CONFIG command. Then only those partitions that cannot process the request or are not running on a z990 level processor or higher need to be individually reconfigured with the CONFIG command.

(xx)
A single channel path identified by xx. The channel path identifier may have a value from 0 to FF.

(aa-bb)
A range of channel paths. The starting and ending channel path identifiers may have values from 0 to FF.

(list)
One or more single channel paths, ranges of channel paths, or a combination of single channel paths and ranges of channel paths. ALL,id cannot be included in the list.

(ALL,id)
All of the channel paths associated with one side of a partitioned processor complex are to be placed online or offline, where id is the identifier (0 or 1) of the side. Use ALL,id only when your processor complex is one that can be partitioned (such as a 3090 Model 400 Processor Complex). Message IEE172I indicates that all channel paths on a side have been brought online or taken offline.

Note: If you configure a partitionable processor from single image to partitioned mode, and a tape mount is pending, the tape drive(s) might not start after you mount them. You can avoid the problem by mounting the tape before you issue the CONFIG CHP(ALL,id),OFFLINE command to perform the partitioning or, after partitioning, you can issue the VARY device,ONLINE command to start the tape drive(s).

ONLINE or ON
The system is to bring the specified channel path(s) online.

ONLINE,NOVARY
The system is to bring the specified channel paths online without bringing online the paths to the associated devices. Use this command when you want to configure online a channel path that does not currently have a device connected. Example 10 shows the operator commands and system responses.
OFFLINE or OFF
The system is to take the specified channel path(s) offline. The system rejects this command if it would remove the last path to a device that is:
- In use by a system function
- Online
- Allocated
- A TP device
- The only active console in the system
- A coupling facility.

To remove the last path to all other devices, use the CONFIG command without the UNCOND or FORCE parameters.

OFFLINE,UNCOND
The system is to take the specified channel path(s) offline, even if it is the last path to a device. The system rejects this command if it would remove the last path to a device that is:
- In use by a system function
- Allocated
- A TP device
- The only active console in the system
- A coupling facility in use by an active XES connection on the system from which the CONFIG command is issued. (Structures in the coupling facility can be in use, persistent, or have failed-persistent connectors.)

Use OFFLINE,UNCOND to remove the last path to an unallocated online device. You cannot do this by specifying OFFLINE alone.

OFFLINE,FORCE
CAUTION: FORCE is a very powerful option. Never specify FORCE unless you understand all its consequences for your system.

The system is to take the specified channel path(s) offline, even if it is the last path to a device. The system rejects this command if it would remove the last path to a device that is:
- The only active console in the system

The last path to all other devices listed in the OFFLINE,UNCOND option can be removed by the OFFLINE,FORCE option.

Responding to the FORCE Option
Message IEE100E lists any devices that are affected by the OFFLINE,FORCE options. The following message then asks you to confirm the FORCE option:

IEE131D REPLY 'CANCEL' OR 'CONTINUE'

Reply CANCEL to leave the channel path and devices online. Reply CONTINUE if you want to remove the channel path. After you reply CONTINUE, the following message appears:

IEE507D SHOULD ACTIVE DEVICES HAVE I/O TERMINATED?

 REPLY NO OR YES

Reply NO to leave the affected devices online and allocated.

If you specify NO to message IEE507D, the channel path will NOT be configured offline.

Reply YES to have the system stop all I/O in progress on the affected devices, permanently reject all future I/O requests to the devices, and mark the affected devices pending-offline.
If you specify YES to message IEE507D, further system action depends on whether or not there are reserved devices on the channel path you want to take offline:

- If there are no reserved devices on the channel path, the system takes the channel path offline when it stops I/O on the devices.
- If there are reserved devices on the channel path for which there are no alternate paths, you get the following messages after you reply YES to message IEE507D:

 IEE508E NO ALTERNATE PATHS TO RESERVED DEVICES ddd [,ddd]...
 IEE131D REPLY 'CANCEL' OR 'CONTINUE'

If you don't want to lose I/O on reserved devices, reply CANCEL to terminate the CONFIG command and leave the channel path and devices online. Reply CONTINUE to have the system continue to remove the channel path. After you reply CONTINUE, message IOS062E is issued. All the processors for this image enter a restartable disabled wait (WAIT062) state.

The IOS062E message asks you to stop all systems sharing the reserved devices so the system can reserve the devices again, if possible, through alternate paths. If the system cannot find alternate paths, it stops I/O in progress on the devices, rejects any future I/O requests to the devices as permanent I/O errors, and marks the devices pending-offline.

Once the system has been restarted from the wait state, recovery for the channel path will be started and completed. Then, message IOS201E will inform you to start the processors stopped when message IOS062E was issued.

Generally, when CONFIG CHP OFFLINE,FORCE causes the system to take a device offline, you can bring the device back online by bringing online a channel path that provides a path to the device. Once it is back online, the device is again available for allocation. However, if the device was reserved when the system took it offline with the channel path, to bring the device back online and make it again available for allocation, you must provide a path to the device with a CONFIG CHP command and issue a VARY device ONLINE command.

Responding to the FORCE Option for a Coupling Facility

Message IXL126I identifies the coupling facility that is affected by the OFFLINE,FORCE option. The following message then asks you to confirm the FORCE option:

IXL127A REPLY CANCEL OR CONTINUE

Reply CANCEL to leave the coupling facility online. Reply CONTINUE if you want to remove the coupling facility.

Example 1

To take processor 2 offline, enter:

cf cpu(2),offline

Example 2

To bring online a storage range from real addresses four to eight megabytes, enter:
Example 3

To take storage element 0 offline, enter:

cf stor(e=0), offline

Example 4

To bring channel paths 4-9 and 12 online, enter:

cf chp(4-9,12), online

Example 5

To take channel paths 0-6 offline, even though one might be the last path to an unallocated online device, enter:

cf chp(00-06), offline, uncond

Example 6

To bring all channel paths associated with side 1 online, enter:

cf chp(all, 1), online

Example 7

CHP(01) is associated with devices 223 and 224. To correct an error condition, CHP(01) was configured offline to the system. Problem analysis determined that device 224 has a hardware problem that cannot be immediately corrected. This example shows how to configure CHP(01) online without bringing the path to device 224 online.

To display status for devices 223 and 224 before configuring CHP(01) online, issue the following commands:

d m=dev(223)
d m=dev(224)

The output, which shows that the paths to the devices are not online and not operational, appears as follows:

IEE174I 09.05.00 DISPLAY M 197
DEVICE 0223 STATUS=OFFLINE
CHP 01
PATH ONLINE N
CHP PHYSICALLY ONLINE N
PATH OPERATIONAL N

IEE174I 09.05.30 DISPLAY M 200
DEVICE 0224 STATUS=OFFLINE
CHP 01
PATH ONLINE N
CHP PHYSICALLY ONLINE N
PATH OPERATIONAL N

To configure channel path 01 online without bringing online the paths to devices 223 and 224, issue the following command:

cf chp(1), online, novary
The system issues the following messages to indicate that not all paths were brought online:

IEE754I NOT ALL PATHS BROUGHT ONLINE WITH CHP(01)
IEE502I CHP(1), ONLINE
IEE712I CONFIG PROCESSING COMPLETE

To display the status of each device after configuring the channel path online, issue the following commands:

d m=dev(223)
d m=dev(224)

The output, which shows that the paths to the devices are not online but are operational, appears as follows:

IEE174I 09.05.40 DISPLAY M 200
DEVICE 0223 STATUS=OFFLINE
CHP 01
PATH ONLINE N
CHP PHYSICALLY ONLINE Y
PATH OPERATIONAL Y

IEE174I 09.05.50 DISPLAY M 200
DEVICE 0224 STATUS=OFFLINE
CHP 01
PATH ONLINE N
CHP PHYSICALLY ONLINE Y
PATH OPERATIONAL Y

To vary the path online for device 223, issue the following command:

vary path(223,01),online

To display the status of devices 223 and 224 after varying the channel path online, issue the following commands:

d m=dev(223)
d m=dev(224)

The output, which shows that only the path to device 223 is online and operational, appears as follows:

IEE174I 09.05.55 DISPLAY M 200
DEVICE 0223 STATUS=ONLINE
CHP 01
PATH ONLINE Y
CHP PHYSICALLY ONLINE Y
PATH OPERATIONAL Y

IEE174I 09.05.59 DISPLAY M 200
DEVICE 0224 STATUS=OFFLINE
CHP 01
PATH ONLINE N
CHP PHYSICALLY ONLINE Y
PATH OPERATIONAL Y

Reconfiguring the System with a CONFIGxx Parmlib Member

Use the CONFIG MEMBER command when you want the system to use options in a CONFIGxx parmlib member to change the online or offline status of available processors, storage sections, and channel paths. See z/OS MVS Initialization and Tuning Reference for detailed information on the syntax and contents of the CONFIGxx parmlib member.
The parameters are:

MEMBER
The system is to use a CONFIGxx parmlib member to reconfigure available processors, storage sections, and channel paths.

member-id
The identifier (xx) of the CONFIGxx member you want the system to use to reconfigure the available processors, storage sections, and channel paths. This identifier may be any two alphanumeric characters. If you do not specify *member-id*, the default member is CONFIG00.

Example

To reconfigure available processors, central storage, and channel paths in the system to match the options in the CONFIGT3 parmlib member, enter:

```bash
cf member(t3)
```

Reconfiguring the System in Response to a Configuration Display

Use the following form of the CONFIG command before making any changes to the system configuration, or to display the processors, Integrated Cryptographic Features (ICRFs) attached to the processors, total amount of storage, channel paths available to the system, and the online or offline status of each channel path. (To obtain more information on storage, use the DISPLAY M command.)

In response to this command, the system issues messages IEE521I and IEE522D. Message IEE521I displays the reconfigurable resources available to the system, including processors, ICRFs attached to the processors, total amount of central storage, central storage elements, and channel paths. If your processor complex is partitioned, message IEE521I contains this information for one side. Respond to message IEE522D with the processors, total amount of central storage, as well as channel paths you want to bring online or take offline.

If the system is unable to display the resources available to the system, message IEE521I indicates that the command was unsuccessful.

```bash
CF {ONLINE|ON}[,L={a|name|name-a}] {OFFLINE|OFF}
```

ONLINE or ON
The system is to display the system configuration so that you can decide which processors, ICRFs attached to the processors, central storage elements, and channel paths you want to bring online. The system brings online the processors, ICRFs attached to the processors, storage elements, and channel paths you specify in response to message IEE522D. If an ICRF is attached to a processor that is being brought online and the Integrated Cryptographic Service Facility/MVS (ICSF/MVS) is active, the system brings the ICRF online.

OFFLINE or OFF
The system is to display the system configuration so that you can decide which processors, ICRFs attached to the processors, central storage elements, and channel paths you want to take offline. The system takes offline the processors,
ICRFs attached to the processors, storage elements, and channel paths you specify in response to message IEE522D. If an ICRF is attached to a processor that is being taken offline and the ICSF/MVS is active, the system takes the ICRF offline.

L=a, name or name-a
The display area where the system is to display the system configuration. You can specify the display area (a), console name (name), or both (name-a). If you do not specify this option, the system displays the system configuration in the first available display or message area of the console on which you entered the command.

Example 1
To check the channel paths available to the system before bringing any online, enter:

```
cf online
```

When message IEE522D appears after the configuration display message, IEE521I, reply with the channel paths you want to bring online.

Example 2
To check the available processors, central storage elements, and channel paths in the system and the online or offline status of each, enter:

```
cf offline or cf online
```

When message IEE522D appears after the configuration display message, IEE521I, reply with NONE.
CONTROL Command

Use the CONTROL command to control the screen display of MCS and SMCS consoles. Table 4-8 summarizes the information that the CONTROL command provides. Use it to access the pages on which you can find details about a particular use of the CONTROL command.

Table 4-8. Summary of the CONTROL Command

<table>
<thead>
<tr>
<th>Command:</th>
<th>Topic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL A</td>
<td>“Changing Out Of Line Display Area Specifications” on page 4-59</td>
</tr>
<tr>
<td>CONTROL C</td>
<td>“Deleting Retained Action Messages” on page 4-60</td>
</tr>
<tr>
<td>CONTROL C,D</td>
<td>“Halting the Printing or the Display of a Status Display” on page 4-61</td>
</tr>
<tr>
<td>CONTROL D</td>
<td>“Controlling Displays in Areas” on page 4-62</td>
</tr>
<tr>
<td>CONTROL E</td>
<td>“Removing Information From the Screen” on page 4-63</td>
</tr>
<tr>
<td>CONTROL M,AMRF</td>
<td>“Activating, Deactivating, or Displaying the Status of the Action Message Retention Facility” on page 4-64</td>
</tr>
<tr>
<td>CONTROL M,APPLID</td>
<td>“Setting the APPLID of the System” on page 4-69</td>
</tr>
<tr>
<td>CONTROL M,GENERIC</td>
<td>“Setting or Turning Off the VTAM Generic Resource Name for SMCS” on page 4-70</td>
</tr>
<tr>
<td>CONTROL M,LOGLIM</td>
<td>“Changing or Displaying the Number of Allowed WTL SYSLOG Buffers” on page 4-65</td>
</tr>
<tr>
<td>CONTROL M,MLIM</td>
<td>“Changing or Displaying the Number of Allowed WTO and WTOR Message Buffers” on page 4-66</td>
</tr>
<tr>
<td>CONTROL M,ROUTTIME</td>
<td>“Changing the Time the System Waits for ROUTE Command Responses” on page 4-67</td>
</tr>
<tr>
<td>CONTROL M,RMAX</td>
<td>“Increasing the Maximum Number of Reply IDs” on page 4-67</td>
</tr>
<tr>
<td>CONTROL M,UEXIT</td>
<td>“Changing or Displaying the Status of WTO Installation Exit IEAVMXIT” on page 4-68</td>
</tr>
<tr>
<td>CONTROL N,PFK</td>
<td>“Changing a PFK Definition” on page 4-71</td>
</tr>
<tr>
<td>CONTROL Q</td>
<td>“Deleting Message Queues” on page 4-73</td>
</tr>
<tr>
<td>CONTROL S</td>
<td>“Changing or Displaying Message Deletion and Format Specifications” on page 4-74</td>
</tr>
<tr>
<td>CONTROL V,USE</td>
<td>“Changing the Operating Mode of a Console” on page 4-77</td>
</tr>
<tr>
<td>CONTROL V,LEVEL</td>
<td>“Selecting the Message Levels for a Console” on page 4-78</td>
</tr>
</tbody>
</table>

The following CONTROL commands have no effect on extended MCS consoles or on system consoles, and are not valid for managing these consoles:

- K A
- K C,D
- K D
- K E
- K N,PFK
- K Q
- K S
 - CON=
 - SEG=
 - DEL=
Many of the functions of the CONTROL command are controlled at IPL by parameters in the CONSOLxx parmlib member. Accompanying the descriptions of some operands on the CONTROL command are the corresponding parameters in CONSOLxx. If you need more information about the parameters in CONSOLxx, see z/OS MVS Planning: Operations and z/OS MVS Initialization and Tuning Reference. See “Defining and Changing Console Characteristics” on page 3-20 for more information about using the CONTROL command.

Scope in a Sysplex

The following table describes the conditions under which the CONTROL command has sysplex scope. See “Using Commands That Have Sysplex Scope” on page 1-11 for an explanation of sysplex scope. If a command has All under “Conditions”, then the command has sysplex scope under all circumstances and for all variations.

Table 4-9. Sysplex Scope for CONTROL Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL C,A</td>
<td>All</td>
</tr>
<tr>
<td>CONTROL C,D</td>
<td>Has sysplex scope only when you specify L=.</td>
</tr>
<tr>
<td>CONTROL M</td>
<td>Has sysplex scope only when you do not specify MLIM, UEXIT, LOGLIM, or APPLID.</td>
</tr>
<tr>
<td>CONTROL other</td>
<td>Other parameters of CONTROL have sysplex scope only when you specify L=.</td>
</tr>
</tbody>
</table>

Syntax

The syntax for each of the many variations of the CONTROL command is shown immediately preceding its respective parameter list.

CONTROL or K

Changing Out Of Line Display Area Specifications

Use the CONTROL A command to change, remove, or examine out of line display area specifications for any MCS or SMCS console in the system.

The AREA parameter on the CONSOLE statement in the CONSOLxx parmlib member controls the display area specifications at IPL. z/OS MVS Planning: Operations shows the maximum message area sizes for all devices that MVS supports as consoles and the defaults for the AREA parameter.

K A[,nn[,nn]...][,L={name }]
 |,NONE
 |,REF

A The display area specifications are to be altered or referenced.

nn[,,nn]... The number of message lines in each display area. The first number (nn) defines the bottom area of the screen; additional numbers (,nn) define areas working toward the top of the screen. The minimum number of lines...
CONTROL Command

The maximum number of display areas that you can define is 11.

NONE
All out-of-line display area specifications will be removed for the specified console.

REF
Displays, in the command input area, the size of out-of-line display areas for the specified console. For example, if you enter K A,REF in the command input area, and the size of the display area is 14, the system displays K A,14 in the command input area.

L= name
The MCS or SMCS console whose display area is to be changed or referenced. If this operand is omitted, the console on which K A is entered is assumed.

Example
To define two display areas of 4 and 6 lines respectively, enter: K A,4,6

Note: The CONTROL A command has no effect on extended MCS consoles or on system consoles and is not valid for managing these consoles.

Deleting Retained Action Messages
Use the CONTROL C command to delete the outstanding action messages that the action message retention facility (AMRF) has retained.

K C,{A|I|E|CE},{id|id-id[,id|id-id]...}

The parameters are:

C The system is to delete one or more action messages that AMRF has retained.

A The system is to delete one or more outstanding retained action messages in any of the following categories:
 • immediate action (descriptor code 1 or 2)
 • eventual action (descriptor code 3)
 • critical eventual action (descriptor code 11).

These messages are identified by number in response to the DISPLAY R,LIST command.

I The system is to delete one or more outstanding immediate action messages (descriptor code 1 or 2). These messages are identified by number in response to the DISPLAY R,I command.

E The system is to delete one or more outstanding eventual action messages (descriptor code 3). These messages are identified by number in response to the DISPLAY R,E command.

CE The system is to delete one or more outstanding critical eventual action messages (descriptor code 11). These messages are identified by number in response to the DISPLAY R,CE command.
messages (descriptor code 11). These messages are identified by number in response to the DISPLAY R,CE command.

id The one-to-ten-digit decimal message identification number of the message to be deleted. This number is listed in response to the DISPLAY R command (message IEE112I).

$id-id$ The one-to-ten-digit decimal message identification numbers of the beginning and end of a range of messages to be deleted. The ending number must be greater than or equal to the beginning number.

When a range of numbers is specified, all retained immediate action, eventual action and/or critical eventual action messages with identification numbers in the specified range are deleted.

Example 1

To delete a range of immediate action, eventual action, and critical eventual action messages that have been retained with identification numbers from 0 to 110, enter:

```
CONTROL C,A,0-110
```

Example 2

Assume you have completed the requested action for three eventual action messages, but the messages remain marked as outstanding. Use the DISPLAY R,E command to get the identification numbers of the three messages ($id1$, $id2$, and $id3$) and then use $K C,E$ to delete the three messages.

```
DISPLAY R,E
K C,E,id1,id2,id3
```

Example 3

Assume you have performed the requested immediate action, but the message is still marked as outstanding. Use the DISPLAY R,I command to obtain the message identification number and then issue CONTROL C,I to delete the message.

```
DISPLAY R,I
CONTROL C,I,id
```

Notes:

1. Specifying a large range of message identification numbers (more than 1000) can result in system resources being held and performance being impaired.
2. When you delete retained messages, the requests relating to them may still be outstanding.
3. When you specify a range, certain conditions are not flagged as errors that would be errors if individual identification numbers were specified. For example, nonexistent message identification numbers that fall within the range do not cause an error message. If you specify a nonexistent identification number by itself, you receive an error message.

Halting the Printing or the Display of a Status Display

Use the CONTROL C,D command to halt the printing or display of the status:

- On a printer console that is not the hardcopy medium
- On a display console that does not have display areas

The CONTROL C,D command must be entered while the system is displaying or printing the display.
CONTROL Command

\[K\ C,D,\text{id},[,L=\{a|\text{name}|\text{name-a}\}] \]

The parameters are:

C,D
- The inline display, indicated by the id operand, is to be stopped. This command is only valid on an MCS or SMCS console.

id
- The three-digit identification number of the status display you want to stop. The identification number appears in the first line of the display.

L= \{a, name, or name-a\}
- The name of the active MCS or SMCS (printer or display) console where the status display is to be stopped. If you do not specify the L= operand, then the K C,D,id command applies to the console from which the command is issued.

Example 1

To stop the status display, identification number 121, which is in progress in the general message area of console CON21, enter:

\[k\ c,d,121,L=\text{CON21} \]

Note: The CONTROL C,D command has no effect on extended MCS consoles or on system consoles and is not valid for managing these consoles.

Controlling Displays in Areas

Use the CONTROL D command to control displays, message numbering, and the PFK display line.

\[K\ D[[,N[,\text{HOLD}]]][F[,[,L=\{a|\text{name}|\text{name-a}\}]],PFK] \]

The parameters are:

D
- Control what or how information is to be displayed on the screen. This command is only valid for MCS and SMCS display consoles.

N
- Messages on the screen are to be consecutively numbered. The operator uses these numbers as references to delete messages from the screen using the K E,nn command. (For very large screen sizes the K D,N command will only number the first 99 rows on the screen. All subsequent lines will contain AA in the number field.) The numbers are removed from the screen when the operator deletes a message or performs a cancel action. (The K E,nn command cannot delete messages after line 99 on the screen.) This option is not valid when:
 - The console is in wrap mode; the system issues message IEE290I.
 - The console is in roll or roll-deletable mode; the system issues message IEE158I.

HOLD
- In conjunction with the N operand, HOLD specifies that the system
display consecutive numbers for each message on the screen and
renumber messages after each message deletion that the operator
performs.

F The next frame of a status display is to be displayed. When you do not
specify an area, the oldest area on the screen is scrolled. This option is not
valid when there is no status display on the console; the system issues
message IEE158I.

L=a or name-a
Specifies the display area (a), console name (name), or both (name-a)
where the display will appear.

PFK
Specifies that the numbers of the program function keys (PFKs) designated
for command entry are to be displayed in the PFK display line. This
operand applies only to display consoles that have the PFK function and
support the PFK display line (for example, 3277–2).

Example
To display the next frame of a status display, enter:

```
kd,f
```

Note: The CONTROL D command has no effect on extended MCS consoles or on
system consoles and is not valid for managing these consoles.

Removing Information From the Screen

Use the CONTROL E command to remove various types of messages from the
screen or to cause message numbers to be deleted.

```
K E[,nn |,nn,nn |,SEG |,F |,N |,PFK |,D[,L={a|name|name-a}]]
```

The parameters are:

E Messages are to be removed from the screen.

nn The system is to remove a single (nn) message or a range (nn,nn) of
deletable messages from the screen. The value of nn must be a decimal
number from 01 to 99. The K E,nn command cannot delete messages after
line 99 on very large screen sizes. A deletable message is any message
that is either a WTOR or a WTO message issued without descriptor code 1,
2, 3, or 11.

Note: Do not use this command to try to remove a range of non-deletable
messages; you can remove only one non-deletable message at a
time.

SEG
Deletable messages in the predefined message segment are to be removed
from the screen. A deletable message is any message that is either a
WTOR or a WTO message issued with descriptor code 1,2,3, or 11.
CONTROL Command

F All flagged messages (messages marked with a vertical or horizontal bar in position 3) are to be removed from the screen.

N Removes the numbers preceding the messages displayed on the screen. The messages on the screen were consecutively numbered by the K D command.

D Specifies that a status display is to be deleted.

L=a, name, or name-a
For the D operand, specifies where the specified action is to take place. You can specify the display area by area (a), console name (name), or both (name-a). When this keyword is not specified, the oldest area on the screen is deleted.

PFK
Specifies that the numbers are to be erased from the program function key (PFK) display line. This operand applies only to display consoles that have the PFK function and support the PFK display line (for example, 3277–2); the system issues message IEE158I for all other consoles.

Example 1
To delete the message at line 10, which appears on the screen as follows:
10 IEE334I HALT EOD SUCCESSFUL
enter:
K E,10

Example 2
To delete the non-action messages from a segment of messages, enter:
K E,SEG or K E

Example 3
To delete the non-action messages on lines 4-10, enter:
K E,4,10

Example 4
To delete all flagged messages (messages marked with a vertical or horizontal bar in position 3), enter:
K E,F

Note: The CONTROL E command has no effect on extended MCS consoles or on system consoles and is not valid for managing these consoles.

Activating, Deactivating, or Displaying the Status of the Action Message Retention Facility

Use the CONTROL M,AMRF command to change or display the status of the action message retention facility. You can enter the command from a console with master authority.

The AMRF parameter on the INIT statement in the CONSOLxx parmlib member controls whether or not the system starts the action message retention facility at
IPL. If the AMRF parameter is not coded, the action message retention facility is active. Use the CONTROL M command to stop or restart the facility once the system is active.

The syntax of the command is as follows:

\[\text{K M[AMRF}=(Y|N)] \]
\[\text{[REF]} \]

The parameters are:

- **M** Indicates message processing by the message retention facility.
- **AMRF** The status of the action message retention facility is to be modified for all systems in the sysplex.
 - **Y** The action message retention facility is to become active.
 - **N** The action message retention facility is to be deactivated.
- **REF** Displays the current values of all the operands on the K M command.

Example

To activate the action message retention facility, enter:

\[\text{K M,AMRF=Y} \]

Changing or Displaying the Number of Allowed WTL SYSLOG Buffers

Use the CONTROL M,LOGLIM command to change or display the number of allowed WTL (write-to-log) SYSLOG buffers. You can enter the command from consoles with master authority.

The LOGLIM parameter on the INIT statement in the CONSOLxx parmlib member controls the number of WTL buffers. If the LOGLIM parameter is not coded, the number of WTL buffers is 1000.

The syntax for the command is:

\[\text{K M[LOGLIM}=(nnnnnn|0)] \]
\[\text{[REF]} \]

The parameters are:

- **M** Indicates message processing by the message retention facility.
- **LOGLIM=nnnnnn**

 The maximum number of outstanding WTL requests that the system can hold in buffers on the system, where \(nnnnnn \) can be a decimal number from 1000 to 999999. The WTL buffers hold messages that the system has not yet presented to SYSLOG.

Note: When you set \(\text{LOGLIM=}999999 \) you allocate over 100 megabytes of CSA storage for WTL SYSLOG buffer storage. Be careful that WTL SYSLOG buffer storage does not hamper your system's performance.
CONTROL Command

LOGLIM=0
All outstanding WTL buffer storage is freed by the system log task.

Note: Use this command value only at the direction of the system programmer.
It results in the potential loss of messages sent to hard-copy.

REF
Displays the current values of all the operands on the K M command. Unless you specifically change it, the LOGLIM value that the system displays is the value that was specified on the INIT statement in CONSOLxx parmlib member.

Example
To allow 4000 WTL message buffers, enter:

K M,LOGLIM=4000

Changing or Displaying the Number of Allowed WTO and WTOR Message Buffers
Use the CONTROL M,MLIM command to change or display the number of allowed WTO (write-to-operator) or WTOR (write-to-operator-with-reply) message buffers. You can enter the command from consoles with master authority.

The MLIM and RLIM parameters on the INIT statement in the CONSOLxx parmlib member control the number of WTO and WTOR buffers. If the MLIM or RLIM parameters are not coded, the number of WTO buffers is 1500, and the number of WTOR buffers is 10.

The syntax for the command is:

```
K M[,REF][,MLIM=nnnn][,RLIM=mmmm]
```

The parameters are:

M Indicates message processing by the message retention facility.

MLIM=nnnn
The maximum number of WTO message buffers to be allowed in the system, where **nnnn** can be a decimal number from 20 to 9999. The WTO buffers hold the WTO messages that the system has not yet displayed at the eligible MCS and SMCS consoles in the sysplex.

RLIM=mmmm
The maximum number of outstanding WTOR messages that the system or sysplex can hold in buffers, where **mmmm** can be a decimal number from 5 to 9999. Each WTOR buffer holds a WTOR message that the system or sysplex has displayed and has not received a response to. The maximum upper limit is set by the RMAX keyword on the DEFAULT statement in CONSOLExx.

REF
Displays the current values of all the operands on the K M command.

Example
Assuming RMAX is set to 9999: To allow the maximum number of WTO message buffers and WTOR message buffers, enter:

K M,MLIM=9999,RLIM=9999
Changing the Time the System Waits for ROUTE Command Responses

Use the CONTROL M,ROUTTIME command to display or change the maximum amount of time the ROUTE *ALL, ROUTE systemgroupname, or ROUTE *OTHER command waits for a response from each system in the sysplex before aggregating the responses. ROUTTIME applies to any ROUTE command with the *ALL or systemgroupname operand when issued from any system in a sysplex.

The syntax of the command is as follows:

```
K M[,ROUTTIME=nnn ]
[ ,REF ]
```

The parameters are:

- **ROUTTIME=nnn**
 - Dynamically changes the maximum number of seconds the ROUTE *ALL or ROUTE systemgroupname command waits for command responses from each system before aggregating the responses. (If not specified in CONSOLxx, the IBM-supplied default value is 30 seconds.) The nnn value is a decimal number from 0-999.
 - If nnn is zero, command responses are not aggregated. The change applies across the sysplex, and affects ROUTE commands issued after the CONTROL command is processed.
 - If the timeout value (T= operand) is specified on a ROUTE *ALL or ROUTE systemgroupname command, the value of the T= operand overrides the value then in effect on the system.

- **REF**
 - Displays the current values of all the operands on the K M command.

Example 1

To change the maximum amount of time ROUTE *ALL or ROUTE systemgroupname waits for command responses to 45 seconds, enter:

```
K M,ROUTTIME=45
```

Example 2

To display the maximum amount of time ROUTE *ALL or ROUTE systemgroupname waits for command responses, enter:

```
K M
```

Increasing the Maximum Number of Reply IDs

Use the CONTROL M,RMAX command to display or dynamically increase the maximum number of reply IDs.

The syntax of the command is as follows:

```
K M[,RMAX=nnnn ]
[ ,REF ]
```

The parameter is:

- **RMAX=nnnn**
 - Increases the maximum number of reply IDs.
CONTROL Command

RMAX=nnnn
Dynamically increase the maximum number of reply IDs, where nnnn is a decimal number from 99 to 9999.

Note: The value for RMAX also determines the size of the reply ID displayed in the message text. For example, specifying an RMAX of 999 means that all WTOR messages have a 3-character reply ID.
You can increase the value of RMAX only in a system running in local mode or in a sysplex whose couple data set supports more than eight systems.
The new value of RMAX must be greater than the previous value of RMAX.

REF
Displays the current values of all the operands on the K M command.

Example
To increase the maximum number of reply IDs to 200, enter:
K M,RMAX=200

Changing or Displaying the Status of WTO Installation Exit IEAVMXIT
Use the CONTROL M,UEXIT command to change or display the status of the WTO installation exit IEAVMXIT. This exit receives control when the system issues a WTO message unless your installation names another WTO installation exit routine for the message. To learn what messages are currently processed by IEAVMXIT, issue the DISPLAY MPF command.
The UEXIT parameter on the INIT statement in the CONSOLxx parmlib member controls whether IEAVMXIT is active at IPL. If the UEXIT parameter is not coded, IEAVMXIT will be activated, if it is installed. If IEAVMXIT is not installed, the system will IPL with UEXIT=N.
The syntax of the command is:

```
K M[,UEXIT={Y|N}][,REF]
```

The parameters are:

UEXIT=
The status of the general WTO installation exit IEAVMXIT is to be changed.

Y The general user exit routine IEAVMXIT is to become active. If IEAVMXIT is already active and you want a new copy, deactivate IEAVMXIT, refresh the library lookaside (LLA), and then reactivate IEAVMXIT.

N The general user exit routine IEAVMXIT is to become inactive.

REF
Displays the current values of all the operands on the K M command.

Example 1
To activate the general WTO installation exit routine IEAVMXIT, enter:
K M,UEXIT=Y

Example 2
To load a new copy of the general WTO installation-exit routine IEAVMXIT, first enter:

```
K M,UEXIT=N
```

to deactivate the current copy. Then enter:

```
MODIFY LLA,REFRESH
```

After you receive notification that the library lookaside (LLA) is refreshed, enter:

```
K M,UEXIT=Y
```

to activate the new copy.

Displaying the SMCS APPLID of the current system and VTAM generic resource name for SMCS

Use the CONTROL M,REF command to display the SMCS APPLID of the current system and VTAM generic resource name for SMCS.

If either of these values has been changed by a prior CONTROL M command, but SMCS has not yet been recycled using the VARY NET,INACT and VARY NET,ACT commands to deactivate and restart the SMCS application, CONTROL M will show the new APPLID and GENERIC, even though SMCS will be using the old APPLID and GENERIC. The DISPLAY CONSOLES,SMCS command can be used to display the APPLID and GENERIC in use on each system in the sysplex, as well as the APPLID and GENERIC set by the CONTROL M command.

If the system is in XCFLOCAL or MONOPLEX mode, the GENERIC keyword will not be displayed. If the system does not have an APPLID in effect, the APPLID keyword will not be displayed.

The syntax of the command is:

```
K M[,REF]
```

The parameters are:

- **REF**
 - Displays the current values of all the operands on the K M command.

Setting the APPLID of the System

Use the CONTROL M,APPLID command to set the APPLID of the system where it is issued. If there is not an APPLID in effect on the system, either because an APPLID was not specified in CONSOLxx, or because the APPLID was invalid or in use by another system during this system’s IPL, this command is rejected.

For the new APPLID to take effect, after issuing the CONTROL M command to change it, the VARY NET,INACT,ID=oldapplid[,I or ,F] command must be issued to deactivate SMCS, followed by the VARY NET,ACT,ID=newapplid command to activate SMCS using the new APPLID. This is sometimes referred to as “recycling the APPLID” or “recycling SMCS”. Until SMCS is recycled, the old APPLID value is still in use. Message IEE821E is issued to reflect the need to recycle SMCS.
CONTROL Command

The syntax of the command is:

```
K M,APPLID=aaaaaaaa
```

The parameters are:

APPLID=aaaaaaaa
- Sets the APPLID of the system where it is issued.
- **Value Range:** Is from 2 to 8 characters. The first character must begin with the letters A through Z or with a #, $, or @; the remaining characters can be A through Z, 0 through 9, or #, $, or @.

Example:

Systems SY1 and SY2 are in a sysplex. System SY1 is using APPLID SMCS1, and SY2 is using APPLID SMCS2. To change SY1’s APPLID to SMCSA, enter:

```
K M,APPLID=SMCSA
```

to change the APPLID. However, SY1 will continue to use SMCS1 as its APPLID until SMCS is recycled with the following commands:

```
VARY NET,INACT,ID=SMCS1,I
VARY NET,ACT,ID=SMCSA
```

Setting or Turning Off the VTAM Generic Resource Name for SMCS

Use the `CONTROL M,GENERIC` command to set or turn off the VTAM generic resource name for SMCS in the sysplex.

If the system is in XCFLOCAL or MONOPLEX mode, this command is rejected.

For the updated GENERIC value to take effect, after issuing the `CONTROL M` command to change it, the `VARY NET,INACT,ID=applid[,I or ,F]` command must be issued to deactivate SMCS, followed by the `VARY NET,ACT,ID=applid` command to reactivate SMCS using the new GENERIC value. This is sometimes referred to as "recycling the APPLID" or "recycling SMCS". Each SMCS application in the sysplex will continue to use the old GENERIC value until it is recycled. It is not necessary to recycle all of the SMCS applications at the same time, however, this may result in some systems using the old value of GENERIC and others using the new value of GENERIC until all SMCS applications in the sysplex are recycled.

The syntax of the command is:

```
K M[,GENERIC={aaaaaaaa}]
| {*NONE*}
```

The parameters are:

GENERIC=aaaaaaaa
- Sets the VTAM generic resource name for SMCS in the sysplex.

"NONE"
- Turns off the VTAM generic resource name for SMCS in the sysplex.

Example:
Systems SY1 and SY2 are in a sysplex. System SY1 is using APPLID SMCS1, and SY2 is using APPLID SMCS2, and the current GENERIC is SMCSX. To change the GENERIC to ANYSMCS, on either SY1 or SY2, enter:

```
K M,GENERIC=ANYSMCS
```

SY1 and SY2 will continue to use SMCSX as the GENERIC until SMCS is recycled on each system. To recycle SMCS on SY1, issue the following commands:

```
VARY NET,INACT,ID=SMCS1,I
VARY NET,ACT,ID=SMCS1
```

To recycle SMCS on SY2, issue the following commands:

```
VARY NET,INACT,ID=SMCS2,I
VARY NET,ACT,ID=SMCS2
```

Changing a PFK Definition

Use the CONTROL N,PFK command to change the definition of a PFK on a particular console or to assign a PFK table to a particular console. The set of commands associated with the PFKs on your console resides in a PFK table in a PFKTABxx parmlib member.

A PFK command that you assign to a PFK by using the CONTROL N,PFK command is not associated with the PFK when you bring the console online again. To have a command associated with a PFK when you bring a console online, it must be defined in the appropriate PFK table in PFKTABxx. See “Defining PFKs Using the CONTROL Command” on page 3-45.

Use the following form of the CONTROL command to define commands for program function keys (PFKs) or assign a PFK table.

```
K N,PFK={ (nn1{,CMD='text[;text]...'})[,CON={Y|N}]} 
{ { ,KEY=nn2[,nn2]...} 
{ 
(nnnnnnnn[,L=name] 

The parameters are:

**N,PFK**

A PFK command definition is to be altered.

**nn1**

The number of the PFK being defined. The *nn1* value must be the number of a PFK designated for command entry at system installation.

**CMD**

The text of one or more commands is to be associated with PFK *nn1*.

‘*text[;text]...’

The text of the operator’s commands to be associated with PFK *nn1*. Up to 110 characters can be included within the quotation marks. If more than one command is to be associated with a PFK, the commands must be separated by a semicolon. Do not put a semicolon after the last command. Text characters can be entered in upper or lower case; the system converts all characters to uppercase. A command that must be entered lowercase, such as a reply to a WTOR, cannot be entered using the PFK command entry function.
CONTROL Command

Note: Text characters should not contain sensitive or secure data (such as passwords).

KEY
The commands associated with other PFKs are to be associated with nn1.

nn2, nn2...
The number(s) of the PFK whose commands are to be associated with PFK nn1. Up to 54 key numbers (numbers can be repeated) can be included in the list. Separate key numbers with a comma.

Note: You cannot nest the lists of keys. That is, a PFK defined as a list of PFKs cannot be included in a list of keys assigned to another PFK. For example, if PFK 5 is associated with a list of keys (such as KEY=3,4), and you attempt to associate PFK 6 with a list of keys that includes PFK 5 (such as KEY=1,2,5), the system rejects the request.

CON
Specifies whether conversational mode of command entry is in effect.

Y Conversational mode of command entry is to be in effect.

N Conversational mode of command entry is not to be in effect (non-conversational mode of command entry is to be in effect). If CON is not specified, CON=N is assumed.

nnnnnnnn
The name of the PFK table that contains the commands that define the PFKs for a console.

L=name
The console whose PFKs are to be defined by the PFK table you specify. The issuing console is the default.

Example 1
To associate a START GTF command with PFK 5, enter:
K N,PFK=(5,CMD='S GTF,285'),CON=N

Example 2
To associate a START READER and a START WRITER command with PFK 5, enter:
K N,PFK=(5,CMD='S RDR,001;S XWTR,292'),CON=N

Example 3
If PFK 3 is associated with commands S RDR,001 and S XWTR,292, and PFK 4 is associated with the command S GTF,MODE=INT,BUF=387,TIME=YES,DEBUG=YES, you can associate all three of these commands with PFK 5 by entering:
K N,PFK=(5,KEY=3,4),CON=Y

The commands associated with PFK 5 are now S RDR,001; S XWTR,292, and S GTF,MODE=INT,BUF=387,TIME=YES,DEBUG=YES, in that order.

Example 4
To remove a definition previously set for PFK 5, leaving PFK 5 undefined, enter:
K N,PFK=(5,CMD='')

**Example 5**

To assign the commands in the table PFK22 to cons8, enter:
K N,PFK=PFK22,L=CONS8

**Note:** The CONTROL N,PFK command has no effect on extended MCS consoles or on system consoles and is not valid for managing these consoles.

### Deleting Message Queues

Use this command to delete messages that are queued to an MCS or SMCS console. It affects only messages currently on the console's queue. Subsequent messages are queued as usual. This command is generally, though not exclusively, for use in error situations.

The command gives you more control over MCS and SMCS console message queues. If there is a WTO buffer shortage, you can delete the messages to speed up console processing or alleviate storage problems. You might need to issue the command several times to clear the console of messages.

**Note:** This CONTROL command is not valid for extended MCS consoles or extended MCS console message queues.

The kinds of messages that are deleted are:
- Action messages.
- All in-line messages queued for a particular console.
- WTOR messages and unconditional messages.

The kinds of messages that are not deleted are:
- Out-of-line messages. You can delete these with K E,D.
- Messages queued to hardcopy (SYSLOG and/or OPERLOG).

The syntax is:

\[
K Q[,L=\text{name}]
\]

**Q** The CONTROL command is to delete a console's message queue.

**L=\text{name}**

The name of the console whose message queue is to be deleted. If this operand is omitted, the message queue of the console from which the K Q command is entered is deleted.

**Example 1**

To delete any messages on the issuing full-capability console's queue, enter:
K Q

**Example 2**
CONTROL Command

To delete messages queued on console CON2, enter:

K Q,L=CON2

Changing or Displaying Message Deletion and Format Specifications

Use the CONTROL S command to change console specifications or to display the console specifications currently in effect. Any changes you make with the CONTROL S command do not exist when you IPL the system the next time.

The following parameters on the CONSOLE statement in the CONSOLxx parmlib member control, at IPL, the same console specifications as the CONTROL S command. The system defaults are:

- **CON(N)**  Conversational or nonconversational mode
- **DEL(RD)** Message deletion mode
- **MFORM(M)** Format of messages
- **RNUM(5)** Maximum number of messages included in one message roll
- **RTME(2)** Number of seconds between message rolls
- **SEG** Number of lines in the message area that the CONTROL E,SEG command deletes.

The complete syntax for the CONTROL S command is:

\[
K S [,REF \\
| [,CON=(Y|N)] [,SEG=nn] [,DEL=(Y|N|RD|R)] \\
| [,RNUM=nn] [,RTME=nnn] [,MFORM=(option[,option]...)] \\
| [,L=name] ]
\]

**S**  The current console specifications are to be temporarily altered or referenced.

**CON=**
- Conversational message deletion is requested or canceled.
  - **Y**  Requests conversational message deletion.
  - **N**  Cancels conversational message deletion. (non-conversational message deletion is to go into effect).

**Note:** The CONTROL S,CON= command has no effect on extended MCS consoles or on system consoles and is not valid for managing these consoles.

**REF**
- The current console specification values are to be displayed in the entry area in CONTROL command form.

**SEG=nn**
- The size of the message segment is to be altered, where \( nn \) specifies the number of lines to include in the segment of messages deleted when a CONTROL E,SEG command is entered. The CONTROL S,SEG= command can accept a maximum value of 99 or the number of lines on the screen, whichever is smaller.
Note: The CONTROL S,SEG= command has no effect on extended MCS consoles or on system consoles and is not valid for managing these consoles.

DEL=
The message deletion mode is to be changed.

Y Automatic mode of message deletion is to go into effect. That is, all flagged messages are removed from the screen whenever the screen becomes full.

N Automatic mode of message deletion is canceled. Messages must be removed manually.

R Roll mode is to go into effect. That is, a specified number of messages (determined by RNUM) roll off the screen each specified interval (determined by RTME).

RD Roll-deletable mode of message deletion is to go into effect. That is, messages roll off as with roll mode, except that the action messages accumulate at the top of the screen.

W Wrap mode is to go into effect. When the screen is full, the next message overlays the message at the top of the screen and subsequent messages continue overlaying older messages down the screen. The separator line, with the same highlighting attribute as the warning line, moves with the new messages and includes the count of the undisplayed messages. WTORs and action messages are also overlaid.

Note: The CONTROL S,DEL= command has no effect on extended MCS consoles or on system consoles and is not valid for managing these consoles.

RNUM=nn
The number of lines in the message roll. The CONTROL S,RNUM=nn command can accept a value of nn from 1 to 99 (decimal) or the number of lines on the screen, whichever is smaller, as the number of lines in the message area.

Note: The CONTROL S,RNUM=nn command has no effect on extended MCS consoles or on system consoles and is not valid for managing these consoles.

RTME=nnn
The time interval in seconds between message rolls. The nnn value can be any decimal number from 1 to 999, 1/2, or 1/4. This time interval sets the MCS and SMCS screen refresh rate. Messages will be displayed each nnn seconds in R, RD, and W modes.

Notes:
1. The value for 3290 consoles should be 1 or higher.
2. The CONTROL S,RTME=nnn command has no effect on, and is not valid for managing, extended MCS consoles or system consoles.

MFORM=(option[,option]...) The format of messages sent to a console is to be changed. You can control whether the text of each message (including those from JES2 and JES3) is accompanied by:
• a time stamp
• the name of the system that issues the message
CONTROL Command

- the jobname or job id of the issuer of the message

The format of a message that includes all MFORM options is:

Time stamp System name Jobname/id Message text

You can enter more than one of the options. If you do, place parentheses around the list of options and separate them with commas. The system displays the information that accompanies the message text in the order described, regardless of the order of the options you specify on the MFORM operand. option can be any of the following:

T Requests that each message appear with a time stamp.

S Requests that each message appear with the name of the system that sent the message.

J Requests that each message appear with the job name or job ID associated with this message.

**Note:** This value is initially the job name or ID of the issuer of the message, but either the issuer or subsystem code can change the value. For example, messages that JES issues often change the initial value from the JES name/id to that of the job the message is describing.

M Requests that the text of each message appear without a time stamp, the job name/job ID of its issuer, or the name of the system that sent the message. The text of the message is displayed whether or not you use this operand. At IPL, if the MFORM operand in the CONSOLxx parmlib member is not coded, the system displays the message text without time stamp, system name, or job name/job id.

**Note:** M is the default MFORM option for extended MCS consoles. To change the default value for the extended MCS consoles use the RACF command, ALTUSER userid OPERPARM(MFORM(T,S,J,M,X)). See [z/OS Security Server RACF Command Language Reference](https://www.ibm.com/docs/en/zos-racf-command-language-reference) for more information. The default for MCS and SMCS consoles can be changed with the CONTROL command.

X Requests not to prefix messages flagged as exempt from sysname and jobname formatting with a sysname and jobname field when the S and/or J operands are specified. X does not affect the T operand.

L= name

The console this command is to affect. Before using the L operand, realize:

- You can specify this operand to change the specifications of another console only from a console with at least CONS command group authority.
- For name, you can specify the name of a full-capability console only from a console with master authority.
- For name, You cannot specify the name of a status display console.
- If you specify the name of a message stream console, you cannot specify DEL=Y or DEL=N, CON=N; if the name is for a non-display console, you cannot specify any operand other than MFORM.

**Example 1**

To set SEG equal to 10 lines, enter:

K S,SEG=10
Example 2

To cancel roll mode on console CON4, enter:

```
CONTROL S,DEL=N,L=CON4
```

In this case, you must delete messages manually.

Example 3

To determine the current value of SEG, enter:

```
K S,REF or K S
```

Example 4

To place a console in wrap mode, enter:

```
K S,DEL=W
```

Example 5

To display all messages on the full-capability console named CON5 with time stamps and the job names/job IDs of their issuers, enter the following command from the console with master authority:

```
K S,MFORM=(M,T,J),L=CON5
```

Notes:

1. The system displays the time stamps and the job names/job IDs in the order described earlier.
2. Whether or not you specify the option M, the system displays the text of the message.

Changing the Operating Mode of a Console

Use the CONTROL V,USE command to change the operating mode of a console.

The USE parameter on the CONSOLE statement in the CONSOLxx parmlib member controls the operating mode of a console at IPL. If the USE parameter is not coded and the console is a display console, the console's operating mode is full-capability. Use the K V,USE command to change the operating mode for MCS consoles. You cannot change the operating mode for SMCS or extended MCS consoles.

The syntax for the CONTROL V command is:

```
K V[,REF][,L=name][,USE={FC|SD|MS}[,,CMDSYS={sysname|*}]]
```

The parameters are:

**USE=**

The operating mode of a console is to be changed.

**FC**

The console is to be changed to full-capability mode (input/output capability).
**CONTROL Command**

**SD**
The console is to be changed to output-only for presentation of status displays.

**MS**
The console is to be changed to output-only for presentation of messages other than status displays.

**Note:**
1. If you issue the VARY command to take the console offline and then bring the console online, the console will resume the operating mode in effect when the console was taken offline.
2. K V USE=SD and K V USE=MS operating modes are not valid for SMCS consoles.

**REF**
Displays the current value of the CONTROL V,USE operand.

**CMDSYS**
Indicates the system where all commands will be sent for processing.

```
sysname
```
The system where all commands are to be sent. If this keyword is not specified or is incorrect, the commands are processed on the system where you issue the command.

```
*
```
The system where you issue the command.

```
L= name
```
The name of the console where the specified action is to take place.

**Note:** The CONTROL V,USE command has no effect on extended MCS consoles or on system consoles and is not valid for managing these consoles.

**Example**
To direct all commands issued from this console to processor SY2, enter:

```
K V,CMDSYS=SY2
```

**Selecting the Message Levels for a Console**

Use the CONTROL V,LEVEL command to specify the message levels for messages that are to be displayed at a console.

The LEVEL parameter on the CONSOLE statement in the CONSOLxx parmlib member controls the message levels for the console at IPL. If the LEVEL parameter is not coded, the system sends all messages, including broadcast messages, to the console.

The syntax for the command is:

```
K V[,REF][,L=name][,LEVEL=(type[,type]...)
```

The parameters are:
LEVEL=(type[,type]...)  
The message levels for a console are to be changed. The following operands specify which messages are to be displayed at the console. You can enter more than one of the following operands. If you do, place parentheses around the list of operands and separate them with commas. type can be any of the following:

- **ALL**  The system is to display all messages routed to the console, including broadcast messages.
- **ALL,NB**  The system is to display all messages routed to the console, except for broadcast messages.
- **CE**  Critical eventual action messages (descriptor code 11) are to be displayed.
- **E**  Eventual action messages (descriptor code 3) are to be displayed.
- **I**  Immediate action messages (descriptor codes 1 and 2) are to be displayed.
- **IN**  Informational messages are to be displayed.
- **NB**  Broadcast messages are not to be displayed.
- **R**  Write-to-operator with reply (WTOR) messages are to be displayed.
- **UNCOND**  The system is to execute this command even though it means broadcast and informational messages with certain routing codes will not be assigned to any console. Use this operand if you want broadcast and certain informational messages to be sent only to the hardcopy medium.

**Notes:**
1. If you don’t specify NB, your console receives broadcast messages.
2. If a WTOR or action message is not directed to any console, the message is logged. It can be retrieved and displayed at a console using the DISPLAY REQUESTS command.
3. If a message is directed to a specific console, it appears there regardless of the message level of the console.
4. If you specify a second K V,LEVEL command, the K V,LEVEL command in effect is canceled.
5. If you specify only one message type on the LEVEL operand, you can omit the parentheses.

**REF**  
Displays the current value of the CONTROL V,LEVEL operand.

**L= name**  
The name of the console where the specified action is to take place. The issuing console is the default.

**Example 1**

To route only informational and broadcast messages to console CON20, enter:

```
K V,LEVEL=IN,NB,L=CON20
```

**Example 2**
CONTROL Command

To route WTOR, immediate action, and broadcast messages to the issuing console, enter:

```
K V,LEVEL=(R,I)
```

**Example 3**

To route all messages except broadcast messages to the issuing console, enter:

```
K V,LEVEL=(ALL,NB)
```

To suppress all broadcast and informational messages destined for the issuing console, enter:

```
K V,LEVEL=(NB,UNCOND)
```
DEVSERV Command

Use the DEVSERV command to request a display of the status of DASD and tape devices. The response is a display of basic status information about a device, a group of devices, or storage control units, and optionally can include a broad range of additional information. You can display:

- Device number
- Device type
- Logical mode of the device
- Number of data sets allocated on the volume
- Volume serial label
- Channel path ID
- Status of the path
- Status of an SMS-managed device
  - Volume status
  - Storage group name
  - Storage group status
- Control unit type and model
- Control unit serial number
- Device capacity, in cylinders
- Device extended function status
- Unit control block (UCB) device type information
- Help text, when you request it

- The following, if the device belongs to the DASD storage subsystem:
  - Real device type (if what is shown is an emulated device type)
  - Control unit type and model (or emulated control unit type and model if the real and emulated control units are not the same)
  - Subsystem ID for this storage subsystem
  - Cache fast write state
  - Track caching state
  - DASD fast write state
  - State of pinned data
  - State of dual copy, PPRC, or SPARing -- if there is any
  - Address of the other device in a dual copy pair
  - Channel subsystem device address
  - Subsystem internal logical device address
  - An indication if the device extended function status information is inconsistent between MVS control blocks and the storage subsystem
  - An indication if the defined (UCB) device type is inconsistent with the real device type
  - Optionally, the total number of cylinders for each unique track format (3380, 3390, and 9345) for all of the devices within the scope of the request

- The following, if the device belongs to a tape library:
  - Device type equivalent to DTYPE from the DS P command
  - Device status indicating online / offline and ready / not ready
  - Device type and model
  - Device serial number
  - Library identification number
  - An indication if the defined (UCB) device type is inconsistent with the real device type

You can also use several options of the DEVSERV command:
DEVSERV Command

- You can compare the DEVSERV PATHS command with the DISPLAY U and DISPLAY M commands by referring to "Displaying the Status of Devices and Availability of Paths" on page 1-10.
- "Using the DEVSERV QDASD option"
- "Using the DEVSERV QTAPE option"
- "Using the DEVSERV QPAVS option"
- "Using the DEVSERV QLIB option"

Using the DEVSERV QDASD option

Use the QDASD option of the DEVSERV command to validate MVS storage resident control blocks for extended function status with data acquired directly from the storage subsystem. Optionally, you can obtain a hexadecimal display of:

- the following device-related MVS system control blocks:
  - Unit control block (UCB), UCB prefix, and UCB common extension
  - Device class extension (DCE)
  - Storage subsystem control block (SSSCB)
  - Device performance characteristics table (DPCT)
- and the following data buffers acquired directly from the device:
  - Read device characteristics (RDC) data
  - Read configuration data (RCD) data
  - Sense subsystem status (SNSS) data

Using the DEVSERV QTAPE option

Use the QTAPE option of the DEVSERV command to request a hexadecimal display of:

- the following device-related MVS system control blocks:
  - Unit control block (UCB), UCB prefix, and UCB common extension
  - Device class extension (DCE)
- and the following data buffers acquired directly from the device:
  - Read device characteristics (RDC) data
  - Read configuration data (RCD) data

Using the DEVSERV QPAVS option

Use the QPAVS option of the DEVSERV command to validate MVS storage resident control blocks with data acquired directly from the storage subsystem. If devices are in a PAV or HYPERPAV relationship, the output shows the relationship between the PAV base and alias devices.

Optionally, you can obtain a hexadecimal display of related MVS system control blocks:

- Unit control block (UCB), UCB prefix, and UCB common extension
- Device class extension (DCE)

Using the DEVSERV QLIB option

Use the QLIB option of the DEVSERV command to:

- Request a list of tape library subsystems that are defined to the host. Libraries are listed by serial number (library-id). If the specified library is a composite library, its distributed library names are also displayed.
- Request a list of devices within a library. Devices are listed by device number and displays the library port for each device.
- Validate the connection status of devices in a library, for example, devices that are connected to the host.
- Delete an improperly defined library control block in preparation for an IODF activate.
- Issue a diagnostic state save order to a library when requested by the IBM Support Center.

## Syntax

The syntax for the DEVSERV command is:

```
DS [PATHS | P] [/s]dddd[,nnn][,NOSYM][,NOS][,DUMP]+
 [,ONLINE] [,ON] [,OFF] [,OFFLINE] [,L={name-a}]
 name
 [a]

(SMS | S),[/]dddd[,nn] [,ONLINE] [,L={name-a}]
 ON name
 ,OFFLINE a
 ,OFF

{QODASD | QD}
 {,?}
 {,sddd[,1]}[,VOL=volser +
 [,UCB][,DCE][,SSSCB][,DPCT][[,RDC][,RCD][,SNSS][,RFDEATS]]
 [,NOIO
 {,sddd,nnn [,MACH={mmpp-sssss|XXX-sssss}]}
 ,SSID={ssid | ALL}
 ,TYPE={type | ALL}
 ,VOL=volser
 ,CHPID=chpid
 }{|,MACH={mmpp-sssss|XXX-sssss})
 {,SSID={ssid | ALL})
 {,TYPE={type | ALL})
 [,ONLINE][,OFFLINE][,DEFINED][,CHKFAIL][,VALIDATE][,TOTALCYL][,ATTRIBUTE]

{QTAPE | QT}[? |
 [[,ccuu[,1]] [,UCB] [,DCE][[,NOIO] [,RDC]
 [,ccuu,nnn],LIB=libid | ALL |
 ,MACH={mmpp-sssss | XXXX-sssss}] |
 ,TYPE={type | ALL]]
[,ONLINE] [,OFFLINE] [,DEFINED]

{QPAYS | QP}
{,?}
{,sddd[1] [,VOLUME] }
,UNBOX
 [,HPAV] [,UCB] [,DCE]]
{,sddd[,nnn] [,SSID=ssid |,UNBOX] }

[QLIB | QL],
[LIST] {ACTIVE|INACTIVE|QUEUE}
[LISTALL] {ACTIVE|INACTIVE}
[LIBID] {ACTIVE|INACTIVE|VALIDATE|QUEUE|DELETE}
[DDDD] {SS}
[CATS | CATS(xxx*)]
[?]
```
Parameters

The basic status parameters are:

**PATHS** or **P**
Displays (in message IEE459I) the status of specified devices. The display includes any device(s) the Storage Management Subsystem (SMS) manages, but does not show any SMS information such as the status of any volume or storage group associated with the device(s).

**SMS** or **S**
Displays (in message IGD001I) the volume and storage group status for *nn* devices that SMS manages, starting with the specified device number.

**s**
The subchannel set number defaults to 0 when not specified. If only a subchannel set number is used, those devices in the subchannel set number are displayed.

*/ddddd*
The device number for which the system is to display information. The number consists of three or four hexadecimal digits, optionally preceded by a slash (/). If an alternate subchannel set is used, a slash (/) cannot be specified as input.

If the subchannel set number is not 0 and the device number is 3 digits, the 3 digits device number must be preceded by a 0, for example 10800.

You can specify any device that the operating system supports, except that with the SMS operand, the system displays the status of the volume and the storage group only for devices that SMS manages.

**nn\nnnn**
The number of devices for which the system is to display the information, in ascending order beginning with the device you specify. For SMS, the number in *nn* is from 1 to 32. For PATHS, the number in *nnn* is from 1 to 256. If you do not code *nn* or *nnn*, the default is 1, and the system displays information only about the device you specify.

**ONLINE** or **ON**
Directs the system to display information about only those specified devices that are online to this MVS host. If you do not specify **ONLINE** or **OFFLINE**, the system displays information about both online and offline devices.

**OFFLINE** or **OFF**
Directs the system to display information about only those specified devices that are offline to this MVS host. If you do not specify **ONLINE** or **OFFLINE**, the system displays information about both online and offline devices.

**NOSYM** or **NOS**
Directs the system not to display (with message IEE459I) the definitions of symbols. If you omit NOSYM, the system displays the definition of all the symbols. You may use this parameter with PATHS, but not with SMS.

**DUMP**
Requests an SVC dump after execution of the **DEVSERV PATHS** command. If you specify both **DUMP** and a value for **nnn**, the system ignores the value for **nnn**. The SVC dump will cause an '0C1'X abend. You may use this parameter with **PATHS**, but not with **SMS**.

**L=a, name, or name-a**
The display area (a), console name (name), or both (name-a) where the display
will appear. If you omit this operand, the display appears in the first available display area or in the message area of the console at which you entered the command.

**QDASD or QD**
Displays (in message IEE459I) diagnostic information about the status of direct access storage devices and storage control units. You use two classes of **QDASD** parameters to control the scope of the display: **unit selection parameters** and **dump selection parameters**.

- Use **unit selection parameters** to identify the units whose information you want to see. These parameters include *sdddd* and *nnn*, **VOL**, **MACH**, **SSID**, **TYPE**, **ONLINE**, **OFFLINE**, **DEFINED**, and **CHKFAIL**.
- Use the **dump selection parameters**, to define the contents of the display. Beyond the basic status information, you can specify which of the following MVS system control blocks, and/or what information acquired directly from the following device information buffers, to display in hexadecimal format.
  - The system control blocks are **UCB**, **DCE**, **SSSCB**, **DPCT** and **RDFEATS**.
    - If you specify the parameter **NOIO**, the display will show only the storage resident information in the MVS control blocks; the command will not issue any I/O to the selected devices.
  - The device information buffers are **RDC**, **RCD**, and **SNSS**.
    - Any hexadecimal information you request appears following the basic status information.

In addition, there is one action parameter, **VALIDATE**, and one display request parameter, **TOTALCYL**.

**QDASD**-specific **Unit Selection Parameters**

? Enter the command **DEVSERV QDASD,** ? to view online help text.

**sdddd**
The device number for which the system is to display information. ‘s’ indicates the requested subchannel set with ‘s’ defaulting to 0. ‘dddd’ is a 3 or 4 digit device number. If the a subchannel set number is not 0 and the device number is 3 digits, the 3 digits device number must be preceded by a 0, for example 10800.

**nnn**
The number of DASD devices or units to query. Valid values are from 1 to 256. The default is 1.

**VOL=volser**
The serial number of the volume whose information **DEVSERV** will display. The volume must be online to the system where you issue the **DEVSERV** command.

**MACH=mmpp-sssss | XXXX-sssss**
A ten-character serial number specifying either the storage control unit or DASD device about which **DEVSERV** will display information. If you specify **XXXX-sssss**, the search will be done only on the **sssss** portion of the number. **MACH=** will cause an I/O operation for each DASD in the system. To limit the number of I/O operations, specify *sdddd* and *nnn*.

**SSID=ssid | ALL**
Specifies the identification number of the subsystem whose information **DEVSERV** will display. Valid **ssid** numbers are from 1 to FFFF.
SSID=ssid will cause an I/O operation for each DASD in the system. To limit the number of I/O operations, specify sdddd and nnn. The only devices displayed are in the same control unit and the same subchannel set if the control unit has multiple subchannel sets defined and sdddd,nnn is specified.

SSID=ALL requests a display of information for all DASD devices that support the RCD (Read Configuration Data) command.

CHPID=chpid
Specifies CHPID to access DASD. This allows DEVSERV to obtain DASD information through specific I/O path. If there is miscabling, DEVSERV might see different information from different CHPID’s.

TYPE=type I ALL
Specifies the type of DASD or storage control unit about which DEVSERV will display information. Valid type values are 3380, 3390, and 9345. TYPE=ALL causes the system to display information for all DASD devices that meet all other selection criteria. TYPE= will cause an I/O operation for each DASD in the system. To limit the number of I/O operations, specify sdddd and nnn.

ONLINE or ON and OFFLINE or OFF
See the basic status parameters, above.

DEFINED
Displays information about all DASD units defined in the current I/O configuration that meet all other selection criteria. The display contains information based on the existence of unit addresses (UCBs) for DASD type devices, and not on the existence of physical devices. Therefore, the display may contain information even for unit addresses that have no accessible physical devices, or for which an accessible physical device type is inconsistent with the defined device type.

CHKFAIL
Directs the system to display information about a device with a status that is inconsistent between the MVS control blocks and the device. This parameter requires a unit address with a physical device attached to it. CHKFAIL will cause an I/O operation for each DASD in the system. To limit the number of I/O operations, specify sdddd and nnn.

VALIDATE
Uses status information acquired directly from a device to correct inconsistent extended function status information maintained in host processor storage. VALIDATE has no effect if the unit address has no physical device attached.

TOTALCYL
Accumulates device capacities during the scan. Valid track formats are 3380, 3390, and 9345. For each valid track format, the total capacity for all accessible devices will appear at the end of the DEVSERV QDASD display.

RDFEATS
Displays (via message IEE459I) the data in the MVS software control block. If there is an inconsistency between the software and hardware, RDF appears in the EFC result line of the message IEE459I. The DS QD,sdddd,VALIDATE command can correct the inconsistency. If a LIC (microcode) upgrade has occurred, the feature table might be inconsistent with the software control block. Issue the VALIDATE parameter to refresh the control block.

ATTRIBUTE or ATTR
Displays the device attributes.
QDASD Dump Selection Parameters
Parameters that are only valid when (a) specifying \textit{sdddd}, and \textit{nnn} has a value of 1, or (b) when specifying the \texttt{VOL=volser} parameter. Dump selection parameter information appears in hexadecimal format. The parameters are:

- \texttt{UCB} unit control block
- \texttt{DCE} device class extension block (of the UCB)
- \texttt{SSSCB} storage subsystem control block
- \texttt{RDFTATS} feature table control block
- \texttt{DPCT} device performance characteristics table
- \texttt{RDC} read device characteristics
- \texttt{RCD} read configuration data
- \texttt{SNSS} sense subsystem status
- \texttt{NOIO} no input/output requests

\texttt{NOIO} prevents I/O requests and allows a display only of storage resident information. All other dump selection parameters cause I/O operations.

QTAPE or QT
Displays identification, status, and diagnostic information about tape devices in MVS/390 configurations. You can request information about a specific tape device or multiple tape devices. The \texttt{DEVSERV QTAPE} command can obtain information from any tape device that is responsive to the \texttt{SENSEID} command. You use two classes of QTAPE parameters to control the scope of the display: \textit{unit selection parameters} and \textit{diagnostic information selection parameters}.

- Use \textit{unit selection parameters} to identify the units whose information you want to see. These parameters include \texttt{ccuu} and \texttt{nnn}, \texttt{LIB}, \texttt{MACH}, \texttt{TYPE}, \texttt{ONLINE}, \texttt{OFFLINE}, and \texttt{DEFINED}.
- Use \textit{diagnostic information selection parameters} to define the contents of the display. Beyond the basic status information, you can select which of the following MVS system control blocks, and/or what information acquired directly from the following device information buffers, to display in hexadecimal format.
  - The system control blocks are \texttt{UCB} and \texttt{DCE}.
  - If you specify the parameter \texttt{NOIO}, the display will show only the storage resident information in the requested MVS control blocks; the system will not issue an I/O to the selected device.
  - The device information buffers are \texttt{RDC} and \texttt{RCD}.

Any hexadecimal information you request appears in the display following the basic status information.

QTAPE-specific Unit Selection Parameters

- Enter the command \texttt{DEVSERV QTAPE,?} to view online help text.
- \texttt{ccuu}
  - The number of the starting, or only, tape device you are querying.
- \texttt{nnn}
  - A decimal value indicating the number of sequential device numbers, starting with \texttt{ccuu}, for which to display information.

  Valid values for \texttt{nnn} are from 1 to 256. The default is 1. The value must be defaulted (unspecified), or specified with a value of 1, if you are specifying any diagnostic information selection parameters. \texttt{nnn} is valid only when you also specify \texttt{ccuu}.

\texttt{nnn} has a different meaning for \texttt{DEVSERV QTAPE} than for \texttt{DEVSERV PATHS} or \texttt{DISPLAY UNITS}. For those commands, \texttt{nnn} indicates the number of device numbers to display, ignoring gaps in the device number sequence. For the \texttt{DEVSERV QTAPE} command, if gaps exist in the sequence of tape device...
numbers defined to the operating system, and **DEFINED** is not specified, the missing tape device numbers are listed in the form ’...nnnn(01)...’ where nnnn is the device number and 01 is the reason code indicating that no unit control block was found for that device number. If **DEFINED** is specified, the display contains no information for missing device numbers.

**LIB=libid | ALL**
Requests information about the devices having the specified **libid**. If you specify **LIB=ALL**, the display will show information for all library tape devices. **LIB=** is mutually exclusive with **MACH=** and **TYPE=**.

**MACH=mmpp-sssss**
A ten-character serial number of either a tape control unit or a tape device. The display will show information for the specific device, or for all devices on the tape control unit having the serial number **mmpp-sssss**. If you specify the **mmpp** portion as **XXXX**, the command processor will ignore the “manufacturer” and “plant of manufacture” fields of the serial number, and will search only on **sssss**, the sequence number portion. **MACH=** is mutually exclusive with **LIB=** and **TYPE=**.

**TYPE=type | ALL**
Specifies the type of tape device or control unit about which **DEVSERV** will display information. Valid values for **type** include any valid four character tape device or tape control unit number.

**TYPE=ALL** causes the system to display information for all tape devices that meet all other selection criteria, such as **ONLINE**, **OFFLINE**, and **DEFINED**.

**TYPE=** is mutually exclusive with **LIB=** and **MACH=**.

**ONLINE** or **ON** and **OFFLINE** or **OFF**
See the basic status parameters, above.

**DEFINED**
Displays information about all tape units defined in the current I/O configuration that meet all other selection criteria.

The display contains information based on the existence of unit addresses (UCBs) for tape type devices and not on the existence of physical devices. Therefore, the display may contain information even for unit addresses that have no accessible physical devices, or for which an accessible physical device type is inconsistent with the defined device type.

The system ignores **DEFINED** if you also specify **LIB=** or **MACH=**, as these options require the existence of a physical device.

If you specify both **DEFINED** and **TYPE=ALL**, the display will include information for all tape units defined in the configuration.

If you specify both **DEFINED** and **TYPE=type**, where **type** is other than **ALL**, the display will include information only for units of the type **type**. Valid **type** values are 3400, 3480, 3490, and 3590.

For the 3400 device type, **QTAPE** supports only the devices that are responsive to the **SENSEID** command. For other tape devices, **QTAPE** annotates the display with reason code 9: **QTAPE** is not supported.

**QTAPE Diagnostic Information Selection Parameters**
Parameters that are only valid when you specify **ccuu** and **nnn**, with **nnn** having a value of 1. The data appears in hexadecimal format. The parameters are:
**UCB**  unit control block  
**DCE**  device class extension block  
**RDC**  read device characteristics block  
**RCD**  read configuration data block  
**NOIO**  no input/output requests

**NOIO** calls for a display of processor storage resident information only. The command processor issues no I/O requests to the device(s). The display will contain only unit numbers and device types defined in MVS. **NOIO** is valid only when specified in combination with **UCB** and **DCE**. **NOIO** is mutually exclusive with **RDC** and **RCD**, because those parameters can be acquired only via an I/O operation with the device.

**QPAVS or QP**
Displays the logical subsystem configuration as defined to the host software, and highlights any inconsistencies between the host configuration definition and the subsystem configuration for parallel access volumes (PAVs).

**sdddd**  
Specifies the device or devices to be displayed. Device can be specified in either of the following formats:

- **sdddd**  
  **s** is either 0 or 1 to indicate the desired subchannel and **dddd** specifies a 4 hex digit device number (3-digit device numbers must be padded with a leading zero).

- **dddd**  
  Specifies just the device number. In this case, subchannel 0 is assumed by default.

**nnn**  
Specifies the number of devices, a decimal number from 1 to 256.

**SSID=ssid**  
Specifies the subsystem identification number (SSID) of the subsystem whose information DEVSERV displays. Valid **ssid** numbers are from 1 to FFFF. **SSID=ssid** causes an I/O operation for each DASD in the system. To limit the number of I/O operations, specify **sdddd** and **nnn**. This command displays PAV bases and aliases that are in the same control unit and the same subchannel set if the control unit has multiple subchannel sets defined.

**VOLUME**  
Displays the parallel access volume (PAV) relationship information for the logical volume, including the PAV base device number and all PAV alias device numbers bound to that base.

**UCB**  
Displays the unit control block (UCB) information associated with the device.

**DCE**  
Displays the device class extension block (DCE) of the BASE UCB.

**UNBOX**  
Causes QPAVS to unbox the unbound alias device if it is in a BOX state. **UNBOX** can be issued to more than 1 device in a string in a single command.

**HPAV**  
Displays the number of alias pool devices or the alias pool device numbers associated with a base device number **sdddd** that is the target of the QPAV command. If the **sdddd** number is issued to a HyperPAV alias device, only the alias device will be in the output.
**QPAVS Output Formats:** When UNBOX is not specified (see Example 13) the format can be any of the following outputs depending on the hardware and software configuration:

<table>
<thead>
<tr>
<th>HOST CONFIGURATION</th>
<th>SUBSYSTEM CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT</td>
<td>UNIT</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>sdddd aa</td>
<td>BASE</td>
</tr>
<tr>
<td>sdddd aa</td>
<td>ALIAS-bbbb</td>
</tr>
<tr>
<td>sdddd aa</td>
<td>NON-PAV</td>
</tr>
<tr>
<td>sdddd aa</td>
<td>ALIAS</td>
</tr>
<tr>
<td>sdddd aa</td>
<td>BASE-H</td>
</tr>
<tr>
<td>sdddd bb</td>
<td>ALIAS-H</td>
</tr>
</tbody>
</table>

Dump selection parameter formats examples

```
(
```

In response to a DEVSERV QPAV command, this message displays the following requested information:

\[ hh.mm.ss \]

The time in hours, minutes, and seconds.

where

- **Host Configuration**
  - \( sdddd \) = the device number
  - \( aa = \) the unit address from the host configuration
  - BASE = \( sdddd \) is a BASE device
  - ALIAS-bbbb = \( sdddd \) is an ALIAS device, the BASE is at address bbbb
  - NON-PAV = the unit is neither a BASE nor an ALIAS
  - ALIAS = \( sdddd \) is an ALIAS device and is not bound to a BASE
  - ALIAS-H = \( sdddd \) is a HyperPAV ALIAS device

- **Status**
  - INV-ALIAS = on the host side, the unit is defined as an ALIAS whose BASE is different from the one on the subsystem side
  - NOT-BASE = on the host side, the unit is a BASE, while on the subsystem side it is not
  - NOT-ALIAS = on the host side, the unit is an ALIAS, while on the subsystem side it is not
  - NON-NPAV = on the host side, the unit is not a BASE nor an ALIAS, while on the subsystem side it is an ALIAS
  - UNBOUND = at host side, unit is an ALIAS but is unbound, while at sub-system side, it is assigned to this BASE(\( aa \))

- **Subsystem Configuration**
  - ssss = the SSID of the subsystem where device \( sdddd \) belongs
  - uu = the unit address from the subsystem configuration
  - BASE = the unit is a BASE
  - ALIAS-bb = the unit is an ALIAS device and the BASE is at unit address bb
– NC = the unit is neither a BASE nor an ALIAS
– ALIAS-H = the unit is a HyperPAV ALIAS device

aaaaaaa:
The following text might appear within the display associated with a specific unit number when keyword UCB is specified with sdddd:

**UCB AT Vxxxxxxxx**
UCB contents at location xxxxxxxx in virtual storage

**UCB PREFIX AT Vxxxxxxxx**
UCB PREFIX contents at location xxxxxxxx in virtual storage

**UCB COMMON EXTENSION AT Vxxxxxxxx**
UCB COMMON EXTENSION contents at location xxxxxxxx in virtual storage

The following text might appear within the display associated with a specific unit number when keyword DCE is specified with sdddd:

**DCE AT Vxxxxxxxx**
DCE contents at location xxxxxxxx in virtual storage.

bbbbbbbb:
requested dump details in HEX digits.

**UCB AT Vxxxxxxxx**
UCB contents at location xxxxxxxx in virtual storage

**UCB PREFIX AT Vxxxxxxxx**
UCB PREFIX contents at location xxxxxxxx in virtual storage

**UCB COMMON EXTENSION AT Vxxxxxxxx**
UCB COMMON EXTENSION contents at location xxxxxxxx in virtual storage

The following text might appear within the display associated with a specific unit number when keyword DCE is specified with sdddd:

**DCE AT Vxxxxxxxx**
DCE contents at location xxxxxxxx in virtual storage.

The following text might appear within the display associated with a specific unit number:

**NO VALID DCE EXISTS FOR THIS DEVICE.**
UNLISTED DEVICES AND REASON CODES
sdddd(rc) sdddd(rc) sdddd(rc) ...

where:

- **sdddd** subchannel set number and device number
- **rc**
  - 01 = Device not configured, UCB not found
  - 02 = UCB not connected
  - 03 = Device unavailable, SCP routine in control
  - 04 = Subchannel error
  - 05 = Device boxed
  - 06 = UCB not a DASD
DEVSENV Command

07 = Device I/O error
08 = Device is not a DASD
09 = DSE-1 CCW build failed
0A = Device is an unbound PAV-ALIAS
0B = Device is a secondary of a PPRC pair
0C = Subchannel set value specified is not valid
0D = UCB not found in specified Subchannel set
0E = Device is a HyperPAV ALIAS
0F = Device is not a HyperPAV BASE or ALIAS

When UNBOX is specified (see Example 14), the format is:

IEE459I hh:mm:ss DEVSERV QPAVS [ID]
e.....

where:

- e..... = sdddd HAS BEEN SUCCESSFULLY UNBOXED.
- e..... = THE DEVSERV QPAV UNBOX COMMAND HAS BEEN EXECUTED WITH A RETURN CODE OF YY AND A REASON CODE OF ZZ.
- e..... = sdddd IS NOT AN UNBOUND PAV-ALIAS DEVICE. THE DEVSERV QPAV UNBOX COMMAND IS NOT EXECUTED.
- e..... = sdddd IS NOT IN BOX STATE. THE DEVSERV QPAV UNBOX COMMAND IS NOT EXECUTED.

QLIB or QL
Displays (in message IEE459I) the requested DEVSERV library information. You use two classes of QLIB parameters to control the scope of the display: parameters and sub-parameters.

QLIB Parameters

LIST
Indicates that QLIB should display a list of the ACTIVE library-ids (the default). You can optionally generate a list of INACTIVE library-ids or QUEUE’d library orders. LIST uses the sub-parameters ACTIVE, INACTIVE, and QUEUE.

LISTALL
Produces a detailed list of all libraries, including the devices and port-ids within each library. LISTALL uses the sub-parameters ACTIVE and INACTIVE.

LIBID
Indicates that the request is for a specific library. LIBID uses the sub-parameters ACTIVE, INACTIVE, VALIDATE, QUEUE, and DELETE.

DDDD
Indicates that the request is either for the library that contains device dddd, or is for the device dddd itself. A sub-parameter is required when DDDD is specified. DDDD uses the sub-parameter SS.

? Causes QLIB to display the command syntax.

QLIB Sub-parameters

ACTIVE
Displays information about the library configuration that is currently in use by the system.

INACTIVE
Displays information about the library configuration that becomes active
following the next IODF activate. The INACTIVE configuration is similar to ACTIVE, but may contain additional devices or libraries.

VALIDATE
Displays the same information as the INACTIVE configuration. However, before the configuration is displayed, I/O is issued to each device in the configuration to validate connectivity to the host.

DELETE
Indicates that QLIB should delete the INACTIVE control blocks for library LIBID and not affect the existing ACTIVE library definition. The DELETE command is used to remove incorrectly defined library control blocks so that they can be rebuilt. DEVSERV DELETE provides an alternative to the method described in information APAR II09065, which requires two IODF activates.

The DEVSERV QLIB method is as follows:
1. Use QLIB DELETE to delete all of the devices from the incorrect control blocks.
2. Choose one action depending on whether you have LIBID and LIBPORT coded in the IODF:
   • If LIBID and LIBPORT are coded, use QLIB LIST to display that the INACTIVE control blocks have been deleted.
   • If LIBID and LIBPORT are not coded, use the VARY command to vary online the devices in the library. This will create control blocks. The system issues message IEA437I, for example:
     
     IEA437I TAPE LIBRARY DEVICE(dev), ACTIVATE IODF=XX, IS REQUIRED

3. Use ACTIVATE IODF to redefine the devices.
4. Use QLIB LIST to display that the ACTIVE control blocks are properly defined.

QUEUE
Lists the library orders that are waiting to be completed. Such orders include:
• MOUNT
• DEMOUNT
• EJECT
• AUDIT

When an order completes, the library notifies the host and the order is removed from the queue. This QLIB display can list orders for all libraries, or be limited for a single library.

SS
Indicates that QLIB should issue a diagnostic state save to the library containing device DDDD. This command is intended to be used at the request of IBM Support Center. For example, SS can be used to diagnose a hardware error that results in a mount failure message. Automated Operator code can extract the failing device number from the failure message, then insert the device in a QLIB SS command.

CATS | CATS(xxx*)
Displays or updates the library partitioning category codes. For a request to change the library partitioning category codes, the first 3 digits of the category can be modified with the last digit being fixed and representing the media type. If the library partitioning category codes are modified using the DQ QL,CATS command, the corresponding changes must also be reflected in the DEVSUPxx PARMLIB member. If not, an IPL reverts the category codes to what is specified in DEVSUPxx.
**DEVSERV Command**

*Note:* APAR OA24965 of Device Service is needed before you use the `DEVSERV QLIB,CATS` command. This APAR is needed to additionally recognize and support media types MEDIA9 and MEDIA10.

### Examples

**Example 1**

To display the status of a DASD with device number 380, enter:

```
DS P,380
```

**Example 2**

To display the status of a DASD with device number 3480, enter:

```
DS P,3480
```

**Example 3**

To display the status of all online devices with device numbers 380 through 38F, enter:

```
DS P,380,16,ON
```

**Example 4**

To display the status of SMS-controlled device 430 and the seven devices whose addresses follow it, enter:

```
ds ,s,430,8
```

This command would produce the following display:

```
IGD001I 11:49:20 DEVSERV SMS 455
UNIT,TYPE ,M,VOLUME,VOLSTAT STORGRP, SGSTAT
430 ,3380 ,0,XP0101,ENABLED SXP01 ,ENABLED
431 ,3380 ,A,XP0201,ENABLED SXP02 ,ENABLED
432 ,3380 ,A,XP0202,ENABLED SXP02 ,ENABLED
433 ,3380 ,0,XP0301,ENABLED SXP03 ,ENABLED
434 ,3380 ,0,XP0302,ENABLED SXP03 ,ENABLED
435 ,3380 ,0,XP0303,ENABLED SXP03 ,ENABLED
436 ,3380 ,0,338001,STRG/RSNT, VOLUME NOT MANAGED BY SMS
437 ,3380 ,A,SMSPCK,STRG/RSNT, VOLUME NOT MANAGED BY SMS
```

*Note:* Indications in the M column are: O=online, A=allocated, F=offline.

**Example 5**

The following two sample displays compare the response to `DEVSERV P` with the response to `DEVSERV S`. Note that `DEVSERV P` provides volser and CHPID information, while `DEVSERV S` provides SMS volume and storage group status.

Issuing `DEVSERV P,F4A` produces this display:

```
ds p,f4a
IEE459I 15.30.14 DEVSERV PATHS 728
UNIT DTYE M CNT VOLSER CHPID=PATH STATUS
 RTYPE SSID CFW TC DFW PIN DC-STATE CCA DDC CYL CU-TYPE
00F4A,33909 ,0,000,EV9LIA,00++ 04++
 2105 210F Y YY. YY. N SIMPLEX 3A 3A 10017 2105
**
 SYMBOL DEFINITIONS
****** PATH AVAILABLE 0 = ONLINE + = PATH AVAILABLE
```
Issuing **DEVSERV S,430** produces this display:

```devserv
s,430
IGD011I 16:24:26 DEVSERV SMS 569
UNIT, TYPE ,M, VOLUME, VOLSTAT STORGRP, SGSTAT
430, 3380 ,O, XPO101, ENABLED SXP01, QUIESCED

SYMBO DEFINITIONS ********************
O = ONLINE + = PATH AVAILABLE
```

**Note:** Tape device type is not supported by DEVSERV SMS.

**Example 6**

The extra header line and data line appear in the response only when there are
3990 Model 3 Storage Controls in the system. If record caching has not been
installed, the RC column in the third header line is left blank.

Issuing **DEVSERV P,430,2** produces this display:

```devserv
p,430,2
IEE459I 16:24:41 DEVSERV PATHS 572
UNIT DTYPE M CNT VOLSER CHPID=PATH STATUS
RTYPE SSID CFW TC DFW PIN DC-STATE CCA DDC CYL CU-TYPE
00430,3380D, O,000,XPO101,25++ 2E++
 IE YY NN N SIMPLEX C0 01 885 3990-3
00431,3380D, O,000,XPO101,25++ 2E++
 IE YY NN N SIMPLEX C1 01 1770 3990-3

SYMBO DEFINITIONS ********************
O = ONLINE + = PATH AVAILABLE
```

**Example 7**

This example shows the dual copy status.

Issuing **DS P,D2A,2** produces this display:

```devserv
p,D2A,2
IEE459I 16:24:11 DEVSERV PATHS 297
UNIT DTYPE M CNT VOLSER CHPID=PATH STATUS
RTYPE SSID CFW TC DFW PIN DC-STATE CCA DDC CYL CU-TYPE
00D2A,3380D, O,000,DSFXA0,1B=+ 9B=+ 1C=+ 9C=+ 00AB Y NY.
 NY.
 N PRIMARY 20 20 ALT 00D2 3990-3
00D2B,3380D, F,000, ,B5=X B6=X B9=X BA=X
 9392-2 00FD Y NY. NY. N SECONDARY 21 21 ALT 00D2 3990-3

SYMBO DEFINITIONS ********************
F = OFFLINE O = ONLINE + = PATH AVAILABLE
```

**Example 8**

This example shows the sparing status.

Issuing **DS P,F7E** produces this display:

```devserv
p,F7E
IEE459I 16:06:45 DEVSERV PATHS 389
UNIT DTYPE M CNT VOLSER CHPID=PATH STATUS
RTYPE SSID CFW TC DFW PIN DC-STATE CCA DDC CYL CU-TYPE
00F7E,33903 ,F,000, ,B5=X B6=X B9=X BA=X
 9392-2 00FD Y NY. NN. N SPARE 2E 00 3339 3990-3

SYMBO DEFINITIONS ********************
F = OFFLINE X = INDETERMINATE FAILING UNIT
```

**Example 9**
This example shows the PPRC status.

Issuing DS P,D300,2 produces this display:

ds p,d300,2
IEE459I 15.55.04 DEVSERVER PATHS 596
UNIT DTYPE M CNT VOLSER CHPID=PATH STATUS
RTYPE SSID CFW TC DFW PIN DC-STATE CCA DDC CYL CU-TYPE
00300,33909 ,0,000,TK9085,4B=<4F==58=<5F=<
2107 2401 Y YY. YY. N PPRIMAR0 05 05 10017 2107
00301,33909 ,0,000,TK3083,14==18==
PATH ATTRIBUTES NP PF
3390 1601 Y YY. YY. N PSECONDRY 03 03 10017 2107

************************
SYMBOL DEFINITIONS
************************
O = ONLINE
+ = PATH AVAILABLE
<= PHYSICALLY UNAVAILABLE
PF = PREFERRED
NP = NON-PREFERRED

Example 10

This example uses the DEVSERVER QTAPE command to diagnose an error, namely an inconsistent device definition.

a. VARY ONLINE fails.

V 931,ONLINE

IEE103I UNIT 0931 NOT BROUGHT ONLINE
IEE763I NAME= IECINIT CODE= 0000000000000000
IEAA435I PHYSICAL DEVICE INCONSISTENT WITH LOGICAL DEFINITION
IEE764I END OF IEE103I RELATED MESSAGES

b. DEVSERVER QTAPE shows inconsistent device definition.

DS QT,931,1
IEE459I 15.28.22 DEVSERVER QTAPE
UNIT DTYPE DSTATUS CUTYPE DEVTYPE CU-SERIAL DEV-SERIAL ACL LIBID
0931 3480X OFFLINE 3490A20 3490B40 0113-97231 0113-97231 1
**** 1 DEVICE(S) MET THE SELECTION CRITERIA

Example 11

This example illustrates the help text provided when you issue the command:

DS QT,?

IEE459I 15.27.49 DEVSERVER QTAPE
DEVSERVER QTAPE COMMAND SYNTAX:
DS QT,ccuu,n,filter1,filter2,diagnostic info
ccuu -- device number, n -- number of devices (1-256)
filter1 -- LIB=ALL or library id, or
MACH=ALL or cu or device serial, or
TYPE=ALL or device type or defined device type
filter2 -- DEFINED, ONLINE, OFFLINE
DIAGNOSTIC info -- UCB, DCE, RDC, RCD, NOIO
valid only if n=1 is specified
DS QT,LIB=libid,filter
libid -- ALL or library id
filter -- ONLINE, OFFLINE
DS QT,MACH=serialnmbr,filter
serialnmbr -- control unit or device serial
filter -- ONLINE, OFFLINE
DS QT,TYPE=type,filter
type -- ALL or defined device type
filter -- DEFINED, ONLINE, OFFLINE
Example 12

This example illustrates the basic DEVSERV QTAPE display without hexadecimal data.

**DS QT,TYPE=ALL**

```
0930 3480SX ON-NRD 3490A02 3490B04 0112-47671 0112-47671 I
093F 3480SX OFFLINE 3490A02 3490B04 0112-47671 0112-47671 I
0990 3490 ON-RDY 3490A20 3490B40 0113-97231 0113-97231 I-A
09A0 3490 OFFLINE 3490C2A 3490C2A 0113-55565 0113-55565 I 10382
```

****** UNLISTED DEVICE(S) AND REASON CODES :**

093E(05) 093F(05)

****** 4 DEVICE(S) MET THE SELECTION CRITERIA**

Example 13

These six variations illustrate the DEVSERV QPAVS command when the UNBOX parameter is not specified.

**DS QP,D3FF,VOLUME**

```
ds qp,d3ff,volume
```

**DS QP,D3FE,UCB**

```
ds qp,d3fe,ucb
```

**DS QP,D3AD,2**

```
ds qp,d3ad,2
```
DEVSERV Command

Example 14

This command illustrates the DEVSERV QPAVS command when the UNBOX parameter IS specified.

DEVSERV Command

Example 15
This example illustrates the use of DEVSERV QLIB to delete the INACTIVE control blocks for library 10382.

**Example 16**

This example illustrates the use of DEVSERV QLIB to list all of the queued requests.

**Example 17**

This example illustrates the use of DEVSERV QLIB to list all of the libraries that are defined to the system and then list all of the devices for library 10382. An * indicates that at least one device in library 10382 has been initialized. It also indicates that library 15393 is logically defined to the system, but has never gone through device initialization. Initialization occurs during IPL or IODF activate for any library devices that are connected to the system. For devices that are connected after IPL or IODF activate, initialization occurs when the device is varied online. For library 10382, devices on ports 03, 02, and 01 have never been initialized.

**Example 18**

This example illustrates the use of DEVSERV QLIB to verify the connectivity of devices in library 15393.

This display indicates that devices DC8 and DC9 were connected to the system at some point and were initialized.
The following are defined in the INACTIVE configuration:

<table>
<thead>
<tr>
<th>LIBID</th>
<th>PORTID</th>
<th>DEVICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>15393</td>
<td>03</td>
<td>0DC8*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0DC9*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0DC0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0DC1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0DC2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0DC3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0DC4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0DC5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0DC6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0DC7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0DCA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0DCB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0DCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0DCD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0DCE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0DCF</td>
</tr>
</tbody>
</table>

This display uses VALIDATE to determine the current state of device connectivity:
- DC8 is no longer connected to the system
- DC9 is still connected
- DC5 has now become connected
DISPLAY Command

Use the DISPLAY system command to display information about the operating system, the jobs and application programs that are running, the processor, devices that are online and offline, central storage, workload management service policy status, and the time of day. Use the following table to access the pages on which you can find details about a particular use of the DISPLAY command.

Table 4-10. Summary of the DISPLAY Command

<table>
<thead>
<tr>
<th>Topic</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;Displaying System Activity&quot; on page 4-166</td>
<td>DISPLAY A</td>
</tr>
<tr>
<td>&quot;Displaying MVS Device Allocation Group Locks Information&quot; on page 4-105</td>
<td>DISPLAY ALLOC,GRPLOCKS</td>
</tr>
<tr>
<td>&quot;Displaying MVS Device Allocation Settings Information&quot; on page 4-106</td>
<td>DISPLAY ALLOC,OPTIONS</td>
</tr>
<tr>
<td>&quot;Displaying APPC/MVS Information&quot; on page 4-107</td>
<td>DISPLAY APPC</td>
</tr>
<tr>
<td>&quot;Displaying ASCH Configuration Information&quot; on page 4-112</td>
<td>DISPLAY ASCH</td>
</tr>
<tr>
<td>&quot;Displaying Page Data Set Information&quot; on page 4-114</td>
<td>DISPLAY ASM</td>
</tr>
<tr>
<td>&quot;Displaying the Current® System Level Language Environment Run-time Options&quot; on page 4-116</td>
<td>DISPLAY CEE</td>
</tr>
<tr>
<td>&quot;Displaying CONTROL Command Functions&quot; on page 4-117</td>
<td>DISPLAY C,K</td>
</tr>
<tr>
<td>&quot;Displaying Attached Coupling Facility Information&quot; on page 4-117</td>
<td>DISPLAY CF</td>
</tr>
<tr>
<td>&quot;Displaying Console Group Definitions&quot; on page 4-118</td>
<td>DISPLAY CNGRP</td>
</tr>
<tr>
<td>&quot;Displaying Console Status Information&quot; on page 4-119</td>
<td>DISPLAY CONSOLES</td>
</tr>
<tr>
<td>&quot;Displaying DIAG Parmlib Information&quot; on page 4-124</td>
<td>DISPLAY DIAG</td>
</tr>
<tr>
<td>&quot;Displaying Data Lookaside Facility Information&quot; on page 4-125</td>
<td>DISPLAY DLF</td>
</tr>
<tr>
<td>&quot;Displaying Dump Options or Dump Data Set Status&quot; on page 4-127</td>
<td>DISPLAY DUMP</td>
</tr>
<tr>
<td>&quot;Displaying Extended MCS Information&quot; on page 4-130</td>
<td>DISPLAY EMCS</td>
</tr>
<tr>
<td>&quot;Displaying the Timer Synchronization Mode and ETR Ports&quot; on page 4-135</td>
<td>DISPLAY ETR</td>
</tr>
<tr>
<td>&quot;Displaying Global Resource Serialization Information&quot; on page 4-136</td>
<td>DISPLAY GRS</td>
</tr>
<tr>
<td>&quot;Displaying hardware event data collection status&quot; on page 4-151</td>
<td>DISPLAY HIS</td>
</tr>
<tr>
<td>&quot;Displaying Basic HyperSwap Information&quot; on page 4-152</td>
<td>DISPLAY HS</td>
</tr>
<tr>
<td>&quot;Displaying TSO/E Parmlib Information&quot; on page 4-154</td>
<td>DISPLAY IKJTSO</td>
</tr>
<tr>
<td>&quot;Displaying I/O Configuration Information&quot; on page 4-156</td>
<td>DISPLAY IOS,CONFIG</td>
</tr>
<tr>
<td>&quot;Displaying Captured UCB Information&quot; on page 4-156</td>
<td>DISPLAY IOS,CAPTUCB</td>
</tr>
<tr>
<td>&quot;Displaying Dynamic Channel Path Management Information&quot; on page 4-157</td>
<td>DISPLAY IOS,DCM</td>
</tr>
<tr>
<td>&quot;Displaying Encryption Key Manager (EKM) Status&quot; on page 4-157</td>
<td>DISPLAY IOS,EKM</td>
</tr>
<tr>
<td>&quot;Displaying zHPF facility status&quot; on page 4-158</td>
<td>DISPLAY IOS,zHPF</td>
</tr>
<tr>
<td>&quot;Displaying FICON Switch Data Information&quot; on page 4-159</td>
<td>DISPLAY IOS,FICON</td>
</tr>
<tr>
<td>&quot;Displaying IOS Group Information&quot; on page 4-159</td>
<td>DISPLAY IOS,GROUP</td>
</tr>
</tbody>
</table>
### Table 4-10. Summary of the DISPLAY Command (continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;Displaying IOS HYPERPAV Information&quot; on page 4-159</td>
<td>DISPLAY IOS,HYPERPAV</td>
</tr>
<tr>
<td>&quot;Displaying MIDAW Facility Status&quot; on page 4-160</td>
<td>DISPLAY IOS,MIDAW</td>
</tr>
<tr>
<td>&quot;Displaying MIH and I/O Timing Limits&quot; on page 4-160</td>
<td>DISPLAY IOS,MIH</td>
</tr>
<tr>
<td>&quot;Displaying IOS Recovery Options&quot; on page 4-164</td>
<td>DISPLAY IOS,RECOVERY</td>
</tr>
<tr>
<td>&quot;Displaying IOS Storage Residency Information&quot; on page 4-164</td>
<td>DISPLAY IOS,STORAGE</td>
</tr>
<tr>
<td>&quot;Displaying the Devices Stopped by the IOACTION Command&quot; on page 4-164</td>
<td>DISPLAY IOS,STOP</td>
</tr>
<tr>
<td>&quot;Displaying IPL Information&quot; on page 4-165</td>
<td>DISPLAY IPLINFO</td>
</tr>
<tr>
<td>&quot;Displaying System Activity&quot; on page 4-166</td>
<td>DISPLAY JOBS, or DISPLAY J, or DISPLAY A, or DISPLAY TS</td>
</tr>
<tr>
<td>&quot;Displaying Library Lookaside Information&quot; on page 4-176</td>
<td>DISPLAY LLA</td>
</tr>
<tr>
<td>&quot;Displaying the System Logger and its Log Streams&quot; on page 4-178</td>
<td>DISPLAY LOGGER</td>
</tr>
<tr>
<td>&quot;Displaying the Logrec Recording Medium&quot; on page 4-182</td>
<td>DISPLAY LOGREC</td>
</tr>
<tr>
<td>&quot;Displaying System Configuration Information&quot; on page 4-184</td>
<td>DISPLAY M</td>
</tr>
<tr>
<td>&quot;Displaying Message Flood Automation Information&quot; on page 4-189</td>
<td>DISPLAY MSGFLD</td>
</tr>
<tr>
<td>&quot;Displaying MVS Message Service Status and Languages&quot; on page 4-190</td>
<td>DISPLAY MMS</td>
</tr>
<tr>
<td>&quot;Displaying Message Suppression, Retention, Color, Intensity, and Highlighting Options&quot; on page 4-191</td>
<td>DISPLAY MPF</td>
</tr>
<tr>
<td>&quot;Displaying z/OS UNIX System Services Status&quot; on page 4-192</td>
<td>DISPLAY OMVS</td>
</tr>
<tr>
<td>&quot;Displaying Operator Information (OPDATA)&quot; on page 4-209</td>
<td>DISPLAY OPDATA</td>
</tr>
<tr>
<td>&quot;Displaying PARMLIB Information&quot; on page 4-210</td>
<td>DISPLAY PARMLIB</td>
</tr>
<tr>
<td>&quot;Displaying Commands Defined for PFKs&quot; on page 4-213</td>
<td>DISPLAY PFK</td>
</tr>
<tr>
<td>&quot;Displaying Registered Products&quot; on page 4-214</td>
<td>DISPLAY PROD</td>
</tr>
<tr>
<td>&quot;Displaying Entries in the List of APF-Authorized Libraries&quot; on page 4-215</td>
<td>DISPLAY PROG,APF</td>
</tr>
<tr>
<td>&quot;Displaying Dynamic Exits&quot; on page 4-217</td>
<td>DISPLAY PROG,EXIT</td>
</tr>
<tr>
<td>&quot;Displaying LNKLST Information&quot; on page 4-219</td>
<td>DISPLAY PROG, LNKLST</td>
</tr>
<tr>
<td>&quot;Displaying LPA Information&quot; on page 4-220</td>
<td>DISPLAY PROG, LPA</td>
</tr>
<tr>
<td>&quot;Displaying the status of the REFRPROT option&quot; on page 4-221</td>
<td>DISPLAY PROG, REFRPROT</td>
</tr>
<tr>
<td>&quot;Displaying System Requests&quot; on page 4-221</td>
<td>DISPLAY R</td>
</tr>
<tr>
<td>&quot;Displaying Resource Recovery Services (RRS) Information&quot; on page 4-227</td>
<td>DISPLAY RRS</td>
</tr>
<tr>
<td>&quot;Displaying RTLS Information&quot; on page 4-229</td>
<td>DISPLAY RTLS</td>
</tr>
<tr>
<td>&quot;Displaying SLIP Trap Information&quot; on page 4-233</td>
<td>DISPLAY SLIP</td>
</tr>
<tr>
<td>&quot;Displaying SMF Data&quot; on page 4-233</td>
<td>DISPLAY SMF</td>
</tr>
<tr>
<td>&quot;Displaying Storage Management Subsystem Information&quot; on page 4-234</td>
<td>DISPLAY SMS</td>
</tr>
</tbody>
</table>
Table 4-10. Summary of the DISPLAY Command (continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Displaying Information about All Subsystems” on page 4-253</td>
<td>DISPLAY SSI</td>
</tr>
<tr>
<td>“Displaying Static System Symbols” on page 4-256</td>
<td>DISPLAY SYMBOLS</td>
</tr>
<tr>
<td>“Displaying the Local and Coordinated Universal Time and Date” on page 4-256</td>
<td>DISPLAY T</td>
</tr>
<tr>
<td>“Displaying Component or Transaction Trace Status” on page 4-257</td>
<td>DISPLAY TRACE</td>
</tr>
<tr>
<td>“Displaying System Activity” on page 4-166</td>
<td>DISPLAY TS</td>
</tr>
<tr>
<td>“Displaying Device Status and Allocation” on page 4-260</td>
<td>DISPLAY U</td>
</tr>
<tr>
<td>“Displaying Unicode Services” on page 4-263</td>
<td>DISPLAY UNI</td>
</tr>
<tr>
<td>“Displaying Virtual Storage Information” on page 4-266</td>
<td>DISPLAY VIRTSTOR,HVSHARE</td>
</tr>
<tr>
<td>“Displaying Workload Manager Information” on page 4-266</td>
<td>DISPLAY WLM</td>
</tr>
<tr>
<td>“Displaying Cross System Coupling Facility (XCF) Information” on page 4-272</td>
<td>DISPLAY XCF</td>
</tr>
</tbody>
</table>

Some uses of the DISPLAY command are described in other books. They are:

- TCPIP activity and functions. See z/OS Communications Server: IP System Administrator’s Commands.
- VTAM network activity and functions. See z/OS Communications Server: SNA Operation.

Scope in a Sysplex

The following table describes the conditions under which the DISPLAY command has sysplex scope. See “Using Commands That Have Sysplex Scope” on page 1-11 for an explanation of sysplex scope. If a command has All under “Conditions,” then the command has sysplex scope under all circumstances and for all variations.

Table 4-11. Sysplex Scope for DISPLAY Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPLAY CF</td>
<td>Has sysplex scope only when displaying information about the coupling facility and only for those systems connected to the coupling facility. Does not have sysplex scope when displaying an individual system’s coupling facility configuration information (coupling facility channels and paths).</td>
</tr>
<tr>
<td>DISPLAY CNGRP</td>
<td>All</td>
</tr>
<tr>
<td>DISPLAY CONSOLES</td>
<td>Has sysplex scope unless you specify DISPLAY C,B or DISPLAY C,U=.</td>
</tr>
<tr>
<td>DISPLAY DUMP</td>
<td>Has sysplex scope only when you issue the OPTIONS parameter to display the results of a CHNGDUMP,SDUMP,SYSFAIL,STRLIST= command.</td>
</tr>
<tr>
<td>DISPLAY EMCS</td>
<td>Has sysplex scope, except when you specify STATUS=B or STATUS=ERR. When you specify STATUS=FULL, consoles from all systems will be displayed (for consoles that are not active on the system where this command is processed, some information will not be displayed).</td>
</tr>
</tbody>
</table>
### Table 4-11. Sysplex Scope for DISPLAY Command (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPLAY GRS</td>
<td>Has sysplex scope unless you specify SUSPEND. Also, note the following about DISPLAY GRS,C and DISPLAY GRS,RES: the output generated by these commands includes both system-specific information (S=SYSTEM) and sysplex information (S=SYSTEMS). The S=SYSTEM information is valid only for the system on which you issue the command. The S=SYSTEMS information is identical regardless of the system on which you issue the command.</td>
</tr>
<tr>
<td>DISPLAY GRS,ANALYZE</td>
<td>Has sysplex scope for Enqs, but can be limited to a system. Also, the addition of D GRS,ANALYZE,LATCH to the command only returns latch analyze information for the system the command is running in.</td>
</tr>
<tr>
<td>DISPLAY OPDATA</td>
<td>Has sysplex scope except for the TRACKING operand.</td>
</tr>
<tr>
<td>DISPLAY PFK</td>
<td>Has sysplex scope only when you specify CN=.</td>
</tr>
<tr>
<td>DISPLAY R</td>
<td>Has sysplex scope, but the output might be different on different consoles, because the output of DISPLAY R is dependent on the routing criteria for the console specified by CN=. If you do not specify CN=, the routing criteria of the console issuing the command is used. If you issue the command in a program (by using the MGCRE macro) the console you specify in the macro is used. If you specify a console ID of 0, all retained messages are included in the command response.</td>
</tr>
<tr>
<td>DISPLAY WLM</td>
<td>All</td>
</tr>
<tr>
<td>DISPLAY XCF,ARMSTATUS</td>
<td>Has sysplex scope provided all systems are using the same ARM couple data set.</td>
</tr>
<tr>
<td>DISPLAY XCF,CF</td>
<td>Has sysplex scope provided all systems in the sysplex are connected to the same coupling facilities.</td>
</tr>
<tr>
<td>DISPLAY XCF,COUPLE</td>
<td>Has sysplex scope as long as all systems are using the same types of couple data sets, as specified on the TYPE parameter (SYSPLEX, ARM, CFRM, SFM, LOGR, and WLM.) If you do not specify the TYPE parameter, only system-specific data is displayed.</td>
</tr>
<tr>
<td>DISPLAY XCF,GROUP</td>
<td>All</td>
</tr>
<tr>
<td>DISPLAY XCF,STRUCTURE</td>
<td>Has sysplex scope provided all systems in the sysplex are connected to the same coupling facilities.</td>
</tr>
<tr>
<td>DISPLAY XCF,SYSPLEX</td>
<td>All</td>
</tr>
</tbody>
</table>

### Syntax

The syntax for each of the many variations of the DISPLAY command is shown immediately preceding its respective parameter list.

**DISPLAY or D**

**Notes:**

1. You must supply all commas between DISPLAY U or DISPLAY R and a specified positional operand. For example, DISPLAY U,,ONLINE.
2. You must enclose any comments on the commands DISPLAY PROD, DISPLAY PROG, and DISPLAY RTLS in slash-asterisk — asterisk-slash pairs. See “System Command Formats” on page 4-15 for further information.

Displaying MVS Device Allocation Group Locks Information

Use the DISPLAY ALLOC,GRPLOCKS command to display information about the current Device Allocation group locks that are being held. The operator can specify one of the four different options:

- specify all group locks
- group locks for which contention exists
- group locks associated with a particular device
- group locks associated with a particular jobname

```
D ALLOC,GRPLOCKS
 { ,ALL }
 { ,CONTENTION | C }
 { ,DEVICE | D = d }
 { ,JOBNAME | J = j }
 [,L={a|name|name-a}]
```

The parameters are:

**ALL**
Indicates that in all groups in which Device Allocation group locks are either being held or waited on, the group number, the device(s), the jobname(s), the asid(s), and the status of the job(s) are to be displayed.

**CONTENTION or C**
Indicates that in all groups that are in Device Allocation group lock contention (groups that have both owners and waiters on their group locks), the group number, the device(s), the jobname(s), the asid(s), and the status of the job(s) are to be displayed.

**DEVICE or D = d**
Indicates that for all groups that are either holding or waiting on Device Allocation group locks for a particular named device, the group number, the device(s), the jobname(s), the asid(s), and the status of the job(s) are to be displayed.

**JOBNAME or J = j**
Indicates that for all groups in which Device Allocation group locks are either held or waited on by the specified job, the group number, the device(s), the jobname(s), the asid(s), and the status of the job(s) are to be displayed.

**L=a, name, or name-a**
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

**Note:** For the output of the DISPLAY ALLOC,GRPLOCKS command, see the description of message IEFA001I in Z/OS MVS System Messages, Vol 3 (IEF-IGD).
DISPLAY ALLOC,OPTIONS command

Displaying MVS Device Allocation Settings Information

Use the DISPLAY ALLOC,OPTIONS command to display either of the following:
- The current MVS Device Allocation settings that are in use, as set by the
  ALLOCxx parmlib member at IPL, or modified by the SETALLOC operator
  command.
- The system defaults, if no ALLOCxx member has been specified or no
  SETALLOC command has been processed.

```
D ALLOC,OPTIONS
 [,L={a|name|name-a}]
```

ALLOC,OPTIONS

Indicates the categories and Allocation settings that are currently being used. Certain options are displayed only when they are applicable to the settings that the system is using.

L=a, name, or name-a

Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

**Note:** For the output of the DISPLAY ALLOC,OPTIONS command, see the description of message IEFA003I in z/OS MVS System Messages, Vol 8 (IEF-IGD).

Example

If you enter D ALLOC,OPTIONS,L=Z, the output appears in the following format:

```
IEFA003I 16.09.15 ALLOC OPTIONS
SPACE PRIMARY: 4
 SECONDARY: 24
 DIRECTORY: 0
 MEASURE: AVEBLK
 BLKLNTH: 8192
 ROUND: NOROUND
 RLSE: RLSE
UNIT NAME: SYSALLDA
 UNITAFF: SYSTEM DEFAULT
 REDIRECTED_TAPE: TAPE
TIOT SIZE: 32 (MAX DDS:1635)
SDSN_WAIT WAITALLOC: NO
VOLUME_ENQ POLICY: WTOR
VOLUME_MNT POLICY: WTOR
SPEC_WAIT POLICY: WTOR
ALLC_OFFLN POLICY: WTOR
CATLG_ERR FAILJOB: NO
ERRORMSG: NO
2DGT_EXPDT POLICY: ALLOW
VERIFY_VOL POLICY: YES
SYSTEM IEFBR14_DELMIGDS: LEGACY
 TAPELIB_PREF: EQUAL
 REMIND_INTV: 90
```
Displaying APPC/MVS Information

Use the DISPLAY APPC command to display information about the APPC/MVS configuration.

```
D APPC,(TP, {SUMMARY|SUM|S}, {(ASID|A)=asid})
 [,LIST,L]
 [,ALL],A
 [,DIR={IN|OUT}]
 [,IT=ssssss[.ttt]]
 [,LLUN=lluname]
 [,LTPN=ltpname]
 [,PNET=pnetid]
 [,PLUN=pluname]
 [,PTPN=ptpname]
 [,SCHED={schedname}]
 [*NONE*]
 [,STPN=stpname]
 [,USERID=userid]

{UR, {SUMMARY|SUM|S}, {URID=urid})
 [,LIST,L]
 [,ALL],A
 [,LUNWID=luwid]
 [,PNET=pnetid]
 [,PLUN=pluname]
 [,LLUN=lluname]

{SERVER, {SUMMARY|SUM|S}, {(ASID|A)=asid})
 [,LIST,L]
 [,ALL],A
 [,ASNAME=asname]
 [,STPN=stpname]

{LU, {SUMMARY|SUM|S}, [LLUN=lluname]}
 [,LIST,L]
 [,ALL],A
 [,SCHED={schedname}]
 [*NONE*]

[,L={(a|name|name-a)}]
```

The parameters are:

**TP**
- Indicates that the system is to display information (message ATB102I) about local transaction programs (TPs) and their conversations.

**SUMMARY or SUM or S**
- Indicates that the system is to use the SUMMARY form of output. The resulting message contains the number of local transaction programs and the number of inbound and outbound conversations.

**LIST or L**
- Indicates that the system is to use the LIST form of output. This output is the same as the SUMMARY display, followed by a list of the transaction programs that are running or that were selected through optional keyword filter parameters. Each entry in the list contains the name of a local transaction program, along with related information.

**ALL or A**
- Indicates that the system is to use the ALL form of output. This output is the same as the LIST output, except that the system inserts a sublist after each
entry in the list of transaction programs. The sublist contains information about each conversation associated with the particular local transaction program.

**Note:** For the output of the DISPLAY APPC,TP command, see the description of message ATB102I. Use LookAt or use the MVS System Messages books.

**SERVER**
Indicates that the system is to display information (message ATB103I) about APPC/MVS servers and the allocate queues they are serving.

**SUMMARY** or **SUM** or **S**
Indicates that the system is to use the SUMMARY form of output. The resulting display contains the number of servers, the number of allocate queues, and the total number of queued allocate requests in the system.

**LIST** or **L**
Indicates that the system is to use the LIST form of output. This output is the same as the SUMMARY display, followed by a list of allocate queues. Each entry in the list contains the name of the served transaction program associated with the allocate queue, along with related information.

**ALL** or **A**
Indicates that the system is to use the ALL form of output. This output is the same as the LIST output, except that the system inserts a sublist after each entry in the list. The sublist contains information about each server for a particular allocate queue.

**Note:** For the output of the DISPLAY APPC,SERVER command, see the description of message ATB103I. Use LookAt or use the MVS System Messages books.

**LU**
Indicates that the system is to display information (message ATB101I) about logical units (LUs).

**SUMMARY** or **SUM** or **S**
Indicates that the system is to use the SUMMARY format of output. The resulting display contains the number of active, outbound, pending, and terminating logical units.

**LIST** or **L**
Indicates that the system is to use the LIST form of output. This output is the same as the SUMMARY display, followed by a list of logical units. Each entry in the list contains the name of a local logical unit, and related information.

**ALL** or **A**
Indicates that the system is to use the ALL form of output. This output is the same as the LIST output, except that the system inserts a sublist after each entry in the list. The sublist contains the names of the partner logical units that have sessions established with the local logical unit.

**Note:** For the output of the DISPLAY APPC,LU command, see the description of message ATB101I. Use LookAt or use the MVS System Messages books.

The following is a list of keywords that filter the displays. When you specify a filter keyword, the system displays only the data that meet the keyword’s criteria.
Notes:
1. The same keyword cannot be used twice with a single command.
2. A command line cannot exceed 126 characters in length.

**ASID** or **A=asid**
The address space identifier of the transaction program (with DISPLAY APPC,TP) or server (with DISPLAY APPC,SERVER). Specify a one- to four-digit hexadecimal value.

**ASNAME=asname**
The address space name of the transaction program (with DISPLAY APPC,TP) or server (with DISPLAY APPC,SERVER). The address space name is one to eight alphanumeric (a-z, 0-9) or special (@, #, $) characters, but the first character **cannot** be numeric (0-9).

**DIR=IN or OUT**
The direction of the conversation. DIR can have the values: IN (for INBOUND), or OUT (for OUTBOUND). These values specify INBOUND conversations, which the partner transaction program allocated, and OUTBOUND conversations, which the local transaction program allocated.

**IT=ssss[.ttt]**
The idle time for a conversation. Idle time is the amount of time that the local transaction program waits for data or for a confirmation from the partner transaction program. **ssss** specifies the number of seconds, from 0 - 99999; **ttt** specifies the number of thousandths of a second, from .0 - .999. When you specify this keyword, the system displays only conversations with an idle time greater than or equal to the value you specify.

**LLUN=lluname**
The local logical unit name. This name is one to eight alphanumeric (a-z, 0-9) or special (@, #, $) characters, but the first character **cannot** be numeric (0-9).

**LTPN=ltpname**
The local transaction program name. This name is one to 64 alphanumeric (a-z, 0-9) or special (@, #, $) characters. The name may also contain the characters in character set 00640, except for the following:
- **comma(,)** - used as a parameter delimiter and means that the preceding character is interpreted as the end of the transaction program name
- **blank( )** - used as a parameter delimiter and means that the preceding character is interpreted as the end of the transaction program name
- **asterisk(*)** - used to filter the name of the transaction program. It can only be used as the last character of the name. An asterisk causes the LTPN keyword filter to match every transaction program name that begins with the characters preceding the asterisk.

You abbreviate the name of the local transaction program by entering the first part of the name, followed by an asterisk. For example, PROCESS* matches every local transaction program name that begins with the letters PROCESS.

To list all the local, non-served TPs on the system (and filter out served TPs), enter LTPN=*.

You can also specify the asterisk as the last character of the displayable format of a SNA service transaction program name.

The displayable format of the SNA service transaction program name is in the form:

\[ ^{\text{-}}X\hphantom{0}^{\text{hh}}\hphantom{0}^{\text{ccc}} \]
DISPLAY APPC Command

Where \( hh \) is the hexadecimal value for the first non-displayable character and \( ccc \) is a character string (one to three characters) from character set Type A. You can abbreviate the name of the SNA transaction program by entering the first part of the name, followed by an asterisk.

Character sets 00640 and Type A are listed in [Z/OS MVS Planning: APPC/MVS Management](#).

**PNET=pnetid**
The network ID where the partner LU resides. This ID is one to eight alphanumeric (a-z, 0-9) or special (@, #, $) characters, and is equivalent to the network-ID portion of a network-qualified LU name. Together with the PLUN parameter, PNET filters the information to be displayed.

**PLUN=pluname**
The partner logical unit name. This name is one to eight alphanumeric (a-z, 0-9) or special (@, #, $) characters, and is equivalent to the network-LU-name portion of a network-qualified LU name. The first character cannot be numeric (0-9).

Together with the PNET parameter, PLUN filters the partner LU information to be displayed, as follows:

- PNET=pnetid, without a value for PLUN, results in a display of all partner LUs in only the specified network.
- PLUN=pluname, without a value for PNET, results in a display of all the partner LUs that share the same specified network LU name in all the networks in the installation.
- PNET=pnetid with PLUN=pluname results in a display of only the partner LU that has a network-qualified name that matches the specified network ID and network LU name.
- A DISPLAY command without specified values for PNET and PLUN results in a display of information for all partner LUs in all networks.

**PTPN=ptpname**
The partner transaction program name. This name is one to 64 alphanumeric (a-z, 0-9) or special (@, #, $) characters. The name may also contain the characters in character set 00640, except for the following:

- comma(,) - used as a keyword delimiter and means that the preceding character is interpreted as the end of the transaction program name
- blank( ) - interpreted as the end of the command and means that the preceding character is interpreted as the end of the transaction program name
- asterisk(*) - used to filter the partner transaction program name, it can only be used as the last character of the name. It causes the PTPN keyword filter to match every transaction program name which begins with the characters preceding the asterisk.

You can abbreviate the name of the partner transaction program by entering the first part of the name, followed by an asterisk. For example, PROCESS* matches every partner transaction program name that begins with the letters PROCESS.

You can also specify the asterisk as the last character of the displayable format of a SNA service transaction program name.

The displayable format of the SNA service transaction program name is in the form:

\[ -X'hh'^ccc \]
Where hh is the hexadecimal value for the first non-displayable character and ccc is a character string (one to three characters) from character set Type A. You can abbreviate the name of the SNA transaction program by entering the first part of the name, followed by an asterisk.

Character sets 00640 and Type A are listed in Z/OS MVS Planning: APPC/MVS Management.

**SCHED=schedname or *NONE***

The transaction scheduler name or *NONE*. The scheduler name is one to eight alphanumeric (a-z, 0-9) characters. Special characters (@, #, $) are not permitted.

For the DISPLAY APPC,TP command, the system displays only the transaction programs scheduled for the transaction scheduler you specify. If you specify *NONE* instead of the name of a transaction scheduler, the system displays only those transaction programs that are not associated with a transaction scheduler (such as transaction programs engaged in an outbound conversation, or transaction programs that are served by an APPC/MVS server).

For the DISPLAY APPC,LU command, the system displays only the logical units controlled by the transaction scheduler you specify. If you specify *NONE* instead of the name of a transaction scheduler, the system displays only those logical units that are not associated with a transaction scheduler. These logical units are known as NOSCHED logical units.

**Note:** The installation defines the names of the transaction schedulers on the SCHED keyword in the APPCPMxx parmlib member. Although lower-case alphabetic characters are not permitted for scheduler names specified in parmlib, you can use lower-case on the SCHED keyword name. The system translates lower-case characters to their upper-case equivalent before it processes the DISPLAY APPC command.

**STPN=stpname**

The name of the served transaction program (TP). For DISPLAY APPC,TP, this is the name of a TP that was served by an APPC/MVS server on this system. For DISPLAY APPC,SERVER, this is the TP name for which the server registered.

The name of the served transaction program is one to 64 alphanumeric (a-z, 0-9) or special (@, #, $) characters. This name may also contain the characters in character set 00640, except for the following:

- comma(,) - used as a keyword delimiter and means that the preceding character is interpreted as the end of the transaction program name
- blank( ) - interpreted as the end of the command and means that the preceding character is interpreted as the end of the transaction program name
- asterisk(*) - used to filter the served transaction program name, it can only be used as the last character of the name. It causes the STPN keyword filter to match every transaction program name that begins with the characters preceding the asterisk.

You abbreviate the name of the served transaction program by entering the first part of the name, followed by an asterisk. For example, SERV* matches every served transaction program name that begins with the letters SERV.

To list all the served TPs on the system (and filter out non-served TPs), enter STPN=*.
DISPLAY APPC Command

You can also specify the asterisk as the last character of the displayable format of a SNA service transaction program name.

The displayable format of the SNA service transaction program name is in the form:

\[-X'hh'ccc\]

Where \( hh \) is the hexadecimal value for the first non-displayable character and \( ccc \) is a character string (one to three characters) from character set Type A. You can abbreviate the name of the SNA transaction program by entering the first part of the name, followed by an asterisk.

Character sets 00640 and Type A are listed in \( \text{z/OS Planning: APPC/MVS Management} \).

**USERID=userid**

The userid of the transaction program that is running because of an allocate request. For an inbound conversation, this is the userid of the local MVS transaction program. For an outbound conversation, this is the userid of the partner transaction program. If you specify this keyword with the TP parameter, the system only displays conversations in which the userid of the allocated transaction program matches the userid you specify. The userid is one to ten alphanumeric (a-z,0-9) or special (@, #, $) characters.

**L=**\(a\), name, or name-\(a\)

Specifies the display area (\( a \)), console name (\( name \)), or both (\( name-a \)) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Displaying ASCH Configuration Information

Use the DISPLAY ASCH command to display information about the APPC/MVS scheduler configuration (message ASB101I).

\[
\text{D}\text{ASCH[},\text{SUMMARY},\text{SUM},\text{S}\text{][,\{ASID}\text{=}asid}\text{]}\text{[,\{CLASS}\text{=}classname}\text{]}\text{[,\{LTPN}\text{=}ltpname}\text{]}\text{[,\{QT}\text{=}sssss[.ttt]}\text{]}\text{[,\{TPST}\text{=}schedtype}\text{]}\text{[,\{USERID}\text{=}userid}\text{]}\text{][,\{L}\text{=}a\text{,}\text{name}\text{,}\text{name-a}\}]
\]

The parameters are:

**SUMMARY** or **SUM** or **S**

Indicates that the system is to use the SUMMARY format of output. The resulting message contains the number of classes, active and queued transactions, idle initiators, and total number of initiators. It also shows the global settings for the IBM-supplied APPC/MVS transaction scheduler, which are specified in ASCHPMxx parmlib member on the TPDEFAULT and SUBSYS keywords.

**LIST** or **L**

Indicates that the system is to use the LIST form of output. This output is the
same as the SUMMARY output, followed by a list of APPC/MVS transaction scheduler classes. Each entry in the list contains the name of a class, along with related information.

**ALL or A**
Indicates that the system is to use the ALL form of output. This output is the same as the LIST output, except that the system inserts a sublist after each entry in the list. The sublist contains information about each transaction program assigned to the APPC/MVS transaction scheduler class.

**Note:** For the output of the DISPLAY ASCH command, see the description of message ASB101I. Use LookAt or use the *MVS System Messages* books.

The following is a list of keywords that filter the displays. When you specify a filter keyword, the system displays only the data that meets the keyword’s criteria.

**Notes:**
1. The same keyword cannot be used twice with a single command.
2. A command line cannot exceed 126 characters in length.

**ASID or A=asid**
The address space identifier of the transaction program. The identifier is a one-to four-digit hexadecimal value.

**CLASS or C=classname**
The name of the APPC/MVS transaction scheduler class. The class name is one to eight alphanumeric (a-z, 0-9) or special (@,#,$) characters.

**LTPN=ltpname**
The local transaction program name. This name is one to 64 alphanumeric (a-z, 0-9) or special (@,#,$) characters. The name may also contain the characters in character set 00640, except for the following:

- comma(,) - used as a keyword delimiter and means that the preceding character is interpreted as the end of the transaction program name
- blank( ) - interpreted as the end of the command and means that the preceding character is interpreted as the end of the transaction program name
- asterisk(*) - used to filter the local transaction program name, it can only be used as the last character of the name. It causes the LTPN keyword filter to match every transaction program name which begins with the characters preceding the asterisk.

You can abbreviate the name of the local transaction program by entering the first part of the name, followed by an asterisk. For example, PROCESS* matches every local transaction program name that begins with the letters PROCESS.

You can also specify the asterisk as the last character of the displayable format of a SNA service transaction program name.

The displayable format of a SNA service transaction program name is in the form:

```
~X'hh'ccc
```

Where *hh* is the hexadecimal value for the first non-displayable character and *ccc* is a character string (one to three characters) from character set Type A.

You can abbreviate the name of the SNA transaction program by entering the first part of the name, followed by an asterisk.
DISPLAY ASCH Command

Character sets 00640 and Type A are listed in [Z/OS MVS Planning: APPC/MVS Management](#).

**QT=sssss,[ttt]**

The queue time, in seconds, of a local transaction program waiting for initiation.  

*sssss* specifies the number of seconds, from 0 - 99999; *ttt* specifies the number of thousandths of a second, from .0 - .999.  

When you specify this keyword, the system displays only transaction programs that have been queued for an amount of time greater than or equal to the value you specify.

**TPST=schedtype**

The scheduling type of the transaction program.  

This keyword can have values of: STD, STANDARD, MT, or MULTITRANS.

**USERID=userid**

The userid of the transaction program that is running because of an allocate request.  

The system displays only initiators that are running programs on behalf of the userid you specify.  

The userid is one to ten alphanumeric (a-z,0-9) or special (@,#,$) characters.

**L=a, name, or name-a**

Specifies the display area (*a*), console name (*name*), or both (*name-a*) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

**Displaying Page Data Set Information**

Use the DISPLAY ASM command to identify the page data sets the system is currently using.  

You can request this information either for each data set of a given type, or for a specific data set.

If you request information by data set type, the following information is displayed in message IEE200I for each data set of the specified type that the system is currently using:

- Type of data set
- Percent full
- Status
- Device number
- Data set name

If you request information about the PLPA or common data set, or about a specific page data set, you receive all the preceding information, plus:

- Volume serial number
- Device type
- Data set size (in slots)
- Number of slots that are currently in use
- Number of slots that are currently available
- Number of permanent I/O errors that have occurred on the specified data set

DISPLAY ASM does not give you the level of detail that you need to tune the paging configuration; for this information, see “Page/Swap Data Set Activity Report” in [Z/OS RMF Report Analysis](#).
The system is to display information about the page data sets the system is currently using. If you specify DISPLAY ASM with no operands, the system displays information about all page data sets that it is currently using and the status of the PAGEDEL command.

**PLPA**
Requests information about the PLPA page data set.

**COMMON**
Requests information about the common page data set.

**LOCAL**
Requests information about all local page data sets.

**ALL**
Requests information about all page data sets, and the status of the PAGEDEL command.

**PAGE**
Requests information about page data sets.

**ALL**
Requests information about all page data sets.

**dsname**
Requests information about the page data set named *dsname*.

**PAGEDEL**
Requests information about the PAGEDEL command, active or inactive.

**L=a, name, or name-a**
Specifies the display area (*a*), console name (*name*), or both (*name-a*) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

**Example 1**

To display summary information about all page data sets, and the PAGEDEL command status, enter:

```
DISPLAY ASM,ALL or D ASM
```

**Example 2**

To display detailed information about the PLPA data set, enter:

```
D ASM,PLPA
```
DISPLAY CEE Command

Displaying the Current® System Level Language Environment Run-time Options

Use the DISPLAY CEE command to list one or more parmlib members that can create the current system level Language Environment® run-time options. The DISPLAY CEE command can also be used to display the contents of the table.

```
D CEE[,CEEOPT] [,L={a|name|name-a}]
 ,CEEDOPT
 ,CELODLOPT
 ,CEEROPT
 ,CELOQROPT
 ,ALL
```

**CEEOPT**
Displays the options to be used in a CICS® environment.

**CEEDOPT**
Displays the options to be used in a 31-bit run-time.

**CELODLOPT**
Displays the options to be used in a 64-bit run-time.

**CEEROPT**
Displays whether region-specific run-time options are used in a non-CICS or non-LRR environment.

**CELOQROPT**
Displays whether region-specific run-time options are used in AMODE 64.

**ALL**
Displays all keywords with their respective options.

**L=a, name, or name-a**
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

**Example 1**
```
D CEE
CEE3744I hh.mm.ss DISPLAY
CEE=(xx)
```
Where **xx** is the CEEPRM member suffix specified at IPL or with the SET CEE command.

**Example 2**
```
| | D CEE,CEEDOPT|
| | CEE3745I hh.mm.ss DISPLAY CEEDOPT|
| | CEE=(xx) |
| | LAST WHERE SET OPTION |
| | PARMLIB(CEEPRMxx) ABPERC(NONE) |
| | SETCEE command ALL31(ON) |
| | ... |
| | PARMLIB(CEEPRMxx) XUFLOW(AUTO) |
```
The option listed are only those specified in the SET CEE or SETCEE command.

**Example 3**
Assume that a SET CEE=(mc) command has been issued. To display the CEEROPT setting, enter:

D CEE,CEEROPT

The output looks like:

CEE3745I 16.17.23 DISPLAY CEEROPT
CEE=(MC)
PARMLIB(CEEPRMMC) CEEROPT (COMPAT)

Example 4

Assume that a SETCEE CELQROPT,ALL command has been issued. To display the CELQROPT setting, enter:

D CEE,CELQROPT

The output looks like:

CEE3745I 16.14.52 DISPLAY CELQROPT
CEE=(MC)
SETCEE COMMAND CELQROPT(ALL)

Displaying CONTROL Command Functions

Use the DISPLAY C,K command to request a summary (message IEE162I) of the CONTROL command operands and the functions they perform.

D C,K[,L={a|name|name-a}]

C,K

A summary of CONTROL command operands is to be displayed.

L=a, name, or name-a

Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Example 1

To display the CONTROL command operands and their functions in display area A of console named CON5, enter:

D C,K,L=CON5-A

Example 2

To display a summary of CONTROL command operands in display area A of console named CON10, enter:

D C,K,L=CON10-A

Displaying Attached Coupling Facility Information

Use the DISPLAY CF command to display storage and attachment information about coupling facilities attached to the system on which the command is processed.
DISPLAY CF Command

D CF[,CFNAME={cfname[,cfname]...}][,L={a|name|name-a}]

CF
Requests the system to display information about the coupling facilities that are attached to the system. If specified without further qualification, the system displays information about all coupling facilities that are attached.

CFNAME= or CFNM= cfname
Requests that information for one or more named coupling facilities be displayed.

cfname specifies the logical name of a coupling facility for which information is requested.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Displaying Console Group Definitions

Use the DISPLAY CNGRP command to display the console group definitions in effect for the sysplex. The definitions, activated via a SET CNGRP command or the INIT statement in CONSOLxx, are obtained from the currently active CNGRPxx parmlib members. There are three options for this command:

- Display all active console groups with their names.
- Display all console names associated with input group names.
- Display only console group names active in the sysplex.

D CNGRP[,{GROUP|G}=[name[,name]...}][,L={a|name|name-a}]

CNGRP
The system is to display information (message IEE679I) about the console groups currently defined to the system or sysplex. If you specify this keyword alone, the system displays all the group names and the console names associated with each group.

GROUP or G
The system is to display information on specific console groups. If GROUP is the last keyword in the command, then only the names of all active groups are displayed.

name[,name]
The system is to display all console names associated with each input group name. Valid group names are a maximum of 8 characters long.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

4-118 z/OS V1R11.0 MVS System Commands
Example 1

To DISPLAY all active console group definitions with their names, enter:
DISPLAY CNGRP

Example 2

To DISPLAY the names of all active console groups, enter:
DISPLAY CNGRP,GROUP
or
DISPLAY CNGRP,G

Example 3

To DISPLAY the console names associated with the console groups NEWYORK and PHILLY, enter:
DISPLAY CNGRP,G=(NEWYORK,PHILLY)

Displaying Console Status Information

Use the DISPLAY CONSOLES command to display the status of all consoles or specified consoles in the sysplex, including SMCS. If you need information about extended MCS (EMCS) consoles, use the DISPLAY EMCS command to display information for extended MCS consoles.

See Figure 3-3 on page 3-24 and Figure 3-2 on page 3-18 for examples of the resulting display of the DISPLAY CONSOLES and DISPLAY CONSOLES,BACKLOG commands. The syntax of the command is:
DISPLAY CONSOLES Command

D {CONSOLES|C}, {ACTIVE|A}[,[CA={name[,name]...}],[SYS=system-name]]
   {NACTIVE|N}   {{name,[name]...}}
   [,CN={name[,name]...}][,[ROUT={NONE|ALL|rr}][,[SYS=system-name][,[SUMMARY|S]]] ]
   {{rr-ss} }   {FULL|F }   {{rr[,ss]...}}
   [,MSTR,[,ROUT={NONE|ALL|rr}][,[SYS=system-name][,[SUMMARY|S]] ]]
   {{rr-ss} }   {FULL|F }   {{rr[,ss]...}}
   [,U={[[/]dev1,[/]dev2]...}][,[ROUT={NONE|ALL|rr}][,[SYS=system-name][,[SUMMARY|S]] ]]
   {{rr-ss} }   {FULL|F }   {{rr[,ss]...}}
   {SS }[,[CN={name[,name]...}][,[ROUT={NONE|ALL|rr}][,[SYS=system-name][,[SUMMARY|S]]]]]
   {{rr-ss} }   {FULL|F }   {{rr[,ss]...}}
   [,MSTR,[,ROUT={NONE|ALL|rr}][,[SYS=system-name][,[SUMMARY|S]] ]]
   {{rr-ss} }   {FULL|F }   {{rr[,ss]...}}

{BACKLOG|B }    }
{HARDCOPY|HC}
{KEY }[=key,[SYS=system-name]]
{LIST|L }[,[SYS=system-name][,[SUMMARY|S]]]
{FULL|F }
{MASTER|M }[,[SYS=system-name][,[SUMMARY|S]]]
{FULL|F }
{SHARMDMVE }[,[SUMMARY|S]]
{FULL|F }
{SMCS }
{*
[,L={a|name|name-a}]}

The parameters are:

CONSOLES or C
The system is to display console information in message CNZ4100I. Use
LookAt or use the MVS System Messages books to see a description of the
output.

ACTIVE or A
The system is to display the status of all active MCS, SMCS, and
subsystem consoles.

Note: The ACTIVE parameter only works for extended MCS or system
consoles when issued with the CN or MSTR parameter. Use the D
EMCS command for these consoles.

NACTIVE or N
The system is to display the status of all MCS, SMCS, and subsystem
consoles that are not active.
**Note:** The NACTIVE parameter only works for extended MCS and system consoles when issued with the CN or MSTR parameter. Use the DEMCS command for these consoles.

**SS**
The system is to display the status of all allocatable subsystem consoles.

**CA**
The system is to display, for a sysplex, the console/system association list to match the specified keyword, ACTIVE or NACTIVE.

**CA=[name]**
The system is to display the specified console name(s) in the sysplex to match the specified keyword, ACTIVE or NACTIVE. A console name can be 2 to 8 characters in length. You can specify wildcard characters ("*" and "?" in the console name.

**CN=[name]**
The system is to display the status of a console or consoles identified by console name. A console name can be 2 to 8 characters in length. You can specify wildcard characters ("*" and "?" in the console name.

**MSTR**
The system displays the status of the operators with master authority that match the specified keyword of ACTIVE, NACTIVE, or SS. MSTR is mutually exclusive with CA and U. MSTR can be issued with ROUT.

**U=**
The system is to display the status of one or more consoles, identified by device numbers. A device number consists of 3 or 4 hexadecimal digits, optionally preceded by a slash (/).

\[/devnum\]
The system is to display the status of the console identified by device number devnum.

\[/devnum1[,/]devnum2]...\]
The system is to display the status of consoles identified by device numbers devnum1, devnum2, and so on.

\[/lowdevnum-[/highdevnum\]
The system is to display the status of the consoles identified by device numbers in the range of lowdevnum-highdevnum.

**SYS=[system-name]**
The system is to display the status of consoles that are active or eligible to be activated on the system you specify, and that match the other specified parameters.

SYS is mutually exclusive with BACKLOG (B), HARDCOPY (HC), KEY, *, and U=.

**ROUT**
The system is to display the status of consoles that receive messages identified by the routing code you specify.

**NONE**
The system is to display the status of consoles to which no messages are routed by routing code.

**rr**
The system is to display the status of consoles that accept messages with a routing code of rr.
DISPLAY CONSOLES Command

(rr[,ss]...)  
The system is to display the status of consoles that accept messages 
with routing codes listed as rr,ss, and so forth.

(rr-ss)  
The system is to display the status of consoles that accept messages 
with routing codes in the range of rr to ss.

ALL  
The system is to display the status of consoles that accept messages 
by routing codes.

FULL or F  
The system is to display the console attributes as they are defined on each 
standard that matches the specified parameters.

If neither FULL (F) nor SUMMARY (S) is specified, the output depends on 
the status of the console that matches the specified parameters:
- If the console is active, the system is to display the console attributes as 
it is defined on the system where it is active.
- If the console is active and does not match the specified parameters on 
the system where it is active (but it does match the specified parameters 
on one or more systems where it is not active), the system is to display 
only the name, type, and status of the consoles that match the specified 
parameters. In addition, the name of each system where the consoles 
are defined and where they match the specified parameters are 
displayed.
- If the console is not active, the system is to display only the name, type, 
and status of the consoles that match the specified parameters. In 
addition, the name of each system where the consoles are defined and 
where they match the specified parameters are displayed.

SUMMARY or S  
The system is to display only the name, type, and status of the consoles 
that match the specified parameters. In addition, the name of each system 
where the consoles is defined and where they match the specified 
parameters are displayed.

BACKLOG or B  
The system is to display the status of all local consoles with a message 
backlog. It will list the information in descending order by quantity of 
backlogged messages.

HARDCOPY or HC  
The system is to display the following information about the hardcopy 
message set or the hardcopy medium:
- Whether the hardcopy medium is SYSLOG or OPERLOG
- Whether the hardcopy message set is to include operator commands, 
responses, and status displays
- The routing codes for messages the system is to include in the hardcopy 
message set
- The number of messages waiting to be sent to the hardcopy medium.

The DISPLAY CONSOLES command response (CNZ4100I) will display 
SYSLOG and OPERLOG status.

KEY  
The system is to display a list of available class names of extended MCS 
consoles.
KEY[=key]

The system is to display the list of active operators in the specified console class, where ‘key’ is a specific class name. See z/OS MVS Planning Operations for more information.

LIST or L

The system is to display the status of consoles defined to the sysplex in CONSLxx but not for extended MCS consoles.

MASTER or M

The system is to display the status of all consoles with master authority.

SHAREDMODE

Displays the status of all MCS, SMCS, and subsystem consoles that are available in console services shared mode. Use SHAREDMODE to display which consoles will continue to exist in console services shared mode.

Note: EMCS consoles are unaffected by a fallback from console services distributed mode to shared mode.

SMCS

Displays the status of the SMCS applications in the sysplex. The SMCS keyword is mutually exclusive with all other DISPLAY CONSOLES keywords.

* The system is to display the status of the console that issues the DISPLAY command.

L=area, name, or name-area

Specifies the display area (area), console name (name), or both (name-area) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Example 1

To display information about consoles named CON24 and TAPE, enter:
D C,CN=(CON24,TAPE)

Example 2

To display information about all active consoles that receive messages with routing code 3, enter:
D C,A,ROUT=3

Example 3

To display information about all subsystem consoles that receive routing code 15, enter:
D C,SS,ROUT=15

Example 4

To display information about the console device number 81B, enter:
D C,U=81B

Example 5
DISPLAY CONSOLES Command

To display information about the console device number 3480, enter:
D C,U=/3480

**Example 6**

To display the list of available class names (keys), enter:
D C,KEY

**Example 7**

To display information about all inactive consoles and have the output go to area A on the console named CON5, enter:
D C,N,L=CON5-A

**Example 8**

To display information about hardcopy processing on console CON13, area B, enter:
D C,HC,L=CON13-B

**Example 9**

To display only the names of all consoles that begin with the letters, SYS1, enter:
D C,CN=(SYS1*),S

**Example 10**

To display information about the console named DAVE for every system where DAVE is defined, enter:
D C,CN=DAVE,F

**Displaying DIAG Parmlib Information**

Use the DISPLAY DIAG command to display the current options that have been set through DIAGxx parmlib members.

D DIAG[,L={a|name|name-a}]

**DIAG**

The system displays information about the current options set in DIAGxx.

(Message IGV007I)

**L=a, name, or name-a**

Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

**Example 1**

To display DIAGxx parmlib information, enter:
D DIAG
Displaying Data Lookaside Facility Information

Use the DISPLAY DLF command to display the names of the data sets that are currently being processed as DLF objects (message ISG343I). The ISG343I message output could include allocated Enq/Reserve resources that are not actually DLF objects. See MVS Hiperbatch Guide for the eligible data set list for DLF objects.

The complete syntax for the DISPLAY DLF command is:

```
D DLF[,RES=({qname[,rname]},[,rname|,*])][,HEX][,L={a|name|name-a}]
```

The parameters are:

**RES=(qname[,rname])**

A list of major names or resource information for the specified resource(s). Only resources that have at least one requestor are displayed.

**Notes:**

1. The recommended DISPLAY DLF syntax is:
   ```
 DISPLAY DLF,RES=(SYSZSDO,*)
   ```
2. The parentheses around the resource name(s) in RES=(qname[,rname]) are required.

A resource name must consist of a qname (major name) and can include an rname (minor name). If you specify an asterisk (*) as the last character in the resource name, then the system treats the name as a generic name; the display includes all resources with names that match the portion of the name specified before the asterisk. For example, SYSV* indicates that set of resources whose names begin with SYSV. If you specify major name without a minor name, the system displays just a list of the specified major names of those resources that have requestors. You can specify a generic qname with a specific rname, and conversely, a specific qname with a generic rname.

Specify the HEX operand if you want the resource names to be displayed in EBCDIC and hexadecimal. Use it when you have resource names that contain characters that will not appear on your console (that is, those characters that are not defined in the figure, “;English (U.S) I/O Interface Code for 3277”, which appears in IBM 3270 Information Display System.)

How you specify qname (the major name) depends on the characters in the name.

**qname**

If qname only contains characters that are alphanumeric (A–Z and 0–9), national (#, @, and $), and a period (.), specify either:
- 1–8 alphanumeric characters (a specific major name)
- 1–7 alphanumeric characters followed by an asterisk (*) (a generic major name)

**‘qname’**

If qname consists of characters that can be displayed other than alphanumeric, national, or a period (excluding a single quotation mark), use the form ‘qname’. The single quotation marks are required but do not count as part of the length specification for qname. For qname, specify either:
- 1–8 characters (a specific major name)
DISPLAY DLF Command

- 1–7 characters followed by an asterisk (*) after the closing single quotation mark (a generic major name)

X ’qname’
If qname contains hexadecimal values or a single quotation mark, specify the name in hexadecimal in the form X’qname’. The prefix X and the single quotation marks enclosing qname are required but do not count as part of the length specification for qname. For qname, specify either:
  - 2–16 hexadecimal digits (a specific major name)
  - 2–14 hexadecimal digits followed by an asterisk (*) after the closing single quotation mark (a generic major name)

* If you want a list of the major names of all resources that have requestors, specify '*' to indicate a generic major name.

How you specify rname (the minor name) depends on the characters in the name.

rname
If rname contains characters that are alphanumeric (A–Z and 0–9), national (#, @, and $), and/or a period (.), specify either:
  - 1–52 alphanumeric characters (a specific minor name)
  - 1–51 alphanumeric characters followed by an asterisk (*) (a generic minor name)

‘rname’
If rname consists of characters that can be displayed other than alphanumeric, national, or a period (excluding a single quotation mark), use the form ‘rname’. The single quotation marks are required but do not count as part of the length specification for rname. For rname, specify either:
  - 1–52 characters (a specific minor name)
  - 1–51 characters followed by an asterisk (*) after the closing single quotation mark (a generic minor name)

X ’rname’
If rname contains hexadecimal values or a single quotation mark, specify the name in hexadecimal in the form X’rname’. The prefix X and the single quotation marks enclosing rname are required but do not count as part of the length specification for rname. For rname, specify either:
  - 2–104 hexadecimal digits (a specific minor name)
  - 2–102 hexadecimal digits followed by an asterisk (*) after the closing single quotation mark (a generic minor name)

* If you want information on all resources, specify '*' to indicate a generic minor name.

HEX
Resource information is to be displayed in hexadecimal as well as EBCDIC.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Example 1
To display resource information about all resources that have requestors, enter:
D LDF,RES=(*,*)

**Performance Implication:** This command gives you data about every allocated ENQ/RESERVE resource (including ones that may not actually be DLF objects, see MVS Hiperbatch Guide for information about eligible data set list for DLF objects); therefore, there might be a very large display. If this command produces a large amount of output, the command output might fill WTO buffers, and degrade system response time. If the display exceeds the current supply of WTO buffers, an ABEND 09A with reason code 46FA will occur.

**Example 2**

To display resource information about all resources whose major name is SYSDSN, enter:

D LDF,RES=(SYSDSN,*)

**Example 3**

To display in EBCDIC and hexadecimal the outstanding ENQ/RESERVES that have a name of SYSCTLG, enter:

D LDF,RES=(SYSCTLG,*),HEX

The display includes the hexadecimal representation of the resource name, SYSCTLG, with the hexadecimal representation under it:

SYSCTLG
EEECEDC
2823337

### Displaying Dump Options or Dump Data Set Status

Use the DISPLAY DUMP command to determine:

- Status and availability of pre- and automatically allocated dump data sets
- What dump mode and options are currently in effect
- The title and error-related data for pre- and automatically allocated dump data sets

```
D {DUMP},{(STATUS|ST|S)}
{D}
{(OPTIONS|O)}
{(TITLE|T},(AUTODSN=|aaa|ALL)}
{(ERRDATA|ER|E),
{(DSN=|ALL|ALL)
{nn|nn[nn]...}
{nn-nn|nn-nn[nn-nn]...}
{nn[nn]...nn-nn[nn-nn]...}}
{ DUMPID={xxx|yyy[zzz]...}
{aaa-bbb|aaa-bbb[ccc-ddd]...}
{(yyy[zzz]...aaa-bbb[ccc-ddd]...}
[,L={a|name|name-a}]}
```

**DUMP or D**

The system is to display dump information.

**STATUS or ST or S**

The system is to display (message IEE852I) a summary of:
DISPLAY DUMP Command

- Which SYS1.DUMP data sets are available and which are full
- How many dumps are captured in virtual storage and how much storage they occupy
- How much virtual storage is available for capturing additional dumps
- The status of automatic dump data set allocation
- What resources are defined for automatic dump data set allocation
- The naming convention currently in effect for automatically allocated dump data sets

OPTIONS or O
The system is to display:
- Coupling facility system failure dumping options
- Dump mode and options in effect for dump types:
  - SDUMP
  - SYSUDUMP
  - SYMDUMP
  - SYSABEND

TITLE or T
The system is to display (message IEE853I) the dump data set name, title, and time of the dump for the captured dumps or dumps written to pre- or automatically allocated dump data sets as requested by the AUTODSN=, DSN=, and DUMPID parameters.

ERRDATA or ER or E
The system is to display (message IEE854I) error data for:
- Full direct access dump data sets that you specify in DSN=
- Automatically allocated dump data sets specified in AUTODSN=
- Captured dumps that you specify on the DUMPID parameter.

The error data for each full data set includes:
- Dump title
- Data set names for automatically allocated dump data sets
- Time of dump
- Error id, which includes the sequence number, the processor id, the ASID of the failing task, and the time stamp
- Abend code
- Reason code
- Module name
- Failing CSECT name
- Error PSW
- Translation exception address
- Abending program address
- Recovery routine address
- Registers at time of error

The SDWA furnishes most of the data that appears in the display caused by the DISPLAY DUMP,ERRDATA command. This means that if MVS/ESA is not in recovery mode, the display contains only the data set name, title, and time of the dump.

AUTODSN={aaa or ALL}
The system is to display the requested dump information about the dump data sets that were most recently allocated automatically. Only those dump data sets
allocated since the last IPL will be presented. Dump data sets created in a
previous IPL will not be displayed by this command.

aaa
  Specifies the number of data sets for which information is displayed. aaa
  must have a value from 1 to 100.

ALL
  The system displays information for all dump data sets that were
  automatically allocated to a maximum of one hundred.

AUTODSN=, DSN=, and DUMPID= are mutually exclusive.

DSN={ALL or nn}
  The system is to display dump information about all direct access dump data
  sets or specific pre-allocated direct access dump data sets. For DSN= you can
  specify:
  • All data sets
  • One or more single data sets
  • One or more ranges of data sets

  For specific data sets or ranges, nn must have a value from 00 to 99. When
  you specify a range of data sets, the first nn in the range must be less than or
  equal to the second nn.

  If you specify DSN=ALL, then the system also displays information about the
  one dump data set that was most recently allocated automatically.

  DSN=, AUTODSN=, and DUMPID= are mutually exclusive.

DUMPID=xxx or aaa- ddd
  The system is to display the dump information about specific captured dumps
  waiting to be written to dump data sets, as denoted by the three decimal digit
  DUMPID. You can specify for DUMPID= one or more single captured dump
  identifiers and/or one or more ranges of captured dump identifiers. For any of
  these specifications, the value must be in the range of 000 to 999. When you
  specify a range of captured dump identifiers, the first identifier must be less
  than the second identifier. Multiple identifiers or ranges must be enclosed in
  parentheses and separated by commas.

  DSN=, AUTODSN=, and DUMPID= are mutually exclusive.

L=a, name, or name-a
  Specifies the display area (a), console name (name), or both (name-a) where
  the display is to appear.

  If you omit this operand, the display is presented in the first available display
  area or the message area of the console through which you enter the
  command.

Example 1

To check the full or available status of all defined SYS1.DUMP data sets on both
direct access and tape devices, enter:

D DUMP

Example 2

To display the dump title for direct access dump data sets 1, 5, 6, 7, 8, 9, 10, and
90, enter:

D D,T,DSN=(01,05-10,90)
DISPLAY DUMP Command

If any of these data sets are empty or undefined, the system tells you that dump data is not available for them.

Example 3

To display error data for all full direct access dump data sets and the most recent automatically allocated dump data set, enter:
D D,ER,DSN=ALL

Example 4

To display error data, if any, for direct access dump data sets 1-21, enter:
D D,ER,DSN=(01-21)

If any of these data sets are empty or undefined, the system tells you that dump data is not available for them.

Example 5

To see the dump modes and dump options in effect for each dump type, enter:
D D,0

Example 6

To DISPLAY the error data for captured dump 123, enter:
D D,ER,DUMPID=123

Example 7

To DISPLAY the titles of captured dumps 123 and 456, enter:
D D,T,DUMPID=123,456

Example 8

To DISPLAY the titles of all, or the one hundred most recent, automatically allocated dump data sets, enter:
D D,T,AUTODSN=ALL

Displaying Extended MCS Information

Use the DISPLAY EMCS command (instead of the DISPLAY CONSOLES command) to display information about extended MCS (EMCS) consoles.

When the system searches for any consoles you specify, it allows wildcard matching. CN, SYS, and KEY can include wildcard characters (\* and ?) that allow a single parameter to match many different actual conditions. For example, CN=AD? matches console names like AD1 or AD2 but not ADD1. CN=A* matches A1 or AD1 or ADD1.
The syntax for the DISPLAY EMCS command is:

```
D EMCS,{SUMMARY|S}
 [INFO|I]
 {FULL|F}
 {STATUS=A|N|L[B[(nn)]]|ERR}
 {ST}
 {CN=consname|*}
 {SYS=sysname|*}
 {KEY=keyname|*}
 {AUTH={ANY}
 {MASTER}
 {SYS}
 {IO}
 {CONS}
 {ALL}
 {INFO}
 {SYSONLY}
 {IOONLY}
 {CONSONLY}
 {ALLONLY}
 {INFOONLY}}
 {ATTR={ANY}
 {YES}
 {ROUT}
 {HC}
 {AUTO[YES|NO]}
 {MN}
 {NONE}
 {INTIDS}
 {UNKNIDS}}
 {DOM={ANY}
 {NORMAL}
 {ALL}
 {NONE}
 {YES}}
```

The parameters are:

**EMCS**
The system is to display console information about extended MCS (EMCS) consoles.

**SUMMARY or S**
The system is to display only the numbers and names for the consoles that meet the criteria.

**INFO or I**
The system is to display all console information, except statistics on the console’s message data space, for the consoles that meet the criteria.

**FULL or F**
The system is to display all available information about the consoles that meet the criteria. Message data space statistics can only be displayed for consoles that are active on the system where the command is processed.
The following keyword parameters define the criteria used to limit the number of consoles displayed.

**STATUSIST=AINILIB[[nn]][ERR]**

The system is to display information about extended MCS consoles according to console status:

**A**  All extended MCS consoles that are active.

**N**  All extended MCS consoles that are not active.

**L**  Both active and inactive extended MCS consoles.

**B[[nn]]**

All consoles with a backlog of more than *nn* unretrieved delivered messages, where *nn* is a number from 1 to 999999. If you omit *nn*, the default is 10 unretrieved messages. Backlog information can only be displayed for consoles attached to the system that processes the command.

**ERR**

All consoles in an error state, such as consoles with queueing suspended. Error state information can only be displayed for consoles attached to the system that processes the command.

**Note:** Specifying B or ERR on STATUS forces the amount of information to be FULL.

**CN=consname**

The system is to display information according to console name. A console name can be from 1 to 8 characters. You can specify wildcard characters (* and ?) in the console name.

**CN=*** is a special case because * is not a wildcard character. CN=* means that the system is to display information about this console, the console you are using to enter the command.

**Note:** Specifying CN=*, or a console name with no wildcard characters, automatically forces STATUS=L.

**SYS=sysname**

The system is to display information about any consoles that are active or eligible to be activated on the system you specify, and that match the other specified parameters. A system name can be from 1 to 8 characters. You can specify wildcard characters (* and ?). The default is SYS=*, which matches all system names.

**KEY=keyname**

The system is to display information according to console key name, where **keyname** is the name your installation has assigned to a console group. (See [z/OS MVS Planning: Operations](/ibm/zos/bkserv/zosv1r11/plan025.html) for more information.) The name can be from 1 to 8 characters. You can specify wildcard characters (* and ?). The default is KEY=*, which matches all console class names.

**AUTH=**

The system is to display information about consoles with a specific console command authority, which may be one of the following:

**ANY**

Consoles with any authority.

**MASTER**

Consoles with MASTER authority.
SYS
Consoles with at least SYS authority (meaning MASTER authority, SYS authority alone, or SYS combined with IO or CONS or both).

IO Consoles with at least IO authority.

CONS
Consoles with at least CONS authority.

ALL
Consoles with at least ALL authority (SYS, IO, and CONS).

INFO
Consoles with at least INFO authority.

SYSONLY
Consoles with SYS authority only (not MASTER, CONS, or IO).

IOONLY
Consoles with IO authority only.

CONSONLY
Consoles with CONS authority only.

ALLONLY
Consoles with ALL authority only (meaning consoles with SYS, IO, and CONS authority, but not MASTER authority).

INFOONLY
Consoles with INFO authority only.

ATTR= The system is to display information about extended MCS consoles that receive messages with a specific routing attribute, which may be one of the following:

ANY Any consoles, regardless of routing attributes.

YES Consoles that receive some type of unsolicited messages (either routing codes, hardcopy messages, AUTO(YES) messages, or MONITOR messages.)

ROUT Consoles that receive any routing codes.

HC Consoles receiving the hardcopy message set.

AUTO[(YES/NO)] Consoles that are or are not receiving AUTO(YES) messages. The default is YES.

MN Consoles receiving any type of MONITOR messages.

NONE Consoles with no routing attributes.

INTIDS Consoles receiving messages directed to console ID zero. If you do not specify, the system displays consoles with either Y or N value of INTIDS.
DISPLAY EMCS Command

UNKNIDS
Consoles receiving messages directed to the old 1-byte format of console IDs. If you do not specify, the system displays consoles with either Y or N value of UNKNIDS.

DOM=
The system is to display information about extended MCS consoles according to specific DOM attributes.

ANY
Any consoles, regardless of DOM attributes.

NORMAL
Only consoles defined with DOM(NORMAL).

ALL
Only consoles defined with DOM(ALL).

NONE
Only consoles defined with DOM(NONE).

YES
Consoles defined with either DOM(ALL) or DOM(NORMAL).

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Example
Assume a single system where the system console is named SYS01, and there are two additional extended MCS consoles, named EMCS1 and EMCS2. If you issue the following command:
DISPLAY EMCS

The display includes only the console names (because SUMMARY is the default) of active extended MCS consoles (because STATUS=A is the default). The output of the command appears as follows:
IEE129I 13.35.15
DISPLAY EMCS DISPLAY EMCS
NUMBER OF CONSOLES MATCHING CRITERIA: 6
*DICNSY3 EMCS1 SY3 *ROUTEY3 EMCS2 *SYSLGY3
DISPLAY EMCS,INFO

The display includes all information except dataspace information (because you specified INFO) but will only include active consoles (because STATUS=A is the default). The output of the command looks like:
CNZ4101I 13.31.07 DISPLAY EMCS
DISPLAY EMCS,INFO
NUMBER OF CONSOLES MATCHING CRITERIA: 6
CN=*DICNSY3 STATUS=A CNID=01000001 KEY=NONE
SYS=SY3 ASID=0009 JOBNAME=-------- JOBID=--------
HC=N AUTO=N DOM=ALL TERMNAME=**DICNSY3
MONITOR=-------- CMDSYS=SY3 LEVEL=ALL AUTH= INFO
MSCOPE=**ALL
DISPLAY EMCS Command

ROUTCDE=ALL
INTIDS=N UNKNIDS=N
CN=EMCS1 STATUS=A CNID=01000002 KEY=EXAMPLE
SYS=SY3 ASID=0018 JOBNAME=EXTMCS JOBID=STC00029
HC=N AUTO=N DOM=NORMAL TERMNAME=EMCS1
MONITOR--------
CMDSYS=SY3
LEVEL=ALL AUTH= MASTER
MSCOPE=ALL
ROUTCDE=ALL
INTIDS=N UNKNIDS=N
CN=SY3 STATUS=A CNID=02000001 KEY=SYSCONS
SYS=SY3 ASID=0009 JOBNAME=-------- JOBID=--------
HC=N AUTO=N DOM=NORMAL TERMNAME=SY3
MONITOR--------
CMDSYS=SY3
LEVEL=ALL,NB AUTH= MASTER
MSCOPE=ALL
ROUTCDE=NONE
AUTOACT=--------
INTIDS=N UNKNIDS=N
CN=*ROUTEY3 STATUS=A CNID=02000002 KEY=MVSRUTE
SYS=SY3 ASID=0009 JOBNAME=-------- JOBID=--------
HC=N AUTO=N DOM=NONE TERMNAME=ROUTEALL
MONITOR--------
CMDSYS=SY3
LEVEL=R,NB AUTH= CONS
MSCOPE=ALL
ROUTCDE=NONE
INTIDS=N UNKNIDS=N
CN=EMCS2 STATUS=A CNID=02000003 KEY=EXAMPLE
SYS=SY3 ASID=0029 JOBNAME=EXTMCS JOBID=STC00030
HC=N AUTO=N DOM=NORMAL TERMNAME=EMCS2
MONITOR--------
CMDSYS=SY3
LEVEL=ALL AUTH= MASTER
MSCOPE=ALL
ROUTCDE=NONE
INTIDS=N UNKNIDS=N
CN=*SYSLGY3 STATUS=A CNID=03000001 KEY=SYSLOG
SYS=SY3 ASID=0009 JOBNAME=-------- JOBID=--------
HC=N AUTO=N DOM=NONE TERMNAME=*SYSLGY3
MONITOR--------
CMDSYS=SY3
LEVEL=ALL AUTH= MASTER
MSCOPE=SY3
ROUTCDE=NONE
INTIDS=N UNKNIDS=N

Displaying the Timer Synchronization Mode and ETR Ports

Use the DISPLAY ETR command to display the current timer synchronization mode and the status of the ETR ports as seen by MVS.

The DISPLAY ETR command issues the following information when the sysplex is running in STP mode:

- Timing mode
- CTN ID
- Time
- Node that is the source of the time, if applicable
- Redundant available timing links, if applicable
DISPLAY ETR Command

- Stratum level of the server

See message IEA386I for additional details.

The complete syntax for the DISPLAY ETR command is:

```
D ETR[,DATA][,L={a|name|name-a}]
```

**ETR**
Displays the current ETR (external time reference) synchronization and the status of the ETR ports.

**DATA**
Displays the status, in detail, of each ETR port, giving the ETR network ID, ETR port number, and the ETR ID.

**L=a, name, or name-a**
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

**Example**

To display the current timer synchronization mode status and the ETR ports, enter:

```
D ETR
```

The status is shown in this display:

```
IEA282I
hh.mm.ss ETR STATUS SYNCHRONIZATION MODE=mode CPC SIDE=id
```

CPC PORT 0   CPC PORT 1
  op  op
  enb  enb

where the fields in the message are:

- `hh.mm.ss` is the current time in hours(hh), minutes(mm), seconds(ss)
- `MODE=mode` is the current synchronization mode, ETR or LOCAL
- `CPC SIDE=id` is the current CPC side id, 0 or 1
- `op` is the status of the port, operational or nonoperational
- `enb` is the status of the port, enabled or disabled

**Displaying Global Resource Serialization Information**

Use the DISPLAY GRS command to display information that helps you control the global resource serialization complex. The information includes:

- **Configuration information:**
  The status of each system associated with the current global resource serialization complex is displayed. Some of the information displayed depends on whether you are running a global resource serialization ring or star complex. For instance, the status of the systems in the complex and the manner in which the systems are connected are different for a ring and a star complex.
DISPLAY GRS Command

- **RNL information:**
  The contents of the RESERVE conversion, SYSTEMS exclusion, and SYSTEM inclusion resource name lists (RNLs).

- **Resource information:**
  Information on resources for which there is contention or information about a specific resource.

- **Information on resources that are delaying or suspending RNL changes.**
  If you do not code any keywords on the DISPLAY GRS command:
  - The information displayed for a star complex is the same as if you entered `DISPLAY GRS,SYSTEM`.
  - The information displayed for a ring complex is the same as if you entered `DISPLAY GRS,SYSTEM, plus the configuration is displayed.`

- **Contention information:**
  A list of the units of work involved in contention for GRS-managed resources (both ENQ and Latch). This display can focus on the units of work that are waiting for the resources or those blocking the resources. In addition, the installation can display dependencies between requestors of GRS-managed resources. The display command provides both generic Contention and Analyze Contention functions. The Analyze function is recommended because it detects dependencies (including deadlock) between requestors, provides a complex wide view of System and Systems ENQ resources, and takes time into consideration to highlight the possible root cause of the contention. The Contention function only provides an alphabetical list of the resources that are in contention. The Contention function is not like the Analyze function in that a sysplex wide view of SYSTEM level ENQs is not provided in the former one. In addition to the SYSTEMS level ENQs, only the SYSTEM level ENQs that were requested from the issuing system are displayed. Also, time and dependencies are not considered. The Contention function is not like the Analyze function in that the former displays only System level ENQs that were requested from the issuing system and does not consider both time and dependencies.

When the keywords CONTENTION, RES=, RNL=, or any combination of them are specified together, the system will display a separate section for each keyword specified. Specifying the ALL keyword will override any parameters specified on the RNL= keyword.

The complete syntax for the DISPLAY GRS command is:
DISPLAY GRS Command

SYSTEM

System information is to be displayed. The SYSTEM operand produces a display only when a global resource serialization complex is active.

The display of system information includes:
The system name (the name specified on the SYSNAME system parameter) of each system in the global resource serialization complex.

The state of each system in the global resource serialization star complex:
- Connecting: The system is processing the GRS=STAR parameter. It is not yet a member of the global resource serialization star complex.
- Connected: The system is a member of the global resource serialization star complex.
- Rebuilding: The system is a member of the global resource serialization star complex, but is currently rebuilding the global resource serialization lock structure, ISGLOCK. The system suspends any tasks that try to obtain any global resources.

The state of each system in the global resource serialization ring complex:
- Active: The system is presently serializing global resources. It is a member of the global resource serialization ring. If ACTIVE and WAIT appear, a global resource serialization command was issued but is waiting because another global resource serialization command is executing. If ACTIVE and VARY appear, the system is executing an internally-issued or operator-issued global resource serialization command.
- Inactive: This system is not presently sending or receiving global requests in the global resource serialization ring. Any requests already held remain held, and any new requests remain pending until this system restarts back into the ring. The system suspends tasks that request global resources. The system can be used to restart the ring.
- Quiesced: This system is not presently sending or receiving global requests in the global resource serialization ring. Any requests that are held remain held, and any new requests remain pending until this system restarts back into the ring. The system suspends tasks that request global resources. The system must restart back into an already active ring to resume global request processing, or it can be reactivated to restart a new ring if no other active systems exist.
- Joining: This system is in the process of joining the global resource serialization complex.
- Restarting: This system was an inactive or quiesced system and is now in the process of rejoining the global resource serialization ring.
- Migrating: The system is participating in the process of migrating from a global resource serialization ring complex to a global resource serialization star complex.

The communication status of each system in the global resource serialization ring or star complex:
- The display for a ring complex shows the current settings for the following parameters:
  - The minimum RSA-message residency time in milliseconds.
  - The maximum tolerance time interval allowed for RSA-message to return to the system.
  - Whether synchronous reserve processing is activated for the current system.
- The display for a star complex shows the current settings for the following parameters:
  - The number of locks for the global resource serialization lock structure (ISGLOCK).
  - Which system is the contention notifying system.
DISPLAY GRS Command

- Whether synchronous reserve processing is activated for the current system.

**LINK**

CTC link information is to be displayed. The LINK operand produces a display only when a global resource serialization complex is active.

When the global resource serialization ring complex is using XCF signalling, the display shows that XCF paths are used.

The display of global resource serialization CTC link information includes:

- The device number of each CTC link assigned to global resource serialization on this system
- The status of each global resource serialization CTC link, which can be any one of the following:
  - In use: This system is using this link to send messages to and receive RSA messages from the system at the other end of the CTC link.
  - Alternate: This system is not presently using this link to send or receive RSA messages, but it has the ability to do so. If your installation uses ring acceleration, global resource serialization might be using the link to send the ring acceleration signal.
  - Disabled: This system cannot use this link to send or receive messages.
  - Quiet: The system at the opposite end of the link does not respond.
- The system name (the name specified on the SYSNAME system parameter) of the system that last responded from the opposite end of the link.

**ALL or A**

The following information is to be displayed:

- System information
- CTC link information
- Resource contention information
- RNL change information
- The contents of all RNLs

Specify HEX if you want the resource names displayed in EBCDIC and in hexadecimal. If the global resource serialization complex is inactive, the display does not contain system information, CTC link information, or the contents of RNLs. If the system did not start or join an active global resource serialization ring at IPL, the display does not contain system, link, and RNL information. When an RNL change is in progress, the display shows DELAY and SUSPEND information.

**CONTENTION or C**

Resource contention information for the current global resource serialization complex is to be displayed. If a DISPLAY GRS,CONTENTION command is entered without the LATCH or ENQ operands, the system displays both ENQ and LATCH contention information. Specify HEX if you want resource names displayed in EBCDIC and in hexadecimal.

**DELAY or D**

Displays the jobs that are delaying an RNL change. The following information is displayed:

- Jobname
- ASID
- Resources held or waiting for
DEV=[/]devnum
Displays a list of non-converted RESERVE requests for the device identified by devnum. The device number consists of 3 or 4 hexadecimal digits, optionally preceded by a slash (/).

You can use this command to:
• Determine which jobs have RESERVE requests for a particular device.
• Whether this system has reserved the device.
• Help resolve reserve contention problems.

ENQ or E
Resource contention information for ENQs and RESERVEs is to be displayed. If you specify ENQ, you must also specify CONTENTION.

JOBNAME or JOB
Latch information for a particular job is to be displayed. Specify the name of a job that you suspect either owns a latch or has a pending request to obtain a latch. If JOBNAME is specified, LATCH must also be specified.

LATCH or L
Latch information is to be displayed. If you specify LATCH, you must also specify CONTENTION or JOBNAME or both:
• Specify LATCH,CONTENTION if you suspect that tasks or SRB routines are contending for a latch that is held by another task or SRB routine. The system displays information about latches that have contention (if any exist).
• Specify LATCH,JOBNAME to display information about latches that a specified job owns or is waiting for, regardless of whether contention for those latches exists.
• Specify LATCH,CONTENTION,JOBNAME to display information about latches that a specified job owns or is waiting for and for which contention exists.

The following are the various combinations of the CONTENTION, ENQ, JOBNAME, and LATCH parameters, and the information each produces:

CONTENTION
ENQ,LATCH,CONTENTION
Both ENQ and latch contention information.

ENQ,CONTENTION
ENQ contention information.

LATCH,CONTENTION
Latch contention information.

LATCH,JOBNAME
Latch information for a particular job name, if the job owns or waits for a latch

LATCH,CONTENTION,JOBNAME
Latch information for a particular job name, if the job owns or waits for a latch, and contention exists for the latch.

ENQ,LATCH,CONTENTION,JOBNAME
ENQ and latch contention information for a particular job name.

SUSPEND or S
Displays the jobs that are suspended, waiting for resources that are affected by the RNL change. The following information is displayed:
• Jobname
• ASID
DISPLAY GRS Command

- Resources the job is waiting for

**Note:** DELAY and SUSPEND do not support the HEX operand.

RNL=
The contents of one or all resource name lists (RNLs) in the current global
resource serialization complex are to be displayed. The RNL operand produces
a display only when a global resource serialization complex is active. Specify
HEX if you want resource names displayed in EBCDIC and in hexadecimal.
When the GRSRNL=EXCLUDE option is in effect, the display shows this option
is being used.

**CONVERSION or CON or C**
The contents of the RESERVE conversion RNL are to be displayed.

**EXCLUSION or EXCL or E**
The contents of the SYSTEMS exclusion RNL are to be displayed.

**INCLUSION or INCL or I**
The contents of the SYSTEM inclusion RNL are to be displayed.

**ALL or A**
The contents of all RNLs are to be displayed.

RES=(qname[,rname])
A list of major names or resource information for the specified resource(s). Only
resources that have at least one requestor are displayed.

A resource name must consist of a qname (major name) and can include an
rname (minor name). If you specify an asterisk (*) as the last character in the
resource name, then the system treats the name as a generic name; the
display includes all resources with names that match the portion of the name
specified before the asterisk. For example, SYSV* indicates that set of
resources whose names begin with SYSV. If you specify major name without a
minor name, the system displays just a list of the specified major names of
those resources that have requestors. You can specify a generic qname with a
specific name, and conversely, a specific qname with a generic rname.

Specify the HEX operand if you want the resource names to be displayed in
EBCDIC and hexadecimal. Use it when you have resource names that contain
characters that will not appear on your console (that is, those characters that
are not defined in the figure, “;English (U.S) I/O Interface Code for 3277,” which
appears in *IBM 3270 Information Display System*).

**Note:** The parentheses around the resource name(s) in RES=(qname[,rname])
are required.

How you specify qname (the major name) depends on the characters in the
name.

**qname**
If qname contains only characters that are alphanumeric (A-Z and 0-9),
national (#, @, and $), and a period (.), specify either:
- 1-8 alphanumeric characters (a specific major name)
- 1-7 alphanumeric characters followed by an asterisk (*) (a generic major
  name)

‘qname’
If qname consists of characters that can be displayed other than
alphanumeric, national, or a period (excluding a single quotation mark), use
the form ‘qname’. The single quotation marks are required but do not count as part of the length specification for qname. For qname, specify either:

- 1-8 characters (a specific major name)
- 1-7 characters followed by an asterisk (*) after the closing single quotation mark (a generic major name)

\textbf{X‘qname’}

If qname contains hexadecimal values or a single quotation mark, specify the name in hexadecimal in the form X‘qname’. The prefix X and the single quotation marks enclosing qname are required but do not count as part of the length specification for qname. For qname, specify either:

- 2-16 hexadecimal digits (a specific major name)
- 2-14 hexadecimal digits followed by an asterisk (*) after the closing single quotation mark (a generic major name)

* If you want a list of the major names of all resources that have requestors, specify ‘*’ to indicate a generic major name.

How you specify rname (the minor name) depends on the characters in the name.

\textbf{rname}

If rname contains characters that are alphanumeric (A-Z and 0-9), national (#, @, and $), and/or a period (.), specify either:

- 1-52 alphanumeric characters (a specific minor name)
- 1-51 alphanumeric characters followed by an asterisk (*) (a generic minor name)

\textbf{‘rname’}

If rname consists of characters that can be displayed other than alphanumeric, national, or a period (excluding a single quotation mark), use the form ‘rname’. The single quotation marks are required but do not count as part of the length specification for rname. For rname, specify either:

- 1-52 characters (a specific minor name)
- 1-51 characters followed by an asterisk (*) after the closing single quotation mark (a generic minor name)

\textbf{X‘rname’}

If rname contains hexadecimal values or a single quotation mark, specify the name in hexadecimal in the form X‘rname’. The prefix X and the single quotation marks enclosing rname are required but do not count as part of the length specification for rname. For rname, specify either:

- 2-104 hexadecimal digits (a specific minor name)
- 2-102 hexadecimal digits followed by an asterisk (*) after the closing single quotation mark (a generic minor name)

* If you want information on all resources, specify (*) to indicate a generic minor name.

\textbf{HEX}

Resource information is to be displayed in hexadecimal as well as EBCDIC. The HEX operand does not affect the SYSTEM or LINK operands.

\textbf{ANALYZE or ANALYSE or AN}

Displays an analysis of system contention. The scope of the analysis is based on the input specified by the command issuer, and can be:

- the entire sysplex
- one system
- one address space
DISPLAY GRS Command

- one task.

The default scope for the analysis is the entire sysplex.

ANALYZE, LATCH
Displays information about GRS latch contention. Choose either BLOCKER,
WAITER, or DEPENDENCY analysis for all latch sets and latches. The optional
parameters are:

  cr-asid
  Specifies the ASID of the latch set creator space to analyze.

  cr-jobname
  Specifies the JOBNAME of the latch set creator space to analyze.

  xisetnamelist
  Specifies the list of latch sets to be excluded from the display. Latch set
  names can be long, so wildcarding (*,?) is encouraged, where ? matches
  any single character, and * matches any string of zero or more characters.
  You can enter one to five latch set names.

  xjobnamelist
  Specifies the list of job names to be excluded from the display. You can
  enter generic job names by placing a (*) at the end of the job name. You
  can enter one to twenty-five job names.

  workunitaddr
  Specifies the address of the work unit of the latch requestor (TCB or WEB
  for an SRB) to analyze. The workunitaddr parameter is only valid with
  DEPENDENCY and ASID or JOBNAME.

  lsetname
  Specifies the name of the latch set to analyze. Either CASID or
  CJOBNAME must also be specified. Latch set names can be long, so
  wildcarding (*,?) is encouraged, where ? matches any single character, and
  (*) matches any string of zero or more characters. If no (*) characters are
  specified, the latch set name is padded with blanks. The Lsetname
  parameter is only valid with DEPENDENCY and CASID or CJOBNAME. Do
  not specify Lsetname with XLSetNM.

  latchnum
  Specifies the latch number to analyze. Either CASID or
  CJOBNAME must also be specified. This number is to be specified by one to eight decimal
  digits. The Lsetname parameter is only valid with DEPENDENCY and
  CASID or CJOBNAME. Do not specify latchnum with XLSetNM.

  jobname
  Specifies the JOBNAME of the latch requestor to analyze.

  xjobname
  Specifies the list of latch requestor JOBNAMEs to exclude from the display.

  asid
  Specifies the ASID of the latch requestor to analyze.

The default scope for the analysis is the entire system.

BLOCKER or BLOCKE or BLOCK
Displays an ordered list of the units of work blocking GRS-managed resources.

WAITER or WAITE or WAIT
Displays an ordered list of the units of work waiting for ownership of
GRS-managed resources.
DEPENDENCY or DEPENDENC or DEPENDEN or DEPEND or DEPEN or DEPE

Displays the dependencies between the units of work and resources that are in contention.

SYSTEM or SYS = sysname or *

The scope of the analysis, where sysname is a valid system name in the sysplex, 1–8 characters, following sysname rules.

ASID or AS = asid

A valid hexadecimal address space id, 1–4 hexadecimal digits. ASID requires specification of a valid sysname; you may NOT specify ASID with JOBNAME or XJOBNAME.

JOBNAME or JOB = jobname

A valid JOBNAME, 1–8 characters, following jobname rules. JOBNAME requires specification of a valid sysname; you may NOT specify JOBNAME with ASID or XJOBNAME.

XJOBNAME or XJOB = (jobname1,jobname2,...jobname25)

Jobname(s) to exclude from the analysis. You may specify up to 25 jobnames, and may enter an asterisk as a wildcard indicator as the last character of a jobname. You may NOT specify XJOBNAME with JOBNAME or ASID. If you specify XJOBNAME with XQNAME, exclusion will occur if either the jobnames or qnames match.

XQNAME or XQN = (qname1,qname2,...qname25)

Qname(s) (major names) to exclude from the analysis. You may specify up to 25 qnames, and may enter an asterisk (*) as a wildcard indicator as the last character of a qname. You may not specify XQNAME with RES. If you specify XQNAME with XJOBNAME, exclusion will occur if either the qnames or jobnames match.

TCB=tcbaddr

A valid TCB address, 1–8 hexadecimal digits. TCB is only valid with DEPENDENCY, SYSTEM, and ASID or JOBNAME, and requires specification of a valid ASID or jobname.

RES=(qname,mname)

The resource name with which to begin a dependency analysis. A resource name consists of a qname (major name) and an mname (minor name) of the 'nn' (see COUNT=) longest owners of the resource. If you omit the RES= keyword, the dependency analysis will display the nn longest waiters without regard to resource. You may not specify RES with XQNAME.

Note: When the ANALYZE keyword is specified, the HEX operand is not available for this keyword. qname indicates the resource major name and mname indicates the resource minor name with which to begin analysis. The valid characters are $, ., @, and #.

SCOPE or SCO = SYSTEM(S) or SYS(S)

Indicates the scope of the resource that begins the dependency analysis. If you specify SCOPE=SYSTEM, then you must also specify with which system to associate the ENQ. You do this by using the SYSTEM keyword.

COUNT or CNT = nn

The maximum number of blockers or waiters (in decimal) to display. Valid values are from 1 to 99. The default value is 10. COUNT is valid with any combination of keywords.
DISPLAY GRS Command

DETAIL or DET
Specifies the more detailed form of message ISG374I. Not specifying DETAIL
gives the shorter form of the output.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where
the display is to appear.

If you omit this operand, the display is presented in the first available display
area or the message area of the console through which you enter the
command.

Example 1
To display resource information about all resources that have requestors, enter:
D GRS,RES=(*,*)

Performance Implication: This command gives you data about every allocated
ENQ/RESERVE resource on all systems in the global resource serialization
complex; therefore, there might be a very large display. If this command produces a
large amount of output, the command output might fill WTO buffers, and degrade
system response time. If the display exceeds the current supply of WTO buffers, an
ABEND 09A with reason code 46FA will occur.

Global resource serialization might also truncate information that is displayed with
ISG343I:
ISG343I 15.08.31 GRS STATUS
NOT ENOUGH STORAGE TO COMPLETE THE REQUEST

Example 2
To display resource information about all resources whose major name is SYSDSN,
enter:
D GRS,RES=(SYSDSN,*)

Example 3
To display the jobs delaying an RNL change, enter:
D GRS,DELAY
The system displays the following message:
ISG343I 01:32:21 GRS STATUS
  DELAY REASONS ON SYSTEM SYSA
  JOBNAME  ASID  QNAME  RNAME
  USERJB1   0044  SYSDSN  SYS1.XYZ
  CATALOG   0007  SYSDSN  SYS1.CHANGING RESOURCE2

Example 4
To display the jobs suspended waiting for resources affected by an RNL change,
enter:
D GRS,SUSPEND
The system displays the following message:
Example 5

To display in EBCDIC and hexadecimal the outstanding ENQ/RESERVES that have a qname of SYSCTLG, enter:

D GRS,RES=(SYSCTLG,*),HEX

The display includes the hexadecimal representation of the resource name, SYSCTLG, with the hexadecimal representation under it:

SYSCTLG
EEECEDC
2823337

To display in EBCDIC and hexadecimal the outstanding ENQ/RESERVES of a resource with a minor name, enter:

D GRS,RES=(GRJGQE07,*),HEX

The hexadecimal representation of the resource, GRJGQE07, would look like the following:

Example 6

To display latch contention information for all latches that currently exist, enter the following:

D GRS,LATCH,CONTENTION

If latch contention exists, the system displays the following message:

DISPLAY GRS Command

ISG343I 01:32:21 GRS STATUS
JOBS BEING SUSPENDED DUE TO RNL CHANGE ON SYSTEM SYSA

<table>
<thead>
<tr>
<th>JOBNAME</th>
<th>ASID</th>
<th>QNAME</th>
<th>RNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>USERNM3</td>
<td>0089</td>
<td>SYSDSN</td>
<td>SYS1.DATASET.CHANGING</td>
</tr>
<tr>
<td>USERNM4</td>
<td>0245</td>
<td>SYSDSN</td>
<td>SYS1.XYZ.ABC</td>
</tr>
</tbody>
</table>

The display includes the hexadecimal representation of the resource name, SYSCTLG, with the hexadecimal representation under it:

SYSNAME	JOBNAME	ASID	TCBADDR	EXC/SHR	STATUS
S1 | MAINAS11 | 001F | 007DEB90 | EXCLUSIVE | OWN

To display latch contention information for all latches that currently exist, enter the following:

D GRS,LATCH,CONTENTION

If latch contention exists, the system displays the following message:

ISG343I 15.17.06 GRS STATUS
S=SYSTEMS GRJGQE07 TESTCASE#SERIALIZATION#ENQ

The display includes the hexadecimal representation of the resource name, GRJGQE07, with the hexadecimal representation under it:

ISG343I 23.00.04 GRS LATCH CONTENTION
LATCH SET NAME: MY.FIRST.LATCHSET
CREATOR JOBNAME: APPINITJ CREATOR ASID: 0011
LATCH NUMBER: 1
REQUESTOR ASID	EXC/SHR	OWN/WAIT	WORKUNIT	TCB	ELAPSED TIME
MYJOB1 0011 | EXCLUSIVE | OWN | 006E6CF0 | Y | 00:00:40.003
DATACHG 0019 | EXCLUSIVE | WAIT | 006E6B58 | Y | 00:00:28.001
DBREC 0019 | SHARED | WAIT | 006E6CF0 | Y | 00:00:27.003
LATCH NUMBER: 2
REQUESTOR ASID | EXC/SHR | OWN/WAIT | WORKUNIT | TCB | ELAPSED TIME
---|---|---|---|---|---
PEEKDAT1 0011 | SHARED | OWN | 007E6CF0 | TCB | ELAPSED TIME
PEEKDAT2 0019 | SHARED | OWN | 007F6CF0 | Y | 00:00:32.040
CHGDAT 0019 | EXCLUSIVE | WAIT | 007D6CF0 | Y | 00:00:07.020
LATCH SET NAME: SYS1.FIRST.LATCHSET
CREATOR JOBNAME: INITJOB2 CREATOR ASID: 0019
LATCH NUMBER: 1
REQUESTOR ASID | EXC/SHR | OWN/WAIT | WORKUNIT | TCB | ELAPSED TIME
---|---|---|---|---|---
MYJOB2 0019 | SHARED | OWN | 006E6CF0 | Y | 00:01:59.030
LATCH NUMBER: 2
REQUESTOR ASID | EXC/SHR | OWN/WAIT | WORKUNIT | TCB | ELAPSED TIME
---|---|---|---|---|---
TRANJOB1 0019 | SHARED | OWN | 006E7B58 | Y | 01:05:06.020
TRANJOB2 0019 | EXCLUSIVE | WAIT | 006E9B58 | Y | 00:01:05.003
If no latch contention exists, the system displays the following message:

ISG343I 23.00.04 GRS LATCH STATUS 886
NO LATCH CONTENTION EXISTS

Example 7

To display latch information for job LISTCHK, enter:

D GRS,L,JOB=LISTCHK or D GRS,LATCH,JOBNAME=LISTCHK

If job LISTCHK owns or waits for a latch, the system displays the following message:

ISG343I 23.00.04 GRS LATCH STATUS 886
LATCH DISPLAY FOR JOB LISTCHK
LATCH SET NAME: SYS2.PAYROLLAPP.LATCHSET
CREATOR JOBNAME: INITJOB1 CREATOR ASID: 0011

LATCH NUMBER: 1
REQUESTOR ASID EXC/SHR OWN/WAIT WORKUNIT TCB ELAPSED TIME
GETDAT1 0011 EXCLUSIVE OWN 0076ECF0 Y 00:01:07.030
GETDAT2 0019 EXCLUSIVE WAIT 007AECF0 Y 00:00:31.050
SHOWDAT 0019 SHARED WAIT 0076ECF0 Y 00:00:25.010

LATCH NUMBER: 2
REQUESTOR ASID EXC/SHR OWN/WAIT WORKUNIT TCB ELAPSED TIME
LISTREC 0011 SHARED OWN 007B6CF0 Y 00:03:07.040
FINDBLK 0019 SHARED OWN 007C6CF0 Y 00:02:07.030
CHNGBLK 0019 EXCLUSIVE WAIT 007F6CF0 Y 00:02:03.002

Example 8

To display information for all latches with contention involving job FINDREC, enter:

D GRS,L,C,JOB=FINDREC or
D GRS,LATCH,CONTENTION,JOBNAME=FINDREC

Example 9

To display contention information for ENQs and RESERVEs, enter:

D GRS,E,C or D GRS,ENQ,CONTENTION

Example 10

To display the contents of all resource name lists (RNLs) in the current global resource serialization complex, enter:

D GRS,RNL=ALL

The system displays the following message:

ISG343I 18.10.38 GRS STATUS
LIST TYPE QNAME RNAME
INCL GEN SYSDSN
INCLPATT SYSDSN SYS1.*.
EXCL SPEC SYSDSN PASSWORD
EXCL PATT SYSDSN SYS?..*LIB
EXCL PATT SYSDSN SYS?.TEST
EXCL PATT SYSDSN SYS1..LOGREC
EXCL PATT SYSDSN SYS1..MANX
EXCL SPEC SYSDSN SYS1..BRODCAST
CON PATT* *

Note the use of wildcard characters in this example.
DISPLAY GRS,ANALYZE,LATCH outputs
The following samples are the outputs when you issue the DISPLAY GRS,ANALYZE,LATCH command with different parameters. For detailed definitions of the parameters in these samples, see "Displaying Global Resource Serialization Information" on page 4-136.

If no data returns for the DISPLAY GRS,ANALYZE,LATCH command, the following output is displayed:

```
LONG BLOCKER ANALYSIS: request specification
 THERE ARE NO BLOCKING WORK UNITS MATCHING THE INPUT SPECIFICATION
```

Note: This message will only be returned if a DISPLAY GRS,ANALYZE,LATCH,BLOCKER command is issued. The message text will be different if either WAITER or DEPENDENCY is specified instead.

DISPLAY GRS,ANALYZE,LATCH,BLOCKER output
The system displays the following lines when a DISPLAY GRS,ANALYZE,LATCH,BLOCKER command is entered:

```
LONG BLOCKER ANALYSIS: request specification
 OWNTIME JOBNAME E/S CASID LSETNAME/LATCHID
 hh:mm:ss jobname ** casid lsetname
 latchId
 OTHER BLOCKERS: nn
 WAITERS: nn2
```

The first line displays the input specified in the command. The second line defines the format of the table. For each blocker that matches the input specifications on the command, the information identified by the header is displayed.

DISPLAY GRS,ANALYZE,LATCH,WAITER output
The system displays the following lines when a DISPLAY GRS,ANALYZE,LATCH,WAITER command is entered:

```
LONG WAITER ANALYSIS: request specification
 WAITTIME JOBNAME E/S CASID LSETNAME/LATCHID
 hh:mm:ss jobname ** casid lsetname
 latchId
 BLOCKER jobname2 r2
 OTHER BLOCKERS: nn
 WAITERS: nn2
```

The first line displays the input specified in the command. The second line defines the format of the table. For each waiter that matches the input specifications on the command, the information identified by the header is displayed.

DISPLAY GRS,ANALYZE,LATCH,DEPENDENCY output
The system displays the following lines when a DISPLAY GRS,ANALYZE,LATCH,DEPENDENCY command is entered:

```
DEPENDENCY ANALYSIS: request specification
 descriptor
 WAITTIME JOBNAME E/S CASID LSETNAME/LATCHID
 hh:mm:ss jobname ** casid lsetname
 latchId
 BLOCKER jobname2 r2
 ANALYSIS ENDED: analysis outcome
```

The first line displays the input specified in the command. The second line identifies the element of the analysis that is being displayed. The third line defines the format of the table. For each element, each waiting unit of work is reflected by the fourth
and fifth lines. The sixth line indicates the top blocker of the latch resource. The
fourth, fifth, and sixth lines are repeated until the analysis is completed. The
analysis displays the deadlocks first; then the elements are sorted by wait time in
an descending order.

DISPLAY GRS, ANALYZE, LATCH, BLOCKER, DETAIL output

The system displays the following lines when a DISPLAY GRS,
ANALYZE, LATCH, BLOCKER, DETAIL command is entered:

```
LONG BLOCKER ANALYSIS: request specification
BLOCKER JOBNAME: jobname (ASID=asid, TCB|WEB=wuaddr)
 REQUEST: reqtype [(WITH nn OTHERS)] LT:latchtoken
BLOCKING hh:mm:ss RESOURCE (CREATOR ASID= casid)
lsetname LST:lsettoken
latchId
```

The first line displays the input specified in the command. For each blocker that
matches the input specifications on the command, the information identified by the
header is displayed. In this detail output, the ASID and TCB information is
displayed.

DISPLAY GRS, ANALYZE, LATCH, WAITER, DETAIL output

The system displays the following lines when a DISPLAY
GRS, ANALYZE, LATCH, WAITER, DETAIL command is entered:

```
LONG WAITER ANALYSIS: request specification
descriptor
WAITER JOBNAME: jobname (ASID=asid, TCB|WEB=wuaddr)
 REQUEST: reqtype LT:latchtoken
WAITING hh:mm:ss FOR RESOURCE (CREATOR ASID= casid)
lsetname LST:lsettoken
latchId
BLOCKER JOBNAME: jobname2 (ASID=asid2, TCB|WEB=wuaddr2)
 REQUEST: reqtype2 [(WITH nn OTHERS)] LT:latchtoken
```

The first line displays the input specified in the command. For each blocker that
matches the input specifications on the command, the information identified by the
header is displayed. In this detail output, the ASID and TCB information is
displayed.

DISPLAY GRS, ANALYZE, LATCH, DEPEND, DETAIL output

The system displays the following lines when a DISPLAY
GRS, ANALYZE, LATCH, DEPEND, DETAIL command is entered:

```
DEPENDENCY ANALYSIS: request specification
descriptor
JOBNAME: jobname (ASID=asid, TCB|WEB=wuaddr)
 REQUEST: reqtype [(WITH nn OTHERS)] LT:latchtoken
state hh:mm:ss FOR RESOURCE (CREATOR ASID= casid)
lsetname LST:lsettoken
latchId latchtoken
```

The first line displays the input specified in the command. The second line identifies
the long waiter number or latch resource owner number. For each subsequent latch
resource request, the third through seventh lines are repeated. Each latch resource
request is dependent on the latch resource request identified by the next five lines.
In this detail output, the ASID and TCB information is displayed.
The system displays the following lines when a DISPLAY GRS,ANALYZE,LATCH command is entered and the system encounters an error:

**PROCESSING ENDED:**

error_reason

## Displaying hardware event data collection status

Use the DISPLAY HIS command to display the results of the latest hardware event data collection run initiated by an `F hisproc,BEGIN` command. Hardware event data collection is performed by hardware instrumentation services (HIS), which collects hardware event data for processors in SMF records type 113, subtype 2, and some of the UNIX System Services output files.

Note that the results displayed by the `D HIS` command in system message HIS015I message will only be as current as the last time you initiated a hardware event data collection run with the `F hisproc,BEGIN` command.

**D HIS[,L=a|name|name-a]**

The parameters are:

- **HIS**
  - The system displays HIS information in message HIS015I. For more information about HIS015I, see *z/OS MVS System Messages, Vol 6 (GOS-IEA)*.

- **L=alname|name-a**
  - This operand specifies the display area (a), console name (name), or both (name-a) where the output is to be displayed.
  - If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter command.

You can start a run of hardware event data collection using the `MODIFY hisproc,BEGIN` command. See [Start, configure, and stop hardware event data collection](#) on page 4-352.

### Example 1

If you issue the `D HIS` command to display the results of the latest hardware event data collection run while the collection is still in progress, the data displayed might be incomplete. The following example shows output from a `D HIS` command issued while data collection is still running. `SYSHIS20071108.184129` is the file name prefix for all the output files for the data collection run. The `PATH=/user` is the USS directory where all the output files are created. The `COMPLETION STATUS` indicates if the instrumentation run was successful or not. `LOST SAMPLES` shows the total count of lost samples on all the processors if sampling is active.

The data collection was not complete when the `D HIS` command was issued, so the system had not yet converted the MAPJOB job names to MAPASID values at the time when DISPLAY command was issued, which results in the MAPASID values not being displayed in the output:

```
HIS015I 18.41.33 DISPLAY HIS 201
HIS 0023 ACTIVE
COMMAND: MODIFY HIS,B,TT='Sampling',BUF=25,PATH=/user',MJOB=(OMVS,J*,GRS)
```
DISPLAY GRS Command

Example 2

In the second example, the DISPLAY command was issued after a hardware event
data collection run that specified MAPONLY as well as MAPASID and MAPJOBS.

Example 3

The following D HIS command output shows a counters-only run, to collect only
event counter set data, specifying all the counter sets. Note that the DISPLAY
command was issued while the data collection was still ongoing.

Displaying Basic HyperSwap Information

Use the DISPLAY HS command to display information about the Basic HyperSwap
function and the status of device pairs in the PPRC configuration. The issuing
operator must have at least READ authority for the DISPLAY HS command.
DISPLAY GRS Command

**STATUS**

Displays the current status of the Basic HyperSwap function for all systems in the sysplex (for example, Enabled, Disabled, HyperSwap underway).

Output from this command is routed to the issuing console and has the following format:

```
IOSHM0303I HyperSwap Status
Replication Session: session_name:
 [HyperSwap Enabled]
 [HyperSwap Disabled
 [reason text 1]
 [System x: reason text 2
 System y: reason text 2

[HyperSwap In Progress -
 [Connectivity Validation | Freeze and Quiesce I/O | End PPRC | Swap UCBs | Resume I/O]]
```

*reason text 1*

One of the following reasons:
- By operator
- No configuration data
- Member failed configuration data validation
- HyperSwap is not started on at least one member
- HyperSwap in progress
- Configuration data load in progress

*reason text 2*

One of the following reasons:
- HyperSwap not started
- HyperSwap not initialized
- HyperSwap API not started
- HyperSwap API not active
- Configuration load failed
- API function failed during swap processing

**CONFIG**

Displays the current state of device pairs in the PPRC configuration (for example, Duplex, PPRC suspended, No Secondary Access).

Output from this command is routed to the issuing console and has the following format:

```
IOSHM0304I HyperSwap Configuration
Replication Session: sss
 [All Duplex]
 [None Duplex]
 [exception reason 1
Pri. SSID UA DEV# VOLSER Sec. SSID UA DEV#
 sss 00 3000 SYXOX sss 01 4000
```

Chapter 4. MVS System Commands Reference 4-153
DISPLAY GRS Command

::
[nnnn Devices not Displayed]]

[exception reason 2
 Pri. SSID UA DEV# VOLSER Sec. SSID UA DEV#
 ssss 00 3000 SYSXOX ssss 01 4000

::
[nnnn Devices not Displayed]]

Pri. SSID UA DEV# VOLSER Sec. SSID UA DEV# Status
 ssss 00 3000 SYSXOX ssss 01 4000 statustext

::
[nnnn Devices not Displayed]]

The 16-byte replication session name

exception reason n
One of the following reasons:
• PPRC suspended (PPRC reason code)
• No Access to Secondary Device

nnnn Devices not Displayed
Displayed after 32 devices

statustext
One of the following texts:
• Suspended
• No access

DETAIL
Lists devices with any exception in the right-most Status column.

EXCEPTION
Displays the exception reason followed by a list of devices.

ALL
Displays all devices.
When ALL is not specified (the default), 32 devices are displayed, followed by
nnnn Devices not Displayed.

session_name
The name of the replication session.

Displaying TSO/E Parmlib Information

Use the DISPLAY IKJTSO command to display the specifications in the active
IKJTSOxx parmlib member.

D IKJTSO[,statement-name][,L={a|name|name-a}]

IKJTSO
The system displays information from the active IKJTSOxx parmlib member.

statement-name
Displays only the specifications from an individual statement in the active
IKJTSOxx parmlib member. If specified, statement-name can be one of the
following:
DISPLAY IKJTSO Command

ALL    list of all the specifications in the active IKJTSOxx member of SYS1.PARMLIB
ALLOCATE ALLOCATE command default data set status
AUTHCMD list of authorized commands
AUTHPGM list of programs that are authorized when invoked via the CALL command
AUTHTSF list of programs that are authorized when invoked through the TSO/E service facility
CONSOLE message processing defaults for the CONSOLE command and its services
HELP    list of help data sets for different languages
LOGON   LOGON command options
NOTBKGND list of commands not supported in the background
PLATCMD list of commands that can run on the TSO/E command invocation platform
PLATPGM list of programs that can run on the TSO/E command invocation platform when invoked through TSO/E service facility
SEND    SEND, OPERATOR SEND, LISTBC, and BROADCAST command defaults
TEST    list of additional commands and subcommands valid under TEST and TESTAUTH
TRANSREC TRANSMIT/RECEIVE command options and defaults

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.
If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Example 1

To display the current specifications of the LOGON statement in the active IKJTSOxx parmlib member, enter:

D IKJTSO,LOGON

The following is a sample of the information that the system displays.
DISPLAY IKJTSO Command

IKJ738I TSO/E PARMLIB SETTINGS: 397
SYS1.PARMLIB(IKJTSOYY) on volume TSOSHR
Activated by **SET** on 2008-10-02 at 17:03:28 from system ZOS110
Applies to: ZOS110
CURRENT PARMLIB SETTINGS FOR LOGON:
PASSPHRASE(OFF)
VERIFYAPPL(OFF)
LOGONHERE(ON)

Displaying I/O Configuration Information

Use the DISPLAY IOS,CONFIG command to display IOS-related configuration information.

If an initial subchannel set for PPRC primaries was saved, the INITIAL SUBCHANNEL SET FOR PPRC PRIMARY and the HYPERSONSwap FAILOVER HAS OCCURRED lines are displayed.

D IOS,CONFIG[(EDT)|(HSA)|(ALL)][,L={a|name|name-a}]

IOS,CONFIG
The system displays information about the I/O configuration through message IOS506I.
EDT
Displays (message IOS506I) the jobs with outstanding binds on the primary Eligible Device Table (EDT), and, if applicable, on the secondary EDT.
HSA
Displays (message IOS506I) the amount of the hardware system area (HSA) that is available to perform configuration changes and the amount of space for each subchannel set within each channel subsystem.
ALL
Displays information (message IOS506I) about the I/O configuration and the amount of the hardware system area (HSA) that is available to perform configuration changes.
L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.
If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Displaying Captured UCB Information

Use the DISPLAY IOS,CAPTUCB command to display the current captured UCB protection status.

D IOS,CAPTUCB[,L={a|name|name-a}]

IOS,CAPTUCB
The system displays information about the current captured UCB protection status.
DISPLAY IOS,CAPTUCB Command

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

The following example shows the message that is displayed in response to the command.

D IOS,CAPTUCB
IOS088I hh.mm.ss CAPTURED UCB DATA
CAPTURED UCB PROTECTION IS ENABLED|DISABLED

Displaying Dynamic Channel Path Management Information
Use the DISPLAY IOS,DCM command to display the current status of dynamic channel path management and to display the list of devices that do not have measurement blocks assigned.

D IOS,DCM[,L={a|name|name-a}]

IOS,DCM
The system displays information about dynamic channel path management.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Displaying Encryption Key Manager (EKM) Status
Use the DISPLAY IOS,EKM command to display the current hostnames and connection numbers of encryption key management.

Use the DISPLAY IOS,EKM,VERIFY={PRIMARY|SECONDARY|ALL} to verify the connection of encryption key manager. Note that the initial IOS099I message that is issued immediately in response to this command does not show the actual validity of the encryption key manager’s connections. An IOS631I message indicating that the encryption key manager was successfully connected, or an IOS627E message indicating that there was a failure is to be issued as well and might appear several minutes after the IOS099I message is displayed.

D IOS,EKM[,VERIFY={PRIMARY|SECONDARY|ALL}]
[.L={a|name|name-a}]

IOS,EKM
Displays the host names of the primary and secondary encryption key managers, the maximum number of connections and the maximum number of permanent connections that can be used for encryption key management.
**DISPLAY IOS,EKM Command**

**VERIFY=PRIMARY**
- Initiates an asynchronous test exchange with the primary encryption key manager to verify its usability.

**VERIFY=SECONDARY**
- Initiates an asynchronous test exchange with the secondary encryption key manager to verify its usability.

**VERIFY=ALL**
- Initiates an asynchronous test exchange with both the primary and secondary encryption key managers to verify their usability.

**L=a, name, or name-a**
- Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

**Example 1**
To display the current encryption key manager settings, enter:

```bash
D IOS,EKM
```

The system displays the following message:

```
SY1 IOS099I 17.04.49 EKM HOSTS 833
PRIMARY HOSTNAME=text1
SECONDARY HOSTNAME=text2
MAX CONNECTIONS = dd1 PERMANENT CONNECTIONS = dd2
```

**Example 2**
To test the connectivity of the primary encryption key manager, enter:

```bash
D IOS,EKM,VERIFY=PRIMARY
```

The system first displays the following message:

```
SY1 IOS099I 17.04.49 EKM HOSTS 833
PRIMARY HOSTNAME=text1
SECONDARY HOSTNAME=text2
MAX CONNECTIONS = dd1 PERMANENT CONNECTIONS = dd2
```

The system then displays one of the following two messages:

- If the encryption key manager connection is successfully verified, the system displays the following message:
  ```
 IOS631I PRIMARY ENCRYPTION KEY MANAGER WAS SUCCESSFULLY CONNECTED
  ```

- If the encryption key manager connection is not successfully verified and has failed, the system displays the following message:
  ```
 IOS627E PRIMARY INTERFACE WITH ENCRYPTION KEY MANAGER CANNOT BE CONNECTED DUE TO reason
  ```

**Displaying zHPF facility status**

Use the DISPLAY IOS,ZHPF command to display the current status (enabled or disabled) of the High Performance FICON for System z® (zHPF) facility.
DISPLAY IOS,zHPF Command

D IOS,zHPF[,L={a|name|name-a}]

IOS,zHPF
   The system displays the current zHPF enablement status.

L=a, name, or name-a
   Specifies the display area (a), console name (name), or both (name-a) where
   the display is to appear.

   If you omit this operand, the display is presented in the first available display
   area or the message area of the console through which you enter the
   command.

Displaying FICON Switch Data Information

Use the DISPLAY IOS,FICON command to display the current status
(enabled|disabled) of FICON switch statistics gathering.

D IOS,FICON[,L={a|name|name-a}]

IOS,FICON
   The system displays information about FICON switches.

L=a, name, or name-a
   Specifies the display area (a), console name (name), or both (name-a) where
   the display is to appear.

   If you omit this operand, the display is presented in the first available display
   area or the message area of the console through which you enter the
   command.

Displaying IOS Group Information

Use the DISPLAY IOS,GROUP command to display a list of system names that all
belong to the same IOS group.

D IOS,GROUP[,L={a|name|name-a}]

IOS,GROUP
   The system displays information about systems in an IOS group.

L=a, name, or name-a
   Specifies the display area (a), console name (name), or both (name-a) where
   the display is to appear.

   If you omit this operand, the display is presented in the first available display
   area or the message area of the console through which you enter the
   command.

Displaying IOS HYPERPAV Information

Use the DISPLAY IOS,HYPERPAV command to display the current HyperPAV
enablement status.
**DISPLAY IOS,HYPERVERPAV Command**

```
D IOS,HYPERVERPAV[,L={a|name|name-a}]
```

**IOS,HYPERVERPAV**

The system displays information about the current HyperPAV enablement status.

**L=a, name, or name-a**

Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

**Displaying MIDAW Facility Status**

Use the DISPLAY IOS,MIDAW command to display the current status (enabled or disabled) of the modified indirect addressing word (MIDAW) facility.

```
D IOS,MIDAW[,L={a|name|name-a}]
```

**IOS,MIDAW**

The system displays status information about the MIDAW facility.

**L=a, name, or name-a**

Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

**Displaying MIH and I/O Timing Limits**

Use the DISPLAY IOS,MIH command to request a display of the current time intervals for the missing interrupt handler (MIH) or I/O timing (IOT) limits.

You can display the MIH time interval for all device classes, a specific device class, or one or more specific devices.

You can display the I/O timing limits for a device class or for one or more specific devices. You can request that the display be either formatted or unformatted.

The display, which is delivered by the WTO facility, is limited to 255 lines of output. If the limit is reached, the display is truncated. In this case, the last line of output is "... MAXIMUM DISPLAY OF 255 LINES EXCEEDED". Use the TIME, DEV, or DEVX parameter to request a selective display, to avoid missing data that meets the search criteria.
The parameters are:

**IOS,MIH**

The MIH detects missing interrupt conditions. The I/O timing facility detects I/O requests that have exceeded the specified time limit. This command allows you to display the I/O timing limits or MIH time intervals established for the different devices on the system.

**TIME=ALL**

Displays the IOT and MIH time intervals established for all device classes and all individual devices.

**TIME=option**

Displays one of the following time intervals:

**UREC**

Displays the MIH time interval for the unit record device class.

**TAPE**

Displays the MIH time interval for the tape drive device class.

**CTC**

Displays the MIH time interval for the channel-to-channel device class.

**COMM**

Displays the MIH time interval for the communications device class.

**CHAR**

Displays the MIH time interval for the character reader device class.

**GRAF**

Displays the MIH time interval for the graphics device class.

**DASD**

Displays the MIH time interval for the DASD device class.

**IOTDASD**

Displays the I/O timing (IOT) time interval for the DASD device class.

**USnn**

Displays the MIH or IOT time interval for a user-specified class, where nn can be any two-digit number from 01 through 99 that matches a device group created by MIH or IOT processing. A user-specified device group is a set of devices associated with a specific time interval. The system creates this type of group and assigns the user class number (USnn) when either of the following is true:

- The MIH time interval is not equal to the time interval of its device class

**Note:** Some devices present their own MIH timeout values, via the primary/secondary MIH timing enhancement contained in the self-describing data for the device. If the primary MIH timeout value for
the device does not equal the timeout value for the device class, and the device’s timeout value has not been altered by the user, the system will create a user-specified class to contain the timeout value for the device. The user-specified class for these devices will be created at IPL (if the device is defined to be ONLINE), or at VARY ONLINE time.

- The IOT time interval is not equal to the time interval of its device class.

**HALT**
Displays the MIH time interval for monitoring halt (HSCH) and clear (CSCH) subchannel operations. This keyword is device independent; setting it affects all devices on the system.

**MNTS**
Displays the MIH time interval for monitoring mount pending conditions for DASD and TAPE devices. This keyword is device independent; setting it affects all devices on the system.

**DEV=**
```
{(/devnum,[/devnum1]...)
 {(/devnum-{/devnum1}[,.[/devnum2-{/devnum3}...])
```
Displays the MIH time interval for a specific device number or for a range of device numbers. You can specify one or more single device numbers, one or more ranges of device numbers, or all device numbers. When you specify a range of device numbers, the first device number in the range must be less than or equal to the second device number. If you specify only one device number, you can omit the parentheses.

The display is formatted.

A device number consists of 3 or 4 hexadecimal digits, optionally preceded by a slash (/).

**DEVX=**
```
{(/devnum,[/devnum1]...)
 {(/devnum-{/devnum1}[,.[/devnum2-{/devnum3}...])
```
Displays the MIH time interval for the specific defined device number or for a range of device numbers. You can specify one or more single device numbers, one or more ranges of device numbers, or all device numbers. When you specify a range of device numbers, the second device number in the range must be more than or equal to the first device number. If you specify only one device number, you can omit the parentheses.

The display is unformatted.

A device number consists of 3 or 4 hexadecimal digits, optionally preceded by a slash (/).

**TDEV=**
```
{(/devnum,[/devnum1]...)
 {(/devnum-{/devnum1}[,.[/devnum2-{/devnum3}...])
```
Displays the I/O timing limit for the specific defined device number or for a range of device numbers. You can specify one or more single device numbers, one or more ranges of device numbers, or all device numbers. When you specify a range of device numbers, the second device number in the range must be more than or equal to the first device number. If you specify only one device number, you can omit the parentheses.

The display is formatted.

A device number consists of 3 or 4 hexadecimal digits, optionally preceded by a slash (/).

**TDEVX=**
```
{(/devnum,[/devnum1]...)
 {(/devnum-{/devnum1}[,.[/devnum2-{/devnum3}...])
```
Displays the I/O timing limit for the specific defined device number or for a range of device numbers. You can specify one or more single device numbers, one or more ranges of device numbers, or all device numbers. When you specify a range of device numbers, the second device number in the range must be more than or equal to the first device number. If you specify only one device number, you can omit the parentheses.

The display is formatted.

A device number consists of 3 or 4 hexadecimal digits, optionally preceded by a slash (/).
range of device numbers. You can specify one or more single device numbers, one or more ranges of device numbers, or all device numbers. When you specify a range of device numbers, the first device number in the range must be less than or equal to the second device number. If you specify only one device number, you can omit the parentheses.

The display is unformatted.

A device number consists of 3 or 4 hexadecimal digits, optionally preceded by a slash (/).

L=a, name, or name-a

Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

**Example 1**

To display the MIH and IOT intervals for all device classes and all individual devices, enter:

```
D IOS,MIH
```

**Example 2**

To display the MIH interval for the devices in address range 000 through 01A, enter:

```
D IOS,MIH,DEV=(000-01A)
```

The display is formatted:

```
IOS86I 14.34.51 MIH DEVICE TIMES
0000=03:00, 0002=03:00, 0003=03:00, 0004=03:00, 0005=03:00,
0006=03:00, 0007=03:00, 0008=03:00, 000A=03:00, 000B=03:00,
000C=03:00, 000D=03:00, 000E=03:00, 000F=03:00, 0011=03:00,
0012=03:00, 0013=03:00, 0014=03:00, 0015=03:00, 0016=03:00,
0017=03:00, 0018=03:00, 0019=03:00, 001A=03:00.
```

**Example 3**

To display the MIH interval for the devices in address range 000 through 0D9, enter:

```
D IOS,MIH,DEVX=(000-0D9)
```

The display will be unformatted.

```
IOS86I 14.43.28 MIH DEVICE TIMES
(0000,0002-0008,000A-000F,0011-001D)=03:00, (001E-009D)=00:00,
(009E-00FF)=03:00, (00A0-00A1)=00:15, (00BA-00BF)=00:00, (00C0-00C1)=
00:15, (00CA-00CF)=00:00.
```

**Example 4**

To display the MIH interval for the devices in address range ABC0 through ABCD, enter:

```
D IOS,MIH,DEV=(/ABC0-/ABCD)
```

**Example 5**
DISPLAY IOS,MIH Command

To display the I/O timing limit for the devices in address range 000-010, enter:

DISPLAY IOS,MIH,TDEVX=(000-010)

The system might display the following:

IOS086I 14.44.50 IOT DEVICE TIMES
0002=00:10, (0003-0008,000A-000F)=00:00, 0010=00:15.

In this example, devices 000, 001, and 009 do not exist. The I/O timing limit for
device 002 is 0 minutes and 10 seconds. The I/O timing limit for device 003-008
and 00A-00F is 0 minutes and 0 seconds. For device 010, the I/O timing limit is 0
minutes and 15 seconds.

Displaying IOS Recovery Options

Use the D IOS,RECOVERY command to display the current IOS recovery options.

D IOS,RECOVERY[,,L={a|name|name-a}]

IOS,RECOVERY
The system displays status information about the IOS recovery function.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where
the display is to appear.

If you omit this operand, the display is presented in the first available display
area or the message area of the console through which you enter the
command.

Displaying IOS Storage Residency Information

Use the DISPLAY IOS,STORAGE command to display the storage residency of
where IOS blocks are to be obtained (24 or 31 bit).

D IOS,STORAGE[,,L={a|name|name-a}]

IOS,STORAGE
The system displays information about IOS storage residency.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where
the display is to appear.

If you omit this operand, the display is presented in the first available display
area or the message area of the console through which you enter the
command.

Displaying the Devices Stopped by the IOACTION Command

Use the DISPLAY IOS,STOP command to identify the shared DASD that is
currently stopped as result of the IOACTION STOP command.

D IOS,STOP[,,L={a|name|name-a}]
IOS,STOP
The system displays information (message IOS610I) about the devices affected by the IOACTION STOP command. For example:

IOS610I IOACTION — THE FOLLOWING DEVICE(S) ARE IN THE STOPPED STATE:

420- 42F, 440- 44F, 470- 48F, 4A0- 4AF, 4C0- 4E7

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Displaying IPL Information
Use the DISPLAY IPLINFO command to display the following information:

- The date and time of the IPL
- The release level of the system
- The license value for the system
- The contents of parmlib members IEASYSxx and IEASYMxx
- LOADxx information used for the IPL
- The architecture level of the IPL
- The IODF (input/output definition file) device
- The IPL device and volume serial number from which the system was IPLed
- The status of MTL (manual tape library) tape devices

D IPLINFO [,L={a|name|name-a}]

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Example
Assume a system has the following characteristics:

- IPL occurred on December 1, 2006 at 1:15 a.m.
- The release level is z/OS 1.8.0.
- The license type is z/OS.
- Parmlib member LOAD08 in SYS0.IPLPARM, which resides on device ACB2, was used to IPL.
- The system is running in z/Architecture® mode.
- The system treats MTL tape devices as MTL resident drives.
- The system used system symbols definitions in IEASYMX6, IEASYMU6, IEASYM0L, and IEASYMR8.
- The operator entered IEASYSST and IEASYSLN in reply to the system parameters prompt.
- The IODF device resides on ACB2.
- The IPL device is 3C2A and its volume serial is D83EL8.

Issue the following command:
DISPLAY IPLINFO Command

D IPLINFO

The system returns the following display, slightly modified to improve readability:

D IPLINFO
IEE254I 11.14.07 IPLINFO DISPLAY 350
SYSTEM IPLLED AT 01.15.39 ON 12/01/2006
RELEASE z/OS 01.08.00 LICENSE = z/OS
USED LOAD08 IN SYS0.IPLPARM ON ACB2
ARCHLVL = 2 MTLSHARE = N
IEASYM LIST = (X6,U6,0L,R8) IEASYS LIST = (ST,LN) (OP)
IODEF DEVICE ACB2
IPL DEVICE 3C2A VOLUME DB3EL8

Displaying System Activity

Use the DISPLAY JOBS (or J or A or TS) command to display information about current system activity. The descriptions of messages IEE114I and IEE115I show the resulting display. Use LookAt or use the MVS System Messages books to see the display. The syntax of this command is:

D {JOBS|J|A|TS}
  [{LIST|L},[USERID=userid]]
  |,{ALL|A}
  |,[jobname[.identifier]|(jobname)]
  [,L={a|name|name-a}]

The parameters are:

JOBS or J or A or TS
The system is to display the following overview information about system activity:
- Number of active batch jobs
- Number of started tasks (MOUNT commands in execution are treated as started tasks)
- Number of logged-on time-sharing users
- Number or logged-on time-sharing users running under TSO/VTAM
- The maximum number of time-sharing users allowed to be logged on under TSO/VTAM
- Number of active system address spaces
- Number of active initiators including Advanced Program-to-Program Communication/MVS (APPC/MVS) transaction initiators
- Number of z/OS UNIX System Services address spaces

LIST or L
The system is to display detailed information for active jobs and started tasks (JOBS or J), logged-on time-sharing users (TS), active APPC/MVS transaction programs, or all three (A).

ALL or A
The system is to display more detailed information for active jobs and started tasks, logged-on time-sharing users, active APPC/MVS transaction programs, active initiators, and active system address spaces than that supplied by LIST.
**DISPLAY JOBS** or **J or A or TS Command**

`jobname[,identifier] or (jobname)`

The system is to display detailed information for active jobs, started tasks, logged-on time-sharing users, active APPC/MVS transaction programs, active initiators, and active system address spaces with the specified name. This information includes the data space names associated with the address space. If the specified name is the same as a valid secondary operand, you must enclose it in parentheses. (See Example 7.)

The specified name can be the name of a job, started task, APPC/MVS transaction program, APPC/MVS scheduler initiator, time-sharing user, or system address space. For a job, started task, APPC/MVS transaction program, APPC/MVS scheduler initiator, or system address space, the name can be 1 to 8 alphanumeric or national characters or 1 to 7 alphanumeric or national characters followed by an asterisk. For a time-sharing user, the name can be 1 to 7 alphanumeric or national characters or 1 to 6 alphanumeric or national characters you use the asterisk format, all jobs, APPC/MVS transaction programs, APPC/MVS scheduler initiators, started tasks, or time-sharing users with names that begin with the specified characters are displayed. See Example 5.

**Notes:**

1. You can use asterisk notation to display information about more than one job or started task. See “Using Wildcards to Display System Activity” on page 4-171 for more information.
2. The only time you may use an asterisk in the first position of a name is to specify the master scheduler address space: *MASTER*. For *MASTER*, the name must be the complete address space name.
3. Started task names can come from a variety of sources. The name of a started task depends on whether the JOBNAME keyword was specified on the START command.

If JOBNAME was specified, `jobname` is the name assigned to the started task.

If JOBNAME was not specified and the source JCL for the started task is:

- A `job`, the system uses the jobname provided with the JCL JOB statement.
- A `procedure`, the system uses the member name as the jobname.

Refer to “Displaying Started Task Status” on page 4-174 for information on determining the jobname and identifier of currently active started tasks.

`identifier`

The started task identifier. You can use asterisk notation to display information about more than one job or started task. See “Using Wildcards to Display System Activity” on page 4-171 for more information.

`USERID=userid`

A filter to display only the work executing on behalf of `userid`. This userid may be specified on the `USER=` keyword in JCL, or the userid that requested that a transaction occur.

`L=a, name, or name-a`

Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.
If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

**Information for the LIST Operand**

The system displays detailed information when you specify LIST or L. The detailed information is displayed after the overview information. Table 4-12 shows the operands that you can combine with LIST or L and the detailed information that results from each combination.

Table 4-12. Displaying System Activity: Information for the LIST Operand

<table>
<thead>
<tr>
<th>Primary Operand</th>
<th>Information for the LIST Operand</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOBS or J</td>
<td>List of active jobs, including, for each job:</td>
</tr>
<tr>
<td></td>
<td>- Jobname, APPC/MVS transaction program name, started task</td>
</tr>
<tr>
<td></td>
<td>- Stepname</td>
</tr>
<tr>
<td></td>
<td>- Procedure stepname or requesting userid</td>
</tr>
<tr>
<td></td>
<td>- Type of job</td>
</tr>
<tr>
<td></td>
<td>- Address space status</td>
</tr>
<tr>
<td></td>
<td>- Central (real) address range (V=R only)</td>
</tr>
<tr>
<td>TS</td>
<td>List of logged-on time-sharing users, including, for each user:</td>
</tr>
<tr>
<td></td>
<td>- Userid</td>
</tr>
<tr>
<td></td>
<td>- Address space status</td>
</tr>
<tr>
<td>A</td>
<td>List of all active units of work, including:</td>
</tr>
<tr>
<td></td>
<td>- For active jobs, started tasks, and APPC/MVS transaction programs all of the information listed for JOBS or J</td>
</tr>
<tr>
<td></td>
<td>- For logged-on time-sharing users, all of the information listed for TS</td>
</tr>
</tbody>
</table>

The system displays more detailed information when you specify ALL or A than when you specify LIST or L. The detailed information is displayed after the overview information. Table 4-13 shows the operands that you can combine with ALL or A and the detailed information that results from each combination.

Table 4-13. Displaying System Activity: Information for the ALL Operand

<table>
<thead>
<tr>
<th>Primary Operand</th>
<th>Information for the ALL Operand</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOBS or J</td>
<td>List of active jobs, including, for each job:</td>
</tr>
<tr>
<td></td>
<td>- Jobname (APPC/MVS transaction program name), started task</td>
</tr>
<tr>
<td></td>
<td>- Stepname</td>
</tr>
<tr>
<td></td>
<td>- Procedure stepname or requesting userid</td>
</tr>
<tr>
<td></td>
<td>- Type of job</td>
</tr>
<tr>
<td></td>
<td>- Address space identifier</td>
</tr>
<tr>
<td></td>
<td>- Address space status</td>
</tr>
<tr>
<td></td>
<td>- Program event recording (PER) activity</td>
</tr>
<tr>
<td></td>
<td>- Number of outstanding step-must-complete requests</td>
</tr>
<tr>
<td></td>
<td>- Processor affinity</td>
</tr>
<tr>
<td></td>
<td>- Elapsed time since initiation</td>
</tr>
<tr>
<td></td>
<td>- Accumulated processor time</td>
</tr>
<tr>
<td></td>
<td>- Work unit identifier</td>
</tr>
<tr>
<td></td>
<td>- Transaction requestor’s userid</td>
</tr>
<tr>
<td></td>
<td>- Central (real) address range (V=R only)</td>
</tr>
<tr>
<td>Primary Operand</td>
<td>Information for the ALL Operand</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td>Workload management information:</td>
</tr>
<tr>
<td></td>
<td>• Workload associated with the address space</td>
</tr>
<tr>
<td></td>
<td>• Service class associated with the address space</td>
</tr>
<tr>
<td></td>
<td>• Resource group associated with the service class. “N/A” is displayed if there is no resource group assigned to the service class</td>
</tr>
<tr>
<td></td>
<td>• Whether the address space has been quiesced by the RESET command</td>
</tr>
<tr>
<td></td>
<td>• Whether the address space is a server</td>
</tr>
<tr>
<td></td>
<td>• The service class period</td>
</tr>
<tr>
<td>TS</td>
<td>List of logged-on time-sharing users, including, for each user:</td>
</tr>
<tr>
<td></td>
<td>• Address space status</td>
</tr>
<tr>
<td></td>
<td>• Address space identifier</td>
</tr>
<tr>
<td></td>
<td>• Program event recording (PER) activity</td>
</tr>
<tr>
<td></td>
<td>• Number of outstanding step-must-complete requests</td>
</tr>
<tr>
<td></td>
<td>• Processor affinity</td>
</tr>
<tr>
<td></td>
<td>• Elapsed time since LOGON</td>
</tr>
<tr>
<td></td>
<td>• Accumulated processor time</td>
</tr>
<tr>
<td></td>
<td>• Work unit identifier</td>
</tr>
<tr>
<td></td>
<td>Workload management information:</td>
</tr>
<tr>
<td></td>
<td>• Workload associated with the address space</td>
</tr>
<tr>
<td></td>
<td>• Service class associated with the address space</td>
</tr>
<tr>
<td></td>
<td>• Resource group associated with the service class. “N/A” is displayed if there is no resource group assigned to the service class</td>
</tr>
<tr>
<td></td>
<td>• Whether the address space has been quiesced by the RESET command</td>
</tr>
<tr>
<td></td>
<td>• Whether the address space is a server</td>
</tr>
<tr>
<td></td>
<td>• The service class period</td>
</tr>
<tr>
<td>A</td>
<td>List of all active units of work, including:</td>
</tr>
<tr>
<td></td>
<td>• For each active job, started task, APPC/MVS transaction program, and APPC/MVS scheduler initiator:</td>
</tr>
<tr>
<td></td>
<td>– All of the information listed for JOBS or J</td>
</tr>
<tr>
<td></td>
<td>• For each time-sharing user:</td>
</tr>
<tr>
<td></td>
<td>– All of the information listed for TS</td>
</tr>
<tr>
<td></td>
<td>• For each active system address space:</td>
</tr>
<tr>
<td></td>
<td>– Name</td>
</tr>
<tr>
<td></td>
<td>– Stepname</td>
</tr>
<tr>
<td></td>
<td>– Procedure stepname</td>
</tr>
</tbody>
</table>

The system displays the most detailed information when you supply a specific name. This additional information may be useful to the system programmer for diagnostics. The detailed information is displayed after the overview information, Table 4-14 shows the operands that you can combine with a specific name and the detailed information that results from each combination.
### Table 4-14. Displaying System Activity: Information for a Specific Name

<table>
<thead>
<tr>
<th>Primary Operand</th>
<th>Information for the NAME Operand</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>JOBS or J</strong></td>
<td>List of active jobs for the specific name:</td>
</tr>
<tr>
<td></td>
<td>- Jobname, APPC/MVS transaction program name, initiator address space name</td>
</tr>
<tr>
<td></td>
<td>- Stepname</td>
</tr>
<tr>
<td></td>
<td>- Procedure stepname or requesting userid</td>
</tr>
<tr>
<td></td>
<td>- Type of job</td>
</tr>
<tr>
<td></td>
<td>- Address space identifier</td>
</tr>
<tr>
<td></td>
<td>- Address space status</td>
</tr>
<tr>
<td></td>
<td>- Program event recording (PER) activity</td>
</tr>
<tr>
<td></td>
<td>- Number of outstanding step-must-complete requests</td>
</tr>
<tr>
<td></td>
<td>- Processor affinity</td>
</tr>
<tr>
<td></td>
<td>- Elapsed time since initiation</td>
</tr>
<tr>
<td></td>
<td>- Accumulated processor time</td>
</tr>
<tr>
<td></td>
<td>- Work unit identifier</td>
</tr>
<tr>
<td></td>
<td>- Transaction requestor’s userid</td>
</tr>
<tr>
<td></td>
<td>- Central (real) address range (V=R only)</td>
</tr>
<tr>
<td></td>
<td>- Central (real) address of address space number second table (ASTE)</td>
</tr>
<tr>
<td></td>
<td>- Data space names and the data space ASTEs</td>
</tr>
<tr>
<td><strong>TS</strong></td>
<td>List of logged-on time-sharing users with the specific name:</td>
</tr>
<tr>
<td></td>
<td>- Address space status</td>
</tr>
<tr>
<td></td>
<td>- Address space identifier</td>
</tr>
<tr>
<td></td>
<td>- Program event recording (PER) activity</td>
</tr>
<tr>
<td></td>
<td>- Number of outstanding step-must-complete requests</td>
</tr>
<tr>
<td></td>
<td>- Processor affinity</td>
</tr>
<tr>
<td></td>
<td>- Elapsed time since LOGON</td>
</tr>
<tr>
<td></td>
<td>- Work unit identifier</td>
</tr>
<tr>
<td></td>
<td>- Accumulated processor time</td>
</tr>
<tr>
<td></td>
<td>- Central (real) address of address space number second table (ASTE)</td>
</tr>
<tr>
<td></td>
<td>- Data space names and the data space ASTEs</td>
</tr>
<tr>
<td><strong>Workload management information:</strong></td>
<td>- Workload associated with the address space</td>
</tr>
<tr>
<td></td>
<td>- Service class associated with the address space</td>
</tr>
<tr>
<td></td>
<td>- Resource group associated with the service class. “N/A” is displayed if there is no resource group assigned to the service class</td>
</tr>
<tr>
<td></td>
<td>- Whether the address space has been quiesced by the RESET command</td>
</tr>
<tr>
<td></td>
<td>- Whether the address space is a server</td>
</tr>
<tr>
<td></td>
<td>- The service class period</td>
</tr>
</tbody>
</table>
Table 4-14. Displaying System Activity: Information for a Specific Name (continued)

<table>
<thead>
<tr>
<th>Primary Operand</th>
<th>Information for the NAME Operand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of all active units of work for the specific name, including:</td>
</tr>
<tr>
<td></td>
<td>• For an active job, active APPC/MVS transaction program name, initiator address space and started task:</td>
</tr>
<tr>
<td></td>
<td>– All of the information listed for JOBS or J</td>
</tr>
<tr>
<td></td>
<td>• For a time-sharing user:</td>
</tr>
<tr>
<td></td>
<td>– All of the information listed for TS</td>
</tr>
<tr>
<td></td>
<td>• For an active system address space:</td>
</tr>
<tr>
<td></td>
<td>– Name</td>
</tr>
<tr>
<td></td>
<td>– Stepname</td>
</tr>
<tr>
<td></td>
<td>– Procedure stepname</td>
</tr>
</tbody>
</table>

Using Wildcards to Display System Activity

You can use the asterisk (*) wildcard to display information about more than one job or started task. A trailing asterisk (*) indicates that a DISPLAY command applies to all jobs or started tasks that match a leading character string. The DISPLAY JOBS, J, A, or TS command supports only a trailing asterisk. You cannot specify an asterisk in other character positions in job or started task names.

For example, you can enter the following command to display information about all jobs and started tasks beginning with the characters X11:

D A,X11*

You can also use the asterisk wildcard to specify both a job name and identifier. The system displays information about all jobs and started tasks that match the combinations of characters that precede one or more asterisks.

For example, you can enter the following command to pass a two-digit value to all jobs with names that begin with J22 and identifiers that begin with X11:

D A,J22*.X11*

Remember the following rules when using the asterisk wildcard in the DISPLAY JOBS, J, A, or TS command:

• If you specify both the jobname and identifier values, you cannot specify a single asterisk for both values.

For example, to display information about all jobs with names beginning with J22, you can specify a single asterisk on the identifier to indicate a wildcard:

D A,J22*, *

If you were to remove the J22 characters from the above command, it would not be valid. You cannot specify ".*" without a leading character string on the jobname parameter, the identifier parameter, or both.

• A slash (/) cannot precede an identifier that contains an asterisk.

The following tables describe how the asterisk wildcard works with DISPLAY JOBS, J, A, or TS. Table 4-15 shows examples of START commands used to start jobs. The third and fourth columns show the associated jobnames and identifiers.

Table 4-15. Examples of START Commands to Start Jobs

<table>
<thead>
<tr>
<th>Job Number</th>
<th>START Command</th>
<th>Jobname</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>START YZ</td>
<td>YZ</td>
<td>YZ</td>
</tr>
<tr>
<td>2</td>
<td>START WX,YZ</td>
<td>WX</td>
<td>YZ</td>
</tr>
</tbody>
</table>
DISPLAY JOBS or J or A or TS Command

Table 4-15. Examples of START Commands to Start Jobs (continued)

<table>
<thead>
<tr>
<th>Job Number</th>
<th>START Command</th>
<th>Jobname</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>START WX.YZ1</td>
<td>WX</td>
<td>YZ1</td>
</tr>
<tr>
<td>4</td>
<td>START WX1.YZ1</td>
<td>WX1</td>
<td>YZ1</td>
</tr>
<tr>
<td>5</td>
<td>START WX, JOBNAME =WX1</td>
<td>WX1</td>
<td>WX1</td>
</tr>
<tr>
<td>6</td>
<td>START WX, JOBNAME =WX2</td>
<td>WX2</td>
<td>WX2</td>
</tr>
<tr>
<td>7</td>
<td>START WX, JOBNAME =YZ</td>
<td>YZ</td>
<td>YZ</td>
</tr>
<tr>
<td>8</td>
<td>START Q.YZ3</td>
<td>Q</td>
<td>YZ3</td>
</tr>
<tr>
<td>9</td>
<td>START WX.R1</td>
<td>WX</td>
<td>R1</td>
</tr>
<tr>
<td>10</td>
<td>START WX, JOBNAME =YZ4</td>
<td>YZ4</td>
<td>YZ4</td>
</tr>
</tbody>
</table>

Table 4-16 shows examples of DISPLAY commands. (The examples apply to DISPLAY JOBS, J, A, or TS, although only DISPLAY A commands are used in this figure.) The numbers in the second column indicate the jobs in Table 4-15 on page 4-171 that apply to each DISPLAY command.

Table 4-16. Examples of DISPLAY Commands

<table>
<thead>
<tr>
<th>DISPLAY Command</th>
<th>Displayed Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>D A,YZ</td>
<td>1, 7</td>
</tr>
<tr>
<td>D A,WX.YZ</td>
<td>2</td>
</tr>
<tr>
<td>D A,WX.YZ*</td>
<td>2, 3</td>
</tr>
<tr>
<td>D A,YZ*</td>
<td>1, 7</td>
</tr>
<tr>
<td>D A,WX*</td>
<td>2, 3, 4, 5, 6, 9</td>
</tr>
<tr>
<td>D A,YZ</td>
<td>1, 7, 10</td>
</tr>
<tr>
<td>D A,WX*.YZ</td>
<td>2</td>
</tr>
<tr>
<td>D A,WX*.YZ*</td>
<td>2, 3, 4</td>
</tr>
<tr>
<td>D A.<em>,YZ</em></td>
<td>1, 2, 3, 4, 7, 8, 10</td>
</tr>
<tr>
<td>D A.*,YZ</td>
<td>1, 2, 7</td>
</tr>
<tr>
<td>D A,WX.*,</td>
<td>2, 3, 4, 5, 6, 9</td>
</tr>
<tr>
<td>D A,WX.*</td>
<td>2, 3, 9</td>
</tr>
<tr>
<td>D A,*</td>
<td>Not valid (can be done using D A,ALL)</td>
</tr>
<tr>
<td>D A,<em>:</em></td>
<td>Not valid (can be done using D A,ALL)</td>
</tr>
</tbody>
</table>

The following are examples of various forms of the DISPLAY JOBS, J, A, or TS command:

**Example 1**

To display detailed information about all active units of work, enter:

```
D A,L
```

**Example 2**

To display detailed information about active jobs, enter:

```
D J,L
```
Example 3
To display more detailed information about active jobs, enter:
D J,A

Example 4
To display detailed information about any active time-sharing user with the name WAGNERJ, enter:
D TS,WAGNERJ

Example 5
To display detailed information about all active jobs, started tasks, time-sharing users, or address spaces with the name beginning with D96, enter:
D A,D96*

Example 6
To display detailed information about the master scheduler address space, enter:
D A,*MASTER*

Example 7
To display detailed information about any active time-sharing user with the name LIST, enter:
D TS,(LIST)

Example 8
To display detailed information about all jobs or APPC/MVS transaction programs running for user WANDA, enter:
D J,L,USERID=WANDA

Example 9
To display detailed information about any jobs or APPC/MVS transaction programs named PHONE running for user WANDA, enter:
D J,PHONE,USERID=WANDA

Example 10
To display detailed information about all initiator address spaces beginning with INIT, enter:
D A,INIT*

Example 11
To display detailed information about started task X11 which has a job name of AOR2, enter:
D A,AOR2.X11

Example 12
DISPLAY JOBS or J or A or TS Command

To display detailed information about all started tasks with the job name AOR2, enter:

D A,AOR2.*

Example 13

To display detailed information about all started tasks with a job name of AOR2 and identifiers that start with T1, enter:

D A,AOR2.T1*

Example 14

To display detailed information about all started tasks with job names that start with AOR and identifiers that start with T1, enter:

D A,AOR*.T1*

Example 15

To display detailed information about all started tasks with identifiers that start with T1, enter:

D A,*.T1*

Displaying Started Task Status

The displayed output for a display command depends on whether the started task source JCL is a JOB or a cataloged procedure and whether you use the JOBNAME parameter on the START command.

- **JOBNAME parameter.** This parameter on the START command names the started task. (See [Starting a System Task from a Console](#) on page 4-631 for additional information.)

- **Membername.** If you do not use the JOBNAME parameter on the START command and the source JCL is a procedure, the system automatically assigns the member name as the jobname.

- **Jobname within the source JCL.** If you do not use the JOBNAME parameter on the START command and the source JCL for the started task is a job, a job name is assigned based on the job name on the JOB statement.

- **Identifier.** If you use the identifier on the START command, you can identify the started task by both the identifier and the jobname that was assigned by the system.

If you issue a DISPLAY A,ALL command, the system will display status about all started tasks. In the following examples, the source JCL is provided and examples of the changes in the output are provided.

For the purposes of understanding the display output fields, the following illustration indicates what each column represents in the examples that follow. Note, however, that the illustration has been slightly modified to improve the readability and the column identifiers have been added as pointers; the actual display output will not appear as in the illustration that follows:
In the illustration:
- WTOR is the **jobname**
- WTOR is also the **identifier**
- ONLYSTEP is the **stepname**

**Output (When the Member Contains a Procedure)**

The following examples indicate what the different commands will generate in displayed output when the started task source JCL is a procedure (SYS1.PROCLIB member named WTOR) as follows:

```c
//ONLYSTEP EXEC PGM=WTOR,PARM='HELLO'
```

For the example **START WTOR** where only the **membername** was specified (neither **JOBNAME** nor **identifier** were specified), only the **membername** appears in the output.

```c
SYS1 D A,WTOR
SYS1 IEE115I 16.33.03 1996.308 ACTIVITY 048
JOBS M/S TS USERS SYSAS INITS
00000 00006 00001 00016 00002
WTOR WTOR ONLYSTEP OWT S A=0019
```

*Figure 4-3. Display Output Illustration (Column Descriptions)*

In the illustration:
- WTOR is the **jobname**
- WTOR is also the **identifier**
- ONLYSTEP is the **stepname**

**Output (When the Member Contains a Procedure)**

The following examples indicate what the different commands will generate in displayed output when the started task source JCL is a procedure (SYS1.PROCLIB member named WTOR) as follows:

```c
//ONLYSTEP EXEC PGM=WTOR,PARM='HELLO'
```

For the example **START WTOR** where only the **membername** was specified (neither **JOBNAME** nor **identifier** were specified), only the **membername** appears in the output.

```c
SYS1 D A,WTOR
SYS1 IEE115I 16.33.03 1996.308 ACTIVITY 048
JOBS M/S TS USERS SYSAS INITS
00000 00006 00001 00016 00002
WTOR WTOR ONLYSTEP OWT S A=0019
```

*Figure 4-4. Display Output from D A,WTOR (Membername)*

For the example **START WTOR** where only the **membername** was specified (neither **JOBNAME** nor **identifier** were specified), only the **membername** appears in the output.

```c
SYS1 D A,WTOR
SYS1 IEE115I 16.34.57 1996.308 ACTIVITY 083
JOBS M/S TS USERS SYSAS INITS
00000 00006 00001 00016 00002
WTOR IDENTIFY ONLYSTEP OWT S A=0019
```

*Figure 4-5. Display Output for D A,WTOR (Membername and Identifier)*

For the example **START WTOR,IDENTIFY** (**membername** and **identifier** were specified), the **membername** and **identifier** appear in the output.

```c
SYS1 D A,WTOR
SYS1 IEE115I 16.36.46 1996.308 ACTIVITY 118
JOBS M/S TS USERS SYSAS INITS
00000 00006 00001 00016 00002
WTORNAME WTORNAME ONLYSTEP OWT S A=0019
```

*Figure 4-6. Display Output for D A,WTOR (Membername and JOBNAME)*
Output (When the Member Contains a Job)
The following examples indicate how the different displayed output appears for a started task (SYS1.STCJOBS member named SYM1) with source JCL of a JOB, given three different START commands. The source JCL of SYM1:

//SYMTEST JOB 'accounting_info',MSGLEVEL=(1,1)
//STEP1 EXEC PGM=WTO,PARM='HELLO',TIME=1

For the example START SYM1, where only the membername is specified (neither JOBNAME nor identifier was specified), only the job name (provided in the member) appears in the output.

```
SYS1 D A,SYMTEST
SYS1 IEE1151 16.20.14 1996.308 ACTIVITY 811
JOBS M/S TS USERS SYSAS INITS
00000 00006 00001 00016 00002
SYMTEST SYMTEST STEP1 OWT S A=0019
```

Figure 4-7. Display Output from D A,SYM1

For the example START SYM1,IDENTIFY (membername and identifier were specified), both the job name (in the member) and the identifier (specified in the command) appear in the output.

```
SYS1 D A,SYMTEST
SYS1 IEE1151 16.22.24 1996.308 ACTIVITY 832
JOBS M/S TS USERS SYSAS INITS
00000 00006 00001 00016 00002
SYMTEST IDENTIFY STEP1 OWT S A=001A
```

Figure 4-8. Display Output from D A,SYMTEST

For the example START SYM1,JOBNAME=SYMBOLS (membername and JOBNAME were specified), only the job name specified in the command appears in the output.

```
SYS1 D A,SYMBOLS
SYS1 IEE1151 16.23.41 1996.308 ACTIVITY 856
JOBS M/S TS USERS SYSAS INITS
00000 00006 00001 00016 00002
SYMBOLS SYMBOLS STEP1 OWT S A=001A
```

Figure 4-9. Display Output from D A,SYMBOLS

Displaying Library Lookaside Information
Use the DISPLAY LLA command to display information about library lookaside, and to display a list of all the libraries that LLA is managing.

The syntax of this command is:

```
D LLA[,L={a|name|name-a}]
```

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.
If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Example

If you enter a D LLA command the format of the output is:

```
CSV600I 12.38.09 LLA DISPLAY 529
EXIT: CSVLLIX1 - INACTIVE CSVLLIX2 - ON
VLF: ACTIVE GET LIB ENQ: YES SEARCH FAIL COUNT: 0
LNKLST SET: IPL
12 LIBRARY ENTRIES FOLLOW
ENTRY L F R P LIBRARY NAME
 1 L SYSI.CSSLIB
 2 L SYSI.MIGLIB
 3 L TCPIP.SEZALOAD
 4 L SYSI.VTAMLIB
 5 L SYSI.CMDLIB
 6 - IMSVS.TEST.PGMLIB
 7 L SYSI.MIGLIB
 8 L SYSI.LINKLIB
 9 L TCPIP.SEZSLNK2
 10 L SYSI.SORTLPA
 11 F SYSI.JOBLIB
 12 L SYSI.SCBHENU
```

The following describes some of the CSV600I output fields. For a complete description of all of the output fields, see message CSV600I. Use LookAt or use the MVS System Messages books.

**ENTRY**

The entry number of the library being displayed. This does not relate to the order in which the libraries were specified or are processed.

**L or LNKLST**

The LNKLST status of the library being displayed. L is one of the following:

- **L**: The library is in the current LNKLST.
- **A**: The library is in an active, not current, LNKLST.
- **(blank)**: The library is not in the LNKLST.

**F or FREEZE**

The FREEZE state of the library being displayed. F is one of the following:

- **F**: The library is in freeze state.
- **(blank)**: The library is not in freeze state.

**R or REMOVE**

The REMOVE status of the library being displayed. R is one of the following:

- **R**: The library was requested to be removed.
- **(blank)**: The library was not requested to be removed.

**P or PDSE**

The indicator of whether or not the library is a partitioned data set extended, or PDSE. P is one of the following:

- **P**: The library is a PDSE.
DISPLAY LLA Command

Displaying the System Logger and its Log Streams

You can use the DISPLAY LOGGER command to display the status of the system logger, individual log streams, or one or all log streams from a sysplex view.

**Note:** You can use the asterisk as a wildcard character with the DISPLAY LOGGER command; specify an asterisk (*) as the search argument or specify an asterisk as the last character of a larger search argument. If used, the wildcard must be the last character in the search argument, or the only character.

The IXG6011 message output contains the results of the DISPLAY LOGGER command.

**Restrictions**
- Do not use the same parameter twice within a single command.
- Do not exceed a command line length of 128 characters.

**Syntax**

```
D LOGGER[,{STATUS|ST}[,{RECALLS|REC}]
 [,CONNECTION|CONN|C[,LSNAME|LSN=logstreamname]]
 [,JOBNAME|JOB|J=mvsjobname]
 [,SUMM|S]
 ,[DETAIL|D]
 [,DASDONLY]
 [,LOGSTREAM|L[,LSNAME=logstreamname]]
 [,STRNAME|STRN=structurename]
 [,L={a|name|name-a}]
```

The parameters are:

**STATUS or ST**
Display the current operational status of the system logger. STATUS is the default if you specify no parameters.

**RECALLS or REC**
This filter requests a display of all the outstanding asynchronous recall requests that system logger has made to DFSMShsm™ using the ARCHRCAL service.

**CONNECTION or CONN or C**
Display all log streams with one or more connections to the system(s) from which you issued the command.

You can use the following filters to limit or change the information displayed. (Note that if you use the SYSPLEX filter, the view of the output is changed to the systems or resources that are connected to the log stream, a sysplex view.)
**DISPLAY LOGGER Command**

**LSNAME or LSN = logstreamname**  
This filter requests a display of all actively connected log streams that match the specified log stream name.

**JOBNAME or JOB or J = mvsjobname**  
This filter requests a display of all log streams with one or more connections to the specified jobname.

**SUMM or S, or DETAIL or D**  
These two mutually exclusive parameters are valid only when preceded by the specification of the LSName parameter or the Jobname parameter (or both) as part of the CONNECTION display. **SUMM** (summary), the default, displays a condensed overview of the requested information. **DETAIL** produces a more detailed report.

**SYSPLEX**  
This filter requests to change the view of the output for the display logger command CONNECTION option from a system view to a sysplex view. If you use the LSName | LSN filter to narrow the information to search for and display, the system displays information about systems and resources connected to the log stream. Otherwise, the display will show all log streams with one or more connections on the sysplex.

**DASDONLY**  
This filter requests a display of all log streams with a DASDONLY configuration.

**LOGSTREAM or L**  
Display log stream sysplex information.

**LSNAME or LSN = logstreamname**  
This filter requests a display of all defined log streams that match the specified log stream name.

**STRNAME or STRN = structurename**  
This filter requests a display of all log streams on the sysplex that are defined to a structure that matches the specified structure name.

**DASDONLY**  
This filter requests a display of all log streams that match other filters that have a DASDONLY configuration.

**STRUTURE or STR**  
Sort by structure name and display all log streams defined to any structure on a sysplex.

**STRNAME or STRN = structurename**  
This filter requests a sort by structure and display of all log streams on the sysplex defined to the specified structure name.

**L=a, name, or name-a**  
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

**Examples**

**Example 1**

Display the current operational status of the System Logger.
DISPLAY LOGGER Command

DISPLAY LOGGER,STATUS

Example 2

Display all log streams with one or more connections for the system that match the log stream name starting with the letters *logstr*.
DISPLAY LOGGER,CONN,LSN=logstr*

Example 3

Display all log streams with at least one active connection in the sysplex that matches the log stream name starting with the letters *logstr*.
DISPLAY LOGGER,CONN,SYSPLEX,LSN=logstr*

Example 4

Display all defined log streams for the sysplex that match the log stream name of *loga* and structure names that start with *list*.
DISPLAY LOGGER,L,LSN=loga,STRN=list*

Example 5

Display all defined log streams for the sysplex that start with *logstr* and have a DASD only configuration.
DISPLAY LOGGER,L,LSN=logstr*,DASDONLY

Example 6

Display all defined log streams for the sysplex and sort by structure name starting with the letters *list*.
DISPLAY LOGGER,STR,STRN=list*

Example 7

The following command displays details of all the log streams on the system with connections to the specified job name:
DISPLAY LOGGER,CONN,JOBNAME

The IXG601I message output is displayed as follows:

```
CONNECTION INFORMATION BY LOGSTREAM FOR SYSTEM SY1
LOGSTREAM STRUCTURE #CONN STATUS
----------- -------- ----- ------
NICKJ.TEST.LOGSTREAM LIST01 00002 DISCONNECT PENDING
DUPLEXING: STAGING DATA SET
 STGDSN: IXGLOGR.NICKJ.TEST.LOGSTREAM.PLEX1
 VOLUME=ALL001 SIZE=0040000 % IN-USE=30
GROUP: PRODUCTION
 DISCONNECT PENDING FOR 0003 MINUTES
FORCE DISCONNECT IN PROGRESS
JOBNAME: LOGTEST1 ASID: LOGTAS1
 R/W CONN: 0003
 RES MGR./CONNECTED: no
 IMPORT CONNECT: no
JOBNAME: LOGTEST2 ASID: LOGTAS2
 R/W CONN: 0003
```
RES MGR./CONNECTED: no
IMPORT CONNECT: no

NUMBER OF LOGSTREAMS: 000001

Example 8

The following command displays inventory information by log stream for either the sysplex (DISPLAY LOGGER,CONN,SYSPLEX) or system (DISPLAY LOGGER,L):

DISPLAY LOGGER,CONN,SYSPLEX
DISPLAY LOGGER,L

The IXG601I message output is displayed as follows:

INVENTORY INFORMATION BY LOGSTREAM

<table>
<thead>
<tr>
<th>LOGSTREAM</th>
<th>STRUCTURE</th>
<th>#CONN</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NICKJ.TEST.LOGSTREAM1</td>
<td>LIST01</td>
<td>00000</td>
<td>AVAILABLE</td>
</tr>
<tr>
<td>NICKJ.TEST.LOGSTREAM2</td>
<td>LIST02</td>
<td>00003</td>
<td>IN USE</td>
</tr>
</tbody>
</table>

SYSNAME: SY1
DUPLEXING: LOCAL BUFFERS

SYSNAME: SY2
DUPLEXING: STAGING DATA SET

SYSNAME: SY3
DUPLEXING: LOCAL BUFFERS
GROUP: PRODUCTION

SYSNAME: SY2
DUPLEXING: LOCAL BUFFERS
GROUP: TEST

NUMBER OF LOGSTREAMS: 000003

Example 9

The following command displays the status of the system logger:

DISPLAY LOGGER,ST

If some resources and services are not available, the IXG601I message output is displayed as follows:

SYSTEM LOGGER STATUS
SYSTEM SYSTEM LOGGER STATUS
------- -------------------
SY1 ACTIVE

LOGR CDS IS NOT AVAILABLE
LOGGER SERVICES DISABLED FOR GROUP: TEST

Example 10

The following command displays the log streams defined to any structure in the sysplex:

DISPLAY LOGGER,STR

The IXG601I message output is displayed as follows:

INVENTORY INFORMATION BY STRUCTURE

<table>
<thead>
<tr>
<th>STRUCTURE</th>
<th>GROUP</th>
<th>CONNECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST01</td>
<td>TEST</td>
<td>NO</td>
</tr>
<tr>
<td>OA08535.LOG STREAM</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>LIST02</td>
<td><em>NO LOGSTREAMS DEFINED</em></td>
<td>N/A</td>
</tr>
<tr>
<td>LONG_STRUCT_NAME</td>
<td>PRODUCTION</td>
<td></td>
</tr>
</tbody>
</table>
**DISPLAY LOGGER Command**

NICKJ.TEST.LOG.STREAM NO  
NICKJ.TEST.LOG.STREAM2 YES  

NUMBER OF STRUCTURES: 3

**Example 11**

The following command displays the status of system logger and requests any outstanding data set recalls be listed (from the oldest to the most recent):

```bash
DISPLAY LOGGER,ST,REC
```

The IXG601I message output is displayed as follows when there are outstanding recall requests:

```plaintext
SYSTEM LOGGER STATUS
SYSTEM SYSTEM LOGGER STATUS
------- -------------------
SY1 ACTIVE
LOGGER DATA SET RECALLS
GROUP: PRODUCTION
SECONDS DATA SET NAME
 00000038 IXGLOGR.TEST102.STREAM01.A00000000
 00000173 IXGLOGR.TEST102.STREAM02.A00000003
GROUP: TEST
SECONDS DATA SET NAME
 00000014 IXGLOGR.TEST103.STREAM04.A00000002
 00000014 IXGLOGR.TEST103.STREAM03.PLEX1
```

The IXG601I message output is displayed as follows when there are no outstanding recall requests:

```plaintext
SYSTEM LOGGER STATUS
SYSTEM SYSTEM LOGGER STATUS
------- -------------------
SY1 ACTIVE
LOGGER DATA SET RECALLS
GROUP: PRODUCTION
NO DATA SET RECALLS WAITING
GROUP: TEST
NO DATA SET RECALLS WAITING
```

The IXG601I message output is displayed as follows when there are outstanding recall requests but the TEST group services have been disabled:

```plaintext
SYSTEM LOGGER STATUS
SYSTEM SYSTEM LOGGER STATUS
------- -------------------
SY1 ACTIVE
LOGGER SERVICES DISABLED FOR GROUP: TEST
LOGGER DATA SET RECALLS
GROUP: PRODUCTION
SECONDS DATA SET NAME
 00000088 IXGLOGR.TEST102.STREAM01.A00000000
 00000223 IXGLOGR.TEST102.STREAM02.A00000003
GROUP: TEST
LOGGER NO LONGER RECALLING DATA SETS ASYNCHRONOUSLY
```

**Displaying the Logrec Recording Medium**

Use the DISPLAY LOGREC command to display the current logrec error recording medium, the environmental record recording medium, and any alternate medium, if available. The DISPLAY LOGREC command produces the following output:
The current logrec error recording medium (either the name of a log stream, the name of a logrec data set, or IGNORE).

The alternate recording medium, if a logrec data set has been defined.

Both current and alternate recording medium status.

After the system processes the command, it issues message IFB090I to the console from which the command was issued or to a specified console. Use LookAt or use the MVS System Messages books to see the description of message IFB090I, which shows the resulting display.

Restrictions
• Do not use the same keyword more than once within a single command.
• Do not exceed the maximum command line length of 124 characters.

Syntax

```
D LOGREC[,{CURRENT|CURR}|{DATASET|DSN}|{ALL|A}]
[,,L={a|name|name-a}]
```

The parameters are:

**CURRENT or CURR**
Indicates that the system is to display the current logrec medium. CURRENT is the default. The possible current mediums are as follows:
- LOGSTREAM, which displays the log stream name and status.
- DATASET, which displays the logrec data set name and status.
- IGNORE, which indicates that there is no logrec medium.

**DATASET or DSN**
Indicates that the system is to display only the logrec data set name and status. If a data set name is displayed, then it is defined. The displayed data set, however, might not be the current logrec recording medium. To determine the current recording medium, use the CURRENT option. If there is no data set defined, the system displays the text NOT DEFINED.

**ALL or A**
Indicates that the system is to display all, both current and alternate, logrec medium and data set names and status.

**L=a, name, or name-a**
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Example

To display information for all the logrec medium settings:

```
DISPLAY LOGREC,ALL
```
**DISPLAY M Command**

**Displaying System Configuration Information**

Use the DISPLAY M command to display the status of sides, processors, ICRFs, channel paths, devices, and central storage or to compare the current hardware configuration to the configuration in a CONFIGxx parmlib member.

The DISPLAY M command can accept the subchannel set number to qualify the input device number. The output of message IEE097I includes the applicable subchannel set number.

When you specify a device number that might be mistaken for the device name, precede the device number with a slash. The slash is optional with a 3-digit device number.

```
D M[=CHP[(xx)|(xx-xx)|(list)]
 |=CONFIG[(xx)]
 |=CPUADCPU][(x)|(list)]
 |=CPU[(xxxx]
 |=DEVICE DEV][(/[devnum])[(/[lowdevnum-]/[highdevnum])|(list)]
 |=DEVICE DEV][(/[devnum],[chp])
 |=DEVICE DEV][(/[devnum],chp)
 |=HIGH
 |=HSA
 |=SIDE[(id)]
 |=STORAGE STOR)[dddM-ddddM]|(list)|(E=id)]
 |=SWITCH(sssss ,pp[-pp] ,pp[-pp])...
 |=parm[,parm]...
 [,L={a|name|name-a}]
```

**M** The system is to display information about system configuration. When you enter DISPLAY M with no operands, the system displays the starting address and length of each portion of the hardware system area (HSA). The system also displays the status of all processors, ICRFs, central storage, channel paths, and devices, depending on the type of processor or processor complex.

If the processor complex is partitioned, the system does not provide information about resources that are not part of the configuration on which you issue the command. Message IEE174I gives you the status of resources on the side from which you issue the command and tells you that information about the other side is unavailable. If you are running your processor complex in single-image mode with all resources in one side offline, message IEE174I identifies the other side as being offline but gives you the information about those resources. For example, to partition a processor complex, you configure offline the resources on one side. To verify that those resources are offline, issue the DISPLAY M=SIDE command. The display lists the side as offline and gives the status of the resources.

**CHP**

The system is to display the online and offline status of channel paths. If you do not specify any channel path, the system displays the status of all channel paths, as well as a status of either “managed and online” or “managed and offline” as part of the support of dynamic channel path management. For a description of the display format, see message IEE174I. Use LookAt or use the MVS System Messages books.
DISPLAY M Command

(xx)
A single channel path identified by xx. The channel path identifier can have a value from 0 to FF.

(xx-xx)
A range of channel path identifiers. The starting and ending channel path identifiers can have a value from 0 to FF.

(list)
One or more single channel path identifiers, or a combination of single channel path identifiers and ranges of channel path identifiers, each separated by a comma.

CONFIG[(xx)]
The system is to display the differences between the current configuration and the configuration described in the CONFIGxx parmlib member. If you omit xx, the system assumes that you mean CONFIG00.

For a description of the display format, see message IEE097I. Use LookAt or use the MVS System Messages books.

You can also start this function from the HCD dialog. For details refer to the section “Process Display M=CONFIG(xx) Command” in z/OS HCD User’s Guide.

CPUAD or CPU
The system is to display the online or offline status of one or more processors and any ICRFs attached to those processors. For a description of the display format, use LookAt or use the MVS System Messages books to see message IEE174I.

If you do not specify any processor identifiers, the system displays the online or offline status of all processors and any ICRFs attached to them. Whether you specify a processor identifier or not, the system displays "N" when a processor is neither online or offline, but is recognized by the machine.

Note: When you issue the DISPLAY M=CPU command from a PR/SM partition, the system displays the status for the logical processors, and ICRFs defined to the partition.

(x) A single processor identified by processor identifier in hexadecimal format.

(list)
One or more processor identifiers, each separated by a comma.

CU
The system is to display the information for a specific control unit. For a description of the display format, see message IEE174I.

(yyyy)
The control unit number.

Note: The D M=CU command does not support displaying information for CTC control units.

DEVICE or DEV
The system is to display the number of online channel paths to devices (including special devices) or a single channel path to a single device.
DISPLAY M Command

For a description of the display format, see message IEE174I. Use LookAt or use the MVS System Messages books.

{{devnum}}
   A single device number.

{{lowdevnum}-{{highdevnum}}}
   The lower device number lowdevnum and the upper device number highdevnum of a range of devices.

{{devnum},{chp}}
   A single device number and single channel path identifier.

{{devnum},{chp}}
   A single device number and single channel path identifier.

Device numbers and ranges can be specified in any combination.

A device number consists of 3, 4, or 5 hexadecimal digits, optionally preceded by a slash (/). A channel path identifier can have a value from 0 to FF. In the 5 digit format, sdddd, s is the subchannel set identifier and dddd is the device number.

If a 3-digit or 4-digit device number is entered in the command, the device information representing subchannel set 0 is used for the display even if the actual subchannel connected to the device is in subchannel set 1. If a 5-digit device number is entered, the device information representing the specified subchannel set is displayed. If a range of device numbers is found and one of the two numbers is a 5-digit number, the other number in the range must be 5-digit too. If the device is being monitored by HyperSwap, HS appears in the FUNCTIONS ENABLED line. If the device has been involved in a failover swap and the device is part of a PPRC pair that has a 3390D device, the DEVICE HAS BEEN SWAPPED line is displayed.

HIGH
   The system is to display the highest possible central storage addresses in decimal M bytes (megabytes) or when the value is greater than 16383 decimal, in hexadecimal M bytes. Each address indicates the amount of storage available at system initialization. For a description of the display format, see message IEE174I. Use LookAt or use the MVS System Messages books.

HSA
   The system is to display the starting address and length of each portion of the hardware system area (HSA). For a description of the display format, see message IEE174I. Use LookAt or use the MVS System Messages books.

SIDE[{{id}}]
   The system is to display the resources installed in side (physical partition) id, whether the resources are online or offline, and whether the side is online, offline, or unavailable. If the processor complex is partitioned and the specified side is part of another configuration, no information is provided. If the processor complex is running in single-image mode and you do not specify an id, the system displays both sides. If the command is issued from MVS running in a partition, no information is provided.

For a complete description of the display format of DISPLAY M=SIDE, see message IEE174I. Use LookAt or use the MVS System Messages books.
STORAGE or STOR

The system is to display the status of central storage. The display includes storage offline, storage waiting to go offline, and reconfigurable storage sections. For storage waiting to go offline, the system displays:

- The address space identifier (ASID)
- The jobname of the current user of the storage
- The amount of unassigned storage in offline storage elements
- The amount of storage that belongs to another configuration

STORAGE also indicates if a given range of central storage contains data that is shared through the use of the IARVSERV macro.

In this display, storage offline does not include the hardware save area (HSA). To find the location and length of the HSA, enter DISPLAY M=HSA.

If you do not specify (dddddX-dddddX), (list), or (E=[id]), the system displays the status of all central storage. For a description of the display format, see message IEE174I. Use LookAt or use the MVS System Messages books.

(dddddX-dddddX)

The starting and ending addresses of a range in central storage for which you want the status display. Specify up to five decimal digits followed by a multiplier (M-megabytes, G-gigabytes, T-terabytes, P-petabytes) for each address. The starting and ending addresses (dddddX) must each be on a valid storage boundary and cannot exceed 16383P. The starting and ending addresses must not be the same.

Instead of specifying the range using decimal numbers, you can specify it in hexadecimal, with or without a multiplier, in the format X'xxxxxx'-X'xxxxxx'. For example:

- X'123456789A00000'-X'123456789B00000'
- X'123'M-X'124'M

You can use underscores in any hexadecimal specification for better clarity. Underscores in the specification are ignored during processing.

(list)

One or more address ranges (in decimal), each separated by a comma.

(E=[id])

The system is to display the status of the requested storage element. The display includes the amount of storage (in megabytes) the system owns in each online storage element, the amount of storage available to be configured online, whether the storage element is online or offline. If you omit the id, the system displays this information for all installed storage elements.

Note: If the processor complex is partitioned and the specified storage element is part of another configuration, no information is provided.

SWITCH(ssss [,pp[-pp] [,pP[-pP]][,...])

The system is to display the status of a specific switch, switch port, or list of switch ports.

For a description of the display format, see message IEE174I. Use LookAt or use the MVS System Messages books.

ssss

The device number of the switch device.
DISPLAY M Command

[.,pp[-pp] [.pp[-pp]]...]
The port address or port address list.

(parm[,parm]...)
The system is to display the status of each resource you specify as parm. The
list of parms you specify within the parentheses may contain any
combination of CHP, CPU, DEV, HIGH, HSA, STOR(E[=id]), and STOR.
You must separate the resources in the list with commas and you must
enclose the list in parentheses. Do not use blanks within the parentheses
and do not specify CONFIG in the list.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a)
where the display is to appear.
If you omit this operand, the display is presented in the first available
display area or the message area of the console through which you enter
the command.

Example 1
To display the online or offline status of all devices on channel path 01, enter:
D M=CHP(01)

Example 2
To display the following information:
• The online or offline status of all processors
• The number of online channel paths to each device
• The highest central storage address available
• The status of central storage

enter:
D M=(CPU,DEV,HIGH,STOR)

Example 3
To display the number of megabytes of storage the system owns in storage element
0 and the status of the storage element, enter:
D M=STOR(E=0)

Example 4
To display the number of megabytes of storage the system owns in each storage
element and the status of each element, enter:
D M=STOR(E)

Example 5
To display the status of all processors, the status for channel paths 1, 3, 4, 5, and
the high storage addresses for central storage, enter:
D M=CPU
D M=CHP(01,03-05)
D M=HIGH
or
D M=(CPU,CHP(01,03-05),HIGH)
Displaying Message Flood Automation Information

Use the DISPLAY MSGFLD command to display the following information about message flood automation:

- The enablement status of the message flood automation.
- The intensive mode states for all three message types: REGULAR, ACTION, and SPECIFIC.
- The values of parameters for all three message types or a specified message type.
- The default actions to be taken for all three message types or a specified message type.
- The message rate information.

The complete syntax for the DISPLAY MSGFLD command is:

```
D {MSGFLD|MF}
 [,STATUS]
 [,MODE]
 [,DEFAULTS]
 [,JOBS]
 [,MSGS]
 [,PARAMETERS]
 [,MSGTYPE=msgtype,keyword]
 [,MSGRATE[n]]
 [,L={a|name|name=a|}]
```

**STATUS**
Displays the current enablement status of message flood automation and the active MSGFLDxx parmlib member.

If you enter only the DISPLAY MSGFLD command, the default you get is STATUS.

**MODE**
Displays the current intensive mode states for all three message types.

**DEFAULTS**
Displays the default actions to be taken for all three message types. The default actions are specified on the DEFAULT statements of the active MSGFLDxx parmlib member.

**JOBS**
Displays the default actions to be taken for all the jobs that have been defined on the JOB statements of the active MSGFLDxx parmlib member.

**MSGS**
Displays the default actions to be taken for all the messages that have been defined on the MSG statements of the active MSGFLDxx parmlib member.

**PARAMETERS**
Displays the current values of the parameters for all three message types.

**MSGTYPE=msgtype,keyword**
Displays the parameter associated with the specified message type.

*msgtype* specification can be: REGULAR, ACTION, and SPECIFIC.

*keyword* specification can be: MSGTHRESH, JOBTHRESH, INTVLTIME, SYSIMTIME, JOBITIME, MSGLIMIT, and MSGIMTIME.
The valid combinations of msgtype and keyword are:

<table>
<thead>
<tr>
<th>MSGTYPE=REGULAR</th>
<th>MSGTYPE=ACTION</th>
<th>MSGTYPE=SPECIFIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTVLTIME</td>
<td>INTVLTIME</td>
<td>INTVLTIME</td>
</tr>
<tr>
<td>JOBIMTIME</td>
<td>JOBIMTIME</td>
<td></td>
</tr>
<tr>
<td>JOBTHRESH</td>
<td>JOBTHRESH</td>
<td>MSGIMTIME</td>
</tr>
<tr>
<td>MSGTHRESH</td>
<td>MSGTHRESH</td>
<td>MSGTHRESH</td>
</tr>
<tr>
<td>SYSIMTIME</td>
<td>SYSIMTIME</td>
<td>SYSIMTIME</td>
</tr>
</tbody>
</table>

**MSGRATE[,n]**
Display message rate information collected by the message rate monitoring function.

\( n \) is an optional graph length parameter in lines. The default is 25 lines. Note that the command processor adjusts this value to obtain the best scaling. The smallest supported graph has a length of 8 lines; the largest supported graph has a length of 200 lines. Standard graph sizes are: 8, 10, 16, 20, 25, 32, 40, 50, 80, 100, and 200 lines.

\[ L=a, \text{name}, \text{or} \text{name-a} \]
Specifies the display area \((a)\), console name \((\text{name})\), or both \((\text{name-a})\) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

**Displaying MVS Message Service Status and Languages**
Use the DISPLAY MMS command to request a display of the current status of the MVS message service (MMS) and a display of the languages that are currently available.

The complete syntax for the DISPLAY MMS command is:

\[ D \text{ MMS[,L=\{a\text{name}\text{name-a}\}]} \]

**MMS**
Displays the status of the MVS message service and the list of the languages that are currently available.

\[ L=a, \text{name}, \text{or} \text{name-a} \]
Specifies the display area \((a)\), console name \((\text{name})\), or both \((\text{name-a})\) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

**Example**
To display the status of the MVS message service and the current languages, enter:
D MMS

The status display is in the following format:

```
CNLS026I 13.25.02 MMS DISPLAY
PARMLIB MEMBER = MMSLSTE2
LAST REFRESH WAS AT 10:21 on 04/24/89
CODE CONFIG OBJECT
ENU CNLENU01 SYS1.MSG.ENG
JPN CNLJPN02 SYS1.MSG.JAPAN
DEU CNLDEU01 SYS1.MSG.GERMAN
EXIT 01 – OURMMS1
```

When the MVS message service is not active, the system issues message IEE294I.

### Displaying Message Suppression, Retention, Color, Intensity, and Highlighting Options

Use the DISPLAY MPF (message processing facility) command to display information about message processing and presentation that is contained in the MPFLSTxx parmlib member or members currently in effect.

The MPF parameter on the INIT statement in the CONSOLxx parmlib member or the SET MPF=xx command activates and deactivates an MPFLSTxx member or members.

The syntax of the DISPLAY MPF command is:

```
D MPF[,{MSG|M}][,L={a|name|name-a}][,COLOR|C][,CMD
```

### MPF

The system is to display information about message processing and presentation. If you do not use operands on the DISPLAY MPF command, the system displays the following information:

- Which messages are being suppressed by MPF
- Which action message are not being retained by the action message retention facility
- Which installation exits receive control for selected messages
- The status of the general WTO installation exit IEAVMXIT
- Whether this message is automated by MPF
- The MPFLSTxx member that identifies the message ID, color attribute, or command installation exit definition
- What color, intensity, and highlighting capabilities are in effect
- The status of the command installation exit routines specified in parmlib member MPFLSTxx
- The current installation options for handling foreign messages

Use LookAt or use the *MVS System Messages* books to see a description of the output in message IEE677I.

**MSG or M**

The system is to display information on all messages that are defined in the current MPFLSTxx member:
DISPLAY MPF Command

- Which messages are being suppressed by MPF
- Which action messages are not being retained by the action message retention facility
- Which installation exits receive control for selected messages
- The status of the general WTO installation exit IEAVMXIT
- Whether this message is automated by MPF
- The MPFLSTxx member is automated by MPF
- The MPFLSTxx member that identifies the message ID

COLOR or C
The system is to display:
- What color, intensity, and highlighting capabilities are in effect

CMD
The system is to display:
- The status of the command installation exit routines specified in parmlib member MPFLSTxx

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.
If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Example 1
To display information about the message IDs and WTO installation exits for all consoles, enter:
D MPF,M

Example 2
To display the color, intensity, and highlighting specifications for all consoles, enter:
D MPF,C

Example 3
To display the message processing and presentation information for all consoles on console 2, area A, enter:
D MPF,L=CON2-A

Example 4
To display the status of the command installation exits, enter:
D MPF,CMD

Displaying z/OS UNIX System Services Status

The MVS operator can use the DISPLAY command to obtain:
- z/OS UNIX System Services status information (for example, active or terminating, shutting down or restarting).
- File system information.
- z/OS UNIX System Services process information for address spaces, including an indication of which processes are registered as permanent or blocking.
The current setting for all statements in the BPXPRMxx member (or members) of SYS1.PARMLIB, which is used by z/OS UNIX. This includes system-wide and process limits, their high-water marks, and current usage.

- Information about multiple parmlib members.
- Information about each physical file system that is currently part of the z/OS UNIX System Services configuration.
- Routing information from the common inet (CINET) prerouter tables.
- Thread-level information for any thread that is in a byte-range lock wait.

You can use this command to display address space information for a user who has a process that is hung or that is waiting to become a process. You can also use the information returned from this command to determine how many address spaces a given TSO/E user ID is using, whether an address space is using too many resources, and whether a user's process is waiting for a z/OS UNIX kernel function to complete.

The syntax for the DISPLAY OMVS command is:

```
D OMVS[{,SUMMARY|S}] [{,ASID|A}=ALL | ,{ASID|A}=asid | ,{ASID|A}=DUBW | ,U=userid | ,{PID}=ProcessId [,BRL] | ,{FILE|F}[,{NAME|N}=filesystem[,CAPS|C]] | ,{OWNER|O}=systemname | ,{,EXCEPTION|E} | ,{,TYPE|T}=type] [{,VSERVER|V}] [{,PFS|P}] [{,CINET|CI}=All|TPname] [{,OPTIONS|O}] [{,LIMITS|L}[,PID=ProcessId][,RESET]] [{,SER}] ,ACTIVATE=SERVICE | ,{WAITERS|W} [{M|=ALL|A}] | {MF={PURGE|P}} [{,L={a|name|name-a}]} [{SOCKETS|SO}]
```

**SUMMARY or S**
Displays status of z/OS UNIX processes, file systems, and servers (for example, active or terminating) and the BPXPRMxx parmlib member specified during initialization or specified by the SET OMVS= system command.

**ASID or A=ALL**
Displays process information for all z/OS UNIX System Services address spaces.

**ASID or A=asid**
Displays process information for the specified hexadecimal address space ID (ASID). If the specified ASID is not a z/OS UNIX System Services address space, an error message is issued.

**ASID or A=DUBW**
Displays process information for all address spaces waiting to be dubbed a z/OS UNIX System Services process. After message BPXP022E is issued to indicate one or more jobs are waiting for z/OS UNIX System Services availability, you can issue D OMVS,A=DUBW to display all jobs waiting to be dubbed.
DISPLAY OMVS Command

**U=userid**
Displays process information for all processes associated with the specified TSO/E user ID. Use this operand when a user requests that a hung process be canceled. You can display all processes owned by the user and find the address space ID (ASID) of the process that needs to be canceled. Then use the CANCEL command to cancel the address space.

**PID=processid**
Displays thread information for the processid that is specified in decimal numbers. In a sysplex environment, you must issue the D OMVS,PID= command from the system on which the specified process is running. See “Example 13” on page 4-204.

**BRL**
Displays thread-level information for any thread that is in a byte-range lock wait. You can specify this operand with the PID operand. See “Example 13” on page 4-204.

**FILE or F**
Displays a list of file systems that z/OS UNIX System Services is currently using, including the following:
- The status of each file system.
- The date and time that the file system was mounted.
- The latch number for the file system.
- The quiesce latch number for the file system, or 0 if the file system has never been quiesced by UNIX System Services.

If you are using zFS and need to determine the file system owner, see the topic on zFS ownership versus z/OS UNIX ownership of file systems in z/OS Distributed File Service zSeries File System Administration. You can limit the amount of information displayed by specifying one of the following keywords:

**NAME or N=filesystem**
Displays information about the specified file system or file systems. You can use one wildcard character (*) in the file system specified. For example, ZOS18.*.HFS or ZOS.L*.HFS. Note that specifying D OMVS,F,NAME=* results in the system displaying all file systems, which is the same output as if you specified D OMVS,F. Also, single quotes (’) can be used to specify lowercase characters.

**OWNER or O=systemname**
Displays information for the file systems owned by the specified system name. Specifying D OMVS,F,OWNER displays all the file systems that are owned by this system.

**EXCEPTION or E**
Displays file systems in an exception state, such as a file system that is quiesced, unowned, or in recovery.

**TYPE or T=type**
Displays all file systems of the specified PFS type.

**CAPS or C**
Displays variable data containing lowercase letters in uppercase.

**VSERVER or V**
Displays process information for all processes that have been defined as servers that use the virtual file system (VFS) callable services API.

**CINET or CI = ALL|tpname**
Displays the Common Inet routing information for all of the active transport
providers in use by the common inet prerouter. The transport providers were specified with the SUBFILESYSTYPE statements in the BPXPRMxx profile or specified with the SETOMVS command. The network routing information was specified in the appropriate data set for the transport provider. When the name (tpname) of an active transport provider is specified, the command displays the Common Inet routing information for that specific transport provider.

**OPTIONS or O**
Displays the current settings of the options that
(a) were set during initialization in the parmlib member BPXPRMxx or by a SET OMVS or SETOMVS command after initialization, and that
(b) can be altered dynamically via a SET OMVS or SETOMVS command.

Note that if you issue the D OMVS,O command while OMVS is shutdown, the system will attempt to display the OMVS parmlib options that were last in effect when OMVS was active. However, it is possible that some option values are unavailable and the values can not be displayed.

**PFS or P = Physical File System**
Displays information about each physical file system that is currently part of the z/OS UNIX System Services configuration. The physical file systems were specified in the BPXPRMxx profile, or with the SETOMVS command, or are an internal part of z/OS Unix System Services.

**LIMITS or L**
Displays information about current z/OS UNIX System Services parmlib limits, their high-water marks, and current system usage. When the PID= keyword is specified, LIMITS displays high-water marks and current usage for an individual process.

**RESET**
Resets the high-water mark for a system limit to 0.

**SER**
Reports serialization for all in-use, shared memory mutexes (mutual exclusion locks) and condition variables. Each mutex and condition variable is identified by the shared memory ID and the location of the shared memory object.

If the object is in an above-the-bar shared-memory segment, the location information indicates the address of the mutex or condition variable. If it is in a below-the-bar segment, the location information indicates the offset within the shared-memory segment. The offset is displayed, in this case, because each address space sharing a below-the-bar segment can map it at a different virtual address. For each mutex, the output shows the owner’s TCB address, process ID, and ASID and the same of those waiting for access, if the system can determine that information.

For each condition variable, the output shows the same information for the waiting task of the condition variable and additionally identifies the associated mutex. User data is displayed for each owner and waiting task of a mutex or condition variable. In the case where LE is the caller of BPX1SMC, the user data represents the address of the LE DSA data area for the waiting or owning task.

**ACTIVATE=SERVICE**
Specifies that all the dynamically activated service items are to be displayed. Dynamically activated service consists of SMP/E installable service for the z/OS UNIX kernel and logical file system (LFS) components that was activated with the F OMVS,ACTIVATE=SERVICE command. (See “Recycling z/OS UNIX System Services (z/OS UNIX)” on page 4-361).
DISPLAY OMVS Command

The service items are displayed in the order they were activated, with the most recent set of activated service items being displayed first. The most recent set of service items, which are shown as the highest numbered set of service items, are the highest level of service items activated for z/OS UNIX.

The display includes the following information:
- The library and volume from which each set of service was activated.
- The amount of ECSA and OMVS address space storage consumed by all dynamically activated service items. Note that the amount of storage consumed will not decrease if you deactivate service items (F OMVS,DEACTIVATE=SERVICE), because the modules containing the deactivated service items remain in storage. See "Example 15" on page 4-206.

This command will not display deactivated service items.

WAITERS or W
Displays information about delays caused by the following conditions:
- Mount latch contention
- Outstanding unprocessed sysplex messages
- File system latch contention
- Other reasons

You can use the information displayed to figure out which tasks are hung, and why they are waiting. See "Example 16" on page 4-207.

MF

MF=ALL | A
Displays information about move or mount failures:
- Enter MF to display information about the last 10 or less move or mount failures.
- Enter MF=ALL or MF=A to display information about the last 50 or less move or mount failures.

The system issues message BPXO058I to display the information about mount failures. See "Example 17" on page 4-208.

MF=PURGE | P
Allows you to purge the saved information about mount failures displayed in message BPXO058I.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

SOCKETS | SO
Displays the following information about each AF_UNIX socket:
- The owner’s userid
- The socket name
- The name of the peer socket

See "Example 18" on page 4-208.

Example 1

To display process information for all z/OS UNIX System Services address spaces, enter:
DISPLAY OMVS,A=ALL

z/OS UNIX System Services status information (OMVS ACTIVE) appears before the process information. See the appropriate UNIX System Services book for an explanation of the data filled in below the headers, such as a state of MKI.

Example 2

To display z/OS UNIX System Services process information on all z/OS UNIX System Services address spaces owned by user ID MEGA, enter:

DISPLAY OMVS,U=MEGA

Example 3

To display z/OS UNIX System Services process information for the address space with ASID equal to 001A, enter:

DISPLAY OMVS,ASID=001A

Example 4

To display detailed file system information on currently mounted files, enter:

DISPLAY OMVS,FILE

d omvs,f

BPXO045I 11.40.13 DISPLAY OMVS 217
OMVS 000E ACTIVE OMVS=(AW)
If AUTOMOVE was specified with a system list in the SETOMVS or chmount command, the list of candidates to take ownership of the file system is displayed under the file system owner.

For zFS file systems, the display includes an aggregate file system name indicating membership in a data set containing multiple file systems. Aggregates provide member file systems with a common pool of disk space.

**Note:** File systems can have a status of NOT ACTIVE if they were mounted under a physical file system (PFS) that has terminated, such as is possible with zFS, TFS, or NFS Client. These file systems cannot be made active again without unmounting and remounting them after the PFS is restarted. If the file systems are remounted, they will appear active with a new device number.

**Example 5**

To display process information for all processes that have been defined as a server, enter:

```
DISPLAY OMVS,V
```

z/OS UNIX System Services status information (OMVS ACTIVE) appears before the file system information.

```
BPXO070I 14.38.46 DISPLAY OMVS 030
OMVS 000E ACTIVE OMVS=(93)
USER JOBNAME ASID PID PPID STATE START CT_SECSS
IBMUSER BPXOINIT 0013 1 0 MKI 11.02.40 .0373
LATCHWAITPID= 0 CMD=BPXPINPR
SERVER=Init Process AF= 0 MF=65535 TYPE=FILE
```

**Example 6**

To display all options set during initialization by the parmlib member BPXPRMxx or with the SET command, enter:

```
DISPLAY OMVS,O
```

```
BPXO043I 13.10.16 DISPLAY OMVS 066
OMVS 000D ETC/INIT WAIT OMVS=(M7)
CURRENT UNIX CONFIGURATION SETTINGS:
MAXPROCSYS = 256 MAXPROCUSER = 16
MAXFILEPROC = 256 MAXFILESIZE = NOLIMIT
MAXCPUTIME = 1000 MAXUIDS = 200
MAXPTYS = 256
MAXMMAPAREA = 256 MAXASSIZE = 209715200
MAXTHREADS = 200 MAXTHREADTASKS = 1000
MAXCORESIZE = 4194304 MAXSHAREPAGES = 4096
IPCMQSBQBYTES = 2147483647 IPCMSGQMNUNM = 10000
IPCMQSGNIDS = 500 IPCSEMNIDS = 500
IPCEMNOPS = 25 IPCSEMNSEMS = 1000
IPCSHMMPAGES = 25600 IPCSHMNIIDS = 500
IPCSHMMSEGS = 500 IPCSHMSPAGES = 262144
SUPERUSER = BPXROOT FORKCOPY = COW
STEPLIBLIST =
```
USERIDALIASTABLE=
SERV_LINKLIB  =  POSIX.DYNSEVER.LOADLIB  BPXLK1
SERV_LPALIB   =  POSIX.DYNSEVER.LOADLIB  BPXLK1
PRIORITYPG VALUES:  NONE
PRIORITYGOAL VALUES:  NONE
MAXQUEUEDSIGS =   1000  SHRLIBRGNSSIZE =  67108864
SHRLIBMAXPAGES =  4096  VERSION =  /
SYSCALL COUNTS =  NO  TTYGROUP =  TTY
SYSPLEX =  NO  BRLM SERVER =  N/A
LIMMSG =  NONE  AUTOCVT =  OFF
RESOLVER PROC =  DEFAULT
AUTHPGMLIST =  NONE
SWA =  BELOW

Note: The SYSPLEX (YES) option indicates the system is in a sysplex and is using
the shared file system capability. You cannot dynamically change the
SYSPLEX parameter through SETOMVS or SET OMVS. For more
information, see the chapter on shared file system in z/OS Unix
Services Planning.

To display the current setting of the options that were set during initialization by the
parmlib member BPXPRM93 or with the SET OMVS or SETOMVS command and
that can be altered dynamically by either of those commands, enter:
DISPLAY OMVS,0
BPX0043I 11.08.44 DISPLAY OMVS 962
OMVS   000E ACTIVE  OMVS=(93)
z/OS UNIX CURRENT CONFIGURATION SETTINGS:
MAXPROCSYS  =  256  MAXPROCESS =  16
MAXFILEPROC =  256  MAXFILESIZE =  NOLIMIT
MAXCPUTIME  =  1000  MAXUIDS =  32
MAXRTYS  =  256  MAXPTYS =  256
MAXMMAPAREA =  4096  MAXASSIZE =  41943040
MAXTHREADS =  200  MAXTHREADTASKS =  50
MAXCORESIZE =  4194304  MAXSHAREPAGES =  131072
IPCMMSGQBYTES =  262144  IPCMSQOMNUM =  10000
IPCMMSGNIDS =  500  IPCSEMNI =  500
IPCMSEMOPS =  25  IPCSMENMS =  25
IPCMSHMMAPAGES =  256  IPCSCHMIN =  500
IPCMSHMMSEG =  10  IPCSCHMPAGES =  262144
SUPERUSER   =  BPXROOT FORKCOPY =  COW
STEPLIBLIST =  USERIDALIASTABLE=
PRIORITYGOAL VALUES:  NONE
MAXQUEUEDSIGS =  1000
SYSCALL COUNTS =  NO  TTYGROUP =  TTY
AUTHPGMLIST =台州/etc/authfile

Example 7

To display the thread information for process id 1, enter:
DISPLAY OMVS,PID=1
BPX0043I 11.13.40 DISPLAY OMVS 971
OMVS   000E ACTIVE  OMVS=(93)
USER JOBNAME ASID  PID   PPID  STATE START CT SECS
IBMUSER BPXOINIT 0013  1  0 MKI  11.02.40 .037
LATCHWAITPID=  0 CMD=BPXPINPR
SERVER=Init Process AF=  0 MF=65535 TYPE=FILE
THREAD_ID TCB0  PRIO_JOB  USER_NAME  ACC_TIME  SC  STATE
049267800000000  009DEA70 OMVS   .028  WAT  W
0492F0000000001  009DE8B 003  VRT  Y
04937CB000000002  009DE278 OMVS   .002  KIN  K
### Example 8

To display information about each physical file system that is currently part of the z/OS UNIX System Services configuration when the physical file systems are specified in the BPXPRMxx profile, enter:

```
D OMVS,P
```

BPX0046I 14.35.38 DISPLAY OMVS 002
OMVS    000E ACTIVE
OMVS=(33)

**PFS CONFIGURATION INFORMATION**

<table>
<thead>
<tr>
<th>PFS TYPE</th>
<th>DESCRIPTION</th>
<th>ENTRY</th>
<th>MAXSOCK</th>
<th>OPNSOCK</th>
<th>HIGHUSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>SOCKETS AF_INET</td>
<td>EZBPFINI</td>
<td>50000</td>
<td>244</td>
<td>8146</td>
</tr>
<tr>
<td>UDS</td>
<td>SOCKETS AF_UNIX</td>
<td>BPXU1INT</td>
<td>64</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>ZFS</td>
<td>LOCAL FILE SYSTEM</td>
<td>IOEPSDM</td>
<td>14:32.00</td>
<td>RECYCLING</td>
<td></td>
</tr>
<tr>
<td>HFS</td>
<td>LOCAL FILE SYSTEM</td>
<td>GFAUAINIT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPXFTCLN</td>
<td>CLEANUP DAEMON</td>
<td>BPXFTCLN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPXFTSYN</td>
<td>SYNC DAEMON</td>
<td>BPXFTSYN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPXFPINT</td>
<td>PIPE</td>
<td>BPXFPINT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPXFCSIN</td>
<td>CHAR SPECIAL</td>
<td>BPXFCSIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFS</td>
<td>REMOTE FILE SYSTEM</td>
<td>GFSCINIT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**PFS PARM INFORMATION**

<table>
<thead>
<tr>
<th>PFS NAME</th>
<th>DESCRIPTION</th>
<th>ENTRY</th>
<th>STATUS</th>
<th>FLAGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP41</td>
<td>SOCKETS</td>
<td>EZBPFINI</td>
<td>ACT</td>
<td>CD</td>
</tr>
<tr>
<td>TCP42</td>
<td>SOCKETS</td>
<td>EZBPFINI</td>
<td>ACT</td>
<td></td>
</tr>
<tr>
<td>TCP43</td>
<td>SOCKETS</td>
<td>EZBPFINI</td>
<td>INACT</td>
<td>SD</td>
</tr>
<tr>
<td>TCP44</td>
<td>SOCKETS</td>
<td>EZBPFINI</td>
<td>INACT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HFS</th>
<th>SYMDEFAULT(60) FIXED(50) VIRTUAL(100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFS</td>
<td>biod(6)</td>
</tr>
</tbody>
</table>

The information displayed is:

**PFS TYPE**

For each FILESYSTYPE statement, the data specified with the TYPE operand is displayed.

**PFS DESCRIPTION**

A brief description of the physical file system.

**ENTRY**

The name of the load module specified with the ENTRYPPOINT operand on the FILESYSTYPE or SUBFILESYSTYPE statements.

**MAXSOCK**

This is the MAXSOCKETS operand of a NETWORK statement for a sockets physical file system. It specifies the maximum number of sockets that can be open at one time for the address family.

**OPNSOCK**

OPEN SOCKETS: The number of sockets that are currently opened for this sockets physical file system.

**HIGHUSED**

The highest number of sockets that have been in use at one time for each of the configured address families.

**PFS NAME**

For each SUBFILESYSTYPE statement, the transport provider specified with the NAME operand is displayed.
DISPLAY OMVS Command

STATUS
The status of each PFS specified with the SUBFILESYSTYPE statement: ACT = ACTIVE, INACT = INACTIVE.

FLAGS
Additional information for each PFS that was defined with the SUBFILESYSTYPE statement:

CD Current Default transport provider. The system is currently using this PFS as the default transport provider although it wasn’t specified as the default with the SUBFILESYSTYPE statement.

SD Specified Default transport provider. This PFS was specified as the default transport provider with the SUBFILESYSTYPE statement. Currently, however, it is not being used as the default.

SC Specified current default transport provider. This PFS was specified as the default transport provider with the SUBFILESYSTYPE statement and the system is currently using it as the default.

PARM INFORMATION
Data specified with the PARM operand on the FILESYSTYPE or SUBFILESYSTYPE statements is displayed. For the file system, in addition to the IPL settings specified with PARM, the current settings for the FIXED and VIRTUAL PARMs are displayed.

Notes:
1. Although you may specify up to 1024 bytes of parameter information in the BPXPRMxx profile, only the first 165 bytes of parameter information is displayed.
2. If a dash (‘-’) should appear as the first character for any PFS name, it means the PFS is dead.

Example 9
To display the Common Inet routing information when there are three active transport providers, enter the following. If internet protocol version 6 (IPv6) is in use, 16-byte IP addresses will display where appropriate. IPv6 data displays after IPv4 data.

D OMVS,CINET
BPX0047I 12.01.33 DISPLAY OMVS 285
OMVS  000E ACTIVE  OMVS=(QY)
IPV4 HOME INTERFACE INFORMATION
TP NAME HOME ADDRESS FLAGS
TCP1PZ1  001.001.001.001
TCP1    003.003.003.003
TCP1PZ1  006.007.008.009
TCP1    044.044.044.044

IPV4 HOST ROUTE INFORMATION
TP NAME HOST DESTINATION METRIC
TCP1PZ1  001.001.001.001  0
TCP1    003.003.003.003  0
TCP1    127.000.000.001  0
TCP1PZ1  127.000.000.001  0

IPV4 NETWORK ROUTE INFORMATION
TP NAME NET DESTINATION NET MASK METRIC
TCP1PZ1  001.000.000.000  255.000.000.000  0
TCP1    003.000.000.000  255.000.000.000  0

IPV6 HOME INTERFACE INFORMATION

Chapter 4. MVS System Commands Reference 4-201
The information displayed is:

**TP NAME**
The name of the transport provider for which the information is being displayed.

**HOME ADDRESS**
The internet protocol (IP) address of the transport provider. 16–bytes display for IPv6.

**HOST DESTINATION**
When a transport provider is connected to a host, the host IP address is displayed. 16–bytes display for IPv6.

**NET DESTINATION**
When a transport provider supplies network routing information to the Common Inet Pre-Router, the network destination address is the IP address of a network that can be accessed through the transport provider. 16–bytes display for IPv6.

For IPv6, a **PREFIX LENGTH** follows a slash at the end of the net destination IP address. This value specifies how many of the leftmost contiguous bits comprise the prefix.

**NET MASK**
A mask that is applied to destination IP addresses to separate the network number from the host number.

**METRIC**
When selecting a route, if two transport providers can access the same route, the Common INET (CINET) Prerouter selects the route with the best metric. The lower the number, the better the metric. The metric 0 = a direct connection.

**FLAGS**
None.

### IPV6 HOST ROUTE INFORMATION

<table>
<thead>
<tr>
<th>TP NAME</th>
<th>HOST DESTINATION</th>
<th>METRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP1</td>
<td>0022:0022:0022:0022:0022:0022:0022:0022</td>
<td>0</td>
</tr>
<tr>
<td>TCP1</td>
<td>0001:0000:0000:0000:0000:0000:0000:0005</td>
<td>0</td>
</tr>
<tr>
<td>TCPIPZ1</td>
<td>0000:0000:0000:0000:0000:0000:0000:0008</td>
<td>0</td>
</tr>
<tr>
<td>TCP1</td>
<td>0000:0000:0000:0000:0000:0000:0000:0001</td>
<td>0</td>
</tr>
<tr>
<td>TCPIPZ1</td>
<td>0000:0000:0000:0000:0000:0000:0000:0009</td>
<td>0</td>
</tr>
<tr>
<td>TCP1</td>
<td>0001:0000:0000:0000:0000:0000:0000:0007</td>
<td>0</td>
</tr>
</tbody>
</table>

### IPV6 NETWORK ROUTE INFORMATION

<table>
<thead>
<tr>
<th>TP NAME</th>
<th>NET DESTINATION</th>
<th>METRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCPIPZ1</td>
<td>432B:0055:0066:0099:0099:0033:0000:0000/090</td>
<td>0</td>
</tr>
<tr>
<td>TCPIPZ1</td>
<td>0000:0000:0099:0044:0055:0077:0099:0066/060</td>
<td>0</td>
</tr>
<tr>
<td>TCP1</td>
<td>0000:0000:002E:002E:002E:002E:002E:002E/056</td>
<td>0</td>
</tr>
<tr>
<td>TCPIPZ1</td>
<td>0000:0000:0011:0014:0014:0013:0013:0013/090</td>
<td>0</td>
</tr>
<tr>
<td>TCPIPZ1</td>
<td>0000:0000:0031:0031:0031:0031:0031:0043:0044/056</td>
<td>0</td>
</tr>
<tr>
<td>TCP1</td>
<td>0000:0000:002B:002B:002B:002B:002B:002B/090</td>
<td>0</td>
</tr>
<tr>
<td>TCP1</td>
<td>0000:0000:002D:002D:002D:002D:002D:002D/060</td>
<td>0</td>
</tr>
<tr>
<td>TCP1</td>
<td>0000:0000:002C:002C:002C:002C:002C:002C/090</td>
<td>0</td>
</tr>
<tr>
<td>TCP1</td>
<td>0000:0000:002F:002F:002F:002F:002F:002F/100</td>
<td>0</td>
</tr>
<tr>
<td>TCPIPZ1</td>
<td>0000:0000:0033:0033:0033:0033:0033:0033/100</td>
<td>0</td>
</tr>
</tbody>
</table>

**Display OMVS Command**

<table>
<thead>
<tr>
<th>TP</th>
<th>NAME</th>
<th>HOME ADDRESS</th>
<th>FLAGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>0022:0022:0022:0022:0022:0022:0022:0022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCPIPZ1</td>
<td>0000:0000:0000:0000:0000:0000:0000:0009</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notes:

1. When the cinet is not installed, similar routing information can be obtained by using the `netstat TC tpname gate` command or the `onetstat -p tpname -r` command.

2. When the Common Inet Pre-Router cannot find a specified IP address in its routing tables, it passes the request to a transport provider that has an active default route with the best route type and metric. The active default routes are now displayed along with other network routes for each TCPIP stacks. If no transport provider has an active default routes, then the request is routed to the default TCPIP stack.

Example 10

To display information about current system-wide parmlib limits, enter:

```
DISPLAY OMVS,L
```

```
BPX0511 14.05.52 DISPLAY OMVS 904
OMVS 0042 ACTIVE OMVS=(69)
SYSTEM WIDE LIMITS:

<table>
<thead>
<tr>
<th>CURRENT USAGE</th>
<th>SYSTEM LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXPROCSYS</td>
<td>1</td>
</tr>
<tr>
<td>MAXUIDS</td>
<td>0</td>
</tr>
<tr>
<td>MAXPTYS</td>
<td>0</td>
</tr>
<tr>
<td>MAXMMAPAREA</td>
<td>0</td>
</tr>
<tr>
<td>MAXSHAREPAGES</td>
<td>0</td>
</tr>
<tr>
<td>IPCMSGNIDS</td>
<td>0</td>
</tr>
<tr>
<td>IPCSEMNIDS</td>
<td>0</td>
</tr>
<tr>
<td>IPCSHMNIDS</td>
<td>0</td>
</tr>
<tr>
<td>IPCSHMMPAGES</td>
<td>0</td>
</tr>
<tr>
<td>IPCMSGQBYTES</td>
<td>---</td>
</tr>
<tr>
<td>IPCMSGQNUM</td>
<td>---</td>
</tr>
<tr>
<td>IPCSHMMPAGES</td>
<td>---</td>
</tr>
<tr>
<td>SHRLIBRGNSIZE</td>
<td>0</td>
</tr>
<tr>
<td>SHRLIBMAXPAGES</td>
<td>0</td>
</tr>
</tbody>
</table>
```

An * displayed after a system limit indicates that the system limit was changed via a SETOMVS or SET OMVS= command.

Note: Although IPCMSGQBYTES, IPCMSGQNUM, and IPCSHMMPAGES are displayed in the output of the D OMVS,L command, these resources are not monitored and no resource messages are issued.

Example 11

To display information about current parmlib limits for a process with a PID of 33554434, enter:

```
DISPLAY OMVS,L,PID=33554434
```

```
d omvs,l,pid=33554434
BPX0511 14.06.49 DISPLAY OMVS 907
OMVS 0042 ACTIVE OMVS=(69)
USER JOBNAME ASID PID PPID STATE START CT_SECS
WELLIE1 WELLIE1 001C 33554434 1 IRI 14.04.38 .015
LATCHWAITPID= 0 CMD=EXEC
PROCESS LIMITS:

<table>
<thead>
<tr>
<th>CURRENT USAGE</th>
<th>SYSTEM LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXFILEPROC</td>
<td>0</td>
</tr>
<tr>
<td>MAXFILESIZE</td>
<td>---</td>
</tr>
<tr>
<td>MAXPROCSUSER</td>
<td>1</td>
</tr>
<tr>
<td>MAXQUEUESIGS</td>
<td>0</td>
</tr>
</tbody>
</table>
```
DISPLAY OMVS Command

MAXTHREADS 0 0 200
MAXTHREADTASKS 0 0 50
IPCSHMNSEGS 0 0 10
MAXCORESIZE --- --- 4194304,NOLIMIT

An * displayed after a process limit indicates that the limit was changed, either
directly, with a SETOMVS,PID= command; or indirectly, by a global change of this
value with a SETOMVS command.

The values displayed are in the same units as the values used in the SETOMVS
command. For example, MAXFILESIZE is displayed in units of 4KB.

Notes:
1. Although MAXFILESIZE and MAXCORESIZE are displayed in the output, their
current and high-water usage are not monitored, and no resource messages are
issued for these resources.
2. The MAXPROCUSER limit is based on UID, as opposed to PID, value. The
current and high-water usage values reflect all values for all processes that
have the same UID as the UID for the specified PID.
3. For UID=0, there is no limit on MAXPROCUSER. When the PID= value in the
DISPLAY command is for a process with UID=0, the process limit appears as
unlimited. For example:
   MAXPROCUSER 4 11 NOLIMIT
4. MAXCORESIZE, MAXFILESIZE, and MAXFILEPROC each have hard and soft
limits. (See the documentation for the C-RTL function setrlimit() in z/OS XL
C/C++ Run-Time Library Reference) When the hard and soft limits are the
same, only one value is displayed. When the limits are different, both values are
displayed: first the soft limit and then the hard limit, separated by a comma.
In the preceding example, MAXFILEPROC has a hard limit of 1000 and a soft
limit of 256. For MAXFILESIZE, the soft limit is equal to the hard limit and is
unlimited. For MAXCORESIZE, the soft limit is 4,194,304 and the hard limit is
unlimited.

Example 12

If the SETOMVS command is issued to change the value of MAXFILEPROC to
256, the information displayed is:

<table>
<thead>
<tr>
<th></th>
<th>CURRENT USAGE</th>
<th>HIGHWATER USAGE</th>
<th>PROCESS LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXFILEPROC</td>
<td>0</td>
<td>0</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

If the process changes its soft limit for MAXFILEPROC to 100 (using the setrlimit()
function), the information displayed is:

<table>
<thead>
<tr>
<th></th>
<th>CURRENT USAGE</th>
<th>HIGHWATER USAGE</th>
<th>PROCESS LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXFILEPROC</td>
<td>0</td>
<td>0</td>
<td>100,256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 13

To display thread-level information for any thread that is in a byte-range lock wait.
enter:
DISPLAY OMVS Command

The information displayed in BRLWAIT DEV=00000001 INO=0000002E FILE=PoughkeepsiePho+ PID=12345678 is:

DEV	The device number of the file’s mounted file system.
INO	The inode number of the file, as shown by `ls -i`.
FILE	Up to 16 characters of the filename of the file that is being locked. If the filename has more than 16 characters, the first 15 are displayed, followed by a plus sign (+).
PID	The process ID of another process that is blocking this process from obtaining the lock. Usually this is the owner (or one of the owners) of a lock on the same range, but sometimes it is another process that is also waiting.

The system also displays the name of the system for where the blocking process is, when the following conditions occur:
- The command is issued in a sysplex configuration.
- The blocking process is from a system in the sysplex that is different from the system where the command is issued.

Example 14

To display a report of serialized, in-use, shared memory mutexes and condition variables, enter:

```
D OMVS,SER
```

The output from `D OMVS,SER` will be as follows when there is contention:

```
NAME=SHARED_MUTEX DATA: SHMID=00000648 OFFS/ADDR=0000000000002428
JOBNAME ASID TCB PID USER DATA EXC/SHR OWN/WAIT
DOMINO1 013A 00BF190 16777220 0000000024780148 EXC OWN
DOMINO2 02B2 00BF190 16908357 0000000024825220 EXC WAIT
DOMINO3 0206 00BF458 16973924 0000000024824778 EXC WAIT
```

```
NAME=SHARED CONDVAR DATA: SHMID=00000648 OFFS/ADDR=0000000000002428
JOBNAME ASID TCB PID
```
The information displayed is:

**NAME= SHARED MUTEX / CONDVAR**

An indication of whether the object is a mutex (MUTEX) or condition variable (CONDVAR).

**Example 15**

To display information about all the dynamically activated service items, enter:

```
D OMVS,ACTIVATE=SERVICE
BPX0059I 08.51.42 DISPLAY OMVS 284
OMVS 000E ACTIVE OMVS=(6D)
DYNAMIC SERVICE ACTIVATION REPORT
SET #3:
 LINKLIB=SYS1.DYNLIB.PVT VOL=BPXLK1
 LPALIB=SYS1.DYNLIB.LPA VOL=BPXLK1
 OA12345 OA23456 OA34567 OA45678 ANLATC1
SET #2:
 LINKLIB=SYS1.DYNLIB.PVT VOL=BPXLK1
 LPALIB=SYS1.DYNLIB.LPA VOL=BPXLK1
 OA02001 OA02002 OA02003 OA02004 OA02005
 OA02007 OA02008 OA02009
SET #1:
 LINKLIB=SYS2.DYNLIB.PVT VOL=BPXLK1
 LPALIB=SYS1.DYNLIB.LPA VOL=BPXLK1
 OA01001 OA01002 OA01003
ECSA STORAGE: 1268496 OMVS STORAGE: 4768248
```

This display output shows that the service items (such as OA12345) are listed in groups based on when they were activated. The displayed information includes the library and volume from which each set of service was activated. At the end of the report, the output shows the amount of ECSA and OMVS address space storage consumed by all dynamically activated service items. Note that the amount of storage consumed will not decrease if you deactivate service items because the modules containing the deactivated service items remain in storage. For example, let us say you back off the most recently dynamically activated service (Set 3) shown in the output above with the following command:

```
F OMVS,DEACTIVATE=SERVICE
```

Next, you enter the display command again, to see the following output:

```
D OMVS,ACTIVATE=SERVICE
BPX0059I 08.58.26 DISPLAY OMVS 296
OMVS 000E ACTIVE OMVS=(6D)
DYNAMIC SERVICE ACTIVATION REPORT
SET #2:
 LINKLIB=SYS1.DYNLIB.PVT VOL=BPXLK1
 LPALIB=SYS1.DYNLIB.LPA VOL=BPXLK1
 OA02001 OA02002 OA02003 OA02004 OA02005
 OA02007 OA02008 OA02009
SET #1:
 LINKLIB=SYS2.DYNLIB.PVT VOL=BPXLK1
 LPALIB=SYS1.DYNLIB.LPA VOL=BPXLK1
 OA01001 OA01002 OA01003
ECSA STORAGE: 1268496 OMVS STORAGE: 4768248
```
Note that the service items in Set #3 are no longer shown because they have been deactivated, but the total ECSA and OMVS storage consumed has not decreased.

**Example 16**

To display information about waiters caused by mount latch contention, outstanding sysplex messages, file system contention or other conditions, enter:

```
D OMVS,W
SY1 D OMVS,W
SY1 BPX00631 12.39.07 DISPLAY OMVS 426
OMVS 000E ACTIVE OMVS=(QY)
```

**Mount Latch Activity:**

<table>
<thead>
<tr>
<th>USER</th>
<th>ASID</th>
<th>TCB</th>
<th>REASON</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OMVS</td>
<td>000E</td>
<td>Inact Cycle</td>
<td>00.01.18</td>
</tr>
<tr>
<td></td>
<td>IS DOING: XPFs VfsInactCall / XSYS Message To: SY2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FILE SYSTEM: ZOS17.SY2.ETC.HFS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOLDING: File System Latch 123 EXCL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Waiters:**

- OMVS 000E 008E9828 FileSys Quiesce 00.00.05
- OMVS 000E 008E9858 FileSys Sync 00.01.10

**Outstanding Cross System Messages:**

**Sent Sysplex Messages:**

<table>
<thead>
<tr>
<th>USER</th>
<th>ASID</th>
<th>TCB</th>
<th>FCODE</th>
<th>MEMBER</th>
<th>REQID</th>
<th>MSG TYPE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEGA</td>
<td>0025</td>
<td>0008</td>
<td>SY2</td>
<td>0100003B LookupCall</td>
<td>(12,456)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FILE: somefilename</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOLDING: File System Latch 333 SHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TC0</td>
<td>0026</td>
<td>0008</td>
<td>SY1</td>
<td>0100003A Quiesce</td>
<td>00.00.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOLDING: File System Latch 456 EXCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OMVS 000E 008E9828 0004 SY2 01000039 VfsInactCall 00.01.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOLDING: File System Latch 27 EXCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Received Sysplex Messages:**

<table>
<thead>
<tr>
<th>USER</th>
<th>ASID</th>
<th>TCB</th>
<th>FCODE</th>
<th>MEMBER</th>
<th>REQID</th>
<th>MSG TYPE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>008D97CB 0026</td>
<td>0008</td>
<td>SY1</td>
<td>0100003A Quiesce</td>
<td>00.00.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IS DOING: Mount Latch Wait</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>008D1238 0022</td>
<td>0003</td>
<td>SY3</td>
<td>01000123 Read</td>
<td>00.07.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IS DOING: ZFS Read</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FILE: thefilename</td>
<td>(44,1234)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FILE SYSTEM: ZOS17.SY2.VAR.HFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOLDING: File System Latch 33 SHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**File System Latch Activity:**

<table>
<thead>
<tr>
<th>USER</th>
<th>ASID</th>
<th>TCB</th>
<th>SHR/EXCL</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latch 432 FILE SYSTEM: THE.FILESYS.NAME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOLDER(S):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>User10 0044 00880460 SHR 00:12:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IS DOING: NFS ReadCall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FILE: somefilename</td>
<td>(88,1234)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>User11 0045 00880460 SHR 00:15:58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IS DOING: NFS ReadCall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FILE: somefilename</td>
<td>(88,1234)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WAITER(S):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OMVS 000E 008E9858 EXCL 00.01.10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Latch 678 FILE SYSTEM: ANOTHER.FILESYS.NAME**

<table>
<thead>
<tr>
<th>USER</th>
<th>ASID</th>
<th>TCB</th>
<th>EXCL</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latch 678 FILE SYSTEM: ANOTHER.FILESYS.NAME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOLDER(S):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OMVS 000E 00820420 EXCL 00:12:08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IS DOING: ZFS SyncCall / Osi_Wait</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WAITER(S):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>User12 0022 008D97CB SHR 00.00.05</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 17

To display information about the last 10 or less mount or move failures, enter:

D OMVS,MF

SY1 d omvs,mf
SY1 BPX0058I 11.22.20 DISPLAY OMVS 480
OMVS 000D ACTIVE OMVS=(MN,ZS)
SHORT LIST OF FAILURES:
TIME=16.24.40 DATE=2003/11/18 MOVE RC=0489 RSN=1278054D
NAME=ZOS16.SY1.HFS
PATH=/SY1
SYSNAME=SY3
TIME=11.22.07 DATE=2003/11/18 MOUNT RC=0099 RSN=C5C7082A
NAME=MY.HFS
TYPE=HFS
PATH=/SY1/tmp
TIME=21.58.17 DATE=2003/11/17 MOVE RC=0079 RSN=119E04B7
NAME=* SYSNAME=SY9
TIME=11.54.04 DATE=2003/11/25 MOVE RC=0079 RSN=119E04B7
PATH=/SY2 SYSNAME=CAT
TIME=11.52.15 DATE=2003/11/25 MOVE RC=0079 RSN=119E04B7
NAME=ZOS16.SY2.HFS SYSNAME=DOG

Example 18

To display information about each AF_UNIX socket, enter:

D OMVS,SOCKETS

BPX0060I 17.12.57 DISPLAY OMVS
OMVS 000D ACTIVE OMVS=(6F,JB)
AF_UNIX Domain Sockets
JOBNAME TO PEER ID STATE READ WRITTEN
______________________________ _______________ __________
TCPCS 00000021 00000000 LISTEN 00000000 00000045
Socket name: /var/sock/SYSTCPCN.TCPCS
TCPCS 00000022 00000022 ACP 000012AB 000542C2A
Socket name: /var/sock/SYSTCPCN.TCPCS
Peer name: /tmp/sock1
NETVIEW 00000022 00000022 CONN 000542C2A 000012AB
Displaying Operator Information (OPDATA)

Use the DISPLAY OPDATA command to display operator information (OPDATA). Depending on the operands specified, the display may represent either sysplex-wide data or system-unique data.

The syntax of the DISPLAY OPDATA command is:

```
D {OPDATA|O},[PREFIX [,L={a|name|name-a}]],{TRACKING|TR},
{,MONITOR|MN}[,FULL]
[,MODE]
```

<table>
<thead>
<tr>
<th>OPERANDS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPDATA or O</td>
<td>The system displays operator information.</td>
</tr>
<tr>
<td>PREFIX</td>
<td>The system displays (in message IEE603I) sysplex-wide information about the command prefixes defined for the subsystems in the sysplex. This is the default if no other operands are specified. See z/OS MVS Planning: Operations for more information.</td>
</tr>
<tr>
<td>TRACKING or TR</td>
<td>The system displays (in message CNZ1001I) the status of the tracking facility and the recorded instances. See z/OS MVS Planning: Operations for more information.</td>
</tr>
<tr>
<td>MONITOR or MN</td>
<td>The system is to display (in message CNZ1100I) the enablement status of the monitoring facility for all message types supported, including whether each of these monitor message types are sent to the system log/operlog. The system also displays the number of consoles and, if applicable, TSO/E users that have requested to receive specific message types.</td>
</tr>
<tr>
<td>FULL</td>
<td>Instead of displaying the number of consoles and TSO/E users that have requested to receive specific message types, the system lists the names of those consoles. If there is any TSO/E user information to display, an additional section listing the user names will be included.</td>
</tr>
<tr>
<td>MODE</td>
<td>The system issues message CNZ9006I that displays the current Console Services mode and migration status of all systems in the sysplex.</td>
</tr>
<tr>
<td>L=a, name, or name-a</td>
<td>Specifies the display area (a), console name (name), or both (name-a) where the display is to appear. If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.</td>
</tr>
</tbody>
</table>

**Use the DISPLAY OPDATA command to display operator information (OPDATA).**

Depending on the operands specified, the display may represent either sysplex-wide data or system-unique data. The syntax of the DISPLAY OPDATA command is:

```
D {OPDATA|O},[PREFIX [,L={a|name|name-a}]],{TRACKING|TR},
{,MONITOR|MN}[,FULL]
[,MODE]
```

- **OPDATA or O**: The system displays operator information.
  - **PREFIX**: The system displays (in message IEE603I) sysplex-wide information about the command prefixes defined for the subsystems in the sysplex. This is the default if no other operands are specified. See z/OS MVS Planning: Operations for more information.
  - **TRACKING or TR**: The system displays (in message CNZ1001I) the status of the tracking facility and the recorded instances. See z/OS MVS Planning: Operations for more information.
  - **MONITOR or MN**: The system is to display (in message CNZ1100I) the enablement status of the monitoring facility for all message types supported, including whether each of these monitor message types are sent to the system log/operlog. The system also displays the number of consoles and, if applicable, TSO/E users that have requested to receive specific message types.
  - **FULL**: Instead of displaying the number of consoles and TSO/E users that have requested to receive specific message types, the system lists the names of those consoles. If there is any TSO/E user information to display, an additional section listing the user names will be included.
  - **MODE**: The system issues message CNZ9006I that displays the current Console Services mode and migration status of all systems in the sysplex.

- **L=a, name, or name-a**: Specifies the display area (a), console name (name), or both (name-a) where the display is to appear. If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.
DISPLAY OPDATA Command

Example 1

To display information about the command prefixes current and active on the sysplex, enter:
D O,PREFIX

Example 2

To display information about the tracking facility on this system, enter:
D O,TRACKING

Example 3

To display information about the enablement status of the monitoring facility for all monitor message types supported, enter:
D O,MONITOR

Example 4

To display information about the Console Service mode and migration status, enter:
D O,MODE

The output looks like:
CNZ9006I 11.27.40 DISPLAY O,MODE
CURRENT: DISTRIBUTED
SYSTEM MIGRATION STATUS
SY1 MIGRATION SUPPORTED
SY2 MIGRATION SUPPORTED
SY3 MIGRATION SUPPORTED
SY4 MIGRATION SUPPORTED
SY5 MIGRATION SUPPORTED
SY6 MIGRATION SUPPORTED
SY7 MIGRATION SUPPORTED
SY8 MIGRATION SUPPORTED
SYSPLEX ABLE TO MIGRATE: YES

Displaying PARMLIB Information

Use the DISPLAY PARMLIB command to display:
• The parmlib data sets and volume serial numbers that are defined in LOADxx.
• The parmlib data sets and volume serial numbers that are defined in the MASTER JCL (when there are no LOADxx parmlib statements).

Note: If you did not specify SYS1.PARMLIB in the parmlib concatenation, the system automatically adds it to the end of the parmlib concatenation.

D PARMLIB [,ERRORS|E][,L={a|name|name-a}]

ERRORS or E
Parmlib data sets and volume serial numbers that were defined in LOADxx PARMLIB statements but were not found.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.
If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Example 1

Assume a system has the following characteristics:
- Parmlibs STEVE.PARMLIB1 and STEVE.PARMLIB2 were used to IPL the system.
- Both parmlib data sets reside on volume D72665 and were specified on the PARMLIB statement in LOADxx.

D PARMLIB

The system returns the following display, slightly modified to improve readability:

```
SYS1 D PARMLIB
SYS1 IEE251I 16.41.05 PARMLIB DISPLAY 048
PARMLIB DATA SETS SPECIFIED
AT IPL
ENTRY FLAGS VOLUME DATA SET
1 S D72665 STEVE.PARMLIB1
2 S D72665 STEVE.PARMLIB2
3 D DEFVOL PARMLIB
```

Example 2

Assume a system has the following characteristics:
- Parmlib data sets STEVE.PARMLIB1 and STEVE.PARMLIB2 were used to IPL the system.
- SYS1.PARMLIB was also specified on the PARMLIB statement of LOADxx.

D PARMLIB

The system returns the following display, slightly modified to improve readability:

```
SYS1 D PARMLIB
SYS1 IEE251I 16.41.05 PARMLIB DISPLAY 048
PARMLIB DATA SETS SPECIFIED
AT IPL
ENTRY FLAGS VOLUME DATA SET
1 S D72665 STEVE.PARMLIB1
2 S DEFVOL PARMLIB
3 S D72665 STEVE.PARMLIB2
```

Example 3

Assume a system has the following characteristics:
- The default parmlib data set is used to IPL the system.
- The following output could mean one of the following:
  - There were parmlib data sets specified in LOADxx but they were not found. Issue the D PARMLIB,ERRORS command.
  - No parmlib data sets were specified in either the LOADxx member or on the IEFPPARM DD statement in Master JCL.

D PARMLIB

The system returns the following display, slightly modified to improve readability:
DISPLAY PARMLIB Command

SYS1  D PARMLIB
SYS1  IEE251I 16.41.05 PARMLIB DISPLAY 048
PARMLIB DATA SETS SPECIFIED
AT IPL
ENTRY  FLAGS  VOLUME  DATA SET
1      D      DEFWOL  PARMLIB

Example 4

Assume a system has the following characteristics:
- There was no parmlib data set in LOADxx.
- The default parmlib data set is used to IPL the system.
- Parmlib data sets STEVE.PARMLIB3 and STEVE.PARMLIB4 were found in the IEFPARM DD statement of Master JCL.

D PARMLIB

The system returns the following display, slightly modified to improve readability:

SYS1  D PARMLIB
SYS1  IEE251I 16.41.05 PARMLIB DISPLAY 048
PARMLIB DATA SETS SPECIFIED
AT IPL
ENTRY  FLAGS  VOLUME  DATA SET
1      D      DEFWOL  PARMLIB

MASTER PROCESSING USING THE FOLLOWING PARMLIBS
ENTRY  FLAGS  VOLUME  DATE SET
1      S      D72666  STEVE.PARMLIB3
2      S      D72666  STEVE.PARMLIB4

Example 5

To display the parmlib data sets defined but not found, enter:

D PARMLIB,ERRORS

Assume a system has the following characteristics:
- Parmlib data sets STEVE.PARMLIB5 and STEVE.PARMLIB6 were specified in LOAD xx PARMLIB statements, but they were not found.

D PARMLIB,ERRORS

The following illustration is slightly modified from what the user sees in order to improve readability in this documentation.

SYS1  D PARMLIB,ERRORS
SYS1  IEE251I 16.41.05 PARMLIB, ERRORS 048
PARMLIB DATA SETS SPECIFIED BUT NOT FOUND
ENTRY  FLAGS  VOLUME  DATA SET
1      S      D72666  STEVE.PARMLIB5
2      S      D72666  STEVE.PARMLIB6

Example 6

To display the parmlib data sets defined after a SETLOAD command update:

D PARMLIB

Assume a system has the following characteristics:
- At 11.05.14 on 9/13/96, a SETLOAD command was issued.
- The SETLOAD command used LOADPL which was found in data set SYS1.PARMLIB on volume CTSDS1.
- The LOADPL member has 3 parmlib statements:
1. RELSON.MACLIB
2. SYS1.PARMLIB
3. RELSON.PARMLIB

- All 3 parmlib data sets in LOADPL reside on volume CTDSD1.
- The cataloged SYS1.PARMLIB data set is added to the end of the parmlib concatenation by default.

**Note:** The cataloged SYS1.PARMLIB data set, which is not the same data set as the data set SYS1.PARMLIB on volume CTDSD1, is automatically added to the end of the parmlib concatenation by default (because it was not explicitly stated in the parmlib concatenation).

**D PARMLIB**

The following illustration is slightly modified from what the user sees in order to improve readability in this documentation.

SYS1 D PARMLIB
SYS1 IEE25II 16.41.04 PARMLIB DISPLAY 048
PARMLIB DATA SETS SPECIFIED
AT 11.05.14 ON 09/13/1996
ENTRY  FLAGS  VOLUME  DATA SET
1   S    CTDSD1  RELSON.MACLIB
2   S    CTDSD1  PARMLIB
3   S    CTDSD1  RELSON.PARMLIB
4   D    CATALOG  PARMLIB

### Displaying Commands Defined for PFKs

Use the DISPLAY PFK command to display the PFK definitions in effect for a specified console, the PFK definitions in a specified PFK table, or the PFK tables that are available.

\[
\text{D PFK[,CN=\text{name}][,L=\{a|name|name-a\}][,TABLE|T=\text{nnnnnnnnn}]} 
\]

**PFK**

The system displays information about the PFKs (message IEE235I). Unless you specify otherwise on the CN= name operand, the PFK information refers to the console from which you issue the command.

**Note:** Only D PFK with the T or TABLE option is valid from extended consoles. Any other specification of the D PFK command has no effect on extended MCS consoles or on system consoles, and is not valid for managing these consoles.

**TABLE or T**

Requests PFK definitions in a specific PFK table or lists all names of PFK tables that are available to be displayed.

\[ \text{nnnnnnnn} \]

Requests PFK definitions in the PFK table named \text{nnnnnnnn}. If you omit \text{nnnnnnnn}, the system displays the list of PFK tables available.

**CN=\text{name}**

Requests the PFK definitions for the console called \text{name}.

**L=\text{a, name, or name-a}**

Specifies the display area (\text{a}), console name (\text{name}), or both (\text{name-a}) where the display will appear.
DISPLAY PFK Command

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Example 1

To display PFK definitions for the console on which you issue the command, enter:

D PFK

Example 2

To display all available PFK tables, enter:

D PFK,T

Example 3

To display the contents (PFK definitions) of the PFK table named MVSCMDS, enter:

D PFK,T=MVSCMDS

Displaying Registered Products

Use the DISPLAY PROD command to display information about products that have been registered or display the product enablement policy. You can also use the command to determine the state (enabled, disabled, not defined, or not found) that, according to the current policy, exists for a specific product or set of products.

When the system searches for any products you specify, it allows wildcard matching. OWNER, NAME, FEATURENAME, and ID can include wildcard characters (* and ?) that allow a single parameter to match many different actual conditions. For example, OWNER(AD?) matches owner names like AD1 or AD2 but not ADD1. OWNER(A*) matches A1 or AD1 or ADD1.

The complete syntax for the DISPLAY PROD command is:

```
D PROD,{REGISTERED|REG|STATE|STATUS}
 [,OWNER(o)] [,NAME(n)] [,FEATURENAME(fn)] [,ID(id)] [,ALL] [,L={a|name|name-a}]
```

Note: This command requires a /* */ around comments. Refer to "System Command Formats" on page 4-15 for further information.

PROD  Displays information about registered products or the product enablement policy.

REGISTERED|REG  Displays information about any matching products that have registered as running on the system.

STATE  Displays information about the enablement state, defined in the enablement policy, for any matching products.
STATUS
For the product entry that is the best match for the product you specify, displays information about the enablement policy entry that the system would use if the product attempted to register.

If you specify STATUS, the system does not use wildcard matching; the wildcard characters (* and ?) receive no special treatment.

OWNER(o)
Specifies the owner for the products to be displayed. You can specify wildcard characters (* and ?). The default is OWNER(*), which matches all product owners unless you specified STATUS.

NAME(n)
Specifies the name of the products to be displayed. You can specify wildcard characters (* and ?). The default is NAME(*), which matches all product names unless you specified STATUS.

FEATURENAME(fn)
Specifies the feature name of the products to be displayed. You can specify wildcard characters (* and ?). The default is FEATURENAME(*), which matches all feature names unless you specified STATUS.

ID(i)
Specifies the identifier for the products to be displayed. You can specify wildcard characters (* and ?). The default is ID(*), which matches all product identifiers unless you specified STATUS.

ALL
Specifies that all matching products, including those that registered with Ifaedreg_Type_NoReport, are to be displayed. Unless you specify ALL, products that registered with Ifaedreg_Type_NoReport are not displayed, even if they match the other criteria.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

Example 1
If you enter the following command:
D PROD,REG
the response has the following format:

Displaying Entries in the List of APF-Authorized Libraries
You can use the DISPLAY PROG,APF command to display one or more entries in the list of APF-authorize libraries. (APF means authorized program facility.) Each entry in the APF list display contains:
DISPLAY PROG,APF Command

- An entry number
- The name of an authorized library
- An identifier for the volume on which the authorized library resides (or "SMS", if the library is SMS-managed).

You can issue the DISPLAY PROG,APF command from a console with INFO authority.

The complete syntax for the DISPLAY PROG,APF command is:

```
D PROG,APF[,ALL] [,L={a|name|name-a}] |,DSNAME=libname |,ENTRY=xxx |,ENTRY=(xxx-yyy)
```

Note: This command requires a /* */ around comments. Refer to "System Command Formats" on page 4-15 for further information.

**PROG,APF**

Displays libraries in the APF list. The parameters that follow this parameter determine the display information. If no parameters follow this parameter, the system displays all libraries in the APF list.

Both DISPLAY PROG,APF and DISPLAY PROG,APF,ALL display all libraries in the APF list.

**ALL**

Displays all libraries in the APF list. Both DISPLAY PROG,APF and DISPLAY PROG,APF,ALL display all libraries in the APF list.

**L=a, name, or name-a**

Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

**DSNAME=libname**

Displays all entries for this library name. If an asterisk follows libname, the system displays all entries for all libraries beginning with libname. DSNAME can be an alias for the library name.

This function does not map an alias to the actual library name. Therefore, if you specify an alias, only the entry for the alias is displayed. Similarly, when you specify an actual library name as input, no entries for the library's aliases are displayed.

**ENTRY=xxx**

Displays the library entry for the specified decimal entry number. The order of the libraries in the APF list is not necessarily the order in which they were added. Use this parameter to limit the display to a specific library.

**ENTRY=(xxx-yyy)**

Displays all library entries in the range beginning with decimal entry number xxx and ending with decimal entry number yyy. The order of the libraries in the APF list is not necessarily the order in which they were added. Use this parameter to limit the display to a subset of the entire list of libraries.

**Example**

If you enter the command D PROG,APF the output appears in the following format:
Displaying Dynamic Exits

Use the DISPLAY PROG,EXIT command to display exits that have been defined to the dynamic exits facility or have had exit routines associated with them.

The complete syntax for the DISPLAY PROG,EXIT command is:

```
D PROG,EXIT,{{EXITNAME|EX|EN}=exitname*},[DIAG]{{EXITNAME|EX|EN}=exitname*}
{{MODNAME|MOD}=modname}
{[ALL][,IMPLIED|,IMP]}
[,]L={a|name|name-a}]```

Note: This command requires a */ */ around comments. Refer to "System Command Formats" on page 4-15 for further information.

PROG,EXIT
Displays the names of exits that have been defined to the dynamic exits facility, had exit routines associated with them, or had their attributes changed.

ALL
Displays the names of all the exits that have been defined to the dynamic exits facility, have had exit routines associated with them, or have had their attributes changed.

EXITNAME= or EX= or EN=exitname
Displays the names of all exit routines associated with the named exit, along with status information about the exit. The exit routines are displayed in the order in which they are invoked by dynamic exits services.

If no exit routines are associated with a particular exit, the system issues message CSV463I.

EXITNAME= or EX= or EN=exitname
Displays the names of exits that both:
- Have a name that matches exitname. The trailing asterisk ‘*’ is a wildcard that is used to match patterns.
- Are defined or have had an exit routine associated with them.

DIAG
An optional keyword that specifies diagnostic information for the exit specified by EXITNAME=exitname. The CSV464I. The message displays information about the state of the exit, the entry point address of the exit routine, the load point address of the exit routine module, the length of the exit routine module, and jobname. For the sample output, see page 4-218.

MODNAME= or MOD=name
Displays the names of the exits with which the specified exit routine is associated. You can use this information before replacing an exit routine to ensure that the exit routine is not defined to any exits.
IMPLICIT or IMP
Displays the names of exits that have been implicitly defined. An exit is implicitly defined when:
- You add exit routines to an exit before the exit is defined
- You set attributes using the ATTRIB parameter of the SETPROG EXIT command before defining the exit.

You can use this parameter to determine whether exit routines were improperly added to an exit that might never be defined. Issue SETPROG EXIT,UNDEFINE,EXITNAME=exitname to have the system remove the improper definition of that exit.

Both IMPLICIT and ALL,IMPLICIT display the names of all the exits that have been implicitly defined.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

Example 1
To display exits that have an exit name starting with “IEF”, and either are defined or have had an exit routine associated with them, enter:
D PROG,EXIT,EXITNAME=IEF*

The output appears in the following format:
CSV460I 17.01.16 PROG,EXIT DISPLAY 710
EXIT DEF EXIT DEF EXIT DEF
IEF_ALLC_OFFLN E IEF_SPEC_WAIT E IEF_VOLUME_ENQ E
IEF_VOLUME_MNT E IEFDB401 E

Example 2
To display all exit routines associated with exit SYS.IEFU84 along with status information about the SYS.IEFU84, enter:
D PROG,EXIT,EXITNAME=SYS.IEFU84

The output appears in the following format:
CSV461I 17.04.20 PROG,EXIT DISPLAY 725
EXIT MODULE STATE MODULE STATE MODULE STATE
SYS.IEFU84 IEFU84 A MYIEFU84 I

Example 3
To display exit names that are associated with exit routine IEFU84, enter:
D PROG,EXIT,MODNAME=IEFU84

The output appears in the following format:
CSV462I 17.05.33 PROG,EXIT DISPLAY 731
MODULE IEFU84
EXIT(S) SYS.IEFU84 SYSSTC.IEFU84

Example 4
To display information about the exit entry point address, the load point address of the exit routine module, and other diagnostic information for exit routine SYS.IEFU84, enter:
Displaying LNKLST Information

Use the DISPLAY PROG,LNKLST command to display information about the LNKLST set. The command provides information about LNKLST sets for the LNKLST concatenation and associated jobs.

The complete syntax for the DISPLAY PROG,LNKLST command is:

```
D PROG,LNKLST[,NAME=[lnklstname|CURRENT]
  [,NAMES]
  [,USERS,[CURRENT|NOTCURRENT|NAME=lnklstname]]
  [,ASID=asid]
  [,JOBNAME=jobname]
  [,L={a|name|name-a}]
```

Note: This command requires a /* */ around comments. Refer to “System Command Formats” on page 4-15 for further information.

PROG,LNKLST
Displays information about the LNKLST concatenation and jobs associated with it. When the LNKLST is authorized by default, the APF authorization status provided is only applicable when the data set is referenced independently of the LNKLST. LINKLIST, LINKLST, LNK, or LNKLIST can be specified as an alternative to LNKLST.

NAME=CURRENT
NAME=lnklstname
Displays the data sets for the specified LNKLST set or concatenation.

If you specify CURRENT, the system displays information for the current LNKLST set that has been activated as the LNKLST concatenation.

For lnklstname, you must specify a valid 1 to 16 character name of a LNKLST set defined to the system.

Default: NAME=CURRENT is the default. If you omit this parameter, the system displays information for the current LNKLST concatenation.

NAMES
Displays the name of each LNKLST set defined to the system.

USERS,CURRENT
Displays a list of address spaces that use the current LNKLST set.

Default: CURRENT is the default. If you omit this parameter, the system displays a list of address spaces for the current LNKLST set.

USERS,NOTCURRENT
Displays a list of address spaces that use any LNKLST set besides the current LNKLST set.
DISPLAY PROG, LNKLST Command

USERS,NAME=Inklistname
Displays a list of address spaces that use the LNKLST set specified by
NAME=Inklistname.

For **Inklistname**, you must specify a valid 1 to 16 character name defined of a
LNKLST set defined to the system.

ASID=asid
Displays the LNKLST set in use by the address space for the specified ASID.

JOBNAME=jobname
Displays the LNKLST set in use by the specified job. The system provides
information for any job that matches **jobname**. **jobname** can include wildcard
characters (* or ?).

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where
the display is to appear.

Example 1
To display information for the LNKLST concatenation (defined as LNKLST1 in
PROGxx and activated at IPL), enter:

D PROG, LNKLST

The output appears in the following format. For a description of the output fields,
use LookAt or use the **MVS System Messages** books to see message CSV470I.

<table>
<thead>
<tr>
<th>CSV470I 01.00.00</th>
<th>LNKLST DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNKLST SET</td>
<td>LNKLST1</td>
</tr>
<tr>
<td>LNKAUTH</td>
<td>=APFTAB</td>
</tr>
<tr>
<td>ENTRY APF VOLUME DSNAME</td>
<td></td>
</tr>
<tr>
<td>1 A DRV602 SYSLINKLIB</td>
<td></td>
</tr>
<tr>
<td>2 A DRV602 SYSMIGLIB</td>
<td></td>
</tr>
<tr>
<td>3 A DRV602 SYSCSSLIB</td>
<td></td>
</tr>
<tr>
<td>4 SMS MYLINKLIB</td>
<td></td>
</tr>
</tbody>
</table>

Example 2
To display the LNKLST set associated with the job that matches the jobname
MYJOB, enter:

D PROG, LNKLST, JOBNAME=MYJOB

The output appears in the following format:

<table>
<thead>
<tr>
<th>CSV473I 02.15.00</th>
<th>LNKLST DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNKLST SET</td>
<td>ASID JOBNAME</td>
</tr>
<tr>
<td>MYLNKLST</td>
<td>0018 MYJOB</td>
</tr>
</tbody>
</table>

Displaying LPA Information

Use the DISPLAY PROG, LPA command to display the entry point, load point, and
size of modules in the LPA, and to display the minimum amount of CSA and ECSA
that must remain after dynamically adding a module to the LPA.

The complete syntax for the DISPLAY PROG, LPA command is:

D PROG, LPA{, MODNAME=modname}[, L={a|name|name-a}][, CSAMIN]
Note: This command requires a /* */ around comments. Refer to "System Command Formats" on page 4-15 for further information.

MODNAME=
Displays entry point, load point, and length information about the LPA module.
You can use MOD and MODULE as synonyms of MODNAME.

modname
is the 1-8 character LPA module name. If the last character of the modname is an asterisk (*), it will be treated as X'CO'.

CSAMIN
Displays the current CSA and ECSA minimum values.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

Displaying the status of the REFRPROT option
Use the DISPLAY PROG,REFRPROT command to display the status of the REFRPROT option. In response, message CSV565I is displayed.

You can issue the DISPLAY PROG,REFRPROT command from a console with INFO authority.

The complete syntax for the DISPLAY PROG,REFRPROT command is:

D PROG,REFRPROT[,L={a|name|name-a}]

Note: This command requires a /* */ around comments. Refer to "System Command Formats" on page 4-15 for further information.

PROG,REFRPROT
Displays the status of the REFRPROT option.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

Example
If you enter the command D PROG,REFRPROT, the output is displayed in the following format:
CSV565I REFRPROT IS {IN EFFECT | NOT IN EFFECT}

Displaying System Requests
Use the following form of the DISPLAY command to display outstanding messages requiring operator action. These messages include WTOR messages, action messages saved by AMRF, action messages issued by the communications task, and action messages that were not displayed on all necessary consoles. You can request that the system display:
The immediate action messages (descriptor codes 1 or 2), eventual action
messages (descriptor code 3), and critical eventual action messages (descriptor
code 11)

The device numbers of devices waiting for mount requests to be fulfilled
The device numbers of devices waiting for operator intervention
The status of the action message retention facility
An alphabetical list of keynames of outstanding action messages
The messages issued by a specified system
The messages that await operator response at a specified console
The messages that have specific routing codes

The following list summarizes how you use the operands on the DISPLAY
command to retrieve and display information:

- The U operand displays information about devices and units.
- The I, E, CE, R, and M operands display outstanding action messages.
- The LIST, L, ALL, and A operands display combinations of the above.
- The KEY operand displays an alphabetical list of keynames of outstanding action
 messages.

The resulting display is described in messages IEE112I (successful result) or
IEE312I (unsuccessful result). Use LookAt or use the MVS System Messages
books to see explanations of those messages.

Note: If you supply all commas between DISPLAY R and the operands that have
equal signs, you get default values. However, supply only one comma before
the L operand, even if you omit the preceding operands. For example,
DISPLAY R,I,L=RICK-B.

Because TSO consoles in OPERATOR mode do not route messages by console
IDs or routing codes, do not use the ROUT= or CN= operands on DISPLAY R
commands issued from these consoles.

R

The system is to display information about outstanding action messages (that
is, messages with descriptor codes 1, 2, 3, or 11), WTORs, and devices
awaiting mount requests to be fulfilled, and units requiring intervention.
Information includes either the text of all outstanding action messages and
WTORs, a summary of keynames associated with the outstanding action

```diff
D R[,U
   ,KEY[,SYS=sysname][,CN=(ALL)]
   [,I
       ][,msgformat][,MSG=msgid][,SYS=sysname][,KEY=keyname]
   [,E
       ][,JOB=jobname]
   ,CE
   ,R
   ,M
   ,(LIST|L)
   ,(ALL|A)
   [,L=(a|name|name-a)]
```

(See Note)
messages, or device numbers. The system also displays a number that represents the total of all outstanding WTORs or action messages.

If the issuing console has master authority, the system displays, on the issuing console, all outstanding WTORs. Otherwise, unless you specify the CN parameter on the command, the system displays information about only those messages that appeared on the console that issues the DISPLAY R command.

Consoles of some subsystems, such as NetView®, must specify the CN=(ALL) parameter to ensure displaying all outstanding requests.

Optional subparameters are:

- **I** Display the texts and message identification numbers of all outstanding immediate action messages (descriptor codes 1 or 2).
- **E** Display the texts and message identification numbers of all outstanding eventual action messages (descriptor code 3).
- **CE** Display the texts and identification numbers of all outstanding critical eventual action messages (descriptor code 11).
- **R** Display the texts and message identification numbers of all messages awaiting replies (WTORs).
- **M** Display the texts and message identification numbers of all immediate action, eventual action, and critical eventual action messages, and messages awaiting replies.

LIST, L, ALL, A, or blank
Display the texts and message identification numbers of all immediate action, eventual action, and critical eventual action messages and messages awaiting replies. Also display the device numbers of devices with unfulfilled mount requests and any units requiring operator intervention.

- **U** Display the device numbers of devices with unfulfilled mount requests and any units requiring operator intervention.

msgformat
Specifies the information that is to accompany messages when they are displayed on a console. The possible values of **msgformat** are:

- **J** Display the message text with the jobname or job ID of the message issuer. If JES3 is the primary subsystem and is running in XCF-local mode, this option displays the jobname, but not the job ID.
- **JN** Display the message text with only the job name of the message issuer. If JES3 is the primary subsystem and is running in XCF-local mode, JN has the same effect as J.
- **M** Display only the text of each message.
- **S** Display the message text, the name of the system that sent the message, and the jobname or job ID of the message issuer. If JES3 is the primary subsystem and is running in XCF-local mode, this option displays the jobname, but not the job ID.
- **SN** Display the system name and the jobname of the message issuer. If JES3 is the primary subsystem and is running in XCF-local mode, SN has the same effect as S.
DISPLAY R Command

T Display the message text with the time stamp, the name of the system that sent the message, and the jobname or job ID of the message issuer. If JES3 is the primary subsystem and is running in XCF-local mode, this option displays the jobname, but not the job ID.

TN Display the message text with the time stamp, the name of the system that sent the message, and the jobname of the message issuer. If JES3 is the primary subsystem and is running in XCF-local mode, TN has the same effect as T.

The format of a message that includes all message format options is:

```
Time stamp  System name  Jobname/id  Message text
```

Default: For MCS, SMCS and extended MCS consoles, the default message format differs depending on the primary subsystem. If it is JES2, the default format is defined by the MFORM setting for the console. (You can use the CONTROL S command (K S,MFORM) to change the MFORM setting.) If it is JES3, the default message format option is `S`. You can use the CONTROL command to change the default for MCS and SMCS consoles.

M is the default message format option for extended MCS consoles. To change the default value for extended MCS consoles, use the RACF command, ALTUSER userid OPERPARM(MFORM(T,S,J,M,X)). See [z/OS Security Server RACF Command Language Reference](https://www.ibm.com/support/docview.wss?uid=swg27030010) for more information.

MSG=msgid

The text of any action message awaiting a reply is to be displayed if the message identifier begins with the one to ten characters specified by `msgid`. Specify a trailing asterisk (*) wildcard to request messages for all message identifiers that match a leading character string.

JOB=jobname

The system requests the messages that are identified by a one to eight-character jobname. Specify a trailing asterisk (*) wildcard to request messages for all jobnames that match a leading character string. For example, enter the following command to display outstanding messages requiring operator action for all jobnames that begin with the characters TSO1:

```
D R,JOB=TSO1*
```

SYS=sysname

The system is to display messages that have appeared at the system named `sysname` or, if you also specify KEY, the keynames of messages issued at the system with this name.

If you issue DISPLAY R,M,SYS=sysname from a console on the JES3 global, you get all messages for the system named `sysname`. (Note that the system retrieves the same information if you issue the DISPLAY R,L,SYS=sysname command. You cannot retrieve unit information from another system.)

If you issue DISPLAY R,M without the SYS=sysname operand, at an MCS or SMCS console that also controls the JES3 global, the system displays all outstanding messages for that system and for the local systems attached to it. If you issue the same command at a MCS or SMCS console that also controls a JES3 local or JES2 system, the system displays the messages only for that system.
KEY
The system displays an alphabetical list of keynames associated with outstanding messages. The system also displays the total number of messages for each keyname.

KEY=keyname
The system requests those messages that are identified by a one to eight-character keyname, such as those messages issued by the specified dynamic support program (DSP) of JES3.

KEY=MOUNT
The system displays outstanding tape mount requests.

CN
The system displays a set of messages and device numbers of devices awaiting mount requests to be fulfilled, and units requiring intervention, or, if you also specify KEY, a list of outstanding keynames of messages that appear at a specified console or all consoles. These messages include those directed by routing code and those directed by console ID.

If you omit the CN operand, the default is the current console on which you enter the D R command.

name
Requests those outstanding action messages that the system directed to the console with the name name.

(ALL)
Requests the outstanding action messages that the system directed to all consoles. The parentheses are required.

ROUT
The system displays only the outstanding action messages that have the specified routing codes. The system rejects the ROUT operand if you also request a summary of keynames.

ALL
Requests messages with any routing code.

(rrr[,sss]...) Requests messages with one or more routing codes.

(rrr-sss)[,(rrr-sss)]... Requests messages within a range of routing codes. When you specify a range of routing codes, the first rrr in the range must be less than or equal to the second sss.

NONE
Requests only those messages that the system directs to the console by console ID.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Example 1
To display the identification numbers and texts of all unanswered system requests, the device numbers of all devices waiting for mount requests to be fulfilled, and the device numbers of all devices waiting for operator intervention in area A of the console named CON2, enter:

\[\text{D R,L,L=CON2-A or D R,A,L=CON2-A} \]

Example 2

To display the identifications and texts of all unanswered requests for operator action or reply that begin with identifier IEF in the first available area of the console through which the command is entered, enter:

\[\text{D R,MSG=IEF} \]

Example 3

To display the total number (and not the texts) of outstanding action messages, WTORs, devices awaiting mount requests to be fulfilled, and units requiring intervention, enter:

\[\text{D R} \]

Example 4

To display all outstanding action and WTOR messages that have routing codes 1-12, enter:

\[\text{DISPLAY R,M,ROUTE=(1-12)} \]

If the console is defined to receive, for example, only routing codes 1 and 2, the display includes only messages with those routing codes.

Example 5

To display a summary of all keynames currently active and the number of outstanding messages associated with each keyname, enter:

\[\text{DISPLAY R,KEY} \]

Example 6

To display the text of the outstanding message associated with the keyname TAPE listed in response to the command in Example 5, enter:

\[\text{DISPLAY R,KEY=TAPE} \]

Example 7

To display the system names, job IDs, and message texts of all messages issued at any system within a JES3 complex, enter from a console with master authority:

\[\text{DISPLAY R,A,S} \]

Example 8

To display all outstanding messages issued on system SY2:

\[\text{DISPLAY R,M,SYS=SY2} \]

The system also displays numbers of devices that await mount requests and units requiring intervention.
Example 9

To display all outstanding messages directed specifically to the console named CON02, excluding messages that were directed to the console by default, enter:

DISPLAY R,L,CN=CON02

The system also displays numbers of devices that await mount requests and units requiring intervention.

Example 10

To display all outstanding messages directed specifically to the console named CON04 by any routing code, enter:

DISPLAY R,ROUT=ALL issued from console CON04

or

DISPLAY R,ROUT=ALL,CN=CON04 issued from another console

Example 11

To display all outstanding messages with their jobnames, enter:

DISPLAY R,L,JN

Example 12

To display all outstanding messages whose jobnames begin with the characters CICS, enter:

DISPLAY R,L,JOB=CICS*

or

DISPLAY R,L,JN,JOB=CICS*

Displaying Resource Recovery Services (RRS) Information

Use the DISPLAY RRS command to display status information about RRS coordinated transactions to the system console and SYSLOG. You can also use automation to parse the output and trigger alerts.

The command supports the following parameters:

- **UR** - Display unit of recovery information, in either summary or detailed format. You can filter the output information with the optional keyword filter parameters described below.
- **RM** - Display resource manager information, in either summary or detailed format. You can filter the output information with the optional keyword filter parameters described below.

```
DISPLAY RRS[,UR[,SUMMARY|SUM|S|DETAILED|D]uroptions]
[,RM[,SUMMARY|SUM|S|DETAILED|D]rmoptions]
[,L=a|name|name-a]

uroptions:
[,URID=ur-identifier]
[,STATE=FLT|SCK|PRP|DBT|BAK|END|OLA|CMP|FGT]
[,SYSNAME=system-name]
[,GNAME=logging-group-name]

rmoptions:
[,RMNAME=resource-manager-name]
[,SYSNAME=system-name]
[,GNAME=logging-group-name]
```
DISPLAY RRS Command

RRS
The system is to display status information about RRS coordinated transactions to the system console and SYSLOG.

UR
Indicates that the system is to display information about RRS coordinated transactions.

SUMMARY or SUM or S
Indicates that the system is to use the summary form of the output (ATR601I). The resulting message contains a list of RRS coordinated transactions that were selected through the optional filter parameters.

A summary UR entry includes the following information:
- UR identifier
- System name
- RRS logging group name
- UR state
- UR type - protected or unprotected
- Comment - comments about this UR

DETAILED or D
Indicates that the system is to use the DETAILED form of the output (ATR603I). The resulting message contains detailed information for the particular transaction as indicated by the URID= parameter.

With this output form, the URID= parameter is required and only one particular UR can be selected (no wildcards are allowed). SYSNAME and GNAME cannot use wildcards.

A detailed UR entry includes all the information in a summary report, plus the following information:
- A list of expression of interests that are associated with the transaction. Each expression of interest includes: URI token, resource manager name, resource manager role, interest type, interest status, interest state, exit status, and duration.

RM
Indicates that the system is to display information about resource managers that are currently active or were previously active with RRS.

SUMMARY or SUM or S
Indicates that the system is to use the summary form of the output (ATR602I). The resulting message contains a list of resource managers that were selected through optional keyword filter parameters. A summary RM entry includes the following information:
- Resource manager name
- Resource manager state
- System name
- RRS logging group name

DETAILED or D
Indicates that the system is to use the DETAILED form of the output (ATR604I). The resulting message contains the detailed information for the specified resource manager as indicated by the RMNAME= parameter.
With this output form, the **RMNAME**= parameter is required and only one particular RM can be selected (no wildcards are allowed). **SYSNAME** and **GNAME** can not use wildcards.

A detailed RM entry includes all the information in a summary report, plus the following information:

- RM token
- A list of URs associated with the resource manager. The information displayed for each UR is similar to the UR summary information.

URID=ur-identifier

A UR identifier used to limit the number of URs returned for a UR request. For a SUMMARY request, this parameter is optional. If specified, wildcards are allowed (" or ?). If not specified, the UR identifier is not used to filter the returned UR information. For a DETAILED request, this parameter is required and can not contain any wildcards.

STATE=FLT|SCK|PRP|DBT|CMT|BAK|END|OLA|CMP|FGT

The UR state of the URs to be returned. If not specified, URs in any state are returned.

RMNAME=resource-manager-name

A resource manager name used to limit the number of RMs returned for a RM request. For a SUMMARY request, this parameter is optional. If specified, wildcards are allowed (" or ?). If not specified, the resource manager name is not used to filter the returned RM information. For a DETAILED request, this parameter is required and can not contain any wildcards.

GNAME=logging-group-gname

An RRS logging group name used to limit the amount of returned information. Wildcards (" or ?) are allowed for only the summary form of output. The default is the logging group for the current system.

SYSNAME=system-name

A system name used to limit the amount of returned information. Wildcards (" or ?) are allowed for only the summary form of output. The default is the current system.

L=a,name, or name-a

Indicates the display area (a), console name (name), or both the console name and the display area (name-a) where the display will be presented. If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Displaying RTLS Information

Use the **DISPLAY RTLS** command to display the current status of the run-time library services (RTLS) environment. The command provides information about the physical and logical libraries in use, the users of the logical libraries, and the cache use for a given library or for all libraries.

When the system searches for information you specify, it allows wildcard matching. **LIBRARY**, **VERSION**, **MODULE**, and **JOBNAME** can include wildcard characters (" and ?) that allow a single parameter to match many different conditions. For example, **LIBRARY=** allows you to request information about all defined libraries. To request information about all modules, specify **MODULE=**. To request information
about all modules with three-character names beginning with M and ending with D (such as MAD, MBD, and MCD), specify MODULE=M?D.

The syntax for the DISPLAY RTLS command is:

```plaintext
D RTLS[,NAMES[,LIBRARY=lname[,VERSION=ver][,CURRENT][,SEQNUM=num][,ALL]]
   [,PHYSICAL[,LIBRARY=pname[,CURRENT][,SEQNUM=num][,ALL][,[MODULE=mod][,LOGICAL]]]]
   [,LOGICAL[,LIBRARY=lname[,VERSION=ver][,CURRENT][,SEQNUM=num][,ALL][,[MODULE=mod][,USERS]]
       [,JOBNAME=jobname
       [,ASID=asid
       [,L={a|name|name-a}]]]]]
```

Note: This command requires a /* */ around comments. Refer to [“System Command Formats” on page 4-15](#) for further information.

RTLS
Displays information about the current RTLS environment.

NAMES
Displays the RTLS common storage use and definitions, as well as the names of the physical and logical libraries.

LIBRARY=lname
Displays the common storage use and definitions, as well as the names of the physical and logical libraries that match the specified name. For `lname`, you must specify a valid 1 to 8 character library name. You can use wildcard characters when specifying the library name.

VERSION=ver
Displays information only for versions that match the specified version identifier. For `ver`, you must specify a valid 1 to 8 character version name. You can use wildcard characters when specifying the version.

CURRENT
Displays information only for the current level.

SEQNUM=num
Displays information only for the level that matches the specified sequence number.

ALL
Displays information for all levels.

PHYSICAL,LIBRARY=pname
Displays, for the specified library, the common storage use and definitions, as well as the names of the data sets that make up the physical library. For `pname`, you must specify a valid 1 to 8 character physical library name. You can use wildcard characters when specifying the library name.

CURRENT
Displays information only for the current level.

SEQNUM=num
Displays information only for the level that matches the specified sequence number.
ALL
Displays information for all levels.

MODULE=mname
Displays information about each module in the physical library with a name
that matches the specified name. For mname, you must specify a valid 1 to
8 character load module name. You can use wildcard characters when
specifying the module name.

LOGICAL
Displays the logical libraries of which this physical library is a part.

LOGICAL
Displays, for each matching library, statistics about the use of the library and
the physical libraries that are part of the logical library.

LIBRARY=lname
Identifies a logical library. For lname, you must specify a valid 1 to 8
character name of a logical library. You can use wildcard characters when
specifying the library name.

VERSION=ver
Displays information only for versions that match the specified version
identifier. For ver, you must specify a valid 1 to 8 character version
name. You can use wildcard characters when specifying the version.

CURRENT
Displays information only for the current level.

SEQNUM=num
Displays information only for the level that matches the specified
sequence number.

ALL
Displays information for all levels.

MODULE=mname
Displays information about each module in the logical library with a
name that matches the specified name. For mname, you must specify a
valid 1 to 8 character name of a load module. You can use wildcard
characters when specifying the module name.

USERS
Displays users connected to the logical library.

JOBNAME=jobname
Displays the logical libraries to which the specified jobname is connected.
You can use wildcard characters when specifying jobname.

ASID=asid
Displays the logical libraries to which the specified address space is
connected.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where
the display is to appear.

Example 1
To display the RTLS common storage use and definitions, as well as the names of
all the physical and logical libraries, enter:
D RTLS,NAMES
DISPLAY RTLS Command

Example 2

To display the RTLS common storage use and definitions, as well as the names of all the physical and logical libraries that start with the letters MONTH and are at sequence number 4 of version D1, enter:

D RTLS,NAMES,LIBRARY=MONTH*,VERSION=D1,SEQNUM=4

Example 3

To display, for physical library MYMODS, the common storage use and definitions, as well as the names of the data sets that make up the current level of the physical library, enter:

D RTLS,PHYSICAL,LIBRARY=MYMODS

Example 4

To display, for physical library MYMODS, information about each module that is 6 characters long and has NEWPG as the first 5 characters, enter:

D RTLS,PHYSICAL,LIBRARY=MYMODS,MODULE=NEWPG?

Example 5

To display, for physical library MYMODS, the logical libraries of which physical library MYMODS is a part, enter:

D RTLS,PHYSICAL,LIBRARY=MYMODS,LOGICAL

Example 6

To display, for logical library MYMODS, statistics about the use of the library and the physical libraries of which the logical library is a part, enter:

D RTLS,LOGICAL,LIBRARY=MYMODS

Example 7

To display information about module SALES in logical library MONTHJAN, enter:

D RTLS,LOGICAL,LIBRARY=MONTHJAN,MODULE=SALES

Example 8

To display the users connected to logical library MONTHJAN, enter:

D RTLS,LOGICAL,LIBRARY=MONTHJAN,USERS

Example 9

To display the logical libraries to which job name REPORTS is connected, enter:

D RTLS,LOGICAL,JOBNAME=REPORTS

Example 10

To display the logical libraries to which the ASID 1234 is connected, enter:

D RTLS,LOGICAL,ASID=1234
Displaying SLIP Trap Information

Use the DISPLAY SLIP command to display information about SLIP traps.

```
D SLIP[=xxxx][,L={a|name|name-a}]
```

SLIP

Indicates that the system is to display summary information about SLIP traps or detailed information about one SLIP trap (message IEE735I).

xxxx

The system is to display detailed information about the SLIP trap associated with the identifier xxxx. If you do not specify xxxx, the system lists all the SLIP traps in the system and tells whether each trap is enabled or disabled.

Where asterisks replace any or all of the four characters of xxxx, the system displays all SLIP traps whose identifiers match the non-asterisk characters in xxxx. If you specify fewer than four characters, the xxxx is padded on the right with blanks. A matching identifier must have blanks in those positions.

The asterisks allow you to group your SLIP traps by common characters and display them as a group.

L=a, name, or name-a

Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Example 1

To display all SLIP traps and whether they are enabled or disabled, enter:

```
DISPLAY SLIP
```

Example 2

To display detailed information about trap W292, enter:

```
D SLIP=W292
```

Example 3

To display all SLIP traps with an identifier having ‘A’ as the first character and ‘B’ as the third character and identify whether they are disabled or enabled, enter:

```
DISPLAY SLIP=A*B*
```

Displaying SMF Data

Use the DISPLAY SMF command to display System Management Facilities (SMF) data.

```
D SMF[,%][,L={a|name|name-a}]
```

Chapter 4. MVS System Commands Reference 4-233
DISPLAY SMF Command

SMF
Indicates that the status of SMF data sets or the SMF options in effect are to be displayed (message IEE967I).

S Directs the system to display the names and status of the SMF data sets.
O Directs the system to display the current SMF options.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Displaying Storage Management Subsystem Information
Use the DISPLAY SMS command to display the following kinds of information about the Storage Management Subsystem (SMS):

- Active SMS configuration
- 3990-3 or 3990-6 cache control unit statistics (if the 3990-3 or 3990-6 is installed and has at least one system-managed volume attached)
- Status of system-managed volumes, storage groups, drives, or libraries
- SMS trace options in effect
- SMSVSAM status of sharing control data sets, the SMSVSAM server, data set statistical monitoring, coupling facility cache and lock structures and cache structures that contain data for a specified volume
- CICSVR status of Recovery Control Data sets (RCDSs) and the status of the CICSVR address space.

Storage groups and volumes can be in one of the following states:

- **Not defined** means that the storage group or volume (specified on this command) is specified in the SMS configuration as not being connected to this MVS system. If the storage group or volume is not defined in the active configuration, a message indicates that the system rejects this command for that reason. If the command is issued for a storage group with no volume, another message indicates the lack of volumes in that group. The symbol for this state is ‘.’
- **Enabled** means that SMS permits allocation of data sets in this storage group or volume to this MVS system. The symbol for this state is ‘+’
- **Disabled** means that SMS does not allow allocation of data sets in this storage group or volume to this MVS system. The symbol for this state is ‘-’
- **Disabled (new only)** means that SMS does not allow allocation of new data sets in this storage group or volume for this MVS system. The symbol for this state is ‘D’
- **Quiesce** means that for a data set, SMS selects the specified volume or storage group only if it finds no other choices. The symbol for this state is ‘*’
- **Quiesce(new)** means that for a new data set, SMS selects the specified volume or storage group only if it has no other choices. The symbol for this state is ‘Q’

For a detailed discussion of the DISPLAY SMS command pertaining to optical and tape volumes, libraries, and drives, and the OAM address space, see **z/OS DFSMS OAM Planning, Installation, and Storage Administration Guide for Object Support** and the **z/OS DFSMS OAM Planning, Installation, and Storage Administration Guide for Tape Libraries**
For a detailed discussion of the DISPLAY SMS command pertaining to CICSVR, see CICSVR V3R1 Implementation Guide, CICSVR V3R1 User's Guide and Reference, and CICSVR V3R1 Messages and Problem Determination.
DISPLAY SMS Command

D SMS[{ACTIVE|A}]
 [,CACHE]
 [,CFCACHE({structurename|*})]
 [,CFLS[,ALL|lockstructurename]]
 [,CFVOL(volid)]
 [,CICSVR[,ALL|LOGSTREAMS({LogstreamName|ALL})|RCDS]]
 [,{DRIVE|DRI}({name|ALL})[,STATUS [,DETAIL]]]
 [,DSNAME(dsn){,WTOR}]
 [,JOB(jobname){,WTOR}]
 [,{LIBRARY|LIB}({name|ALL})[,STATUS[,LISTDRI]]
 [,LISTDRI [,DETAIL]]]
 [,LOG({logstreamid|ALL}){,WTOR}]
 [,MONDS({specmask|*})]
 [,OAM]
 [,OPTIONS]
 [,OSMC[,TASK(name)]]
 [,{PDSE|PDSE1}{,LATCH(laddr) [,DETAILED]
 [,SUMMARY
 [,MODULE(modname)
 [,VSTOR
 [,HSPSTATS[,DSN(dsn)]][,STORCLAS(sc)]
]
 [,SUMMARY
 [,MAXDSNS(maxds)]]
 [,SUMMARY]
 [,MAXDSNS(maxds)]}]
 [,SEP]
 [,SHCDS]
 [,SHUNTED,{SPHERE(sphere)|UR({urid|ALL}){,WTOR}]
 [,SMSVSAM[,ALL]]
 [,SMSVSAM,QUIESCE]
 [,SMSVSAM,DIAG({CONTENTION|C})]
 [,{STORGRP|SG}({storgrp|ALL})[,LISTVOL]
 [,DETAIL]]
 [,,{TRACE|T}]
 [,TRANVSAM[,ALL][,ALLLOGS] [,WTOR}]
 [,URID({urid|ALL}){,WTOR}]
 [,{VOLUME|VOL}({volume})]
 [,VOLSELMGS]
 [,L={a|name|name-a}]

4-236 z/OS V1R11.0 MVS System Commands
SMS
Displays information about the Storage Management Subsystem. If SMS is the only operand specified, this command displays the active SMS configuration.

ACTIVE or A
The display includes the names of the three main SMS system data sets currently in use: the active control data set (ACDS), the communications data set (COMMDS), and the source control data set (SCDS). The display also includes the interval (DINTERVAL), in seconds, that SMS waits between reading device statistics for the 3990-3 control unit. In addition, the display shows the values of the REVERIFY and ACSDEFAULTS parameters in the IGDSMSxx parmlib member.

The display also includes a list of the MVS systems and system groups in the complex. For each system or system group, the display shows a date and time stamp that indicates the level of its SMS configuration, and the synchronizing interval value for its SMS subsystem (not the same as DINTERVAL). This synchronizing interval is the number of seconds that an SMS subsystem delays before synchronizing with the other SMS subsystems in the complex. A longer interval setting enables a slower system to avoid being locked out from accessing the communications data set. For more information on the SMS control data sets, the levels of SMS configuration, and the synchronizing interval, see `z/OS DFSMSdfp Storage Administration`.

CACHE
Displays the following information for each 3990-3 or 3990-6 control unit that has at least one system-managed volume attached to it:

SSID
Four-character identifier for the subsystem

SMSCNT
Number of SMS volumes attached to the cache

READ CONTROL
Percentage of reads and non-retentive writes for SMS-controlled data sets that will use the cache

FAST WRITE CONTROL
Percentage of writes with SMS-controlled data that will use the fast write feature

READ HIT RATIO
Percentage of I/O requests that make a hit in the cache

FAST WRITE RATE
Number of DASD fast write bypasses per minute due to non-volatile storage (NVS) overload.

CFCACHE(structurename or *)
Displays information about cache structures in the coupling facility. Specify structurename to display information for a given structure. Specify '*' to display information for all cache structures.

CFLS[,ALL|lockstructurename]
Displays the following information about the coupling facilities lock structure:
- Size
- Status
- Contention rate
- False contention rate

D SMS,CFLS[,ALL] display information for all lock structures known to VSAM RLS including IGWLOCK00.
DISPLAY SMS Command

D SMS,CFLS(lockstructurename) returns information for the single lock structure specified. The lock structure name can be specified as IGWLOCK00. Only systems with the multiple lock structure support display information about secondary lock structures.

If no lock structure name is specified, IGWLOCK00 is displayed.

CFVOL(volid)
Displays a list of coupling facilities cache structures that contain data for the specified volume (volid) and the status of the volume.

CICSVR,[,(ALL|LOGSTREAMS(,LogstreamNameALL,) RCDS)]
Displays overall information concerning the CICSVR address space.

[ALL] is specified. The command returns the requested information from all of the active CICSVR address spaces within the sysplex.

[LOGSTREAMS(,LogstreamNameALL,)] allows the operator to view all the logstreams that are currently connected to the CICSVR address space. If ALL is specified, the system displays information about all the logstreams in use and known to CICSVR on the system on which the command is issued. If a LogstreamName is specified, the system displays only the information regarding that specific logstream.

[RCDS] returns the information about the Recovery Control data sets in the CICSVR address spaces.

DETAIL
Displays detailed status information for tape and optical libraries, tape and optical storage groups and optical drives (in messages CBR1110I, CBR1120I, and CBR1130I).

If you specify a system-managed tape library name, then the system displays more detailed information about the named system-managed tape library. If you issue this command from a TSO/E terminal in OPERATOR mode, you cannot obtain detailed status for optical drives or libraries.

Note: When you specify the DETAIL keyword, you cannot specify the LISTDRI keyword.

DRIVE(name or ALL)
Displays system connectivity and the online/offline status of optical drives only. When the drive name is specified, the status for that drive is shown in a single line display. When ALL is specified the status for all the optical drives is shown.

To display the status of a drive named ALL, place the keyword in double parentheses, as DRIVE((ALL)).

Tip: To obtain the online or offline status of devices within a tape library, use the DISPLAY UNIT, DEVSERV or LIBRARY DISPDRV command.

DSNAME(dsn)
For a given fully qualified data set name, displays the jobs currently accessing the data set using DFSMS Transactional VSAM Services (DFSMStvs) access on the systems within the sysplex. If you specify WTOR, the system will issue a WTOR if the display output exceeds 255 lines.

JOB(jobname)
Displays information about a particular job that is using DFSMStvs services on one of the systems in the sysplex. The output includes:
- The name of the current step within the job
- The current URID for the job
The status of the unit of recovery (in-reset, in-flight, in-prepare, in-commit, in-backout, indoubt)

If you specify WTOR, the system will issue a WTOR if the display output exceeds 255 lines.

LIBRARY(name or ALL)
Displays system connectivity and the online or offline status of the tape and optical libraries. Specify the library name to display the status on a single line for the named library. Specify ALL to display the status for all tape and optical libraries.

If both optical libraries and system-managed tape libraries are defined in the SMS configuration, then the system or system group displays the optical library information followed by the system-managed tape library information.

To display a library named ALL, place the name in double parentheses, as `LIBRARY(('ALL'))`.

LISTDRI
Displays the offline or online status for all the optical drives associated with the specified libraries.

Restriction: When you specify the LISTDRI keyword, you cannot specify the DETAIL keyword.

LOG(logstreamid or ALL)
Displays information about a log stream that DFSMStvs is currently using on one of the systems in the sysplex. If ALL is specified, information is displayed about all of the logs in use on the entire sysplex. The output includes the status of the log stream (failed or available), type of log (undo, shunt, forward recovery, or log of logs), the job name and URID of the oldest unit of recovery using the log, and a list of all DFSMStvs instances that are using the log. If information about a specific log stream is requested and the log stream is either a system log or a forward recovery log, the output includes the names of the jobs using the log stream.

This command might be issued to determine why a log stream is increasing in size. If a unit of recovery is long running, DFSMStvs would be unable to delete any log blocks that contain data associated with the unit of recovery, which in turn would make truncation of the log stream impossible.

If you specify WTOR, the system will issue a WTOR if the display output exceeds 255 lines.

MONDS(specmask or *)
Displays the data set specifications eligible for coupling facilities statistics monitoring. You can specify a full or partial data set name (specmask) to view a subset of the data set specifications. You must specify at least one high-level qualifier. A wildcard in the data set name cannot be followed by additional qualifiers.

Specify an asterisk (*) to display all the data set specifications eligible for coupling facilities statistics monitoring.

OAM
If both optical libraries and tape libraries are defined in the SMS configuration, then the system displays the optical library information followed by the tape library information.

Note: This operand is not valid when issued from a TSO/E terminal in OPERATOR mode.
DISPLAY SMS Command

OPTIONS
Displays all of the SMS parameters and their status, and the setting of the FAST_VOLSEL parameter at the time this command is issued. The display indicates whether each option is on or off, what data sets are being used, the size of regions, the time interval for recording data, and all other parameter specifications.

For a description of the output, use LookAt or use the MVS System Messages books to see message IGD002I.

When DFSMStvs is running on the system, the output of this command includes DFSMStvs-related information.

OSMC
Displays the status of the OAM storage management component (OSMC).

Note: This operand is not valid when issued from a TSO/E terminal in OPERATOR mode.

TASK(name)
Displays the OSMC status for a specific task.

STATUS
Displays online/offline status for tape or optical libraries or optical drives.

{PDSE|PDSE1},LATCH(laddr),{DETAILED|SUMMARY}
Displays the status of PDSE latch at latch address (laddr) for the SMSPDSE or SMSPDSE1 address space. See message IGW045I for information provided by this command.

PDSE Indicates the SMSPDSE address space.

PDSE1 Indicates the SMSPDSE1 address space.

{PDSE|PDSE1},MODULE(modname)
Displays the address and maintenance level of module name (modname) for the SMSPDSE or SMSPDSE1 address space. This command is provided to help users when a SLIP is needed for a particular module. See message IGW046I for information provided by this command.

{PDSE|PDSE1},VSTOR
Indicates the current PDSE 64-bit directory buffer virtual storage utilization.

{PDSE|PDSE1},HSPSTATS[.DSN(dsname)][.STORCLAS(sc)][UNMANAGED]
Displays the member cache information about SMS-managed PDSE data sets and non-managed PDSE data sets.

HSPSTATS
Displays the member cache information.

DSN(dsname)
An HSPSTATS optional parameter that if specified, indicates that the information is for a specific PDSE, using a fully qualified name, or for a list of PDSEs, using a partially qualified name.

STORCLAS(sc)
An HSPSTATS optional parameter that limits the report to SMS-managed PDSE data sets under this storage class. STORCLAS and UNMANAGED parameters cannot be used in the same command.

UNMANAGED
An HSPSTATS optional parameter that limits the report to the data sets
that are non-managed PDSEs. STORCLAS and UNMANAGED parameters cannot be used in the same command.

Note:

1. If STORCLAS and UNMANAGED are not specified, the information is for both SMS-managed and non-managed PDSEs.
2. Example of valid names:
 IBMUSER.PDSE.DATASET (specific dataset)
 IBMUSER.* (all PDSEs with the high level qualifier of IBMUSER)
 IBMUSER.PDSE.* (all PDSEs starting with IBMUSER.PDSE)

\{PDSE|PDSE1\},HSPSTATS[,SUMMARY]
Displays a summary report of the member cache information.

SUMMARY
An HSPSTATS optional parameter that displays only a summary report. SUMMARY parameter cannot be used with the other parameters.

\{PDSE|PDSE1\},HSPSTATS[,MAXDSNS(maxds)]
Displays the member cache information report to a number of data sets.

MAXDSNS(maxds)
An HSPSTATS optional parameter that limits the report to a number of data sets. If specified, the report displays up to this number of data sets. The default is the complete report in a scrollable screen. The maximum number allowed is 9999. MAXDSNS can be used with the different variations of DSN, STORCLAS or UNMANAGED parameters.

SEP
Displays the name of the active data separation profile.

SHCDS
Displays the following information about the sharing control data sets. (SHCDS):
- Name
- Size
- Amount of free space for the active and spare SHCDS
- Whether the data set is usable

SHUNTED{, SPHERE(sphere)|URID({urid|ALL})}
Displays the entries currently contained in the shunt logs of the systems in the sysplex. Entries are moved to the shunt log when DFSMStvs is unable to finish processing a syncpoint, for example, due to an I/O error. As long as a shunted entry exists, the locks associated with that entry are retained.

Three types of information that can be displayed in response to this command:
- When neither the SPHERE nor URID keyword is specified, this command results in a list of systems in the sysplex and the number of units of recovery which that system has shunted
- When the SPHERE keyword is specified, this command results in a list of shunted work for the sphere specified for all of the systems in the sysplex
- When the URID keyword is specified, this command results in a list of shunted work for the unit of recovery specified for all of the systems in the sysplex. When ALL is specified, this command results in a list of shunted work for all shunted units of recovery for all the systems in the sysplex. To avoid flooding the console, DFSMStvs writes out 255 lines and then issues a WTOR to determine whether or not to continue.

If the error is correctable, the installation might choose to fix the problem and then request that DFSMStvs again attempt processing of the entry by issuing.
the SHCDS RETRY command. If the data set cannot be restored to a point
where it is consistent with the log entry, so that it does not make sense to
attempt processing of the log entry again, the installation might choose to
discard the log entry by issuing the SHCDS PURGE command.

If you specify WTOR, the system will issue a WTOR if the display output
exceeds 255 lines.

SHCDS
Displays the following information about the sharing control data sets. (SHCDS):
- Name
- Size
- Amount of free space for the active and spare SHCDS
- Whether the data set is usable

SMSVSAM [,.ALL]
Displays the status of the SMSVSAM server on this system or all the
SMSVSAM servers and lock table connection status.

The D SMS,SMSVSAM command displays system connect and quiesce status
for all lock structures connected by the system issuing the command.

The D SMS,SMSVSAM, ALL command summarizes the system connect
and quiesce status for all lock structures connected in the sysplex. IGWLOCK00
cannot be quiesced.

SMSVSAM,QUIESCE
Displays the status of all active VSAM record-level sharing (VSAM/RLS) sphere
quiesce events on the system that the command is entered. (This is not a
SYSPLEX-wide command.)

SMSVSAM,DIAG(CONTENTION) or SMSVSAM,DIAG(C)
Displays the status of latch contention related to SMSVSAM. Use this command
when you suspect that VSAM RLS latch contention is causing a hang or
deadlock. For more information about diagnosing VSAM RLS latch contention,
see z/OS DFSMSdfp Diagnosis.

STATUS
Displays the online or offline status for tape or optical libraries or optical drives.

STORGRP (storgrp) or SG (storgrp) [,.LISTVOL]
Displays the status of the storage group for each MVS system or system group
in the SMS complex. If LISTVOL is specified, all the volumes in the storage
group and their SMS status are displayed. The status of the storage group is
displayed for each MVS system or system group in the SMS complex.

To display a drive named ALL, place the name in double parentheses, as
STORGRP((ALL)) or SG((ALL)).

STORGRP(ALL) or SG(ALL) [,.LISTVOL]
Displays a list of all storage groups in the SMS configuration, indicating by
symbols (. + - * Q D) the status of each storage group for each MVS system or
system group.

If you specify LISTVOL, the system displays the following information:
- A list of volumes in the storage group, giving the status of each volume for
each MVS system or system group in the complex.
- The device number of the volume on the system or system group at which
the command is issued.

If ALL is specified and no storage groups are defined in the active configuration,
the system displays this message:
NO STORAGE GROUPS DEFINED IN THE ACTIVE CONFIGURATION

To display a drive named ALL, place the name in double parentheses, as STORGRP((ALL)) or SG((ALL)).

TRACE or T
Displays the SMS trace options in effect at the time the command was issued, followed by the setting of the parameters that are related to SMS volume selection analysis messages. The display indicates whether each trace option is now on or off. For a description of the output use LookAt or use the MVS System Messages books to see message IGD002I.

TRANVSAM [,ALL]
Displays information about the instance of DFSMStvs on this system, or on all systems in the sysplex when the ALL keyword is specified. The output includes this information:

- The activity keypoint (AKP) trigger, which is the number of logging operations between the taking of keypoints
- The status of this instance of DFSMStvs (initializing, active, quiescing, quiesced, disabling, disabled)
- How DFSMStvs started:
 - Cold start
 The log data was not read, and any old data was discarded.
 - Warm start
 The log data was read and processed.
- DFSMStvs status with respect to resource recovery services (RRS)
- The quiesce timeout value
- All logs known to this instance of DFSMStvs, including the log of logs if one is in use
- The number of active units of recovery
- The status of all known logs associated with this TVS instance, if you specify ALLLOGS. Otherwise, only the UNDO and SHUNT logs are returned

If you specify WTOR, the system will issue a WTOR if the display output exceeds 255 lines.

URID({urid|ALL})
Displays information about a particular unit of recovery currently active within the sysplex or about all units of recovery currently active on the system on which the command was issued on whose behalf DFSMStvs has performed any work. This parameter does not include information about work that has been shunted because you can use the DISPLAY SMS,SHUNTED command to display that information. This parameter also does not include information about units of recovery that might be in restart processing as a result of an earlier failure. This work is not considered to be currently active because it is not associated with any batch job, and the units of recovery associated with the work will end as soon as commit or backout processing for them can be completed. The output includes this information:

- The age of the unit of recovery
- The name of the job with which the unit of recovery is associated
- The name of the current step within the job
- The status of the unit of recovery (in-reset, in-flight, in-prepare, in-commit, in-backout, indoubt)
- The user ID associated with the job
DISPLAY SMS Command

If you specify WTOR, the system will issue a WTOR if the display output exceeds 255 lines.

VOLUME or VOL(volume)

For a DASD volume, the system displays detailed status in the pool storage group with respect to the systems or system groups in the complex. The status indication can be NOT DEFINED TO THE SYSTEM, ENABLED, DISABLED, QUIESCED, DISABLED FOR NEW ALLOCATIONS ONLY, or QUIESCED FOR NEW ALLOCATIONS ONLY. The display also gives the device number of the device on which the volume is mounted. This occurs only on the system or system group at which the command is issued.

For an optical volume, the system displays (in message CBR1140I) detailed status from the optical configuration database.

For a system-managed tape volume, the system displays (in message CBR1180I) detailed status from the tape configuration database.

If the specified volume is not system managed, this message is issued:

```
COMMAND REJECTED; VOLUME volume IS NOT DEFINED
```

To display a volume named ALL, place the name in double parentheses, as `VOLUME((ALL))` or `VOL((ALL))`.

VOLSELMAG

Displays the setting of the parameters that are related to SMS volume selection analysis messages, followed by the setting of parameters that are related to SMS trace.

L=a, name, or name-a

Specifies the display area (`a`), console name (`name`), or both (`name-a`) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Example 1

Either of the following commands displays the active SMS configuration:

```
d sms

d sms,a
```

In this example, three MVS systems are defined to SMS, but only the first two systems have an active Storage Management Subsystem. The third system is either not IPLed or was IPLed without starting SMS.

The response to this command is as follows:

```
IGD002I 10:13:25 DISPLAY SMS 050
SCDS = STAGE2.SCDSPLEX.DATA
ACDS = SYS1.PDSESHR.ACDS
COMMDS = SYS1.PDSESHR.COMMDS
DINTERVAL = 150
REVERIFY = NO
ACSDFAULTS = YES
SYSTEM CONFIGURATION LEVEL INTERVAL SECONDS
SYSTEM1 2005/03/18 10:13:10 15
SYSTEM2 --------- -------- N/A
SYSTEM3 --------- -------- N/A
SYSTEM4 --------- -------- N/A
```
Example 2

To display the name of the active data separation file, enter:

d sms,sep

In response to this command, the system issues message IGD002I:

IGD002I 09:59:03 DISPLAY SMS 047
ACTIVE DATA SET SEPARATION PROFILE NAME: sep_dsname

If there are no active separation profile, the system issues message IGD002I as:

IGD002I 09:59:03 DISPLAY SMS 047
NO DATA SET SEPARATION PROFILE IS ACTIVE

Example 3

To display the status of the storage group sgmixed, enter:

d sms,sg(sgmixed)

The response to this command is as follows:

IGD002I 11:50:52 DISPLAY SMS 448
STORGRP TYPE SYSTEM= 1 3 4 5 6 7 8
SGMIXED TYPE +

** LEGEND ***
. THE STORAGE GROUP OR VOLUME IS NOT DEFINED TO THE SYSTEM
+ THE STORAGE GROUP OR VOLUME IS ENABLED
– THE STORAGE GROUP OR VOLUME IS DISABLED
* THE STORAGE GROUP OR VOLUME IS QUIESCED
D THE STORAGE GROUP OR VOLUME IS DISABLED FOR NEW ALLOCATIONS ONLY
Q THE STORAGE GROUP OR VOLUME IS QUIESCED FOR NEW ALLOCATIONS ONLY
SYSTEM 1 = SYSTEM1

IEF196I IEF285I SYS2.LINKLIB kept
IEF196I IEF285I VOL SER NOS= MVSRES.

Example 4

To display storage group group26, showing the states of all its volumes, enter:

d sms,storgrp(group26),listvol

The output from this command is similar to that of the previous example except that
the specific volumes defined to each system are listed.

IGD002I 11:51:34 DISPLAY SMS 453
STORGRP TYPE SYSTEM= 1 7 8
GROUP26 OBJECT + .
LISTVOL IS IGNORED FOR OBJECT, OBJECT BACKUP, AND TAPE STORAGE GROUPS STORGRPNAME

** LEGEND ***
. THE STORAGE GROUP OR VOLUME IS NOT DEFINED TO THE SYSTEM
+ THE STORAGE GROUP OR VOLUME IS ENABLED
– THE STORAGE GROUP OR VOLUME IS DISABLED
* THE STORAGE GROUP OR VOLUME IS QUIESCED
D THE STORAGE GROUP OR VOLUME IS DISABLED FOR NEW ALLOCATIONS ONLY
Q THE STORAGE GROUP OR VOLUME IS QUIESCED FOR NEW ALLOCATIONS ONLY
SYSTEM 1 = SYSTEM1

Example 5
DISPLAY SMS Command

To illustrate the display of trace options, assume that the following two commands have been issued for system MVS3:

```
SETSMS TRACE(ON),SIZE(128K),TYPE(ERROR),JOBNAME(*)
SETSMS DESELECT(ALL),SELECT(ACSINT,CONFC,MSG),ASID(*)
```

The first command turns on tracing and sets the trace table size to 128KB. The second command turns off all trace options except for the three options indicated.

To display the SMS trace options now in effect, enter:

```
DISPLAY SMS,TRACE
```

The output from this command is similar to that shown below. Note that the trace is shown to be on, the trace table size is indicated, and all options are shown to be off except for the three turned on by the SETSMS...,SELECT command.

```
IGD002I 10:34:39 DISPLAY SMS 053
TRACE = ON SIZE = 128K TYPE = ERROR
JOBNAME = * ASID = *

TRACING EVENTS:
MODULE = ON SMSSJF = ON SMSSSI = ON ACSINT = ON
OPCMD = ON CONFC = ON CDSC = ON CONFS = ON
MSG = ON ERR = ON CONFR = ON CONFA = ON
ACSPRO = ON IDAX = ON DISP = ON CATG = ON
VOLREF = ON SCHEDP = ON SCHEDS = ON
VTOL = ONVTOCD = ON VTOCR = ON VTOCC = ON VTOCA = ON
RCD = ON DCF = ON DPN = ON TVR = ON
DSNAME = *
```

Example 6

To display the SMS options now in effect, enter:

```
d sms,options
```

The output from this command is similar to the following output.

```
IGD002I 13:01:52 DISPLAY SMS 918
ACDS = SYS1.PDSESHR.ACDS
COMMDS = SYS1.PDSESHR.COMMDS
INTERVAL = 15 DINTERVAL = 150
SMF_TIME = YES CACHETIME = 3600
CF_TIME = 3600 PDSE_RESTARTABLE_AS = YES
PDSE_BMFTIME = 3600 PDSE1_BMFTIME = 3600
PDSE_LRUETIME = 60 PDSE1_LRUETIME = 60
PDSE_LRCYCLES = 15 PDSE1_LRCYCLES = 15
LOCAL_DEADLOCK = 15 GLOBAL_DEADLOCK = 4
REVERIFY = NO DSNTYPE = LIBRARY
ACSDDEFAULTS = YES PDSESHARING = EXTENDED
OVRD_EXPDT = NO SYSTEMS = 8
PDSE_HSP_SIZE = 256MB PDSE1_HSP_SIZE = 256MB
USE_RESOWNER = YES RLS_MAX_POOL_SIZE = 100MB
RLSINIT = YES RLSTMOUT = 500
COMPRESS = GENERIC LOG_OF_LOGS = IGWTVS1.LOG.OF.LOGS
QTIMEOUT = 400 TVSNAME = 001
AKP = 200 TV_START_TYPE = WARM
MAXLOCKS = (100,50)
CICSVR_INIT = NO
CICSVR_DSNNAME_PREFIX = DWW.
CICSVR_RDCS_PREFIX = DWW
CICSVR_GRPNAME_SUFFIX = PROD
CICSVR_ZZVALUE_PARM =
CICSVR_UNDOLOG_CONTROL =
```
DISPLAY SMS Command

Example 7

The DISPLAY SMS,TRANVSAM command displays information about the status of DFSMStvs.

If DFSMStvs is not active, this results in:

IGD002I DFSMS VSAMRLS REQUEST TO DISPLAY TRANSACTIONAL VSAM INFORMATION IS REJECTED: TRANSACTIONAL VSAM IS NOT ACTIVE ON THIS SYSTEM

If DFSMStvs is active, this command results in the following output:

D SMS,TRANVSAM
IEE932I 774
IGD001 13.33.01 DISPLAY SMS,TRANSACTIONAL VSAM
DISPLAY SMS,TRANSACTIONAL VSAM - SERVER STATUS
System TVSNAME State Rs #Urs Start AKP QtimeOut
------------------------ -------- ----------- ------------ -------- ---------
SYSTEM1 IGWTV001 ACTIVE REG 1 WARM/WARM 200 400

DISPLAY SMS,TRANSACTIONAL VSAM - LOGSTREAM STATUS
LogStreamName State Type Connect Status
----------------- -------- -------- -----------
IGWTV001.IGWLOGSYSLOG Enabled UnDoLog Connected
IGWTV001.IGWSSHUNT.SHUNTLOG Enabled ShuntLog Connected
IGWTVS1.LOG.OF.LOGS Enabled LogOfLogs Connected
IGWTVS.FR.LOG001 Enabled FrLog Connected

Example 8

To display information about DFSMStvs, enter this command:

D SMS,TRANVSAM,ALL

The output from this command
The DISPLAY SMS,JOBC command displays information about the status of a job.

If the job is using DFSMStvs services, this command results in the following output:

```
D SMS,JOB(TVS30601)
IEE932I 780
IGW801I 13.33.27 DISPLAY SMS,JOBC
TRANSATIONAL VSAM Job Status On System: SYSTEM1
JobName  StepName Urid     Ur Status # Locks
---------  --------  -------  ------  ------  ---------------  ------  ------
TVS30601   STEP04   B4E070267EAFD000000000030301010000 IN_FLIGHT   20
```

Example 10

The DISPLAY SMS,URC command displays information about a particular unit of recovery on whose behalf DFSMStvs has performed any work.

If the unit of recovery is not active, this command results in the following output:

```
IGW802I DFSMS REQUEST TO DISPLAY ACTIVE TRANSATIONAL VSAM UR(s)
WAS REJECTED, SPECIFIED URID(s) ARE NOT ACTIVE ON ANY TRANSATIONAL VSAM INSTANCE IN THE SYSPLEX.
```

If the UR is currently active, this command results in the following output:
DISPLAY SMS Command

Example 11

Use the DISPLAY SMS,SHUNTED command to display information about URs currently in the DFSMSstvs shunt log.

If there is currently no shunted work, the results are as follows:

IGW031I 09.50.47 DISPLAY SMS,UR (Summary Data)
SysName # Urid(s) SysName # Urid(s) SysName # Urid(s)
--------- --------- --------- --------- --------- --------- --------- ---------
SYSTEM1 0 0 0

If there are shunted URs, the results are as follows:

IGW031I 09.50.47 DISPLAY SMS,UR (Summary Data)
SysName # Urid(s) SysName # Urid(s) SysName # Urid(s)
--------- --------- --------- --------- --------- --------- --------- ---------
SYSTEM1 urid 0 0

Example 12

Use the DISPLAY SMS,LOG command to display information about the log streams that DFSMSstvs is using.

If the log stream is not currently in use by DFSMSstvs, this command results in the following output:

IGW041I DFSMS REQUEST TO DISPLAY
TRANSACTIONAL VSAM LOG STREAM: logstream WAS REJECTED.

LOG STREAM NOT KNOWN TO DFSMS.

If the log stream is currently in use, this command results in the following output:

D SMS,LOG(IGWTVS.FR.LOG001)
IEE932I 789
IGW041I 13.34.10 DISPLAY SMS,LOG
DISPLAY SMS,LOG - LOG STREAM STATUS
 Name: IGWTVS.FR.LOG001 State: Enabled Type: FrdRecovr
System TVNAME JobName Urid of Oldest Log Block
--------- --------- --------- --------- --------- --------- --------- ---------
SYSTEM1 IGWTV001 TVS3O601 B4E070267EAFD0000000000301010000*
DISPLAY SMS,LOG - LOG STREAM USAGE
 LogStreamName: IGWTVS.FR.LOG001
 System TVNAME JobName JobName JobName JobName JobName
 --------- --------- --------- --------- --------- --------- --------- --------- ---------
SYSTEM1 IGWTV001 TVS3O601 OLDEST URID ACROSS ALL SYSTEMS IN THE SYSPLEX

Example 13

The DISPLAY SMS,LOG(ALL) command displays information about the log streams that DFSMSstvs is using.

D SMS,LOG(ALL)
This command results in the following output:

IEE932I 792

IGW041 13.34.18 DISPLAY SMS,LOG
DISPLAY SMS,LOG - LOG STREAM STATUS
 Name: IGWTVS.FR.LOG001 State: Enabled Type: FrdRecovr
System TVSNAME JobName Urid of Oldest Log Block
--------- -------- -------------------------------
SYSTEM1 IGWTV001 TPS30601 B4E070267EAFD0000000000301010000*
DISPLAY SMS,LOG - LOG STREAM USAGE
 LogStreamName: IGWTVS.FR.LOG001
System TVSNAME JobName JobName JobName JobName JobName
--------- -------- -------- -------- -------- --------

SYSTEM1 IGWTV001 TPS30601
*OLDEST URID ACROSS ALL SYSTEMS IN THE SYSPLEX
DISPLAY SMS,LOG - LOG STREAM STATUS
 Name: IGWTVS1.LOG.OF.LOGS State: Enabled Type: LogOfLogs
System TVSNAME JobName Urid of Oldest Log Block
--------- -------- -------------------------------
SYSTEM1 IGWTV001 TPS30601 B4E070267EAFD0000000000301010000*
DISPLAY SMS,LOG - LOG STREAM USAGE
 LogStreamName: IGWTVS1.LOG.OF.LOGS
System TVSNAME JobName JobName JobName JobName JobName
--------- -------- -------- -------- -------- --------

SYSTEM1 IGWTV001 TPS30601
*OLDEST URID ACROSS ALL SYSTEMS IN THE SYSPLEX
DISPLAY SMS,LOG - LOG STREAM STATUS
 Name: IGWTV001.IGWLOG.SYSLOG State: Enabled Type: UnDo
System TVSNAME JobName Urid of Oldest Log Block
--------- -------- -------------------------------
SYSTEM1 IGWTV001 TPS30601 B4E070267EAFD0000000000301010000*
DISPLAY SMS,LOG - LOG STREAM USAGE
 LogStreamName: IGWTV001.IGWLOG.SYSLOG
System TVSNAME JobName JobName JobName JobName JobName
--------- -------- -------- -------- -------- --------

SYSTEM1 IGWTV001 TPS30601
*OLDEST URID ACROSS ALL SYSTEMS IN THE SYSPLEX
DISPLAY SMS,LOG - LOG STREAM STATUS
 Name: IGWTV001.IGWSHUNT.SHUNTLOG State: Enabled Type: Shunt
System TVSNAME JobName Urid of Oldest Log Block
--------- -------- -------------------------------
SYSTEM1 IGWTV001 TPS30601
*OLDEST URID ACROSS ALL SYSTEMS IN THE SYSPLEX
DISPLAY SMS,LOG - LOG STREAM USAGE
 LogStreamName: IGWTV001.IGWSHUNT.SHUNTLOG
System TVSNAME JobName JobName JobName JobName JobName
--------- -------- -------- -------- -------- --------

SYSTEM1 IGWTV001 TPS30601
*OLDEST URID ACROSS ALL SYSTEMS IN THE SYSPLEX
DISPLAY SMS,LOG - LOG STREAM STATUS
 Name: IGWTVS1.LOG.OF.LOGS State: Enabled Type: LogOfLogs
System TVSNAME JobName Urid of Oldest Log Block
--------- -------- -------------------------------
SYSTEM2 IGWTV002
*OLDEST URID ACROSS ALL SYSTEMS IN THE SYSPLEX
DISPLAY SMS,LOG - LOG STREAM USAGE
 LogStreamName: IGWTVS1.LOG.OF.LOGS
System TVSNAME JobName JobName JobName JobName JobName
--------- -------- -------- -------- -------- --------

SYSTEM2 IGWTV002
*OLDEST URID ACROSS ALL SYSTEMS IN THE SYSPLEX
DISPLAY SMS,LOG - LOG STREAM STATUS
 Name: IGWTV002.IGWLOG.SYSLOG State: Enabled Type: UnDo
System TVSNAME JobName Urid of Oldest Log Block
--------- -------- -------------------------------
DISPLAY SMS Command

Example 14

The DISPLAY SMS,DSNAME command display information about the jobs that have a data set open for DFSMStvs access.

If the data set is not currently open for DFSMStvs access, this command results in the following output:

```
IGW805I DFSMS REQUEST TO DISPLAY TRANSACTIONAL VSAM USAGE OF DATASET: dsname WAS REJECTED.
DATASET NOT KNOWN TO TRANSACTIONAL VSAM.
```

If the data set is currently open for DFSMStvs access, this command results in the following output:

```
D SMS,DSNAME(SYSLEX.SHCDS.UNDO1.KSDS01)
IIE932I 795
IGW805I 13.34.44 DISPLAY SMS,DSNAME
DATASET: SYSLEX.SHCDS.UNDO1.KSDS01
IS CURRENTLY IN USE BY THE FOLLOWING JOBS:

System Name: SYSTEM1 TVSNAME: IGWTV001
JobNames: TVS3O601
```

Example 15

The DISPLAY SMS,OPTIONS command displays the values with which SMS, SMSVSAM, and DFSMStvs are currently operating.

This command results in the following output:

```
D SMS,OPTIONS
 IGD002I 13:01:52 DISPLAY SMS 918
 ACDS = SYS1.PDSESHR.ACDS
 COMMDS = SYS1.PDSESHR.COMMDS
 INTERVAL = 15 DINTERVAL = 150
 SMF_TIME = YES CACHETIME = 3600
 CF_TIME = 3600 PDSE_RESTARTABLE_AS = YES
 PDSE_BMFTIME = 3600 PDSE1_BMFTIME = 3600
 PDSE_LRUTIME = 60 PDSE1_LRUTIME = 60
 PDSE_LRUCYCLES = 15 PDSE1_LRUCYCLES = 15
 LOCAL_DEADLOCK = 15 GLOBAL_DEADLOCK = 4
 REVERIFY = NO DSNTYPE = LIBRARY
 ACSDEFAULTS = YES PDSESHARING = EXTENDED
 OVRD_EXPDT = NO SYSTEMS = 8
```
DISPLAY SMS Command

PDSE_HSP_SIZE = 256MB PDSE1_HSP_SIZE = 256MB
USE_RESOWNER = YES RLS_MAX_POOL_SIZE = 100MB
RLSINIT = YES RLSTMOUT = 500
COMPRESS = GENERIC LOG_OF_LogS = IGWTVS1.LOG.OF_LogS
QTIMEOUT = 400 TVSNAME = 001
AKP = 200 TV_START_TYPE = WARM
MAXLOCKS = (100,50)
CICSVR_INIT = NO CICSVR_DSNAMES Prefix = DWW.
CICSVR_Rcds Prefix = DWW
CICSVR_GRPNAME_Suffix = PROD
CICSVR_Zzvalue_param =
CICSVR_undolog Control =
CICSVR_undolog PREFIX = DWW
CICSVR_BACKOUT_CONTROL =
CICSVR_General_CONTROL =
Rls_MaxCfFeatureLevel = A
RlsAboveThebarMaxPoolSize = 0
RlsFixedPoolSize = 0
PDSE_MONITOR = (YES,0,0) PDSE1_MONITOR = (YES,0,0)
PDSE_BUFFER_BEYOND_CLOSE = NO
PDSE1_BUFFER_BEYOND_CLOSE = NO
GDS_RECLAIM = YES DSSTIMEOUT = 0
BLOCKTOKENSIZE = REQUIRE
IGD002I 13:01:52 DISPLAY SMS
TRACE = ON SIZE = 128K TYPE = ERROR
JOBNAME = * ASID = *
TRACING EVENTS:
MODULE = ON SMSSJF = ON SMSSSI = ON ACSINT = ON
OPCMD = ON CONFC = ON CDSC = ON CONFS = ON
MSG = ON ERR = ON CONFR = ON CONFA = ON
ACSPRO = ON IDAX = ON DISP = ON CATG = ON
VOLREF = ON SCHEDP = ON SCHEDS = ON VTOCL = ON
VTOCD = ON VTOCR = ON VTOCC = ON VTOCA = ON
RCD = ON DCF = ON DPN = ON TVR = ON
DSTACK = ON UAFF = ON VOLSELMSG = (OFF,0) TYPE = ERROR
JOBNAME = * ASID = *
DSNAME = *
TYPE = ERROR
JOBNAME = *
ASID = *
STEPNAME = *
DSNAME = *

Example 16

To display the setting of the parameters that are related to SMS volume selection analysis messages, enter:
D SMS,VOLSELMSG

The response to this command is as follows:
IGD002I 13:58:46 DISPLAY SMS
VOLSELMSG = (OFF,0) TYPE = ERROR
JOBNAME = *
ASID = *
STEPNAME = *
DSNAME = *

Example 17

The D SMS,SMSVSAM and D SMS,SMSVSAM,ALL commands display lock structure connect status.

To display the system connect and quiesce status for all lock structures connected by the system issuing the command, enter:
D SMS,SMS VSAM
The response to this command is as follows:

IEE932I 847
IGW420I DISPLAY SMS,SMSVSAM
DISPLAY SMS,SMSVSAM - SERVER STATUS
SYSTYPE: SYSTEM1 AVAILABLE ASID: 0037 STEP: SmsSamInitComplete
DISPLAY SMS,SMSVSAM - JOB STATUS
SUBSYSTEMS CONNECTED: 2 BATCH: 2
DISPLAY SMS,SMSVSAM - LOCK TABLE STATUS (IGWLOCK00)
CONNECT STATUS:
SYSTYPE: SYSTEM1 ACTIVE RSN: 02010407 RbldNotActive
COMPOSITE STATUS:
ORIGINAL STRUCTURE: NOT VOLATILE FAILURE ISOLATED
NEW STRUCTURE: NOT VOLATILE FAILURE ISOLATED
STRUCTURE STATUS:
SYSTYPE: SYSTEM1 Duplex
SECONDARY LOCK TABLE STATUS (TESTLOCK1)
CONNECT STATUS:
SYSTYPE: SYSTEM1 ACTIVE RSN: 02010407 RbldNotActive
COMPOSITE STATUS:
ORIGINAL STRUCTURE: NOT VOLATILE FAILURE ISOLATED
NEW STRUCTURE: NOT VOLATILE FAILURE ISOLATED
STRUCTURE STATUS:
SYSTYPE: SYSTEM1 NOTCONN

To display the system connect and quiesce status for all lock structures connected in the sysplex, enter:
D SMS,SMSVSAM,ALL

The response to this command is as follows:

DISPLAY SMSVSAM - LOCK TABLE STATUS (TESTLOCK1)
CONNECT STATUS:
SYSTYPE: SYSTEM2 ACTIVE RSN: 02010407 RbldNotActive
SYSTYPE: SYSTEM1 ACTIVE RSN: 02010407 RbldNotActive
SYSTYPE: SYSTEM3 ACTIVE RSN: 02010407 RbldNotActive
SYSTYPE: RSN:
COMPOSITE STATUS:
ORIGINAL STRUCTURE: NOT VOLATILE FAILURE ISOLATED
NEW STRUCTURE: NOT VOLATILE FAILURE ISOLATED
STRUCTURE STATUS:
SYSTYPE: SYSTEM2 Duplex Quiesced
SYSTYPE: SYSTEM1 Duplex Quiesced
SYSTYPE: SYSTEM3 NOTCONN
SYSTYPE:

Displaying Information about All Subsystems

Use the DISPLAY SSI command to display the following information about all subsystems defined to MVS:
- Whether the subsystem is dynamic
- Whether the subsystem is active
- For a dynamic subsystem, whether it accepts or rejects dynamic SSI commands such as SETSSI.
- For an active subsystem, the function codes it supports.
An operator can use keyword filters to specify the information to be displayed from those subsystems that meet the specified criteria. For example, an operator may choose to display information about a particular subsystem by specifying its name.

The output from the DISPLAY SSI command is a multi-line message. It is written to the console from which the command was issued or to the specified console.

```
D SSI[,]{{LIST|L}|{ALL|A}}[,{{DYNAMIC|DYN|D}={YES|Y}|{NO|N}}
        [,{{FUNC|F}|funclist}
        [,{{STATUS|STAT|ST}={ACTIVE|ACT}|{INACTIVE|INACT|I}}]
        [,{{SUBSYS|SUB}=subsysname}
        [,L={a|name|name-a}]}

SSI
Displays information about all subsystems defined to the SSI.

LIST or L
Displays the LIST output format, which includes the following information for each subsystem defined to the system:
• Whether the subsystem is dynamic
• Whether the subsystem is active
• For a dynamic subsystem, whether the subsystem accepts or rejects dynamic SSI commands such as SETSSI.

The LIST format is the default keyword.

ALL or A
Displays the ALL output format. This output is the same as the LIST format except that the system includes a sub-list after each list element. The sub-list contains a list of function codes to which the subsystem responds.

For the output messages of the DISPLAY SSI command, use LookAt or use the MVS System Messages books to see message IEFJ100I.

DYNAMIC or DYN or D=YES or Y or No or N
Displays either dynamic or non-dynamic subsystems. If dynamic, the subsystem can use dynamic SSI services. See z/OS MVS Using the Subsystem Interface for more information on dynamic SSI requests.

FUNC or F=funclist
Displays those subsystems that respond to the function codes specified. The funclist value can be either a number no greater than three digits or a list of numbers no greater than three digits. The list of numbers must be separated by commas and enclosed in parentheses. For example, you can specify FUNC=3 or FUNC=(18,5,100).

You can use the FUNC parameter with either the LIST parameter or the ALL parameter. For either format, only those subsystems which respond to all the specified function codes appear in the display. If you use the ALL format, the list of function codes for each subsystem displayed is the complete list of all the function codes to which that subsystem responds. If you specify the FUNC parameter, inactive subsystems or subsystems without a vector table do not appear in the display.
STATUS or STAT or ST=ACTIVE or ACT or INACTIVE or INACT or I
Displays subsystems whose status is either active or inactive. Specifying ACTIVE or ACT means that displayed subsystems accept function requests directed to it by the SSI. Specifying INACTIVE or INACT or I means that displayed subsystems do not accept function requests directed to it by the SSI.

SUBSYS or SUB=subsysname
Displays information about the subsystem whose name matches the specified pattern. The pattern could be the name of the subsystem or it could contain wildcard characters.

Subsystem names that are not enclosed in apostrophes may contain any character that is valid for operator commands, with the following exceptions:
- , comma
- ( left parenthesis
- ) right parenthesis
- / slash
- = equals sign

Subsystem names containing these characters must be enclosed in apostrophes.

Subsystem names that contain any character that is not valid for operator commands must be enclosed in apostrophes. See Chapter 4, “MVS System Commands Reference,” on page 4-1 for a list of characters supported by commands.

You can specify an asterisk (*) or question mark (?) anywhere in the subsystem name. An asterisk (*) is a wildcard character used to replace 0 or more characters to obtain a matching name. A question mark (?) is a wildcard character used to replace one character to obtain a matching name. For example, if a system has subsystems JES2, JESA, A, SS2 and J specified:
- SUBSYS=JES* causes JES2 and JESA to appear in the display.
- SUBSYS=J* causes JES2, JESA and J to appear in the display.
- SUBSYS=*S2 causes JES2 and SS2 to appear in the display.
- SUBSYS=?S2 causes SS2 to appear in the display.
- SUBSYS=* causes all the subsystems to appear in the display. Note that specifying SUBSYS=* has the same effect as not specifying the SUBSYS parameter at all.

Also, you can specify the character string 'IPRI' rather than a subsystem name, which causes the system to display only the primary subsystem.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Notes:
1. You cannot use the same parameter twice within a command.
2. A command line cannot be longer than 126 characters.

Example 1
To display information for all the subsystems defined to the system which:
- Are currently active
- Can use dynamic SSI services
DISPLAY SSI Command

without including the list of function codes to which the subsystems respond, enter:
D SSI,STAT=ACT,DYN=YES

Example 2

To display information for every subsystem whose name begins with 'JES' and include the list of function codes for each subsystem, enter:
D SSI,ALL,SUB=JES*

Example 3

To display information for every subsystem that responds to function codes 9 and 10 and include the list of function codes for each subsystem, enter:
D SSI,A,FUNC=(9,10)

Note: If a display in response to the command is greater than 65,533 lines, the system will truncate the output. If this happens, re-enter the DISPLAY SSI command using parameters to decrease the size of the display. For example, if D SSI,ALL yields a display that is too large, you can use D SSI,LIST to display subsystems without listing the function codes to which they respond. Then use D SSI,ALL,SUBSYS=subsysname to display the function codes for the particular subsystems of interest one subsystem at a time.

Displaying Static System Symbols

Use the DISPLAY SYMBOLS command to display the current static system symbols and their associated substitution texts.

D SYMBOLS[,L={a|name|name-a}]

SYMBOLS
The system is to display, in message IEA007I, the static system symbols defined to this system.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Example

To display the static system symbols defined to this system, enter:
D SYMBOLS

Displaying the Local and Coordinated Universal Time and Date

Use the DISPLAY T command to display the local time of day and date and the coordinated universal time (UTC) of day and date.

D T
The local time of day and date and the coordinated universal time (UTC) of day and date are to be displayed (message IEE136I).

Displaying Component or Transaction Trace Status

Use the DISPLAY TRACE command to obtain status information about either components or applications defined to component trace, or about transaction trace.

```
D TRACE[,COMP=cname[,SUB=(subname)][,N=nnn][,SUBLEVEL]]
 [,COMP=({cname[,cname]...)|ALL}]
 [,WTR=({name[,name],...)|ALL}]
 [,TT]
 [,L={a|name|name-a}]]
```

**TRACE**
Indicates that the system is to display status information, in short form, about the components defined to component trace.

**COMP=ALL**
Specifies that the system is to display status, in long form, for all components.

**COMP=(cname,cname)....**
Specifies that the system is to display component status, in long form, for the component names requested. See your system programmer for the components and applications active on the system that are defined to component trace.

**SUB=(subname)**
Specifies that the system is to display, in long form, the status of the specified sublevel trace. Obtain the specific names of sublevels from the system programmer. If the sub level trace name contains any national characters (@ # $ _) then the name must be enclosed in quotation marks. Otherwise, quotation marks are not required. In either case, the alphabetic characters can be specified in upper or lower case.

The command displays information for only one sublevel trace. Enter a separate DISPLAY command for each sublevel trace.

**N=nnn**
Specifies that the system is to display the subordinate node status and, when the SUBLEVEL keyword is specified, the specific 'nnn' number of parallel or sublevel nodes of the requested subordinate node.

**SUBLEVEL**
Specifies that sublevel trace status is to be displayed.

**WTR=(name,name)....**
Displays information only about the component trace external writers you specify.

**WTR=ALL**
Displays information about all component trace external writers.

**TT**
Displays the status of the transaction trace currently in effect. In a parallel sysplex environment it displays the status of the transaction trace currently in effect in the sysplex. See Example 6.
DISPLAY TRACE Command

L=a, name, or name-a

Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Note: See z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN for information about application traces of application programs. See z/OS MVS Diagnosis: Tools and Service Aids for information about component traces of components.

Example 1

To display the status of component trace in short form, enter:

DISPLAY TRACE

The system responds with:

IEE843I 15.18.24 TRACE DISPLAY 447
SYSTEM STATUS INFORMATION
ST=(ON,0016K,0016K) AS=ON BR=OFF EX=ON MT=ON,024K
COMPONENT MODE COMPONENT MODE COMPONENT MODE COMPONENT MODE
---------------------------------------------------------------------------------------------------------------------------
SYSSRM MIN SYSGRS ON SYSLF PRE SYLLA MIN

COMPONENT

The component name.

MODE

The current state of the trace.

- ON — trace is on.
- OFF — trace is off.
- MIN — this component has reduced tracing activity to the minimum required to provide serviceability data in a dump.
- PRE — this trace is PRESET. Trace options were established with a TRACE CT specifying a parmlib member containing the PRESET DEFINE option.

Example 2

To display the component trace status of all components.

DISPLAY TRACE,COMP=ALL

The system responds with:

IEE843I 15.18.24 TRACE DISPLAY 450
SYSTEM STATUS INFORMATION
ST=(ON,0016K,0016K) AS=ON BR=OFF EX=ON MT=ON,024K
COMPONENT MODE BUFFER HEAD SUBS
---------------------------------------------------------------------------------------------------------------------------
SYSLF PRE 4M
ASIDS *NOT SUPPORTED* JOBNAME *NOT SUPPORTED* OPTIONS COMPONENT,SPECIFIC,OPTIONS,EXAMPLE WRITER *NOT SUPPORTED*---------------------------------------------------------------------------------------------------------------------------
SYSLA MIN 200K HEAD 20
ASIDS *NOT SUPPORTED* JOBNAME *NOT SUPPORTED* OPTIONS COMPONENT,SPECIFIC,OPTIONS,EXAMPLE
COMPONENT
The component name.

MODE
The current state of the trace.
- **ON** —trace is on.
- **OFF** —trace is off.
- **MIN** —this component has reduced tracing activity to the minimum required to provide serviceability data in a dump.
- **PRE** —this trace is PRESET. Through the PRESET DEFINE option in the parmlib member.

BUFFER
The buffer size, in decimal, established by PRESET DEFINE or by operator command when the component trace was turned on.

ASIDS
Any ASIDs, in hexadecimal, currently in use as a filter for tracing this component.
- **NOT SUPPORTED** indicates that ASIDs cannot be used as a filter for this component.
- **NONE** indicates that ASIDs can act as a tracing filter but none have been specified.

JOBNAMES
Any job names currently in use as a filter for tracing this component.
- **NOT SUPPORTED** indicates that job names cannot be used as a filter for this component.
- **NONE** indicates that job names can act as a tracing filter but none have been specified.

OPTIONS
List of options established when the component trace was turned on.
- **NONE** indicates that options are permitted but none are currently in use.

WRITER
The component trace external writer established when the component trace was turned on or modified.
- **NOT SUPPORTED** indicates that writers cannot be used for this component.

Example 3
To display the status of all component trace external writers, enter:

```bash
DISPLAY TRACE,WTR=ALL
```

The system responds with:

```
IEE8431 15.18.24 TRAC DISPLAY 447
SYSTEM STATUS INFORMATION
ST=(ON,0016K,0016K) AS=ON BR=OFF EX=ON MT=ON,024K
WRITER STATUS HEAD COMPONENT SUBNAME
```
**DISPLAY TRACE Command**

<table>
<thead>
<tr>
<th>Component</th>
<th>Status</th>
<th>Writer Name</th>
<th>Head</th>
<th>Component(s)</th>
<th>Subname</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTRABC</td>
<td>ACTIVE</td>
<td>SYSGRS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WTRDEF</td>
<td>ACTIVE</td>
<td>SYSXCF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WTRXYZ</td>
<td>INACTIVE</td>
<td>HEAD</td>
<td>SYSSMS</td>
<td>The component trace external writer name.</td>
<td></td>
</tr>
<tr>
<td>WRITER</td>
<td>STATUS</td>
<td>The current state of the component trace external writer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>ACTIVE — writer is active and what components are connected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>INACTIVE — writer is inactive and what components are connected to it. When the component trace external writer is started, tracing will begin.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEAD</td>
<td>The specified trace is a HEAD trace, there may be SUB traces implicitly connected through the HEAD trace.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPONENT</td>
<td>The component(s) connected to the specified component trace external writer. Several components can be connected to the same component trace external writer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUBNAME</td>
<td>The specified trace is a SUB trace.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Example 4**

To display the status of 2 sublevels of ‘SAMPLE STEP1.STEP2’, enter:

```
D TRACE,COMP=SAMPLE,SUB=(STEP1),N=2,SUBLEVEL
```

**Example 5**

To display the status of 2 parallel traces of ‘SAMPLE STEPB.STEPC’, enter:

```
D TRACE,COMP=SAMPLE,SUB=(STEPB.STEPC),N=2
```

**Example 6**

To display the status of the transaction trace in a sysplex, enter:

```
D TRACE,TT
```

**Displaying Device Status and Allocation**

Use the DISPLAY U command to help you keep track of the status (that is, the availability for allocation) of the devices attached to the system. This command lets you request the status of:

- All devices
- A specific device type
- Online devices
The DISPLAY U command can also display the job names and ASIDs of device users. Knowing the jobs and ASIDs using a particular device can help you determine if you can or cannot take a particular device offline.

```
D U[,deviceclass][,ONLINE][,[/devnum[,nnnnn]]
 [,OFFLINE][,[/devnum[,nnnnn]]
 [,ALLOC][,[/devnum[,nnnnn]]
 [,AUTOSWITCH|AS][,[/devnum[,nnnnn]][SYS=sysname]
 [,UNAVAILABLE|UNAVAIL][,[/devnum[,nnnnn]]] (See Note)
 [,IPLVOL]
 [,VOL=volser]
 [,L={a|name|name-a}]
```

**Note:** Supply all commas between DISPLAY U and a specified operand. For example, DISPLAY U,,OFFLINE.

To compare this DISPLAY U command with the DEVSERV PATHS command, see "Displaying the Status of Devices and Availability of Paths" on page 1-10.

**U**

The system is to display unit status information about all devices or about specified devices, including non-supported devices (those devices defined in the IODF as DUMMY devices) and channel-to-channel (CTC) links.

**deviceclass**

The device class for which the system is to display unit status information. You can enter any one of the following operands for device type:

- **CTC** — channel-to-channel (CTC) adapters
- **DASD** — direct access storage devices
- **GRAPHIC** — graphic devices
- **TAPE** — magnetic tape units
- **TP** — communication equipment
- **UR** — unit record and dynamic switches
- **ALL** — all above options displayed (equivalent to specifying DISPLAY U)

**ONLINE**

The system is to display information (in message IEE457I) about only those devices of the specified device type that are online. If you do not specify a device type, the system displays information about all online devices.

**OFFLINE**

The system is to display information (in message IEE457I) about only those devices of the specified device type that are offline. If you do not specify a device type, the system displays information about all offline devices.

**ALLOC**

The system is to display allocation information (in message IEE106I) for any
specified device that is allocated. Allocation information includes the jobname
and address space identifier (ASID) of each job to which the device is currently
allocated.

**AUTOSWITCH or AS**
The system is to display information the coupling facility has about one specific
tape device or all tape devices that are defined as automatically switchable.
AUTOSWITCH is valid only for tape devices (that is, for a *deviceclass* of TAPE.)
If you omit *deviceclass*, the system displays information about all automatically
switchable tape devices. If a device is offline to the issuing system, the
information specifies that the device is offline (“OFFLINE” in the STATUS
column) and does not provide any other information about the device.

**UNAVAILABLE or UNAVAIL**
The system is to display information (in message IEE457I) about the OFFLINE
and UNAVAILABLE tape devices. When one or more devices are offline and
unavailable, the UNIT and TYPE are displayed in message IEE457I.
UNAVAILABLE is valid only for tape devices (that is, for a *deviceclass* of TAPE.)
If you omit *deviceclass*, the system displays information about all offline and
unavailable tape devices.

**SYS=sysname**
The system is to display information about the status of automatically
switchable devices on the system named *sysname*.

**IPLVOL**
The system is to display information (in message IEE457I) about the device
from which the system was initially loaded (IPL’ed). For additional IPL
information use the DISPLAY IPLINFO command.

**VOL=volser**
The volume serial of the device for which the system is to display unit status
information in message IEE457I.

**Note:** If you do not specify ONLINE, OFFLINE, or ALLOC, the system displays
status information, without allocation information, about both online and
offline devices.

[/]devnum,nnnnn
The system is to display unit status information about devices starting with
device number *devnum* for *nnnn* number of devices. *devnum* is a 3-digit or
4-digit hexadecimal device number, optionally preceded by a slash (/).

If you omit the device number, the system assumes the starting device number
is X'000'.

If you omit the number of devices and do not specify ALLOC, the system
assumes the number of devices is 16. If you omit the number of devices and
specify ALLOC, the system assumes the number of devices is 8.

The system displays status information for primary paths only.

**L=a, name, or name-a**
Specifies the display area (a), console name (name), or both (name-a) where
the display is to appear.

If you omit this operand, the display is presented in the first available display
area or the message area of the console through which you enter the
command.
Notes:
1. If you specify a device number that was not specified in the IODF during system installation, the display starts with the next higher device number that was specified.
2. For multiple-exposure devices (supported pre-MVS/ESA SP 5.2), the value you specify for devnum must be the same as that specified in the IODF.
3. For parallel access volumes, if you specify an alias device number, the system ignores it and starts with the next device number that is not an alias device number.
4. When the system displays the device type for an MCS or SMCS console as a 3270 model X, HCD identifies it as a 3270 console.
5. For autoswitchable devices, a DISPLAY U command without the AUTOSWITCH parameter may display a volume serial number other than for the currently mounted volume if the device is assigned to a different system. Use the AUTOSWITCH parameter to display up-to-date information for such a device.

Example 1

To list the status of the first ten (if any) direct access devices with device numbers of 400 or higher, enter:
D U,DASD,,400,10

Example 2

To list the users (jobnames and ASIDs) of the first eight allocated devices with device numbers of A250 or higher, enter:
D U,,ALLOC,/A250,8

or
D U,,ALLOC,/A250

Example 3

To list the status of a device specified by the volume serial number D72665, enter:
D U,VOL=D72655

Example 4

To list the status of the automatically switchable tape device with the device number of 270, enter:
D U,,AUTOSWITCH,270,1

Example 5

To list the status of the first 16 automatically switchable tape devices with device numbers of 000 or higher on the system named GRS127, enter:
d U,,AUTOSWITCH,,,SYS=GRS127

Displaying Unicode Services

Use the DISPLAY UNI command to show the status of available conversions and whether the conversion services are already initialized (message CUN3000I).
The syntax for the DISPLAY UNI command is:

```
D UNI{,ENVIRONMENT|ENV
 {,SERVICE|SERV
 {,STORAGE|STOR
 {,CONVERSION|CONV
 {,NORMALIZATION|NORM
 {,COLLATION|COLL
 {,FROMID=ccsid
 {,TOID=ccsid
 {,FROMID=ccsid1,TOID=ccsid2
 {,CASECONV|CASE
 {,STRPROFILE|STRP
 {,ALL|A
 [,L={a|name|name-a}
```

The parameters are:

**ENVIRONMENT or ENV**

Displays three time stamps. The date and time are shown in the format of
--/--/---- and --,--,-- respectively.

The first time stamp shows when the Unicode environment was created; the
second shows when the last change was made with the SET UNI or SETUNI
command; the third shows when the image was created. The third time stamp
shows a value only if there is an image loaded at IPL time or if an image was
added dynamically to an empty Unicode environment. Any subsequent
modification to the Unicode environment or dynamic additions of individual
tables to an empty environment will result in clearing out of the time stamp field.

If all three time stamps are equal and an uni member was specified at IPL time,
no active image can be loaded. In that case, check your system log for Unicode
error messages during IPL. The same case applies to DB2® users using
pre-built DB2 image.

If you specify no parameters for the D UNI command, the default is
ENVIRONMENT.

**SERVICE or SERV**

Lists the available conversion services.

**STORAGE or STOR**

Show information about the storage used by the Unicode Services environment.

**CONVERSION or CONV**

Displays the supported character conversion services.

**NORMALIZATION or NORM**

Displays if normalization service is enabled or disabled. If the service is
enabled, the output includes the normalization versions loaded in the
environment.

**COLLATION or COLL**

Displays if collation service is enabled or disabled. And if the service is enabled,
the output includes the collation versions loaded in the environment.

**FROMID=ccsid**

Displays only the conversions with the specified From-CCSID.

**TOID=ccsid**

Displays only the conversions with the specified To-CCSID.
FROMID=ccsid1,TOID=ccsid2
Displays only the conversions with the specified From-CCSID and To-CCSID.

CASECONV or CASE
Displays the supported case conversion services.

STRPROFILE or STRP
Displays the string preparation profiles loaded in the environment.

ALL or A
Displays the following information:
- Three time stamps for when the environment was created and last modified, and when the active image was modified.
- The names of available services.
- The data space pages currently in use and the page limit.
- The status of available services.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.
If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

Example 1

To list the time stamps of the Unicode environment, enter:
D UNI,ENV

If the system has been IPLed with an image, the system responds:
SY1 CUN3000I 23.30.23 UNI DISPLAY 698
ENVIRONMENT: CREATED 02/28/2006 AT 19.21.14
MODIFIED 02/28/2006 AT 19.36.22
IMAGE CREATED 05/18/2004 AT 13.12.43

Otherwise, the system responds:
SY1 CUN3000I 23.30.23 UNI DISPLAY 698
ENVIRONMENT: CREATED 02/28/2006 AT 19.21.14
MODIFIED 02/28/2006 AT 19.36.22
IMAGE CREATED --/--/---- AT --.--.--

Example 2

To list the conversion loaded in the environment, enter:
D UNI,CONV

The system shows the active conversions:
CUN3000I 00.09.01 UNI DISPLAY 584
CONVERSION: 80037-01200(13488)-R

If no conversion service is available, the system responds:
SY1 CUN3000I 23.51.10 UNI DISPLAY 459
CONVERSION: NO CONVERSIONS FOUND

Example 3

To show the environment, storage status and details of available services, enter:
**DISPLAY UNI Command**

D UNI,ALL

The system responds:

```
CUN3000I 00.10.40 UNI DISPLAY 587
ENVIRONMENT: CREATED 02/28/2006 AT 23.56.52
MODIFIED 03/01/2006 AT 00.08.02
IMAGE CREATED 02/28/2006 AT 23.56.52
SERVICE: CHARACTER CASE NORMALIZATION COLLATION STRINGPREP BIDI
STORAGE: ACTIVE 140 PAGES
FIXED 0 PAGES
LIMIT 524287 PAGES
CASECONV: NORMAL SPECIAL
NORMALIZE: DISABLED
NORM VER: NONE
COLLATE: DISABLED
COLL RULES: NONE
STRPROFILES: NONE
CONVERSION: 00037-01200(13488)-R 00037-01200(13488)-L
```

**Displaying Virtual Storage Information**

Use the DISPLAY VIRTSTOR command to identify the virtual storage configuration. The following information is displayed in message IAR019I:

- If DISPLAY VIRTSTOR,HVSHARE is specified:
  - Source of HVSHARE parameter can be a parmlib member, operator supplied, or the default.
  - The size of the high virtual shared area in gigabytes, in decimal.
  - The range of the high virtual shared area in gigabytes, in decimal.
  - The amount of shared storage allocated into memory objects in megabytes, in decimal.

- If DISPLAY VIRTSTOR,HVCOMMON is specified:
  - Source of HVCOMMON parameter can be a parmlib member, operator supplied, or the default.
  - The size of the 64-bit common area in gigabytes, in decimal.
  - The range of the 64-bit common area in gigabytes, in decimal.
  - The amount of 64-bit common area that is allocated in megabytes, in decimal.

```
D {VIRTSTOR|VS},{HVSHARE|HVCOMMON}
 [,L={a|name|name-a}]
```

**Note:** For the output of the DISPLAY VIRTSTOR command, see the description of message IAR019I. Use LookAt or use the MVS System Messages books.

**Displaying Workload Manager Information**

Use the DISPLAY WLM command to display the following information:

---

4-266  z/OS V1R11.0 MVS System Commands
The name of the active service policy for the sysplex, if there is one. If there is no active service policy, the response indicates that the system is running with the DEFAULT service policy.

The date and time the service policy was activated.

The date and time the service definition was installed.

The status information for a specific application environment or for all application environments.

The status information for a specific scheduling environment on a specific system or on all systems.

The status information for a resource on a specific system or on all systems.

The status of the Application Response Measurement (ARM) services as well as the EWLM platform support.

WLM

If no other parameters are specified, displays the name of the active service policy in effect on all systems in the sysplex, as well as the time and date that the service policy was activated. Also, for systems in the sysplex that are in an exception state, it shows summary information. If coupling facility structures are defined for either multisystem enclaves or for LPAR clustering, the status of those is shown.

SYSTEM=sysname

When used with D WLM, displays the name of the active service policy in effect on the sysname system only, including the time and date that the service policy was activated, when the service definition was installed, and the workload management version level. If coupling facility structures are defined for either multisystem enclaves or for LPAR clustering, the status of those is shown. It also displays the status of the named system in the sysplex (active or otherwise), including the service policy and the workload management mode in effect on the named system.

SYSTEMS

When used with D WLM, displays the name of the active service policy in effect on all systems in the sysplex, the time and date that the service policy was activated, when the service definition was installed, the workload management version level, functionality level, and couple data set format level. If coupling facility structures are defined for either multisystem enclaves or for LPAR clustering, the status of those is shown. Finally, it displays the status of each system in the sysplex (active or otherwise), including the service policy in effect.

If you see a system listed that is not running with the active service policy, either the system does not have connectivity to the WLM couple data set or an attempt to activate the policy on that system failed. If connectivity to the WLM couple data set has been lost (or does not exist), establish the connection. You can use the DISPLAY XCF,COUPLE,TYPE=WLM command to query the status.
DISPLAY WLM Command

of the WLM couple data set. If connectivity to the WLM couple data set is established and the system is still not running with the active service policy, contact the IBM support center.

When you partition a system out of a sysplex, the system may nevertheless remain listed for a period of time, even though it is no longer part of the sysplex. The reason is that workload management retains knowledge of the system for a certain amount of time in case your installation decides to reactivate the system. If the system is not activated within several days, the system is automatically removed from the list of systems.

**APPLENV=applenvname or * **
Displays status information for the specified application environment (applenvname). Specifying APPLENV=* | DYNAPPL=*, the command displays status information for all application environments. The following keywords are valid:

**SNODE=nodename**
When SNODE=nodename is used, DISPLAY WLM,DYNAPPL displays only information for dynamic application environments with the specified nodename.

**SNAME=subsystemname**
When SNAME=subsystemname is used, DISPLAY WLM,DYNAPPL displays only information for dynamic application environments with the specified subsystemname.

**STYPE=subsystemtype**
When STYPE=subsystemtype is used, DISPLAY WLM,DYNAPPL displays only information for dynamic application environments with the specified subsystemtype.

**Note:** The DISPLAY WLM,APPLENV command is processed on the coordinator system, which is determined dynamically and may not be the local system where the command was issued. The command output is routed to the console from which the command has been issued, but the command hardcopy is logged on the system on which the command has been processed. Therefore, the message may not appear in the SYSLOG on the system where the command was entered.

**SCHENV=schenvname**
Displays status information for the specified scheduling environment (schenvname). You can display multiple scheduling environments by using wildcard characters. The multiple-character symbol (*) and the single-character symbol (?) can be used in any position.

**SYSTEM=sysname**
Displays the state of the scheduling environment and the availability of each resource referenced by the scheduling environment on the designated system.

**SYSTEMS**
Displays the state of the scheduling environment on all active systems in the sysplex.

If neither SYSTEM=sysname or SYSTEMS is specified, SYSTEMS is the default.

**RESOURCE=resource name**
Displays status information for the specified resource (resource name). You can
display multiple resources by using wildcard characters. The multiple-character symbol (*) and the single-character symbol (?) can be used in any position.

**SYSTEM=sysname**

Displays the resource status information on the *sysname* system only.

**SYSTEMS**

Displays the resource status information on all active systems in the sysplex.

If neither **SYSTEM=sysname** or **SYSTEMS** is specified, the default is the system on which the command is entered.

**AM**

Displays the current state of the Application Response Measurement (ARM) services and Enterprise Workload Manager™ (EWLM) platform support together with the EWLM policy name and the number of active processes (address spaces) using ARM services.

**ALL**

Displays a list of address spaces that are registered with ARM, together with the registered applications and the started application instances.

**L=a, name, or name-a**

Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.

**Example 1**

To display the name of the active service policy, enter:

D WLM

The system responds with:

IWMO25I 18.58.12 WLM DISPLAY 316
ACTIVE WORKLOAD MANAGEMENT SERVICE POLICY NAME: VICOM1
DESCRIPTION: Weekday policy with ResGrp
RELATED SERVICE DEFINITION NAME: COEFFS
WLM VERSION LEVEL: LEVEL011
WLM FUNCTIONALITY LEVEL: LEVEL011
WLM CDS FORMAT LEVEL: FORMAT 3
STRUCTURE SYSZWLM_WORKUNIT STATUS: CONNECTED
STRUCTURE SYSZWLM_53052064 STATUS: CONNECTED

**Example 2**

To display status information associated with system WLTEAM9, enter:

D WLM,SYSTEM=wlteam9
**DISPLAY WLM Command**

The system responds with:

```
IWM025I 18.57.27 WLM DISPLAY 313
ACTIVE WORKLOAD MANAGEMENT SERVICE POLICY NAME: WEEKDAY
DESCRIPTION: Weekday policy with ResGrp
RELATED SERVICE DEFINITION NAME: COEFFS
WLM VERSION LEVEL: LEVEL01
WLM FUNCTIONALITY LEVEL: LEVEL01
WLM CDS FORMAT LEVEL: FORMAT 3
STRUCTURE SYSZWLM_WORKUNIT STATUS: CONNECTED
STRUCTURE SYSZWLM_53052064 STATUS: CONNECTED

SYSNAME *MODE* *POLICY* *WORKLOAD MANAGEMENT STATUS*
WLTEAM9 GOAL WEEKDAY ACTIVE
```

**Example 3**

To display status information associated with all systems in the sysplex, enter:

```
D WLM,SYSTEMS
```

The system responds with:

```
IWM025I 18.57.27 WLM DISPLAY 313
ACTIVE WORKLOAD MANAGEMENT SERVICE POLICY NAME: WEEKDAY
DESCRIPTION: Default policy with ResGrp
RELATED SERVICE DEFINITION NAME: COEFFS
WLM VERSION LEVEL: LEVEL01
WLM FUNCTIONALITY LEVEL: LEVEL01
WLM CDS FORMAT LEVEL: FORMAT 3
STRUCTURE SYSZWLM_WORKUNIT STATUS: CONNECTED
STRUCTURE SYSZWLM_53052064 STATUS: CONNECTED

SYSNAME *MODE* *POLICY* *WORKLOAD MANAGEMENT STATUS*
WLTEAM9 GOAL WEEKDAY ACTIVE
SYS2 GOAL WEEKDAY ACTIVE
```

**Example 4**

To display the status of the application environment named DB2PAY, enter:

```
D WLM,APPLENV=db2pay
```

The system responds with:

```
IWM029I 18.59.22 WLM DISPLAY 319
APPLICATION ENVIRONMENT NAME STATE STATE DATA
DB2PAY AVAILABLE
ATTRIBUTES: PROC=BR14 SUBSYSTEM TYPE: DDF
```

**Example 5**

To display status of all application environments, enter:

```
D WLM,APPLENV=*
```

The system responds with:

```
IWM029I 19.02.29 WLM DISPLAY 341
APPLICATION ENVIRONMENT NAME STATE STATE DATA
BR14 AVAILABLE
FRESCA AVAILABLE
```
Example 6

To display status of the scheduling environment DB2LATE, enter:

D WLM,SCHENV=DB2LATE

The system responds with:

IWM036I 12.21.05 WLM DISPLAY 181
SCHEDULING ENVIRONMENT: DB2LATE
DESCRIPTION: Offshift DB2 Processing
AVAILABLE ON SYSTEMS: SYS1 SYS3

Example 7

To display status of all scheduling environments in a sysplex beginning with the string 'DB2', enter:

D WLM,SCHENV=DB2*

The system responds with:

IWM036I 12.21.05 WLM DISPLAY 181
SCHEDULING ENVIRONMENT: DB2LATE
DESCRIPTION: Offshift DB2 Processing
AVAILABLE ON SYSTEMS: SYS1 SYS3

SCHEDULING ENVIRONMENT: DB2PRIME
DESCRIPTION: Primetime DB2 Processing
AVAILABLE ON SYSTEMS: SYS2

Example 8

To display system-level status information about the DB2LATE scheduling environment on system SYS1, enter:

D WLM,SCHENV=DB2LATE,SYSTEM=SYS1

The system responds with:

IWM037I 12.21.05 WLM DISPLAY 181
SCHEDULING ENVIRONMENT: DB2LATE
DESCRIPTION: Offshift DB2 Processing
SYSTEM: SYS1
STATUS: AVAILABLE
RESOURCE NAME STATE STATE
DB2A ON ON
PRIMETIME OFF OFF

Example 9

To display status of all resources on all systems in a sysplex, enter:

D WLM,RESOURCE=*,SYSTEMS

The system responds with:
DISPLAY WLM Command

Example 10

To display whether the Application Response Measurement (ARM) services and Enterprise Workload Manager (EWLM) platform services are enabled or disabled, enter:

D WLM,AM

The system responds with:

EWLM ARM SERVICES ARE ENABLED
EWLM POLICY NAME=BOSCH DAYTIME POLICY
NUMBER OF REGISTERED PROCESSES=3, APPLICATIONS=1

To display the list of all ARM instrumented address spaces together with the registered applications and started application instances, enter:

D WLM,AM,ALL

The system responds with:

ADDRESS SPACES CURRENTLY REGISTERED WITH EWLM ARM:

ADDRESS SPACES WITH DISABLED EWLM ARM REGISTRATION:

Displaying Cross System Coupling Facility (XCF) Information

Use the DISPLAY XCF command to display cross system coupling information in the sysplex. The syntax of the DISPLAY XCF command is:
XCF
Displays a summary of the current sysplex.

PATHIN or PI
Displays in message IXC355I the device number of one or more inbound signalling paths that XCF can use and information about inbound XCF signalling paths to this system. The display provides information for only
those devices and structures that are defined to the system where this command is executed. The path summary response identifies each inbound path and, if known, the system name and device address of its associated outbound path. If specified without further qualification, summary information about all inbound XCF signalling paths is displayed. Use of the DEVICE or STRNAME keyword requests that more detailed information be displayed.

If there are no inbound paths to this system, the system displays message IXC355I.

Use, but do not repeat, the following keywords in any combination or order:

**DEVICE=** or **DEV=**
- **DEVICE=ALL** displays in message IXC356I detailed information about all inbound signalling paths currently defined to XCF. If you specify only one device number, you do not need to enter the parentheses. A device number consists of 3 or 4 hexadecimal digits, optionally preceded by a slash (/).

If no paths match, the system displays message IXC355I. If there are no inbound paths to this system, the system displays message IXC355I.

**STRNAME=** or **STRNM=**
- Requests that the system display (message IXC356I) detailed signalling path information for one or more named coupling facility structures. You may specify **ALL** to request information for all coupling facility structures. Wildcard (*) suffixes are allowed.

**SYSNAME=** or **SYSNM=**
- Requests that signalling path information be displayed only for paths connected to one or more named systems.

**STATUS=** or **STAT=**
- Requests that the system display signalling path information for paths or coupling facility structures having at least one of the specified states. **state** specifies the path status of a signalling path or coupling facility structure for which information is requested. You may use any of the following or the indicated abbreviation:

**STARTING** or **START**
- Validating and initializing hardware.

**RESTARTING** or **RESTART**
- Making ready (again) for use.
LINKING or LINK
Establishing communication.

WORKING or WORK
Capable of being used.

QUIESCING
Quiescing the use of.

QUIESCED
Use was quiesced.

REBUILDING
In the process of being rebuilt.

STOPPING or STOP
Stopping use, in the process of being removed from service.

STOPFAILED or STOPF
Stop failed, intervention required.

INOPERATIVE or INOP
Defined, but removed from service.

PATHOUT or PO
Displays in message IXC356I the device number of one or more outbound signalling paths that XCF can use and information about outbound XCF signalling paths to this system. The display provides information for only those devices and structures that are defined to the system where this command is executed. The path summary response identifies each outbound path and, if known, the system name and device address of its associated inbound path. If specified without further qualification, summary information about all outbound XCF signalling paths is displayed. Use of the DEVICE, STRNAME or CLASS keyword requests that detail information be displayed.

If there are no outbound paths to this system, the system displays message IXC356I.

DEVICE= or DEV={([outdevnum],[/outdevnum]...) or ALL}
Displays in message IXC356I detailed information about the devices requested. If you specify DEVICE=ALL, the system provides information on all outbound signalling paths currently defined to XCF. If you specify only one device number, you do not need to enter the parentheses. A device number consists of 3 or 4 hexadecimal digits, optionally preceded by a slash (/).

If no paths match, the system displays message IXC356I. If there are no outbound paths to this system, the system displays message IXC356I.

CLASS={(classname, classname...) or ALL}
Displays (message IXC356I) detailed information about all devices assigned to the requested transport class. If you specify CLASS=ALL, the system provides information on outbound signalling paths for all transport classes. When you specify a classname ending with an *, then all classes beginning with the specified name are displayed. Do not specify an asterisk for the first character of the classname. If you specify only one class, you do not need to enter the parentheses.

If no classes match, or if there are no outbound paths to this system, the system displays message IXC356I.
DISPLAY XCF Command

**STRNAME=** or **STRNM=**strname(s)

“See the STRNAME attribute of the PATHIN keyword” on page 4-274.

**SYSNAME=** or **SYSNM=sysname(s)**

“See the SYSNAME attribute of the PATHIN keyword” on page 4-274.

**STATUS=** or **STAT=stat(s)**

“See the STATUS attribute of the PATHIN keyword” on page 4-274.

**LOCALMSG** or **LM**

Displays (message IXC341I) information about the signalling resources that service local message traffic.

If classes are missing, the system displays message IXC345I.

**CLASS=(classname[, classname]...) or ALL**

Displays (message IXC341I) information for a specific transport class. If you do not specify this option, the system displays information for all transport classes. When you specify a classname ending with an *, then all classes beginning with the specified name are displayed. Do not specify an asterisk for the first character of the classname. If you specify only one class, you do not need to enter the parentheses.

**GROUP** or **GRP**

Displays information about multisystem groups. If you do not provide a qualifying operand, message IXC331I provides a list of all currently defined XCF groups.

If no groups are defined to the sysplex, the system displays message IXC339I.

**groupname**

Displays (message IXC332I) the members of the specified group.

If no groups match, the system displays message IXC340I.

**membername or ALL**

Displays (message IXC333I) detailed information -- the system name, MVS job name, or current status -- about the members of a particular group or all groups. When you specify a membername ending with an *, then all members beginning with the specified name are displayed. Do not specify an asterisk for the first character of the membername.

If no members of a group match, the system displays message IXC326I.

When ALL is specified, detailed information is displayed for all the members of the specified group.

**SYSPLEX** or **S**

Displays (message IXC334I) a list of all systems currently participating in the sysplex.

**systemname or ALL**

Displays (message IXC335I) system status and the last recorded system status monitor time stamp for a system. If ALL is specified for the system name, detailed information for all systems in the sysplex is displayed.

If the system is not defined to the sysplex, the system displays message IXC330I.
COUPLE or CPL
Displays (message IXC357I) information about the couple data set in use by the sysplex. If specified without further qualification, information will be displayed about all couple data sets.

If there is no primary data set defined, the system displays message IXC357I.

TYPE={[(name,[name...]) or ALL]}
Indicates that information about the couple data sets associated with the named (or ALL) data types is to be displayed.

name specifies the name of the service using the couple data set for which information is to be displayed. The name may be up to eight characters long. It may contain characters A-Z and 0-9 and the characters $, @, and #. The name must start with a letter. The supported service names are:
- SYSPLEX for sysplex (XCF) types
- ARM for automatic restart management
- CFRM for coupling facility resource management
- SFM for sysplex failure management
- LOGR for the system logger
- WLM for workload management

CLASSDEF or CD
Displays (message IXC343I) the transport classes that are currently defined to XCF on the system upon which the DISPLAY command is executed. If you do not specify either CLASS or GROUP, an alphabetical summary of all transport classes is provided. The CLASS and GROUP operands are mutually exclusive: specify one or the other.

CLASS={[(classname, classname...) or ALL]}
Displays (message IXC344I) detailed information about the requested transport classes. When you specify a classname ending with an *, then all classes beginning with the specified name are displayed. Do not specify an asterisk for the first character of the classname. Specify CLASS=ALL to request detailed information for all transport classes defined to XCF. If you specify only one class, you do not need to enter the parentheses.

If specified transport classes are not defined to XCF, the system displays message IXC345I.

GROUP= or G=groupname
Displays (message IXC344I) detailed information about the transport classes to which the specific group is assigned. You can obtain information for any valid group name, even a group that is not active in the sysplex. Use UNDESIG to list information for those transport classes to which the undesignated groups have been assigned.

If the specified group is not assigned to any transport class, the system displays message IXC346I.

STRUCTURE or STR
Requests information about the coupling facility structures in the policy. If specified without further qualification, summary information (message IXC359I) will be displayed about all coupling facility structures that are in the policy. Using the STRNAME keyword requests the system to display detail information.

Use, but do not repeat, the following keywords in any combination or order:
DISPLAY XCF Command

STRNAME= or STRNM=strname(s)
Requests that the system display (message IXC360I) detailed information for one or more named coupling facility structures. You may specify ALL to request information for all coupling facility structures. Wildcard (*) suffixes are allowed.

strname specifies the structure name of a coupling facility structure for which information is to be displayed. The structure name can be up to 16 characters long. It may contain numeric characters, upper case alphabetic characters, or the four special characters: $, @, #, _. It must begin with an upper case alphabetic character. Names provided by IBM must begin with SYS, an IBM component prefix, or letters A-I.

CONNAME= or CONNM=conname(s)
Requests that the system display detailed information about one or more connectors to a structure. You may specify ALL to request information for all connectors to the structure.

STATUS= or STAT=state (s)
Requests that the system display only structure information for coupling facility structures having at least one of the specified states. state specifies the status of a coupling facility structure for which information is requested and may be any of the following:

ALLOCATED or ALLOC
Coupling facility structure is allocated in a coupling facility.

NOTALLOCATED or NOTALLOC
Coupling facility structure is not allocated in any coupling facility.

POLICYCHANGE or POLCHG
The activation of a coupling facility resource management policy has caused pending policy changes to some coupling facility structures. The changes are pending the deallocation of the structure in a coupling facility.

DEALLOCPENDING or DEALLOC
A coupling facility structure is pending deallocation because of a loss of connectivity to the coupling facility where the structure is allocated or because of a structure dump table being associated with the structure.

LARGERCFRMDS or LARGER
A coupling facility structure has connections that cannot be represented in the coupling facility resource management couple data set.

REBUILD or RB
A coupling facility structure is in the process of being rebuilt or there is a pending structure rebuild for a rebuild to populate a coupling facility (POPULATECF).

STRDUMP or STRD
A structure dump table is associated with a coupling facility structure.

ALTER
A coupling facility structure is in the process of being altered.

FPCONN
A coupling facility structure has at least one failed-persistent
connector. The system displays all connectors to the structure, including those that are not failed-persistent.

**NOCONN**
A coupling facility structure has no connectors.

**DUPREBUILD**
A coupling facility structure is in the user-managed duplexing rebuild process.

**CF**
Requests information about the coupling facility in the policy. If specified without further qualification, the system displays (message IXC362I) summary information about all coupling facilities that are in the policy.

**CFNAME=** or **CFNM=** \{\{cfname[,cfname...]\} or **ALL**\}
Requests that detailed usage information (message IXC362I) for the named coupling facility be displayed. **ALL** may be specified to request information for all coupling facilities. Generic, or “wildcard”, (*) suffixes are allowed.

\*cfname specifies the name of a coupling facility for which detailed information is to be displayed.

The coupling facility name can be up to 8 characters long. It may contain numeric characters, uppercase alphabetic characters and the special characters $, @, # and underscore (_). It must begin with an uppercase alphabetic character.

**POLICY** or **POL**
Requests information about the policies in use. If specified without further qualification, the system displays (message IXC364I) summary information about all policies that are active.

**TYPE=**\{(\{name[, name...]\} or **ALL**\}
Requests information (message IXC364I) about the policy associated with the named (or **ALL**) services is to be displayed. The named service is one that uses a couple data set to maintain policy data and supports usage of the SETXCF command to control the policy.

\*name specifies the name of a service for which policy information is to be displayed. The name may be up to eight characters long. The valid characters are A-Z and 0-9 and the characters $, @, and #. The name must start with a letter. The supported service names are:

- ARM for automatic restart management
- CFRM for coupling facility resource management
- SFM for sysplex failure management

**PRSMPOLICY** or **PRSMPOL**
Displays (message IXC349I) the name of the parmlib member that contains the current active XCF PR/SM policy.

If there is no XCF PR/SM parmlib member in use, the system displays message IXC348I.

**ARMSTATUS** or **ARMS**
Displays information (through message IXC392I) about active batch jobs and started tasks that are registered as elements of automatic restart management. The element information is grouped by the restart group in which they are defined (based on the current policy). If you specify **ARMSTATUS** without further qualification, summary information about all the active elements will be displayed. You may filter the information by
DISPLAY XCF Command

specifying RESTARTGRP, ELEMENT, JOBNAME, INITSYS, CURRSYS, or STATE. You may specify DETAIL to request more information about the elements. The JOBNAME and ELEMENT parameters are mutually exclusive.

RESTARTGRP= or RG=rgname
Information is displayed only for elements in the specified restart group. The rgname may contain a wildcard character (*) at the end, to request information for a set of restart groups. If you specify RG=* as the only filter for the display command, only summary information is shown for the restart groups.

ELEMENT= or EL=elname
Information is displayed only for the element specified. The elname may contain a generic character (*) at the end, to request information for a set of elements.

ELEMENT may not be specified with JOBNAME.

JOBNAME= or JOB=jobname
Information is displayed only for elements with the specified job name or started task name.

JOBNAME may not be specified with ELEMENT.

INITSYS= initsys
Information is displayed only for elements initially running on the system specified. The initsys may contain a generic character (*) at the end, to request information for a set of systems.

CURRSYS= currsys
Information is displayed only for elements currently running on the system specified. The currsys may contain a generic character (*) at the end, to request information for a set of systems.

STATE= state
Information is displayed only for elements in the states specified.

STARTING or START
The element has initially registered,(has issued the IXCARM macro with the REQUEST=REGISTER parameter) but has not yet indicated it is ready to accept work (has not issued the IXCARM macro with the REQUEST=READY parameter).

AVAILABLE or AVAIL
The element has indicated it is ready to accept work (has issued the IXCARM macro with the REQUEST=READY parameter) or the element exceeded the ready timeout threshold before it issued the IXCARM macro with the REQUEST=READY parameter.

FAILED
The element has ended and a restart has not been initiated by MVS, yet. This condition should apply only for a short amount of time if automatic restart management restarts have been enabled. (This state is not related to the failed state for an XCF member.)

RESTARTING or RESTART
MVS has initiated a restart of this element, but it has not re-registered with automatic restart management (has not issued the IXCARM macro with the REQUEST=REGISTER parameter), yet.
**DISPLAY XCF Command**

**RECOVERING or RECOVER**
The element has been restarted and has re-registered with automatic restart management (has issued the IXCARM macro with the REQUEST=REGISTER parameter), but has not indicated that it is ready to accept work (has not issued the IXCARM macro with the REQUEST=READY parameter), yet.

**DETAIL**
Detailed information is displayed. The scope of this information depends on the other parameters specified.

**L=a, name, or name-a**
Specifies the display area (a), console name (name), or both (name-a) where the display is to appear.

If you omit this operand, the display is presented in the first available display area or the message area of the console through which you enter the command.
DUMP Command

DUMP Command
The DUMP command requests a system dump (SVC dump) of virtual storage. The SVC dump is stored in a direct access data set. The data set may be either a pre-allocated dump data set named SYS1.DUMPxx, or an automatically allocated dump data set named according to an installation-specified pattern.

You should request only one dump at a time on one system. Otherwise, you might have trouble determining the dump request that causes a particular IEE094D message. Also, a system writes only one SVC dump at a time, so it does not save anything to make several requests at once.

Hiperspace™ information is not included in SVC dumps. For more information about hiperspace data in dumps, see z/OS MVS Diagnosis: Tools and Service Aids.

Wildcards
You can use wildcards to identify multiple names. On a reply for a DUMP command, you can specify wildcards in job names, data space names, user IDs, XCF group names, and XCF member names. The parameter descriptions tell you when you can use wildcards. The wildcards are:

<table>
<thead>
<tr>
<th>Wildcard</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Zero or more characters, up to the maximum length of the string. An * can start the string, end it, appear in the middle, or appear in several places in the string. A single * for the name indicates that all job names, data space names, user IDs, XCF group names, or XCF member names will match.</td>
</tr>
<tr>
<td>?</td>
<td>One character. One or more ? can start the string, end it, appear in the middle, or appear in several places in the string. A single ? indicates all names consisting of one character.</td>
</tr>
</tbody>
</table>

Note: You can mix wildcards in any combination.

Examples are:
- *A* specifies all names that contain an A, including the name A.
- *A*B specifies all names that contain an A and ending with a B, with or without any intervening characters.
- ?A? specifies all 3-character names with an A as the second character.
- ?A?B specifies all 4-character names with A as the second character and B as the fourth character.
- ?A* specifies all names of 2 or more characters whose second character is A.

Syntax
The complete syntax for the DUMP command is:

```
DUMP {COMM={title}} [PARMLIB=xx] {title} [PARMLIB=(xx[,xx]...)] {"title"} [SYMDEF=(symdef[,symdef]...)] {TITLE={title}} {"title"} "title"
```
Parameters

\[
\text{COMM} = \{(\text{title})\} \\
\{\"title\}\}
\]

\[
\text{TITLE} = \{(\text{title})\} \\
\{\"title\}\}
\]

The title (1-100 characters) you want the dump to have. This title becomes the first record in the dump data set. COMM and TITLE are synonyms.

**Note:** The system determines the title of a dump as follows:
- A title specified in the DUMP command (for example, DUMP TITLE=\"DUMP Specified via WTOR\") takes precedence over a title specified within a parmlib member.
- When you do not specify a title in the DUMP command, the title specified within a parmlib member takes precedence.
- If you specify titles in multiple parmlib members, the title in the first parmlib member takes precedence. For example, if all of the parmlib members in PARMLIB = (RA,XC,CF) are titled, the dump title is the one specified in the RA parmlib member.
- With no title specified in the DUMP command or parmlib members, the title becomes DUMP FOR PARMLIB=(xx,yy,zz), where xx,yy,zz are the parmlib members.

**PARMLIB=xx | PARMLIB=(xx[,xx]...)**

If the installation has set up DUMP command parmlib members (IEADMCCxx parmlib members), you can avoid having to reply with many dump options by instead specifying the suffixes of one or more IEADMCCxx parmlib members. When you do this, the system concatenates the contents of the IEADMCCxx parmlib members together. If each parmlib member contains a title, the first title in the sequence is used. If specified on the DUMP command, the TITLE= parameter supercedes the titles in the parmlib members.

For example, if parmlib member IEADMCTC represents dump options for a base TCP/IP configuration, and IEADMCTA contains additional dump options to append to the base settings, issuing the command DUMP PARMLIB=(TC,TA) will get you the base options plus the additional options.

If you do not specify the PARMLIB= parameter, the system prompts you with the following message for the dump options you want to specify:

* id IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND

For information on setting up IEADMCCxx parmlib members, and on using the IBM-supplied sample IEADMCCxx parmlib members, see *z/OS MVS Diagnosis: Tools and Service Aids*.

**SYMDEF=(symdef[,symdef]...)**

You may specify one or more symbol definitions for use within dump command parmlib members by specifying the SYMDEF= keyword. symdef should take the form \&symbol.=\'value\'. The value passed within the \&symbol.\'value\' parameter will be parsed as if specified within an IEASYMxx member; symbolic substringing, defining a symbol using a previously defined symbol, and character conventions are recognized, including upper and lower case. For example:

DUMP PARMLIB=xx,SYMDEF=(\&PAGING1.\'AQFT\',\&CICS.\'CICS1\')
DUMP Command

Notes:
1. You can override existing symbols by specifying a double ampersand. If you do not use the double ampersand when specifying an existing symbol, it is ignored and a warning message is issued.
2. When specifying the substitution text, you need to observe the same rules as you define it within the IEASYMxx members. For example, the length of the resolved substitution text cannot exceed the length of &symbol, including the ampersand on &symbol and excluding the single quotation marks on 'value'. In addition, all specified symbols must be unique. Specifying the same symbol for multiple times will result in unexpected behavior.

For more information about the rules of defining symbols, see the IEASYMxx parmlib member in "z/OS MVS Initialization and Tuning" Reference.

The syntax of a DUMP command specified within the IEADMCxx members of Parmlib is identical to that specified on the DUMP command through writes to operator with reply (WTORs).

Specifying Dump Options
You must use the REPLY command to respond to message IEE094D.

The REPLY command syntax for specifying dump options is:

```
R id,U
 or
R id[,ASID=(n[,n]...)][,JOBNAME=(name[,name]...)][,TSONAME=(name[,name]...)]
 [,DSNAME=(dsname-entry[,dsname-entry]...)]
 [,,(PRODESC|PROB|PD)=key-spec][,REMOTE=(request[,request]...)]
 [,SOATA=(option[,option]...)][,STOR=(beg,end[,beg,end]...)]
 [,STRLIST=(s-option[,s-option]...)]
 [,CONT|,END]
```

Notes:
1. When you specify CONT or END, it must be the last parameter on the input line.
2. The CONT keyword does not work within a SYSP= list.
3. When you specify U, it must be the first parameter following the identification number.

Where request represents:

```
{GRPLIST={group(member)
 ((group(member[,member]...)[,group(member[,member]...)]...)}

{SYSLIST={sysinfo=sysinfo[,sysinfo]...}
 [,DSNAME[,DSNAME=(dsname-entry[,dsname-entry]...)]
 [,SDATA[,SDATA=(option[,option]...)]
 [,STOR[,STOR=(beg,end[,beg,end]...)]
```

4-284 z/OS V1R11.0 MVS System Commands
Where s-option represents:

\[
\begin{align*}
\text{STRNAME}= & \text{strname} \\
\text{[,CONNAME}= & \text{conname} \\
\text{[,ACCESSTIME}= & \{\text{ENFORCE}\text{[NOLIMIT]}\text{[NOLIM]}\} \\
\text{[,LOCKENTRIES}= & \text{[\}} \\
\text{[,USERCNTLS}= & \text{[\}} \\
\text{[,EVENTQ}= & \text{[\}} \\
\text{[,\{EMCONTROLS=} & \{\text{ALL}\text{|(list)}\} \\
\text{[\{COCLASS|STGCLASS|LISTNUM=} & \{\text{ALL}\text{|(list)}\} \\
\text{[\{\text{\}}]} \\
\end{align*}
\]

id  The identification number (0-99), as specified in system message IEE094D. The leading zero can be omitted.

U  The dump is to be of the master scheduler address space and include the storage areas defined by the SDATA default options. No other parameters are allowed with this parameter.

\[
\text{ASID}=(n[,]n,\ldots)
\]

\(n\) is the hexadecimal address space identifier of an address space you want to dump. If you specify only one identifier, you do not need to enter the parentheses. The maximum number of address space identifiers (ASIDs) that can be specified is 15. Please refer to the limitation section below.

Address space limitation applying to ASID, JOBNAME, TSONAME, and DSPNAME parameters. A dump request can only handle a maximum of 15 unique ASIDs. The following items are used in the specified order to determine which ASIDs are added:

- MASTER ASID is added first when TYPE=XMEM or TYPE=XMEME is in force (in this case, the operator dump command can only accept 14 other ASIDs as input)
- The address spaces directly requested in the ASID parameter
- The address spaces associated with the jobs named in the JOBNAME parameter
- The address spaces associated with the user IDs in the TSONAME parameter
- The address spaces for the data spaces in the DSPNAME parameter

Each ASID added due to an earlier item reduces the available slots for the next item. Also wildcards used in the JOBNAME, TSONAME, and DSPNAME parameters can result in multiple address spaces being requested.

When the REPLY results in more ASIDs being requested than processing can handle, the system issues message ASA104I. If TYPE=XMEM or TYPE=XMEME is in force, then only the first 14 unique ASIDs will be allowed. Otherwise, 15 ASIDs are allowed. Regardless, the dump is taken with the truncated list of ASIDs as shown on the resultant IEA911E or IEA611I message.

\[
\text{JOBNAME}=(name[,name],\ldots)
\]

name identifies a background job whose address space you want to dump. If
you specify only one name, you do not need to enter the parentheses. You can specify a maximum of 15 job names. See the ASID parameter for the actual limit on address spaces that can be specified.

You can specify each name explicitly or with wildcards. See "Wildcards" on page 4-282.

TSONAME=(name[,name]...)
name is the name of any address space you want to dump, including the user identifier (ID) of a TSO user. If you specify only one name, you do not need to enter the parentheses. You can specify a maximum of 15 names. See the ASID parameter for the actual limit on address spaces that can be specified.

You can specify the name explicitly or with wildcards. See "Wildcards" on page 4-282.

Notes:
1. If you do not specify ASID, JOBNAME, or TSONAME, the master scheduler address space is dumped.
2. Dumping several large address spaces such as the VTAM, master scheduler, and job entry subsystem address spaces or large system areas such as the CSA and SQA degrades performance of the system significantly. Dump only the address spaces that are likely to be involved in a problem. For example, if a TSO terminal in OPERATOR mode is having a problem, dump only the TSO user’s address space and the TCAM or VTAM address space.

DSPNAME=(dspname-entry[,dspname-entry]...)
Specifies the data spaces to be dumped. The form of a dspname-entry is:

asid.name
jobname'.name.

You can mix the two forms.

asid
is the explicit hexadecimal address space identifier of the owner of the data space you want to dump.

Note: When a data space is owned by an address space not included in the dump, the ASID of that address space is added to the dump. While up to 15 unique ASIDs and/or JOBNAMEs may be specified for the limit of 256 address spaces, refer to the ASID parameter of the DUMP command for the actual limit on the number of unique ASIDs that can be specified for DSPNAME. The address space limitation may prevent specifying the maximum number of data spaces.

jobname
is the name of the job associated with the data space you want to dump. The jobname must be enclosed in single quotation marks; see the CONT parameter for special handling details. You can specify jobname explicitly or with wildcards. See "Wildcards" on page 4-282.

name
is the 1 to 8 character name associated with the data space at its creation. You can specify the data space name explicitly or with wildcards. See "Wildcards" on page 4-282.
If you specify to dump only one data space, represented by **dspname-entry**, you do not need to enter the parentheses. You can dump a maximum of 256 data spaces. If you enter a larger number, the system will dump only 256 data spaces.

**PROBDESC or PROB or PD = key-spec**

Provides problem information that is passed to any SVC dump, but is intended for dumps requested by the **REMOTE** parameter. When a system requests a dump on another system in the sysplex, the system being dumped calls an **IEASDUMP.QUERY** routine. The routine uses the information to determine if its system should be dumped and, if so, what storage areas should be added to the dump; the **IEASDUMP.QUERY** routine suppresses the requested dump only if **PROBDESC** specifies **SYSDCOND**.

**key-spec** is either of the following:

- **key**
  - (**key-value**, **key-value**)...

**key-value** is either of the following:

- **key**
  - (**key**, **data**)

You can mix the two forms. You can specify a maximum of 16 **key-value** forms.

**key**

Is a 1- to 8-character value that corresponds to the **SDPD_KLD_KEY** field in the **IHASDPD** mapping macro. The key must not begin with A through I or SYS; these are reserved for IBM use. IBM-supplied values for **key** are:

- **SYSDCOND**: Suppresses a dump on another system in a sysplex if the other system does not have an **IEASDUMP.QUERY** routine or if no **IEASDUMP.QUERY** routine returns a code of 0.
- **SYSDLOCL**: Requests the following:
  - Dumps of other systems in a sysplex.
  - An immediate dump of the local system, on which you are entering the **DUMP** command.
  - A second, deferred dump of the local system, if a **SYSLIST** or **GRPLIST** option of the **REMOTE** parameter includes the local system. The deferred dump contains areas added by **IEASDUMP.QUERY**, **IEASDUMP.GLOBAL**, and **IEASDUMP.LOCAL** exit routines, if any routines had been associated with those exits.
- **SYSDNGRP**: Causes the **IEASDUMP.QUERY** routine to receive control without the implicit address spaces specified with the **SYSLIST** or **GRPLIST** option of the **REMOTE** parameter. This allows the **IEASDUMP.QUERY** routine to control which address spaces should be dumped.

No data is specified with the IBM-supplied keys.

**data**

Is 1 to 16 characters of information to be used by the **IEASDUMP.QUERY** routine. If a **data** value is not provided, the system passes 16 blanks to the **IEASDUMP.QUERY** routine. If the value is shorter than 16 characters, the system pads it on the right with blanks to the length of 16.

For dumps on other systems in a sysplex initiated by the **DUMP** command, the other systems will not invoke **IEASDUMP.QUERY** routines unless the **DUMP** command contains a **PROBDESC** parameter.
DUMP Command


**REMOTE=(request[,request][,...])**

Specifies a dump on one or more systems in the sysplex. Each request consists of a GRPLIST or SYSLIST option to identify the system or systems, optionally followed by DSPNAME, SDATA, and STOR options to specify attributes for the requested dump or dumps. GRPLIST and SYSLIST options can appear more than once in the REMOTE parameter; each DSPNAME, SDATA, or STOR option applies to the preceding GRPLIST or SYSLIST option.

If the reply specifies a key of SYSDLOCL in the PROBDESC parameter and the GRPLIST or SYSLIST option includes the local system on which you are entering the DUMP command, the local system is dumped twice: the immediate dump is for the DUMP command and the deferred dump is for the REMOTE parameter. If the reply does not specify a key of SYSDLOCL, the REMOTE parameter does not apply to the local system; only the immediate dump is written.

**Note:** A dump requested through the REMOTE parameter may not be written. The reasons for dump suppression are listed in [z/OS MVS Diagnosis: Tools and Service Aids].

If the GRPLIST and SYSLIST options specify the same system more than once, only one dump is written combining all of the options.

If the reply specifies REMOTE and the other parameters do not indicate the areas to be dumped on the local system, the immediate dump of the local system is of the master scheduler address space.

The request subparameters and values follow:

**GRPLIST={group(member)}**

Specifies one or more systems by the XCF group and member names. You can specify the group and member explicitly or with wildcards. See "Wildcards" on page 4-282.

**SYSLIST={sysinfo}**

Specifies one or more systems and, optionally, address spaces and jobnames to be dumped on those systems. The sysinfo consists of:

**sysname**

Specifies the name of the system to be dumped.

If SYSLIST does not specify any address spaces or job names, the dumping services address space (DUMPSRV) is dumped.

**sysname(space-id[space-id][,...])**

Specifies the name of the system and its address spaces or jobs to be dumped. space-id is of the form:

**(asid)**

Specifies the identifier of the address space.

**(jobname)**

Specifies the name of the job to be dumped.
The asids and job names can be in any order; each job name must be enclosed in single quotation marks.

You can specify the `sysname` and `jobname` explicitly or with wildcards. See "Wildcards" on page 4-282.

See the ASID parameter for the limit on address spaces that can be specified for each of the dumps.

**DSPNAME**

Specifies for the dumps on other systems the same data spaces specified for the local SVC dump.

**DSPNAME=(dspname-entry[, dspname-entry]...)**

Specifies the data spaces to be dumped on the other systems. See the "DSPNAME parameter" on page 4-286 for the DSPNAME values.

**Note:** If DSPNAME is not specified for the other systems, data spaces are not dumped.

**SDATA**

Specifies for the dumps on other systems the same SDATA options specified or defaulted for the local SVC dump.

**SDATA=(option[, option]...)**

Specifies the specific storage areas you want to dump on the other systems. See the "SDATA parameter" for the valid options and their definitions.

**Note:** If SDATA is not specified in the REMOTE parameter, each system uses the SDATA options that apply to any SVC dump on that system. The contents of a dump on each system are affected by CHNGDUMP commands previously entered on the system.

**STOR**

Specifies for the dumps on other systems the same ranges of virtual storage specified for the local SVC dump.

**STOR=(beg,end[,beg,end]...)**

Specifies the ranges of virtual storage you want to dump on the other systems. See the "STOR parameter" on page 4-290 for the STOR values.

**Note:** If STOR is not specified for the other systems, ranges of virtual storage are not dumped.

**SDATA=(option[, option]...)**

Specifies the specific storage areas you want to dump. The valid options and their definitions are:

- **ALLNUC** All of the DAT-on nucleus, including page-protected areas, and all of the DAT-off nucleus.
- **COUPLE** XCF related information in the sysplex.
- **CSA** Common service area.
- **GRSQ** Global resource serialization (ENQ/DEQ/RESERVE) queues. Note that the GRS information collection is related to the GRSCNFxx GRSQ(xx) option setting.
LPA Link pack area modules for the dumping task.
LSQA Local system queue area.
NUC Non-page-protected areas of the DAT-on nucleus.
PSA Prefixed storage area for all processors. (Equivalent to the ALLPSA option on the SDUMPC macro.)
NOPSA No prefixed storage area. (Equivalent to the NOALLPSA option on the SDUMPC macro.)
RGN Private area of address space being dumped, including LSQA and SWA.
SERVERS Requests that the registered IEASDUMP.SERVER dynamic exits receive control.
SQA System queue area.
NOSQA No system queue area.
SUM Summary dump.
NOSUM No summary dump.
SWA Scheduler work area.
TRT GTF, system trace, master trace, and NIP hard-copy buffer data.
WLM Workload management related data areas and storage.
XESDATA coupling facility-related information.

If you do not specify SDATA, or if you specify SDATA with no options, the system uses these SDUMPX macro options: ALLPSA, SQA, SUM, and IO. Also, SDATA=SERVERS is always used for operator dumps.

STOR=(beg,end[,beg,end]...) Specifies the ranges of virtual storage you want to dump. You can specify the beginning and ending addresses of each range as 4-byte hexadecimal numbers, such as 010BA040, or 7-digit decimal numbers followed by a K, such as 0050860K.

STRLIST= or STL=(STRNAME=strname...) Used to include in the dump a list of coupling facility structures. Cache and list structures can be dumped; lock structures cannot be dumped. Following are the structure-related keywords:

STRNAME= or STRNM=strname Designates a particular coupling facility list or cache structure. strname is the name of the coupling facility structure to be included in the dump. Any dump options for this structure are replaced when you issue this command. If strname does not begin with a letter or is longer than 16 characters the system issues syntax error message IEE866I. You may include more than one STRNAME=strname within the parentheses, separated by commas.

CONNAME= or CONNM=conname When specified for a coupling facility cache structure, requests the user registry information for this user be included in the dump. conname is the name of a connected user. If the connected user represented by the conname does not exist, the dump will not contain user registry information.

ACCESSTIME= or ACC={ENFORCE or ENF or NOLIMIT or NOLIM} Indicates whether the dump time limit specified on the ACCE
parameter of the IXLCONN macro is in effect. When ACCESSTIME=ENFORCE is specified, the system holds structure dump serialization no longer than the time interval specified on the IXLCONN macro. This is the default. If ACCESSTIME=0 is specified on the IXLCONN macro and ACCESSTIME=ENFORCE is specified on the dump request, the structure will not be included in the dump.

When ACCESSTIME=NOLIMIT is specified, the dump time limit is not in effect and the system will hold structure dump serialization until processing is completed.

**LOCKENTRIES or LOCKE**
When specified for a coupling facility list structure, the system includes in the dump the lock table entries for the requested structure. Since lock table entries do not exist for coupling facility cache structures, this keyword is ignored when specified for a coupling facility cache structure.

**USERCNTLS or UC**
Requests that the user attach controls be included in the dump.

**EVENTQS or EQS**
Requests that the event queues be included in the dump.

*(list)*
Represents a list of values, ranges of values, or values and ranges of values.

*(start1-end1,value2,start3-end3,...)*

**EMCONTROLS= or EMC=ALL or (list)**
Specifies which event monitor controls are included in the dump.

EMCONTROLS is valid only for a coupling facility list structure. If specified for a coupling facility cache structure, the structure is not included in the dump.

When EMCONTROLS=ALL is specified, the event monitor controls associated with all lists in the structure are dumped.

When EMCONTROLS=*(list)* is specified, the event monitor controls associated with the specified list number are included in the dump. The values specified for *(list)* are the decimal list values, 0 – 4294967295. When event monitor controls for a requested list do not exist, they are not dumped and no error results.

**COCLASS= or COC=ALL or (list)**
Specifies which cast-out classes are included in the dump. For each cast-out class, the cast-out class controls are dumped and the directory information for each of the entries within the requested cast-out classes are dumped (if SUMMARY is not specified).

COCLASS is valid only for a coupling facility cache structure. If specified for a coupling facility list structure, the structure is not included in the dump.

When COCLASS=ALL is specified, the cast-out class controls for all cast-out classes are dumped along with the directory information for all entries within the classes (if SUMMARY is not specified).

When COCLASS=*(list)* is specified, the cast-out class controls for *(list)* are dumped along with the directory information for the entries in the requested cast-out classes (if SUMMARY is not specified). The values specified in a range are the decimal cast-out class values in the range 0 – 65535. When a requested class does not exist, it is not dumped.
**DUMP Command**

**STGCLASS= or SC=ALL or (list)**
Specifies which storage classes are included in the dump. For each storage class, the storage class controls are dumped and the directory information for each of the entries within the requested storage classes are dumped (if SUMMARY was not specified).

STGCLASS is valid only for a coupling facility cache structure. If specified for a coupling facility list structure, the structure will not be included in the dump.

When STGCLASS=ALL is specified, the storage class controls for all storage classes are dumped along with the directory information for all entries within the classes (if SUMMARY is not specified).

When STGCLASS=(list) is specified, the storage class controls for (list) are dumped along with the directory information for the entries in the requested storage classes (if SUMMARY is not specified). The values specified are the decimal storage class values, 0 – 255. When a requested class does not exist, it is not dumped.

**LISTNUM= or LNUM=ALL or (list)**
Specifies which lists are included in the dump. The list controls are dumped along with the entry controls for the entries on each requested list (if SUMMARY is not specified).

LISTNUM is only valid for a coupling facility list structure. If specified for a coupling facility cache structure, the structure is not included in the dump.

When LISTNUM=ALL is specified, the list controls for all lists in the coupling facility list structure are dumped along with the entry controls (if SUMMARY is not specified).

When LISTNUM=(list) is specified, the list controls for (list) are included in the dump along with the entry controls for those lists. The values specified are the decimal list values, 0 – 4294967295. The system ignores a zero in the case of LISTNUM. No error results. When a requested list does not exist, it is not dumped.

You may use the following keyword to further modify the STGCLASS, COCLASS and LISTNUM keywords:

**ADJUNCT= or ADJ={CAPTURE or CAP or DIRECTIO or DIO}**
Indicates that the adjunct data for each entry specified by the range is included in the dump. When this keyword is not specified or when adjunct data does not exist for this structure, the adjunct data is not included in the dump.

ADJUNCT may not be specified with SUMMARY. If they are both specified, a syntax error is issued.

When ADJUNCT=CAPTURE is specified, the adjunct data is captured in the facility dump space along with the directory information while dumping serialization is held.

When ADJUNCT=DIRECTIO is specified, the adjunct data is written directly to the dump data set after the directory information is captured. The adjunct data is not captured in the structure dump table. The adjunct data may be changing as dumping proceeds.

**ENTRYDATA= or EDATA={UNSERIALIZE or UNSER or SERIALIZE or SER}**
Indicates that the entry data for each entry within the requested range is
included in the dump. When this keyword is not specified or when entry
data does not exist for the structure, entry data is not included in the dump.

ENTRYDATA may not be specified with SUMMARY. If they are both
specified, a syntax error is issued.

When ENTRYDATA=UNSERIALIZE is specified, the entry data is dumped
after structure dump serialization is released. The entry data may be
changing relative to the entry controls that were captured while structure
dump serialization was held.

When ENTRYDATA=SERIALIZE is specified, the entry data is dumped
while serialization is held. If ACCESSTIME=ENFORCE is specified and the
dump time limit expires before the entry data is written to the dump data
set, the system continues to write the entry data to the dump data set even
though serialization is not held.

**SUMMARY or SUM**
Indicates that a summary of the range of classes or lists is dumped. The
directory information for the entries is excluded from the dump.

SUMMARY may not be specified with ADJUNCT or ENTRYDATA. If it
specified with either of these keywords, a syntax error is issued.

Notes:
1. A syntax error is issued if STRNAME is not the first keyword.
2. If CONNAME and ACCESSTIME are specified more than one time for a
structure, the first CONNAME and the last ACCESSTIME are used.
3. When a list number, event monitor controls, a storage class, a cast-out
class, or an entry is specified in the STRLIST more than once, it will be
dumped more than once. An example of this is when STGCLASS=ALL is
specified with COCLASS=ALL. All entries in the coupling facility cache
structure are dumped twice. Once grouped by storage class and again
grouped by cast-out class.
4. When neither LISTNUM, STGCLASS, EMCONTROLS, or COCLASS is
specified, no list or class controls are dumped and no entries are dumped.
5. If a large amount of data is requested to be dumped, the system may not
be able to completely dump all the data. You can expect to successfully
dump up to a maximum of 47 structures if you specify no more than a total
or six ranges. If you must specify more than six ranges, you must specify
fewer structures. For each structure less than 47 that you specify, you can
specify another 10 ranges, as follows:

<table>
<thead>
<tr>
<th>Number of Structures</th>
<th>Number of Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>6</td>
</tr>
<tr>
<td>46</td>
<td>16</td>
</tr>
<tr>
<td>45</td>
<td>26</td>
</tr>
<tr>
<td>44</td>
<td>36</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

If the system cannot dump all the data you requested, it prioritizes the data
according to your specifications on the command in the following manner:

a. The system will attempt to dump the first requested structure first.
   1) Within that structure, the system processes the LOCKENTRIES,
      EVENTQS, EMCONTROLS, USERCNTLS, COCLASS, STGCLASS,
and LISTNUM parameters in the order that they are specified. COCLASS, STGCLASS, EMCONTROLS, and LISTNUM may be specified more than once for a single structure.

2) The system dumps requested serialized data before requested unserialized data starting with the first requested data in the structure and proceeding through the last data that was requested as serialized.

b. The system then dumps the next-requested structure data starting with the first requested data in the structure and proceeding through the last data that was requested as serialized.

c. The system continues in this manner until all serialized data in all requested structures has been prioritized for dumping.

d. The system then dumps any remaining data that was requested as unserialized that may not have been dumped beginning with the first-requested structure.

6. The CONT parameter allows the operator to provide input to the CHNGDUMP command that spans more than one line of input. You can specify the CONT parameter after any comma within the STRLIST parameter list. If a line of input ends with a comma and any closing parentheses are missing, the system assumes the CONT parameter.

CONT

Specifies that you want to continue the reply on another line. The system reissues message IEE094D in response to this parameter, after which you can continue your reply. All parameters can appear on a continuation line.
On a continuation line, you can continue values for any parameter. In a
parenthesized expression in the parameters, as you reach the end of a line,
add the comma after a value and press ENTER, without typing CONT. The
system will issue message IEE094D. In response, continue with the next value
in the expression. For example:

R 17,JOBNAME=(PQRJOB07,QRSJOB08),REMOTE=(SYSLIST=(S1)),JOBNAME=(PQRJOB07, * 18 IEE094D ...
R 18, QRSJOB08), END

If you reach the end of a line with a keyword, a syntax error occurs; for
example:

JOBNAME=

If you reach the end of a line with a value that is not in parentheses, the system
considers the reply ended; for example:

JOBNAME=PQRJOB07

If a reply begins with a single quotation mark, double all single quotation marks
in the line and enclose the line with quotation marks. For example, a jobname
in the DSPNAME parameter must be enclosed in quotation marks. If the first
line is:

R 1,DSPNAME=('job1'.dsp1,
Then the second line is:
R 2,'''job2'''.dsp2, ...)'

To avoid this problem, do not end the R 1 line with a comma, but instead begin
the R 2 line with the comma:
R 1,DSPNAME=('job1'.dsp1
R 2,''job2''.dsp2, ...)

END

Identifies the end of your reply. You need to specify END only when the reply
line contains no other parameters. If you do not specify any parameters in the
reply other than CONT and END, the system dumps the master address space
with the SDATA default options.

Example 1

To dump the virtual address space for the job named PAYROLL, including the
private area, the non-page-protected areas of the DAT-on nucleus, the GTF, system
trace, and master trace data, the contents of storage locations 010CD450 to
010FF400, and the contents of storage locations 0000012K to 0000060K, you can
enter:

DUMP COMM=(DUMP FOR PAYROLL)

In response to this command, the system issues:

* id IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND

Reply as follows:
R id,JOBNAME=PAYROLL,SDATA=(NUC, RGN, TRT), STOR=(010CD450, 010FF400, 0000012K, 0000060K)

Because you did not specify CONT at the end of this reply, the system considers
your dump request complete.

Example 2
DUMP Command

To dump the private storage for ASIDs 6, 1, 2, 3, B, and C, so you can solve a problem loop in ASID 6, you can enter:

DUMP COMM=(LOOP IN ASID 6)

In response to this command, the system issues:

*i* id IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND

If you are sure of the address space you want to dump, but are not yet sure of the storage areas you need to find the problem, you can enter:

R id,ASID=(6,1,2,3,B,C),CONT

Because you specified CONT, the system reissues:

*i* id IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND

Now, if you decide you need to see only the private areas (including the LSQA and SWA) for the address spaces you are dumping, you can enter:

R id,SDATA=(RGN)

Because you did not specify CONT at the end of this reply, the system considers your dump request complete.

Example 3

To dump the default storage areas of the TSO address spaces TERMINAL and CONSOLE so you can help a user stuck in a loop, you can enter:

DUMP COMM=(TSO USER TERMINAL IN LOOP)

In response to this command, the system issues:

*i* id IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND

If you think the default storage areas might not be enough to find the loop but you are sure that TERMINAL and CONSOLE are the address spaces you want, you can enter, for now:

R id,TSONAME=(TERMINAL,CONSOLE),CONT

Because you specified CONT, the system reissues:

*i* id IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND

Now, if you decide that the default storage areas are really all you need to see, you can complete the dump request as follows:

R id,END

Example 4

Request a dump of two structures named CACHESTRUCTURE and LISTSTRUCTURE.

Enter: DUMP COMM=(Dump of CACHESTRUCTURE and LISTSTRUCTURE)

See: * id IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND

Enter: R id,STRLIST=(STRNAME=CACHESTRUCTURE,USERCNTLS,(STGCLASS=ALL), STRNAME=LISTSTRUCTURE,LOCKENTRIES,(LISTNUM=ALL))

This dump will include:

- Structure control data for CACHESTRUCTURE
Example 5

Request a dump of LISTSTRUCTURE
Enter: DUMP COMM=(LISTSTRUCTURE, PRIORITIZE OPTIONS)
See: * id IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
Enter: R id,STRLIST=(STRNAME=LISTSTRUCTURE,(LISTNUM=(5-8),SUMMARY),LOCKENTRIES,CONT)
See: * id IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
Enter: R id,(LISTNUM=1,ADJUNCT=CAPTURE,ENTRYDATA=UNSERIALIZE))

This dump will include:
• Structure control data for LISTSTRUCTURE
• List control data for lists 5-8 (but no directory information for the entries)
• All lock table entries for LISTSTRUCTURE
• List entry controls, adjunct data and entry data for all entries in list 1. The adjunct data was captured with the list entry controls. The entry data may have changed relative to the adjunct data or entry controls that were captured while the system held structure dump serialization.

Example 6

Request a dump of CACHESTRUCTURE
Enter: DUMP COMM=(CACHESTRUCTURE, GROUP ENTRIES)
See: * id IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
Enter: R x,STRLIST=(STRNAME=CACHESTRUCTURE,CONNAME=USER,ACCESSTIME=OVERRIDE,CONT)
See: * id IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
Enter: R x,(STGCLASS=(3-8,10),ENTRYDATA=SERIALIZE),(COCLASS=ALL))

This dump will include:
• Structure control data for CACHESTRUCTURE
• Directory information and entry data for all entries in storage classes 3-8 and 10. The entry data is written to the dump data set while structure dump serialization remains held. The entry data is unchanged relative to the captured adjunct or entry control information.
• Directory information for all entries grouped by cast-out class. The changed entries in storage classes 3-8 and 10 are dumped twice.
• The local cache index pertaining to USER is also dumped with each entry (and is dumped again with the changed entries in storage classes 3-8 and 10).

Example 7

The REMOTE parameter specifies a dump on another system in the sysplex, system S1; the SDATA parameter specifies the same SDATA options used for the
local system’s dump. The REMOTE parameter also specifies dumps on all the members of XCF groups G1 and G2; the DSPNAME parameter specifies the DSPNAME values specified for the local system’s dump.

DUMP COMM=(REMOTE DUMP)
  * 5,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
  R 5,SDATA=(COUPLE),DSPNAME='XCFAS'.*,CONT
  * 6,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
  R 6,REMOTE=(SYSLIST=(S1),SDATA,
  * 7,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
  R 7,GRPLIST=(G1(*),G2(*)),DSPNAME)

You need CONT in R 5 because you are at the end of a parameter at the end of the line. You do not need CONT in R 6 because the end of the line is within the parentheses; the system prompts for a reply to complete the parenthetical value.

Example 8

The REMOTE parameter specifies dumps on S1 and all systems with names matching S2*. On these systems, the dumps are to include a data space with a name matching MYDS* for a job matching J* and a data space named THATDS for address space 01.

DUMP COMM=(REMOTE DUMP)
  * 6,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
  R 6,REMOTE=(SYSLIST=(S1,S2*),DSPNAME=('J*'.MYDS*,01.THATDS))

Example 9

The REMOTE parameter specifies dumps on members M1 and M2 of XCF group G1, with the SQA included in the dumps.

DUMP COMM=(REMOTE DUMP)
  * 7,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
  R 7,REMOTE=(GRPLIST=G1(M1,M2),SDATA=(SQA))

Example 10

Request a dump of jobname MYJOB on all systems in a sysplex, including the local system. JOBNAME=MYJOB requests the dump for the local system; the REMOTE parameter with SYSLIST=('MYJOB') requests the dump on all remote systems. Note that when specifying the jobname on the SYSLIST parameter, you must place the jobname in single quotation marks ('MYJOB'), and there is no comma between the asterisk and ('MYJOB').

DUMP COMM=(MYJOB DUMP)
  * 8,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
  R 8,JOBNAME=MYJOB,REMOTE=(SYSLIST=('MYJOB'))

Example 11

Request a dump of all jobs whose names begin with IRLM, on all systems in a sysplex, including the local system. You might have IRLMA, IRLMB, IRLMC, and so on.

DUMP COMM=(IRLM DUMP)
  * 9,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
  R 9,JOBNAME=IRLM*,REMOTE=(SYSLIST=('IRLM*'))

Example 12
Request a dump of all jobs whose names begin with IRLM, on all systems in a sysplex, including the local system. These jobs are the members of an XCF group called GRP1.

```
DUMP COMM=(IRLM DUMP)
* 10,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
R 10,JOBNAME=IRLM*,REMOTE=(GRPLIST=GRP1(*))
```

**Example 13**

Request a dump of all jobs that are members of an XCF group called GRP1, on all systems in a sysplex, including the local system. The jobnames begin with IRLM. Other XCF groups also exist, and contain members whose jobnames also begin with IRLM. You only want the members of GRP1 to be dumped. Note that the PROBDESC=SYSDLOCL parameter causes 2 dumps to be written for the local system: the master scheduler address space, and the address spaces for GRP1.

```
DUMP COMM=(IRLM GRP1 DUMP)
* 11,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
R 11,PROBDESC=SYSDLOCL,REMOTE=(GRPLIST=GRP1(*))
```

**Example 14**

Request a dump of `jobname1`, `jobname2`, and `jobname3` on all systems in a sysplex, including the local system.

```
DUMP COMM=(DUMP OF JOBNAMES 1, 2, AND 3)
* 12,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
R 12,JOBNAMES=(jobname1,jobname2,jobname3),CONT
* 13,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
R 13,REMOTE=(SYSLIST=(*('jobname1','jobname2','jobname3')))n
```

**Example 15**

Request a dump of jobname J on all systems in the sysplex except the local system.

```
DUMP COMM=(JOBNAME J DUMP)
* 14,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
R 14,REMOTE=(SYSLIST=('J'))
```

**Example 16**

Request a dump of jobname J on systems named S1 and S2 in a sysplex.

```
DUMP COMM=(DUMP OF JOBNAME J ON S1 & S2)
* 15,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
R 15,REMOTE=(SYSLIST=(S1('J'),S2('J')))n
```

**Example 17**

Request a dump of jobnames J and Q on all systems in a sysplex, including the local system.

```
DUMP COMM=(JOBNAMES J & Q DUMP)
* 16,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
R 16,JOBNAMES=(J,Q),REMOTE=(SYSLIST=('J','Q'))
```

**Example 18**

Request a dump of jobname J on all systems in a sysplex, including the local system, and jobname Q only on system S2.
DUMP Command

DUMP COMM=(JOBNAME J ALL & Q S2 DUMP)
* 17,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
R 17,JOBNAME=J,REMOTE=(SYSLIST=*,SYSLIST=S2('Q'))

Example 19

Request a dump of the following:
- XCF-related information from all systems in a sysplex including the local system
- All data spaces owned by jobs named MYJOB on all systems in a sysplex, including the local system.

Note that SDATA=(COUPLE) requests the XCF information for the local system. Specifying SDATA on the REMOTE parameter requests the same SDATA option for the remote systems as that used for the local system's dump.

DSPNAME=('MYJOB'.*) requests all data spaces belonging to jobs named MYJOB on the local system (note that while parentheses are included, they are optional, because you are specifying only one dspname-entry). Specifying DSPNAME on the REMOTE parameter requests the same DSPNAME option for the remote systems as that used for the local system's dump.

DUMP COMM=(XCF & MYJOB DUMP)
* 18,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
R 18,SDATA=(COUPLE),DSPNAME=('MYJOB'.*),CONT
* 19,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
R 19,REMOTE=(SYSLIST=*,SDATA,DSPNAME)

Example 20

Request dumps of the following in a sysplex:
- On the local system, dump the XCF and common service area information.
- On the local system, dump data space DSP1 owned by MYJOB.
- On all remote systems, dump the XCF, common service area, and workload manager information.
- On all remote systems, dump all data spaces owned by MYJOB.

DUMP COMM=(VARIOUS DUMP`S)
* 20,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
R 20,SDATA=(COUPLE,CSA),DSPNAME=('MYJOB'.DSP1),CONT
* 21,IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
R 21,REMOTE=(SYSLIST=*,SDATA=(COUPLE,CSA,WLM),DSPNAME=('MYJOB'.*))

DUMP Command Parmlib Examples

See z/OS MVS Initialization and Tuning Reference for examples of using the DUMP command with the IEADMCxx parmlib member.
DUMPDS Command

DUMPDS Command

Use the DUMPDS command to:
• Change the system's list of dump data sets and resources
• Clear full SYS1.DUMP data sets and make them available for dumps
• Set up and alter the configuration of automatic dump data set allocation

Table 4-17. Summary of the DUMPDS Command

<table>
<thead>
<tr>
<th>Command:</th>
<th>Topic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUMPDS ADD</td>
<td>&quot;Adding System Dump Resources&quot; on page 4-302</td>
</tr>
<tr>
<td>DUMPDS ALLOC</td>
<td>&quot;Enabling and Disabling Automatic Dump Data Set Allocation&quot; on page 4-305</td>
</tr>
<tr>
<td>DUMPDS CLEAR</td>
<td>&quot;Making Dump Data Sets Ready To Receive Dumps&quot; on page 4-306</td>
</tr>
<tr>
<td>DUMPDS DEL</td>
<td>&quot;Deleting System Dump Resources&quot; on page 4-306</td>
</tr>
<tr>
<td>DUMPDS NAME</td>
<td>&quot;Setting the Name-Pattern for Dump Data Sets&quot; on page 4-308</td>
</tr>
</tbody>
</table>

Notes:
1. You must issue the DUMPDS command from a console with SYSTEM authority.
2. SVC dump supports pre-allocated dump data sets and automatically allocated
dump data sets.
   Pre-allocated dump data sets are direct access data sets with names of the
   form SYS1.DUMPxx, where xx can be any decimal number from 00-99. You
   can allocate SYS1.DUMPxx data sets with both primary and secondary extents.
   When you allocate a dump data set, specify enough secondary extents to hold
   the entire dump. Also, specify RECFM=FB, LRECL=4160 and BLKSIZE=4160.
   When automatic allocation is active, the dump is written to SMS-managed
   storage or to DASD volumes. The system allocates dump data sets of the
   correct size at the time a dump is requested. No pre-allocation is required for
   them.
3. A DUMPDS CLEAR or DUMPDS DEL command has no effect on any data set
   that is receiving an SVC dump when you issue the command.
4. Symbol substitution is supported on all sub-operands (e.g., ADD, ALLOC, ...) of
   the DUMPDS command except NAME=. (No substitution is done for the DD
   NAME=name-pattern command because the name-pattern may contain symbols
   that need to be passed through unchanged. See "Setting the Name-Pattern for
   Dump Data Sets" on page 4-308 for more information about the NAME= sub-operner of the DUMPDS command.)

Syntax

The syntax for each operand of the DUMPDS command is shown immediately
preceding its respective parameter list.

DUMPDS or DD

Note: After using the DUMPDS command to make changes, you can use the
DISPLAY DUMP command to verify, among other characteristics of dump
data set automatic allocation:
• The status
• What resources are defined
DUMPDS Command

- The naming convention
- The title and error-related data for pre-allocated and automatically allocated data sets

See "Displaying Dump Options or Dump Data Set Status" on page 4-127 for more information.

Adding System Dump Resources

Use the DUMPDS ADD command to add specific SYS1.DUMP data sets, SMS classes, or non-SMS-managed DASD volumes to the system's list of dump data set resources.

```
DD ADD,[DSN={nn
{n([nn[,]nn]...)
{n-[nn
{n-[nn][,nn-nn]...}
{n-[nn][,nn-nn][,nn-nn]...}
ALL
(ALL)
(SMS={class
{[(class[,class]...)}
(VOL={volser
{{volser[,volser]...}

Where class represents:
{storclas
{([DATA|D=[dataclas]][,MGMT|M=[mgmtclas]][,STOR|S=[storclas]]})
```

ADD,DSN=nn or ALL

Identifies the direct access data sets you request the system to add to its list of SYS1.DUMP data sets. You should allocate, catalog, and protect the data sets you specify before using this command.

If any direct access data set you specify is empty, or does not contain a valid dump, the system marks it as available for a dump. If any data set you specify is full and you want to make it available for a dump, you must clear it. If you want to keep the contents of the data set, process the data set with the interactive problem control system, IPCS. For more information about IPCS see the z/OS MVS IPCS User's Guide, GC28-1631.

If you do not want to keep the contents of the data set, issue a DUMPDS CLEAR,DSN= command for the data set. That will clear the data set and mark it as available for a dump, but not save the data set contents.

DUMPDS ADD,DSN= does not process any direct access SYS1.DUMP data set that is already on the system's list of SYS1.DUMP data sets.

nn The two-digit decimal identifier (00-99) of a direct access SYS1.DUMP data set you want the system to add to its list of SYS1.DUMP data sets. You can specify one or more single identifiers and/or one or more ranges of identifiers. For any range of identifiers you specify, the first identifier must be less than the second. If you specify more than one range, use a comma between them and enclose the entire set in parentheses.
ALL
  Directs the system to add to its list of SYS1.DUMP data sets all the
cataloged direct access SYS1.DUMP data sets not already on the list.

ADD,SMS=class
  Designates SMS classes you request the system to add to its list of resources
eligible for allocation as dump data sets. Installation-written automatic class
selection (ACS) routines, if present, may use but can override a data,
management, or storage class you specify. When a dump is taken, allocation of
a dump data set to an SMS class occurs only if SMS is active. When a dump is
taken, allocation of a dump data set to an SMS resource takes place only if
automatic allocation is active.

class
  The SMS class(es) you want the system to consider allocating as dump
data sets. If you specify multiple SMS classes, enclose them in parentheses
and separate them with commas.

storclas
  The SMS class specifying the one- to eight-character SMS storage
class you want added to the system’s list of resources eligible for
automatic allocation.

(DATA=dataclas, MGMT=mgmtclas, STOR=storclas)
  The SMS class consisting of the specified combination of data,
management, and storage class you want SMS to pass to the ACS
routines.

dataclas
  The 1-8 character name of the data class you want SMS to pass to
the ACS routine.

mgmtclas
  The 1-8 character name of the management class you want SMS to
pass to the ACS routine.

storclas
  The 1-8 character name of the storage class you want SMS to pass
to the ACS routine.

The DATA, MGMT, and STOR keywords are optional.

ADD,VOL=volser
  Identifies the non-SMS-managed direct access volume(s) you request the
system to add to its list of resources for automatic allocation of dump data sets.
Allocation will assign space from the first resource in the list until that resource
is full, then use the next resource. If a dump is taken when automatic allocation
is active, allocation of a dump data set to a non-SMS-managed DASD volume
takes place if either of the following conditions occurs:
  • No SMS classes are defined.
  • SMS classes are defined but an attempt to allocate a dump data set using
those classes failed (for example because of space problems).

volser
  The 1-6 character volume serial identifier of the direct access volume you
want added to the system’s list of resources for automatic allocation. You
can specify one or more direct access volume serial identifiers. (Enclose
multiple volume serial identifiers in parentheses and separate them with
commas.)
DUMPDS Command

Notes:
1. Protect the data sets using your normal password or RACF procedures.
2. SMS cannot manage DASD volumes specified for automatic allocation of dump data sets.
3. If resources assigned for automatic allocation become full, the system attempts to write dumps to pre-allocated dump data sets.

Example 1

To put the allocated and cataloged direct access data set SYS1.DUMP02 on the system’s list of SYS1.DUMP data sets, enter:

DUMPDS ADD, DSN=02

Example 2

To add the following allocated and cataloged direct access data sets to the system’s list of SYS1.DUMP data sets,

SYS1.DUMP00-SYS1.DUMP05,
SYS1.DUMP08, and
SYS1.DUMP10-SYS1.DUMP12,

enter:

DD ADD, DSN=(00-05, 08, 10-12)

Example 3

To add to the system’s list of SYS1.DUMP data sets all the allocated and cataloged direct access dump data sets not already on the list, enter:

DD ADD, DSN=ALL

Example 4

To specify the storage class DUMPC1, or if it is not available, storage class DMPADIT, for SMS to validate for use as dump data sets (which an ACS routine could override), enter:

DD ADD, SMS=(DUMPC1, DMPADIT)

Example 5

To use the data, management, and storage class defaults defined by the installation’s SMS ACS routine, enter:

DD ADD, SMS()
To specify that an installation's ACS routine consider allocating as dump data sets SMS storage class DUMP, and then when DUMP is filled, storage class DUMPTEMP, enter:

```
DD ADD,SMS=((STOR=DUMP),(S=DUMPTEMP))
```

The installation's SMS ACS routine will define the data and management classes for these storage classes. If you desire specific data or management classes, you must explicitly identify them. For example, to use management class KEEP with storage class DUMP, and management class SCRATCH with storage class DUMPTEMP, enter:

```
DD ADD,SMS=((STOR=DUMP,M=KEEP),(M=SCRATCH,S=DUMPTEMP))
```

### Enabling and Disabling Automatic Dump Data Set Allocation

Use the DUMPDS ALLOC command to activate or inactivate the automatic allocation of dump data sets.

```
DD ALLOC={(ACTIVE|INACTIVE)}
```

**ALLOC=ACTIVE**

Dump data sets are automatically allocated when a dump is requested. Any of the resources that have been defined by the DUMPDS ADD command as available for automatically allocated dump data sets are used. If no automatic allocation resources are defined, the system issues message IEA799I and writes the dump to a pre-allocated dump data set on its list of SYS1.DUMP data sets. If no pre-allocated dump data sets are on the system's list of SYS1.DUMP data sets, then message IEA793A is issued requesting operator intervention. The requested dump is kept in virtual storage until an automatic allocation resource is defined, a pre-allocated dump data set is made available either by allocating a new one or clearing an existing one, or the dump is deleted either by operator request or expiration of the CHNGDUMP MSGTIME parameter.

**ALLOC=INACTIVE**

This is the initial state of the system after IPL. Dump data sets are not automatically allocated when a dump is requested. Resources defined by the DUMPDS ADD command as available for automatic allocation of dump sets are not used. Any requested dump will be written to a pre-allocated dump data set specified on the system's list of SYS1.DUMP data sets. If no pre-allocated dump data sets are specified on the system's list of SYS1.DUMP data sets, then message IEA793A is issued requesting operator intervention. The requested dump is kept in virtual storage until automatic allocation is enabled, a pre-allocated dump data set is made available either by allocating a new one or clearing an existing one, or the dump is deleted either by operator request or expiration of the CHNGDUMP MSGTIME parameter.

### Example

To make the automatic dump data set allocation function inactive, without changing the automatic allocation resources or naming convention, enter:

```
DD ALLOC=INACTIVE
```

This is the system default.
DUMPDS Command

Making Dump Data Sets Ready To Receive Dumps

Use the DUMPDS CLEAR command to empty the specified data set and mark it as available to receive a dump.

```
DD CLEAR, DSN={nn}
 {{nn[,nn]}...}
 {nn-nn}
 {{nn-nn[,nn-nn]}...}
 {{nn[,nn]...,nn-nn[,nn-nn]}...}
 {ALL}
 {{(ALL)}
```

**CLEAR, DSN=nn or ALL**

Clear and mark as available for dumps the specified direct access dump data sets on the system’s list of SYS1.DUMP data sets. The system clears each full direct access dump data set by writing an end-of-file mark at the beginning of the data set.

A DUMPDS CLEAR, DSN= command does not process any data set that is not in the system's list of SYS1.DUMP data sets.

**nn** The two-digit decimal identifier (00-99) of a direct access SYS1.DUMP data set you want to clear and mark as available for a dump. You can specify one or more single identifiers and/or one or more ranges of identifiers. If you specify a range of identifiers, the first identifier must be less than the second identifier.

**ALL** Clears and marks as available for a dump all direct access dump data sets in the system’s list of SYS1.DUMP data sets.

**Example 1**

To clear, and mark as available for dumps, the direct access data sets SYS1.DUMP00-SYS1.DUMP05 and SYS1.DUMP09, enter:

`DD CLEAR, DSN=(00-05,09)`

**Example 2**

To clear and mark as available for dumps all the full direct access data sets on the system’s list of SYS1.DUMP data sets, enter:

`DD CLEAR, DSN=(ALL)`

Deleting System Dump Resources

Use the DUMPDS DEL command to remove from the system’s list of dump data set resources specific SYS1.DUMP data sets, SMS classes or DASD volumes.
DEL,DSN=nn or ALL

The system is to remove the specified direct access dump data sets from its list of SYS1.DUMP data sets. In response to this command, the system does not uncatalog or change the space allocation for any data set you specify.

A DUMPDS DEL,DSN= command does not process any data set that is not on the system’s list of SYS1.DUMP data sets.

nn The two-digit decimal identifier (00-99) of a cataloged direct access SYS1.DUMP data set you want to remove from its list of SYS1.DUMP data sets. You can specify one or more single identifiers or one or more ranges of identifiers. If you specify a range of identifiers, the first identifier must be less than the second identifier.

ALL The system is to remove all pre-allocated direct access dump data sets from its list of SYS1.DUMP data sets.

DEL,SMS=class or ALL

The system is to remove the specified SMS resources from the system’s list of resources for automatic allocation of dump data sets. Removing SMS resources does not inactivate automatic allocation of dump data sets.

class The SMS resource you want to remove from the system’s list of resources for automatic allocation. You can specify one or more SMS resources. Enclose multiple resources in parentheses, separated by commas.

storclas The SMS resource consisting of the specified 1-8 character SMS storage class you want removed from the system’s list of resources for automatic allocation.

(DATA=dataclas,MGMT=mgmtclas,STOR=storclas) The SMS resource consisting of the specified combination of data, management, and storage class you want removed from the system’s list of resources for automatic allocation.
DUMPDS Command

*dataclas*
The 1-8 character SMS data class you want specified for this allocation resource.

*mgmtclas*
The 1-8 character SMS management class you want specified for this allocation resource.

*storclas*
The 1-8 character SMS storage class you want specified for this allocation resource.

The DATA, MGMT, and STOR keywords are optional and may be specified only once per resource.

**ALL**
Requests that all SMS resources classes be removed from the system's list of resources available for automatic dump data set allocation.

**DEL,VOL=volser or ALL**
Remove the specified direct access volume(s) from the system's list of resources for automatic allocation of dump data sets. Removing direct access volumes does not inactivate automatic allocation of dump data sets.

*volser*
The 1-6 character volume serial number of the direct access volume you want to remove from the system's list of resources for automatic allocation. You can specify one or more direct access volume serial numbers. Multiple volume serial numbers must be enclosed in parentheses and separated by commas.

**ALL**
Request that all DASD volumes be removed from the system's list of resources available for automatic allocation of dump data sets.

**Example 1**
To remove SYS1.DUMP02 from the system's list of SYS1.DUMP data sets, enter:

```
DD DEL,DSN=02
```

**Example 2**
To remove all direct access data sets from the system's list of SYS1.DUMPnn data sets, enter:

```
DD DEL,DSN=ALL
```

**Example 3**
To remove SMS resources consisting of the storage classes DUMPC1 and DMPADIT from the system's list of resources for automatic allocation of dump data sets, enter:

```
DD DEL,SMS=(DUMPC1,DMPADIT)
```

**Setting the Name-Pattern for Dump Data Sets**
Use the DUMPDS NAME command to establish a name-pattern for automatically allocated dump data sets.
The parameter is:

**NAME=name-pattern**

The system names automatically allocated dump data sets according to the naming convention specified by the name-pattern. The name-pattern can include both text and system symbols. The system substitutes text for the system symbols when it creates data set names.

The system default name-pattern is:

```
SYS1.DUMP.D&YYMMDD..T&HHMMSS..&SYSNAME..S&SEQ.
```

**Note:** If you want to use a name pattern other than the system default, place the DUMPDS NAME command before the DUMPDS ADD commands, so that the system uses the correct name pattern for the added resources. Using a different name pattern could cause the system to use different RACF profiles for the allocation.

Before you specify system symbols in the DUMPDS NAME command, read the rules and recommendations for using system symbols in commands in "Sharing System Commands" on page 1-14.

**Notes:**

1. All name-patterns must specify the &SEQ. sequence number system symbol to ensure uniqueness. The system rejects the name-pattern if you do not specify &SEQ..

2. When you change the installation naming convention for dump data sets, also change the procedures for protecting them (password or RACF protection).

3. If the installation has a SYSNAME that begins with a numeral, you must specify an alternate NAME. The default, which includes .&SYSNAME., will generate a data set name error when SDUMP tries to use it.

4. Names generated by a name-pattern must adhere to MVS data set naming conventions and limitations. Ensure that system symbols do not return a numeric character as the first character of any qualifier in the data set name. For example, in the default name-pattern:

```
SYS1.DUMP.D&YYMMDD..T&HHMMSS..&SYSNAME..S&SEQ.
```

&HHMMSS, &SEQ, and &YYMMDD return numeric substitution texts. Each symbol is preceded by an alphabetic character to avoid placing a numeric character in the first character of each qualifier. If resolved substitution texts create a data set name that is not valid, the system rejects the name-pattern and issues message IEE855I. The previous name-pattern remains in effect.

5. The DUMPDS NAME function will not work when the command is issued from an MCS or SMCS console and the character ‘&’ is specified as a command delimiter. Command delimiters are defined using the CMDDELIM parameter on the INIT statement of the CONSOLxx parmlib member. See z/OS MVS Initialization and Tuning Reference for more information on defining command delimiters.

**Example**

To establish automatically allocated dump data sets with names such as

```
SYS1.USERIDX.T025930.S00001
```
DUMPDS Command

where the system name is SYS1 and USERIDX is the name of the job requesting
the dump, enter:

DD NAME=&SYSNAME..&JOBNAME..T&HHMMSS..S&SEQ.
Consider using the FORCE command as a last resort when the CANCEL command still fails to perform its function after you have issued it several times.

The following table summarizes the tasks that the FORCE command can perform. Below the table are several considerations about using the FORCE command.

Table 4-18. FORCE Command Tasks

<table>
<thead>
<tr>
<th>Task - Immediately Terminate:</th>
<th>Syntax:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A job in execution</td>
<td>FORCE jobname</td>
</tr>
<tr>
<td>• A running Advanced Program-to-Program Communication/MVS (APPC/MVS) transaction program</td>
<td></td>
</tr>
<tr>
<td>• A started task</td>
<td></td>
</tr>
<tr>
<td>• A time-sharing user (U=userid)</td>
<td>FORCE U=userid</td>
</tr>
<tr>
<td>• A started task</td>
<td></td>
</tr>
<tr>
<td>• A MOUNT command</td>
<td></td>
</tr>
<tr>
<td>• An external writer allocation</td>
<td></td>
</tr>
<tr>
<td>• The output processing for a job</td>
<td></td>
</tr>
<tr>
<td>• A z/OS UNIX process</td>
<td></td>
</tr>
</tbody>
</table>

Considerations

- FORCE is not a substitute for CANCEL. Unless you issue CANCEL first for a cancellable job, the system issues error message IEE838I. The steps to use in the process are:
  1. Issue the CANCEL nnn command, making several attempts if necessary.
  2. Use the DUMP command — if you want a dump produced. Respond to the prompt for parameters with the jobname or ASID of the "stuck" job, as well as ASID(1)=MASTER.
  3. Issue the FORCE nnn,ARM command for non-cancellable procedures.
  4. Issue the FORCE nnn command only when the previous steps fail.
- WARNING: Never use the FORCE command without understanding that:
  - After issuing FORCE, you might have to re-IPL.
  - If you issue FORCE for a job in execution or for a time-sharing user, the system deletes the affected address space and severely limits recovery unless you use the ARM parameter. (Arm is described below.)
  - If you need a dump, you must issue a DUMP command before you issue FORCE. Once you've issued a FORCE command it is usually NOT POSSIBLE to get a dump of the failing address space.
  - If your system was part of a global resource serialization ring (GRS=START, GRS=JOIN or GRS=TRYJOIN was specified at IPL) but has been quiesced (by entering the VARY GRS(system name),QUIESCE command), FORCE processing might not complete immediately. The system suspends termination of all address spaces holding global resources until the quiesced system rejoins the ring or is purged from the ring. Use a DISPLAY GRS command to determine GRS status.
- Do not FORCE a job that is in a loop; use the RESTART function. See "Using the System Restart Function" on page 1-18 for more information.
- The availability manager (AVM) cannot be ended by a STOP or CANCEL command. To end AVM, a FORCE AVM,ARM command is required.
FORCE Command

- When you use the FORCE command to end the availability manager (AVM) address space, the operator must restart that address space by issuing the command START AVM, SUB=MSTR.
- You can enter FORCE only from a console with master authority.

Syntax

The complete syntax for the FORCE command is:

```
FORCE {jobname}[,ARM][,A=asid][,ARMRESTART]
{U=userid}
{{jobname.}identifier}
```

Parameters

**jobname**

The name of the batch job, started task, or APPC/MVS transaction program you want to end.

The name of a started task is based on whether the JOBNAME= keyword was specified on the START command.

If JOBNAME= was specified, *jobname* is the name assigned to the started task.

If JOBNAME= was not specified and the source JCL for the started task is

- A *job*, the system will use the job name from the JCL JOB statement.
- A *procedure*, the system will use the member name as the job name.

**Notes:**

1. When you use the FORCE command to end a job in execution, you also terminate the address space for the job and any other tasks executing in that address space. If you use FORCE for a job running under an initiator, you terminate the initiator along with the job. With JES2 on your system, you must issue another START command to recover use of such an initiator. With JES3 on your system, this additional START command might not be necessary.

2. When you force an APPC/MVS transaction program, you can find *jobname* (the transaction program’s name as specified in the TP PROFILE in the address space) on the output by issuing a DISPLAY ASCH,A command.

3. Entering FORCE for an external writer while the system is allocating the writer to a job terminates both the device allocation and the writer itself. Entering FORCE for an external writer while the writer is processing output for a job terminates both the output processing and the writer itself.

**U=userid**

The user ID of the time-sharing user to terminate.

If the user is just logging on and does not yet have a unique name, you must find out the address space identifier for the user (see the explanation under A=asid) and use the following version of the command:

```
FORCE U=*LOGON*,A=asid
```

**[jobname.]{identifier}**

The identifier for the unit of work to terminate, optionally preceded by the job name. You can use the following types of identifiers:

- The identifier that was specified on the START command.
• \[/devnum, the device number specified when the START or MOUNT command was entered. The device number is 3 or 4 hexadecimal digits, optionally preceded by a slash (/). You can precede the device number with a slash to prevent ambiguity between the device number and a device type or identifier.

• devicetype, the type of device specified when the START or MOUNT command was issued.

If no identifier was specified on the START command, the system assigns temporary identifier “STARTING” to the unit of work, until the system can assign an identifier according to the following order of precedence:

1. If an identifier was not specified on the START command, the identifier is the device type (for example, 3410) or device number (for example, X'0000') specified on the START or MOUNT command.

2. If an identifier, a device type, or a device number was not specified on the START or MOUNT command, the identifier is the device type specified on an IEFRDER DD statement (invoking a cataloged procedure) in the JCL.

3. If none of the above was specified, the identifier defaults to the job name.

Specifying both the job name and the entire identifier causes the command to take effect if one and only one work unit with that combination of job name and identifier is running. Where two or more work units with the same combination of job name and identifier are running, see “A=asid” below.

ARM

The system is to terminate the specified job, time-sharing user, or started procedure if it is non-cancellable. If the FORCE ARM command fails to terminate the address space within a reasonable time, reissue FORCE with the ARM parameter. The ARM parameter executes normal task termination routines without causing address space destruction. The system rejects this parameter if the address space for the specified job, time-sharing user, or started procedure cannot be terminated or should be terminated via the CANCEL command. If the command still fails after several attempts, try issuing FORCE without the ARM parameter.

Note: This keyword is not related to the ARMRESTART parameter and the functions of the automatic restart manager.

A=asid

The hexadecimal address space identifier of the work unit to terminate.

If two or more work units are running with the same job name, identifier, combination of job name and identifier, or user ID that you specified on the FORCE command, the system rejects the command because it does not know which work unit to terminate. To avoid this, you must add the parameter A=asid to your original FORCE command in order to specify the address space identifier of the work unit.

To find out the address space identifier for a unit of work, you can use the DISPLAY command as follows:

DISPLAY JOBS,ALL
   Lists the address space identifiers for all batch jobs and started tasks.

DISPLAY ASCH,ALL
   Lists the address space identifiers for all APPC/MVS transaction programs.

DISPLAY TS,ALL
   Lists the address space identifiers for all logged-on time-sharing users.
**FORCE Command**

**DISPLAY OMVS,ASID=ALL** or **DISPLAY OMVS,A=ALL**

Lists the address space identifiers for all z/OS UNIX processes.

**ARMRESTART**

Indicates that the batch job or started task should be automatically restarted after the force has completed, if it is registered as an element of the automatic restart manager. If the job or task is not registered, or if you do not specify this parameter, MVS will not automatically restart the job or task.

**Example 1**

To terminate an earlier MOUNT command for a 3380 device, enter:

```
FORCE 3380
```

**Example 2**

To terminate an earlier MOUNT command for the device number 3380, enter:

```
FORCE /3380
```

**Example 3**

To remove job JOBXYZ from the system, enter:

```
FORCE JOBXYZ
```

**Example 4**

To stop device allocation for writer 1AF and terminate the writer itself, enter, during device allocation for writer 1AF:

```
FORCE 1AF
```

**Example 5**

To stop the output processing on a writer to device number B1AF and terminate the writer itself, enter:

```
FORCE /B1AF
```

**Example 6**

To log user A237 off the system, enter:

```
FORCE U=A237
```

**Example 7**

To terminate the non-cancellable job BIGTASK, enter:

```
FORCE bigtask,ARM
```

**Example 8**

To terminate the non-cancellable job SERVICE with the address space identifier of 1A8, enter:

```
FORCE service,arm,a=1a8
```

**Example 9**
To FORCE an APPC/MVS transaction program whose jobname is CALENDAR and whose address space identifier is 3B, enter:

FORCE CALENDAR,A=3B
HALT Command

Use the HALT command to record statistics before stopping the operating system. After you have stopped all subsystem processing (through the use of the appropriate subsystem command) and the system notifies you that all system activity has completed, you can issue the HALT EOD command to ensure that important job and system statistics and data records in storage are recorded.

**Note:** Do not use the HALT command if you intend to keep running, because this command:
- closes the system log
- allows SMF to continue writing records after switching to a new data set. During the next IPL, you might see message IEE949I, indicating the presence of old SMF data from a previous IPL. This SMF data was written after HALT was issued.

**Syntax**

The complete syntax for the HALT command is:

```
Z EOD
```

The HALT EOD command causes the system to take the following steps:
- Store the internal I/O device error counts in the logrec data set.
- Empty the SMF buffers onto the active SMF data set in SYS1.MANx.
- Switch to another SMF data set in SYS1.MANx, allowing the previously active SMF data set to be dumped according to your installation’s procedures.
- Close the system log and put it on the print queue.

When these actions are completed, the system sends you the message:

IEE334I HALT EOD SUCCESSFUL.
Use the IOACTION command to stop and resume I/O activity to direct access storage devices (DASDs) without varying the DASD offline, when the DASD is shared between systems AND is in recovery by the input/output system (IOS).

**CAUTION:**
Use this command only in response to the IOS recovery messages IOS427A and IOS062E and wait state X'062'.

After the IO STOP command is entered, the system allows several seconds for current I/O activity to end.

Do not leave devices stopped any longer than necessary to perform recovery. System storage is used by all initiated I/O operations and is only freed after the I/O operations complete.

Do not use this command for devices that contain system-owned data sets or the system residence volume, or page data sets. Also, EREP will not run while devices are stopped.

The system displays message IOS601I to remind you that I/O activity is stopped to the specified DASD. This message remains displayed until all I/O activity is resumed with the IOACTION RESUME command.

**Syntax**

The complete syntax for the IOACTION command is:

```
IO {STOP,DEV=([/]devnum[,[/]devnum]...) }
{STOP,DEV=([/]lowdevnum-[/]highdevnum[,[/]lowdevnum-[/]highdevnum]...) }
{RESUME,DEV=([/]devnum[,[/]devnum]...)ALL }
{RESUME,DEV=([/]lowdevnum-[/]highdevnum[,[/]lowdevnum-[/]highdevnum]...) }
```

**Note:** You can enter individual device numbers and ranges on the same command. For example:

```
IO RESUME,DEV=(/2233,/990-/1012,160)
```

**Parameters**

**STOP,DEV**

The system stops all I/O activity to the specified DASD. The system allows several seconds for current activity to complete. You do not have to enter the parentheses when specifying only one device. The system displays message IOS601I to remind you that I/O activity is stopped to specified DASD. To display stopped DASD, enter DISPLAY IOS,STOP.

**Note:** Before stopping a device, enter D U,DASD,ALLOC,devnum to determine what data sets will be affected. If any system-owned data sets, such as SYS1.LINKLIB, are stopped, the system will be affected.

**RESUME,DEV**

The system resumes normal I/O activity to the specified devices. When ALL is specified, I/O activity is resumed on any device that had been stopped by an
IOACTION Command

IOACTION STOP command on that system. You do not have to enter the parentheses when specifying only one device.

\[ \text{devnum} \]

The device number of a DASD for which the system is to stop or resume I/O activity. You do not have to enter the parentheses when specifying only one DASD.

\[ \text{lowdevnum}-\text{highdevnum} \]

The lower device number \textit{lowdevnum} and the upper device number \textit{highdevnum} of a range of DASDs for which the system is to stop or resume I/O activity. You do not have to enter the parentheses when specifying only one range of DASDs.

A device number is 3 or 4 hexadecimal digits, optionally preceded by a slash (/).

**Example 1**

To stop I/O activity to device numbers 1A0 through 1AF, enter:

\[
\text{IO STOP,DEV=(1A0-1AF)}
\]

**Example 2**

To stop I/O activity to device number 1B0, enter:

\[
\text{IOACTION STOP,DEV=1B0}
\]

**Example 3**

To resume I/O activity to device number 1B0 and device numbers 1A0A through 1AFA, enter:

\[
\text{IO RESUME,DEV=(1B0,1A0A-1AFA)}
\]

**Example 4**

To resume I/O activity to device number 3480, enter:

\[
\text{IO RESUME,/3480}
\]

**Example 5**

To resume I/O activity to all devices previously stopped, enter:

\[
\text{IO RESUME,ALL}
\]
LIBRARY Command

Use the LIBRARY command to perform any of several tasks associated with tape drives and tape volumes.

For a complete description of the syntax and parameters of the LIBRARY command, including the tasks that command can perform, refer to z/OS DFSMS OAM Planning, Installation, and Storage Administration Guide for Tape Libraries and z/OS DFSMS OAM Planning, Installation, and Storage Administration Guide for Object Support.
LOG Command

Use the LOG command to make an entry into the system log, the OPERLOG, or the system log and the OPERLOG.

Syntax

The complete syntax for the LOG command is:

```
L 'text'
```

Parameters

`text`

The entry (up to 122 characters) to be made in the system log, the OPERLOG or the system log and the OPERLOG.

**Note:** Lowercase characters in quotation marks are not converted to uppercase.

Example

To include the following comment in the system log, the OPERLOG or the system log and the OPERLOG enter:

```
L 'DEVICE 235 OFFLINE FOR REPAIRS'
```
LOGOFF Command

Use the LOGOFF command to log off from an MCS or SMCS console.

LOGOFF is the recommended method of ending an SMCS console session.

Syntax

The complete syntax for the LOGOFF command is:

```
LOGOFF
```

You must issue LOGOFF when you leave your console and your installation requires operators to log on before issuing commands.

When your installation requires LOGON, the LOGOFF command leaves the console in a secure state. This applies to MCS consoles only. The system does not accept commands from this console until another LOGON command is completed.

For SMCS consoles, use LOGOFF to deactivate the console. You can use LOGOFF whether the operator has logged on to the SMCS console or not.

For MCS consoles, if LOGON is automatic at your installation, the system issues another automatic MCS LOGON command for this console, after performing the LOGOFF.

Example

To leave your console secure, enter:

```
LOGOFF
```
LOGON Command

LOGON Command

Use the LOGON command to identify yourself to the system when your installation requires operators to log on before issuing commands.

The LOGON command enables an operator to access the SMCS console. An installation can indicate that this command be mandatory. It is suggested that if an SMCS console session can be established from outside a secure area, logging on should be mandatory.

To remove the LOGON prompt from the screen for MCS consoles, use the CLEAR key or the PA2 key. For SMCS consoles, the prompt cannot be cleared from the screen until the console is successfully logged on. To restore the prompt enter:

LOGON [userid]

The LOGON command restores the logon prompt display.

The userid is an 8-character field where you enter your operator userid. The userid parameter is optional; the system will prompt you for it. Issuing the LOGON or LOGON userid command results in the LOGON prompt being displayed. The LOGON prompt is presented in the Syntax section of the LOGON command.

As of z/OS V1R10, the LOGON command has been architected such that all keywords and keyword values appear in the same position when the LOGON command is issued. All LOGON commands are now issued as if they were issued from a typical console that is 80 columns wide. See the MVS Data Areas book for the architected LOGON mapping, which is mapped by CNZMYLGN.

Scope in a Sysplex

The system does not substitute text for system symbols specified in the LOGON command.

Syntax

The complete syntax for the LOGON prompt follows the message:

```
IEE187I ENTER LOGON PARAMETERS
LOGON {userid} PASSWORD {password}
GROUP [racfgroup] SECLABEL [label]
```

Parameters

LOGON {userid}

The panel displays the LOGON prompt in a protected field. The userid is an 8-character field where you enter your operator userid. The userid parameter is required.

PASSWORD {password}

The panel displays the PASSWORD prompt in a protected field. The password is a 26-character field where you enter your password of up to 8 characters.
LOGON Command

The input to this field is not displayed. The password field allows you to change your password by using the old-password/new-password/new-password format. The password parameter is required.

GROUP [racfgroup]
The panel displays the GROUP prompt in a protected field. The racfgroup is an 8-character field where you enter your RACF group identifier. The racfgroup parameter is optional.

SECLABEL [label]
The panel displays the SECLABEL prompt in a protected field. The label is an 8-character field where you enter your RACF security label identifier. The label parameter is optional.

Notes:
1. The syntax of the user id, password, group id, and security label is defined by RACF.
2. You can use the tab keys to tab from one input field to the next on the LOGON prompt.
3. The LOGON command for MCS and SMCS consoles is supported for full capability display consoles only.
4. Changes made to a user's access authority to a logged-on console may not take effect until the user logs off and then back on again to the console.
MODE Command

Use the MODE command to control the actions of recovery management when certain types of machine check interruptions occur. The actions you can control are:

- The recording/monitoring status for each type of machine check interruption controlled by the MODE command. For the procedure to print the logrec data set, see the EREP User’s Guide and the EREP Reference.
- The monitoring of hard machine checks, including machine checks that indicate timing facility damage
- The suppressing of system recovery or degradation machine-check interruptions

Table 4-19 summarizes the information that the MODE command provides.

Table 4-19. Summary of the MODE Command

<table>
<thead>
<tr>
<th>Command:</th>
<th>Topic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODE AD</td>
<td>“Controlling the Recording of Hard Machine Check Interruptions” on page 4-326</td>
</tr>
<tr>
<td>MODE CC</td>
<td></td>
</tr>
<tr>
<td>MODE CO</td>
<td></td>
</tr>
<tr>
<td>MODE CS</td>
<td></td>
</tr>
<tr>
<td>MODE IC</td>
<td></td>
</tr>
<tr>
<td>MODE IV</td>
<td></td>
</tr>
<tr>
<td>MODE PD</td>
<td></td>
</tr>
<tr>
<td>MODE PS</td>
<td></td>
</tr>
<tr>
<td>MODE PT</td>
<td></td>
</tr>
<tr>
<td>MODE SC</td>
<td></td>
</tr>
<tr>
<td>MODE SD</td>
<td></td>
</tr>
<tr>
<td>MODE SL</td>
<td></td>
</tr>
<tr>
<td>MODE SS</td>
<td></td>
</tr>
<tr>
<td>MODE TC</td>
<td></td>
</tr>
<tr>
<td>MODE DG</td>
<td>“Controlling the Recording of System Recovery and Degradation Machine Check Interruptions” on page 4-328</td>
</tr>
<tr>
<td>MODE SR</td>
<td></td>
</tr>
<tr>
<td>MODE STATUS</td>
<td>“Displaying Recording and Monitoring Status” on page 4-329</td>
</tr>
</tbody>
</table>

You can enter the MODE command any number of times for any processor. Issuing the MODE command for a particular type of machine check changes only the recording or monitoring mode for that type of machine check, and changes it only for the processor(s) specified (or for all processors if no particular processor is specified). To change the recording or monitoring mode for several types of machine checks, you must enter a series of MODE commands. Each such MODE command specifies one type of machine check and the desired recording or monitoring mode for that type of machine check. If you issue the MODE command more than once for the same type of machine check, the last command (most recent) supersedes the previous commands.

Syntax

The syntax for each variation of the MODE command is shown immediately preceding its respective parameter list.

MODE

Table 4-20 shows the machine check interruption types you can specify and the parameters allowed for each type:
## Table 4-20. MODE Parameters Allowed for Machine Check Interruptions

<table>
<thead>
<tr>
<th>Machine Check Interruption Type</th>
<th>Command Parameters</th>
<th>CPU</th>
<th>QUIET</th>
<th>RECORD</th>
<th>REPORT</th>
<th>INTERVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG — degradation</td>
<td></td>
<td>X</td>
<td></td>
<td>X (note 1)</td>
<td>X (notes 1, 2)</td>
<td>X (note 2)</td>
</tr>
<tr>
<td>SR — system recovery</td>
<td></td>
<td>X</td>
<td></td>
<td>X (note 1)</td>
<td>X (notes 1, 2)</td>
<td>X (note 2)</td>
</tr>
<tr>
<td>PD — instruction processing damage</td>
<td></td>
<td>X</td>
<td></td>
<td>X (note 3)</td>
<td></td>
<td>X (note 3)</td>
</tr>
<tr>
<td>SD — system damage</td>
<td></td>
<td>X</td>
<td></td>
<td>X (note 3)</td>
<td></td>
<td>X (note 3)</td>
</tr>
<tr>
<td>IV — invalid PSW or registers</td>
<td></td>
<td>X</td>
<td></td>
<td>X (note 3)</td>
<td></td>
<td>X (note 3)</td>
</tr>
<tr>
<td>TC — TOD clock damage</td>
<td></td>
<td>X</td>
<td></td>
<td>X (note 3)</td>
<td></td>
<td>X (note 3)</td>
</tr>
<tr>
<td>PT — processor timer damage</td>
<td></td>
<td>X</td>
<td></td>
<td>X (note 3)</td>
<td></td>
<td>X (note 3)</td>
</tr>
<tr>
<td>CC — clock comparator damage</td>
<td></td>
<td>X</td>
<td></td>
<td>X (note 3)</td>
<td></td>
<td>X (note 3)</td>
</tr>
<tr>
<td>PS — primary synchronization damage</td>
<td></td>
<td>X</td>
<td></td>
<td>X (note 3)</td>
<td></td>
<td>X (note 3)</td>
</tr>
<tr>
<td>AD — ETR-attachment damage</td>
<td></td>
<td>X</td>
<td></td>
<td>X (note 3)</td>
<td></td>
<td>X (note 3)</td>
</tr>
<tr>
<td>SL — switch to local synchronization</td>
<td></td>
<td>X</td>
<td></td>
<td>X (note 3)</td>
<td></td>
<td>X (note 3)</td>
</tr>
<tr>
<td>SC — ETR synchronization check</td>
<td></td>
<td>X</td>
<td></td>
<td>X (note 3)</td>
<td></td>
<td>X (note 3)</td>
</tr>
<tr>
<td>SS — STP synchronization check</td>
<td></td>
<td>X</td>
<td></td>
<td>X (note 3)</td>
<td></td>
<td>X (note 3)</td>
</tr>
<tr>
<td>IC — STP island condition</td>
<td></td>
<td>X</td>
<td></td>
<td>X (note 3)</td>
<td></td>
<td>X (note 3)</td>
</tr>
<tr>
<td>CO — STP configuration change</td>
<td></td>
<td>X</td>
<td></td>
<td>X (note 3)</td>
<td></td>
<td>X (note 3)</td>
</tr>
<tr>
<td>CS — STP clock source error</td>
<td></td>
<td>X</td>
<td></td>
<td>X (note 3)</td>
<td></td>
<td>X (note 3)</td>
</tr>
</tbody>
</table>

**Notes**:  
1. QUIET and RECORD= are mutually exclusive.  
2. REPORT= can only be used with RECORD=ALL.  
3. RECORD=ALL and INTERVAL are mutually exclusive.

When you specify more than one option, you can enter the parameters in any order but must separate them by commas.
## Controlling the Recording of Hard Machine Check Interruptions

You can use the MODE command to control the recording or monitoring of hard machine-check interruptions.

```plaintext
MODE {PD}[,INTERVAL={nnnnn}] [,RECORD={nnn} [,CPU={x}]]
{SD} {300} =ALL {ALL}
{IV} =25
{TC} =16
{PT} =5
{CC} =10
{PS} =20
{AD}
{SL}
{SC}
{SS}
{IC}
{CO}
{CS}
```

The parameters are:

**PD**
- Instruction-processing damage machine checks are to be monitored in the specified mode.

**SD**
- System damage machine checks are to be monitored in the specified mode.

**IV**
- Machine checks indicating invalid PSW or registers are to be monitored in the specified mode.

**TC**
- Machine checks indicating TOD clock damage are to be monitored in the specified mode.

**PT**
- Machine checks indicating processor timer damage are to be monitored in the specified mode.

**CC**
- Machine checks indicating clock comparator damage are to be monitored in the specified mode.

**PS**
- Machine checks indicating primary clock synchronization are to be monitored in the specified mode.

**AD**
- Machine checks indicating ETR attachment are to be monitored in the specified mode.

**SL**
- Machine checks indicating switch to local synchronization are to be monitored in the specified mode.

**SC**
- Machine checks indicating ETR synchronization checks are to be monitored in the specified mode.
SS
Machine checks indicating STP synchronization checks are to be monitored in
the specified mode.

IC
Machine checks indicating STP island condition are to be monitored in the
specified mode.

CO
Machine checks indicating STP configuration change are to be monitored in the
specified mode.

CS
Machine checks indicating STP clock source error condition are to be monitored
in the specified mode.

INTERVAL=nnnnn
This parameter is used together with the RECORD=nnn parameter. It defines
the number of seconds used in counting hard machine check interrupts. If the
specified number of seconds elapses before the specified number of interrupts
of the specified type occur on the specified processor, the count of that type of
interrupt is set to zero, and the counting is started again from zero. If the
specified number of hard machine check interrupts does occur in the specified
interval, then the system either performs a timer-related recovery action or
invokes alternate CPU recovery (ACR) to take the failing processor offline. If the
INTERVAL parameter is omitted, then INTERVAL=300 is assumed.

RECORD=nnn
After the specified number (1 to 999) of hard machine checks of the specified
type occurs on the specified processor in the specified interval, the system
either performs a timer-related recovery action or invokes alternate CPU
recovery (ACR) to take the failing processor offline. All interruptions of that type
occurring on that processor are recorded on the logrec data set until the
specified number is reached. If no number is specified or if the RECORD
parameter is omitted, the system uses the following default setting:
• RECORD=16 for PD
• RECORD=25 for SL
• RECORD=20 for SC
• RECORD=10 for SS, IC, CO, and CS
• RECORD=5 for all others

RECORD=ALL
All specified hard machine-check interruptions of the specified type occurring on
the specified processor are to be recorded on the logrec data set. The system
will no longer monitor the frequency of hard machine-check interruptions of that
type occurring on that processor.

CPU=x
The address (0, 1, 2, 3...) of the processor to be monitored in the specified
mode. If the parameter is omitted, ALL is assumed.

CPU=ALL
All processors in the system are to be monitored in the specified mode.

Example 1
Monitor instruction-processing-damage machine-check interruptions on processor 0.
If seven of these interruptions occur in 600 seconds on processor 0, invoke ACR to
take processor 0 offline.
mode pd,record=7,interval=600,cpu=0
Controlling the Recording of System Recovery and Degradation Machine Check Interruptions

You can use the MODE command to control the recording and reporting of system recovery and degradation machine check interruptions.

```
MODE {SR}[,QUIET}[,RECORD=nnn[,CPU={x|ALL}]}[,DG}[,RECORD=nnn[,CPU={x|ALL}]}[=ALL[,REPORT=nnn}]
```

The parameters are:

**SR**
System recovery machine checks are to be placed in the specified recording mode.

**DG**
Degradation machine checks are to be placed in the specified recording mode.

**QUIET**
No machine check interruptions of the specified type (system recovery or degradation) are to occur or be recorded for the specified processor.

**RECORD=nnn**
After the specified number (1 to 999) of system recovery or degradation machine check interruptions occur on the specified processor, the system is to notify you and switch the recording mode to QUIET for that type of interruption on that processor. If you do not specify a number or omit the RECORD parameter, the system uses the following defaults:

- RECORD=1 for DG
- RECORD=50 for SR

**RECORD=ALL**
All system recovery or degradation machine check interruptions occurring on the specified processor are to be recorded on the logrec data set. The default number of interruptions is 1 for DG and 50 for SR unless you specify the REPORT parameter along with RECORD=ALL. You are notified each time the defined number of interruptions occur, (see the description of REPORT=nnn for more information) but the system does not switch to QUIET mode for that type of interruption.
REPORT=nnn
You are notified each time the specified number (1 to 999) of system recovery or degradation machine check interruptions occur on the specified processor. Use this parameter only with the RECORD=ALL parameter. If you omit the REPORT parameter, you will be notified each time the default number of interruptions occurs. The defaults are:
• REPORT=50 for SR
• REPORT=1 for DG

CPU=x
The address (0, 1, 2, 3,...) of the processor to be put in the specified mode. If the parameter is omitted, ALL is assumed.

CPU=ALL
All processors in the system are to be put in the specified mode.

Example 1
Degradation machine check interruptions are to be counted on processor 0. If the default number (1) occurs, the system notifies you and switches the recording mode to QUIET for these interruptions. The other processor(s) in the system is not affected and no other types of machine check interruptions for processor 0 are affected.
MODE DG,CPU=0

Example 2
Degradation machine checks are to be put in QUIET mode on processor 2.
MODE DG,QUIET,CPU=2

Displaying Recording and Monitoring Status
You can use the following form of the MODE command to display the status of each type of machine check interruption.

MODE [STATUS]

STATUS
The event counters and recording/monitoring status associated with each type of machine check interruption are to be displayed for each processor. If the STATUS parameter is specified, it must be the only parameter specified.
MODIFY Command

Use the MODIFY command to pass information to a job or started task.

Restriction: You can communicate with a currently running program only if it is designed to recognize input from the MODIFY command. If it is not, you will get an error message.

Notes to Programmers:
- For more information, see the section on communicating with a program using EXTRACT and QEDIT in [z/OS MVS Programming: Authorized Assembler Services Guide]
- For more information about the modify zfs command, see the modify zfs process topic in [z/OS Distributed File Service zSeries File System Administration]
- For more information about the modify dfs command, see the modify dfs process topic in [z/OS Distributed File Service SMB Administration]

Summary of MODIFY
Table 4-21 shows examples of the tasks that the MODIFY command can perform. Use it to access the pages on which you can find details and examples of a particular task.

Table 4-21. Summary of the MODIFY Command

<table>
<thead>
<tr>
<th>Topic:</th>
<th>Command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;MODIFY Command&quot;</td>
<td>F jobname.identifier,parameters</td>
</tr>
<tr>
<td>&quot;Passing Information to a z/OS UNIX System Services Application&quot; on page 4-335</td>
<td>F jobname.identifier,APPL=text</td>
</tr>
<tr>
<td>&quot;Modifying TSO/VTAM Time Sharing&quot; on page 4-335</td>
<td>F jobname.identifier,USERMAX=,USER=</td>
</tr>
<tr>
<td>&quot;Communicating with System REXX&quot; on page 4-336</td>
<td>F AXR,parameters</td>
</tr>
<tr>
<td>&quot;Controlling z/OS UNIX System Services (z/OS UNIX)&quot; on page 4-336</td>
<td>F BPXOINIT,parameters</td>
</tr>
<tr>
<td>&quot;Communicating with the Catalog Address Space&quot; on page 4-345</td>
<td>F CATALOG,parameters</td>
</tr>
<tr>
<td>&quot;Processing the common event adapter (CEA) parameters&quot; on page 4-345</td>
<td>F CEA,CEA=</td>
</tr>
<tr>
<td>&quot;Refreshing the common event adapter (CEA) component information&quot; on page 4-345</td>
<td>F CEA,DIAG,COMPTABLE</td>
</tr>
<tr>
<td>&quot;Managing common event adapter (CEA) REXX exec tracing&quot; on page 4-346</td>
<td>F CEA,DIAG,REXXDEBUG=</td>
</tr>
<tr>
<td>&quot;Displaying the common event adapter (CEA) environment&quot; on page 4-346</td>
<td>F CEA,DISPLAY</td>
</tr>
<tr>
<td>&quot;Disconnecting the common event adapter (CEA) from the IPCS sysplex dump directory data set&quot; on page 4-348</td>
<td>F CEA,DROPIPCS</td>
</tr>
<tr>
<td>&quot;Adjusting the common event adapter (CEA) mode of operation&quot; on page 4-348</td>
<td>F CEA,MODE=</td>
</tr>
<tr>
<td>&quot;Communicating with the Device Manager Address Space&quot; on page 4-349</td>
<td>F DEVMAN,parameters</td>
</tr>
</tbody>
</table>
Table 4-21. Summary of the MODIFY Command (continued)

<table>
<thead>
<tr>
<th>Topic:</th>
<th>Command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;Changing the DLF Processing Mode&quot; on page 4-351</td>
<td>F DLF,MODE=</td>
</tr>
<tr>
<td>&quot;Changing the DLF parameters&quot; on page 4-351</td>
<td>F DLF,NN=</td>
</tr>
<tr>
<td>&quot;Displaying DLF Status&quot; on page 4-352</td>
<td>F DLF,STATUS</td>
</tr>
<tr>
<td>&quot;Start, configure, and stop hardware event data collection&quot; on page 4-352</td>
<td>F hisproc,parameters</td>
</tr>
<tr>
<td>Syntax and parameters for the MODIFY hzsproc command in [IBM Health Checker for z/OS User’s Guide]</td>
<td>F hzsproc,parameters</td>
</tr>
<tr>
<td>&quot;Building and Replacing Library Lookaside Directories&quot; on page 4-360</td>
<td>F LLA,parameters</td>
</tr>
<tr>
<td>&quot;Operating with the Network File System Server&quot; on page 4-360</td>
<td>F MVSNFS</td>
</tr>
<tr>
<td>&quot;Managing the Object Access Method (OAM)&quot; on page 4-360</td>
<td>F OAM,parameters</td>
</tr>
<tr>
<td>&quot;Recycling z/OS UNIX System Services (z/OS UNIX)&quot; on page 4-361</td>
<td>F OMVS,parameters</td>
</tr>
<tr>
<td>&quot;Dynamically activating maintenance for z/OS UNIX System Services (z/OS UNIX)&quot; on page 4-362</td>
<td>F OMVS,parameters</td>
</tr>
<tr>
<td>&quot;Stopping a physical file system (PFS) through a logical file system (LFS) interface&quot; on page 4-363</td>
<td>F OMVS,STOPPFS=</td>
</tr>
<tr>
<td>&quot;Replacing the sysplex root file system in the shared file system configuration (z/OS UNIX)&quot; on page 4-363</td>
<td>F OMVS,NEWROOT=</td>
</tr>
<tr>
<td>&quot;Stopping a Temporary File System (TFS)&quot; on page 4-365</td>
<td>F TFS,parameters</td>
</tr>
<tr>
<td>&quot;Enabling and Disabling the Application Response Measurement (ARM) Agent and Enterprise Workload Manager (EWLM) platform services&quot; on page 4-365</td>
<td>F WLM,AM=DISABLE</td>
</tr>
<tr>
<td>&quot;Changing Workload Manager Resource States&quot; on page 4-366</td>
<td>F WLM,RESOURCE</td>
</tr>
<tr>
<td>&quot;Specifying Data Set Selection Criteria for an External Writer&quot; on page 4-367</td>
<td>F XWTR.identifier,devnum,parameters</td>
</tr>
<tr>
<td>&quot;Causing an External Writer to Pause&quot; on page 4-369</td>
<td>F XWTR.identifier,devnum,PAUSE</td>
</tr>
</tbody>
</table>

Using Asterisks in MODIFY Commands

Certain forms of the MODIFY command allow you to specify the following for a job or started task:
- An identifier
- An optional job name.

You can use the asterisk wildcard to direct the MODIFY command to more than one job or started task. The asterisk indicates that a MODIFY command applies to all jobs or started tasks that match a leading character string.
For example, when specifying an identifier without an optional job name, you can enter the following command to pass a two-digit value to all jobs with identifiers beginning with R1:

\[ F \text{ R1*},00 \]

You can also use the asterisk wildcard when you specify both a job name and identifier. For example you can enter the following command to pass a two-digit value to all jobs with names beginning with WX and identifiers beginning with R1:

\[ F \text{ WX*}.R1*,00 \]

When you specify asterisks with device numbers, the system assumes that the device numbers are four digits long. For example, /13* would match on 1301, 1302, and so on, but would not match on 13C.

Remember the following rules when using asterisk notation:

- If you specify only the identifier parameter (without the jobname parameter), you cannot specify a stand-alone asterisk on the identifier parameter.
- If you specify both the jobname and identifier parameters, you cannot specify a stand-alone asterisk for both parameters.

For example, to pass a two-digit value to all jobs with names beginning with WX, you can specify a single asterisk on the identifier to indicate a wildcard:

\[ F \text{ WX*},*,00 \]

If you were to remove the WX characters from the above command, it would not be valid. You cannot specify *.* without a leading character string on the jobname parameter, identifier parameter, or both.

The following figures illustrate how asterisk notation works in MODIFY commands. Table 4-22 shows examples of START commands that are used to start jobs. Columns three and four show the associated jobnames and identifiers.

### Table 4-22. Examples of START Commands to Start Jobs

<table>
<thead>
<tr>
<th>Job Number</th>
<th>START Command</th>
<th>Jobname</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>START YZ</td>
<td>YZ</td>
<td>YZ</td>
</tr>
<tr>
<td>2</td>
<td>START WX.YZ</td>
<td>WX</td>
<td>YZ</td>
</tr>
<tr>
<td>3</td>
<td>START WX.YZ1</td>
<td>WX</td>
<td>YZ1</td>
</tr>
<tr>
<td>4</td>
<td>START WX1.YZ1</td>
<td>WX1</td>
<td>YZ1</td>
</tr>
<tr>
<td>5</td>
<td>START WX, JOBNAME =WX1</td>
<td>WX1</td>
<td>WX1</td>
</tr>
<tr>
<td>6</td>
<td>START WX, JOBNAME =WX2</td>
<td>WX2</td>
<td>WX2</td>
</tr>
<tr>
<td>7</td>
<td>START WX, JOBNAME =YZ</td>
<td>YZ</td>
<td>YZ</td>
</tr>
<tr>
<td>8</td>
<td>START Q.YZ3</td>
<td>Q</td>
<td>YZ3</td>
</tr>
<tr>
<td>9</td>
<td>START WX.R1</td>
<td>WX</td>
<td>R1</td>
</tr>
<tr>
<td>10</td>
<td>START WX, JOBNAME =YZ4</td>
<td>YZ4</td>
<td>YZ4</td>
</tr>
</tbody>
</table>

Table 4-23 on page 4-333 shows examples of MODIFY commands. The numbers in the second column indicate to which jobs in Table 4-22 each MODIFY command applies.
Table 4-23. Examples of MODIFY Commands

<table>
<thead>
<tr>
<th>MODIFY Command</th>
<th>Affected Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>F WX.YZ,parameters</td>
<td>2</td>
</tr>
<tr>
<td>F WX.YZ*,parameters</td>
<td>2, 3</td>
</tr>
<tr>
<td>F YZ.*,parameters</td>
<td>1, 7</td>
</tr>
<tr>
<td>F WX*,parameters</td>
<td>5, 6</td>
</tr>
<tr>
<td>F YZ*,parameters</td>
<td>1, 2, 3, 4, 7, 8, 10</td>
</tr>
<tr>
<td>F WX*.YZ,parameters</td>
<td>2</td>
</tr>
<tr>
<td>F WX*.YZ*,parameters</td>
<td>2, 3, 4</td>
</tr>
<tr>
<td>F <em>.YZ</em>,parameters</td>
<td>1, 2, 3, 4, 7, 8, 10</td>
</tr>
<tr>
<td>F *.YZ,parameters</td>
<td>1, 2, 7</td>
</tr>
<tr>
<td>F WX*.*,parameters</td>
<td>2, 3, 5, 6, 9</td>
</tr>
<tr>
<td>F WX.*,parameters</td>
<td>2, 3, 9</td>
</tr>
</tbody>
</table>

MODIFY Command Syntax

The syntax for each variation of the MODIFY command is shown immediately preceding its respective parameter list.

**MODIFY or F**

**Syntax**

F [jobname.]identifier,parameters

**Parameters**

The parameters for this command are:

*jobname*

The name of the batch job, started task, or APPC/MVS transaction program to be modified.

The job name for a given started task can be assigned based on a variety of inputs. These inputs are examined in the following order, so that if item #1 is not specified, item #2 is used. If neither #1 nor #2 is specified, then #3 is used, and so on.

1. The jobname specified in the JOBNAME= parameter of the START command
   
   or
   
   The specified on the START command.
   
2. The jobname specified on the JOB JCL statement within the member.

3. The device number specified on the START command, or the device number associated with the device type specified on the START command
   
   or
   
   The device number associated with the device type specified on the START command.
4. The device number associated with the IERDRE DD statement within the member.

5. The member name.

You can use asterisk notation to specify more than one job or started task on the MODIFY command. See “Using Asterisks in MODIFY Commands” on page 4-331 for more information.

**identifier**

The identifier assigned to the job or started task. (See “Displaying Started Task Status” on page 4-174 for information about determining the jobname and identifier of currently active started tasks.)

Use one of the following types of identifiers:

- The identifier that was specified on the START command.
- */devnum*, the 3-digit or 4-digit hexadecimal device number specified when the START or MOUNT command was issued.
  
  When you specify a device number that could be mistaken for the device name, precede the device number with a slash. The slash is optional with a 3-digit device number.
- *devicetype*, the type of device specified when the START or MOUNT command was issued.

If no identifier was specified, the identifier “STARTING” is temporarily assigned until the system can assign another according to the following order of precedence:

1. If an identifier was not specified on the START command, the identifier is the device type (for example, 3410) or device number (for example, X’0000’) specified on the START or MOUNT command.
2. If an identifier, a device type, or a device number was not specified on the START or MOUNT command, the identifier is the device type specified on an IERDRE DD statement (invoking a catalogued procedure) in the JCL.
3. If none of the above was specified, the identifier defaults to the job name.

You can use asterisk notation to specify more than one job or started task on the MODIFY command. See “Using Asterisks in MODIFY Commands” on page 4-331 for more information.

**parameters**

Program parameters passed to the started program.

**Example 1**

If the program currently running in job TMASGX02 was set up by the programmer to accept 2-digit values from the operator, enter the following (where nn is an appropriate 2-digit value):

```
f tmasgx02,nn
```

**Example 2**

If started tasks are running with the following jobnames and identifiers:

```
Jobname = ABC1, identifier = DEF1
Jobname = ABC2, identifier = DEF2
```

And both tasks accept the value “INPUT1” from the operator, enter:

```
f ABC*.DEF*,INPUT1
```
Both tasks receive the value INPUT1.

Passing Information to a z/OS UNIX System Services Application

F [jobname.]identifier,APPL=text

The parameters are:

jobname
The name of the job.

You can use asterisk notation to specify more than one job or started task on the MODIFY command. See “Using Asterisks in MODIFY Commands” on page 4-331 for more information.

identifier
The identifier used on the START command to identify the application.

If an identifier was not specified on the START command, the system automatically uses the job name as the identifier. (See “Displaying Started Task Status” on page 4-174 for information about determining the jobname and identifier of currently active started tasks.)

You can use asterisk notation to specify more than one job or started task on the MODIFY command. See “Using Asterisks in MODIFY Commands” on page 4-331 for more information.

APPL=text
Up to 110 characters. Quotation marks around the text are optional. If you do put the text in quotation marks, the quotation marks will be passed, with the text, back to the application.

Example

To modify the jobname DATASRVR, enter:
F DATASRVR,APPL=threadlimit=5

Jobnames can be a maximum of eight characters. No spaces are allowed.

Modifying TSO/VTAM Time Sharing

You can use the MODIFY command to control the number of users allowed to be logged on to TSO/VTAM and to terminate TSO user address spaces.

F [jobname.]identifier,{USERMAX=nnnnn}

{USER={SIC  }}

{  {FSTOP}  }

The parameters are:

jobname
The name of the job. Many installations use TCAS as the name.

You can use asterisk notation to specify more than one job or started task on the MODIFY command. See “Using Asterisks in MODIFY Commands” on page 4-331 for more information.
MODIFY Command

**identifier**
The identifier specified on the START command for TSO/VTAM time-sharing.

If an identifier was not specified on the START command, the system automatically assigns the job name as the identifier. (See "Displaying Started Task Status" on page 4-174 for information about determining the jobname and identifier of currently active started tasks.)

You can use asterisk notation to specify more than one job or started task on the MODIFY command. See "Using Asterisks in MODIFY Commands" on page 4-331 for more information.

**USERMAX=nnnnn**
The maximum number (0 to 32,767) of users that can be logged on to TSO/VTAM time-sharing at one time. Note that specifying USERMAX=0 causes the terminal control address space (TCAS) to suppress all LOGONs.

**USER=SIC**
Causes the TCAS to cancel all TSO/VTAM terminal user address spaces normally. The terminal users receive any messages queued for them. The TCAS remains active.

**USER=FSTOP**
Forces the TCAS to cancel all TSO/VTAM terminal user address spaces immediately. The terminal users do not receive any messages queued for them. The TCAS remains active. Specify FSTOP only if a system problem causes SIC to be ineffective.

If you issue the MODIFY command with the USER=FSTOP parameter, the affected address space is deleted from the system and recovery is severely limited.

**Communicating with System REXX**
You can use the MODIFY AXR command to either obtain status about system REXX or to initiate the execution of a REXX exec. You can also use the prefix defined in the CPF parameter of the AXR00 parmlib member to replace MODIFY(F) AXR. See the chapter on **AXR00** in the **z/OS MVS Initialization and Tuning Reference** for more information.

```
F AXR,{SYSREXX|SR[_],}STATUS|ST{DETAIL|D}[REXXLIB|R]
 {rexexecname[,TIMEINT=seconds]|[']arg1arg2..argn[']}
 [[']arg1 arg2 ..argn[']]
```

The parameters are:

**SYSREXX | SR[ .]**
Indicates that the SYSREXX™ command is to be run. Either a blank or a comma is permitted between SYSREXX and the subsequent operand. For example, you can enter:

```
F AXR,SYSREXX STATUS
```

or

```
F AXR,SYSREXX,STATUS
```

**STATUS | ST**
Specifies or indicates that general information about System REXX execs is to be returned to the invoker.
DETAIL | D
Indicates that detailed information about execs that are currently running in System REXX is to be returned to the invoker.

REXXLIB | R
Indicates that information about data sets in the REXXLIB concatenation is to be returned to the invoker. The information includes the following details:
- concatenation order number
- data set name
- volume serial of the data set

rexexec_name
A 1-8 character name of a member of the System REXX library (SYS1.SAXREXEC) where the exec resides. The exec will be executed in a TSO=YES environment with CONNAME=Name of Issuing Console. See z/OS MVS Programming: Authorized Assembler Services Guide for more information. The invoker should avoid flooding the console with messages because any SAY or TRACE output will be sent to the invoking console.

TIMEINT | T
This is an optional parameter that is used to specify a time limit for the exec. If TIMEINT=0 is specified, no time limit will be applied. The exec exceeds this threshold, it will be halted. A maximum of 21474536 seconds may be specified. The default is 30 seconds.

'arg' or 'arg1 arg2 ... argn' or arg or arg1 arg2 ... argn
The remainder of the command line, after the exec name is passed to the exec as a single argument string.

The format for passing arguments to the REXX exec might include blanks, and might have all or parts of the argument string within quotation marks. An odd number of quotation marks is an error. Any bounding quotation marks are removed, and two consecutive quotation marks within a quoted string result in a single quotation mark that is being included as part of the final argument processed by the REXX exec. System command processing converts all characters of any argument string that are not quoted to uppercase characters. All formats are passed as a single string of data. However, when multiple arguments are to be passed, separating each argument with a blank makes it simpler to parse them into the runtime REXX arguments required by the exec.

Example 1

To obtain status information, enter the following command:

F AXR,SYSREXX STATUS

AXR02001 SYSREXX STATUS DISPLAY
SYSTEM REXX STARTED AT 11.00.30 ON 09/18/2006
PARMLIB MEMBERS: AXR00
CPF: % (SYSTEM) AXRUSER: MEGA
TIMEINT: 30
SUBSYSTEM: AXR
REQUESTS QUEUED: 0 ACCEPTING NEW WORK
REXX WORKER TASKS: ACTIVE: 0 TOTAL: 4
IDLE: 4 MAX: 64
ASYNC: 0 SYNC: 0
UNTIMED: 0

TSO SERVER SPACES: ACTIVE: 0 TOTAL: 0
IDLE: 0 MAX: 8
ASYNC: 0 SYNC: 0
UNTIMED: 0
Example 2

To obtain detailed status information, enter the following command:

```
F AXR,SYSREXX STATUS,DETAIL

AXR0201I SYSREXX STATUS DETAIL
EXEC=WAITLOOP CJBN=AXR CASID=0015 TSO=Y T/L=00.00.30
REQTOKEN=0000520000000000BF3A704A6511A3B5
EJBN=AXR02 EASID=0033 TCB=006FF098 CPU=000.004S TIME=005.739S
EXEC=INFINITE CJBN=AXR CASID=0015 TSO=Y T/L=00.00.30
REQTOKEN=0000540000000000BF3A704C2088405C
EJBN=AXR03 EASID=0032 TCB=006FF098 CPU=000.006S TIME=003.925S
```

Example 3

To obtain information about data sets in the REXXLIB concatenation, enter the following command:

```
F AXR,SYSREXX REXXLIB

AXR0202I SYSREXX REXXLIB DISPLAY
NUMBER VOLUME DATA SET
01 TST005 RONN.REXX
02 SBOX00 SYS1.SAXREXEC
```

Example 4

To invoke a REXX exec from a console with part of its argument string kept as lower case and part converted to upper case by system command processing, enter the following command:

```
F AXR,TheExec 'here''s a lower case string' here''''s an uppercase string
```

Controlling z/OS UNIX System Services (z/OS UNIX)

If you are using zFS and need to determine the file system owner, see the topic on zFS ownership versus z/OS UNIX ownership of file systems in the z/OS Distributed File Service zSeries File System Administration.

You can use the MODIFY command to control z/OS UNIX System Services and to terminate a z/OS UNIX process or thread. You can also use it to shut down z/OS UNIX initiators and to request a SYSMDUMP for a process.

```
F BPXOINIT,(APPL=appl_data)
 {DUMP=pid}
 {FILESYS={DISPLAY[,FILESYSTEM=filesystemname]}[,OVERRIDE]}
 ,ALL
 ,EXCEPTION
 ,GLOBAL
 {DUMP}
 {FIX}
 {REINIT}
 {RESTART=FORKS}
 {RECOVER=LATCHES}
 {SHUTDOWN={FILEOWNER | FILESYS | FORKINIT | FORKS}}
 {SUPERKILL=pid}
 {TERM=pid[,tid]}
```
The parameters are:

**BPXOINIT**
The name of the job.

**APPL=appl_data**
Allows information to pass straight through to the application. appl_data is a string that is passed back to the invoker in whatever format the application expects it.

**Note:** BPXOINIT does not accept any APPL= parm values. You will receive the error message BPXM029I APPL= KEYWORD WAS IGNORED BY BPXOINIT.

**DUMP=pid**
Requests a SYSMDUMP. A SIGDUMP signal is sent to the specified process. pid is the decimal form of the process id to be terminated.

**FILESYS=**
Indicates that a file system diagnostic or recovery operation is to be performed.

This function is applicable only to a sysplex environment where shared file system has been enabled by specifying SYSPLEX(YES) in the BPXPRMxx parmlib member named during system initialization. The command is intended to help diagnose and correct certain shared file system problems or errors that impact one or more systems in a sysplex environment.

Use this command with caution, and only under the direction of an IBM service representative.

To obtain the best results, issue this command at the system with the highest shared file system software service level. To determine which system is executing with the highest shared file system software service level, issue the command

F BPXOINIT,FILESYS=DISPLAY,GLOBAL

and select the system with the highest “LFS Version” value.

Specify one of the following functions:

**DISPLAY** or D
Display the type BPXMCDS couple data set information relating to the shared file system file system. D is an alias of **DISPLAY**.

Specify one of the following display options:

**ALL**
Displays all file systems in the shared file system hierarchy.

**EXCEPTION**
Displays all file systems that are in an exception state. A file system is in an exception state if one of the following criteria is met:

- State = Mount in progress
- State = Unmount in progress
- State = Quiesce in progress
- State = Quiesced
- State = Unowned
- State = In recovery
- State = Unusable
The file system state in the couple data set representation is inconsistent with the local file system.

**FILESYSTEM=filesystemname**
Displays information for the specified file system.

**GLOBAL**
Displays the current sysplex state, consisting of the following items:
- The active systems in the sysplex (system name, logical file system (LFS) version, verification status, recommended recovery action).
- The type BPXMCDS couple data set version number.
- The minimum LFS version required to enter the BPXGRP sysplex group.
- The device number of the last mounted file system.
- The maximum and in-use mounts.
- The maximum and in-use AMTRULES.
- The active “serialization categories,” which systems are associated with each category, and the time that each “serialization category” was first started. The following serialization categories are defined:
  - SYSTEMS PERFORMING INITIALIZATION
  - SYSTEMS PERFORMING MOVE
  - SYSTEMS PERFORMING QUIESCE
  - SYSTEMS PERFORMING UNMOUNT
  - SYSTEMS PERFORMING MOUNT RESYNC
  - SYSTEMS PERFORMING LOCAL FILE SYSTEM RECOVERY
  - SYSTEMS PERFORMING FILE SYSTEM TAKEOVER RECOVERY
  - SYSTEMS RECOVERING UNOWNED FILE SYSTEMS
  - SYSTEMS PERFORMING REPAIR UNMOUNT

**GLOBAL** is the default display option.

**DUMP**
Initiate an SVC dump to capture all of the file system sub-records in the active type BPXMCDS couple data set.

**FIX**
Perform automatic file system and couple data set diagnosis and repair. As a part of the file system analysis, the system performs an analysis of possible file system latch contention on each system in the sysplex. An operator message identifies any possible problems. The system also analyzes file system serialization data that is maintained in the couple data set, and corrects it if an error is detected. It reports the status of the analysis in an operator message.

Note that the system initiates a dump of critical file system resources as a part of the FIX function. The dump is captured prior to the diagnosis and repair. If, however, a dump was captured due to a FIX or DUMP function that was initiated within the previous 15 minutes, the dump is suppressed.

Perform FIX prior to the UNMOUNTALL and REINIT functions.

**REINIT**
Re-initialize the file system hierarchy based on the ROOT and MOUNT statements in the BPXPRMxx parmlib member used by each system during its initialization. (Any changes to the BPXPRMxx parmlib member that are
made after the system’s initialization are not included in the REINIT processing. The system uses the version of the file system parmlib statements that is maintained in kernel storage. It does not re-process the parmlib member.)

Note that the system where the MODIFY command is issued will become the file system server to those file systems common to all systems in the sysplex (such as the ROOT file system) unless the SYSnAME() parameter is specified on the parmlib MOUNT statement.

The intended use of this function is to re-initialize the file system hierarchy after an UNMOUNTALL has been performed. However, you can issue REINIT at any time; those file systems that are already mounted will not be affected when REINIT processes the parmlib mount statements.

REINIT is not applicable to MKDIR support in the BPXPRMxx parmlib member. The directory mountpoints are not available and thus cause successive mounts to fail.

Always issue the FIX function before performing the REINIT function.

RESYNC
Perform a file system hierarchy check on all systems. If a system has not mounted a file system that is active in the shared file system hierarchy, it is mounted locally and thus made available to local applications.

UNMOUNT
Unmount the file system specified by the filesystem= parameter. The file system cannot have any active mount points for other file systems. You must unmount those file systems first.

UNMOUNTALL
Unmount all file systems in the sysplex file system hierarchy, including the root file system. When processing is complete, mount SYSROOT on all systems.

Always issue the FIX function before performing the UNMOUNTALL function.

OVERRIDE
Normally only one MODIFY command for a FILESYS= function can be active on each system. Additionally, only one instance of the MODIFY command in the sysplex can be active for the FIX, UNMOUNT, UNMOUNTALL, and REINIT functions. If you specify the OVERRIDE parameter, the system accepts multiple invocations of this command on each system for the DISPLAY, DUMP, and RESYNC functions. Note, however, that the second invocation may be delayed.

The primary intent of the OVERRIDE parameter is to allow issuance of the DISPLAY functions while there is still a MODIFY in progress and the MODIFY appears to be delayed.

FORCE=
Indicates that the signal interface routine cannot receive control before the thread is terminated.

pid.tid
pid is the decimal form of the process id to be terminated. tid is the hexadecimal form of the thread id to be terminated.
RESTART=FORKS
Enables the system to resume normal processing. Suspended dub requests are resumed.

RECOVER=LATCHES
This command ends user tasks that are holding latches for an excessive amount of time. You can enter this command manually or provide an automation script allowing the system to automatically respond to message BPXM056E to aid in resolution of excessive latch contention. The command is primarily intended as an aid in resolving latch hangs that are caused by user task usage of UNIX System Services. The command can also be used to terminate a system task that holds latches, if the system task is not critical. However, it might not be able to resolve latch hangs caused by critical internal system tasks in the OMVS kernel address space, if the owning system task is in critical system code that cannot be interrupted.

Notes:
1. Only use this command if message BPXM056E is outstanding. The command causes one of the following:
   - If the contention can be resolved, the system DOMs the BPXM056E message. After the contention is resolved, the system issues message BPXM067I to indicate that condition.
   - If the contention cannot be resolved, the system issues message BPXM057E to indicate that condition.
   See "Example 5" on page 4-344 for the message output under different conditions.
2. MVS isolates the abnormal termination to individual tasks, but this command can result in the termination of an entire process. It is important to note that the abnormal termination will be caused by a non-retryable 422-1A5 abend that will cause the generation of a system dump, because of the likelihood of an internal system problem. Additionally, if more than one latch is in contention, multiple tasks might be abended and result in requests for multiple dumps.

SHUTDOWN=FILEOWNER
Unmounts the UNIX System Services file systems. Also prevents the system from becoming a filesystem owner through a move or recovery operation until z/OS UNIX System Services is recycled.

SHUTDOWN=FILESYS
Unmounts the UNIX System Services file systems.

SHUTDOWN=FORKINIT
Shuts down the z/OS UNIX initiators. Normally, these initiators shut themselves down in 30 minutes. Attempts to purge JES2 (command= P JES2) cannot complete until z/OS UNIX initiators have shut down.

SHUTDOWN=FORKS
Requests a shutdown of the fork() service by preventing future forks and non-local spawns. The kernel cannot obtain additional WLM fork initiators for fork and spawn. It attempts to terminate all WLM fork initiator address spaces that are running processes created by fork or non-local spawn. All other services remain "up", but any new dub requests are suspended until the fork() service is restarted.

SUPERKILL=pid
Indicates that a terminating signal is sent to the target process.
**Guideline:** SUPERKILL=pid ends the entire process and any subprocesses within the address space. Because SUPERKILL=pid is a stronger form of the TERM= and FORCE= parameters, only use this command if you are not able to end the process using F BPXOINIT TERM= and FORCE= commands.

**pid**

*pid* is the decimal form of the process ID to be ended.

**TERM=**

Indicates that the signal interface routine can receive control before the thread is terminated.

**pid.tid**

*pid* is the decimal form of the process ID to be terminated. *tid* is the hexadecimal form of the thread ID to be terminated.

**Example 1**

To display process information for a process ID of '117440514' enter:

```
DISPLAY OMVS,pid=117440514
```

```
BPX0070I 14.16.58 DISPLAY OMVS 177
OMVS 000E ACTIVE
USER JOBNAMe ASID PID PPID STATE START CT_SECS
MEGA TC1 0021 117440514 117440515 HKI 14.16.14 .170
LATCHWAITPID= 0 CMD=ACEECACH
```

```
<table>
<thead>
<tr>
<th>THREAD_ID</th>
<th>TCB0</th>
<th>PRI_JOB</th>
<th>USERNAME</th>
<th>ACC_TIME</th>
<th>SC</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>049614600000000</td>
<td>009E0438 OMVS</td>
<td>.050</td>
<td>PTJ</td>
<td>KU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0496100000000001</td>
<td>009D588 OMVS</td>
<td>WELLIE1</td>
<td>.002</td>
<td>SLP</td>
<td>JSN</td>
<td></td>
</tr>
<tr>
<td>0496258000000002</td>
<td>009D8798 OMVS</td>
<td>WELLIE1</td>
<td>.003</td>
<td>SLP</td>
<td>JSN</td>
<td></td>
</tr>
<tr>
<td>04962E5800000003</td>
<td>009D5090 OMVS</td>
<td>WELLIE1</td>
<td>.012</td>
<td>SLP</td>
<td>JSN</td>
<td></td>
</tr>
<tr>
<td>0496370000000004</td>
<td>009D5228 OMVS</td>
<td>WELLIE1</td>
<td>.011</td>
<td>SLP</td>
<td>JSN</td>
<td></td>
</tr>
<tr>
<td>04963F8000000005</td>
<td>009D5688 OMVS</td>
<td>WELLIE1</td>
<td>.010</td>
<td>SLP</td>
<td>JSN</td>
<td></td>
</tr>
<tr>
<td>0496485000000006</td>
<td>009D8048 OMVS</td>
<td>WELLIE1</td>
<td>.011</td>
<td>SLP</td>
<td>JSN</td>
<td></td>
</tr>
<tr>
<td>049650F000000007</td>
<td>009D81E0 OMVS</td>
<td>WELLIE1</td>
<td>.011</td>
<td>SLP</td>
<td>JSN</td>
<td></td>
</tr>
<tr>
<td>049659A000000008</td>
<td>009D8378 OMVS</td>
<td>WELLIE1</td>
<td>.011</td>
<td>SLP</td>
<td>JSN</td>
<td></td>
</tr>
<tr>
<td>0496624800000009</td>
<td>009D8510 OMVS</td>
<td>WELLIE1</td>
<td>.011</td>
<td>SLP</td>
<td>JSN</td>
<td></td>
</tr>
<tr>
<td>04966A00000000A</td>
<td>009D8930 OMVS</td>
<td>WELLIE1</td>
<td>.030</td>
<td>SLP</td>
<td>JSN</td>
<td></td>
</tr>
</tbody>
</table>
```

```
f bpinoxit,force=117440514.04962E5800000003
BPXM027I COMMAND ACCEPTED.
```

```
f bpinoxit,term=117440514.0496624800000009
BPXM027I COMMAND ACCEPTED.
```

**Example 2**

To shut down the fork() service, enter:

```
F BPXOINIT,SHUTDOWN=FORKS
```

```
BPXInxxxFORK SERVICE HAS BEEN SHUTDOWN SUCCESSFULLY. ISSUE F BPXOINIT,RESTART=FORKS TO RESTART FORK SERVICE.
```

**Example 3**

To restart the fork() service, enter:

```
F BPXOINIT,RESTART=FORKS
```

**Example 4**

Sample outputs of the MODIFY BPXOINIT,FILESYS command:

- F BPXOINIT,FILESYS=DISPLAY,GLOBAL
MODIFY Command

BPXM027I COMMAND ACCEPTED.
BPXF040I MODIFY BPXINIT,FILESYS PROCESSING IS COMPLETE.
BPXF242I 2006/10/05 13.30.41 MODIFY BPXINIT,FILESYS=DISPLAY,GLOBAL

SYSTEM LFS VERSION ---STATUS------------------------ RECOMMENDED ACTION
SY1  1. 9. 0 VERIFIED       NONE
SY2  1. 9. 0 VERIFIED       NONE
SY3  1. 9. 0 VERIFIED       NONE
CDS VERSION= 2  MIN LFS VERSION= 1. 9. 0
DEVICE NUMBER OF LAST MOUNT= 10
MAXIMUM MOUNT ENTRIES= 500 MOUNT ENTRIES IN USE= 9
MAXIMUM AMTRULES= 50 AMTRULES IN USE= 0
MAXSYSTEM= 8

SYSTEM PERFORMING ZFS RECYCLE
(Since 2006/10/05 13.30.36)
SY2
ACTIVE QUEUE
RECYCLING EXCLUSIVE

• F BPXINIT,FILESYS=DISPLAY,FILESYSTEM=POSIX.SY4.HFS

BPXM027I COMMAND ACCEPTED.
BPXF035I 2000/05/12 11.55.34 MODIFY BPXINIT,FILESYS=DISPLAY
--------------NAME-------------------------- DEVICE MODE
POSIX.SY4.HFS 23 RDWR
PATH=/SY4
PARM=SYNC(04)
STATUS=ACTIVE LOCAL STATUS=ACTIVE
OWNER=SY1 RECOVERY OWNER=SY1 AUTOMOVE=Y PFSMOVE=Y
TYPENAME=HFS MOUNTPOINT DEVICE= 12
MOUNTPOINT FILESYSTEM=POSIX.SYSPLEX9.HFS1
ENTRY FLAGS=90000000 FLAGS=40000000 LFSFLAGS=08000000
LOCAL FLAGS=40000000 LOCAL LFSFLAGS=2A000000
SY1 BPXF040I MODIFY BPXINIT,FILESYS PROCESSING IS COMPLETE.

• F BPXINIT,FILESYS=DISPLAY,FILESYSTEM=POSIX.ZFS.ETC

BPXM027I COMMAND ACCEPTED.
BPXF035I 2000/05/12 11.55.34 MODIFY BPXINIT,FILESYS=DISPLAY
--------------NAME-------------------------- DEVICE MODE
POSIX.ZFS.ETC 23 RDWR
AGGREGATE NAME=POSIX.ZFS.ETC
PATH=/SY1/etc
PARM=SYNC(04)
STATUS=ACTIVE LOCAL STATUS=ACTIVE
OWNER=SY1 RECOVERY OWNER=SY1 AUTOMOVE=Y PFSMOVE=Y
TYPENAME=ZFS MOUNTPOINT DEVICE= 12
MOUNTPOINT FILESYSTEM=POSIX.SYSPLEX9.ZFS1
AGGREGATE=POSIX.ZFS.ETC
ENTRY FLAGS=90000000 FLAGS=40000000 LFSFLAGS=08000000
LOCAL FLAGS=40000000 LOCAL LFSFLAGS=2A000000
SY1 BPXF040I MODIFY BPXINIT,FILESYS PROCESSING IS COMPLETE.

For zFS file systems, the display includes an aggregate file system name, indicating membership in a data set containing multiple file systems. Aggregates provide member file systems with a common pool of disk space.

Example 5

In response to message BPXM056E UNIX SYSTEM SERVICES LATCH CONTENTION DETECTED, enter the MODIFY or F BPXINIT,RECOVER=LATCHES command to resolve the contention. You will receive one of the followings in response to the command:
• f bpxinitt,recover=latches
BPXM067I UNIX SYSTEM SERVICES LATCH CONTENTION RESOLVED
Communicating with the Catalog Address Space

Use the MODIFY CATALOG command to communicate with the catalog address space to display information or to request a specified service. **Use this command only at the direction of the system programmer.**

For complete descriptions, including under which circumstances to use and when not to use this command, see [Working with the Catalog Address Space and MODIFY CATALOG Command Syntax](https://www.ibm.com) in z/OS DFSMS Managing Catalogs.

When an operator issues any MODIFY CATALOG command, messages return to that console exclusively with one exception: for a MODIFY CATALOG,RESTART command, messages return to the console issuing the command and any consoles receiving routing code 2.

Processing the common event adapter (CEA) parameters

Use the MODIFY CEA,CEA= command to redrive the CEAPRMxx parmlib member for various parameter changes and corrections without taking down CEA.

For more information on how to configure CEA see [Configure CEA to work with z/OS](https://www.ibm.com) in the [z/OS Planning for Installation](https://www.ibm.com)

F CEA,CEA=(xx1,xx2,...xxN)

The parameters are:

**xx** Denotes the specific CEA parmlib member that is processed to change the policy for CEA. The xx suffix can be any two alphanumeric characters except "NO". More than one parmlib member can be specified. There are no defaults for this command. The xx must be supplied even if the default parmlib member CEAPRM00 is requested.

**Example 1**

f cea,cea=00

CEAO502I CEA PARMLIB PROCESSING COMPLETE.

Refreshing the common event adapter (CEA) component information

Use the MODIFY CEA,DIAG,COMPTABLE command when the IBM Support Center directs you to issue the command to refresh the CEA component table as part of correcting an internal problem.

For more information on how to configure CEA see [Configure CEA to work with z/OS](https://www.ibm.com) in the [z/OS Planning for Installation](https://www.ibm.com)

F CEA,DIAG,COMPTABLE

The parameters are:

**COMPTABLE**

This parameter specifies that you want to refresh the component table information for CEA without restarting CEA.
Example 1
f cea,diag,comptable

CEA0018I COMPONENT TABLE RELOAD SUCCESSFUL.

Managing common event adapter (CEA) REXX exec tracing
Use the MODIFY CEA,DIAG,REXXDEBUG= command to manage CEA REXX exec tracing. Use this command only when the IBM support center directs you to issue the command to debug a problem.

For information on how to configure CEA see Configure CEA to work with z/OS in the z/OS Planning for Installation.

F CEA,DIAG,REXXDEBUG={ON | OFF | nnnnnnnn}

The parameters are:
REXXDEBUG={ON | OFF | nnnnnnnn}

Specifies CEA REXX exec tracing:

ON
Specifies that you want all CEA REXX execs to write trace entries to the debug file.

OFF
Specifies that all REXX exec tracing be turned off.

nnnnnnnn
Hex value supplied by the IBM Support Center that specifies which subset of CEA REXX execs should write trace entries to the debug file.

If you specify a zero here, no CEA REXX exec will write trace entries.

Example 1
f cea,diag,rexdebug=00000001

CEA0016I CEA REXX DEBUG TRACE IS ON
(DIAG="00000001")

Displaying the common event adapter (CEA) environment
Use the MODIFY CEA,DISPLAY command to display information about the Common Event Adapter (CEA) address space. The information displayed shows which activities are being monitored by CEA, and on behalf of which internal z/OS components and clients using the CEA application programming interface. For more information on how to configure CEA see Configure CEA to work with z/OS in the z/OS Planning for Installation.

F CEA,DISPLAY[,,SUMMARY|S][,,PARMS|P][,,CLIENT={*,name|'name'}][,,CLIENTSUMMARY][,,DIAG,EXIT={*,exitname}][,,EVENT={*,eventname}]

The parameters are:

SUMMARY or S
Provides summary information about client and event subscriptions.
PARMS or P
Displays the currently active settings in CEA from the contents of the
CEAPRMxx members of SYS1.PARMLIB. This is a cumulative set of values
that might have been derived from more than one CEAPRMxx member.

CLIENT={*|name|'name'}
Displays information about a named CEA client, including:
- The events that the client subscribes to
- The name of the exit routine, and so on
Specifying '*' indicates that information for all connected clients is to be
displayed.

CLIENTSUMMARY
Displays information about CEA clients including the number of each type of
event to which the client is subscribed.

DIAG.EXIT={*|exitname}
Displays information about a specific event exit routine. Specifying '*' indicates
that information for all event exit routines is to be displayed.

EVENT={*|eventname}
Displays information about a specific event to which a CEA client is subscribed.
Specifying '*' indicates that information for all events is to be displayed.

Example 1
f cea,d

CEA0004I COMMON EVENT ADAPTER 288
STATUS: ACTIVE-FULL CLIENTS: 0 INTERNAL: 0
EVENTS BY TYPE: #WTO: 0 #ENF: 0 #PGM: 0

Example 2
f cea,d,clientsummary

CEA0004I COMMON EVENT ADAPTER 385
STATUS: ACTIVE-FULL CLIENTS: 1 INTERNAL: 0
EVENTS BY TYPE: #WTO: 0 #ENF: 0 #PGM: 1
CLIENT NAME   #WTO  #ENF  #PGM
CIM_Provider_1 0   0   1

Example 3
f cea,d,client='CIM_Provider_1'

CEA0004I COMMON EVENT ADAPTER 388
STATUS: ACTIVE-FULL CLIENTS: 1 INTERNAL: 0
EVENTS BY TYPE: #WTO: 0 #ENF: 0 #PGM: 1
CLIENT: CIM_Provider_1 USERID: DAVIDZ
EVENT NAME       HANDLER
PGM_EVENT_0      CEASAPFN

Example 4
f cea,d,diag,exit**

CSV460I 15.34.06 EXITINFO
EXIT     DEF EXIT     DEF EXIT     DEF
PGM_EVENT_0  E

Example 5
Disconnecting the common event adapter (CEA) from the IPCS syplex dump directory data set

Use the F CEA,DROPIPCS command to forcibly disconnect the CEA instrumentation from the IPCS syplex dump directory data set. Use this command if you are locked out from performing the maintenance of the syplex dump directory data set.

For more information on how to configure CEA see Configure CEA to work with z/OS in the z/OS Planning for Installation.

F CEA,DROPIPCS

The parameters are:

DROPIPCS

This parameter specifies that you want to forcibly disconnect the instrumentation from the IPCS syplex dump directory data set.

Example 1

CEA00020I DROPIPCS REQUEST SUCCESSFUL.

Adjusting the common event adapter (CEA) mode of operation

Use the MODIFY CEA,MODE command to adjust the mode of operation for CEA. The CEA address space can be operated in MIN mode or FULL mode. MIN mode is in effect when the CEA is only providing indication support to internal z/OS components. When in FULL mode, CEA is providing indication support to both internal z/OS components and appropriate CIM clients.

Adjusting the CEA mode of operation might be necessary when transitioning to a new environment; for example, when permissions and security product setups need to be performed on behalf of the CEA address space.

UNIX System Services must be available for CEA to be transitioned into FULL mode.

F CEA,MODE=[MIN | FULL]

Example 1

Setting CEA mode to MIN and CEA is already in MIN mode.

F CEA,MODE=MIN

CEA0015I CEA ALREADY PROCESSING IN REQUESTED MODE.

Example 2

CEA is already in MIN mode and transitioning to FULL mode.
Example 3

CEA is in MIN mode, trying to transition to FULL mode, and request fails due to some interaction with USS. Codes in the error message give specific details.

Communicating with the Device Manager Address Space

Use the MODIFY DEVMAN command to communicate with the device manager address space to display information or to request a specified service. **Use this command only at the direction of the system programmer.**

```
F DEVMAN, {DUMP} {REPORT} {RESTART} {END(taskid)} {ENABLE(feature)} {DISABLE(feature)} {?|HELP}
```

The following are brief descriptions of the parameters.

**DUMP**
Captures a diagnostic dump of the device manager address space, including the dataspace that contains device manager CTRACE records.

**Note:** The device manager CTRACE component name is SYSDMO. To connect the device manager to an output writer, use the command TRACE CT,ON,COMP=SYSDMO.

**REPORT**
Provides basic information about the current activity and module levels for the device manager address space.

**RESTART**
Terminates the device manager address space and restarts the device manager in a new address space. The system allows any subtasks that are active in the device manager address space at the time of the restart to finish processing. The time allowed for subtask completion is determined by using the average time taken by previous subtasks. The system abnormally ends any subtasks that do not complete in time before it restarts the address space.

**Notes:**
1. Use RESTART to avoid IPL when you install software. You can install most device manager APARs by refreshing LLA (F LLA,REFRESH), and then restarting the device manager (F DEVMAN,RESTART).
2. You can end and not restart the device manager address space by using the CANCEL DEVMAN command. When you end the address space in this way, you must restart the device manager with the DEVMAN cataloged procedure.
MODIFY Command

**END(taskid)**
Terminates the subtask identified by taskid. The F DEVMAN,REPORT command displays the taskid for a subtask.

**ENABLE(feature name)**
Enables an optional feature. The supported features are named as follows:

- **REFVTOC**
  Use ICKDSF to automatically REFORMAT/REFVTOC a volume when it expands.

- **DATTRACE**
  Capture dynamic allocation diagnostic messages.

**DISABLE(feature name)**
Disables one of the following optional features:
- REFVTOC
- DATTRACE

**HELP**?
Displays the DEVMAN MODIFY command syntax.

**Example 1**

The DEVMAN REPORT display has the following format:

- FMID: HDZIA10
- APARS: NONE
- OPTIONS: REFVTOC
- SUBTASKS:
  - JOBNAME STARTED SERVICE UNIT STATUS ID
  - DEVMAN 15.42.32 REFVTOC 3700 SUBTASK RUNNING 0001

**FMID** Displays the FMID level of DEVMAN.

**APARS**
Displays any DEVMAN APARs that are installed (or the word NONE).

**OPTIONS**
Displays the currently enabled options (in the example, REFVTOC is enabled).

**SUBTASKS**
Lists the status of any subtasks that are currently executing.

**Example 2**

MODIFY DEVMAN,HELP displays the DEVMAN MODIFY syntax as follows:

- HELP - display devman modify command parameters
- REPORT - display devman options and subtasks
- RESTART - quiesce and restart devman in a new address space
- DUMP - obtain a dump of the devman address space
- END(taskid) - terminate subtask identified by taskid
- DSFTRACE((TP01)) - define ICKDSF trace point(s) ((TP01)(TP02)(etc))
- ENABLE(feature) - enable an optional feature
- DISABLE(feature) - disable an optional feature

Optional features:
- REFVTOC - automatic VTOC rebuild
- DATTRACE - dynamic allocation diagnostic trace
Changing the DLF Processing Mode

Use the MODIFY DLF,MODE command to change the processing mode for the data lookaside facility (DLF).

```plaintext
F DLF,MODE={DRAIN|D}
{QUIESCE|Q}
{NORMAL|N}
```

The parameters are:

**DLF**

The name of the job.

**MODE**

Changes the processing for DLF.

**Note:** This is the beginning of the shutdown process for DLF.

**DRAIN or D**

Sets drain mode. In drain mode, DLF connects the user to existing DLF objects or disconnects the user from DLF objects. No new DLF objects are created while in DRAIN mode.

Setting drain mode is part of the shutdown procedure for DLF. DLF will operate in normal mode until the STOP DLF command is issued.

**QUIESCE or Q**

Sets quiesce mode. In quiesce mode, DLF only disconnects the user from DLF objects. No new DLF objects are created while in QUIESCE mode. Specify QUIESCE only at the direction of the system programmer.

Setting quiesce mode is part of the shutdown procedure for DLF. DLF will operate in normal mode until the STOP DLF command is issued.

**NORMAL or N**

Sets normal mode. In normal mode DLF creates and connects the user to new DLF objects, connects the user to existing DLF objects, and disconnects the user from DLF objects.

Normal mode is in effect when DLF is active and not stopping. You need to specify MODE=NORMAL only when you have started to shutdown DLF but then decide to resume normal processing and cancel the shutdown.

Changing the DLF parameters

Use the MODIFY DLF,NN command to cause the data lookaside facility (DLF) to use the specified COFDLFxx member of the logical parmlib. The COFDLFxx parmlib member must contain a valid CLASS statement. The only values that change are limits on DLF use of storage through the keywords: MAXEXPB and PCTRETB. The new limit values affect only new connections; any existing connections or DLF objects that exceed the new limits are not affected. The CONEXIT parameter from the initial COFDLFxx member remains valid. See z/OS MVS Initialization and Tuning Reference for further information about the use of the COFDLFxx member.
The parameters are:

**DLF**
- The name of the job.

**NN=xx**
- Causes DLF to use the COFDLFxx member of the logical parmlib where xx identifies the COFDLFxx member of the logical parmlib.

### Displaying DLF Status

Use the MODIFY DLF,STATUS command to display the limits from the COFDLFxx parmlib member currently in effect.

```
F DLF,NN=xx
```

The parameters are:

**DLF**
- The name of the job.

**STATUS or ST or S**
- Displays the DLF limits set in the COFDLFxx parmlib member that is currently in effect.

**SM**
- The status is displayed in megabytes.

**SB**
- The status is displayed in 4K blocks.

**Note:** When STATUS is specified the display is in the most recently requested unit, 4K blocks or megabytes. The default is megabytes.

### Start, configure, and stop hardware event data collection

Use the MODIFY bizproc command to manage collection of hardware event data for System z10 or later machines. Use `F bizproc,BEGIN` to configure and start a run of data collection, and `F bizproc,END` to stop the run. You must explicitly start each run of hardware data collection. You cannot set up data collection to run automatically.

During a run of hardware data collection, the system writes the data to UNIX System Services output files and to SMF record type 113, subtype 2. The system writes the raw data to SMF record type 113 at the start, the end, and at 15 minute intervals during the data collection run, and writes different types of data to the UNIX System Services output files at the end of the run. For more information about the different UNIX System Services output files, see "Accessing the output from a hardware event data collection run" on page 1-41.
Before you issue the `F hisproc,BEGIN` command to configure and start hardware event gathering on a system, you must do some setup steps. See "Setting up hardware event data collection" on page 1-39. Note that it is important to assign a sufficiently high dispatch priority to the instrumentation started task `hisproc`, so that the task can write the sampling data to the .SMP output files in a timely manner.

See "Accessing the output from a hardware event data collection run" on page 1-41 for information on the different files HIS generates, depending on the `F hisproc,BEGIN` parameters you specify.

If you configure a new processor online in a system after you've already issued the `F hisproc,BEGIN` command to start a data collection run for that system, HIS might not collect data for that processor. To ensure that data is collected for all the processors on a system, bring the processors online before beginning a hardware data collection run. The system does not collect data on a processor that is configured offline.

Note that z/OS IRD processor management can configure processors offline or online automatically. A processor is online at the start of the instrumentation run, but it might be configured offline (and sometimes online again) during the run. The system does not collect data on the offline processor.

The parameters are:

`hisproc`,

The name of the hardware instrumentation services (HIS) catalogued startup procedure.

{BEGIN | B} or {END | E}

You must specify either BEGIN or END on the `F hisproc` command to begin or end a run of hardware event data collection for a system:

**BEGIN | B**

Specifies that the system begin a run of the hardware event data collection for a system at the System z10 level or later. Note that you must first start the HIS address space with the `START hisproc` command before you issue the `F hisproc,BEGIN` command to start hardware event data collection.

**END | E**

Specifies that the system end a run of hardware event data collection. As part of the end processing, the system writes the hardware data to your UNIX System Services output files and writes the last SMF record type 113, subtype 2 record to the SMF data set.
Note that while both \texttt{F hisproc,END} and \texttt{STOP hisproc} end the data collection run, the two commands are different:

- Using \texttt{F hisproc,END} ends the hardware collection. You must issue \texttt{F hisproc,BEGIN} command to restart hardware collection.
- Using \texttt{STOP hisproc} both ends the hardware collection and stops the HIS address space. You must reissue the \texttt{START hisproc} command before starting data collection with the \texttt{F hisproc,BEGIN} command.

\textbf{TITLE} | \texttt{TT = 'textdata'}
Optional parameter specifying up to 32 characters of text data meaningful to the user. This data will be displayed in the UNIX System Services .CNT output file. For example, you might use this field to create an eye catcher to identify the reason for a hardware data collection run. The text data must be enclosed in single quotation marks.

\textbf{PATH} = \texttt{pathname}'
Specifies the UNIX System Services path (in a local file system) where you want the system to write the collected hardware event data for one run. The system creates all the output files (the .MAP, .CNT and .SMP files) and writes the collected data to the output files at the end of a run. This parameter is required, unless you have already set up the file path using the HOME keyword in the OMVS segment of an \texttt{ADDUSER hisproc} or \texttt{ALTUSER hisproc} command. See "Setting up hardware event data collection" on page 1-39 for more information.

The \texttt{pathname} must be enclosed in single quotation marks and can be up to 64 characters. For example, you could specify the following for \texttt{pathname}:

- \texttt{PATH='.'}, which means to use the current working directory.
- \texttt{PATH='/u/john'}, which means to use the absolute directory /u/john.
- \texttt{PATH='user/mary'}, which means to use the relative directory user/mary, which is relative to the current working directory.

If instrumentation is to be run concurrently on multiple LPARs with a shared file system, a unique path that is specified by the \texttt{PATH} parameter must be created for each LPAR sharing the file system.

See "Accessing the output from a hardware event data collection run" on page 1-41 for information on the files HIS generates at the UNIX System Services path.

\textbf{\{DURATION | DUR\}} = \texttt{duration_value}'
Optional parameter specifying the duration, in minutes, that you want the hardware event data collection run to last. At the end of this period, data collection stops automatically.

The default DURATION for instruction address sampling is 10 minutes. If request is for event counters only (CTRONLY), the default DURATION is unlimited. To stop an unlimited data collection run, you must explicitly specify one of the following commands:

- \texttt{F hisproc,END}
- \texttt{STOP hisproc}

Value range: 1–1440 (minutes)

\textbf{\{CTRSET | CTR \}} = \texttt{(ALL | (ctr1,ctr2,ctr3,ctr4))}
Optional parameter specifying the set of counters you want to collect.

\texttt{ALL} When you specify \texttt{ALL}, the system collects event counters for all available counter sets. For example, if you have installed and
authorized only the basic and problem-state counter sets on your system, a specification of CTRSET=ALL results in basic and problem-state counter set events being collected. Note that ALL is not enclosed in parentheses.

\[ ctr1[,\ldots,ctr2][,\ldots,ctr3][,ct4] ]

You can also specify a list of counter sets to collect. \( ct_{\text{rn}} \) can be one or more of the following counter sets:

- **B or BASIC for basic:** This counter set includes architected system activities, such as cycle count, instruction count, level 1 cache misses, for example, for a CPU in either the problem or supervisor state.
- **P or PROB for problem state:** This counter set includes the architected system activities only when the CPU is in the problem state.
- **C or Crypto for crypto:** This counter set includes the architected crypto activities, such as function count, cycle count, blocked function count, and blocked cycle count for each of the PRNG, SHA, DEA, and AES functions.
- **E or EXT for extended:** This counter set includes model dependent counters described in model dependent system library publications. For more information about the extended counters for the supported counter version number for each model, see The CPU-Measurement Facility Extended Counter Definition on the Resource Link home page at [http://www.ibm.com/servers/resourcelink](http://www.ibm.com/servers/resourcelink).

If you do not specify CTRSET, HIS uses the B (basic) and P (problem state) counter sets. For example, use CTR=(B,P,E) to specify three counter sets (Basic, Problem state, and extended), and use CTRSET=(BASIC,E) to specify two counter sets (BASIC and extended).

\{(DDNAME | DD)\}=ddname

Optional parameter specifying the 1- to 8-character name identifying the job control language data definition (DD) statement that defines a command file for HIS MODIFY hisproc parameters. The command file referenced contains parameters for data collection runs, set up the same way they would appear in the MODIFY command - the same rules and formatting apply to the command file that you would use in the console command. The command file gives you an alternative to specifying data collection options in a MODIFY hisproc command, which can be useful if you have difficulty fitting all the desired parameters on the command.

Note that duplicate parameters on the MODIFY hisproc command and in the command file are not allowed and will be flagged as errors.

When the system performs an HIS data collection run, the system takes the character string on each line and concatenates them into one command string for parsing. It then merges the command file contents with the parameters specified on the MODIFY hisproc command used to begin HIS data collection. Thus, you can specify some of your data collection options in the command file, and some in the MODIFY hisproc command. For example, you can put all the constant parameters in the command file and run parameters on the command line. For example, TITLE can be used to document the reason for the run on the command line.
MODIFY Command

The statements in the command file are normal MODIFY hisproc parameters, without the MODIFY hisproc, BEGIN heading. The following shows an example of valid command file contents:

- PATH='/user/john',CTRSET=(BASIC,PROB),
- SAMPTYPE=BASIC,
- SAMPFREQ=850000,DATALOSS=IGNORE,
- MAPASID=(7,0E,E1D),
- MAPJOB=(PROG*,DB*,GRS,JE??)

Use the following syntax rules for the command file:

- The parameters specified can reside on multiple lines of the command file.
- You must separate keywords with commas.
- The system treats a blank character between any two non-blank characters on the same line (unless the blank is quoted within quotation marks) as the end of the command.
- You can use columns 1-72 of each line.
- A quoted string (a title or path name, for example) can not span more than one line.
- Parameters and values in the command file must be in UPPER case, unless the parameter value is a quoted string.

In order to use a command file for MODIFY hisproc, you must specify the ddname in the HIS started catalogued start up procedure hisproc. The following example shows how to use a command file named CMDFILE for the MODIFY hisproc command. In the example, DDNAME1 specifies a command file CMDFILE, which is a member of SAMPLING.PROCLIB and contains some or all of the parameters for the MODIFY hisproc command.

//HISPROC PROC
//HISPROC EXEC PGM=HISINIT,REGION=0K,TIME=NOLIMIT
//DDNAME1 DD DSN=SAMPLING.PROCLIB(CMDFILE),DISP=SHR
//SYSPRINT DD SYSOUT=* 

The command file must have a RECFM format of LRECL=80 fixed length record.

Note that the same syntax rules apply to the parameters in the command file as to a MODIFY hisproc command. The system flags duplicate parameters or mutually exclusive parameters entered in the MODIFY hisproc command and the command file as errors and you will receive an error message.

There is no default for the DDNAME.

{CTRONLY | MAPONLY}
These optional keywords allow you to limit collection, as follows:

CTRONLY
Specifies that you want to collect only event counter set data. Data collection for instruction address sampling is not activated. The system generates only a .CNT UNIX System Services output file. (The system does not generate .SMP and .MAP output files if you specify CTRONLY.)

When this keyword is specified, you cannot specify keywords associated with instruction sampling, such as SAMPTYPE and SAMPFREQ.
Keywords allowed with CTRONLY include TITLE, PATH, DURATION, CTRSET.

**MAPONLY**

Specifies that you want to collect only load module mapping information. Data collection event counter sets and instruction address sampling is not activated. The system generates only a .MAP UNIX System Services output file. (The system does not generate .SMP and .CNT output files if you specify MAPONLY.)

When you specify MAPONLY, you must also specify a MAPASID and/or MAPJOB list to identify the address spaces for which you want private load module map data. You cannot specify keywords associated with sampling and counter sets, such as SAMPTYPE, SAMPFREQ, or CTRSET.

Keywords allowed with MAPONLY include TITLE, PATH, MAPASID, MAPJOB.

**{MAPVERBOSE | MAPV}**

Optional keyword specifying that you want the system to produce additional diagnostic information about any errors encountered during the load module mapping phase of data collection. MAPVERBOSE specifies that the system issues system messages to the job log if it encounters multiple errors during load module mapping.

You can only specify MAPVERBOSE if you also activate the load module mapping with the MAPONLY, MAPASID, or MAPJOB parameters. If you specify MAPVERBOSE without specifying one of these load module mapping parameters, the system ignores the MAPVERBOSE parameter.

Default: none, no load module mapping diagnostic information is collected.

**{BUFCNT | BUF}=bufcnt**

Optional keyword specifying the number of sampling buffers (in 4K pages) per processor for the system. A range of values between 4 - 1024 (pages) is supported.

The total number of sampling buffers the system uses is calculated from the BUFCNT specified, as follows:

\[ \text{BUFCNT} \times \text{Number of active processors in the configuration} \]

If you specify too small a value for BUFCNT and the system runs out of buffer space, you might lose some sample data. If you specify a high sampling frequency on the SAMPFREQ parameter, HIS will consume more sampling buffer space and you might need a higher value for BUFCNT to prevent loss of samples.

If you do not specify BUFCNT, the system calculates the number of buffers needed using the number of processors in the configuration and a sample goal rate of 8 million samples in 10 minutes.

**{SAMPTYPE | ST}=samptype**

Optional keyword specifying the sampling functions to be performed. The sampling functions (samptype) supported include:

- **Basic or B**: for basic sampling functions.
- **Diagnostic or D**: for basic and diagnostic sampling. Diagnostic sampling provides additional information over what is available in basic sampling. When diagnostic sampling is requested, basic sampling is also
automatically selected. To use the diagnostic sampling function, you must
first authorize to the diagnostic sampling facilities on the SE console.
For information about how to set up the authorization of the sampling
facilities through the support element (SE) console, see Support Element
Operations Guide for System z10 machine on the Resource Link home
Example: SAMPTYPE=DIAG
Default: Basic

\{SAMPFREQ | SF\}={freq}
Optional keyword specifying the frequency for the sampling functions. \(freq\)
is the total number of samples to be taken in a minute on all active
processors in the configuration. For example, a \(freq\) value of 500000
specifies a sampling frequency of 500,000 samples per minute.

Note that the effective sampling rate is usually smaller than the specified
SAMPFREQ for LPARs that share the processors. Samples are captured
only on logical processors that are actively in use. (A waiting shared logical
processor does not produce samples.)
Default: 800000, which is equivalent to 8 million samples in 10 minutes.

\{DATALOSS | DL\}={IGNORE | STOP}
Optional keyword specifying the action you want the system to take when
buffer overflow occurs during sampling, resulting in sample data loss. You
can specify the following for DATALOSS:
- \texttt{IGNORE}, to specify that you want the system to continue with sampling if
  a buffer overflow condition occurs during sampling. You can abbreviate
  \texttt{IGNORE} as \texttt{I}.
- \texttt{STOP}, to specify that you want to stop sampling if a buffer overflow
  condition occurs during sampling. You can reduce the chances of losing
data in the event of a buffer overflow by either allocating more buffers for
data collection or increasing the priority of the HIS started task. You can
abbreviate \texttt{STOP} as \texttt{S}.
Default: \texttt{IGNORE}

\{MAPASID | MAS\}={ALL | (asid1,asid2,...,asidn)}
Optional parameter specifying a list of address space IDs (ASIDs), in
hexadecimal, to identify the address spaces for which you want to collect
private load module map data. HIS will collect the virtual storage addresses
of modules loaded into private virtual storage for the specified ASIDs that
are not terminating, swapping, swapped, or inactive.
Acceptable hexadecimal values are between \texttt{X'1'} and \texttt{X'7FFF'}.

You can specify up to 32 ASIDs on the MAPASID parameter.
- If you need to collect data from more than 32 address spaces, you can
  use the MAPJOB parameter in place of or in addition to the MAPASID
  parameter.
- The system supports a total of up to 128 address spaces, including those
  specified in both the MAPASID and MAPJOB parameters. If you need
  load module map data for more than 128 address spaces, specify
  MAPASID=ALL. When you specify MAPASID=ALL, the load module map
data for all active ASIDs can be returned.

Examples:
- MAPASID=(7,8,32)
• MAPASID=ALL
  Default: None

{MAPJOB | MJOB}=(job1,job2,...,jobn)
Optional parameter specifying a list of job names for which HIS will collect
the virtual storage addresses of modules loaded into private virtual storage.
HIS collects the virtual storage addresses for jobs that are not terminating,
swapping, swapped, or inactive. The system ignores duplicate, invalid, or
inactive job names specified.

Specify job names with 1-8 characters, following the rules for a valid job
name. You can use wildcard characters * and ? for pattern matching of job
names. See "Using Wildcards in Commands" on page 1-17 for more
information.

You can specify up to 32 job names, including all the pattern matches from
wildcard characters. Note that using wildcard characters can result in
requesting more than 32 physical jobs.

When you specify job names on MAPJOB, the system converts each active
job name into one or more ASIDs. If the job is not active when the system
does the load module mapping, the system will not produce load module
information for that job. The system supports a total of up to 128 address
spaces, including those specified on both the MAPASID and MAPJOB
parameters. If you specify more than 128 address spaces, the system
produces load module mapping data for the first 128 address spaces and
ignores the rest. For example, MAPJOB=(*) might produce load module
mapping information for 128 active address spaces, starting with ASID 1. If
you need load module map data for more than 128 address spaces, specify
MAPASID=ALL. When you specify MAPASID=ALL, the load module map
data for all active ASIDs can be returned. Examples:
• MAPJOB=(task1,grs,omvs,db*,task2)
• MAPJOB=(o*s)
• MAPJOB=(JOB1??,JE*)
  Default: None

Example 1: Start data collection using HIS defaults, including SMF data, and
creates .CNT and SMP.cpu#. files. By default, the following instrumentation data are
captured besides SMF data:
• Data from the basic and problem state counter sets
• Basic sampling data
  MODIFY hisproc,BEGIN

Example 2: Start data collection that runs for 12 minutes, collects load module
mapping information for jobs PGMA and PGMB. HIS collects SMF data and creates
.MAP, .CNT and SMP.cpu#. files.
  MODIFY hisproc,BEGIN,DURATION=12,MAPJOB=(PGMA,PGMB)

Example 3: End HIS data collection:
  MODIFY hisproc,END

Building and Replacing Library Lookaside Directories

Use the MODIFY LLA command to cause the library lookaside (LLA) program to
build a new copy of all or part of the library directory indexes and then replace
the old copy with this new copy.
MODIFY Command

The parameters are:

**LLA**

The name of the job.

**REFRESH**

Causes LLA to build a new copy of all the library directory indexes for the complete set of data sets currently managed by LLA. This procedure is necessary when an installation makes changes to the LLA directories.

**UPDATE=xx**

Causes LLA to rebuild a specified part of the directory. xx identifies the CSVLLAxx parmlib member or the data set pointed to by the IEFPARM DD statement in the START LLA procedure. CSVLLAxx contains libraries LLA is to manage.

**Notes:**

1. Use the MODIFY LLA command rather than stopping and restarting LLA to change the library directory indexes; system performance is slowed anytime LLA is stopped.
2. The MODIFY LLA command does not reload (or refresh) modules that are already loaded, for example, modules in long-running or never-ending tasks. The refreshed version does not get picked up unless the module is loaded after the MODIFY LLA completes. To refresh such a module, the system programmer has two options:
   - If the module has no co-requisite requirement in LPALIB, you can use the subsystem's command to replace the module, or stop and then restart the long-running or never-ending task.
   - Re-IPL the system with the CLPA option.

**Operating with the Network File System Server**

The network file system server provides transparent access from different client workstations to MVS data sets. It allows access to most file formats available under MVS. A server provides resources to the network service, such as disk storage and file transfer. For more information about the network file system server, see the [Network File System Guide and Reference](#). For information about network file system server messages (GFSAxxxi), use that book or LookAt.

**Managing the Object Access Method (OAM)**

Use the MODIFY OAM command to display information about the object access method (OAM) or to request that OAM perform a specified service: object management, space management, or recovery functions.

For a detailed discussion of the MODIFY OAM command parameters, see the [z/OS DFSMS OAM Planning, Installation, and Storage Administration Guide for Object Support](#) and the [z/OS DFSMS OAM Planning, Installation, and Storage Administration Guide for Tape Libraries](#).
Recycling z/OS UNIX System Services (z/OS UNIX)

Use the MODIFY OMVS command to recycle z/OS UNIX System Services. This is an alternative to re-IPLing the system in order to reinitialize the z/OS UNIX System Services environment. This command should be used only on a limited basis when complete reinitialization and reconfiguration are required. Prior to issuing MODIFY OMVS to initiate a shutdown, you should review the information about shutdown in "z/OS UNIX System Services Planning".

The MODIFY OMVS,SHUTDOWN command completely disables z/OS UNIX services. IBM strongly recommends that an installation perform the following steps prior to issuing the command:

1. Attempt to dry up batch and interactive workloads. Once a shutdown request is accepted, jobs that subsequently attempt to connect to z/OS UNIX services for the first time will be delayed until restart occurs; jobs that are already connected to z/OS UNIX services (dubbed) will be sent terminating signals and will end abruptly.

2. Follow recommended procedures to quiesce applications and subsystem workloads using z/OS UNIX services. This will allow subsystems such as DB2, CICS, and IMS™, and applications such as SAP, LOTUS DOMINO, NETVIEW, and WEBSPHERE to be quiesced in a more controlled manner than would occur if simply using this command. Use the D OMVS,A=ALL command to determine which applications, if any, require quiescing.

3. Shut down TCP/IP and all TCP/IP applications in the manner that TCP/IP recommends.

4. Shut down any colony PFS address spaces. This could potentially include NFS and DFS™.

F OMVS(,,SHUTDOWN)
{} ,RESTART[,,OMVS=(xx,yy)]

The parameters are:

OMVS
The name of the job.

SHUTDOWN
Request that the system shut down the UNIX services environment, which includes quiescing all running UNIX services work on a given system.

RESTART
Request that the system restart the UNIX services environment which has shut down successfully.

OMVS
Specifies the parmlib member or members (BPXPRMxx) to use to locate the parmlib statements to configure the z/OS UNIX kernel.

If the OMVS parameter is not specified, the BPXPRMxx member used on the previous start of OMVS is processed again, with any updated contents taking effect.

Example 1

To shut down the UNIX services environment, enter:

F OMVS,SHUTDOWN
The following highlighted console message will be displayed when the shutdown request is accepted:

BPXI055I OMVS SHUTDOWN REQUEST ACCEPTED

If a shutdown request cannot be accepted, the following console message will be displayed:

BPXI057I OMVS SHUTDOWN REQUEST REJECTED

If a shutdown request is delayed because of blocking jobs or processes, the following console message will be displayed when the delay exceeds a finite time interval:

BPXIO64E OMVS SHUTDOWN REQUEST DELAYED

**Dynamically activating maintenance for z/OS UNIX System Services (z/OS UNIX)**

Use the MODIFY OMVS command to dynamically activate maintenance for z/OS UNIX System Services.

```
F OMVS {,ACTIVATE=SERVICE}
{,DEACTIVATE=SERVICE}
```

The parameters are:

**ACTIVATE=SERVICE**
Requests that the system dynamically activate SMP/E installable service for the z/OS UNIX kernel and logical file system (LFS) components without requiring a component restart or system IPL. The system activate the service from the target libraries specified in BPXPRMxx parmlib statements, SERV_LPALIB and SERV_LINKLIB. When the F OMVS,ACTIVATE=SERVICE is issued, the system allocates and opens load libraries specified on SERV_LPALIB and SERV_LINKLIB to locate and load the new services items. Therefore, do not update these libraries during the activation process.

**Restriction:** The ACTIVATE=SERVICE parameter will only activate those service items in the target libraries that are appropriate for the installation service level. Your installation's service level might be too low to allow dynamic activation of some service items in the target library.

**Result:** The system issues message BPXM061I to display the service items to be activated. It then issues BPXM061D and prompts for the activation to continue based on the information in BPXM061I. The operator can reply 'Y' to let activation continue. Any other reply cancels the command.

You can also use the DISPLAY command (D OMVS,ACTIVATE=SERVICE) to display the dynamically activated service. See "Displaying z/OS UNIX System Services Status" on page 4-192.

**DEACTIVATE=SERVICE**
Requests that the system dynamically back off a set of dynamically activated service items. You might need to use this command if you encounter a problem with a service item, or if you do not need it any longer. The DEACTIVATE=SERVICE parameter dynamically deactivates only those service items that were activated with the previous ACTIVATE=SERVICE command.

**Result:** The system issues message BPXM063I to display the service items to be deactivated. It then issues message BPXM063D and prompts for the
deactivation to continue based on the information in message BPXM063I. The operator can reply 'Y' to let deactivation continue. Any other reply cancels the command.

You can also use the DISPLAY command (DISPLAY OMVS, ACTIVATE=SERVICE) to display the dynamically activated service. See "Displaying z/OS UNIX System Services Status" on page 4-192.

Stopping a physical file system (PFS) through a logical file system (LFS) interface

Use the MODIFY OMVS command to stop a PFS through an LFS interface.

```
MODIFY OMVS, STOPPFS=psfname
```

The parameters are:

**psfname**
Indicates the name of the PFS to be stopped. This is the name used on the FILESYSTYPE statement from the BPXPRMxx parmlib member that defined the PFS.

Replacing the sysplex root file system in the shared file system configuration (z/OS UNIX)

Use the MODIFY OMVS command to dynamically replace the sysplex root file system. This support does **not** copy any directories, data, or links from one sysplex root to another, and active connections to any files or directories will be broken on replacement of new sysplex root file system.

**Requirements or restrictions:** The following conditions are verified by the system before the replacement:

1. Use this supported function only in the shared file system configuration. The sysplex can be a single-system sysplex.
2. All systems in the shared file system environment must be at the level that supports this function.
3. The current sysplex root PFS and the new sysplex root PFS are up in all the systems in shared file system configuration.
4. The sysplex root must be locally mounted on all systems in the shared file system configuration.
5. Byte range locks must not be held on the sysplex root during replacement processing.
6. The current sysplex root and the new sysplex root must be either HFS or zFS in any combination.
7. The sysplex root or any directories on it cannot have been exported by the DFS or SMB server.
8. Remote NFS mounts of the sysplex root or any directories on it are considered as active use of the current sysplex root.
9. During the replacement, the new zFS sysplex root file system must not be HSM-migrated, mounted, or in use.
10. The UID, GID and the permission bits of the root directory in the new sysplex root file system must match those of the root directory in the current sysplex root file system.
11. If the SECLABEL class is active and the MLFSOBJ option is active, the multilevel security label for the new sysplex root must be identical to the assumed multilevel security label of the current sysplex root.

```
F OMVS,NEWROOT=fsname,COND=YES|NO|FORCE
```

The parameters are:

**NEWROOT=fsname**
Specifies the new sysplex root file system that is to replace the existing one. The new file system must follow the sysplex root file system convention described in [z/OS UNIX System Services Planning](https://www.ibm.com/support/docview.wss?uid=swg21299750).

After the replacement, the MOUNT parameters are preserved or dropped depending on the type of the new file system:
- If the file system type is the same as the old file system, the MOUNT specifications are preserved.
- If the file system type is different from the old file system, the MOUNT specifications are dropped.
- If the MOUNT parameters have been dynamically changed, they are dropped anyway.

Message BPXF247I is issued if MOUNT parameters are dropped.

**COND=YES**
Proceed conditionally. If any active usage is found in the current sysplex root file system, report the active usage through BPXF245I message to the console and stop the command processing. The default is COND=YES.

**COND=NO**
Proceed unconditionally. If any active usage is found in the current sysplex root file system, report the active usage through BPXF245I message to the console and continue processing the command to replace the current sysplex root file system with the new sysplex root file system. Active connections to any files or directories in current sysplex root file system will be broken when the new sysplex root file system replaces the current one, and might get an EIO return code.

**COND=FORCE**
Use the FORCE option if the current sysplex root file system is failing or unowned.

The BPXI085D message is issued to the console to confirm the FORCE option. Mount points are validated. Symbolic links are not validated. In addition to the restrictions listed previously, the following restrictions must be met to use the FORCE option:
- All systems in the sysplex must be at the V1R11 level or higher.
- The mount points in the current sysplex root file system must not exceed 64 characters in length.

For more information about replacing the sysplex root file system, see the Dynamically replacing the sysplex root file system topic in [z/OS UNIX System Services Planning](https://www.ibm.com/support/docview.wss?uid=swg21299750).
Stopping a Temporary File System (TFS)

Use the MODIFY TFS command to stop a TFS running in a colony address space. The MODIFY TFS command can be used to force a TFS to stop or terminate even if TFS file systems are mounted.

**Note:** The MODIFY TFS command is not supported if TFS runs in the z/OS Unix kernel address space.

The complete syntax for the MODIFY TFS command is:

```plaintext
F TFS,\{STOP\} \{TERM\} \{FORCESTOP\} \{FORCETERM\}
```

- **TFS**
  The name of the TFS to be stopped.

- **STOP**
  This is the same function as the STOP command. If no TFS file systems are mounted, this command causes TFS to exit. A WTOR is issued allowing TFS to be restarted.

- **TERM**
  If no TFS file systems are mounted, this command causes TFS to exit without prompting to restart the TFS. You can issue the SETOMVS RESET=(xx) command to start another TFS.

- **FORCESTOP**
  Similar to STOP, issuing this command will cause TFS to terminate even if there are mounted TFS file systems.

- **FORCETERM**
  Similar to TERM, issuing this command will cause TFS to terminate even if there are mounted TFS file systems.

Enabling and Disabling the Application Response Measurement (ARM) Agent and Enterprise Workload Manager (EWLM) platform services

Use the MODIFY WLM,AM command to enable or disable Application Response Measurement (ARM) services and Enterprise Workload Manager (EWLM) platform services. For more information on ARM services and EWLM platform services, see the [Eserver Information Center](http://publib.boulder.ibm.com/eserver/v1r1/en_US/index.htm?info/icmain.htm) on the Internet.

The complete syntax for the MODIFY WLM,AM command is:

```plaintext
F WLM,AM={DISABLE|ENABLE}
```

- **WLM**
  The name of the job.

- **AM**
  Indicates that the state of ARM services is to be changed.
MODIFY Command

DISABLE
Disables ARM services. Applications calling any of the ARM services will receive a return code indicating that this function is not operational from that point on; however, the applications continue to run. Also, if the EWLM managed server is connected, it will be disconnected from WLM. The EWLM managed server might not have to terminate; it might continue to run and wait for further instructions (for example to restart), but subsequent attempts to connect the EWLM managed server to the platform are rejected, before the ARM services get re-enabled.

ENABLE
Enables previously disabled ARM services. ARM-instrumented applications that are already active at the time this command is invoked must be restarted if the ARM calls should be processed. In addition, when the ARM services are enabled, you can restart the EWLM managed server.

Changing Workload Manager Resource States
Use the MODIFY WLM command to change the state of a resource. This command changes the resource state only on the system where you issue the command.

Note: The MODIFY WLM command cannot be specified in the COMMNDxx parmlib member.

Resource states are used by workload management in conjunction with scheduling environments to ensure that work is scheduled only on a system with the appropriate resources to handle that work. See z/OS MVS Planning: Workload Management for more information about resources and scheduling environments.

The complete syntax for the MODIFY WLM command is:

```
F WLM,[RESOURCE=resourcename, {ON|OFF|RESET}]
```

**WLM**
The name of the job.

**RESOURCE=resourcename**
Changes the state of resourcename.

**ON**
Specifies that if the required resource state in a scheduling environment is ON, that requirement will be satisfied on the target system.

**OFF**
Specifies that if the required resource state in a scheduling environment is OFF, that requirement will be satisfied on the target system.

**RESET**
Specifies that this resource setting will satisfy neither an ON nor an OFF resource requirement. Therefore if a scheduling environment includes resourcename in its list of resources (whether ON or OFF), then that scheduling environment will not be available on the target system.

**Example**
To change the setting of the DB2A resource to ON, enter:

```
F WLM,RESOURCE=DB2A,ON
```
The system will respond:
IWM039I RESOURCE DB2A IS NOW IN THE ON STATE

Specifying Data Set Selection Criteria for an External Writer

You can use the MODIFY command to specify the criteria that an external writer is to use in selecting data sets for processing.

```
F [XWTR.]jobname.]identifier,
 {{CLASS|C}=[classes] }
 {{DEST|D}=[LOCAL]}
 |remote-workstation-name
 {{FORMS|F}=[forms-name] }
 {{JOBID|J}=[JOBnnnnn|Jnnnnn]
 |STCnnnnn[Snnnnn]
 |TSUnnnnn[Tnnnnn]}
 {{WRITER|W}=[STDWTR]
 |user-writer-name
```

The parameters are:

**XWTR**

The name of the IBM-supplied cataloged procedure for the external writer.

**jobname**

The job name assigned to the external writer.

The job name for a started task depends on whether the JOBNAME parameter was specified on the START command for the task:

- If JOBNAME was specified, *jobname* is the name specified on the JOBNAME parameter.
- If JOBNAME was *not* specified and the source JCL for the started task is a *job*, *jobname* is the name specified on the JCL JOB statement.
- If JOBNAME was *not* specified and the source JCL for the started task is a *procedure*, *jobname* is the member name.

You can use asterisk notation to specify more than one job or started task on the MODIFY command. See "Using Asterisks in MODIFY Commands" on page 4-331 for more information.

**identifier**

The identifier, from the START command, of the writer to be modified. (See "Displaying Started Task Status" on page 4-174 for information about determining the jobname and identifier of currently active started tasks.)

The following types of identifiers can be used:

- The identifier that was specified on the START command.
- `/devnum`, the device number specified on the START or MOUNT command. A device number is 3 or 4 hexadecimal digits, optionally preceded by a slash (/). You can precede the device number with a slash to prevent ambiguity between the device number and a device type or identifier.
- *devicetype*, the type of device specified on the START or MOUNT command.
If no identifier was specified, the identifier “STARTING” is temporarily assigned until the system can assign another according to the following order of precedence:

1. If an identifier was not specified on the START command, the identifier is the device type (for example, 3410) or device number (for example, X’0000’), specified on the START or MOUNT command.
2. If an identifier, a device type, or a device number was not specified on the START or MOUNT command, the identifier is the device type specified on an IERPDER DD statement (invoking a cataloged procedure) in the JCL.
3. If none of the above was specified, the identifier defaults to the job name.

You can use asterisk notation to specify more than one job or started task on the MODIFY command. See "Using Asterisks in MODIFY Commands" on page 4-331 for more information.

CLASS= or C=[classes]
Select only data sets enqueued in the specified classes. You can specify up to eight output classes, in priority order.

The output classes are named without separating commas. If no default class was specified in the cataloged procedure to start the external writer, and no class list is provided in the START or MODIFY command, the external writer selects any ready data set on the hard-copy queue.

JOBID= or J=[JOB or J]nnnnn, [STC or S]nnnnn, or [TSU or T]nnnnn
Select only data sets from the job with this subsystem-assigned JOBID, where nnnnn is the JOB id number, the STC id number, or the TSU id number. If JOBID is omitted, the external writer does not select data sets by job.

Notes:
1. JES2 ignores the prefix (JOB or J, STC or S, or TSU or T) and uses only the id number, nnnnn.
2. With JES2 operating on z/OS version 1.2 or higher, you may specify up to a six-digit id number, or nnnnnn.

WRITER or W=
STDWTR
Select only data sets that are to be processed by the standard (IBM-supplied) writer.

user-writer-name
Select only data sets that are to be processed by the specified user writer.

If WRITER= is specified without STDWTR or user-writer-name, the external writer does not use the writer program as a data set selection criterion and automatically invokes the correct writer programs.

FORMS= or F=[forms-name]
Select only data sets that specify this forms name.

If forms-name is omitted, the external writer does not use the forms name as a data set selection criterion, and notifies you whenever a forms change is needed.

DEST= or D=
LOCAL
Select only data sets destined for the central processor complex.
remote-workstation-name
   Select only data sets destined for the specified remote workstations
   attached to this local complex.

If DEST= is specified without LOCAL or remote-workstation-name, the external
writer does not use the destination as a data set selection criterion.

Previously-specified options remain in effect until respecified. Before the first
MODIFY command is issued, the default options are:
CLASS=(see note),JOBID=,WRITER=,FORMS=,DEST=LOCAL

Note: If no default class list is specified in the cataloged procedure to start the
external writer, and you do not provide a class list in the START command,
the external writer does not begin processing until you enter a MODIFY
command.

The MODIFY command passes the entire command buffer, including comments, to
the external writer that is to be modified. Therefore, all modifiable external writers
should be sensitive to embedded blanks in their parameter fields.

Causing an External Writer to Pause
You can use the MODIFY command to cause an external writer to pause for
operator intervention.

F [XWTR.|jobname.]identifier,{PAUSE|P}={FORMS }
   [DATASET]

The parameters are:

XWTR
   The name of the IBM-supplied cataloged procedure for the external writer.

jobname
   The job name assigned to the external writer.
   
   The job name for a started task depends on whether the JOBNAME parameter
   was specified on the START command for the task:
   
   • If JOBNAME was specified, jobname is the name specified on the JOBNAME
     parameter.
   
   • If JOBNAME was not specified and the source JCL for the started task is a
     job, jobname is the name specified on the JCL JOB statement.
   
   • If JOBNAME was not specified and the source JCL for the started task is a
     procedure, jobname is the member name.
   
   You can use asterisk notation to specify more than one job or started task on
   the MODIFY command. See “Using Asterisks in MODIFY Commands” on page
   4-331 for more information.

identifier
   The identifier of the writer to be modified. (See “Displaying Started Task Status”
   on page 4-174 for information about determining the job name and identifier of
currently active started tasks.)

   The following types of identifiers can be used:
   • The identifier that was specified on the START command.
MODIFY Command

- [\/]devnum, the device number specified on the START or MOUNT command. A device number is 3 or 4 hexadecimal digits, optionally preceded by a slash (/). You can precede the device number with a slash to prevent ambiguity between the device number and a device type or identifier.

- devicetype, the type of device specified on the START or MOUNT command.

If no identifier was specified, the identifier “STARTING” is temporarily assigned until the system can assign another according to the following order of precedence:

1. If an identifier was not specified on the START command, the identifier is the device type (for example, 3410) or device number (for example, X'0000') specified on the START or MOUNT command.

2. If an identifier, a device type, or a device number was not specified on the START or MOUNT command, the identifier is the device type specified on an IEFRDER DD statement (invoking a cataloged procedure) in the JCL.

3. If none of the above was specified, the identifier defaults to the job name.

You can use asterisk notation to specify more than one job or started task on the MODIFY command. See “Using Asterisks in MODIFY Commands” on page 4-331 for more information.

PAUSE= or P=FORMS
For unit record devices, the writer is to pause when a change of forms is necessary. The writer stops when it encounters a form name other than the installation default form name on a SYSOUT DD statement.

PAUSE= or P=DATA SET
For unit record devices, the writer is to pause before starting to process each data set. When you are ready to continue processing, you can restart the writer by entering a single character response to message IEF382A.

Example 1

To stop writer 00E before it processes each new data set, enter:

F 00E,PAUSE=DATA SET

Example 2

To stop writer ABCD before it processes each new data set, enter:

F /ABCD,PAUSE=DATA SET
MONITOR Command

Use the MONITOR command to display jobnames, data set status, and time-sharing user sessions continuously, and to add certain information to mount and demount messages. If you want to activate the monitor function without associating the monitor request with a console, use the SETCON MONITOR command.

The MONITOR command does not display Advanced Program-to-Program Communication/MVS (APPC/MVS) transaction programs.

Notes:
1. To stop the MONITOR display, use the STOPMN command.
2. The monitor display ends when the specified MCS or SMCS console is varied offline. The operator must re-issue the MONITOR command when the MCS or SMCS console is restarted.
3. The DSNNAME and SPACE operands are not routable and are not sysplex wide.
4. The MONITOR command and operands are not sysplex wide when they are activated from a TSO user. In this case the TSO user names will only be displayed (in response to the DISPLAY OPDATA,MONITOR command) if they are active on the system where the display is processed.

Use the SETCON command if you want the system to generate monitor messages, but you do not want the messages to appear on the console.

Scope in a Sysplex

The MONITOR command has sysplex scope only when you specify L=. See “Using Commands That Have Sysplex Scope” on page 1-11 for an explanation of sysplex scope.

Syntax

The complete syntax for the MONITOR command is:

```
MN {JOBNAMES[,T] [,L={a|name|name-a}]}
{DSNAME}
{SPACE}
{STATUS}
{SESS[,T]}
```

Parameters

The parameters are:

**JOBNAMES**

The system is to display the name of each job when the job starts and terminates, and display unit record allocation when the step starts. If a job terminates abnormally, the job name appears in a diagnostic message.

**DSNAME**

The system is to display, in mount messages, the name of the first non-temporary data set allocated on the volume to which the messages refer. No data set name appears in messages for data sets with a disposition of DELETE.
Note: This operand is only effective on the system where the command was processed (system scope only).

SPACE
The system is to display, in demount messages, the available space on the direct access volume.

Note: This operand is only effective on the system where the command was processed (system scope only).

STATUS
The system is to display the data set names and volume serial numbers of data sets with dispositions of KEEP, CATLG, or UNCATLG whenever they are freed.

SESS
The system is to display the user identifier for each TSO terminal when the session is initiated and when it is terminated. If the session terminates abnormally, the user identifier appears in the diagnostic message.

T
The system is to display the time (in hours, minutes, and seconds) along with the user identifier or job name information. When specified, T is activated for all consoles that have MONITOR turned on.

L=a, name, or name-a
The display area (a), console name (name), or both (name-a) where the system is to present the display. If you omit this operand, the console on which the MONITOR command is entered is assumed.

Example
To display the job name information and the time when each job starts and terminates, enter:
MN jobnames,T
MOUNT Command

Use the MOUNT command to allow allocation of an I/O device to all job steps that require a particular volume without intervening demountings and remountings of the volume. Because the system must schedule MOUNT commands, there is a short delay between when you issue the command and when the volume is mounted.

In a JES3 complex, use the MOUNT command with great care. When a volume is to be mounted on a JES3-managed direct access device, you must enter a MOUNT command on each system in the complex that has access to the device. In addition, if you are requesting that a volume be mounted on a JES3-managed unit, you must also enter a JES3 mount command (*MODIFY,S,M=...). See z/OS JES3 Commands.

Once the system has executed a MOUNT command, the specified device becomes reserved and remains mounted and reserved until an UNLOAD or VARY OFFLINE command is issued. A reserved direct access volume can be assigned the USE attribute of PUBLIC, PRIVATE, or STORAGE. A reserved tape volume can be assigned the USE attribute of PRIVATE or PUBLIC.

If you need to nullify a scheduled mount before the system executes the MOUNT command, use the CANCEL command.

Note that the system will issue a mount message for a premounted volume. However, the mount message will only appear on the job’s JES Job Log and in the SYSLOG. It will not appear on the operator’s console.

Scope in a Sysplex

The MOUNT command has sysplex scope only when you issue the command against an automatically switchable tape device. See Using Commands That Have Sysplex Scope on page 1-11 for an explanation of sysplex scope.

Syntax

The complete syntax for the MOUNT command is:

```
M {[/]devnum ,VOL=(NL,serial)[,USE=STORAGE]}
{devicetype } {SL} {PUBLIC }
{AL} {PRIVATE}
```

Parameters

The parameters are:

[/devnum]

The device number for the input/output device to be mounted. A device number is 3 or 4 hexadecimal digits. A slash (/) must precede a 4-digit number and is optional before a 3-digit number.

devicetype

The type of device to be mounted. It can be any IBM-supplied name (for example, 3380).
**MOUNT Command**

**VOL=(NL, serial)**
The volume specified does not have a standard label. This parameter must not be used for direct access volumes. The serial number, up to six characters long, is used for allocation references.

Do not try to mount volumes with a label type of NL in a system-managed tape library these volumes are not supported.

**VOL=(SL, serial)**
The volume specified has a standard label (SL). The serial number, up to six characters long, is used for label verification and allocation references. Tape label verification is not performed until the tape is opened.

**VOL=(AL, serial)**
The volume has an American National Standard label (AL). The serial number, up to six characters long, is used for label verification and allocation references. AL can be specified only if it was selected as an option at system installation. Tape label verification is not performed until the tape is opened.

**USE=STORAGE, PUBLIC, or PRIVATE**
The USE attribute, defined by your installation procedures, to be assigned to the specified volume. Refer to [z/OS MVS Using the Subsystem Interface](https://www.ibm.com/support/knowledgecenter/en/SSEPS8_1.14.0/com.ibm.zos.doc/zb7re210.html) for more information on USE attributes.

**Example 1**

To request that a volume with a standard label of 222222 be mounted on device 282, enter:

```bash
m 282,vol=(sl,222222),use=private
```

**Example 2**

To request that a volume with a standard label of 222222 be mounted on device 3333, enter:

```bash
m /3333,vol=(sl,222222),use=private
```

**Tape Library Dataserver Considerations**

The MOUNT command is the only type of library request that can be used to request a specific system-managed tape library device. (Requesting a specific device is also called demand allocation.) The request must specify a system-managed tape library volume.

**Table 4-24** shows the possible volume and device combinations you can specify on the MOUNT command, and how the system will handle those inputs.

<table>
<thead>
<tr>
<th>Volume location:</th>
<th>Device location:</th>
<th>System action:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-library</td>
<td>Non-library</td>
<td>Processing continues</td>
</tr>
<tr>
<td>Non-library</td>
<td>Library</td>
<td>Issues error message IEF120I</td>
</tr>
<tr>
<td>Library</td>
<td>Non-library</td>
<td>Issues error message IEF113I</td>
</tr>
<tr>
<td>Library A</td>
<td>Library B</td>
<td>If volume and device are in different libraries — issues error message IEF111I</td>
</tr>
</tbody>
</table>
### Tape Multi-volume Considerations

When a tape volume is premounted using the MOUNT command, the system will not dismount that volume even if additional volumes are required for the data set. Instead, an additional tape drive or drives will be allocated for the additional volumes. For example, assume that dataset BACKUP.SMFDATA.DAILY already resides on tape volume 123456, which is premounted using the MOUNT command.

```plaintext
//DUMPOUT DD DSNAME=BACKUP.SMFDATA.DAILY,DISP=(MOD,KEEP),
// VOL=(,,,40)
```

If a job has a DD statement with a volume count of 40, it will cause the system to allow for 39 scratch volumes. But since volume 123456 may not be dismounted, the system will allocate an additional tape drive for the scratch volumes, even if the data set does not extend onto any additional volumes.

Note also that the system will issue a mount message for the premounted volume. However, the mount message will only appear on the job’s JES Job Log and in the SYSLOG. It will not appear on the operator’s console.
PAGEADD Command

PAGEADD adds auxiliary storage space (local page data sets) to the system. The page data sets added remain available to the system until you IPL with the CLPA (create link pack area) option, IPL with the CVIO (clear virtual I/O) option, or issue a PAGEDEL command. PAGEADD can also direct VIO pages away from a page data set that is being added.

Use the PAGEADD command only at the request of your system programmer.

You might need to add auxiliary storage space if any of these conditions exist:
- The planned system load increases.
- The space provided during system initialization proves insufficient.
- Space is lost because of a hardware failure.

If the system detects a shortage of available auxiliary storage space, it issues the following message:

IRA200I AUXILIARY STORAGE SHORTAGE

The system rejects LOGONs and START commands until the shortage is relieved.

If the shortage increases, the system issues the following message:

IRA201I CRITICAL AUXILIARY STORAGE SHORTAGE

The system rejects LOGONs and START commands and might delay the starting of certain initiators until the shortage is relieved.

Requested data sets are placed in use in the order specified in the command. The system informs you when each is available for use.

The number of page data sets that can be in use by the system is limited by the number specified on the PAGTOTL system parameter. (See z/OS MVS Initialization and Tuning Guide) If these limits are exceeded, the system issues a message, and you cannot add any more data sets of that type during this IPL. However, if the limit has been exceeded for one type of data set, you could still add data sets of the other type.

If your paging device contains a subsystem cache, it is important to note that the PAGEADD command determines the status of the subsystem cache and resets it, if necessary. However, MVS does not set the subsystem cache on if it was powered off with the IDCAMS command SETCACHE SUBSYSTEM OFF. MVS resets the data in the cache only under certain circumstances, such as at a cold start or at the first issuance of a PAGEADD command to the device.

The page data sets must be defined before you can issue the PAGEADD command. If the volume containing the data set is not mounted before you enter the command, the system issues a mount message.

A data set that is draining, as the result of a PAGEDEL DRAIN command, can be made read/write again by issuing a PAGEADD for the data set. A data set that has been marked BAD cannot be made read/write again with the PAGEADD command.

When you issue a PAGEADD command for a data set previously deleted with a PAGEDEL command, the system might indicate that some slots are already in use on the newly allocated data set. These slots contain pages that the system has migrated to another data set but that the owner has not yet referenced. Once the
owner references the page, the system frees the slot both from the newly allocated data set and from the data set on which the page actually resides.

Use the DISPLAY ASM command to identify the page data sets the system is currently using.

Syntax

The complete syntax for the PAGEADD command is:

```
PA {[PAGE=]dsname[,dsname]...}
{NONVIO=}
```

Parameters

The parameters are:

**[PAGE=}dsname[,dsname]...**

The name of one or more page data sets to be added. If *dsname* is not the name of a page data set, the system issues message IEE782I.

**NONVIO=dsname[,dsname]...**

The name of one or more page data sets to be added. The system is not to use these added page data sets to receive VIO pages.

**Example 1:** To add one page data set, enter:

```
PA page3
```

**Example 2:** To add three page data sets, enter:

```
pa page=sys1.page01,sys1.page02,page3
```

**Example 3:** To add SYS1.PAGE01 as a page data set and specify not to use it for VIO paging, enter:

```
PA NONVIO=SYS1.PAGE01
```
PAGEDEL Command

Use the PAGEDEL command to delete, replace, or drain (quiesce) local page data sets.

Attention: Use this command only at the request of your system programmer. Misuse can seriously impair system performance.

This command allows you to remove or replace local page data sets without requiring an IPL.

Note: Draining a data set means freeing its in-use slots. The system effects this by making the data set read-only.

You might need to delete, replace or drain local page data sets for any of the following reasons:
- The hardware is being reconfigured.
- The hardware is generating I/O errors.
- The page configuration is being changed.
- System tuning requires the change.

When you replace a local page data set, the system migrates the in-use slots from the old data set to the new one.

When you delete a page data set, the system migrates the in-use slots to other data sets before it deletes the data set.

The system keeps track of the in-use slots on both the old or deleted data set and the new data set until the owner references the pages. Thus, when you issue a PAGEADD command to allocate a new data set, the system might indicate that some slots on the newly allocated data set are already in use. As soon as the owner references a page, the system frees the slot both from the newly allocated data set and from the data set to which the page was migrated.

Notes:
1. You cannot use PAGEDEL to delete, replace, or drain the PLPA, common, or the last local page data sets.
2. When you enter a PAGEDEL command, the system issues a highlighted, non-rollable message to indicate that the command is accepted. The message remains on the console screen until the PAGEDEL command completes.
3. If you enter a PAGEDEL command while a PAGEDEL command is already in progress, the system issues a message that it rejects the command.
4. The system rejects a PAGEDEL command that decreases the amount of auxiliary storage below a fixed percentage of the available auxiliary storage.
5. To identify the page data sets the system is currently using or the status of the PAGEDEL command, issue the DISPLAY ASM command.
6. When issuing the PAGEDEL DELETE command, there is the potential for significant storage usage. Several blocks of storage in ESQA are obtained in order to process the PAGEDEL command. This includes a x'500' byte block for each cylinder on the deleted data set that contains in-use slots. Some of this storage will remain in use and not freed until all the in-use slots are freed, which could be some time after the PAGEDEL has completed (as indicated by message IEE205I).

If possible, use the PAGEDEL REPLACE option instead of the DELETE option to avoid the ESQA storage usage associated with the DELETE option. With the
REPLACE option, slots are migrated from the old data set directly to the new
data set without the need to keep track of the location of the migrated slots
(thus eliminating the need for extra ESQA storage).

Syntax

The complete syntax for the PAGDEL command is:

\[
\text{PD} \{\text{DELETE, PAGE}=(\text{dsname}[,,\text{dsname}]...) \}
\{\text{REPLACE, PAGE}=\{(\text{dsname},\text{rdname})[,(\text{dsname},\text{rdname})]...}\}\}
\{\text{DRAIN, PAGE}=(\text{dsname}[,,\text{dsname}]...) \}
\]

Parameters

The parameters are:

**DELETE**
Specifies that the system is to remove one or more local page data sets from
system use. The system migrates the in-use slots of the deleted data set(s) to
other page data sets.

**REPLACE**
Specifies that a local page data set is to be replaced by a newly-opened data
set of equal or greater size. The new data set must previously have been
formatted and cataloged. It can be on a different type of device then the original
data set. REPLACE fails if an I/O error occurs on either data set. The system
migrates the in-use slots from the old data set to the new data set, then remove
the old data set from system use.

**DRAIN**
Specifies that one or more local page data set are to be made read-only. When
the current tasks complete, the in-use slots are freed during normal system
operation. When you plan a PAGDEL DELETE or REPLACE operation as part
of a system reconfiguration, by allowing the data sets to drain (quiesce) before
issuing the DELETE or REPLACE, you will reduce the number of in-use page
data sets to migrate. You can make a data set that is draining read/write again
by issuing a PAGEADD command for the data set.

**PAGE=dsname[,dsname]...**
The name of one or more local page data sets. If \textit{dsname} is not the name of an
in-use local page data set, the system issues messages IEE201I and IEE202I.

\( (\text{dsname},\text{rdname})[,(\text{dsname},\text{rdname})]... \)
The name of one or more data sets to be replaced by the new data set
name(s). If any data set name you specify as \( \text{dsname} \) is not the name of an
in-use local page data set, if any data set name you specify as \( \text{rdname} \) is in
use, the system issues messages IEE201I and IEE202I.

**Example 1**
To delete a local page data set, enter:
PD DELETE,PAGE=page3

**Example 2**
To delete three local page data sets, enter:
PD DELETE,PAGE=sys1.page01,sys1.page02,page3

Example 3

To replace SYS1.PAGE01, a local page data set, and specify SYS1.PAGE04 to replace it, enter:
PD REPLACE,PAGE=(sys1.page01,sys1.page04)

Example 4

To replace two local page data sets, enter:
PD REPLACE,PAGE=(sys1.page01,sys1.page02),(page3,page7)
QUIESCE Command

Use the QUIESCE command to put the system in a manual state without affecting job step timing; for example, when you want to alter storage. You can enter QUIESCE only from a console with MASTER authority. You can restart the system by performing the RESTART function.

Syntax

QUIESCE

If possible, all jobs currently processing terminate normally. Otherwise, current activity is suspended, and the system enters a manual state or a wait state with a code of hexadecimal 80000CCC. See z/OS MVS System Codes for more information on wait state code CCC. You might receive the following message on an MCS console or the system console:

BLW002I  SYSTEM WAIT STATE 'CCC'X — QUIESCE FUNCTION PERFORMED

Notes:

1. If this system is actively using global resource serialization to share global resources and the global resource serialization complex is not the same as the sysplex, issue a VARY GRS (*),QUIESCE command before issuing the QUIESCE command. Issuing a VARY GRS (*),QUIESCE command before issuing the QUIESCE command prevents the disruption of the global resource serialization ring.

2. Do not issue a SYSTEM RESET after quiescing the system if you intend to issue a RESTART after the quiesce. Issuing a SYSTEM RESET will cause the system to enter an enabled wait state.
REPLY Command

Use the REPLY command to respond to system requests for information. The system associates an identification number with each information request it makes. The REPLY command for a specific request must contain the same identification number as the request. The verb, REPLY or R, is not required when you respond to a request.

When MVS is running in a single system (or in a sysplex configured for eight or fewer systems), reply IDs are assigned in sequential order. For example, four sequential WTORs might be assigned reply IDs 01, 02, 03, 04. An operator monitoring a console that sees all WTORs could expect to see all four reply IDs (01, 02, 03, 04), without skipping a number. If there were multiple consoles that received WTORs, an operator might track down any missing reply IDs and see who replied (or if it was replied to).

In a sysplex configured for greater than eight systems, reply IDs might not appear in sequential order. For example, an operator might see reply IDs 01, 02, 04, 03. This is normal and does not affect system processing.

Table 4-25 summarizes the system requests for information for which you would use the REPLY command.

<table>
<thead>
<tr>
<th>Topic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Replying to System Information Requests” on page 4-383</td>
</tr>
<tr>
<td>“Replying to System Requests During Recovery Processing” on page 4-384</td>
</tr>
<tr>
<td>“Replying to System Security WTORs” on page 4-384</td>
</tr>
<tr>
<td>“Setting the Time-of-Day Clock” on page 4-384</td>
</tr>
<tr>
<td>“Specifying Component Trace Options” on page 4-386</td>
</tr>
<tr>
<td>“Specifying Dump Options” on page 4-386</td>
</tr>
<tr>
<td>“Specifying SMF Options” on page 4-387</td>
</tr>
<tr>
<td>“Specifying System Parameters” on page 4-387</td>
</tr>
</tbody>
</table>

Using System Symbols in REPLY Commands

When system symbols are specified in the REPLY command, the system that receives the WTOR message substitutes text for the system symbols in the response portion (‘text’) of the command. There are two exceptions to that rule:

- If the WTOR is synchronous, the system does not substitute text for system symbols in the reply ‘text’.
- If the WTOR is issued early in the IPL (while the NIP console is still in use), the system cannot substitute text for system symbols that are not yet processed. If the WTOR is issued after message IEA347A SPECIFY MASTER CATALOG PARAMETER, the system substitutes text for all system symbols.

Note: The system issues message IEE600I in place of message IEE295I for replies during system initialization that are changed by symbolic substitution.

For more information about using system symbols in system commands, see “Using System Symbols in Commands” on page 1-14.
Scope in a Sysplex

The REPLY command has sysplex scope. See "Using Commands That Have Sysplex Scope" on page 1-11 for an explanation.

Syntax

The general syntax for the REPLY command is:

```
[R] id[,]['text'|text]
```

Replying to System Information Requests

You can use the REPLY command to respond to system requests. To review outstanding requests before replying, issue DISPLAY R.

```
[R] id[,]['text'|text]
```

The parameters are:

- **id** The identification number (0-9999), as specified in the message requesting a response. Leading zeros can be omitted. You may also specify a value of 00.
- **'text'** The response to the message. The apostrophes are optional and need only be included if your answer contains uppercase and lowercase characters. If you include the apostrophes and your answer contains an apostrophe, use two apostrophes in the message text.

The short form of the REPLY command does not require that you enter either REPLY or R. The short form of the reply command allows you to enter a total length of 124 character spaces. Anything beyond that length is truncated. If the system console is not in problem determination mode, you cannot use the short form of the REPLY command when responding to WTORs from the system console.

The RMAX value can affect the way you enter the short form of the REPLY command. The RMAX value determines the maximum number of REPLY ids that you can use to respond to WTOR messages.

On JES2 systems, when using the short form of the REPLY command, the operator can omit the comma, but the system might misinterpret the command, depending on the RMAX value. For example, if RMAX is 99, and the operator enters the following:

```
103NONE
```

MVS interprets the command as follows:

```
R 10,3NONE
```

On JES3 systems, an operator must use a comma to separate the REPLY id from the command text:

```
5,NONE
```

Example
REPLY Command

To use the short form of the REPLY command to reply ‘U’ to system message 03

On JES2 systems, enter:
3u

On JES2 and JES3 systems, enter:
3,u

Replying to System Requests During Recovery Processing

During system recovery processing, normal console operations are suspended. The system uses the first available console specified in SYNCHDEST to display synchronous WTOR messages. The system will wait 125 seconds for a reply. If there is no reply, the system displays the WTOR messages on the next available console in SYNCHDEST. If there is no reply on the next console, the system displays the WTOR messages to the system console. These messages remain displayed until a reply is given on any console.

R [00|0][,][text|text]

Replying to System Security WTORs

System security WTORs are specified with ROUTCDE=9. When you reply to a security WTOR, instead of seeing the actual response text on the display screen, you will see the text “SUPPRESSED” and the SYSLOG and SMF record type 80 reports will also show “SUPPRESSED” instead of the actual response text.

Setting the Time-of-Day Clock

Once the system has been initialized, it can issue one of two messages, depending on whether or not the time-of-day clock is set.

If the time-of-day (TOD) clock is not set, the system asks you to set it:
* 00 IEA886A TOD CLOCK(S) MUST BE SET

Use the following form of the REPLY command to set the time of day clock:

R 00,'[DATE=yyyy.ddd][,CLOCK=hh.mm.ss][,UTC|GMT]'

Where yyyy is the year (1924-2042), ddd is the day (001-366), hh is the hour (00-23), mm is the minute (00-59), and ss is the second (00-59). Note that you must specify the year yyyy using four digits.

Note: The apostrophes in the above reply are optional.

If you include UTC in your reply, the time and date are Coordinated Universal Time. If you include GMT in your reply, the time and date are Greenwich mean time. The term GMT is obsolete, but will be accepted. Without the UTC or GMT parameter the system assumes the values are the local time and date, converts them to UTC or GMT values, and sets the clock(s) with those values.

When you have entered a valid reply to message IEA886A, the system issues message IEA903A, requesting a response. There are two possible responses, depending on the environment in which MVS is running. The first requests you to
reply U to message IEA903A and, at the exact time that matches the TOD clock setting, press the TOD clock security switch. The second version does not request you to press the TOD clock security switch. You reply U to message IEA903A and, at the exact time that matches the TOD clock setting, press the ENTER key for the reply text. Once you have successfully set the TOD clock, or if the TOD clock is already set but you are allowed to alter it, the system displays the time and date and gives you the option of accepting or changing them:

* id IEA888A UTC DATE=yyyy.ddd,CLOCK=hh.mm.ss
  IEA888A LOCAL DATE=yyyy.ddd,CLOCK=hh.mm.ss REPLY U, OR UTC/LOCAL TIME

If the values are acceptable, reply 'U'. If you want to change either the local date or time (or both) or the TOD clock, enter the new value(s) as follows, remembering that you must include the UTC or GMT parameter to change the value of the TOD clock:

\[ R \text{id}',[\text{DATE}=\text{yyyy.ddd}][,\text{CLOCK}=\text{hh.mm.ss}][,\text{UTC}]' \]

Again, the year \textit{yyyy} must have four digits, and the apostrophes are optional.

\textbf{Note:} The system automatically issues message IEA888A at IPL time if the OPERATOR PROMPT parameter is included in the active CLOCKxx parmlib member. (See \textit{z/OS MVS Initialization and Tuning Guide} for details.)

If you specified a different clock setting, the system issues message IEA903A (described above). If you omitted UTC or GMT, the system assumes local date and/or time. Once you have set the new time and/or date, the system re-issues message IEA888A with new values. Reply to the message as described above.

Resetting UTC or GMT time causes the system to reset the TOD clock and recalculate the local time value, using the new UTC or GMT and the system time zone constant.

Resetting local time does not affect UTC or GMT time or the TOD clock. However, it will cause the system to recalculate the system time zone constant (which is initialized at IPL from the CLOCKxx parmlib member). The new time zone constant remains in effect until either local time is modified again or the next IPL.

All of the real time TQEs get adjusted when the local time is updated. Outstanding real time TQEs have their time adjusted based on the local time change that was made. For the external timer reference (ETR), an external interrupt occurs with the time zone offset change, and the timer supervisor code invokes the same TQE time adjustment routine.

If message IEA888A indicates that both UTC or GMT and local time values are incorrect, you should reset the UTC or GMT values first.

\textbf{Note:} You should set the TOD clock to a value based on zero being equivalent to 00 hours, 00 minutes, 00 seconds on January 1, 1900 UTC. During an IPL, the TOD clock might contain a value that, relative to this base, is not correct. This can happen, for example, when a customer engineer (C.E.) left the clock in the error state. In such a case, to ensure that the local time and date are correct, specify UTC or GMT before setting the local time and date.
REPLY Command

Specifying Component Trace Options

After you issue a TRACE CT command, the system prompts you for the options you want to specify with message ITT006A. Use the following form of the REPLY command to respond to this message:

```
R id[,ASID=(nnnn[,nnnn]...)]
 [,JOBNAME=(name[,name]...)]
 [,OPTIONS=(name[,name]...)]
 [,WTR={membername|DISCONNECT}]
 [,CONT|,END]
```

**Note:** When you specify CONT or END, it must be the last parameter on the input line.

For a detailed explanation of the TRACE CT options, see "Specifying TRACE CT Options" on page 4-663

Specifying Dump Options

After you issue a DUMP command, the system prompts you for the DUMP options you want to specify with message IEE094D. Use the following form of the REPLY command to respond to this message:

```
R id,U
```

**or**

```
R id[,ASID=(n[,n]...)][,JOBNAME=(name[,name]...)][,TSONAME=(name[,name]...)]
 [,DSPNAME={ds pname-entry[,ds pname-entry]...}]
 [,{PROBDESC|PROB|PD}=key-spec][,REMOTE=(request[,request]...)]
 [,SDATA=[option[,option]...]][,STOR=(beg,end[,beg,end]...)]
 [,STRLIST=(s-option[,s-option]...)]
 [,CONT|,END]
```

**Notes:**
1. When you specify CONT or END, it must be the last parameter on the input line.
2. The CONT keyword does not work within a SYSP= list.
3. When you specify U, it must be the first parameter following the identification number.

Where request represents:

- `{GRPLIST=(group(member)
        (group(member[,member]...)[,group(member[,member]...])]...)`
- `{SYSLIST={sysinfo|sysinfo[,sysinfo]...}
        [,DSPNAME=DSPNAME=(ds pname-entry[,ds pname-entry]...)]
        [,SDATA=SDATA=option[,option]...]
        [,STOR=STOR=(beg,end[,beg,end]...)]}`
Where \texttt{s-option} represents:

\begin{verbatim}
STRNAME=strname \\,CONNAME=conname \[ \]
\[,ACCESTIME={ENFORCE|NOLIMIT|NOLIM} \]
\[,LOCKENTRIES \]
\[,USERCNTLS \]
\[,EVENTQS \]
\[,EMCONTROLS={ALL|(list)} \]
\[,({COCLASS|STGCLASS|LISTNUM}={ALL|(list)} \]
\{,ADJUNCT={CAPTURE|DIRECTIO}\}
\{,ENTRYDATA={UNSERIALIZE|SERIALIZE}\}\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
\}
REPLY Command

You must reply to this message with the REPLY command. The short form reply is valid. You can accept the default system parameters by using the following form of the REPLY command with the ‘U’ operand. However, if your system programmer has given you parameters to enter, use the following form of the REPLY command to enter them.

```
R [0|00],{U

{{'parm='}[,CONT]}

{{'parm=,parm,'} }

{{'parm=value'} }

{{'parm=(value[,value]...[,L])'} }

{{'parm=(value[,value]...[,L]),parm=value'}}

The parameters are:

00 The identification number (00) as specified in the message requesting information. A single zero can be used.

U No parameters are to be changed. The system uses the default list of system parameters in the parmlib data set.

‘parm=,’ The parameter, as specified in the parmlib data set, is to be canceled for this IPL. If a system default exists for this parameter, it is used.

‘parm=,parm,’ The parameters, as specified in the parmlib data set, are to be canceled for this IPL. If system defaults exist for these parameters, they are used.

‘parm=value’

‘parm=(value[,value]...[,L])’

‘parm=(value,value), parm=value’

The specified parameters are to override the corresponding parameters in the parmlib data set. When specifying system parameters, (1) A blank or comma must separate multiple parameters and (2) U is not a valid value for a parameter. The reply can be at most 80 characters per line. If the reply is longer than one line, follow the last parameter with a comma or a blank and CONT. The system prompts you for the remaining values. Example:

R 00,‘MLPA=(00,01,02,CONT’

IEA116A CONTINUE SYSTEM PARAMETERS
R 00,‘03,L),BLDL=02’

L List the parameters as they are processed.

If you are uncertain of the format of a system parameter, see [z/OS MVS Initialization and Tuning Reference] or ask your system programmer.
RESET Command

Use the RESET command to:

- Force a hung MCS or SMCS console into the offline state
- Change the performance group of a non-privileged job currently in execution.

Note: Do not use the RESET command to change the performance group of a privileged job. The system assigns privileged jobs to a special performance group (0) and, therefore, will ignore any PERFORM value for such jobs.

- Change the service class of work currently in execution
- Quiesce a problem job or address space
- Resume a quiesced job or address space
- Force a subsystem console to be inactive
- Release the console name ENQ for an inactive EMCS console

Note: All of the above RESET tasks, except for the console oriented tasks, cause SMF to create an SMF 90 subtype 30 record to log the reset operation.

Table 4-26 summarizes the functions that the RESET command provides.

Table 4-26. Summary of the RESET Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESET CN</td>
<td>“Forcing a Hung Console Offline”</td>
</tr>
<tr>
<td>RESET jobname</td>
<td>“Changing Service Classes or Quiescing Work” on page 4-390</td>
</tr>
</tbody>
</table>

Scope in a Sysplex

The RESET command has sysplex scope only when you specify the CN parameter. See “Using Commands That Have Sysplex Scope” on page 1-11 for an explanation of sysplex scope.

Issue the command from the system where the console was attached to avoid inconsistent sysplex results.

Syntax

The syntax for each variation of the RESET command is shown immediately preceding its respective parameter list.

RESET or E

Forcing a Hung Console Offline

There are two forms of the RESET command. Use the following form to force a hung MCS or SMCS console into the offline state.

RESET|E [CN(consname)]

CN(consname)

Specifies the hung MCS or SMCS console device that the system is to force into the offline state. The console name can be 2 to 8 characters in length.
RESET Command

After issuing the RESET CN command, you might need to vary the console between the offline state and the console state to complete device recovery. Issue this command only after exhausting all other means of console recovery such as:

- Verifying the physical path to the device
- Verifying the control unit the device is attached to
- If the device is attached to a channel extender, verifying that the channel extender is in working order
- Issuing a VARY OFFLINE command that fails

For SMCS consoles you should issue a VARY NET,INACT,ID=consolelu command. If the console is not deactivated, try a VARY NET,INACT,ID=consolelu,I command. If that is not successful, try a VARY NET,INACT,ID=consolelu,F command.

Resetting a console might take up to 30 seconds to complete. If it is taking a long time to process the command, the system may issue this message: IEE059I RESET CN(consname) COMMAND IN PROGRESS, to indicate that the command is in progress but cannot complete quickly. The system will issue this message: IEE712I RESET PROCESSING COMPLETE, after the command finally completes.

Note: The discussion about forcing consoles offline only applies to MCS and SMCS consoles. The situation differs when you use RESET CN for subsystem or EMCS consoles:

For subsystem consoles, the RESET CN command marks the console as being unused without notifying the application that might have allocated the console. Therefore, only use RESET CN for subsystem consoles when you have to take the console away from the application or know that the application is no longer active.

For EMCS consoles, the RESET CN command can only be used if the console is inactive. The command cleans up any ENQ resources associated with the console that might have been left outstanding.

Changing Service Classes or Quiescing Work

Important
Beginning with z/OS V1R3, WLM compatibility mode is no longer available. Accordingly, you can no longer use the RESET command to change the performance group of a job currently in execution. The information has been left here for reference purposes, and for use on backlevel systems.

Use the following form of the RESET command for systems running in workload management compatibility mode, to change the performance group of a job currently in execution. For systems running in workload management goal mode, use this command to:

- Change the service class of work currently in execution, with the SRVCLASS keyword. Resetting to a new service class also resumes quiesced work.
- Quiesce work currently in execution, with the QUIESCE keyword.
Reclassify work currently in execution according to the service policy in effect, with the RESUME keyword. If there had been a prior quiesce you can specify a quiesced piece of work and the RESUME keyword to reclassify the work and resume processing.

Workload management goal mode refers to the management of resources according to the goals specified in the active workload management policy. Workload management compatibility mode refers to the management of resources according to the values in the IEAICSxx and IEAIPSxx parmlib members.

The RESET command causes SMF to create an SMF 90 subtype 30 record to log the reset operation.

Use this command only at the direction of the system programmer.

The syntax for this form of the the RESET command is:

```plaintext
E jobname[,A=asid],{PERFORM=nnn
{SRVCLASS=classname}
{QUIESCE|Q
{RESUME
```

jobname
The name of the job, time-sharing user, or started task whose performance characteristics you want to change. This command affects the current job step and all subsequent job steps in this execution.

A=asid
The hexadecimal address space identifier (ASID) of the job, time-sharing user, or started task you want to change. A=asid applies in both workload management goal mode and workload management compatibility mode. You can specify this keyword before or after the PERFORM=, SVRCLASS=, QUIESCE, or RESUME parameters.

This parameter is required if there are two jobs running which have the same jobname.

PERFORM=nnn
The performance group number, between 1 and 999, to be assigned to the job, user, or started task. PERFORM applies only on a system operating in workload management compatibility mode. It does not apply in workload management goal mode.

SRVCLASS=classname
The name of the service class to be assigned to the job or address space. Resetting to a new service class also resumes quiesced work. SRVCLASS applies only on a system operating in workload management goal mode. It does not apply in workload management compatibility mode.

When you issue a RESET against a server (for example, an address space) to a new service class, the goals associated with that service class are ignored. However, the resource group associated with the new service class is honored. The one exception is the case where the goal for a server is honored when the transactions it is serving have been assigned a discretionary goal.

There may be special circumstances under which you would wish to reset an address space with a SYSTEM or SYSSTC service class. See the "Defining Classification Rules" chapter in Z/OS MVS Planning: Workload Management for information about the use of the SYSTEM and SYSSTC service classes.
RESET Command

RESET SRVCLASS= will remain in effect until one of the following occurs:
- End of job
- The policy is switched to a new policy in which the target service class has been deleted
- The WLM mode is switched to COMPAT
- A RESET RESUME command is issued.

QUIESCE
Requests that the target job or address space be quiesced; that is, given the lowest possible performance characteristics. QUIESCE swaps out swappable work, effectively shutting off that work. QUIESCE just lowers the performance of non-swappable work, leaving it swapped in. QUIESCE applies only on a system operating in workload management goal mode. It does not apply in workload management compatibility mode.

RESET QUIESCE will remain in effect until one of the following occurs:
- End of job
- The WLM mode is switched to COMPAT
- A RESET RESUME command is issued.

RESUME
Specifies that a job or address space be reclassified. If the job or address space was quiesced by a previous RESET jobname,QUIESCE command, or if the job or address space was assigned to a different service class, RESUME causes the work to be reclassified according to the service policy in effect and resumes processing at the performance targets specified in the service policy. RESUME applies only on a system operating in workload management goal mode. It does not apply in workload management compatibility mode.

The classification rules used are those in effect at the time the RESET command is issued.

RESET PERFORM will remain in effect until one of the following occurs:
- End of job
- The WLM mode is switched to GOAL.

Example 1

To change the performance group value of job TMASGJ02 to 1, enter:
e tmasgj02,perform=1

The system responds with:
IEE304I TMASGJ02 JOB RESET

If the system is operating in workload management goal mode the above command is rejected.

The system responds with:
IRA701I RESET KEYWORD PERFORM NOT VALID IN GOAL MODE

Example 2

If there are two jobs running with the name of JLKSORT1 and you want to change the performance group value of one of them to a value of 6, first determine the ASID of the address space associated with the job by using either the DISPLAY JOBS,jobname or DISPLAY JOBS,ALL command. If, for example, you are in workload management compatibility mode and the ASID of the one you want to change is 1A8, enter:
Example 3
To assign the performance goals associated with service class QUICK to job BEEMER, enter:
```
  e beemer, srvclass=quick
```

Example 4
To assign the lowest system performance goals to job MARCUS, enter:
```
  e marcus, quiesce
```

Example 5
To resume execution of job MARCUS in the service class specified by the active service policy (after a previous QUIESCE request) enter:
```
  e marcus, resume
```

Example 6
To reclassify a job according to the service policy in effect, enter:
```
  e beemer, resume
```

Once this is done, job BEEMER no longer has the service class QUICK as assigned in Example 3 above.

Restrictions
- The MASTER address space, idle INIT / ASCHINT initiator address spaces, and the WLM address space may not be reset.
- In compatibility mode:
 - Attempts to reset an address space with the privileged or high dispatching priority attributes are rejected with message IRA702I RESET NOT VALID.
- In goal mode:
 - There are no restrictions for the RESET command when the originating and target service classes are both customer-defined.
 - Attempts to move a privileged or high dispatching priority address space into a customer-defined service class are rejected with message IRA702I RESET NOT VALID.
 - With APAR OA12625 installed, attempts to move a privileged address space into a customer-defined service class are allowed and no longer rejected with message IRA702I.
 - RESET can be used to move eligible address spaces (not just started tasks) from a customer-defined service class to the SYSSTC service class. If the address space originally was privileged, the privileged attribute is restored.
 - RESET can be used to move started tasks eligible for high dispatching priority into the SYSTEM service class. The high dispatching attribute is restored when the started task is moved into SYSTEM.
- Once a mode switch occurs (F WLM, MODE=), the system does not “remember” that jobs had previously been reset. Instead, classification is carried out according to the values in the IEAICSxx and IEAIPSxx parmlib members if you have switched to compatibility mode. You must issue a SET ICS=xx and SET IPS=xx. See “Changing Workload Manager Resource States” on page 4-366 for
import important information on what to do following a switch to compatibility mode. If you have switched to goal mode, the active service policy is used to assign a service class to the work.
ROUTE Command

Use the ROUTE command to direct a command to one or more systems in a sysplex for processing. You can direct a command to:

- All systems in the sysplex
- A subset of the systems in the sysplex
- One system in the sysplex.

You can enter this command from any MCS, SMCS or extended MCS console with INFO authority.

You can enter most system commands using the ROUTE command, including MVS, JES2, JES3, and other commands.

For most system commands routed to multiple systems, the system combines the command responses into an aggregated response. The combined response sorts the command responses by system name. For more information, see "How MVS Displays Aggregated Response from ROUTE" on page 4-396.

You cannot send more than one command on a single invocation of the ROUTE command. If you need to route multiple commands in strict sequential order, you should route one command, wait for successful response from all systems to which you routed the command, and then route the next command.

Restrictions

The following restrictions apply to this command:

1. When you specify *ALL or sysgrpname on the ROUTE command, do not also specify the following commands on that ROUTE command:
 - A ROUTE command itself
 - Commands that display or change an MCS or SMCS console’s attributes, such as:
 - D PFK
 - K A
 - K C
 - K D
 - K E
 - K N
 - K Q
 - K S
 - K V,USE
 - Commands that specify "*", where "*" means the console issuing the command, such as:
 - D C,*
 - V CN(*),ACTIVATE
 - The DUMP command.

 Note: Instead of specifying the DUMP command on the ROUTE command, you can request a remote dump, which does not use the ROUTE command. See the DUMP command and the associated REMOTE REPLY option.

 - Commands that display an excessive amount of data, such as:
 - D U,,,100,999
 - Commands that are sysplex-wide in scope. For example, the following command would show identical data for each system in the sysplex:
Do not issue ROUTE commands to multiple systems at a sysplex rate that exceeds the rate indicated by the ROUTTIME value. For example, if the ROUTTIME is the default 30 seconds, issuing ROUTEs to multiple systems in the sysplex at a rate faster than 1 per half-minute could lead to resource contention and delays in processing the commands.

Do not use the L keyword abbreviation with the ROUTE command when other commands you are routing contain an L keyword abbreviation.

If your ROUTE command has the keyword parameter "L=", the result may not be what you want. The first "L=" will be interpreted as a parameter on ROUTE, not on the ROUTEd command.

How MVS Displays Aggregated Response from ROUTE

When you route a command to multiple systems, command responses are returned to the issuing console as part of message IEE4211.

If an out-of-line display area exists on the issuing console, IEE4211 is written to the out-of-line display area.

If the L= parameter is specified on a ROUTE *ALL or ROUTE sysgrpname command, the aggregated response will be redirected as specified by the L= parameter.

Note: Do not use system symbols on the L= parameter when aggregating command responses.

MVS returns an aggregated response when one of the following occurs:

- MVS has received at least one response from all systems and a period of time has elapsed during which it has received no additional responses. MVS calculates this period of time based on the pattern of responses received for the command.
- The maximum timeout interval in effect for the ROUTE command is reached.

For command responses to be aggregated, the maximum timeout interval that is in effect for the ROUTE command cannot be zero. The maximum timeout interval in effect for a ROUTE command is determined as follows:

1. The current sysplex-wide default, which is determined as follows:
 a. The IBM-defined default for the maximum timeout interval is 30 seconds. This can be changed by any of the following conditions.
 b. An installation-defined default for the maximum timeout interval can be specified in the CONSOLxx parmlib member of the first system to join the sysplex. (This is specified on the ROUTTIME keyword of the INIT statement.) This installation-defined default applies to all other systems joining the sysplex.
 c. The operator can dynamically change the default maximum timeout interval for all systems in the sysplex by issuing the CONTROL M,ROUTTIME= command.

2. When entering the ROUTE command, the operator can specify the maximum timeout interval in effect for that one time by specifying the T= operand on the ROUTE command itself.

For a specific command response to appear in the aggregated response, individual responses to the routed command must meet these criteria:
• The command processor for the routed command must direct command response(s) to the console ID where the command originated. If, when issuing a command response, a command processor does not use the console ID of the command issuer, MVS cannot return the command responses to the ROUTE command issuer.

• The specific command response must be received at the originating system before the originating system stops aggregating responses.

Command responses that do not meet the above criteria are not aggregated. However, if MVS receives command responses after the timeout period, MVS attempts to return the responses to the originator of the ROUTE command.

Using System Symbols in ROUTE Commands

You can specify system symbols in commands that are routed to one or more systems in a sysplex. This section explains special considerations for using system symbols in routed commands. Before you read this section, see “Sharing System Commands” on page 1-14 for information about how to use system symbols in commands and lists of system symbols that the system provides.

When you enter a ROUTE command, the system views the command in two parts:
• The actual ROUTE command, which indicates where and how the command is to be routed. The system on which the ROUTE command is entered processes the system symbols in this part of the command.
• The command that is to be processed on one or more other systems. The system to which the command is routed processes the system symbols in this part of the command.

Because several systems can be involved in processing a ROUTE command, IBM recommends that you enter a DISPLAY SYMBOLS command on each system that is to process parts of the ROUTE command containing system symbols.

DISPLAY SYMBOLS shows the current static system symbols and their associated substitution texts. See the description of the DISPLAY SYMBOLS command for more information.

For example, suppose that the following values are defined for system symbols on systems SYS1 and SYS2:

<table>
<thead>
<tr>
<th>System</th>
<th>System Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS1</td>
<td>&T1</td>
<td>999</td>
</tr>
<tr>
<td>SYS1</td>
<td>&SYSNAME2</td>
<td>SYS2</td>
</tr>
<tr>
<td>SYS1</td>
<td>&SYSCONE</td>
<td>S1</td>
</tr>
<tr>
<td>SYS2</td>
<td>&T1</td>
<td>0</td>
</tr>
<tr>
<td>SYS2</td>
<td>&SYSNAME</td>
<td>SYS2</td>
</tr>
<tr>
<td>SYS2</td>
<td>&SYSCONE</td>
<td>S2</td>
</tr>
</tbody>
</table>

Then suppose you enter the following ROUTE command on system SYS1:

RO T=&T1,&SYSNAME2,F JOBSYSCONE,parameters

Processed by SYS1 Processed by SYS2

The systems process the command in the following way:
ROUTE Command

1. The system on which the ROUTE command is entered, SYS1, substitutes text for the &T1 and &SYSNAME2 system symbols in the first part of the command.

2. The system to which the command is to be routed, SYS2, substitutes text for the &SYSCALLONE system symbol in the second part of the command.

The result of the substitution is:

RO T=999,SYS2,F JOBS2,parameters

If a system group had been specified in place of a system name in the ROUTE command, the MODIFY command would have been routed to all systems in that group. Each system would have substituted text for system symbols in the instance of the command that was routed to that system.

Syntax

The complete syntax for the ROUTE command is:

```
RO (sysname{text

{[[T=nnn,] {*ALL

{sysgrpname

{OTHER

{sysname[sysgrpname,sysname...]]}


Parameters

sysname

The system name (1 to 8 characters) that will receive and process the command.

MVS returns the command response to the issuing console (inline area for an MCS or SMCS console) unless redirected by the L= parameter on the routed command.

text

The system command and specific operands of the command being routed. Do not code any leading blanks before the text.

T= Specifies an optional timeout interval. T= is valid with *ALL, *OTHER, sysgrpname, or a list of system names or sysgrpnames. You can specify a value from 0 to 999. This value indicates the maximum number of seconds MVS waits for responses from each system before aggregating the responses.

If you specify T=0, MVS does not aggregate command responses, but individually sends responses to the originator.

Notes:

1. IBM recommends that you specify T=0 when you are routing the START and STOP commands to multiple systems. This is because the system does not collect aggregate responses for routed START and STOP commands. If you attempt to do so (if T= is nonzero), the system states that there is "no response" from all of the systems, and all the START and STOP command responses are displayed inline.

2. IBM does not recommend that you specify T=0 for most DISPLAY commands. Command responses from most DISPLAY commands appear in an out-of-line display area, and the responses from multiple DISPLAY
commands can be written into the same area one right after the other, so that only the last one is readable. If there is no display area defined, or if L=Z is used, the responses are inline, but will probably roll off the console. Responses from ROUTE with T=0 and a DISPLAY command specified could be useful to an automation program and as a hardcopy record, but not for a human operator.

*ALL
Specifies that the command is to be routed to all systems in the sysplex.

*OTHER
Specifies that the command is to be routed to all systems in a sysplex except the system on which the command is entered.

If you enter a ROUTE *OTHER command on a system that is not a member of a sysplex, or if you enter ROUTE *OTHER from a system that is a member of a sysplex in which no other systems are active, MVS issues message IEE413I.

sysgrpname
Specifies that the command will be routed to a subset of systems in the sysplex. The sysgrpname can be 1 to 8 characters and represents the set of systems to which the command is to be routed. System group names are defined by the installation. For information on defining system group names, see [z/OS MVS Planning: Operations](#).

(sysname[,sysgrpname,sysname...])
Specifies that the command is to be routed to a list of systems or system groups, or both. System group names are defined by your installation.

If you route a command to a list of systems or system groups, and none of the systems or system groups is active, the system issues message IEE413I.

L=a, name, or name-a
Specifies the display area (a), console name (name), or both (name-a) where the display will appear.

For the ROUTE command, you can specify the L= operand as follows:
- When routing a command to only one system, you can specify the L= operand only if supported by the routed command. For example, the following is valid because the D C command supports the L= operand:
  ```
 RO syst1,D C,L=con1
  ```
  The following is not valid because the D T command does not support the L= operand:
  ```
 RO syst1,D T,L=con1
  ```
- When routing a command to all systems, or to a named subset of systems, the L= operand is supported if aggregation of responses occurs (the timeout interval is not zero). For example, the following is valid:
  ```
 RO T=20,*ALL,D T,L=con1
  ```

If you do not specify the L= option, the system displays the command responses in the first available display or message area of the console on which you entered the ROUTE command.

**Note:** Do not use system symbols on the L= parameter when aggregating command responses. For more information about specifying system symbols when routing commands, see "Using System Symbols in ROUTE Commands" on page 4-397.

**Example 1**
To route a DISPLAY UNITS command for device 320 on system SY4 and have the response returned to the issuing console, enter:

ROUTE SY4,D U,,,320,1

Example 2

To route a DISPLAY UNITS command to system SY1 and have the response returned to the console named CON1A, enter:

ROUTE SY1,D U,L=CON1A

Example 3

To change the OPOINTERIFY value on all systems in the sysplex, enter:

ROUTE *ALL,SETXCF COUPLE,OPNOTIFY=15

Example 4

To start JES2 on all systems in the sysplex, enter:

ROUTE T=0,*ALL,S JES2

Note: The system does not aggregate command responses for routed START and STOP commands. If you attempt to do so (if T= is nonzero), the system states that there is “no response” from all of the systems, and all the START and STOP command responses are displayed inline.

Example 5

After JES3 initialization completes on the global, to start JES3 on all local processors in the sysplex, from a console associated with the global, enter:

ROUTE T=0,*OTHER,S JES3

Note: The system does not aggregate command responses for routed START and STOP commands. If you attempt to do so (if T= is nonzero), the system states that there is “no response” from all of the systems, and all the START and STOP command responses are displayed inline.

Example 6

To issue D A on system SY1 and system SY4, where TEST is a system group name representing both system SY1 and system SY4, enter:

ROUTE TEST,D A

Example 7

To issue D A on the systems represented by TEST and have the aggregated responses received within 10 seconds, enter:

ROUTE T=10,TEST,D A

Example 8

To issue D T (DISPLAY TIME) to be processed on system SYS1, enter:

ROUTE SYS1,D T

The system returns this information:
Example 9

To route the command D T (DISPLAY TIME) to be processed on all systems (SYS1, SYS2, and SYS3), enter:

ROUTE T=0,*ALL,D T

The system returns the following information:

SYS1  IEE136I LOCAL: TIME=10.00.59 DATE=1993.257 GMT: TIME=14.00.59
DATE=1993.257
DATE=1993.257
DATE=1993.257

Notes:
1. Because T=0 is specified, the information is not aggregated, but individually returned.
2. Most DISPLAY commands produce multi-line command responses in an out-of-line display area on the console. Such command responses are written into the same area. IBM does not recommend specifying such DISPLAY commands on the ROUTE command when T=0 is in effect. However, because the D T (DISPLAY TIME) command produces a single-line command response, you can successfully specify the D T command on the ROUTE command, as shown in this example.

Example 10

To route the command D T (DISPLAY TIME) to all systems and receive an aggregated response, use the T= parameter and enter:

ROUTE T=5,*ALL,D T

The system returns the following aggregated information:

IEE421I RO *ALL,D T FRAME LAST F E SYS=SYS1 RESPONSES
SYSNAME---------------------------------------------------

Example 11

This example illustrates what can happen when the timeout interval occurs before all the command responses are received for aggregation. If you issue the ROUTE command to vary device 414 offline on all systems:

ROUTE T=1,*ALL,V 414,OFFLINE

and system SYS2 does not respond within one second (the timeout interval) MVS cannot include the command response from SYS2 with the other command responses.
• First, MVS lists the systems from which no response was received in time for aggregation.
ROUTE Command

IEE421I R0 *ALL,V 414,OFFLINE
NO RESPONSE RECEIVED FROM THE FOLLOWING SYSTEM(S):
SYS2

- After the operator scrolls forward to the second frame of message IEE421I, MVS displays the aggregated response:

IEE421I R0 *ALL,V 414,OFFLINE
SYSNAME RESPONSES -----------------------------------------------
SYS1 IEF281I 0414 NOW OFFLINE
SYS3 IEE303I 0414 OFFLINE

Example 12

Route the $SPRT1 command to all systems in a sysplex except the system on which the command is entered:
ROUTE *OTHER,$SPRT1

Example 13

Quiesce systems S0 and S9 from system S1:
RO (S0,S9),QUIESCE

Example 14

Quiesce systems S0 and the subset of systems represented by system group name G8:
RO (S0,G8),QUIESCE

If the ROUTE *OTHER command is issued on a system which is not a member of a SYSPLEX, or a system that is a member of a sysplex but no other systems are active members in the sysplex, a message is issued (see messages section for details). This same message will be issued if a list of systems/groups is specified and none of the systems/groups represent at least one active system.
**SEND Command**

Use the SEND command to communicate with other operators in a multiple-console support (MCS) and SNA multiple-console support (SMCS) environment. In a time-sharing environment, use the SEND command to communicate with a specific terminal user or all terminal users, and to manage the SYS1.BRODCAST data set. Table 4-27 summarizes the information that the SEND command provides. Use it to find details about a particular use of the SEND command.

**Table 4-27. Summary of the SEND Command**

<table>
<thead>
<tr>
<th>Command:</th>
<th>Topic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEND ...,BRDCST</td>
<td>“Communicating with Other Operators”</td>
</tr>
<tr>
<td>SEND ...,OPERATOR=...</td>
<td>“Communicating with Specified Users” on page 4-404</td>
</tr>
<tr>
<td>SEND ...,CN=...</td>
<td>“Communicating with All Logged-On Terminal Users” on page 4-405</td>
</tr>
<tr>
<td>SEND ...,USER=...</td>
<td>“Saving Messages in the Broadcast Data Set” on page 4-407</td>
</tr>
<tr>
<td>SEND ...,LOGON</td>
<td>“Communicating with All Logged-On Terminal Users” on page 4-405</td>
</tr>
<tr>
<td>SEND ...,NOW</td>
<td>“Communicating with All Logged-On Terminal Users” on page 4-405</td>
</tr>
<tr>
<td>SEND ...,SAVE</td>
<td>“Saving Messages in the Broadcast Data Set” on page 4-407</td>
</tr>
<tr>
<td>SEND ...,LIST</td>
<td>“Listing the Notices Section of the Broadcast Data Set” on page 4-408</td>
</tr>
<tr>
<td>SEND ...,DELETE</td>
<td>“Deleting a Message from the Broadcast Data Set (Notices Section)” on page 4-409</td>
</tr>
</tbody>
</table>

**Scope in a Sysplex**

The SEND command has sysplex scope only when sending to consoles; SEND does not have sysplex scope when sending to TSO users. See “Using Commands That Have Sysplex Scope” on page 1-11 for an explanation of sysplex scope.

**Syntax**

The syntax for each variation of the SEND command is shown immediately preceding its respective parameter list.

`SEND or SE`  

**Communicating with Other Operators**

Use the SEND command to communicate with other operators at MCS and SMCS consoles.

```plaintext
SE {'message'},{BRDCST
 {msgno } {OPERATOR=route}
 {CN=consname|INTERNAL}
```

The parameters are:

- **message**
  - The message to be sent.

- **msgno**
  - The number of the message in SYS1.BRODCAST to be sent. (See “ Saving
SEND Command

BRDCST
The specified message is to be sent to all active consoles that have not specified the 'no broadcast' option (using the K V,LEVEL command).

OPERATOR=route
The installation area (such as tape library) to receive the message, specified as a one or three digit number between 1 and 128 (see Table 3-8 on page 3-38).

CN=consname or INTERNAL
The console to receive the message.

consname
Specifies the name of the console where the message is to be sent. The console name is 2 to 8 alphanumeric characters; the first character must be alphabetic or one of the following characters: $, #, or @.

INTERNAL
Specifies that the message is to be directed to console ID 0, and to be received by any active console defined to receive these messages (INTIDS=Y).

When you are uncertain of the routing codes and console identifiers in effect, enter the DISPLAY CONSOLES command. See “Displaying Console Status Information” on page 4-119.

Example 1
To send message number 46 to the console named CON12, enter:
se 46,cn=CON12

Example 2
To send the following message to all active consoles, enter:
se 'Close down in 15 minutes',brdcst

Communicating with Specified Users
Use the SEND...USER command to communicate with specific time-sharing users.

SE {'message'},USER=(userid[,userid]...),(NOW|LOGON),(WAIT|NOWAIT)

The parameters are:

‘message’
The message to be sent to the terminal users.

msgno
The number of the message to be sent. (See “Saving Messages in the Broadcast Data Set” on page 4-407 for information about how messages can be saved and later sent by message number.)

USER=(userid[,userid]...)
The identifiers of those users who are to receive the message.
**NOW**
Specifies that the message is to be sent immediately. If the recipient is not logged on, you are notified and the message is deleted.

When NOWAIT and USER are specified and the user’s terminal is busy:
- The user does not receive the message
- You are notified which users did not receive the message
- The message is deleted

**LOGON**
If any specified user is currently logged on and is accepting messages, the user receives the message. If the user is logged on but is not receiving messages, the message is stored in the mail section of the broadcast data set until the user requests it. If the user is not logged on, the message is stored in the mail section of the broadcast data set until requested when the user logs on.

When NOWAIT is specified and the user’s terminal is busy, the message is stored in the mail section of the broadcast data set until the user requests it.

**WAIT**
Specifies that the message is held until system output buffers are available for the specified logged on users. This option ensures that the message is received by all the specified users. When a user’s terminal is busy, other users will not receive the message until that user’s terminal is free.

**NOWAIT**
Specifies that the message is not held. When USER is specified, you are notified of any users who do not received the message. If LOGON is specified, the message is saved as mail for those user’s who’s terminal is busy or who were not logged on.

**Note:** When possible, use the LOGON parameter so you do not interrupt the user’s terminal session unnecessarily.

**Example 1**
To send the following message to users D58 and D04 immediately, if they are receiving messages, or when they request messages, enter:
```
se 'your listings are ready',user=(d58,d04),logon
```
If they are not logged on the system, they receive the message when they log on.

**Example 2**
To send the message to the specified user immediately, if he is logged on, enter:
```
se 'getting I/O errors on your pack',user=(payroll)
```

**Communicating with All Logged-On Terminal Users**
You can use the SEND command to send a message to all terminal users currently logged on the system.

```
se {'message'},{NOW|LOGON},{WAIT|NOWAIT},{ROUTE={+ALL|systemname|groupName}},
{msgno }
```

The parameters are:
SEND Command

message
The message that is to be sent to all time-sharing terminal users.

msgno
The number of the message to be sent. (See "Saving Messages in the Broadcast Data Set" on page 4-407 for information about how to save and later send messages by message number.)

NOW
Specifies that the message is to be sent immediately to all users currently logged on; the message is not retained for users not logged on.

  When NOWAIT is specified and the user’s terminal is busy:
  • the user does not receive the message
  • you are NOT notified which users did not receive the message
  • The message is deleted

LOGON
All users logged on and accepting messages receive the message. Those users logged on but not receiving messages receive it upon requesting messages. The message is stored in the notices section of the broadcast data set and is sent to those users requesting messages when they log on. The message is retained until you delete it.

  When NOWAIT is specified and the user’s terminal is busy, the message is stored in the mail section of the broadcast data set until the user requests it.

WAIT
Specifies that the message is held until system output buffers are available for the specified logged on users. This option ensures that the message is received by all the specified users. When a user’s terminal is busy, other users will not receive the message until that user’s terminal is free.

NOWAIT
Specifies that the message not be held. If you specify LOGON, the system saves the message as mail for those users whose terminals are busy or who were not logged on.

ROUTE
Sends the message to all users logged onto the specified system(s). If you do not specify the ROUTE= parameter, the system sends the message only to the users logged onto the system where you issue the SEND command. Valid values for the ROUTE parameter are:

  *ALL
  Directs the system to send the message to all users logged onto all systems participating in the sysplex

  systemname
  Directs the system to send the message only to users logged onto systemname

  groupname
  Directs the system to send the message to all users logged onto the sysplex subset defined by groupname

Note: When possible, use the LOGON parameter so you do not interrupt the users’ terminal sessions unnecessarily.

Example 1
To send the following critical message to all users immediately, enter:
SE 'system going down in 5 minutes'

Example 2

To send the following general interest message to users when they request messages or at LOGON time, enter:
SE 'time-sharing will not be up next Thursday',LOGON

 Saving Messages in the Broadcast Data Set

Use the SEND...,SAVE command to store messages in the broadcast data set to be issued only at LOGON time, or when requested.

```
SE {'message'},(USER=(userid[,userid]...)),SAVE
 { msgno } {ALL }
```

The parameters are:

'message'
The message to be sent to the terminal users.

msgno
The number of the message to be sent.

USER(userid)
The identifications of those users to receive the message. The message is stored in the mail sections for those users. (There is a mail section for each TSO user.)

ALL
All terminal users are to receive the message. Terminal users who are currently using the system receive the message immediately. In addition, the message is placed in the notices section and assigned a number. This number, printed when the message is stored, can be used as msgno in this and other forms of the SEND command.

SAVE
The message is to be stored in the appropriate section of the broadcast data set until a user logs on or requests messages. If ALL is specified, the message is stored in the notices section of the broadcast data set and is retained until explicitly deleted. If userid is specified, the message is stored in the mail section of the broadcast data set and deleted after it is sent to the intended user. No attempt is made to send it immediately, even to those users logged on and receiving messages.

Note:  WAIT and NOWAIT have no effect when specified with SAVE.

Example

To submit messages to the broadcast data set before stopping time-sharing for the day, enter:
se 'time-sharing will close down at 5:00 p.m. today.',save
SEND Command

When you start time-sharing the next day, the messages are available for users logging on. The above command does not affect those users currently logged on and receiving messages.

Listing the Notices Section of the Broadcast Data Set

Use the SEND...,LIST command to keep track of accumulated messages in the notices section of the broadcast data set. You can list one or all of the messages.

```
SE [msgno,]LIST
```

The parameters are:

**msgno**

The number of the message to list. Omitting this operand results in all messages in the notices section, and the message numbers assigned to them, being listed.

**LIST**

The requested message or all messages in the notices section of the SYS1.BROADCAST data set are to be listed on the console.
Example 1

To list all messages in the notices section of the SYS1.BROADCAST data set, enter:

SE LIST

Example 2

To list message number 21, enter:

SEND 21,LIST

Deleting a Message from the Broadcast Data Set (Notices Section)

If you find, after listing the notices section of the broadcast data set, that a message is no longer needed, use the SEND...,DELETE command to delete it.

SE msgno,DELETE

The parameters are:

msgno
  The number of the message to be deleted.

DELETE
  The specified message is to be deleted.

Example: To delete message number 23, enter:

SE 23,DELETE
SET Command

**SET Command**

Use the SET command to change the local date, time, and the local time offset value.

Also use the SET command to change the system configuration by specifying the following parmlib members:

- **ADYSETxx**: Change the dump analysis and elimination (DAE) parameters.
- **APPCPMxx**: Change the Advanced Program-to-Program Communication/MVS (APPC/MVS) address space information.
- **ASCHPMxx**: Change the APPC/MVS Transaction Scheduler information.
- **BPXPRMxx**: Dynamically change the BPXPRMxx parmlib members in use.
- **CEEPRMxx**: Change the system level Language Environment run-time options.
- **CNGRPxx**: Change the APPC/MVS Transaction Scheduler information.
- **CNIDTRxx**: Specify the exclusion list that the tracking facility will use.
- **CSVRTLxx**: Dynamically change the run-time library services (RTLS) configuration.
- **CUNUNIxx**: Change the conversion environment when the system is already up and running.
- **DEVSUPxx**: Dynamically change keyword values in parmlib member DEVSUPxx.
- **DIAGxx**: Start or stop the common storage tracking and GETMAIN/FREEMAIN/STORAGE trace functions.
- **EXSPATxx**:
  - Change the excessive spin recovery actions.
  - Change the spin loop timeout interval.
- **GRSRNLxx**: Change the GRS resource name lists (RNLs).
- **IEAOPTxx**: Change the system resources manager (SRM) parameters.
- **IEASLPxx**: Change the commands SLIP is to process.
- **IECIOSxx**:
  - Change all the MIH time intervals.
  - Change all the I/O timing limits.
  - Change the status of FICON switch statistics gathering.
  - Change the residency of where IOS storage blocks are obtained.
  - Change certain IOS recovery options.
- **IGDSMSxx**:
  - Change the storage management subsystem (SMS) parameters, or start SMS if it was not started at IPL, or restart SMS if it could not be automatically restarted.
  - Specify the method that VSAM Record Level Sharing (RLS) uses to determine the size of the data placed in the coupling facility cache structure.
- **IKJTSOxx**: Dynamically specify which TSO/E parameter set should be activated.
- **MMSLSTxx**:
  - Change or refresh the MVS message service (MMS) parameters.
  - Start, refresh, or stop MMS.
- **MPFLSTxx**:
  - Change messages processed by the message processing facility (MPF), or the color, intensity, highlighting, and foreign message handling options.
  - Change the command installation exits the system is to use.
• MSGFLDxx: Change the message flood automation parameters.
• PFKTABxx: Change the set of available PFK tables.
• PRODxx: Change the product enablement policy.
• PROGxx:
  – Update the format or contents of the APF list.
  – Control dynamic exits and exit routines.
  – Update the LNKLST set for the LNKLST concatenation.
  – Dynamically add modules to, or remove modules from the LPA.
• SCHEDxx: Change the PPT information.
• SMFPRMxx: Change the system management facilities (SMF) parameters or restart SMF.

**Note:** The system allows a maximum of 38 suffixes.

**Scope in a Sysplex**

The following table describes the conditions under which the SET command has sysplex scope. See [Using Commands That Have Sysplex Scope](#) for an explanation of sysplex scope.

*Table 4-28. Sysplex Scope for SET Command*

<table>
<thead>
<tr>
<th>Command</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SET CNGRP</td>
<td>Has sysplex scope provided all systems are sharing the same members of the logical parmlib.</td>
</tr>
<tr>
<td>SET DAE</td>
<td>Has sysplex scope only when all systems are sharing the same DAE data set, and the same members of the logical parmlib.</td>
</tr>
<tr>
<td>SET GRSRNL</td>
<td>Has sysplex scope only when all systems are sharing the same members of the logical parmlib.</td>
</tr>
<tr>
<td>SET SMS</td>
<td>Has sysplex scope when you are issuing the command to change the name of the ACDS or COMMDS. All systems in the sysplex must be in the same SMS complex, and using the same members of the logical parmlib. If you are issuing the command to start or restart SMS on a system, only the system on which you issue the command is affected. RLS_MAXCFFEATURELEVEL has sysplex scope when you IPL the first system in the sysplex to set the value. All other systems will be told the current value when IPLed. You can change the value by issuing the SET SMS=xx command and specifying RLS_MAXCFFEATURELEVEL in the IGDSMSxx parmlib member, or by using the SETSMS command with the RLS_MAXCFFEATURELEVEL keyword.</td>
</tr>
</tbody>
</table>

[Chapter 4. MVS System Commands Reference 4-411](#)
SET Command

Syntax

The complete syntax for the SET command is:

Table 4-29. Syntax for the SET command

```
T [,APPCC=(xx[,xx]...,L)]
[,ASCH=(xx[,xx]...,L)]
[,CEE=(xx[,xx]...,L)]
[,CLOCK=hh.mm.ss]
[,CNGRP=\{\{xx, [xx]...\}\}|NO]
[,CNIDTR=xx]
[,DAE=xx]
[,DATE=yyyy.ddd]
[,DEVSUP=xx]
[,DIAG=xx]
[,EXS=xx]
[,GRSRNL=\{xx,[xx]...\}]
[,IKJTSO=xx]
[,IOS=xx]
[,MMS=\{xx|NO\}]
[,MPF=\{\{xx,[xx]...\}|NO\}]
[,MSGFLD=xx]
[,OMVS=\{xx,yyy...,nn\}]
[,OPT=xx]
[,PFK=xx]
[,PROD=\{xx,[xx]...\}]
[,PROG=\{xx,[xx]...\}]
[,RESET]
[,RTLS=\{xx,[xx]...\}]
[,SCH=\{xx [,xx]...,L\}]
[,SLIP=xx]
[,SMF=xx]
[,SMS=xx]
[,TIMEZONE=\{W|E\}.hh[.mm]]
[,UNI=xx]
```

Notes:

1. You may specify the operands in any order, and must specify at least one operand. Do not put a comma before the first operand you specify.

2. You can specify the CLOCK, DATE, and TIMEZONE parameters either individually or in combination with one another. However, do not specify them with any other parameters.

3. You may use the SET parameters to determine which members of the logical parmlib the system is to use. Use them only at the direction of the system programmer. For more information on members of the logical parmlib, see z/OS MVS Initialization and Tuning Guide.

4. If you specify only one parmlib member with APPC=, ASCH=, CEE=, CNGRP=, GRSRNL=, MPF=, OMVS=, PROG=, RTLS=, or SCH=, you do not need to enter the parentheses.

Parameters

APPCC=(xx[,xx]...,L)

The two alphanumeric characters indicating the APPCPMxx parmlib member that contains the desired APPC/MVS address space configuration that is appended to the existing configuration. The APPCPMxx member can reside in a logical parmlib or if no logical parmlib is specified, in any parmlib data set.
specified on an //IEFPARM DD statement in the master scheduler JCL. The L is optional and causes the system to display parmlib statements on the operator console as they are processed.

**ASCH=(xx[,xx]...,L)**

The two alphanumeric characters indicating the ASCHPMxx parmlib member that contains the desired APPC/MVS scheduler configuration that is appended to the existing configuration. The ASCHPMxx member can reside in a logical parmlib or if no logical parmlib is specified, in any parmlib data set specified on an //IEFPARM DD statement in the master scheduler JCL. The L is optional and causes the system to display parmlib statements on the operator console as they are processed.

**CEE=(xx[,xx]...,L])**

The two alphanumeric characters that specify one or more CEEPRMxx parmlib members. If you specify only one member, putting parenthesis around the member is optional. If you specify more than one parmlib member, you must put parenthesis around the members. The L is optional and causes the system to display parmlib statements on the operator console as they are processed.

**CLOCK=hh.mm.ss**

The local time in hours (00-23), minutes (00-59), and seconds (00-59).

**Notes:**

1. The system does not change the date when the new time implies a change of date; if you want a new date, use the DATE parameter or wait for the time to pass midnight.
2. If you specify CLOCK for day 2042.260, the last allowable date, the clock value must not exceed 23.53.47. Later values may cause unpredictable results.

**CNGRP=(xx[,xx]...)**

The two alphanumeric characters indicating the CNGRPxx member of the logical parmlib to be activated. This data is broadcast across the sysplex. It refers to the logical parmlib only on the system where the command executes, and activates only the CNGRPxx members found in that logical parmlib.

**CNGRP=NO**

The system is to remove all active console group definitions from the sysplex.

**CNIDTR=xx**

The two alphanumeric characters indicate the CNIDTRxx parmlib member to be used. This command specifies the exclusion list that the tracking facility uses. The facility uses this list for new instances of the tracked event. Previously recorded instances of the tracked event will continue to be displayed by the DISPLAY OPDATA,TRACKING command, even if they now match an exclusion statement.

**Note:** Once a parmlib member has been activated, the only way to not have an exclusion list active is to activate a member that contains no exclusion definitions.

**DAE=xx**

The two alphanumeric characters indicating the ADYSETxx member of the logical parmlib that contains the new parameters that dump analysis and elimination (DAE) program is to use.

**Note:** The OPT=, SMF=, and DAE= parameters affect the jobs in progress as well as the jobs read and scheduled after the command.
SET Command

**DATE=yyyy.ddd**

The local date, where

- **yyyy** is the year, in the range 1900-2042, and
- **ddd** is the day, in the range 001-366.

**Notes:**

1. The most distant date in the future you may specify is 2042.260.
2. The year must be within seventy (70) years of the UTC date or the system ignores the entire SET command.
3. You must specify the year yyyy using four digits.
4. If you specify a new time that implies a change of date, you must explicitly specify the new local date.

**DEVSUP=xx**

The two alphanumeric characters indicating the DEVSUPxx member of the logical parmlib that contains the parameters the system is to use to set device related controls.

**Note:** The category codes for tape library partitioning cannot be changed.

**DIAG=xx**

The two alphanumeric characters indicating the DIAGxx member of the logical parmlib containing statements that control serviceability options on the system. You can also specify multiple parmlib members with DIAG=(xx,yy,...). For a complete description of the options controlled by DIAGxx, see [z/OS MVS Initialization and Tuning Reference](https://www.ibm.com/support/knowledgecenter/SSEQ57_5.1.0/com.ibm.doc.mvsinit_tuning.ref/). In the system parameter list (IEASYSxx), there is an option to specify which DIAGxx parmlib member to use. The DIAGxx members contain parameters to control various system functions. TRAP, ICVTESTEADSCB is used to test for application/system support of extended attribute DSCBs. When the TRAP, ICVTESTEADSCB, is set, DADSM, CVAF and OPEN functions will change their processing for data set oriented operations to fail the operation if the data set is 'EAS eligible' and the EADSCB=OK keyword is not specified. For volume related operations the operation will be failed if the EADSCB=OK keyword is not specified. These tests will apply to non-EAVs. In some cases the failure might be only an informational message.

**EXS=xx**

The two alphanumeric characters indicating the EXSPATxx member of the logical parmlib that contains the excessive spin recovery actions and the excessive spin loop timeout interval.

**GRSRNL=(xx[,xx]...)**

Specifies one or more GRSRNLSxx members of the logical parmlib that contain the specified GRS resource name lists. Each value of xx is two alphanumeric characters that indicate a GRSRNLSxx member. GRSRNLS enables you to change the current RNLs specified in one or more GRSRNLSxx member of SYS1.PARMLIB.

**Attention:** Use extreme caution when issuing the SET GRSRNLS command to change heavily used or highly critical resources. Work that requires resources for a critical application, or resources used by the operating system, might become suspended or delayed, which can impair the performance of that critical application or the operating system itself.

For more information about the use of the SET GRSRNLS command, see [z/OS MVS Planning: Global Resource Serialization](https://www.ibm.com/support/knowledgecenter/SSEQ57_5.1.0/com.ibm.doc.mvsinit_tuning.ref/).
Restriction: In a GRSRNL=EXCLUDE environment, the GRSRNL= parameter cannot be specified unless in a single system STAR complex. See [z/OS MVS Planning: Global Resource Serialization](https://www.ibm.com/support/docview.wss?uid=swg21232475) for more on migrating from GRSRNL=EXCLUDE to standard RNLs.

IKJTSO=xx
The two alphanumeric characters indicating the IKJTSOxx parmlib member to be activated. This command will perform processing similar to the TSO/E PARMLIB UPDATE command. A switch will be attempted when a broadcast data set that is different from the one currently being used is specified in the IKJTSOxx parmlib member. If the IKJTSOxx parmlib member specifies a new broadcast data set, operator confirmation of the switch will be required unless NOPROMPT is specified in the parmlib member.

IOS=xx
The two alphanumeric characters indicating the IECIOSxx member of the logical parmlib that contains the parameters the system is to use to control MIH processing, I/O timing processing, and other IOS functions.

You can change the MIH timing intervals, or the I/O timing intervals, or the MIH timing intervals and the I/O timing intervals ONLY for devices that have MIH statements coded in IECIOSxx.

Notes:
1. IECIOSxx can also contain parameters that control hot I/O processing. Using SET IOS=xx to change to another member does not affect the hot I/O parameters; hot I/O processing is unchanged. You can only change hot I/O processing parameters at system initialization time in response to message IEA101A.
2. During IPL (if the device is defined to be ONLINE), or during the VARY ONLINE process, some devices present their own MIH timeout values through the primary/secondary MIH timing enhancement contained in the self-describing data for the device. The primary MIH timeout value is used for most I/O commands. However, the secondary MIH timeout value can be used for special operations such as long-busy conditions or long-running I/O operations. Any time a user specifically sets a device or device class to have an MIH timeout value that is different from the IBM-supplied default for the device class, the user-specified value overrides the device-established primary MIH time value. This implies that if an MIH time value that is equal to the MIH default for the device class is explicitly requested, IOS does NOT override the device-established primary MIH time value. To override the device-established primary MIH time value, you must explicitly set aside a time value that is not equal to the MIH default for the device class. Overriding the device-supplied primary MIH timeout value can adversely affect MIH recovery processing for the device or device class. See the specific device’s reference documentation to determine if the device supports self-describing MIH time values.

MMS=xx
When the MVS message service (MMS) is not active, SET MMS=xx starts the message translation service. When MMS is active, SET MMS=xx changes the MMSLSTxx member. The two alphanumeric characters indicate the MMSLSTxx member of the logical parmlib the system is to use.

MMS=NO
Ends MMS processing and frees all allocated resources.
SET Command

MPF=(xx[,xx]...)
Specifies one or more MPFLSTxx members of the logical parmlib that are concatenated to form the MPF table. The value of xx can represent any of these items:

- The message(s) being suppressed by MPF
- The action message(s) not being retained by the action message retention facility
- The installation exit(s) to receive control for selected messages
- The status of the general WTO installation exit IEAVMXIT
- Whether this message is automated by MPF
- The MPFLSTxx member that identifies the message ID, color attribute, or command installation exit definition
- What color, intensity, and highlighting capabilities are in effect
- The status of the command installation exit routines specified in the logical parmlib member MPFLSTxx
- The current installation options for handling foreign messages

The MPF parameter in the INIT statement in the CONSOLLxx member of the logical parmlib controls which, if any, MPFLSTxx members are active at IPL.

MPF=NO
Ends MPF processing (message suppression and presentation). NO is ignored when specified in combination with a 2-character suffix.

MSGFLD=xx
The two characters xx indicating the MSGFLDxx member of the logical parmlib that contains the message flood automation parameters. Message flood automation processing requires the xx be alphabetic, numeric or national characters.

OMVS=(xx[,xx...,nn])
The two alphanumeric characters that specify one or more BPXPRMxx parmlib members. If you specify only one member, putting parenthesis around the member is optional. If you specify more than one parmlib member, you must put parenthesis around the members.

OPT=xx
The two alphanumeric characters indicating the IEAOPTxx member of the logical parmlib that contains the new parameters SRM is to use.

PFK=xx
The two alphanumeric characters indicating the PFKTABxx member of the logical parmlib that contains the PFK tables that are to be available for a console. The PFK(xx) keyword on the INIT statement in CONSOLLxx identifies the PFKTABxx member that is available at IPL.

Note: The CONTROL command (K N,PFK=nnnnnnnn) must be issued to invoke the PFKTABxx member specified in the SET command.

PROD=(xx[,xx]...)
The two alphanumeric characters indicating the IFAPRDxx members of the logical parmlib that contain the desired product enablement policy. If a policy already exists, the system performs the actions defined in the specified member(s) to modify the existing policy.

The system processes the members in the order specified. If it encounters a member that does not exist, command processing stops.
PROG=(xx[,xx...])

The two alphanumeric characters that specify one or more PROGxx parmlib members. The system processes the members in the order specified. If it encounters a member that does not exist, command processing stops. Each PROGxx member contains definitions that:

- Control the format and contents of the list of APF-authorized libraries
- Control the use of exits and exit routines
- Control the LNKLST concatenation by defining and modifying LNKLST sets
- Control the addition of modules to, and removal of modules from, the LPA after IPL

You can use the SET PROG=xx command to control exits previously defined to the dynamic exits facility. Dynamic exits services are implemented by:

- The EXIT statement of the PROGxx parmlib member. The EXIT statement of PROGxx allows an installation to add exit routines to an exit, delete an exit routine for an exit, change the state of an exit routine, change the attributes of an exit, and undefine an implicitly defined exit.

The PROGxx EXIT statement interacts with the PROG=xx parameter of IEASYSxx and the SET PROG=xx command. At IPL, you can use PROG=xx to specify the particular PROGxx parmlib member the system is to use. During normal processing, you can use the SET PROG=xx command to set a current PROGxx parmlib member. See "z/OS MVS Initialization and Tuning Reference" for information about the PROGxx parmlib member.

- The SETPROG EXIT operator command. This command performs the same functions as the EXIT statement of the PROGxx parmlib member.

- The CSVDYNEX macro. The CSVDYNEX macro can be used to define exits to the dynamic exits facility, control their use within a program, and associate one or more exit routines with those exits. It can also be used to associate exit routines with the existing SMF and allocation exits, which have been defined to the dynamic exits facility.

You can use the SET PROG=xx command to control the LNKLST concatenation. The PROGxx LNKLST statement interacts with the PROG=xx parameter of IEASYSxx and the SET PROG=xx command. At IPL, you can use PROG=xx to specify the particular PROGxx parmlib member the system is to use. During normal processing, you can use the SET PROG=xx command to set a current PROGxx parmlib member, or use the SETPROG LNKLST operator command to modify LNKLST sets. This command performs the same functions as the LNKLST statement of the PROGxx parmlib member and allows you to make dynamic changes to a LNKLST set. See "SETPROG Command" on page 4-487.

You can use the SET PROG=xx command to control the content of the LPA dynamically following IPL. The PROGxx LPA statement can specify modules that are to add to the LPA following IPL, those to delete from the LPA, and threshold values for minimum amounts of CSA storage that must still be available after an ADD operation.

You can also initiate a change to LPA from a program via the CSVDYLPA macro, or by an operator using the SETPROG command. See "z/OS MVS System Commands" However, modules accessed through a Program Call (PC) instruction cannot be replaced using a SETPROG LPA command. That is because even though the addresses of those modules are stored in the PC table, that table is not updated by the SETPROG LPA command.

RESET

Specifies the time zone constant that is used to calculate the local date and
time is reset to the value that was read in from the CLOCKxx member of the logical parmlib during system initialization. The local date and time are changed accordingly. When you specify RESET, omit DATE and CLOCK.

RTLS=(xxy...)  
The two alphanumeric characters indicating the CSVRTLxx members of the logical parmlib that contain the desired run-time library services specification. The system processes the members in the order specified. If it encounters a member that does not exist, command processing stops.

SCH=(xxy,...,L)  
The two alphanumeric characters indicating the SCHEDxx members of the logical parmlib that contain the desired program properties table (PPT) configuration. The L is optional and causes the system to display parmlib statements on the operator console as they are processed.

The SET SCH command causes the system to replace the current PPT definitions with the IBM-supplied default PPT definitions and the PPT definitions from one or more SCHEDxx members that you specify on the command. The effect of the command is not cumulative. The new PPT definitions take effect immediately, without requiring a re-IPL of the system.

Notes:
1. The SET SCH command only affects the PPT configuration statement.
2. If the SET SCH command fails, the current PPT configuration remains active.

SLIP=xx  
The two alphanumeric characters indicating the IEASLPxx member of the logical parmlib that contains the commands SLIP processing is to use.

SMF=xx  
The two alphanumeric characters indicating the SMFPRMxx member of the logical parmlib containing the parameters the system is to use when restarting SMF.

SMS=xx  
The two alphanumeric characters indicating the IGDSMSxx member of the logical parmlib that contains the parameters the system is to use when it starts SMS. Specifying SMS=xx also starts SMS if it was not started at IPL or, restarts SMS if it has stopped and can’t restart itself. Depending on the setting of the PROMPT keyword in the IEFSSNxx parmlib member, this command can display the parameters in the IGDSMSxx member. (For a comparison of the SET SMS command with the SETSMS command, see Table 4-36 on page 4-507)

You can use SET SMS=xx to specify an IGDSMSxx PARMLIB member that contains PDSESHARING(EXTENDED) to migrate members of a sysplex to PDSE extended sharing. This SET SMS command must be routed to every system that was operating with a PDSESHARING(NORMAL) PARMLIB member. This SET SMS command establishes that system’s preference and causes it to communicate with the other sysplex members that it would like to switch to extended sharing. When all members have requested extended sharing, the sysplex can migrate to that level of sharing. You might have to issue SET SMS=xx a second time to trigger the switch from normal to extended sharing. Each of the systems issues message IGW306I when it migrates to extended sharing.

When the IGDSMSxx member of SYS1.PARMLIB is read, it can cause changes to any of the parameters that DFSMStvs is using. The SET SMS command affects the following DFSMStvs parameters in the IGDSMSxx member:
TIMEZONE={W | E}.hh[.mm]

Specifies the local time zone value.

W | E

Specifies the direction from UTC. W for west of UTC or E for east of UTC.

hh[.mm]

Specifies the number of hours (hh) and minutes (mm) for the local time zone value. The value for hh must be between 00 and 15. The value for mm must be between 00 and 59.

If you omit mm, the default value is zero.

Do not use the SET TIMEZONE command on any z/OS release before Release 7. If a user attempts to issue this parameter on any z/OS Release before Release 7, the system will issue message IEE309I as follows:

IEE309I SET UNIDENTIFIABLE KEYWORD

UNI=(xx[,xx...])

The two alphanumeric characters indicating the CUNUNIxx parmlib member that controls the conversion environment (Unicode services). Use this command to change the environment when the system is already up and running.

Example 1

When the displayed local time and date are 19.00.00 and 191.141, respectively, to set the local time ahead to 1:00 a.m., enter:

T DATE=1991.142,CLOCK=01.00.00

OR

T DATE=91.142,CLOCK=01.00.00

It is necessary to enter DATE because the time change, in this example to 1:00 a.m., implies a change of date.

Example 2

To reset the time and date to the values set during IPL, enter:

T RESET

Example 3

To restart SMF with the parameters found in the SMFPRMAA member of the logical parmlib, enter:

T SMF=aa
SET Command

Example 4
To change SMS parameters to those found in the IGDSMS21 member of the logical parmlib, or to start or restart SMS by using the parameters in that member, enter:

```
SET SMS=21
```

Example 5
To change MMS parameters to the parameters found in the MMSLST3A member of the logical parmlib or to start MMS using the parameters in that member, enter:

```
SET MMS=3A
```

Example 6
To change the current GRSRNLs to those found in the GRSRNL01, GRSRNL09, and GRSRNL12 members of the logical parmlib, enter:

```
SET GRSRNL=(01,09,12)
```

Example 7
To change the desired APPC/MVS address space configuration with the parameters found in the APPCPM01 member of the logical parmlib and the desired APPC/MVS scheduler configuration in ASCHPM12, ASCHPM03, and ASCHPM09, enter:

```
SET APPC=01,ASCH=(12,03,09)
```

Example 8
To change the desired PPT configuration with the parameters found in the SCHED04 and SCHED05 members of the logical parmlib and also list the parmlib statements to the operator console as they are processed, enter:

```
SET SCH=(04,05,L)
```

Example 9
To SET the console group definitions in the CNGRPAA member, enter:

```
SET CNGRP=AA
```

Example 10
To SET the console group definitions in the members CNGRPAA and CNGRPBB, enter:

```
SET CNGRP=(AA,BB)
```

Example 11
To remove all console group definitions from the sysplex, enter:

```
SET CNGRP=NO
```

Example 12
To change the MPFLSTxx member that builds the MPF table the system uses, enter:

```
SET MPF=06
```
Example 13

To change the MPFLSTxx members that builds the MPF table the system uses, enter:

```
SET MPF=(A1,A2,B4)
```

Example 14

To set the PROGxx member that the system uses to refer to the APF list, enter:

```
SET PROG=03
```

Example 15

To set the current DIAGxx member to DIAG05, enter:

```
SET DIAG=05
```

Example 16

To change the product enablement policy with the parameters found in IFAPRDA2 and IFAPRDA3, enter:

```
SET PROD=(A2,A3)
```

Example 17

To change the RTLS configuration with the parameters found in parmlib members CSVRTLA2 and CSVRTLA3, enter:

```
SET RTLS=(A2,A3)
```

Example 18

To change to using the TSO/E parameters found in IKJTSOA1, enter:

```
SET IKJTSO=A1
```
Use the SETALLOC command to dynamically modify Device Allocation settings.

The complete syntax for the SETALLOC command is:

```
SETALLOC {SPACE[,PRIMARY=n]
[,SECONDARY=n]
[,DIRECTORY=n]
[,MEASURE={TRK|CYL|AVEBLK}]
[,BLKLENGTH=n]
[,ROUND={ROUND|NOROUND}]
[,PRIM_ORG={CONTIG|MIX|ALR}]
[,RLSE={RLSE|NORLSE}] }
{UNIT[,NAME=group]
[,UNITAFF=unit]
[,REDIRECTED_TAPE={TAPE|DASD}] }
{TIOT,SIZE=n}
{SDSN_WAIT,WAITALLOC={YES|NO}}
{VOLUME_ENQ,POLICY={WTOR|CANCEL|WAIT}}
{VOLUME_MNT,POLICY={WTOR|CANCEL}}
{SPEC_WAIT[,POLICY={WTOR|CANCEL|WAITHOLD|WAITNOH}]
[,MAXNWAIT=n]
[,POLICYYN={WTOR|CANCEL}] }
{ALLC_OFFLN[,POLICY={WTOR|CANCEL|WAITHOLD|WAITNOH}]
[,MAXNWAIT=n]
[,POLICYYN={WTOR|CANCEL}] }
{CATLG_ERR[,FAILJOB={YES|NO}]
[,ERRORMSG={YES|NO}] }
{VERIFY_VOL,POLICY={YES|NO}}
{SYSTEM[,IEFBR14_DELMIGDS={LEGACY|NORECALL}]
[,TAPelib_PREF={EQUAL|BYDEVICES}]
[,REMIND_INTV=intv] }
```

Notes:
1. For the output of the SETALLOC command, see the description of message IEFA010I in z/OS MVS System Messages, Vol 8 (IEF-IGD).
2. Only Allocation parameters that are applicable to the current setting can be set. For example, for an ALLC_OFFLN POLICY=WTOR, MAXNWAIT is not applicable, so a SETALLOC ALLC_OFFLN,POLICY=WTOR,MAXNWAIT=10 command would be rejected.
3. Likewise, all applicable Allocation parameters are required when the setting is changed to one that has dependent keywords. For example, when the ALLC_OFFLN policy is changed from POLICY=WTOR to POLICY=WAITNOH, MAXNWAIT and POLICYYN are applicable and must be specified, so a SETALLOC ALLC_OFFLN,POLICY=WAITNOH command would be rejected. SETALLOC ALLC_OFFLN,POLICY=WAITNOH,MAXNWAIT=10,POLICYYN=WTOR would be a valid command.
4. Duplicate keywords are not allowed. For example, SETALLOC ALLC_OFFLN,POLICY=WAITNOH,POLICY=WAITNOH is not valid.
5. If any part of the command is not valid, the entire command is rejected and no parameter changes are made to the system.
6. The SETALLOC command does not support modification of the 2DGT_EXPDT POLICY that can only be changed by the ALLOCxx parmlib member.
7. Configuration updates made using the SETALLOC command are only applicable during the current IPL. If the updates are intended to be permanent, the appropriate ALLOCxx parmlib member must also be updated.

8. Options changed by the SETALLOC command apply only to job steps that start after the command has completed. The command has no affect on existing allocations.

Parameters

SPACE
Specifies the installation defaults for some space allocation parameters. These defaults apply to only dynamic allocation and VIO requests. Space allocations specified on JCL (for VIO requests), on dynamic allocation, or in SMS data classes take precedence over the values coded on this statement.

PRIMARY=n
Specifies one of the following:
- If MEASURE=TRK, the number of tracks to be allocated.
- If MEASURE=CYL, the number of cylinders to be allocated.
- If MEASURE=AVEBLK, the number of average data blocks in the data set, where n is a number in the range of 0-16,777,215 or 2 ^ 24-1.

When you specify TRK or CYL for a partitioned data set (PDS), the primary quantity includes the space for the directory. When you specify a block length for a PDS, the primary quantity does not include the directory space; the system assigns the directory space outside the primary space assignment.

One volume must have enough available space for the primary quantity. If you request a particular volume and it does not have enough space available for your request, the system ends the job step. Allow for track overflow when you compute track requirements.

SECONDARY=n
Specifies the number of additional tracks, cylinders, blocks, or records to be allocated, if more space is needed, where n is a number in the range 0-16,777,215 or 2 ^ 24-1. The system does not allocate additional space until it is needed.

If the requested volumes have no more space available, and if at least one volume is demountable, the system asks the operator to mount scratch (nonspecific) volumes until the secondary allocation is complete. If none of the volumes are demountable, the system abnormally ends the job step.

Note: Your program should not write with a disposition of DISP=SHR unless you take precautions to prevent other programs from being written at the same time.

DIRECTORY=n
Specifies the number of 256-byte records needed in the directory of a PDS, where n is a number in the range 0-8,388,607 or 2 ^ 23-1.

MEASURE=TRK|CYL|AVEBLK
Specifies the unit of measure of the space allocation as one of the following:
- TRK Requests that space be allocated in tracks.
- CYL Requests that space be allocated in cylinders.
AVEBLK
Requests that the system is to decide how many tracks to allocate based on the average block size. The size of the average block is specified using the BLKLNTH parameter, and the number of blocks is specified using the PRIMARY parameter.

Note: When you change MEASURE to AVEBLK, BLKLNTH and ROUND must also be specified on the same command.

BLKLNTH=n
Specifies, in bytes, the average block length of the data, where n is a number in the range 0-65535 or 2 ^ 16-1.

Note: This parameter can be changed only when MEASURE=AVEBLK is specified.

ROUND=ROUND|NOROUND
Specifies whether (ROUND) or not (NOROUND) space allocated to the data set must be equal to an integral number of cylinders.

Note: This parameter can only be changed when MEASURE=AVEBLK is specified.

PRIM_ORG=CONTIG|MXIG|ALX
Specifies the organization of the primary space allocation.

CONTIG
Requests that space allocated to the data set be contiguous. If CONTIG is specified and contiguous space is not available, the system ends the job step.

MXIG
Requests that space allocated to the data set must meet the following requirements:

- The space is the largest area of available contiguous space on the volume.
- The space is equal to or greater than the value specified on the PRIMARY parameter.

Caution: It is suggested for legal concern that you take extreme care when coding this parameter. Large amounts of storage could be allocated, depending on how much free space is available at the time when the request is made. If you code this parameter, it is suggested for legal concern that you also code the RLSE parameter to release any unused space.

Notes:
1. Do not code MXIG for an indexed sequential data set.
2. MXIG can also be specified in a job’s JCL.

ALX
Requests that up to five of the largest separate areas of available contiguous space are to be allocated to the data set, and each area must be equal to or greater than the value specified on the PRIMARY parameter.

Caution: It is suggested for legal concern that you take extreme care when coding this parameter. Large amounts of storage could be allocated, depending on how much free space is available at the time when the request is made. If you code this parameter, it is
suggested for legal concern that you also code the RLSE parameter to release any unused space.

**Note:** ALX can also be specified in a job’s JCL.

**RLSE=RLSE|NORLSE**

Specifies whether (RLSE) or not (NORLSE) space allocated to an output data set, but not used, is to be released when the data set is closed, and the CLOSE macro does not specify TYPE=T. Unused space is released only if the data set is open for output and the last operation was a write.

**UNIT**

Specifies the installation default for the device on which the system is to place data sets.

**NAME=group**

Specifies the group of devices onto which data sets are placed, where group is a valid device group name. The installation must have assigned the name to the devices(s) during system initialization or IBM must have assigned the name. This default applies only to dynamic requests.

**UNITAFF=name**

Specifies the installation default for the unit name on which the system is to place data sets when the following conditions are true:

- The data set for the referencing DD, namely, the DD that specifies UNIT=AFF, DISP=NEW or DISP=MOD (MOD treated as NEW), is not SMS-managed.
- The data set for the referenced DD, namely, the DD statement pointed to by the UNIT=AFF subparameter, is SMS-managed.
- The allocation is not part of a data set collection involving data set stacking.
- The system cannot obtain a unit name from the primary DD statement in the unit affinity chain.

The installation must have assigned the name to the device(s) during system initialization, or IBM must have assigned the name. If the name specified by UNITAFF does not exist in the eligible devices table (EDT), the system default is used instead and a warning message is issued.

**REDIRECTED_TAPE=DASD|TAPE**

Allows the installation to specify whether unopened batch-allocated DASD data sets that were redirected from tape should be treated as DASD or TAPE.

Specifying REDIRECTED_TAPE(TAPE) causes unopened batch allocated data sets that have been redirected from TAPE to DASD to be deleted during final disposition processing. These unopened redirected data sets are deleted regardless of the disposition requested.

Specifying REDIRECTED_TAPE(DASD) causes unopened batch allocated data sets that have been redirected from TAPE to DASD to be processed according to the original disposition, as they would have been if they had been directed to DASD and not redirected to DASD from TAPE.

**Note:** Dynamic allocation of SMS DASD data sets that were redirected from TAPE continue to be treated as DASD during dynamic allocation.
**SETALLOC Command**

**TIOT**
Specifies the installation defaults for the task I/O table (TIOT).

**SIZE=n**
Specifies the size of the TIOT, where n is a number in the range 16-64 for each KB of space. (For example: 16 means 16K).

The TIOT contains an entry for each DD statement. The size of the TIOT decides how many DDs are allowed per jobstep. See [z/OS MVS Initialization and Tuning Reference](https://www.ibm.com/support/knowledgecenter/SSBSW7_5.3.0/com.ibm.mzos.doc.sc.doc/cz_prefac.htm) for examples on calculating the TIOT space required for a jobstep.

**SDSN_WAIT**
Specifies the installation policy for batch jobs that must wait to enqueue on special types of data set names.

**WAITALLOC=YES|NO**
Specifies whether (YES) or not (NO) to cancel jobs that must wait to enqueue on a GDG absolute generation data set name, or a real data set name (when its corresponding alias data set name is specified on the JCL).

When YES is specified, and the enqueue request of a batch job cannot be satisfied, the system issues messages IEF861I, IEF863I and IEF458D. The job waits, holding any resources it might have acquired. The system operator can choose to cancel the job in response to message IEF458D, or allow the job to continue waiting until the enqueue becomes available. If the operator cancels the job, the system writes an informational message IEF330I to the job log.

When NO is specified, the system cancels the job, releases its resources, and issues message IEF211I.

**Notes:**
1. Use with caution when specifying YES. Allowing jobs to wait for data set availability can cause deadlocks with other jobs in the system.
2. When you specify YES, the system does not allow the job to wait for a data set when both of the following conditions are true:
   a. This job plus one (or more) other jobs have the data set allocated as DISP=SHR.
   b. This job requests that its use of the data set be upgraded from DISP=SHR to DISP=OLD. The system ends this job and issues message IEF211I.
3. The WAITALLOC option applies only to batch allocation requests (that is, allocation requests specified in the job’s JCL).

**VOLUME_ENQ**
Specifies the installation policy for enqueuing on volumes when an allocation request has to wait for a volume or a series of volumes.

**POLICY=WTOR|CANCEL|WAIT**
Specifies the action to take. An installation exit can override the policy.

**WTOR**
The policy is to issue a message and let the operator make the decision about the allocation request.

**CANCEL**
The policy is to cancel a job that needs an unavailable volume. The system cancels the job, releases its resources, and issues message IEF251I.
WAIT
The policy is to let a job that needs an unavailable volume wait until the volume is available.

CAUTION: When WAIT is used as the default, deadlocks with other jobs in the system might arise for tape volumes.

VOLUME_MNT
Specifies the installation policy for mounting a volume when an allocation request requires a volume to be mounted.

MVS calls the exit when processing mount requests for single volumes or the first volume of a multi-volume request. MVS does not call the exit for tape mount requests that specify UNIT=DEFER or second and subsequent volumes of a multi-volume request. Use the EOV exit routine to handle second and subsequent volumes (see Z/OS DFSMS Installation Exits for information).

POLICY=WTOR|CANCEL
Specifies the action to take. An installation exit can override the policy.

WTOR
The policy is to issue a message and let the operator make the decision about the volume mount.

CANCEL
The policy is to cancel a job that needs a volume mounted. The system cancels the job, releases its resources, and issues message IEF251I.

SPEC_WAIT
Specifies the installation policy to be followed when an allocation request must wait for a specific volume or unit.

POLICY=WTOR|WAITHOLD|WAITNOH|CANCEL
Specifies the action to take. An installation exit can override the policy.

WTOR
The policy is to issue a message and let the operator make the decision about the wait request.

WAITHOLD
The policy is for the system not to release any of the devices that have already been allocated to this job before it waits for the required units or volumes. The system issues message IEF289E.

Be aware that using the WAITHOLD policy might cause a deadlock situation, particularly when the device is being used by a job that is going to wait. The system does not release any non-sharable devices (namely, non-DASD) that have already been allocated to the job before it waits for required units and volumes. To avoid this problem, do not specify WAITHOLD.

When devices for a job are held during a wait, and a device that was eligible for allocation to the job becomes ineligible for allocation (because of its use by a system utility, for example), the job might fail because it does not have enough devices to complete successfully. See IEF700I in the job log identifies this failure. Refer to message IEF700I for information about how to respond to this failure.

Note: When you change POLICY to WAITHOLD, POLICYNW must also be specified on the same command.
SETALLOC Command

WAITNOH
The policy is to let the job wait while it does not hold the obtained resources. The system releases those devices that have been allocated to this job, and issues message IEF289E.

Note: When you change POLICY to WAITNOH, MAXWAIT and POLICYNW must also be specified on the same command.

CANCEL
The policy is to cancel the allocation request. If a TSO/E user issues the allocation request, the user receives an error message. If a batch job or started task issues the request, the system cancels the job or task, releases its resources, and issues message IEF251I.

MAXNWAIT=n
Specifies the number of WAITNOH decisions that can be made for the specific volume or unit allocation request before the default specified on the POLICYNW parameter takes effect, where n is a number in the range 1-255 or $2^8-1$.

The WAITNOH decisions counted are those specified either through the default on the POLICY parameter or through an installation exit specified in the EXITxx parmlib member. “WAITNOH” decisions made by the operator are not included in the MAXNWAIT count.

Note: This parameter can be changed only when POLICY=WAITNOH is specified.

POLICYNW=CANCEL|WTOR
Specifies how the system handles the allocation request under the following circumstances:

- Either WAITHOLD or WAITNOH is specified on the POLICY parameter and the system does not allow the job to wait for resources.
- The maximum number of WAITNOH decisions (specified on the MAXNWAIT parameter) has been exceeded.

The system is to either cancel the allocation request (CANCEL) or issue a message (WTOR).

Note: This parameter can be changed only when POLICY=WAITNOH or POLICY=WAITHOLD is specified.

ALLC_OFFLN
Specifies the installation policy to be followed when an allocation request needs a device that is offline, or must wait for a non-specific volume or unit.

Note: If all eligible devices are offline, they cannot be brought online without operator intervention. In this case, the system ignores the WAITHOLD and WAITNOH options and issues the WTOR immediately.

POLICY=WTOR|WAITHOLD|WAITNOH|CANCEL
Specifies the action to take. An installation exit can override the policy.

WTOR
The policy is to issue a message and let the operator make the decision about the needed device.

WAITHOLD
The policy is for the system not to release any of the devices that have
already been allocated to this job before it waits for the required units or volumes. The system issues message IEF289E.

Be aware that using the WAITHOLD policy might cause a deadlock problem, particularly when the device is being used by a job that is going to wait. The system does not release any non-sharable devices (namely, non-DASD) that have already been allocated to the job before it waits for required units and volumes. To avoid this problem, do not specify WAITHOLD.

When devices for a job are held during a wait, and a device that was eligible for allocation to the job becomes ineligible for allocation (because of its use by a system utility, for example), the job might fail because it does not have enough devices to complete successfully. Message IEF700I in the job log identifies this failure. See message IEF700I for information about how to respond to this failure.

**Note:** When you change POLICY to WAITHOLD, POLICYNW must also be specified on the same command.

**WAITNOH**

The policy is to let the job wait while it does not hold the obtained resources. The system releases those devices that have been allocated to this job, and issues message IEF289E.

**Note:** When you change POLICY to WAITNOH, MAXNWAIT and POLICYNW option must also be specified on the same command.

**CANCEL**

The policy is to cancel the allocation request. If a TSO/E user issues the allocation request, the user receives an error message. If a batch job or started task issues the request, the system cancels the job or task, releases its resources, and issues message IEF251I.

**MAXNWAIT=n**

Specifies the number of WAITNOH decisions that can be made for the specific volume or unit allocation request before the default specified on the POLICYNW parameter takes effect, where n is a number in the range 1-255 or 2 ^ 8-1.

The WAITNOH decisions counted are those specified either through the default on the POLICY parameter or through an installation exit specified in the EXITxx parmlib member. WAITNOH decisions made by the operator are not included in the MAXNWAIT count.

**Note:** This parameter can be changed only when POLICY=WAITNOH is specified.

**POLICYNW=CANCEL|WTOR**

Specifies how the system handles the allocation request under the following circumstances:

- Either WAITHOLD or WAITNOH is specified on the POLICY parameter and the system does not allow the job to wait for resources (needed devices).
- The maximum number of WAITNOH decisions (specified on the MAXNWAIT parameter) has been exceeded.
SETALLOC Command

The system is to either cancel the allocation request (CANCEL) or issue a message (WTOR).

Note: This parameter can be changed only when POLICY=WAITNOH or POLICY=WAITHOLD is specified.

CATLG_ERR
Specifies the installation policy for handling certain types of errors that might occur when the system processes the disposition of batch unallocated data sets (data sets that have been unallocated at step termination time). The CATLG_ERR statement applies when the system is unable to:
- Catalog a new data set for which the user specified a disposition of CATLG.
- Catalog an old uncataloged data set for which the user specified a disposition of CATLG.
- Catalog an old cataloged data set again for which the volume list was extended, and for which the user specified a disposition of CATLG, KEEP or PASS.
- Roll an SMS-managed generation data set into the GDG base.

The CATLG_ERR statement does not apply when the user unallocates a data set before step termination with the following two methods:
- Dynamic deallocation (DYNALLOC macro).
- Having previously specified FREE=CLOSE on the allocation request (DYNALLOC macro or DD statement in the JCL of the job).

FAILJOB=YES|NO
Specifies whether (YES) or not (NO) the system is to end the job if a catalog error occurs.

When a job is ended by FAILJOB(YES), the action of ending is considered a post-execution error.

Notes:
1. The setting of the condition code is not affected.
2. The job is NOT abnormally ended, unless the step that encountered the error had itself previously abnormally ended. Termination means that subsequent steps will not be taken.
3. The normal disposition for data sets is taken, unless the step that encountered the error had already abnormally ended, in which case the abnormal or conditional disposition is taken.

ERROMSG=YES|NO
Specifies whether (YES) or not (NO) the system is to issue an error message to the operator if a catalog error occurs.

When YES is specified, the system issues message IEF377I. If FAILJOB=YES was also specified, the system ends the job, releases its resources, and issues message IEF378I.

Note: If any of the following conditions is true, the system writes the error message even when ERROMSG=NO is specified:
- The user specifies MSGLEVEL=(,1) on the JCL JOB statement.
- The JES installation default sets the message level to MSGLEVEL=(,1).
- The job abnormally ends.
VERIFY_VOL

Specifies the installation policy for verifying premounted or PASSed/RETAINed volumes on AutoSwitchable (AS) tape devices.

Note: The OPEN, FEOV and CLOSE macros allow the specification of a positioning parameter, and the LEAVE option of these macros is treated the same as RETAIN.

An AS Tape device that is connected and possibly used outside of this allocation’s tape management scheme can be "stolen" for temporary use by allocation on a system outside this scheme. This causes the volume status for the device to change, unbeknownst to the allocation’s scheme. In this case, if the volume has been premounted, or the volume is PASSed/RETAINed, this allocation scheme can cause inadvertent read/write activity on a volume, and result in data loss or data integrity exposures.

If, for a given DD statement, MVS allocation selects an AS tape device, and the UCB for the device shows that any currently mounted volume is the required volume for the DD, the system can optionally cause volume verification when an OPEN is performed for that DD.

POLICY=YES|NO

Specifies whether the system is to perform volume verification of an apparently premounted or PASSed/RETAINed AS tape device at open time.

YES Volume verification is to be done by OPEN for Standard, ISO/ANSI Version 1, or ISO/ANSI/FIPS Version 3 labeled tape volumes that are premounted or PASSed/RETAINed on an AS tape device. Both volume serial and tape position are verified.

NO No specific volume verification is to be done by OPEN for premounted or PASSed/RETAINed volumes on an AS tape device. Select POLICY=NO option if it is certain that there is no exposure to the "stolen" AS device for premounted or PASSed/RETAINed volumes as described in the previous scenarios. For example, specify POLICY=NO option if all systems within a sysplex are z/OS V1R2 or above, and tape devices that are defined as AS to systems within that sysplex are NOT shared with any systems, or sysplexes, outside of that sysplex.

SYSTEM

Specifies the system defaults.

IEFBR14_DELMIGDS=LEGACY|NORECALL

Specifies the policy on whether to recall a migrated data set when you use an IEFBR14 JCL program with DD DISP=(x,DELETE) to delete the data set. The recall is, in most cases, unnecessary, because the data set is being deleted anyway.

LEGACY

Indicates that the system is to recall HSM-migrated data sets before deletion.

NORECALL

Indicates that the system can delete (through HSM HDELETE processing) the data set without first recalling the data set to the primary storage.

TAPELIB_PREF=EQUAL|BYDEVICES
SETALLOC Command

Specifies the policy on balancing non-specific tape library requests (for example, scratch tape requests) across multiple tape libraries.

**EQUAL**
Indicates that for non-specific tape library requests, all tape libraries must be treated as equal, and receive an equal share of the requests.

**BYDEVICES**
Indicates that non-specific tape library requests must be balanced across all tape libraries according to the number of tape devices in the tape library. Tape libraries with more tape devices receive more non-specific tape requests than libraries with fewer devices when all devices have the same attributes.

**REMIND_INTV(xxx)**
Specifies the number of seconds for how often the message IEF882E/IEF883E is displayed, letting an operator know of an outstanding IEF238D/IEF433D/IEF434D. This interval is a number in the range 10-999, indicating how many seconds between reminder messages, or 0 to disable them.
SETAPPC Command

Use the SETAPPC command to dynamically define or modify the APPC/MVS configuration. Using this command, you can dynamically add or modify definitions for the APPC configuration without the need to edit an APPC parmlib member and issue a separate SET APPC command. However, if changes made to the APPC configuration using SETAPPC are permanent in nature, incorporate the configuration modifications into the appropriate APPC parmlib member. In this way, whenever APPC is recycled or if the system is re-IPLed, the configuration reflects the changes made by the SETAPPC command.

Syntax

The syntax of the SETAPPC command is:

```
SETAPPC {LUADD,ACBNAME=luname
[,SCHED=schedname|NOSCHED]
[,BASE]
[,PSTIMER=value|NONE|INDEFINITE]
[,TPDATA=(dsname)]
[,TPLEVEL={SYSTEM|GROUP|USER}]
[,ALTLU=scheduler-supplied-value]
[,USERVAR=scheduler-supplied-value]
[,GRNAME=genericname]
[,{NQN | NONQN}]
}
{LUDEL,ACBNAME=luname
[,PERSIST | NOPERSIST] }
{SIDEINFO,DATASET=(dsname)}
```

Parameters

LUADD

Defines a local LU for the APPC/MVS configuration.

Use the SETAPPC LUADD command to define a local APPC/MVS LU to the APPC configuration.

The LUADD command must specify an LU name and (optionally)
- An indication of whether the LU is associated with a transaction scheduler
- The name of the transaction scheduler, if one is to be associated with this LU
- The amount of time the LU's sessions will persist in the event the LU becomes unavailable
- The TP profile file associated with the LU
- The level of TP profile from which the LU starts to search
- Optional values to be passed to an alternative transaction scheduler, or to any other member of the APPC XCF group, such as an APPC/MVS server
- A VTAM generic resource name to associate with the LU
- An indication of whether the LU is enabled to support network-qualified names for its partner LUs.

Each LU managed by APPC/MVS must be defined by either an LUADD statement previously invoked through the SET APPC command or through the SETAPPC command. When an installation uses the ASCH transaction scheduler exclusively, only one LU is required. If other transaction schedulers
are used, each scheduler requires a separate LU. An installation might choose
to define additional LUs to isolate TPs for security or testing.

An installation can also define LUs that are not associated with transaction
schedulers. These LUs handle work that is processed by APPC/MVS servers,
rather than scheduled by a transaction scheduler. Such LUs are indicated by
using the NOSCHED keyword on LUADD. Installations can also use NOSCHED
LUs when they want to flow outbound allocate requests without having a
transaction scheduler active. (Note that APPC/MVS servers can also run under
LUs that are associated with transaction schedulers.)

You can modify an LU by overriding previously defined LUs made through
either the SET APPC or SETAPPC commands. In this case, the SETAPPC
LUADD command specifies an ACBNAME that names an existing LU and then
the parameters to be modified. The only parameters you cannot modify with an
overriding LUADD are the SCHED, NOSCHED, ALTLU, USERVAR, GRNAME,
NQN and NONQN parameters. To change these parameters, first delete the LU
with a SETAPPC LUDEL command and then issue a SETAPPC LUADD
command to re-add the LU with changes to the parameters.

**Example:**
The following example defines LU MVSLU01 to be associated with the
transaction scheduler provided with APPC/MVS:

```shell
SETAPPC LUADD,ACBNAME=MVSLU01,SCHED=ASCH,TPDATA=(SYS1.APPCTP),TPLEVEL=USER
```

**ACBNAME(luname)**
The required name of the LU that APPC/MVS is to remove. If this LU was
defined to VTAM, its association with VTAM is terminated after active
conversations end.

**Value Range:** A one- to eight-byte character string of uppercase letters A
through Z, numerals 0-9, national characters (@,$,#) that must begin with
an alphabetic or national character.

The SNA LU 6.2 architecture defines a network-qualified LU name to be up
to 17 bytes in length and in the form `network_id.network_LU_name`, where
`network_id` is the optional 8-byte id of the network and `network_LU_name` is
the 8-byte local LU name. SAA CPI Communications allows the full 17-byte
network-qualified LU name. However, for the ACBNAME keyword, specify
only the 8-byte local LU name.

**Default:** None, this parameter is required.

**SCHED(ASCH|schedname)**

**NOSCHED**
An optional parameter that indicates whether the LU is to be associated
with a transaction scheduler. LUs associated with a transaction scheduler
cannot become active until that scheduler identifies itself to APPC/MVS.
LUs not associated with a transaction scheduler become active as soon as
APPC/MVS becomes active.

**SCHED** indicates that the LU is associated with a transaction scheduler.
**schedname** must match the name the transaction scheduler specifies when
it calls the Identify service. For more information about the Identify service
and its scheduler_name parameter, see [z/OS MVS System Messages, Vol

**NOSCHED** indicates that the LU is not to be associated with a scheduler.
When NOSCHED is specified, the LU becomes active as soon as
APPC/MVS becomes active. Installations can use NOSCHED LUs to isolate
work from schedulers when the work is to be processed by APPC/MVS servers. Installations can also use NOSCHED LUs to flow outbound allocate requests without having a transaction scheduler active.

**Value Range:** For *schedname*, the value is a one- to eight-byte character string and each character must be an uppercase letter (A-Z) or a numeral (0-9).

**Note:** SCHED and NOSCHED are mutually exclusive keywords; you cannot specify both SCHED and NOSCHED in a single LUADD statement. Doing so causes the system to ignore the statement and issue message ATB041I to the system operator.

**Default:** When you omit both SCHED(schedname) and NOSCHED, the default is SCHED(ASCH).

**BASE**
An optional parameter that designates the LU as the base LU. Base LUs are default LUs assigned to handle outbound work. A base LU can be the default LU associated with a particular transaction scheduler or a NOSCHED LU.

When a NOSCHED LU is defined with the BASE option, the LU becomes the system base LU. That means the LU is to be the default LU used for outbound allocate requests from MVS programs, such as batch jobs, TSO/E users, started tasks, and other work requests that attempt to enter the network without being associated with a scheduler or an LU.

**Example:** The following example defines a NOSCHED LU, MVSLU02, to be the system base LU.

```
SETAPPC
LUADD,ACBNAME=MVSLU02,NOSCHED,BASE,TPDATA=(SYS1.APPCTEST),TPLEVEL=SYSTEM
```

If you do not define a NOSCHED LU as a base LU, the base LU defined for the APPC/MVS transaction scheduler (ASCH) becomes the system base LU. If the system base LU does not exist, APPC/MVS rejects conversations allocated by MVS programs that are not associated with a scheduler or an LU.

IBM recommends that you define one LU per transaction scheduler as the base LU for the scheduler. In addition, define a NOSCHED LU as the system base LU if you want to allow outbound requests from the system when no transaction schedulers are active.

When more than one LU is defined as the base LU, the one most recently defined is the base.

**PSTIMER(value)**
An optional parameter that sets the maximum amount of time for which the LU’s sessions persist (are maintained) during interruptions in APPC/MVS or a transaction scheduler’s service.

When you specify a valid value other than NONE, the LU’s sessions persist when the APPC address space is canceled, forced, terminated, or automatically restarted. The sessions also persist during interruptions in scheduler service.

Any conversations that were active at the time of the interruption are lost. When APPC service is resumed, the conversation partners can re-establish these conversations, if desired.

Sessions do not persist in the event the LU is deleted.
Value Range:
- 0 or INDEFINITE (Sessions persist indefinitely)
- 1 - 86400 (Number of seconds the sessions can persist)
- NONE (Sessions are not to persist)

Default: NONE

TPDATA(dsname)
An optional parameter that specifies the name of the VSAM key-sequenced data set that contains TP profiles, along with an optional data base token for the LU. The data base token is used for verifying access authority to TP profiles. If this LU is a NOSCHED LU, APPC/MVS uses only the data set's data base token, if any. The data set specified on TPDATA must be cataloged in either a user catalog or the master catalog.

Value Range: Up to 44 characters in length consisting of one- to eight-byte character string of uppercase letters A through Z, numerals 0-9, national characters (@, $, #) that must begin with an alphabetic or national character.

Default: SYS1.APPCTP

TPLEVEL({SYSTEM|GROUP|USER})
An optional parameter that identifies the level of TP profiles for which the LU searches in response to an inbound allocate request. TPLEVEL limits the search to the levels desired.

Each TP can have different levels of TP profiles with scheduling characteristics associated with a user, a group of users, or all users (system). The TPLEVEL parameter tells the LU which of those levels of TP profile to search.

Value Range:
- SYSTEM means that the LU searches for system-level TP profiles only (NOT for a specific user or group of users).
- GROUP means that the LU searches for TP profiles associated with (1) a specific group of users and (2) system-level TP profiles, in that order.
- USER means that the LU searches for TP profiles associated with (1) a specific user, (2) a group of users, and (3) system-level TP profiles, in that order.

Note: If you specify NOSCHED, TPLEVEL must be SYSTEM. Also, TP profile entries in the data set specified in TPDATA are not used for NOSCHED LUs; only the data base token is used.

Default: SYSTEM

ALTLU(scheduler-supplied value)
This parameter allows optional, installation-supplied data to be passed to a member of the APPC XCF group, such as an alternative transaction scheduler or an APPC/MVS server.

If specified, the data is passed to the APPC XCF group member at the activation and deactivation of the associated LU. For information about the APPC XCF group, see [z/OS MVS System Messages, Vol 3 (ASB-BPX)](https://www.ibm.com/z/os/zos/ibm/support/documentation/system_messages/)

Value Range: A one- to eight-byte character string of uppercase letters A through Z, numerics 0-9, or national characters (@, $, #), with the exception that the first character cannot be numeric (0-9).

Default: None
**USERVAR**(scheduler-supplied value)

This parameter allows optional, installation-supplied data to be passed to a member of the APPC XCF group, such as an alternative transaction scheduler or an APPC/MVS server.

If specified, the data is passed to the APPC XCF group member at the activation and deactivation of the associated LU. For information about the APPC XCF group, see [z/OS MVS System Messages, Vol 3 (ASB-BPX)](https://publib.boulder.ibm.com/infocenter/mvs/v2r10/index.jsp?topic=/com.ibm.mzos.security.doc/infopulse/security/securitymsg3.html).

**Value Range:** A one- to eight-byte character string of uppercase letters A through Z, numerics 0-9, or national characters (@, $, #), with the exception that the first character cannot be numeric (0-9).

**Default:** None

**GRNAME**(genericname)

This optional parameter specifies a VTAM generic resource name to be associated with the LU. The LU may be one of multiple LUs in the same generic resource group, represented by **genericname**. This parameter cannot be dynamically modified or added to an existing LU definition.


**Value Range:** A one- to eight-byte character string of uppercase letters A through Z, numerals 0-9, national characters (@, $, #) and must begin with an alphabetic or national character.

**Default:** None. If the GRNAME parameter is not specified, the LU is activated but is not part of a generic resource group.

**NQN**

**NONQN**

An optional parameter that specifies whether the APPC/MVS LU is enabled to use a network-qualified partner LU name when first allocating outbound conversations. If you specify NQN, APPC/MVS uses the 17-byte network-qualified LU name when both verifying the partner LU, and sending the outbound Allocate request to the partner LU. If you specify NONQN (or allow the system to use the default), APPC/MVS uses the entire name when verifying the partner, but only the 8-byte network-LU-name portion when sending the outbound Allocate request, as in OS/390 V1R2 and previous releases.


**Default:** NONQN

**LUDEL**

The **LUDEL** command deletes a local APPC/MVS LU from the APPC configuration. One **LUDEL** statement must be specified for each LU to be deleted. The **LUDEL** statement contains:

- The LU name
- An indication of whether APPC/MVS keeps all persistent sessions active between this LU and all of its partners

When an **LUDEL** statement is processed, incoming allocation requests to the named LU are rejected; however, all active conversations are allowed to continue until completed. The LU is removed only after all active conversations have ended.
ACBNAME(luname)

The required name of the LU that APPC/MVS is to remove. If this LU was
defined to VTAM, its association with VTAM is terminated after active
conversations end.

Value Range: A one- to eight-byte character string of uppercase letters A
through Z, numerals 0-9, national characters (@, $, #) and must begin with
an alphabetic or national character.

For an explanation of why SAA CPI partner LU names can be 17
characters, see the note under the ACBNAME parameter in 4-434.

Default: None; this parameter is required.

PERSIST I NOPERSIST

An optional parameter that specifies whether APPC/MVS will deactivate all
sessions between this LU and its partners when the LU is deleted. If you
specify PERSIST, and if the LU was previously enabled to support
persistent sessions through the PSTIMER keyword on the LUADD
statement, APPC/MVS does not deactivate sessions between the LU and
its partners. VTAM keeps these sessions active as long as the LU is
re-added to the APPC configuration on the same OS/390 image within the
PSTTIMER time limit (single-node persistent sessions) or in any OS/390
image in the sysplex within the PSTIMER time limit (multi-node persistent
sessions). See z/OS MVS Planning: APPC/MVS Management for further
information. If you specify NOPERSIST (or allow the system to use the
default), APPC/MVS deactivates all sessions between this LU and its
partners when the LU is deleted.

Default: NOPERSIST

SIDEINFO

The SIDEINFO statement names the VSAM key sequenced data set that
contains side information. Only one side information file is allowed per MVS
system.

DATASET(dsname)

An optional parameter that specifies the name of the VSAM key sequenced
data set that contains side information. The file must be cataloged in either
a user catalog or the master catalog.

Value Range: Up to 44 characters in length consisting of one- to eight-byte
character string of uppercase letters A through Z, numerals 0-9, national
characters (@, $, #) and must begin with an alphabetic or national character.

Default: SYS1.APPCSI
SETCEE Command

Use the SETCEE command to change Language Environment run-time options after the Parmlib member has been read. You can modify multiple options in one SETCEE command; however, there is a limit of 126 characters per command. You can not continue the SETCEE command on a second line, each option must be completed in the 126 character limit. To synchronize the setting of multiple options, use the SETCEE command to use additional Parmlib members.

Syntax

The complete syntax for the SETCEE command is:

```
SETCEE [CEEDOPT,opt,opt,...]
[CEECOPT,opt,opt,...]
[CELQDOPT,opt,opt,...]
[CEEROPT,{ALL|COMPAT}]
[CEEQROPT,{ALL|NONE}]
```

Parameters

**CEEDOPT**
Sets your specified Language Environment run-time options in a non-CICS environment.

**CEECOPT**
Sets your specified Language Environment run-time options in a CICS environment.

**CELQDOPT**
Sets your specified Language Environment run-time options in an AMODE 64 environment.

**opt**
Specifies the Language Environment run-time option you wish to change. The option can be any option that is valid in the CEEPRM member. For a list of valid options, see the example of the CEEPRM member in z/OS MVS Initialization and Tuning Reference.

**CEEROPT**
Specifies whether region-specific run-time options should be used in a non-CICS/non-LRR environment.

- **ALL**
  Load CEEROPT in all cases.

- **COMPAT**
  Load CEEROPT only in a CICS or LRR environment.

**CELRQOPT**
Specifies whether region-specific run-time options should be used in AMODE 64.

- **ALL**
  Load CELROOPT in AMODE 64.

- **NONE**
  CELROOPT will not be loaded.

Example 1
SETCEE Command

SETCEE CCEEDOPT,POSIX(ON)

Example 2
SETCEE CELQQD0PT,HEAP64(1M),IOHEAP64(1M,1M)
SETCON Command

Use the SETCON command to activate functions pertaining to the console environment and the tracking facility. Also use the SETCON MONITOR command to control the monitoring of messages in your installation. The MONITOR option allows you to receive monitored messages without requiring that the messages be queued to a console or be written to SYSLOG or OPERLOG. For more information about the tracking facility, the MONITOR option, and the console support modes, see z/OS MVS Planning: Operations.

Syntax

The syntax of the SETCON command is:

```
SETCON {TRACKING|TR}\{ON|OFF|ONWITHABEND\}
{MODE={SHARED|DISTRIBUTED}}
{\MONITOR} {\JOBND\\{\ON[,\LOG|NOLOG]}|OFF}}
{\SESS\\{\ON[,\LOG|NOLOG]}|OFF}}
{\STATUS\\{\ON[,\LOG|NOLOG]}|OFF}}
{\T\{ON|OFF\}}
```

Parameters

**TRACKING** or **TR**
The system is to make changes to the tracking facility. The tracking facility records instances of the event being tracked.

**ON**
Activates the tracking facility to accept the recording of instances. No change is made if the facility is already active. If the facility is in ABEND mode, it will be taken out of ABEND mode without losing any recorded instances.

**OFF**
Deactivates the tracking facility to reject all attempts to record instances of the event being tracked. No change is made if the facility is already inactive. Before deactivation, a DISPLAY OPDATA,TRACKING command is issued by the tracking facility to record the current instances. The tracking facility attempts to ensure that the DISPLAY OPDATA,TRACKING command completes before terminating the facility. However, if the facility terminates before the DISPLAY OPDATA,TRACKING command can run, the recorded instances will be lost and will have to be recreated.

Because turning off the facility takes a few seconds, wait until the IEE7121 SETCON PROCESSING COMPLETE message is issued before reactivating the facility.

**ONWITHABEND**
Activates the tracking facility to accept the recording of instances. Programs that invoke the tracking service will be ABENDed with a 077 ABEND code (reason code '34'X). The invoking program is not terminated by this ABEND. If a dump is required to obtain more information about an invoking program, a SLIP trap should be set for ABEND code 077. The instance is recorded before the program is ABENDed. If the tracking facility becomes
SETCON Command

full, no new instances are recorded, but the callers will still be ABENDed. When the ABEND occurs, a symptom record will be cut in LOGREC.

Notes:
1. Be cautious of using the ONWITHABEND option. If the tracked events are not considered as errors, do not specify ONWITHABEND.
2. If the track value is 0 or 128, no ABEND will be issued even when you specify ONWITHABEND.

MODE
Dynamically migrate between the console services shared and distributed mode. You can use the DISPLAY OPDATA,MODE command to determine the current mode and the status of each system at that point in the migration.

SHARED
Migrates to the shared mode.

DISTRIBUTED
Migrates to the distributed mode.

MONITOR or MN
Controls whether monitor messages are to be enabled or disabled, as defined by each of the specified message types.

,JONAMES
The name of the job is displayed whenever the job starts and terminates, including unit record allocation when the step starts. If a job terminates abnormally, the job name will appear in a diagnostic message.

,SESS
The TSO/E user identifier is displayed whenever the TSO/E session begins and ends. If the session terminates abnormally, the user identifier appears in the diagnostic message.

,STATUS
The data set names and volume serial numbers of data sets with dispositions of KEEP, CATLG, or UNCATLG are displayed whenever data sets are freed.

,T
For monitor messages that can optionally contain a timestamp, the timestamp is included in the message.

ON
Controls whether monitor messages for the specified message type are to be enabled, or are to include a timestamp.

,LOG
Monitor messages are also to be sent to the SYSLOG or OPERLOG.

,NOLOG
Monitor messages are not to be sent to the SYSLOG or OPERLOG.

OFF
Controls whether monitor messages for the specified message type are to be disabled, or are not to include a timestamp. Note that when a request to disable this message type is made, production of these messages is disabled only if there are no consoles in the sysplex currently receiving this message type.
SETDMN Command

Important
Beginning with z/OS V1R3, WLM compatibility mode is no longer available. As the SETDMN command was valid only on systems operating in compatibility mode, it is now disabled. The information has been left here for reference purposes, and for use on backlevel systems.

Use the SETDMN command to change existing values of parameters in a single domain. Issue the SETDMN command only at the direction of the system programmer. The keywords that are valid for a given execution of the SETDMN command are determined by:
1. The keywords specified in the current domain description table.
2. The values specified in the current installation performance specification (IPS).

At the system programmer’s direction, using the SETDMN command, you can change the relative service distribution among domains. The relative service is specified as a range of service rates for each domain, or as a fixed contention index (FIXCIDX). Each relative service rate pair can be specified as an average service per ready address space (ASRV) in the domain or as domain service totals (DSRV). FIXCIDX is specified as a constant value which determines the relative importance of the domain, regardless of the amount of service the domain consumes.

Note: The SETDMN command is not valid on systems operating in workload management goal mode. The command is supported on systems operating in workload management compatibility mode.

Syntax

The syntax of the SETDMN command is:

```
SD domainnum,{MIN=n1[,MAX=n2][,ASRV=(n0,n9)] }
 |,DSRV=(n0,n9)
 |,FIXCIDX=nnn
{(ASRV=(n0,n9))[,MIN=n1][,MAX=n2] }
{(DSRV=(n0,n9)}
{(FIXCIDX=nnn })
{MAX=n2[,ASRV=(n0,n9)][,MIN=n1] }
,DSRV=(n0,n9)
,FIXCIDX=nnn
```

Restrictions

There are no defaults in the SETDMN command.
At least one keyword must be specified.
Duplicate keywords cannot be specified.
Keywords can be specified in any order.
SETDMN Command

Specifying the ASRV, DSRV, or FIXCIDX keywords overrides any previous value set for them either in the current IPS or in another SETDMN command. The value for \( n2 \) in the \( \text{MAX}=n2 \) parameter must be greater than or equal to the value of \( n1 \).

Parameters

\textit{domainnum}

The domain table entry (1-128) to be modified.

\textbf{MIN} \( =n1 \)

The minimum multiprogramming level (0-999).

\textbf{MAX} \( =n2 \)

The maximum multiprogramming level (0-999).

\textbf{ASRV} \( =(n0,n9) \)

Allows you to specify the average service per ready address space in the domain. The value range is 0-999999999.

\textbf{DSRV} \( =(n0,n9) \)

Allows you to specify the total service rate for each domain. The value range is 0-999999999.

\textbf{FIXCIDX} \( =nnn \)

Allows you to specify the fixed contention index value for each domain. The value range is 0-655.

\textbf{Note: For more details about using SETDMN command parameters, see \( \text{z/OS MVS Initialization and Tuning Guide} \).}

Example 1

To set the maximum multiprogramming level (MPL) to 2 in domain 5, enter:

\texttt{SETDMN 5,MAX=2}

All other values in domain 5 remain unchanged.

Example 2

To set the minimum MPL to 3 and the maximum MPL to 4 in domain 6, enter:

\texttt{SETDMN 6,MIN=3,MAX=4}

Example 3

For domain 2, to set the minimum MPL to 0, the maximum MPL to 255, and the relative service at (1,5000) to control the average service rate per domain, enter:

\texttt{SETDMN 2,MIN=0,MAX=255,ASRV=(1,5000)}

Example 4

To set the contention index of domain 4 to a constant value of 300, enter:

\texttt{SETDMN 4,FIXCIDX=300}
SETETR Command

Use the SETETR command to enable external time reference (ETR) ports that have been disabled. An ETR port disabled by a hardware problem can be enabled after the problem has been corrected.

Also you might use SETETR to indicate to MVS that an adjustment has been made to the time from the 9037 Sysplex Timer. This use of SETETR is necessary for an MVS system using the 9037 Sysplex Timer and when it is running on a processor that follows:
- 3090 model J’s
- 9121-320 based models
- 9021-340 based models

Syntax

The complete syntax for the SETETR command is:

```
SETETR PORT=n
```

**Note:** The SETETR command does not have an abbreviation.

Parameters

**PORT=n**

Specifies the number of the ETR port to be enabled. The valid values for \( n \) are 0 and 1.

Example

To enable ETR port 1, enter:

```
SETETR PORT=1
```
Use the SETGRS command to:

- Migrate a currently active global resource serialization ring complex to a star complex
- Modify the current RESMIL or TOLINT values
- Set the system values for
  - GRSQ
  - SYNCHRES
  - ENQMAXA
  - ENQMAXU
- Change the contention notifying system (CNS) in a global resource serialization complex.

**Syntax**

The complete syntax for the SETGRS command is:

```
SETGRS [MODE=STAR]
 { [RESMIL=nnnnnnn | RESMIL=OFF] [,TOLINT=nnnnn] [,SYNCHRES={YES | NO}] }
 {ENQMAXA=nnnnnnn | ENQMAXU=nnnnnnn} [, {NOPROMPT | NP}]
 {CNS=sysname} [, {NOPROMPT | NP}]
 {GRSQ=ALL | CONTENTION | LOCAL}
```

**Note:** The installation's system programmer should direct use of this command.

**Parameters**

**MODE=STAR**

Directs the system to convert a global resource serialization ring complex to a global resource serialization star complex.

MODE=STAR is mutually exclusive with the RESMIL and TOLINT parameters.

**RESMIL=nnnnnnn | RESMIL=OFF**

Specifies the RSA-message residency time. The value indicates the minimum RSA-message residency time in milliseconds (that is, the least amount of time that the RSA-message is to spend in this system). The actual amount of time that the RSA-message is to spend in this system will vary between the time you specify in milliseconds and a maximum value calculated by global resource serialization. In this way, global resource serialization balances CPU use and ENQ response time.

If you specify RESMIL=OFF, the RSA-message residency time is set to zero and global resource serialization does no tuning. If you specify RESMIL=0, the system tunes the residency time in a range with a minimum of zero.

The RESMIL value can be from 0 to 99999999 milliseconds, or OFF. If you omit the RESMIL parameter, the current RESMIL value remains in effect. The current value was specified either by the GRSCNFxx parmlib member or by a previous SETGRS command.

**TOLINT=nnnnn**

Specifies, in seconds, the maximum tolerance time interval global resource serialization allows the RSA-message to return to this system, before it considers the RSA-message overdue.
The value of TOLINT can be from 1 to 86399 seconds. If you omit the TOLINT parameter, the current TOLINT value remains in effect. The current value was specified either by the GRSCNFxx parmlib member or by a previous SETGRS command.

SYNCHRES=YES | NO
Specifies whether synchronous reserve processing is activated. Action is only taken on the system where the command is issued.

ENQMAXA | ENQMAXU=nnnnnnnn [.NOPROMPT]
Assigns a new global resource serialization system enqueue maximum value for concurrent authorized (ENQMAXA) or unauthorized (ENQMAXU) requesters in a single system. This function enables you to dynamically update workload estimation for enqueue processing. Global resource serialization attempts to update the appropriate enqueue maximum as specified. The ISGADMIN service can update the maximum values for a specific address space. Global resource serialization uses the greater of the two maximums for its checking. For more information, see [z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG]

value
A required parameter specifies the new concurrent maximum ENQ request value.

The ENQMAXA range is 250,000 to 99,999,999. The default is 250,000.

The ENQMAXU range is 16,384 to 99,999,999. The default is 16,384. See [z/OS MVS Planning: Global Resource Serialization] for complete guidance information.

NOPROMPT
An optional parameter that informs the system not to issue the confirmation message.

Abbreviation: NP

CNS=system-name [.NOPROMPT]
CNS assigns a new global resource serialization contention notifying system (CNS) in a star complex.

Restriction: CNS is only applicable in a star complex.

NOPROMPT
An optional parameter that informs the system not to issue the confirmation message.

Abbreviation: NP

GRSQ={LOCAL | CONTENTION | ALL}
This parameter is specific to star mode and affects how quickly a dump is taken. GRSQ is system-specific; action is only taken on the system where the command is issued.

Restriction: GRSQ is only applicable in a star complex.

Notes:
1. The system on which you enter the SETGRS MODE=STAR command controls the migration.
2. When global resource serialization completes the transition to the star complex, the system issues the following message to indicate that the migration has completed and global resource serialization is active for the complex:

   ISG334I GRS STAR COMPLEX INITIALIZATION COMPLETE
3. During processing of a SETGRS MODE=STAR command, no global resource requests (ENQ, DEQ, or RESERVE) will be processed. The length of time global resource serialization requesters are suspended may be several minutes, because the global resource serialization lock structure and sysplex couple data set records are going to be initialized with all of the complex-wide information, along with significant changes to the internal control block structures. IBM recommends invoking the migration capability at a time of minimal global resource serialization activity.

4. A SETGRS MODE=STAR request is valid if the following criteria are met:
   • Global resource serialization is running a ring complex.
   • All systems in the global resource serialization ring complex support a star complex.
   • There are no systems in the global resource serialization ring complex that are interconnected through the global resource serialization channel-to-channel support rather than the coupling facility.
   • All systems can access the ISGLOCK lock structure on the coupling facility.
   • The global resource serialization records are defined on the sysplex couple data set.
   • There are no dynamic RNL changes still in progress.

5. The RESMIL and TOLINT parameters are not valid on a SETGRS command issued in a global resource serialization star complex.

6. The RESMIL and TOLINT parameters of the SETGRS command affect only the system on which the SETGRS command is issued.

7. A SETGRS CNS=sysname request is only valid if the following criteria are met:
   • Global resource serialization is running in star complex.
   • All systems in the global resource serialization star complex support SETGRS CNS command (systems are at or above z/OS V1R7 with the required PTF).
   • The target system is an active system in the global resource serialization star complex.

Examples

Example To migrate from a global resource serialization ring complex to star complex, enter:
SETGRS MODE=STAR

Example

SETGRS CNS=TEST2
XX ISG366D CONFIRM REQUEST TO MIGRATE
THE CNS TO TEST2. REPLY SYSNAME=TEST2
TO CONFIRM OR C TO CANCEL.
R XX,CNS=TEST2
Result: (when current CNS is TEST1)
ISG364I CONTENTION NOTIFYING SYSTEM MOVED
FROM SYSTEM TEST1 TO SYSTEM TEST2. OPERATOR COMMAND INITIATED.

Example

SETGRS CNS=TEST2,NP
Result: (when current CNS is TEST1) ISG364I CONTENTION NOTIFYING SYSTEM
MOVED FROM SYSTEM TEST1 TO SYSTEM TEST2.
OPERATOR COMMAND INITIATED.
SETGRS ENQMAXU=25000
XX ISG366D CONFIRM REQUEST TO SET THE ENQMAXU ON SYSTEM TEST1 TO 25000.
REPLY ENQMAXU=25000 TO CONFIRM OR C TO CANCEL.

R XX,ENQMAXU=25000
result: ISG370I ENQMAXU ON SYSTEM TEST1 HAS BEEN SET TO 25000.

Example
SETGRS ENQMAXA=400000,NP
result: ISG370I ENQMAXA FOR SYSTEM TEST1 HAS BEEN SET TO 400000.

Example
SETGRS GRSQ=CONTENTION
result: ISG370I GRSQ FOR SYSTEM TEST1 HAS BEEN SET TO CONTENTION.

Example: The GQSCAN parameters for a dump with GRSQ requested is one of the following:
LOCAL: XSYS=NO
CONTENTION: WAITCNT=1
ALL: neither of the above
**SETHS Command**

**SETHS Command**

**Syntax**

Use this command to manage Basic HyperSwap. You must have at least UPDATE authority to use the SETHS command.

```
SETHS {ENABLE}
 (DISABLE)
 (RESUMEIO)
 (SWAP)
```

**ENABLE**

Enables the HyperSwap function for all PPRC pairs.

**DISABLE**

Disables the HyperSwap function for all PPRC pairs.

**RESUMEIO**

Resumes normal I/O activity to all DASD devices that have been stopped by Basic HyperSwap because the STOP option was used. See message IOSHM0303I for the explanation of the STOP option. These devices can be identified by the device status `DEVICE STOPPED BY HYPERSWAP` when the `DISPLAY M=DEV(nnnn)` command is issued.

**SWAP**

Initiates a HyperSwap for all PPRC pairs.
SETIOS Command

In contrast to the SET command, which allows an installation to specify a different IECIOSxx parmlib member, the SETIOS command can dynamically change the missing interruption handler (MIH) or I/O timing (IOT) parameter. The parameters can appear in any order in the command, but there can only be one DEV and TIME parameter pair or DEV and IOTIMING pair in a command. You can create user classes for particular situations such as test environments and special job processing.

In addition, you can use the SETIOS command to do the following:

- Enable or disable the dynamic channel path management function.
- Refresh the control unit model table for the single point of failure detection function in dynamic channel path management.
- Enable or disable the gathering of FICON switch statistics.
- Enable or disable the MIDAW facility.
- Enable or disable UCB overlay protection.
- Indicate whether IOS blocks are obtained in 24 or 31 bit storage.
- Indicate the actions to be taken for an IO Timing HyperSwap trigger.
- Indicate the use of HyperPAV mode for the system.
- Enable or disable the encryption key management.
- Enable or disable the IOS recovery function.
- Enable or disable the zHPF facility.
SETIOS Command

Syntax

The complete syntax for the SETIOS command is:

```
SETIOS [MIH[,class=mm:ss[,class=mm:ss]...]
 [,MOUNTMSG={YES|NO}]
 [,DEV={(/devnum[,(/devnum)...)},TIME=mm:ss,IOTIMING=mm:ss]
 ({(/lowdevnum->(/highdevnum)})
 [,MSGONLY={YES|NO}]
 [,IOTHSWAP={YES|NO}[,IOTTERM={YES|NO}]]
 [DCM={ON|OFF|REFRESH}]
 [MIDAW={YES|NO}]
 [FICON,STATS={YES|NO}]
 [CAPTUCB,PROTECT={YES|NO}]
 [STORAGE,IOSBLKS={24|31}]
 [HYPERPAV={NO|YES|BASEONLY}]
 [EKM[,,,PRIMARY={host_name[:port}]]
 ,PRIPORT=port]
 {ipv4_address[:port]}
 [,PRIPORT=port]
 {ipv6_address[,PRIPORT=port]}
 {NONE}
 [,SECONDARY={host_name[:port]]
 ,SECPORT=port]
 {ipv4_address[:port]}
 [,SECPORT=port]
 {ipv6_address[,SECPORT=port]}
 {NONE}
 [,MAXCONN=dd1
 [,MAXPCONN=dd2]]
 [RECOVERY[,LIMITED_RECTIME=ss]]
 [,DEV={DASD|IOTIMING}]
 [ZHPF={YES|NO}]
```

Notes:

1. The SETIOS command does not have an abbreviation.
2. DEV and TIME together specify a user device class for one or more devices.
3. DEV and IOTIMING together specify a user device class for one or more devices.
4. During IPL (if the device is defined to be ONLINE), or during the VARY ONLINE process, some devices may present their own MIH timeout values, via the primary/secondary MIH timing enhancement contained in the self-describing data for the device. The primary MIH timeout value is used for most I/O commands. However, the secondary MIH timeout value may be used for special operations such as long-busy conditions or long-running I/O operations. Any time a user specifically sets a device or device class to have an MIH timeout value that is different from the IBM-supplied default for the device class, that value will override the device-established primary MIH time value. This implies that if an MIH time value that is equal to the MIH default for the device class is explicitly requested, IOS will NOT override the device-established primary MIH time value. To override the device-established primary MIH time value, you must explicitly set aside a time value that is not equal to the MIH default for the device class.

Note that overriding the device-supplied primary MIH timeout value may adversely affect MIH recovery processing for the device or device class.

Please refer to the specific device’s reference documentation to determine if the device supports self-describing MIH time values.
5. IOTHSWAP and IOTTERM together specify how an I/O timing timeout condition is handled with respect to triggering a HyperSwap.

Parameters

The parameters are:

**MIH,class=mm:ss**

Specifies the time interval in the form *mm:ss*, where *mm* is minutes and *ss* is seconds. The value range for *mm* is 00-99 and for *ss* is 00-59. When you set a class to 00:00, MIH or IOT no longer monitors the class.

You can specify the time interval for one or more of the following classes:

- **CHAR**
  The character reader device class.

- **COMM**
  The communications device class.

- **CTC**
  The channel-to-channel device class.

- **DASD**
  The DASD device class. This device class name represents the MIH.

- **GRAF**
  The graphics device class.

- **TAPE**
  The tape drive device class.

- **UREC**
  The unit record device class.

- **USnn**
  A user-specified device class, where nn can be any two-digit number from 01 through 99 that matches a device group created by MIH or I/O timing processing. A user-specified device group is a set of devices associated with a specific time interval. The system creates this type of group and assigns the user class number (USnn) when either of the following is true:

  - The MIH time interval is not equal to the time interval of its device class.
  - The IOT time interval is not equal to the time interval of its device class.

  (Note that some devices present their own MIH timeout values, via the primary/secondary MIH timing enhancement contained in the self-describing data for the device. If the primary MIH timeout value for the device does not equal the timeout value for the device class and the device’s timeout value has not been altered by the user, the system will create a user-specified class to contain the timeout value for the device. The user-specified class for these devices will be created at IPL (if the device is defined to be ONLINE) or at VARY ONLINE time.)

  - The IOT time interval is not equal to the time interval of its device class.

Other time intervals that you can specify using the *class* parameter are:

- **HALT**
  The halt (HSCH) and clear (CSCH) subchannel operations. Setting this device independent keyword affects all devices on the system.

- **IOTDASD**
  The I/O timing (IOT) limit for the DASD device class. The maximum I/O timing limit is 5,999 seconds.
SETIOS Command

Note: Paging devices are not supported for I/O timing.

MNTS
The time interval for monitoring 'mount pending' conditions for DASD and TAPE drives.

STND
Specifies the MIH time interval for all of the following device classes: CHAR, COMM, CTC, GRAF, TAPE, and UREC.
If you code STND following any of those class names, the value for STND overrides the values for those device classes. Similarly, if you code any of those class names following STND, the values for those device classes override the value for STND.

Note: During IOS recovery processing, the system will override your time interval specification and may issue MIH messages and MIH logrec error records at this IOS-determined interval.

MIH,MOUNTMSG={YES or NO}
Indicates whether or not the system is to display the mount pending messages. Specify YES to have the message displayed; specify NO to suppress the message display.

MIH,DEV=\{/[devnum],[/devnum...]\} or \{/[lowdevnum]-[/highdevnum]\}
The specific device identified by a device number, devnum, or all devices in the range of lowdevnum-highdevnum. A device number is 3 or 4 hexadecimal digits, optionally preceded by a slash (/).

MIH,TIME=mm:ss
Specifies the time interval in the form mm:ss, where mm is minutes and ss is seconds. The value range for mm is 00-99 and for ss is 00-59.
When you set TIME to 00:00, MIH no longer monitors the device.
If you specify TIME you must also specify DEV. The system accepts only one pair of TIME and DEV keywords per command line.

MIH,IOTIMING=mm:ss
Specifies the I/O timing limit in the form mm:ss, where mm is minutes and ss is seconds. The value range for mm is 00-99, and for ss is 00-59. The maximum I/O timing limit is 5,999 seconds. When IOTIMING is set to 00:00, I/O timing is not in effect for that device or range of devices.

Note: Do not modify the I/O timing limits without first checking with your system programmer.
If you specify IOTIMING you must also specify DEV. The system accepts only one pair of IOTIMING and DEV keywords per command line.

MIH,MSGONLY={YES or NO}
Specifies whether an I/O timeout condition is processed using message-only recovery (MSGONLY=YES) or full I/O timing recovery (MSGONLY=NO).
Message-only processing allows the system to detect I/O timeout conditions while providing the user the ability to decide which I/O requests the system should terminate.
When an I/O request exceeds the I/O timing interval, the system issues a message to the operator and writes a record to SYS1.LOGREC. Then,
1. When MSGONLY=YES is specified, the I/O request is left in the system.
2. When MSGONLY=NO is specified, the system abnormally terminates the I/O request.

The default, when you do not specify MSGONLY, is MSGONLY=NO. The system applies this only to devices it modifies as a result of this command.

If a command contains more than one MSGONLY keyword, the system uses only the last valid MSGONLY keyword.

The MSGONLY keyword is valid only when you specify the IOTDASD keyword or the DEV and IOTIMING keywords. Otherwise, the system ignores MSGONLY. That is, the MSGONLY keyword value relates only to devices affected by the IOTDASD or the DEV and IOTIMING keywords.

MIH, IOTHSWAP={YES or NO}[,IOTTERM={YES or NO}]

Specifies how an I/O timeout condition is handled with respect to HyperSwap processing.

IOTHSWAP indicates whether an I/O timing timeout condition is allowed to trigger a HyperSwap. IOTTERM indicates whether a timed-out I/O operation should be terminated with permanent error when a HyperSwap has been triggered for the I/O timing timeout condition.

The IOTTERM keyword is valid only when you specify the IOTHSWAP keyword on the same command.

Note: An I/O timeout does not trigger a GDPS® HyperSwap when message-only recovery is specified for the device or as the result of a timeout condition specified by an I/O driver program.

DCM={ON or OFF or REFRESH}

Specifies that dynamic channel path management is be turned on or off. If REFRESH, then a control unit model table update will be initiated.

MIDAW={YES or NO}

Specifies whether the modified indirect addressing word (MIDAW) facility is enabled or disabled on a system. When disabling with MIDAW=NO, the MIDAW facility will remain in effect for one minute to allow queued I/O using MIDAWs to finish.

FICON, STATS={YES or NO}

Specifies whether FICON switch statistics are to be gathered on a system. When specifying FICON, STATS=NO, turn off FICON Director Activity Reporting in Resource Measurement Facility (RMF™) in order to avoid the possibility of inconsistent report data.

CAPTUCB, PROTECT={YES or NO}

Specifies whether to enable write protection on captured UCBs.

STORAGE, IOSBLKS={24 or 31}

Use this command to enable 24 or 31-bit storage for IOS blocks.

Note: To use this command, set the IOS Address Space (IOSAS) as a TRUSTED address space.

HYPERPAV={NO or YES or BASEONLY}

Specifies the use of HyperPAV mode. Use of this keyword changes the mode of operation of HYPERPAV-capable DASD control units to the requested mode.

HYPERPAV=NO

Specifies that HyperPAV mode is not to be used.
SETIOS Command

HYPERPAV=YES
   Specifies that HyperPAV mode is to be used.

HYPERPAV=BASEONLY
   Specifies that I/O is to be run only on non-PAV-alias devices in HyperPAV
   mode.

If the HYPERPAV keyword is not specified, the current HYPERPAV setting is
not altered.

Notes:
1. Using SETIOS HYPERPAV to change the mode of operation of all DASD
   control units on the system can take considerable time, depending on how
   many control units are configured on the system. This operation, if required,
   should be done during periods of lower system utilization, and should be
   done without concurrent IODF or microcode changes affecting the control
   unit.
2. If all devices in a logical control unit (LCU) are offline at IPL, SETIOS
   HYPERPAV mode changes will only take effect after a device on that LCU
   is varied online.
3. If a dynamic ACTIVATE and a SETIOS affect the devices on the same
   control unit, the aliases might not be converted to the correct mode. To
   detect this condition, use the D M=DEV command and examine the output.
   To correct the problem, issue VARY bbbb ONLINE,UNCOND where bbbb is
   a base device on the affected control unit. For more information about the
   error condition and how to correct it, see "Placing an I/O Device or a Range
   of I/O Devices Online or Offline" on page 4-688.

EKM,PRIMARY=
   Specifies the hostname or IP address and port number of the primary key
   manager. The primary host is used exclusively until a failure is encountered
   and all attempts to retry are unsuccessful. In subsequent requests after a failure, the
   primary will be retried before the use of the secondary is attempted. When a
   connection to the primary is re-established normal operation continues.

Note: In-band tape encryption requires that the IOS address space has
security permission for a USS segment. The USS segment is only for
TCP/IP connectivity. UID(0) or super user ability is not required. For
example, for RACF environments, issue:

   ADDUSER IOSAS OMVS(UID(xxxx) HOME('/'))

where xxx is a unique user id.

host_name[:port],PRIPORT=port
   The host name of the encryption key manager.

   port
      The port number of the encryption key manager. If you include a port
      number, use a colon to separate it from the host name or IP address.
      Its specification is mutually exclusive with the PRIPORT= keyword. If
      port and PRIPORT= keyword are both not specified, a value of 3801 is
      the default port number.

PRIPORT=port
   Specifies the port number for the hostname or IP address for the
   primary key manager. PRIMARY= must be specified for PRIPORT= to
   be valid.

   Default: 3801 (if not specified on the PRIMARY keyword)
**SETIOS Command**

`ipv4_address[:port | ,PRIPORT=port]`

The IP address of the encryption key manager. IP addresses must be specified as a dotted decimal quad `ddd.ddd.ddd.ddd`.

`port`

The port number of the encryption key manager. If you include a port number, use a colon to separate it from the host name or IP address. Its specification is mutually exclusive with the PRIPORT= keyword. If `port` and PRIPORT= keyword are both not specified, a value of 3801 is the default port number.

`PRIPORT=port`

Specifies the port number for the hostname or IP address for the primary key manager. PRIMARY= must be specified for PRIPORT= to be valid.

Default: 3801 (if not specified on the PRIMARY keyword)

`ipv6_address[,PRIPORT=port]`

The IP address of the encryption key manager in IPv6 format (for example, `::FFFF:127.0.0.1`). The optional port number for an IPv6 address must be specified with the PRIPORT= keyword.

`PRIPORT=port`

Specifies the port number for the hostname or IP address for the primary key manager. PRIMARY= must be specified for PRIPORT= to be valid.

Default: 3801 (if not specified on the PRIMARY keyword)

**NONE**

No encryption key manager is specified. NONE is the default option.

**EKM,SECONDARY=**

Specifies the hostname or IP address and port number of the secondary key manager.

**Note:** In-band tape encryption requires that the IOS address space has security permission for a USS segment. See EKM,PRIMARY= parameter description for more information.

`host_name[:port | ,SECPORT=port]`

The host name of the encryption key manager.

`port`

The port number of the encryption key manager. If you include a port number, use a colon to separate it from the host name or IP address. Its specification is mutually exclusive with the SECPORT= keyword. If `port` and SECPORT= keyword are both not specified, a value of 3801 is the default port number.

`SECPORT=port`

Specifies the port number for the hostname or IP address for the secondary key manager. SECONDARY= must be specified for SECPORT= to be valid.

Default: 3801 (if not specified on the SECONDARY keyword)

`ipv4_address[:port | ,SECPORT=port]`

The IP address of the encryption key manager. IP addresses must be specified as a dotted decimal quad `ddd.ddd.ddd.ddd`. 
**SETIOS Command**

*port*

The port number of the encryption key manager. If you include a port number, use a colon to separate it from the host name or IP address. Its specification is mutually exclusive with the `SECPORT=` keyword. If `port` and `SECPORT=` keyword are both not specified, a value of 3801 is the default port number.

`SECPORT=port`

Specifies the port number for the hostname or IP address for the secondary key manager. `SECONDARY=` must be specified for `SECPORT=` to be valid.

**Default:** 3801 (if not specified on the `SECONDARY` keyword)

*ipv6_address*, `SECPORT=port`

The IP address of the encryption key manager in IPv6 format (for example, `::FFF:127.0.0.1`). The optional port number for an IPv6 address must be specified with the `SECPORT=` parameter.

`SECPORT=port`

Specifies the port number for the hostname or IP address for the secondary key manager. `SECONDARY=` must be specified for `SECPORT=` to be valid.

**Default:** 3801 (if not specified on the `SECONDARY` keyword)

**NONE**

No encryption key manager is specified. NONE is the default option.

**EKM,MAXCONN=dd1**

Specifies the maximum number of concurrent socket connections for encryption key management. If in the situation of high network stress due to high socket utilization for encryption key management this number can be lowered.

**Value range:** 1-255

**Default:** 255

**EKM,MAXPCONN=dd2**

Specifies the maximum number of permanent concurrent socket connections for encryption key management. The permanent connections remain open to prevent the overhead of opening and closing socket communication.

**Value range:** 0- the number specified in `MAXCONN`

**Default:** 8

**RECOVERY,LIMITED_RECTIME=ss**

Specifies the time in seconds to be used for certain IOS recovery functions. Specify 0 second to disable the recovery function. If the recovery function is disabled, IOS continues to use its predefined value to monitor the IOS recovery I/O completion. The recovery function is disabled by default.

**Value range:** 2 - 14 (seconds)

**RECOVERY,DEV={DASD or IOTIMING}**

Specifies the devices that will exploit the recovery function. Valid options are DASD or IOTIMING:

**DASD**

All DASD devices.

**IOTIMING**

Only the devices that have the IOTIMING facility enabled.
ZHPF={YES or NO}
Specifies whether the High Performance FICON for System z (zHPF) facility is enabled or disabled on a system.

Notes:
1. You can specify more than one parameter as long as the length of the command does not exceed 124 characters.
2. The SET IOS, SETIOS, and DISPLAY IOS commands cannot run concurrently. The system processes the first command only.

Example 1
Change the setting of several classes:
SETIOS MIH,CTC=01:00,STND=04:00,DASD=00:10,HALT=00:08,TAPE=05:00

This command sets time intervals as follows:
- CHAR, COMM, CTC, GRAF, and UREC device classes: 4 minutes, 0 seconds
- DASD device class: 0 minutes, 10 seconds
- HSCH and CSCH I/O instructions: 0 minutes, 8 seconds for all devices in the system
- TAPE device class: 5 minutes, 0 seconds

Note that the value for the CTC device class is 4:00, because the value specified for STND overrides the value specified for CTC (STND is coded after CTC on the SETIOS MIH command). However, the value for the tape device class is 5:00, because the value specified for TAPE overrides the value specified for STND. (TAPE is coded after STND on the SETIOS MIH command.)

All other classes remain unchanged.

Example 2
Change the setting of one class and an option:
SETIOS MIH,UREC=02:00,MOUNTMSG=YES

This command sets a time interval of 2 minutes, 0 seconds for unit record devices, and specifies that the system should display all mount pending messages. Time intervals for all classes other than UREC remain unchanged.

Example 3
Change the setting of one device with a 4-digit device number:
SETIOS MIH,DEV=/4472,TIME=01:10

This command sets an MIH time interval of 1 minute, 10 seconds for device 4472. All other classes remain unchanged.

Example 4
Create a user class for a device range:
SETIOS MIH,DEV=(431-435),TIME=00:45

This sets an MIH time interval of 45 seconds for devices 431 through 435. All other classes remain unchanged.
**Example 5**

To set the I/O timing limit to 2 minutes and 30 seconds for device 008, enter:

```
SETIOS MIH,DEV=008,IOTIMING=02:30
```

**Example 6**

Establish an I/O timing limit of 10 minutes for all non-paging DASD devices. Also, establish message-only processing for all DASD devices.

```
SETIOS MIH,IOTDASD=10:00,MSGONLY=YES
```

In this example, if any I/O request to any DASD device exceeds the ten minute I/O limit, the system issues a message and records the condition in SYS1.LOGREC, but does NOT abnormally terminate the request. Instead, the system retains the request. Then, if another I/O timing interval expires, the system will again issue a message and record the condition in SYS1.LOGREC.

**Example 7**

Establish an I/O timing limit of one minute for all non-paging DASD devices. Also, set up an I/O timing limit of thirty seconds for devices 180 through 18F.

```
SETIOS MIH,IOTDASD=01:00,DEV=(180-18F),IOTIMING=00:30
```

Note in this example that because MSGONLY is not specified, if I/O timing message-only processing had previously been active on any device this SETIOS command is processing, message-only processing will be reset and full I/O timing recovery will now occur.

**Example 8**

Delete a device-specific time interval setting. Assume that the MIH time interval for DASD class is 15 seconds, and the MIH time interval for a DASD device 0411 is 31 seconds. Issuing `DISPLAY IOS,MIH` produces the following display:

```
IOSO86I 12.58.49 MIH AND IOT TIMES 988
MOUNTMSG = NO, HALT=00:05, MNTS=03:00, UREC=03:00,
DASD=00:15, TAPE=03:00, GRAF=03:00, CTC =03:00, COMM=03:00,
CHAR=03:00, IOTDASD=00:00,
US01=00:30 UDEV=0184, 02E0, 02E4, 02E5, 02E6, 02E7, 02E8, 02E9,
US02=00:31 UDEV=0411, 0412, 0413, 0414, 0415, 0416, 0417, 0710.
```

Change the MIH interval for device 0411 to be equal to that of the DASD class:

```
SETIOS MIH,DEV=0411,TIME=00:15
```

As a result the MIH setting for device 0411 is deleted. Issuing `DISPLAY IOS,MIH` produces the following display:

```
IOSO86I 13.07.28 MIH AND IOT TIMES 994
MOUNTMSG = NO, HALT=00:05, MNTS=03:00, UREC=03:00,
DASD=00:15, TAPE=03:00, GRAF=03:00, CTC =03:00, COMM=03:00,
CHAR=03:00, IOTDASD=00:00,
US01=00:30 UDEV=0184, 02E0, 02E4, 02E5, 02E6, 02E7, 02E8, 02E9,
US02=00:31 UDEV=0412, 0413, 0414, 0415, 0416, 0417, 0710, 0711.
```
SETLOAD Command

The SETLOAD command allows you to switch dynamically from one parmlib concatenation (logical parmlib) to another without having to initiate an IPL. The SETLOAD command specifies the LOADxx member that contains the PARMLIB statements to use for the switch.

Syntax

The complete syntax for the SETLOAD command is:

```
SETLOAD xx,PARMLIB[,,{DSNAME|DSN}=dsn][,{VOLUME|VOL|VOLSER}=vol]
```

Parameters

The parameters are:

- **xx** Specifies the one or two character suffix used to identify the LOADxx member that you want to process.

- **PARMLIB**
  Specifies that the system is to process the PARMLIB statements in the LOADxx member according to the filter parameters (HWNAME, LPARNAME, VMUSERID). For more information on filter parameters, see the LOADxx member in z/OS MVS Initialization and Tuning Reference.

- **DSNAME or DSN =dsn**
  Specifies the 1 to 44 character name of the data set where the LOADxx member resides.
  The default is to locate the LOADxx member specified in a data set within the existing parmlib concatenation.

- **VOLUME or VOL or VOLSER =vol**
  Specifies the 1 to 6 character serial number identifier of the volume where the specified data set resides.
  The default is to locate the data set by the volume information in the master catalog.

**Note:** After the parmlib changes, the DISPLAY PARMLIB command will no longer show either the master JCL or any errors that occurred during the IPL.

**Example 1**

Dynamically change the parmlib concatenation

```
SETLOAD 02,PARMLIB
```

This command tells the system to process the PARMLIB statements in member LOAD02, which resides in a data set in the existing parmlib concatenation.

**Example 2**

```
SETLOAD 03,PARMLIB,DSN=sys4.relson
```

This command tells the system to process the PARMLIB statements in member LOAD03. Member LOAD03 resides in the data set "sys4.relson" which is catalogued in the master catalog.
SETLOAD Command

Example 3
SETLOAD 04,PARMLIB,DSN=sys5.relson,VOL=123456

This command tells the system to process the PARMLIB statements in member LOAD04. Member LOAD04 resides in the data set "sys5.relson" which can be located on volume "123456."

Note: When a SETLOAD command is issued and fails, messages issued by IEFPRMLB (Logical parmlib Service) that contain jobname and stepname will contain Master’s jobname and the stepname of the last step that ran under Master. This is because the SETLOAD command runs under Master but does not run as its own step. In this case the error is related to the SETLOAD processing and NOT the step whose name appears in the message.
Use the SETLOGR command to control z/OS MVS System Logger resources. Table 4-30 summarizes the information that the SETLOGR command provides. Use it to access the pages on which you can find details about a particular use of the SETLOGR command.

Table 4-30. Summary of the SETLOGR Command

<table>
<thead>
<tr>
<th>Command:</th>
<th>Topic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETLOGR FORCE</td>
<td>“SETLOGR FORCE Command”</td>
</tr>
</tbody>
</table>

Scope in a Sysplex

The following table describes the conditions under which the SETLOGR command has sysplex scope. See “Using Commands That Have Sysplex Scope” on page 1-11 for an explanation of sysplex scope.

Table 4-31. Sysplex Scope for the SETLOGR Command

<table>
<thead>
<tr>
<th>Command:</th>
<th>Topic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETLOGR FORCE, DELETE,LSNAME=</td>
<td>Has sysplex scope because it removes the named log stream from the LOGR couple data set (CDS).</td>
</tr>
</tbody>
</table>

Syntax

The syntax for each variation of the SETLOGR command is shown immediately preceding its respective parameter description.

SETLOGR FORCE Command

Use the SETLOGR FORCE command to clean up log stream or data set resources related to a system logger log stream. The command is useful for managing a log stream when a log stream becomes unusable. The command is also useful for causing Logger to no longer wait on a particular migrated data set being recalled. Logger will attempt to release all the related resources for the log stream or data set based on the request.

The following three cases exemplify the key situations when a log stream might be regarded as unusable:

1. If Logger is unable to recover failed-persistent connections, the log stream can be left in a failed-persistent connection state. As a result, IXCMIA PU DATA TYPE(LOGR) DELETE LOGSTREAM requests or IXGINVNT REQUEST=DELETE, TYPE=LOGSTREAM requests cannot remove the log stream and all associated resources from the logger inventory (LOGR CDS).

   Symptoms to recognize this type of situation are:
   - D LOGGER,C,LSN=log-stream-name shows number of connectors on this system equal to 0.
   - D LOGGER,L,LSN=log-stream-name shows number of connectors to the log stream greater than 0.

   If both of these symptoms are present, the log stream has failed-persistent connections and a SETLOGR FORCE,DELETE operation may be necessary to delete the log stream.

2. A log stream is left in a DISCONNECT PENDING state on a system.
Symptom to recognize this type of situation is: **D LOGGER,C,LSN=log-stream-name** shows log stream status in “disconnect pending” state.

If the log stream is in “disconnect pending” state, a **SETLOGR FORCE,DISCONNECT** operation may be necessary to disconnect the log stream.

3. A data set recall is held up for a significant amount of time.

Symptoms to recognize this type of situation are: message IXG281 is displayed on the console for production or test tasks, and **D LOGGER,ST,REC** shows data set recalls waiting for a significant number of seconds.

If the recall has been waiting too long, it can be forced so applications waiting on the recall request can continue. Recall requests can also hold up offloads and messages IXG310, IXG311, and IXG312 can be shown on the console. In these situations a **SETLOGR FORCE,NORECALL** request can be issued to stop waiting on the recall, as to allow the affected applications to continue processing.

**Attention:** To reduce the risk of losing data, do not force the disconnection of a log stream from a system or force the deletion of a log stream unless you understand its use in the sysplex by applications or subsystems. Note that forcing connections from a system can affect active connectors (subsystems, applications) to the named log stream.

See [“SETXCF FORCE Command” on page 4-540](#) to clean up resources related specifically to structures in a coupling facility. For additional information about the circumstances under which to issue the SETXCF or SETLOGR FORCE commands, see Coupling Facility Replacement and Reconfiguration Guidelines in [z/OS MVS Setting Up a Sysplex](#).

### Syntax

Table 4-32. **SETLOGR FORCE Command**

<table>
<thead>
<tr>
<th>SETLOGR FORCE, {DISCONNECT</th>
<th>DISC</th>
<th>DEL</th>
<th>DELETE}, {LSN</th>
<th>LSNNAME}=logstreamname</th>
</tr>
</thead>
<tbody>
<tr>
<td>{NORECALL</td>
<td>NOREC}</td>
<td>{DSN</td>
<td>DSNNAME}=datasetname</td>
<td></td>
</tr>
</tbody>
</table>

**Parameters**

The parameters are:

**DISCONNECT or DISC**

Directs the system to remove (disconnect) all the connections to the named log stream on the system from which you issued the command. Note that the force connections from a system command can affect active connectors (subsystems, applications) to the named log stream. You can use the FORCE, DISCONNECT command before deleting the log stream resource from the LOGR CDS.

When active connectors exist for the log stream, on a system where the force disconnect command is directed, Logger will first quiesce the connectors’ activity for the log stream and then disconnect the log stream from the system. If Logger is unable to complete the logstream disconnect on the system, it may be necessary to issue another SETLOGR FORCE,DISCONNECT command.

Issuing the **SETLOGR FORCE,DISCONNECT** command when an offload is being held up, or a task is not responding, and any of the following messages are present: IXG271I, IXG272E, IXG311I, IXG312E, IXG114A, IXG115A, may cause ABEND47B or other ABENDs. Respond to these messages before...
issuing the SETLOGR FORCE,DISCONNECT command. See z/OS MVS Setting Up a Sysplex for more information about these messages.

DELETED or DEL

Directs the system to force the deletion of a named log stream from the LOGR couple data set. You can use SETLOGR FORCE,DELETE only to delete a log stream with no connections or with only failed-persistent connections remaining. It may be necessary to use the SETLOGR FORCE,DISCONNECT command on systems where normal log stream disconnections are not responsive.

If you issue the SETLOGR FORCE,DELETE command and the operation is unable to continue after the log stream had already been marked in the LOGR CDS as started to be deleted, then future attempts to connect to the log stream will fail and the log stream delete operation will be re-attempted at that time.

There might be cases when FORCE DELETE completes successfully, but the system is unable to clean up the following resources:

Staging Datasets
  Cleanup will be attempted if the logstream is connected to again.

Structure Connections
  Cleanup will be attempted if the logstream is connected to again.

Offload Datasets
  The dataset resources can be cleaned up manually, by deleting datasets identified as ‘orphans’ in the IXCMIAPU TYPE(LOGR) LIST Report.

LSNAME or LSN=logfile
Identifies the log stream resource to be acted upon.

NORECALL or NOREC

Directs System Logger to stop waiting on an outstanding asynchronous recall request for the named data set. Consider using this command when any of the following messages are present: IXG281I, IXG271I, IXG272E, IXG311I, IXG312E, IXG114A, or IXG115A. Each of these messages indicates a Logger operation (such as log stream offload) or a Logger service task may not be progressing properly. The DISPLAY LOGGER,STATUS,RECALLS command output in message IXG601I may also indicate data set recalls are not progressing. See "IXG Messages" in z/OS MVS System Messages, Vol 1 (IXC-IZP) for more information about these messages and commands.

If Logger is currently waiting on a recall request for the data set name when NORECALL option on the SETLOGG command is entered, then message IXG280I will not be issued indicating Logger stopped waiting for the data set recall to complete. The Logger operation that was waiting on the recall request will treat this condition as if DFSMShsm had responded with an error for the data set recall.

Note: More than one recall request can exist for the same data set name, as revealed on the IXG601I output. For this case, each system logger operation waiting for a data set to be recalled will treat the condition as if DFSMShsm had responded with an error.

The net result will depend upon which Logger operation was attempting to access the (migrated) data set. Log stream browse requests might receive "gap" type error conditions meaning not all the log data can be browsed (read). Log stream offload failures might also result if an offload data set was migrating and needed to continue moving log data from "interim" storage to "secondary" (DASD) storage. See z/OS MVS System Messages, Vol 10 (IXC-IZP) for more information.
SETLOGR Command

After this command is issued, you should continue monitoring the Logger activities to ensure no unexpected behaviors occur. Particularly, watch for the log stream exploiter that may have been directly affected by the recall request not completing successfully.

If Logger is not currently waiting on a recall for the data set, then the appropriate messages will be issued indicating the command has been completed. The command will have no effect on Logger’s processing.

**DSNAME or DSN=datasetname**
Identifies the target log stream data set name resource.

**Example 1, SETLOGR FORCE,DISC,LSN=SYSPLEX.OPERLOG**

Initial display shows the logstream is in Disconnect Pending State.

```
SY1 d logger,c,lsn=SYSPLEX.OPERLOG
SY1 IXG601I 12.42.53 LOGGER DISPLAY 459
 CONNECTION INFORMATION BY LOGSTREAM FOR SYSTEM SY1
 LOGSTREAM STRUCTURE #CONN STATUS
 --------- --------- ----- ------
 SYSPLEX.OPERLOG LIST01 000001 DISCONNECT PENDING
 NUMBER OF LOGSTREAMS: 000001
```

Force disconnect command is entered.

```
SY1 setlogr force,disc,lsn=SYSPLEX.OPERLOG
SY1 IXG651I SETLOGR FORCE DISCONNECT COMMAND ACCEPTED
FOR LOGSTREAM=SYSPLEX.OPERLOG
SY1 IXG661I SETLOGR FORCE DISCONNECT PROCESSED SUCCESSFULLY
FOR LOGSTREAM=SYSPLEX.OPERLOG
```

A final display command shows the logstream is no longer connected.

```
SY1 d logger,c,lsn=SYSPLEX.OPERLOG
SY1 IXG601I 12.43.15 LOGGER DISPLAY 466
 CONNECTION INFORMATION BY LOGSTREAM FOR SYSTEM SY1
 LOGSTREAM STRUCTURE #CONN STATUS
 --------- --------- ----- ------
 NO MATCHING INFORMATION FOUND.
```

**Example 2, SETLOGR FORCE,NOREC,DSN=IXGLOGR.TEST102.STREAM01.A0000000**

Initial display shows Logger is waiting on an asynchronous data set recall for the PRODUCTION group and not waiting on any data sets for the TEST group.

```
SY1 d logger,st,rec
logue,ST,REC
IXG60II hh.mm.ss LOGGER DISPLAY
SYSTEM LOGGER STATUS
SYSTEM SYSTEM LOGGER STATUS
----- ---------------------
SY1 ACTIVE
LOGGER DATA SET RECALLS
GROUP: PRODUCTION
SECONDS DATA SET NAME 0000000024 IXGLOGR.TEST102.STREAM01.A0000000
GROUP: TEST
NO DATA SET RECALLS WAITING
```

Command is entered to force the norecall option for the data set.
A final display command shows that system logger is no longer waiting on an asynchronous data set recall.

```
SY1 d logger, st, rec
D LOGGER, ST, REC
IXG601I hh.mm.ss LOGGER DISPLAY
SYSTEM LOGGER STATUS
SYSTEM SYSTEM LOGGER STATUS
------ ---------------------
SY1 ACTIVE
LOGGER DATA SET RECALLS
GROUP: PRODUCTION
 NO DATA SET RECALLS WAITING
GROUP: TEST
 NO DATA SET RECALLS WAITING
```
SETLOGRC Command

Use the SETLOGRC command to change the logrec error and environmental recording medium originally specified in the IEASYSxx parmlib member during initial program load (IPL). You can specify one of the following options for logrec error recording:

- LOGSTREAM
- DATASET
- IGNORE

Once the system processes the command, one of the following can occur:

- If the change of medium is successful, the system issues message IFB097I to indicate the change and the new medium to the requesting console.
- If the change of medium is to DATASET and the system was not originally initialized with a data set specified as the recording medium, the system issues message IFB099I to indicate that the medium was not changed and that a data set was not defined to be used as a logrec data set.
- If the invoker is attempting to set the logrec recording medium to a setting that happens to be the current setting, the system issues message IFB096I to the invoking console to indicate that the desired medium is the current setting.

**Note:** There is one exception. If the current and desired settings are both to LOGSTREAM, the system issues message IFB094I stating that the command has been accepted. If the connection to the log stream fails because system logger is unavailable, the system issues message IFB100E and internally buffers logrec records until the system logger becomes available. The recording medium remains LOGSTREAM.

- If the desired setting is to LOGSTREAM and the connection to the log stream fails, the system issues message IFB094I to indicate the successful change of medium from LOGSTREAM to LOGSTREAM. If the change of medium is unsuccessful, the system issues message IFB099I. The system also issues message IFB100E to indicate that the system logger is unavailable. Logrec error and environmental records will be internally buffered until the system logger becomes available.
- If the desired setting is to IGNORE, logrec error and environmental records will not be recorded and will not be provided in an ENF 36 signal.

**Note:** IBM recommends that you use the IGNORE setting in testing environments only.

Syntax

The complete syntax for the SETLOGRC command is:

```
SETLOGRC {LOGSTREAM|DATASET|IGNORE}
```

**Note:** The SETLOGRC command does not have an abbreviation.

Parameters

The parameters are:

- LOGSTREAM
  Indicates that the desired medium for recording logrec error and environmental
records is a log stream. To use a log stream your installation must be operating at an MVS/ESA SP 5.2.0 level or higher and the logrec log stream must be defined. See z/OS MVS Setting Up a Sysplex for information about logrec log stream definitions.

**DATASET**
Indicates that the desired medium for recording logrec error and environmental records is a data set, which is the medium used prior to MVS/ESA SP 5.2.0. Setting the medium to data set works only if the system had originally been initiated with a data set as the logrec recording medium. If the system was not initiated with a data set logrec recording medium and the attempt is made to change to DATASET, the system rejects the attempt and maintains the current logrec recording medium.

**IGNORE**
Indicates that recording logrec error and environmental records is to be disabled.

*Note:* IBM recommends that you use this setting only in a test environment.
SETMF Command

Use the SETMF command to manage the message flood automation processing:
- Enable or disable the message flood checking.
- Enable or disable the message rate monitoring.
- Change the message flood automation parameters.
- Change the message flood automation actions.

**Note:** The SETMF command is used to alter the message flood automation parameters or actions. If you want the change to be permanent, you must update the parameter in a MSGFLDxx parmlib member. Changes made by SETMF command persist only until the next SET MSGFLD= command or IPL.

**Syntax**

The complete syntax for the SETMF command is:

```
SETMF [ON|OFF] [MONITORON|MONITOROFF] [MSGTYPE=msgtype,keyword=value[,keyword=value]] [MSGTYPE=msgtype,DEFAULT=action[,action]] [MSGTYPE={REGULAR|ACTION},JOB=jobname[,action][,action]] [MSGTYPE=SPECIFIC,MSG=msgid[,action][,action]]
```

**Parameters**

**ON**

Enables message flood checking. The enable switch is set on and processing resumes. Messages received while message flood checking is disabled are not processed and not counted.

**OFF**

Disables message flood checking. No values are changed and when subsequently enabled, processing resumes with the values as set at the time of the disablement command.

**MONITORON**

Enables the collection of message rate information.

It is recommended that you gather message rate information for at least an hour before displaying it. In general, the longer the sample, the more accurate the results. Message rate monitoring incurs more overhead than standard (non-intensive mode) message flood processing and should probably not be run all of the time. A 24-hour sample taken during a busy period every few months is probably sufficient.

The largest interval between successive messages that will be recorded by Message Rate Monitoring is 2048 seconds, or approximately 33 minutes. The smallest interval that can be recorded is 250 picoseconds.

**Note:** Message rate monitoring is turned off and the counters are re-initialized whenever a SET MSGFLD=xx command is issued.

**MONITOROFF**

Disables the collection of message rate information. Disabling the collection of message rate information does not re-initialize the information already collected.
MSGTYPE=msgtype,keyword=value[,keyword=value]
Changes one or more of the parameters associated with the specified message type. You can specify more than one keyword value pair by separating them with a comma.

msgtype specification can be: REGULAR, ACTION and SPECIFIC.

keyword specification can be: MSGTHRESH, JOBTHRESH, INTVLTIME, SYSIMTIME, JOBIMTIME, MSGLIMIT and MSGIMTIME.

The valid combinations of msgtype and keyword are:

<table>
<thead>
<tr>
<th>MSGTYPE=REGULAR</th>
<th>MSGTYPE=ACTION</th>
<th>MSGTYPE=SPECIFIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTVLTIME</td>
<td>INTVLTIME</td>
<td>INTVLTIME</td>
</tr>
<tr>
<td>JOBIMTIME</td>
<td>JOBIMTIME</td>
<td></td>
</tr>
<tr>
<td>JOBTHRESH</td>
<td>JOBTHRESH</td>
<td>MSGIMTIME</td>
</tr>
<tr>
<td>MSGTHRESH</td>
<td>MSGTHRESH</td>
<td>MSGTHRESH</td>
</tr>
<tr>
<td>SYSIMTIME</td>
<td>SYSIMTIME</td>
<td>SYSIMTIME</td>
</tr>
</tbody>
</table>

The specification is checked for syntax. If there is any error, a message is issued and no values are updated.

MSGTYPE=msgtype,DEFAULT=action[,action]
Changes the default actions that are used by message flood automation. You can specify more than one actions with a comma separating them.

This command supports the same msgtype and action specifications as the DEFAULT parmlib statement, so you can use this command to set any action that can be specified by the DEFAULT parmlib statement.

The specification is checked for syntax. If there is any error, a message is issued and no actions are updated.

MSGTYPE={REGULAR|ACTION},JOB=jobname[,action][,action]
Changes the actions that message flood automation take against jobs producing REGULAR and ACTION messages. You can specify more than one action with a comma separating them.

You can also use this command to define a new job and define specific actions for it. If the jobname that you specify is not one that message flood automation recognizes, and space is available in the jobname table, then message flood automation will add the jobname to the jobname table and take the specified actions if that job produces a message flooding situation. You can remove a jobname from the jobname table only by loading a MSGFLDxx parmlib member.

This command supports the same jobname and action specifications as the JOB parmlib statement, so you can use this command to set any action that can be specified by the JOB parmlib statement.

The specification is checked for syntax. If there is any error, a message is issued and no actions are updated.

MSGTYPE=SPECIFIC,MSG=msgid[,action][,action]
Changes the actions that message flood automation take for SPECIFIC messages. You can specify more than one action with a comma separating them.
SETMF Command

You can also use this command to define a new message and define specific actions for it. If the msgid that you specify is not one that message flood automation recognizes, and space is available in the msgid table, then message flood automation will add the msgid to the msgid table and take the specified actions if that message is involved in a message flooding situation. You can remove a msgid from the msgid table only by loading a MSGFLDxx parmlib member.

This command supports the same msgid and action specifications as the MSG parmlib statement, so you can use this command to set any action that can be specified by the MSG parmlib statement.
SETOMVS Command

Use the SETOMVS command to change dynamically the options that z/OS UNIX System Services currently is using. These options are originally set in the BPXPRMxx parmlib member during initial program load (IPL). For more information on the BPXPRMxx parmlib member, see z/OS UNIX System Services Planning.

Changes to all of the system-wide limits take effect immediately. When a process limit is updated, all processes that are using the system-wide process limit have their limits updated. All process limit changes take effect immediately except those processes with a user-defined process limit (defined in the OMVS segment or set with a SETOMVS PID= command). Exceptions are MAXASSIZE and MAXCPPUTIME, which are not changed for active processes.

Note: If a process-level limit is lowered with the SETOMVS command, some processes may immediately hit 100% usage. Depending on the process limit specified and what the process is doing, this could cause some processes to fail.

Syntax

The complete syntax for the SETOMVS command is:
### SETOMVS Command

**SETOMVS**

```plaintext
SETOMVS [AUTHPGMGLIST='authprogramlist'|NONE]
 [,AUTOCVT=ON|OFF]
 [,FORKCOPY=(COPY|COPY|COPY|COPY)]
 [,IPCSEMNI=sicsosemids]
 [,IPCSENMNP=icsosemnops]
 [,IPCSEMNSSM=sicsosemnsem]
 [,IPCMMSGQBYTES=icsosembytes]
 [,IPCMSGID=ipcmgsmsgid]
 [,IPCMSPAGES=ipcmssmpages]
 [,IPCSEMNRSEMS=ipcmssmrsms]
 [,IPCMSGQMNUM=ipcmssmsgnum]
 [,LIMMSG=[NONE|SYSTEM|ALL]]
 [,MAXASSIZE=maxassize]
 [,MAXBUFFER=icombuffer]
 [,MAXCPUMTIME=maxcpumtime]
 [,MAXFIELPROC=maxfiePROC]
 [,MAXFILESIZE=(maxfilesize|NOLIMIT)]
 [,MAXMAPAREA=maxmaparea]
 [,MAXPROCSYS=maxprocsys]
 [,MAXPROCUSER=maxprocuser]
 [,MAXPTYS=maxptys]
 [,MAXSHAREPAGES=maxsharepages]
 [,MAXTHREADS=maxthreads]
 [,MAXTHREADTASKS=maxthreadtasks]
 [,MAXUIDS=maxuids]
 [,PID=pid,processlimitname=newvalue]
 [,PRIORITYGOAL=(n)| NONE]
 [,RESET=(xx)]
 [,SERV_LPALIB=('dsname', 'volser')]
 [,SERV_LNKLIB=('dsname', 'volser')]
 [,SHRLIBRNSIZE=shrlibrnsiz]
 [,SHRLIBMAXPAGES=shrlibmaxpages]
 [,STEPMBLIST='stepmblist']
 [,SUPERUSER=supuser]
 [,SYNTAXCHECK=(xx)]
 [,SYSCALL_COUNTS=(YES|NO)]
 [,TTYGROUP=ttygroup]
 [,USERIDALIASTABLE='useridaliastable']
 [,VERSION='string']
```

**SETOMVS EXTENSIONS (sysplex exclusive)**

```plaintext
SETOMVS [FILESYS, FILESYSTEM=filesystem]
 [,AUTOMOVE=YES|NO|UNMOUNT]
 [,SYSTEMNAME=sysname]
 [,MOUNTPOINT=mounpoint]
 [,SYSNAME=sysname|*]
```

**Notes:**

1. **FILESYSTEM, FROMSYS, and MOUNTPOINT** are mutually exclusive parameters. When you specify **FILESYS**, you must supply one of these three parameters.

2. **SETOMVS** **RESET=(xx)** has been changed to allow **SETOMVS** **RESET=xx** as well as **SETOMVS** **RESET=(xx)**. The parentheses are now optional.

---

Rather than defining parameter limit values in their full decimal or hexadecimal form, you can use the following 1-character multiplier (denomination values) suffix to specify them. The system also uses this value in displays when it returns responses to respective OMVS commands.

**Notes:**

1. Only those **SETOMVS** parameters that support this "C" suffix specifically note that support and refer to Table 4-33 on page 4-474.

2. Values that contain a multiplier are limited to 8 digits (nnnnnnnnC) and those values are limited to X'00FF FFFF' (16 777 215 decimal). Limits that support values above the bar have a range of 1M-16383P. However, do not exceed a parameter-specific maximum value.

3. Values that do not contain a multiplier are limited to X'7FFF FFFF' (2 147 483 647 decimal).

**Table 4-33. 1-Character Parameter Limit Multipliers**

<table>
<thead>
<tr>
<th>Denomination Value</th>
<th>1-Character Abbreviation</th>
<th>Bytes</th>
</tr>
</thead>
</table>

---

4-474 z/OS V1R11.0 MVS System Commands
Table 4-33. 1–Character Parameter Limit Multipliers (continued)

<table>
<thead>
<tr>
<th>Character</th>
<th>Limit Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>null</td>
<td>n/a</td>
</tr>
<tr>
<td>K</td>
<td>1,024</td>
</tr>
<tr>
<td>M</td>
<td>1,048,576</td>
</tr>
<tr>
<td>G</td>
<td>1,073,741,824</td>
</tr>
<tr>
<td>T</td>
<td>1,099,511,627,776</td>
</tr>
<tr>
<td>P</td>
<td>1,125,899,906,842,624</td>
</tr>
</tbody>
</table>

### Parameters

**AUTOMOVE = YES | NO | UNMOUNT | indicator(sysname1,sysname2,...,[sysnameN | *]), FILESYS=filesys,**  
*FILESYSTEM=filesystem, FROMSYS=sysname, MOUNTPOINT=mountpoint,**  
**SYSNAME=sysname*, and VERSION='nnnn'** are parameters that are used in a sysplex environment where systems are exploiting shared file system. For more information on sharing file system in a sysplex, see **z/OS UNIX System Services Planning**.

The parameters are:

**AUTOMOVE = YES | NO |**  
**UNMOUNT indicator(sysname1,sysname2,...,sysnameN)**

AUTOMOVE applies only in a sysplex where systems are participating in shared file system. These parameters indicate what happens to the ownership of the file system when a shutdown, PFS termination, dead system takeover, or file system move occurs.

AUTOMOVE=YES allows the system to automatically move logical ownership of the file system as needed. AUTOMOVE=YES is the default; you can specify it as AUTOMOVE.

AUTOMOVE=NO prevents ownership movement in some situations.

AUTOMOVE=UNMOUNT unmounts the file system in some situations.

AUTOMOVE=indicator(sysname1,sysname2,...,sysnameN) specifies a list of systems to which the ownership of file system should or should not be moved when ownership of the file system changes.

- If indicator is specified as INCLUDE (or I), the list must provide a comma-delimited, priority-ordered list of systems to which ownership of the file system can be moved. For example, AUTOMOVE=INCLUDE(SYS1, SYS4, SYS9). You can specify an asterisk (*) as the last (or the only) system name to indicate any active system. For example, AUTOMOVE=INCLUDE(SYS1, SYS4, *).

  **Note:** Do not use an asterisk in a mixed sysplex environment where any system is not at z/OS Version 1 Release 6 or later. Doing so will produce unpredictable results. The asterisk is not supported before z/OS Version 1 Release 6.

- If indicator is specified as EXCLUDE (or E), the system list must provide a comma-delimited list of systems to which the ownership of file system must not be moved. For example, AUTOMOVE=EXCLUDE(SYS3, SYS5, SYS7).

**Restriction:** The AUTOMOVE parameter is not permitted when using SETOMVS to move a file system.
**Guideline:** To ensure that the root file system is always available, use the default AUTOMOVE value (AUTOMOVE=YES).

For more information about the behavior of the AUTOMOVE option, see [z/OS UNIX System Services Planning](#).

**FILESYS=filesys**
In a sysplex environment, this parameter alerts the parser that commands that change mount attributes are to follow.

For examples on the use of this parameter when making move or change requests, see [z/OS UNIX System Services Planning](#).

**FILESYSTEM=filesystem**
In a sysplex environment, FILESYSTEM is the 44 character alphanumeric field that denotes the name of the filesystem to be changed or moved. This filesystem name must be in the following form: ‘OMVS.USER.JOE’.

**Note:** The filesystem name must be in quotation marks, and mixed-case filesystem names are supported. FILESYSTEM, MOUNTPOINT, and FROMSYS are mutually exclusive parameters.

For examples on the use of this parameter when making move or change requests, see [z/OS UNIX System Services Planning](#).

**FROMSYS=sysname**
In a sysplex environment, this parameter indicates the system where all the filesystems will be moved from. The filesystems will be moved to the system identified by the sysname keyword. FILESYSTEM, MOUNTPOINT, and FROMSYS are mutually exclusive parameters.

**MOUNTPOINT=mountpoint**
In a sysplex environment, MOUNTPOINT is the mountpoint specification. For example:

’/usr/d1’

It is case sensitive. This is the mountpoint where the filesystem is mounted. If specified, the filesystem associated with this mountpoint will be moved or changed. FILESYSTEM, MOUNTPOINT, and FROMSYS are mutually exclusive parameters.

For examples on the use of this parameter when making move or change requests, see [z/OS UNIX System Services Planning](#).

**AUTHPGMLIST=’authprogramlist’|NONE**
Points to a z/OS UNIX file containing a list of pathnames, MVS program names, or both that allow an additional level of authorization for program-controlled or for APF-authorized programs. See [z/OS UNIX System Services Planning](#) for information on constructing this file. The default is NONE.

**AUTOCVT=ON|OFF**
Enables or disables automatic character-set conversion for the z/OS UNIX environment.

**FORKCOPY = COPY | COW**
Specifies how user storage is copied from the parent process to the child process during a fork() system call.

If you specify FORKCOPY=COW, all fork() calls are processed in copy-on-write (COW) mode if the suppression-on-protection hardware feature is available.
Before the storage is modified, both the parent and child processes refer to the same view of the data. The parent storage is copied to the child as soon as storage is modified, either by the parent or the child.

Using copy-on-write causes the system to use the extended system queue area (ESQA) to manage page sharing.

If you specify `FORKCOPY=COPY`, `fork()` immediately copies the parent storage to the child, regardless of whether the suppression-on-protection feature is available. Use this option to avoid any additional ESQA use in support of `fork()`.

Follow these guidelines:
- If the run-time library is in the link pack area, specify `FORKCOPY=COPY`.
- If the run-time library is not in the link pack area, specify `FORKCOPY=COW`.

If you do not specify `FORKCOPY`, the default is `FORKCOPY=COW`.

- **IPCSEMNIDS = ipcsemnids**
  Specifies the maximum number of unique semaphore sets in the system. The range is from 1 to 20 000. The default is 500.

- **IPCSEMNOPS = ipcsemnops**
  Specifies the maximum number of operations for each semaphore operation call. The range is from 0 to 32 767. The default is 25. This is a system-wide limit.

- **IPCSEMNSEMS = ipcsemnsems**
  Specifies the maximum number of semaphores for each semaphore set. The range is from 0 to 32 767. The default is 25.

- **IPCMSGQBYTES = ipcmsgqbytes**
  Specifies the maximum number of bytes in a single message queue. The range is from 0 to 1 048 576. The default is 262 144.

- **IPCMSGNIDS = ipcmsgnids**
  Specifies the maximum number of unique message queues in the system. The range is from 1 to 20 000. The default is 500.

- **IPCSHMMPAGES = ipcshmmpages**
  Specifies the maximum number of pages for a shared memory segment. The range is from 1 to 4P. The default is 25600.

  **Note:** You can set a denomination (or multiplier) value when defining this value. The suffix, "C" can have a 1-character value as presented in Table 4-33 on page 4-474, but must not exceed the parameter-specific upper limit.

  MVS retains the denomination value and uses it within a subsequent D OMVS command

- **IPCSHMNIDS = ipcshmnnids**
  Specifies the maximum number of unique shared memory segments in the system. The range is from 1 to 20 000. The default is 500.

- **IPCSHMNSEGS = ipcshmnsregs**
  Specifies the maximum number of shared memory segments attached for each address space. The range is from 0 to 1 000. The default is 10.

- **IPCSHMSPAGES = ipcshmspages**
  Specifies the maximum number of pages for shared memory segments in the system. The range is from 0 to 2 621 440. The default is 262 144.
SETOMVS Command

**Note:** You can set a denomination (or multiplier) value when defining this value. The suffix, "C" can have a 1–character value as presented in Table 4-33 on page 4-474 but must not exceed the parameter-specific upper limit.

MVS retains the denomination value and uses it within a subsequent D OMVS command

**IPCMMSGQNMUM = ipcmsqgmnum**
Specifies the maximum number of messages for each message queue in the system. The range is from 0 to 20 000. The default is 10 000.

**LIMMSG=(NONE|SYSTEM|ALL)**
Specifies how console messages that indicate when system parmlib limits are reaching critical levels are to be displayed:

NONE No console messages are to be displayed when any of the parmlib limits have been reached.

SYSTEM Console messages are to be displayed for all processes that reach system limits. In addition, messages are to be displayed for each process limit of a process if:
  • The process limit or limits are defined in the OMVS segment of the owning User ID
  • The process limit or limits have been changed with a SETOMVS PID=pid,process_limit

ALL Console messages are to be displayed for the system limits and for the process limits, regardless of which process reaches a process limit.

Default: NONE

**MAXASSIZE = maxassize**
Specifies the RLIMIT_AS hard limit resource value that processes receive when they are dubbed a process. RLIMIT_AS indicates the address space region size. The soft limit is obtained from MVS. If the soft limit value from MVS is greater than the MAXASSIZE value, the hard limit is set to the soft limit.

This value is also used when processes are initiated by a daemon process using an exec after setuid(). In this case, both the RLIMIT_AS hard and soft limit values are set to the MAXASSIZE value.

Refer to the description of setrlimit() in z/OS UNIX System Services Programming: Assembler Callable Services Reference for more information about RLIMIT_AS.

The range is from 10 485 760 (10MB) to 2 147 483 647 ; the default is 41 943 040 (40MB).

**Note:** You can set a denomination (or multiplier) value when defining this value. The suffix, "C" can have a 1–character value as presented in Table 4-33 on page 4-474 but must not exceed the parameter-specific upper limit.

MVS retains the denomination value and uses it within a subsequent D OMVS command

**MAXCORESIZE = maxcoressize**
Specifies the RLIMIT_CORE soft and hard limit resource values that processes receive when they are dubbed a process. RLIMIT_CORE indicates the
maximum core dump file size (in bytes) that a process can create. Also, it specifies the limit when they are initiated by a daemon process using an `exec` after `setuid()`.

Refer to the description of `setrlimit()` in [z/OS UNIX System Services Programming: Assembler Callable Services Reference](#) for more information about `RLIMIT_CORE`.

The range is from 0 to 2 147 483 647; the default is 4 194 304 (4MB).

**Note:** You can set a denomination (or multiplier) value when defining this value. The suffix, "C" can have a 1–character value as presented in [Table 4-33 on page 4-474](#) but must not exceed the parameter-specific upper limit.

MVS retains the denomination value and uses it within a subsequent D OMVS command

`MAXCPUTIME = maxcputime`  
Specifies the `RLIMIT_CPU` hard limit resource values that processes receive when they are dubbed a process. `RLIMIT_CPU` indicates the CPU time that a process is allowed to use, in seconds. The soft limit is obtained from MVS. If the soft limit value from MVS is greater than the `MAXCPUTIME` value, the hard limit is set to the soft limit. This value is also used when processes are initiated by a daemon process using an `exec` after `setuid()`. In this case, both the `RLIMIT_CPU` hard and soft limit values are set to the `MAXCPUTIME` value.

Refer to the description of `setrlimit()` in [z/OS UNIX System Services Programming: Assembler Callable Services Reference](#) for more information about `RLIMIT_CPU`.

The range is from 7 to 2 147 483 647. The default is 1 000.

Specifying a value of 2 147 483 647 indicates unlimited CPU time.

`MAXFILEPROC = maxfileproc`  
Specifies the maximum number of files that a single user is allowed to have concurrently active or allocated. The range is 3 to 524287.

`MAXFILESIZE = (maxfilesize | NOLIMIT)`  
Specifies the `RLIMITFSIZE` soft and hard limit resource values that processes receive when they are dubbed a process. `RLIMITFSIZE` indicates the maximum file size (in 4KB increments) that a process can create. Also, it specifies the limit when they are initiated by a daemon process using an `exec` after `setuid()`.

The range is from 0 to 524 228. If you specify 0, no files will be created by the process. Omitting this statement or specifying `NOLIMIT` indicates an unlimited file size.

**Note:** You can set a denomination (or multiplier) value when defining this value. The suffix, "C" can have a 1–character value as presented in [Table 4-33 on page 4-474](#) but must not exceed the parameter-specific upper limit.

MVS retains the denomination value and uses it within a subsequent D OMVS command
SETOMVS Command

MAXMMAPAREA = maxmmaparea
Specifies the maximum amount of data space storage (in pages) that can be
allocated for memory mappings of z/OS UNIX files. Storage is not allocated
until memory mappings are active.

The range is from 1 to 16 777 216. The default is 4 096.

Note: You can set a denomination (or multiplier) value when defining this
value. The suffix, "C" can have a 1-character value as presented in
Table 4-33 on page 4-474 but must not exceed the parameter-specific
upper limit.

MVS retains the denomination value and uses it within a subsequent D
OMVS command

MAXPROCSYS = maxprocsys
Specifies the maximum number of processes that z/OS UNIX System Services
will allow to be active at the same time. The range is 5 to 32 767; the default
and the value in BPXPRMXX is 200.

MAXPROCUSER = maxprocuser
Specifies the maximum number of processes that a single OMVS user ID (UID)
is allowed to have active at the same time, regardless of how the process
became a z/OS UNIX System Services process. The range is 3 to 32 767;

MAXPTYS = maxptys
Specifies the maximum number of pseudo-TTY (pseudoterminal) sessions that
can be active at the same time. The range is 1 to 10 000; the default and the
value in BPXPRMXX is 256.

MAXPTYS lets you manage the number of interactive shell sessions. When you
specify this value, each interactive session requires one pseudo-TTY pair. You
should avoid specifying an arbitrarily high value for MAXPTYS. However,
because each interactive user may have more than one session, we
recommend that you allow 4 pseudo-TTY pairs for each user (MAXUIDS * 4).
The MAXPTYS value influences the number of pseudo-TTY pairs that can be
defined in the file system.

MAXSHAREPAGES = maxsharepages
Specifies the maximum number of shared storage pages that can be
concurrently in use by z/OS UNIX System Services functions. This can be used
to control the amount of ESQA consumed, since the shared storage pages
cause the consumption of ESQA storage.

The range is from 0 to 32 768 000. The default is 131 072 pages.

Notes:
1. You can set a denomination (or multiplier) value when defining the
MAXSHAREPAGES value. The suffix, "C" can have a 1-character value as
presented in Table 4-33 on page 4-474 but must not exceed the
parameter-specific upper limit. MVS retains the denomination value and
uses it within a subsequent D OMVS command
2. Use care when you adjust MAXSHAREPAGES on an active system.
Dynamically decreasing the number of pages available to EQSA while there
is a workload can cause errors, because the EQSA limit can be suddenly
reached when the MAXSHAREPAGES limit is no longer as large. As a
result, shared programs are not able to be loaded, and new forks are not
able to be created. This situation can exist until the workload adjusts to the
new lower limit.
MAXTHREADS = maxthreads
Specifies the maximum number of pthread_created threads, including those running, queued, and exited but not detached, that a single process can have currently active. Specifying a value of 0 prevents applications from using pthread_create. The range is 0 to 100 000; the default and the value in BPXPRMXX is 200.

MAXTHREADTASKS = maxthreadtasks
Specifies the maximum number of MVS tasks created with pthread_create (BPX1PTC) that a single user may have concurrently active in a process. The range is 1 to 32 768; the default and the value in BPXPRMXX is 50.

MAXTHREADTASKS lets you limit the amount of system resources available to a single user process.

- The minimum value of 1 prevents a process from performing any pthread_creates.
- A high MAXTHREADTASKS value may affect storage and performance.
  Each task requires additional storage for:
  - The control blocks built by the z/OS UNIX kernel
  - The control blocks and data areas required by the runtime library
  - System control blocks such as the TCB and RB

Individual processes can alter these limits dynamically.

MAXUIDS = maxuids
Specifies the maximum number of unique OMVS user IDs (UIDs) that can use z/OS UNIX System Services at the same time. The UIDs are for interactive users or for programs that requested z/OS UNIX System Services. The range is 1 to 32 767; the default and the value in BPXPRMXX is 200.

MAXUIDS lets you limit the number of active UIDs. Select a MAXUIDS by considering:

- Each z/OS UNIX System Services user is likely to run with 3 or more concurrent processes. Therefore, z/OS UNIX System Services users require more system resources than typical TSO/E users.
- If the MAXUIDS value is too high relative to the MAXPROCSYS value, too many users can invoke the shell. All users may be affected, because forks may begin to fail.

For example, if your installation can support 400 concurrent processes — MAXPROCSYS(400) — and each UID needs an average of 4 processes, then the system can support 100 users. For this operating system, specify MAXUIDS(100).

In assigning a value to MAXUIDS, consider if the security administrator assigned the same OMVS UID to more than one TSO/E user ID.

MEMLIMIT = maxmemlimit
Specifies the maximum amount (maxmemlimit) of allocated, non-shared, 1-megabyte storage segments above the bar allowed for the address space. Both the hard and soft RLMIT_MEMLIMIT values are set to this value, and the address space memlimit is modified to reflect this value.

Note: You can set a denomination (or multiplier) value when defining this value (nnnnnnnnC), where nnnnnnnn ranges from 1M — 16383P (noting values are rounded up) and C can have a 1-character value as presented in Table 4-33 on page 4-474. Also, be aware that SMF set override limits to the values you set here.
SETOMVS Command

MVS retains the denomination value and uses it within a subsequent D OMVS command

**PID=pid,processlimitname=value**
Dynamically changes a process-level limit for the process represented by `pid`.

**PRIORITGOAL = (n) | NONE**
Specify from 1 to 40 service classes. These classes can be from 1 to 8 characters. If you do not specify this statement, or if you specify NONE, no array is created for it. All service classes specified on the PRIORITGOAL option must also be specified in your workload manager service policy.

Generally, we do not recommend that you set PRIORITGOAL.

**RESET = (xx)**
Specifies the parmlib member containing parameters to apply immediately to the running z/OS UNIX System Services environment. The variable specifies the character suffix of the BPXPRMxx member to use to change the environment. It can be any properly constructed BPXPRMxx member. This parameter accepts only the single keyword and parmlib specification. It does not accept additional keywords separated by commas.

The SETOMVS RESET command is similar to the SET OMVS command. The following table shows the acceptable parameters for each.

**Notes:**
1. **SETOMVS RESET** accepts only a single parameter; **SET OMVS** accepts more than one parameter.
2. **SETOMVS RESET=(xx) has been changed to allow SETOMVS RESET=xx as well as SETOMVS RESET=(xx). The parentheses are now optional.**
3. **SETOMVS RESET=(xx) redefines a PFS; it does not start it. Do not use SETOMVS RESET=(xx) unless absolutely necessary.**

For more detailed information about the RESET parameter see [z/OS UNIX System Services Planning](#).

**Table 4-34. Acceptable Parameter Statements and Their Applicability**

<table>
<thead>
<tr>
<th>Parameter Statement</th>
<th>SET OMVS= (xx, yy, ...)</th>
<th>SETOMVS RESET= (xx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOMOVE</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CTRACE</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>FILESYS</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>FILESYSTEM</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>FILESYSTYPE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>FORKCOPY</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>FROMSYS</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>IPCMSGNIDS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPCMSGQBYTES</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPCMSGQMNUM</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPCSEMNIDS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPCSEMNOPS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPCSEMNSEMS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPCSHMMPAGES</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPCSHMNIDS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 4-34. Acceptable Parameter Statements and Their Applicability (continued)

<table>
<thead>
<tr>
<th>Parameter Statement</th>
<th>SET OMVS= (xx, yy, ...)</th>
<th>SETOMVS RESET= (xx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPCSMNSEQS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPCSMSPAGES</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAXASSIZE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAXCORESIZE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAXCPUTIME</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAXFILEPROC</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAXFILESIZE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAXMMAPAREA</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAXPROCSYS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAXPROCUER</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAXPTYS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAXSHAREPAGES</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAXTHREADS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAXTHREADTASKS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAXUIDS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MEMLIMIT</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MOUNT</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MOUNTPOINT</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>NETWORK</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PRIORITYGOAL</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PRIORITYPG</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ROOT</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RUNOPTS</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SHRLBRGNSIZE</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>SHRLIBMXPAGES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>STARTUP_EXEC</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>STARTUP_PROC</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>STEPLIBLIST</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SUBFILESYSTYPE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SUPERUSER</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SYSCALL_COUNTS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SYSNAME</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SYSPLEX</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>TTYGROUP</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>USERIDALILASTABLE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VERSION</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

SERV_LPALIB=('dsname','volser')

Specifies the target service library where the UNIX System Services modules that are to be built into LPA are located. *dsname* is a 1-to-44 character value representing a valid MVS load library data set name. The alphabetic characters
in the load library name must be uppercase. \textit{volser} is a 1-to-6 character value representing a valid volume serial number for the volume that contains the specified MVS load library. The alphabetic characters in the volume serial number must be uppercase. The library data set must reside on the volume specified or the specification will not be accepted and an error will occur during the parsing of the statements.

\textbf{SERV\_LINKLIB=('dsname','volser')}  
Specifies the target service library where the UNIX System Services modules that are to be loaded into the private area of the OMVS address space are located. \textit{dsname} is a 1-to-44 character value representing a valid MVS load library data set name. The alphabetic characters in the load library name must be uppercase. \textit{volser} is a 1-to-6 character value representing a valid volume serial number for the volume that contains the specified MVS load library. The alphabetic characters in the volume serial number must be uppercase. The library data set must reside on the volume specified or the specification will not be accepted and an error will occur during the parsing of the statements.

\textbf{SHRLIBRGNSIZE=shrlibrgnsize}  
Specifies the maximum size of the shared library region for address spaces that load system shared library modules.

\textbf{SHRMAXPAGES=shrlibmaxpages}  
Specifies the maximum number of pages that can be allocated in the system to contain user shared library modules.

\textbf{STEPLIBLIST = 'stepliblist'}  
Specifies the path name of a z/OS UNIX file. This file is intended to contain a list of data sets that are sanctioned by the installation for use as step libraries during the running of set-user-ID and set-group-ID executable programs.

\textbf{SUPERUSER = superuser}  
This statement specifies a superuser name. You can specify a 1-to-8-character name that conforms to restrictions for a z/OS UNIX user ID. The user ID specified on SUPERUSER must be defined to the security product and should have a UID of 0 assigned to it. The user ID specified with \texttt{setuid()} is used when a daemon switches to an unknown identity with a UID of 0.  
The default is SUPERUSER(BPXROOT).

\textbf{SYNTAXCHECK=(xx)}  
Specifies that the operator wishes to check the syntax of the designated parmlib member. For example, to check the syntax of BPXPRMZ1 the operator enters: 
\begin{verbatim}
SETOMVS SYNTAXCHECK=(Z1)
\end{verbatim}

The system returns a message indicating either that the syntax is correct or that syntax errors were found and written into the hard copy log. This command parses the parmlib member in the same manner, and with the same messages as during IPL.

\textbf{Note:} SYNTAXCHECK checks syntax as well as the existence of HFS and zFS data sets specified in the catalog. Mount points are not verified.

\textbf{SYSCALL\_COUNTS = (YES I NO)}  
Specifies whether to accumulate syscall counts so that the RMF data gatherer can record this information. The default is NO.  
If you specify YES, the path length for the most frequently used kernel system calls increases by more than 150 instructions.
SYSNAME=Sysname*

*Sysname* is the 1-8 alphanumeric name of a system participating in shared file system. This system must be IPLed with SYSPLEX(YES). *Sysname* specifies the particular system on which a mount should be performed. This system will then become the owner of the file system mounted. If * (asterisk) is specified, it represents any other randomly selected system taking part in shared file system. The asterisk specification is not available with the FROMSYS parameter.

For examples of the use of this parameter when making move or change requests, see "shared file system in a Sysplex" in [Z/OS UNIX System Services Planning](#).

TTYGROUP = ttygroup

This specifies a 1-to-8-character name that must conform to the restrictions for a z/OS UNIX group name. Slave pseudoterminals (ptys) and OCS rts are given this group name when they are first opened. This group name should be defined to the security product and have a unique GiD. No users should be connected to this group.

The name is used by certain setgid() programs, such as talk and write, when attempting to write to another user’s pty or rty.

The default is TTYGROUP(TTY).

USERIDALIASTABLE = 'useridaliastable'

Enables installations to associate alias names with MVS user IDs and group names. If specified, the alias names are used in z/OS UNIX System Services processing for the user IDs and group names listed in the table.

Specifying USERIDALIASTABLE causes performance to degrade slightly. The more names that you define, the greater the performance degradation. Installations are encouraged to continue using uppercase-only user IDs and group names.

The USERIDALIASTABLE statement specifies the pathname of a z/OS UNIX file. This file is intended to contain a list of MVS user IDs and group names with their associated alias names.

VERSION = 'nnnn'

The VERSION statement applies only to systems that are exploiting shared file systems. VERSION allows multiple releases and service levels of the binaries to coexist and participate in shared file systems. A directory with the value *nnnn* specified on VERSION is dynamically created at system initialization under the sysplex root that is used as a mount point for the version file system. This directory, however, is only dynamically created if the root file system for the sysplex is mounted read/write.

Note: *nnnn* is a case-sensitive character string no greater than 8 characters in length. It indicates a specific instance of the version file system. The most appropriate values for *nnnn* are the name of the target zone, &SYSR1, or another qualifier meaningful to the system programmer. For example, if the system is at V2R9, you can specify REL9 for VERSION. When SYSPLEX(YES) is specified, you must also specify the VERSION parameter.

The VERSION value is substituted in the content of symbolic links that contain $VERSION. For scenarios describing the use of the version file system, see "Shared file system in a sysplex" in [Z/OS UNIX System Services Planning](#).
SETOMVS Command

When testing or changing to a new Maintenance Level (PTF), you can change the VERSION value dynamically by using the SETOMVS command:

```
SETOMVS VERSION='string'
```

You can also change the settings of this parameter via SET OMVS=(xx) and SETOMVS RESET=(xx) parmlib specifications.

**Note:** We do not recommend changing version dynamically if you have any users logged on or running applications; replacing the system files for these users may be disruptive.
SETPROG Command

Use the SETPROG command for:

- Updating the APF List (SETPROG APF)
  - Change the format of the authorized program facility (APF) list from static to dynamic, or dynamic to static
  - Add a library to a dynamic APF list
  - Delete a library from a dynamic APF list.

- Updating Dynamic Exits (SETPROG EXIT)
  - Add an exit routine to an exit
  - Change the state of an exit routine
  - Delete an exit routine from an exit
  - Undefine an implicitly-defined exit
  - Change the attributes of an exit.

- Updating LNKLST Concatenations (SETPROG LNKLST)
  - Define a LNKLST set of data sets for the LNKLST concatenation
  - Add data sets to or delete data sets from the LNKLST set
  - Remove the definition of a LNKLST set from the system
  - Test for the location of a specific module in the LNKLST concatenation
  - Activate a LNKLST set as the LNKLST concatenation for the system
  - Update an address space for jobs to use a LNKLST set.

- Managing Dynamic LPA Content (SETPROG LPA)
  - Specify modules to add to the LPA after IPL
  - Specify modules to delete from the LPA after IPL
  - Specify the minimum amount of CSA storage that must remain available after an ADD operation.

- Enabling protection of REFR programs (SETPROG REFPRPROT)
- Disabling protection of REFR programs (SETPROG NOREFPRPROT)

Each subcommand of SETPROG (for example, SETPROG LNKLST,DEFINE) has a direct analog in the PROGxx parmlib member (such as the LNKLST DEFINE statement) activated by SET PROG=xx. You will get the same result whether you activate the function by SETPROG or by SET PROG=xx.

Syntax

The syntax for each variation of the SETPROG command is shown immediately preceding its respective parameter list.

```plaintext
SETPROG
```

Notes:

1. The SETPROG command does not have an abbreviation.
2. The SETPROG command requires a /* */ around comments. Refer to "System Command Formats" on page 4-15 for further information.

Updating the APF List

Use the SETPROG APF command to:

- Change the format of the authorized program facility (APF) list from static to dynamic, or static to dynamic
- Add a library to a dynamic APF list
- Delete a library from a dynamic APF list.
SETPROG Command

To use the SETPROG APF command to update the contents of the APF list during normal processing, the format of the APF list must be dynamic. SETPROG is a system control command and is issued from a console with system (AUTH(SYS)) or higher authority.

- To add or delete the APF list entry for library *libname*, you must have UPDATE authority to the RACF FACILITY resource class entity CSVAPF.libname, or there must be no FACILITY class profile that protects that entity.
- To change the format of the APF list to dynamic, you must have UPDATE authority to the RACF FACILITY resource class profile CSVAPF.MVS.SETPROG.FORMAT.DYNAMIC, or there must be no FACILITY class profile that protects that entity.
- To change the format of the APF list back to static, you must have UPDATE authority to the RACF FACILITY resource class profile CSVAPF.MVS.SETPROG.FORMAT.STATIC, or there must be no FACILITY class profile that protects that entity.

If you authorize users to update the APF list using some other method, you must ensure that there is no FACILITY class profile that matches a profile listed above. If there is such a profile, the system uses it to determine if the requestor is authorized.

You can also use the SET PROG=xx command to update the APF list using parameters specified in the PROGxx parmlib member. See "SET Command" on page 4-410 for more information about using SET PROG=xx. See z/OS MVS Planning: Operations for information about defining RACF profiles for the SETPROG and SET PROG=xx commands.

```
SETPROG APF{,FORMAT={DYNAMIC|STATIC}}
 {,ADD|DELETE},{DSNAME|LIBRARY}=libname,{SMS|VOLUME=volume} }
```

Notes:
1. You can specify the DSNAME parameter as DSN, LIB, or LIBRARY, the VOLUME parameter as VOL, and the DYNAMIC parameter as DYN.
2. This command requires a /* */ around comments. Refer to "System Command Formats" on page 4-15 for further information.

**FORMAT=[DYNAMIC or STATIC]**
Indicates that the format of the APF list is to change (from static to dynamic, or vice versa). If the system processes FORMAT=DYNAMIC successfully, authorized users can update the dynamic APF list during normal processing.

Before you change the format of the APF list to dynamic, contact the system programmer to validate that all programs and vendor products are converted to use dynamic APF services and that the proper program products are installed. Also, see the restrictions associated with changing the format of the APF list in z/OS MVS Initialization and Tuning Reference.

**ADD**
Adds the library specified on the DSNAME parameter to the APF list. There is no restriction on the number of libraries you can specify in a dynamic APF list. You can only use this option if the format of the APF list is dynamic.
DELETE

Deletes the library specified on the DSNAME parameter from the APF list. You can only use this option if the format of the APF list is dynamic.

**DSNAME**=libname

The 1-44 character name of the library that you want to add or delete. DSNAME can be an alias for the library name.

This function does not map an alias to the actual library name. Therefore, if you specify an alias, only the alias is added to, or deleted from, the APF list. Similarly, when you specify an actual library name as input, none of the library’s aliases are added to, or deleted from, the APF list.

Do not define aliases in the APF list because IBM’s data management services (for example, OPEN processing) map an alias to its actual library name and query the APF list by the actual library name. An alias in the APF list does not authorize anything.

**VOLUME**=volume

The volume identifier for the volume containing the library specified on the DSNAME parameter, which is one of the following:

- The volume serial number
- Six asterisks (******), indicating that the system is to use the volume serial number of the current system residence (SYSRES) volume.
- *MCAT*, indicating that the system is to use the volume serial number of the volume containing the master catalog.

**SMS**

Indicates that the library specified on the DSNAME parameter is managed by the storage management subsystem (SMS), and therefore no volume is associated with the library. When you display the APF list entry for an SMS-managed library, the volume appears as *SMS*.

**Example 1**

To change the format of the APF list from static to dynamic, enter:

```
SETPROG APF,FORMAT=DYNAMIC
```

**Example 2**

To add library SYS1.ACCTG.DATA, on the current SYSRES volume, to the APF list, enter:

```
SETPROG APF,ADD,DSNAME=SYS1.ACCTG.DATA,VOLUME=******
```

**Example 3**

To add SMS-managed library SYS1.DSSET.LOG to the APF list, enter:

```
SETPROG APF,ADD,DSNAME=SYS1.DSSET.LOG,SMS
```

**Example 4**

To delete library SYS1.ACCTG.DATA, on volume 617680, from the APF list, enter:

```
SETPROG APF,DELETE,DSNAME=SYS1.ACCTG.DATA,VOLUME=617680
```

**Updating Dynamic Exits**

Use the SETPROG EXIT command to:

- Add an exit routine to an exit
SETPROG Command

- Change the state of an exit routine
- Delete an exit routine from an exit
- Undefine an implicitly-defined exit
- Change the attributes of an exit.

You can use the SETPROG EXIT command to control exits that have been defined to the dynamic exits facility. Dynamic exits services are implemented by:

- The EXIT statement of the PROGxx parmlib member. The EXIT statement of PROGxx allows an installation to add exit routines to an exit, delete an exit routine for an exit, change the state of an exit routine, change the attributes of an exit, and undefine an implicitly defined exit.

The PROGxx EXIT statement interacts with the PROG=xx parameter of IEASYSxx and the SET PROG=xx command. At IPL, you can use PROG=xx to specify the particular PROGxx parmlib member the system is to use. During normal processing, you can use the SET PROG=xx command to set a current PROGxx parmlib member. See z/OS MVS Initialization and Tuning Reference for information about the PROGxx parmlib member.

- The SETPROG EXIT command.
- The CSVDYNEX macro. The CSVDYNEX macro can be used to define exits to the dynamic exits facility, control their use within a program, and associate one or more exit routines with those exits. It can also be used to associate exit routines with the existing SMF and allocation exits, which have been defined to the dynamic exits facility.

An installation can use any of these methods to control dynamic exits. An exit routine, for example, can be associated with an exit using the CSVDYNEX ADD request, the SETPROG EXIT,ADD operator command, or the EXIT statement of PROGxx.

The complete syntax for the SETPROG EXIT command is:

```
SETPROG EXIT,{ADD,EXITNAME=exitname,MODNAME=modname }
[,,STATE={ACTIVE|INACTIVE}]
[,,DSNAME=dsname]
[,,JOBNAME={jobname|*}]
[,,ABENDNUM=(n[,CONSEC])]
[,,FIRST|LAST]
{ATTRIB,EXITNAME=exitname,KEEPRC=(compare,kk)}

{DELETE,EXITNAME=exitname,MODNAME=modname }
[,,FORCE={YES|NO}]

{MODIFY,EXITNAME=exitname,MODNAME=modname }
[,,STATE={ACTIVE|INACTIVE}]
[,,JOBNAME={jobname|*}]

{UNDEFINE,EXITNAME=exitname }
```

Notes:

1. This command requires a /* */ around comments. Refer to “System Command Formats” on page 4-15 for further information.

2. The EXITNAME parameter must be the first parameter following the ADD, ATTRIB, DELETE, MODIFY, or UNDEFINE keywords.
Note:

ADD
Adds an exit routine to an exit.

DELETE
Deletes an exit routine from an exit.

MODIFY
Changes the state of an exit routine.

UNDEFINE
Undefines an implicitly-defined exit. An exit is implicitly defined when:
• You add exit routines to an exit before the exit is defined
• You set attributes using the ATTRIB parameter before defining the exit.

ATTRIB
Changes the attributes of an exit.

EXITNAME= or EX= or EN=exitname
The 1-16 character name of the exit.

MODNAME= or MOD=modname
The 1-8 character name of the exit routine. If DSNAME is not specified, the
system tries to locate the exit routine using the LPA, the LNKLST
concatenation, and the nucleus.

DSNAME= or DSN= dsname
The 1-44 character data set name of a load library in which the named exit
routine resides. The data set must be cataloged, but does not need to be
APF-authorized.

If the data set has been migrated, processing of the SETPROG command is
delayed until the data set has been retrieved.

JOBNAME={jobname or *}
The 1-8 character name of the job(s) for which this exit routine is to get control.
If some other job calls the exit, this exit routine does not get control.
You can use the JOBNAME parameter to limit most exit routines to processing
a particular job. However, you cannot use this parameter to restrict processing
of the IEFUJV exit routine to a particular job.
To indicate more than one job name, use an asterisk as the last character. A
matching jobname is one that matches all characters preceding the asterisk.
Specify JOBNAME=* to request that the system not check for the jobname. The
default for the ADD parameter is *. The default for the MODIFY parameter is to
leave the jobname unchanged.
Based on the characteristics of the particular exit, the JOBNAME parameter
might not be effective if the exit is driven before the job name has been set in a
batch initiator.

STATE
Indicates the state of the exit routine. ACTIVE indicates that the exit routine is
to be given control when the exit is called. INACTIVE indicates that the exit
routine is not to be given control when the exit is called.

The default for the ADD parameter is ACTIVE. The default for the MODIFY
parameter is to leave the state unchanged.

ABENDNUM=\/[\text{CONSEC}]
Indicates when the system should stop giving control to the exit routine in case
of abends. ABENDNUM=n indicates that the exit routine is not to be given control after the nth abend. ABENDNUM=n, CONSEC indicates that there must be n consecutive abends before the system stops giving control to the exit routine. CONSEC is not supported if this exit has FASTPATH processing in effect, and either a PSW key 8 to 15 or ANYKEY processing in effect.

The default is to use the ABENDNUM characteristics that were specified (or defaulted) when the exit was defined. The ABENDNUM value must not exceed 8 decimal digits.

**FIRST**

Specifies that the system is to call the exit routine before all other exit routines associated with this exit, unless another exit routine, added after it, also specifies FIRST.

If you specify neither the FIRST nor the LAST parameter, the system may call the exit routines associated with this exit in any order.

**LAST**

Specifies that the system is to call the exit routine after all other exit routines associated with this exit, unless other exit routines are added after it.

If you specify neither the FIRST nor the LAST parameter, the system may call the exit routines associated with this exit in any order.

**FORCE=YES or NO**

Indicates that the system is to delete the exit routine. The exit routine will no longer be given control. Specify FORCE=YES for an exit with FASTPATH processing in effect, and either a PSW key 8 to 15 or ANYKEY processing in effect. Assuming the exit has FASTPATH processing in effect, and the PSW key is 8 to 15, or ANYKEY processing is in effect:

- FORCE=NO, the default, changes the state of the exit routine to inactive. The system does not free the storage.
- FORCE=YES frees the storage of the exit routine immediately. Use FORCE=YES only if you are sure that no exit is running that exit routine.

For exits that are non-FASTPATH or whose PSW key is 0 to 7, and are not ANYKEY, the system frees the storage when it determines that no other exits are using the exit routine.

**KEEPRC=(compare, kk)**

Specifies a comparison and a return code which, if true, cause the information produced by this exit routine to be returned to the exit caller. The valid choices for compare are EQ, NE, GT, LT, GE, and LE. For example, with KEEPRC=(NE,4), if the exit routine produces a return code of 8, the compare for not-equal with 4 is true, and KEEPRC processing causes the information produced by this exit routine to be returned to the exit caller.

The default is not to perform KEEPRC processing. Do not enter more than 8 decimal digits when specifying a value for kk.

If return codes from more than one exit routine match the conditions specified, the system returns information from the exit routine that finished first.

**Example**

Associate exit routine MYMOD with the SMF exit known as SYS.IEFUJI, defined through the SYS statement in a SMFPRMxx parmlib member. The load module is in data set MY.DSN.
Updating LNKLST Concatenations

Use the SETPROG LNKLST command to:

- Define a LNKLST set of data sets for the LNKLST concatenation
- Add data sets to or delete data sets from the LNKLST set
- Remove the definition of a LNKLST set from the system
- Test for the location of a specific module in the LNKLST concatenation
- Activate a LNKLST set as the LNKLST concatenation for the system
- Update an address space for jobs to use a LNKLST set

PROGxx is the parmlib member used to define one or more LNKLST sets. You can use PROGxx to activate one of the LNKLST sets as the LNKLST concatenation at IPL. (You can also activate the LNKLST concatenation through LNKLSTxx, but IBM recommends that you use PROGxx.) SETPROG LNKLST allows you to modify the LNKLST concatenation dynamically after IPL. See z/OS MVS Initialization and Tuning Reference for information about the PROGxx parmlib member.

The complete syntax for the SETPROG LNKLST command is:

```
SETPROG LNKLST, {DEFINE, NAME=lnklstname[,COPYFROM=lnklstname][,NOCHECK] }
 {ADD, NAME=lnklstname,
 DSNAME=dsname[,VOLUME=volser][,ATBOTTOM]
 [,ATTOP][,AFTER=dsname]
 [,CONCAT(CHECK|NOCHECK)] }
 {DELETE, NAME=lnklstname, DSNAME=dsname }
 {UNDEFINE, NAME=lnklstname }
 {TEST, NAME=lnklstname, MODNAME=name }
 {ACTIVATE, NAME=lnklstname }
 {UPDATE, {JOB=jobname} [,DELAY=nn]
 {ASID=asid } [DELAY=delay]
 {UNALLOCATE }
 {ALLOCATE } }
```

Note: This command requires a /* */ around comments. See System Command Formats on page 4-15 for further information.

LNKLST

Indicates that an action is to be performed for a LNKLST set. LINKLIST, LINKLST, LNK, or LNKLST can be specified as an alternative to LNKLST.

DEFINE

Specifies that you want to define a LNKLST set (a set of ordered data sets for the LNKLST concatenation).

NAME=lnklstname

The name of the LNKLST set that you want to specify. Naming conventions are as follows:

- You can specify from 1 to 16 characters for name.
- You can use alphanumerics, underscores, periods, and $, #, or @.
- Do not use imbedded blanks.
- Do not use the name CURRENT. The system uses CURRENT to mean the current LNKLST set.
**SETPROG Command**

- For all options except TEST, do not use the name IPL. The system uses IPL to mean LNKLST information specified in parmlib member LNKLSTxx. However, you can specify
  
  ```
 SETPROG LNKLST,TEST,NAME=IPL
  ```

- Do not begin the name with SYS. SYS is reserved for IBM use.

**COPYFROM=lnklstname**

Specifies the name of an existing LNKLST set from which to initialize the LNKLST set you are defining. If you specify CURRENT for the name, the system uses the current LNKLST set.

**NOCHECK**

Indicates that the system does not check to determine if the specified LNKLST set contains SYS1.LINKLIB, SYS1.MIGLIB, SYS1.CSSLIB, SYS1.SIEALNKE and SYS1.SIEAMIGE before allocating the LNKLST concatenation.

*Note:* Use NOCHECK with caution. You might use NOCHECK after you have modified SYS1.LINKLIB and want to compress SYS1.LINKLIB. For a procedure, see the description of the PROGxx NOCHECK parameter in z/OS MVS Initialization and Tuning Reference.

**ADD**

Indicates that you want to add a data set to the specified LNKLST set.

You cannot add a data set to either the current or the active LNKLST set. If a data set has been migrated, the request waits until the data set is available. For information about the maximum number of data sets you can define to a LNKLST set, see z/OS MVS Initialization and Tuning Reference.

Note that you cannot specify in a SETSSI ADD command a subsystem initialization routine that is added via a SETPROG LNKLST,ADD command. That is because the new LNKLST library will not be picked up until the end of the job that is running. However, the SETSSI command runs in the MASTER ASID, which never ends (until the next IPL). Therefore, the SETSSI command can never pick up a new LNKLST. To correct this problem, you must issue the UPDATE command; however, use caution when you do that. See the “UPDATE option” on page 4-496 for considerations and restrictions.

**DSNAME=dsname**

The 44-character name of a data set or library that you want to add to the specified LNKLST set or delete from the specified LNKLST set. DSN, LIB, and LIBRARY are accepted synonyms for this parameter.

The data set can be a PDS or a PDSE. IBM recommends that you use PDSEs because of the limitations on the number of extents for a LNKLST concatenation. See z/OS MVS Initialization and Tuning Reference.

Data sets to be added can be SMS-managed or non SMS-managed. After the system determines the volume and the SMS status of the data set, the following actions result in an error when the system tries to allocate the LNKLST set:

- If the data set in the LNKLST set changes status from SMS-managed to non SMS-managed, or from non-SMS managed to SMS-managed.
- If a non SMS-managed data set in the LNKLST set is deleted and moved to another volume.

In either case, to add the data set after the change has occurred, you must first delete the data set from the LNKLST set and add it again.

**VOLUME=volser**

Specifies the name of the volume on which the data set resides. The data set
must be cataloged. If the volume does not match the name in the catalog, the
ADD request fails. The name can be from 1 to 6 characters.

Cataloged data sets must be defined using the standard search order for
requests as outlined in the z/OS DFSMS Managing Catalogs. Variations in the
standard search order might result in data sets not being found during LNKLST
processing.

Note: This parameter is optional when a data set is cataloged in a user catalog
instead of the master catalog.

ATBOTTOM
ATTOP
AFTER=dsname
Indicates where in the LNKLST set you want to place the data set. The default
is ATBOTTOM.

ATBOTTOM indicates that you want to place the data set specified on the
DSNAME parameter at the bottom of the list of data sets in the LNKLST set.

ATTOP indicates that you want to place the data set specified on the DSNAME
parameter at the beginning of the LNKLST set. The system places the LINKLIB,
MIGLIB, CSSLIB, LINKLIBE and MIGLIBE data sets in that order at the
beginning of every LNKLST set in the LNKLST concatenation. If you use
ATTOP, the system always places the data set after the CSSLIB data set.

AFTER = dsname indicates that the system places the data set specified on the
DSNAME parameter after the data set specified by dsname. You cannot use
this parameter to place a data set after the LINKLIB, MIGLIB, CSSLIB,
LINKLIBE, or MIGLIBE data set in the LNKLST set. Instead, use ATTOP if you
want to place the data set immediately after the CSSLIB data set.

Default Value: If you omit ATBOTTOM, ATTOP, or AFTER, the system adds the
data set to the bottom of the LNKLST set.

CONCAT(CHECK | NOCHECK)
Specifies whether or not to check if the concatenation defined by the LNKLST
set is full. The parameter is optional. CONCAT(NOCHECK) is the default.

CONCAT(CHECK) specifies that the system is to check if the concatenation is
full. This requires that all data sets in the LNKLST be allocated and
concatenated together, and will require more processing time than the default.

CONCAT(NOCHECK), the default option, specifies that the system is not to
check whether the concatenation is full. (If the concatenation actually is full, it
will be detected when the LNKLST set is activated.)

DELETE
Indicates that you want to delete a data set from the specified LNKLST set.
You cannot delete a data set from either the current or the active LNKLST set.

UNDEFINE
Removes the definition of the LNKLST set specified by NAME=lnklstname from
the system. You cannot remove the definition of the current LNKLST set,
another LNKLST set that is being actively used by a job or address space, or
the LNKLST defined at IPL through LNKLSTxx and the LNK parameter of
IEASYxx. See “Removing or Compressing a Data Set in an Active LNKLST
Set” in z/OS MVS Initialization and Tuning Reference for information about LLA
management of the LNKLST data set.
SETPROG Command

TEST
Indicates that you want to locate a specific routine associated with a data set in the LNKLST set. If the system locates the data set, the system indicates the name of the data set. If a data set has been migrated, the request waits until the data set is available.

MODNAME=name
MODNAME specifies the name of a module to be located in the LNKLST set. MODULE and MOD can be used as synonyms for MODNAME.

ACTIVATE
Indicates that you want to activate the specified LNKLST set as the current LNKLST concatenation. When you use SETPROG LNKLST to activate the LNKLST set after IPL, jobs or address spaces that are still active continue to use the previous current LNKLST set. To associate a job in an address space to the current LNKLST set after IPL, see UPDATE. See "Removing or Compressing a Data Set in an Active LNKLST Set" in z/OS MVS Initialization and Tuning Reference for information about LLA management of the LNKLST data set.

If a data set in the LNKLST set has been migrated before the LNKLST set is activated, the request waits until the data set is available.

When the ACTIVATE request completes, the system issues an event (ENF) signal (event code 52). Depending on the options specified in SMFPRMxx, whenever a LNKLST set is activated, the system records SMF record type 90 subtype 29. See "SETSMF Command" on page 4-505.

UPDATE
Indicates that the system is to update an address space so that a specified job or jobs associated with that space can use the current LNKLST set. If the job is using another LNKLST set when the current LNKLST set is activated, it will continue to use the original LNKLST set until it completes operations. When the job completes and restarts, it then uses the data sets defined in the new currently active LNKLST set. See "Removing or Compressing a Data Set in an Active LNKLST Set" in z/OS MVS Initialization and Tuning Reference for information about LLA management of the LNKLST data set.

Be careful when you use UPDATE. Updating an address space while a program in that address space is fetching a module can cause the fetch to fail or to locate an incorrect copy of the module. The system does not attempt to verify the validity of the data for UPDATE.

JOB=jobname
Specifies the name of the job or jobs to update. You can use wildcard characters (?) or *) for jobname. UPDATE updates any job whose name matches the specified criteria. The system compares jobname to the name of any initiated job or jobs that match, or to the name of the address space.

ASID=asid
Specifies the address space id for the job.

DELAY=nn
Indicates the number of seconds to delay the completion of the UPDATE operation.

UNALLOCATE
Indicates that you want to undo all existing allocations obtained while processing active LNKLST sets. This also releases the SYSDSN ENQ.
Notes:
1. Make sure that you do not delete or move the LNKLST data sets while the allocations are not in effect (from the time that you use the UNALLOCATE request until the time that you use the ALLOCATE request).
2. Once you have completed everything associated with the UNALLOCATE, you must specify LNKLST ALLOCATE to re-obtain the remaining ENQs.

ALLOCATE
Indicates that you want to re-obtain the allocation (and SYSDSN ENQ) for every data set in every active LNKLST.

Example 1
Add the data set DATA.SET.A to the LNKLST set MY.LNKLST.SET. The system places the data set after the MIGLIBE data set in the LNKLST set.

SETPROG LNKLST,ADD,NAME=MY.LNKLST.SET,DSNAME=DATA.SET.A,ATTOP

Example 2
Change the job MY.JOB to use the current LNKLST set:

SETPROG LNKLST,UPDATE,JOB=MY.JOB

Managing Dynamic LPA Content
Use the SETPROG LPA command anytime after IPL to specify:
- Modules to add to the LPA
- Modules to delete from the LPA
- The minimum amount of CSA storage that must remain available after an ADD operation.

You can also initiate a change to the LPA from a program via the CSVDYLPA macro, or by an operator using the SET PROG command. You can use the PROG system parameter to specify CSA threshold values, but not to request ADD or DELETE operations.

You can exercise certain controls over the modules to be loaded:
- You specify a data set from which the system is to load the modules. You must be authorized to make the request.
- You can request that the modules be placed into fixed common storage.
- You can request that only the full pages within a load module be page-protected. This does leave the likelihood of the beginning and/or end of a load module not being page protected. By default, each module is individually page-protected. This is, however, wasteful of common storage, as each module needs then to occupy a whole number of 4096-byte pages. In all cases the module will be in key 0 storage.

The system considers LPA modules as coming from an authorized library. As part of its LPA search, the system will find modules that had been added dynamically. It will find a module that had been added dynamically before it finds one of the same name that had been added during IPL.

Use the SETPROG LPA command to replace modules only where the owning product verifies the replacement. Otherwise, replacement could result in partial updates. If the owning product has already saved the module address, the system will not conduct an LPA search and will not find the updated module. Also, the
addresses of all modules that are accessed via a program call (PC) instruction are stored in the PC table. That table is not updated by the SETPROG LPA command. Therefore, these modules cannot be replaced using the SETPROG LPA command. You must IPL for the updates to take effect.

Note: Dynamic LPA does not update system control blocks, which includes the SVC table. To add or replace an SVC routine, the user of the SETPROG LPA command (or the owner of the SVC) must first write a program that gets control as the CSVDYLPA exit routine, looks for a given routine name, and issues the appropriate SVCUPDTE service call to update to the SVC table. For more information on the CSVDYLPA exit routine, see “Monitoring Dynamic LPA Processing” in z/OS MVS Programming: Authorized Assembler Services Guide, SA22-7608.

It is sometimes necessary to re-IPL the system to replace LPA modules. For example, many service updates of LPA modules will require a re-IPL.

The complete syntax for the SETPROG LPA command is:

```
SETPROG LPA,(ADD,[MODNAME=(modname...,modname) | MASK=mask],DSNAME=[dsname | LNKLST],\n,FIXED] [,PAGEPROTPAGE]

{DELETE,MODNAME=(modname...,modname)}

FORCE=YES [CURRENT | OLDEST]

{CSAMIN=(below,above)}
```

Notes:
1. You may alternatively express the parameters associated with the keywords MASK, DSNAME, and FORCE in the preceding syntax diagram using parentheses rather than equals signs, as shown in the descriptions below.
2. This command requires a /* */ around comments. Refer to “System Command Formats” on page 4-15 for further information.

LPA
Statement type indicating that an action may be performed on the LPA.

ADD
Specifies that one or more modules be added to the LPA.

Default Value: None

Attention: Modules added to the system by dynamic LPA processing are placed into CSA or ECSA storage. Therefore, it is important to ensure that the system CSA and ECSA sizes are adequately defined to handle the additional consumption of CSA storage resulting from the issuance of the dynamic LPA request. Further protection can be gained through the use of the CSAMIN parameter described below.

DELETE
Specifies that one or more modules be deleted from the LPA. Only modules added to the LPA after an IPL are eligible for dynamic deletion.

Default Value: None
CSAMIN
Specifies the minimum amount of CSA and ECSA that must remain after a module is added to the LPA. If the requested ADD operation would reduce the CSA or ECSA below the defined minimum, the system rejects the operation.

Default Value: (0,0)

below
The minimum amount of below-16M CSA storage that must remain after the ADD operation. The value can be expressed as n, nK, and nM.

above
The minimum amount of above-16M CSA storage that must remain after the ADD operation. The value can be expressed as n, nK, and nM.

MODNAME(modname,...,modname) | MODNAME=(modname,...,modname)
modname is the 1-8 character LPA module name or alias. If a modname has aliases, you must specify the module name and all of its aliases. If the last character of the modname is an asterisk (*), it will be treated as X'C0' -- which lets you specify the name of a load module that ends with that nonprintable character. You cannot use wildcard characters within modname. You can submit up to 128 module names, and can use MOD or MODULE as synonyms of MODNAME.

Default Value: None

MASK(mask) | MASK=mask
mask is the 1-8 character mask that is to be applied to all the members of the specified data set. It can contain wildcard characters ”*” and ”?” and all members that match will be processed.

Default Value: None

DSNAME(dsname) | DSNAME=dsname
dsname is the 1-44 character data set name that contains the module(s) or alias(es). When MODNAME is specified, you can specify DSNAME(LNKLST) if you want the system to search the lnklst instead of a particular data set. The data set must be cataloged. It may be allocated as a PDS or PDSE program library.

The attribute of the CSA for each module is assigned as OWNER=SYSTEM. DSN, LIB, and LIBRARY can be used as synonyms of DSNAME.

Default Value: None

FIXED
Indicates that the modules are to be placed in fixed storage.

Default Value: If FIXED is not specified, the modules will be placed in pageable storage.

PAGEPROTPAGE
Indicates whether or not to page protect entire modules. You can use PPPAGE or PPP as synonyms of PAGEPROTPAGE. Protecting entire modules requires more storage than just that necessary to contain the modules, because each module gets allocated a number of whole pages.

PAGEPROTPAGE causes the system to protect only the full pages within each load module. This reduces the storage requirement, but makes it possible for a storage overlay of the beginning or end of the load module to occur.

Default Value: Page protect entire modules.
SETPROG Command

FORCE(YES) | FORCE=YES
Confirms that the delete requestor understands the ramifications of deleting a module from the LPA, when the system can have no knowledge of whether any code is currently executing within the specified module.

Default Value: None. Required parameter.

CURRENT | OLDEST
CURRENT specifies to delete the current copy. OLDEST specifies to delete the oldest dynamic copy. You can use CUR as a synonym of CURRENT and OLD as a synonym of OLDEST.

Default Value: CURRENT

Protecting REFR programs
Use the SETPROG REFRPROT command anytime after IPL to specify that REFR programs should be protected from modification. The complete syntax for the SETPROG REFRPROT command is:

```
SETPROG REFRPROT
```

Use the SETPROG NOREFRPROT command anytime after IPL to specify that REFR programs should not be protected. The complete syntax for the SETPROG NOREFRPROT command is:

```
SETPROG NOREFRPROT
```

For more information on protection of REFR programs, see z/OS MVS Program Management: User's Guide and Reference.
SETRRS Command

Use the SETRRS command to control the RRS processing. Table 4-35 summarizes the information that the SETRRS command provides. Use it to access the pages on which you can find details about a particular use of the SETRRS command.

Table 4-35. Summary of the SETRRS Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETRRS ARCHIVELOGGING</td>
<td>“SETRRS ARCHIVELOGGING Command”</td>
</tr>
<tr>
<td>SETRRS CANCEL</td>
<td>“SETRRS CANCEL Command” on page 4-502</td>
</tr>
<tr>
<td>SETRRS SHUTDOWN</td>
<td>“SETRRS SHUTDOWN Command” on page 4-503</td>
</tr>
</tbody>
</table>

Syntax

The syntax for each variation of the SETRRS command is shown immediately preceding its respective parameter list.

SETRRS ARCHIVELOGGING Command

RRS writes to the archive log stream for each completed UR. RRS never uses the information written to the RRS archive log; the information is intended for the installation to use if a catastrophic problem occurs. Because of the severe performance impact of running RRS with the archive log stream, customers want to run without it. This can be accomplished by deleting the archive log before starting any RRS image in the logging group or when RRS is operational, the SETRRS ARCHIVELOGGING system command can be used. Issuing the ARCHIVELOGGING,DISABLE command should be done during a lull in transaction processing to prevent damage to chained sysplex cascaded records. If the overall goal is to delete the archive log, the DISABLE command can be issued at anytime.

SETRRS ARCHIVELOGGING|DISABLE|ENABLE|

The options are:

DISABLE

Indicates the system is to disable the RRS archive logging for the subsequent transactions. RRS will stop writing the transaction completion records to the archive log and disconnect from the archive log stream.

ENABLE

Indicates the system is to enable the RRS archive logging for the subsequent transactions. RRS will connect to the archive log stream and start writing the transaction completion records to the archive log. The ENABLE request is done by asynchronous processing and might take as long as 15 seconds before the Archive Log Stream is connected and the enable message (ATR175I) is issued.

Observations:

1. Disable/Enable is a flag setting within RRS and does not represent the actual state of the Archive Log Stream. A Disable setting indicates that RRS on that system will not connect to or use the log, but the log stream might still be present. Conversely, starting RRS with an Enable setting and a deleted Archive Log Stream will cause RRS to try and connect to the log stream which will fail resulting in message:

   ATR132I RRS LOGSTREAM CONNECT HAS FAILED FOR OPTIONAL LOGSTREAM ATR.PLEX1.ARCHIVE. RC=00000008, RSN=0000080B
SETRRS ARCHIVELOGGING Command

2. To find the current status of the Archive Log Stream, use command:
   
   D LOGGER,CONNECTION,JOBNAME=RRS,LSNAME=ATR.groupname.ARCHIVE

   Where:
   
   • groupname is the RRS logging group name

   This will show the log streams currently connected to RRS on that system. The Archive log will only appear in the list when it's connected. Other Display Logger commands like:
   
   D LOGGER,LOGSTREAM,LSNAME=ATR.groupname.ARCHIVE

   will show the connection anyplace in the sysplex. So if SY1 is disconnected and SY2 is connected to the log stream, the command when issued on SY1 will show a status of "IN USE" because it is "IN USE" on SY2. The message text will also indicate those systems connected to the log stream.

Syntax
The complete syntax for the SETRRS ARCHIVELOGGING command is:

```
SETRRS ARCHIVELOGGING[,DISABLE|ENABLE]
```

Note: The SETRRS command does not have an abbreviation.

Parameters

DISABLE
Indicates that the system is to disable the RRS archive logging for the subsequent transactions. RRS will stop writing the transaction completion records to the archive log and disconnect from the archive log stream.

ENABLE
Indicates that the system is to enable the RRS logging for the subsequent transactions. RRS will connect to the archive log stream and start writing the transaction completion records to the archive log. The ENABLE request is done by asynchronous processing and might take as long as 15 seconds before the Archive Log Stream is connected and the connection message is issued.

SETRRS CANCEL Command

Use the SETRRS CANCEL command to end resource recovery services (RRS) abnormally.

Use this command only at the direction of the system programmer. (Normally, you will not use this command because RRS should be running at all times; stopping RRS can cause application programs to abend or wait until RRS is restarted.)

While stopping, RRS abends incomplete commit and backout requests and passes return codes to the requesting application programs.

If SETRRS CANCEL does not work, the system programmer might suggest you use FORCE jobname,ARM, where jobname is that specified on the START command for RRS.
**SETRRS CANCEL Command**

**Note:** You can also use the CANCEL command to stop RRS, but you cannot request a dump or specify any parameters except the jobname ATRRRS (or the name your installation has chosen).

**Syntax**
The complete syntax for the SETRRS CANCEL command is:

```
SETRRS CANCEL[,DUMP|NODUMP]
```

**Note:** The SETRRS command does not have an abbreviation.

**Parameters**

**DUMP | NODUMP**
Specify whether or not the system is to request an SVC dump of the RRS address space before RRS is stopped. If you omit the parameter, the default is NODUMP.

**Example**
To stop RRS from running and request an SVC dump, enter:

```
SETRRS CANCEL,DUMP
```

**SETRRS SHUTDOWN Command**
Issuing SETRRS SHUTDOWN provides a normal shutdown command to bring down RRS without resulting in a X'058' abend. In order to notify RRS resource managers that RRS is terminating, all the currently active resource managers will be unset. After the unset processing is completed, the RRS jobstep task and all of its subtasks will normally be terminated to clean up the address space. In addition to the RRS infrastructure tasks, there are also timed process tasks and server tasks running in the RRS address space. These tasks are also shut down normally as well.

Use this command only at the direction of the system programmer. (RRS should be running at all times; stopping RRS might cause application programs to abend or wait until RRS is restarted.)

Syncpoint processing for the outstanding work will be stopped by unsetting exits of resource manager. Resource manager will need to reset its exits and restart with RRS after RRS is restarted.

**Unset resource managers:**
As part of the RRS shutdown processing, it will queue any AtrRMUnset synchronous server request to perform the resource manager (RM) unset processing. The RM unset processing consists of the following:

1. Transitions the RM to UnsetInProgress state to prevent further RM requests.
2. Performs URI failed processing for all of the RM’s interests.
3. Transitions RM to the unset state. RM will need to reset its exits with RRS when RRS comes back up.
4. Notifies the RM that its exits have been unset, and drives RM’s notification exit with a specific ATR_RM_EXIT_UNSET reason code. A new reason code “Exit Manager Unavailable” will be returned to further explain why the RM’s exits are unset.

If SETRRS SHUTDOWN does not work, the system programmer might suggest you use FORCE jobname,ARM, where jobname is that specified on the START command for RRS.

**Note:** You can also use the CANCEL RRS, SETRRS CANCEL and FORCE commands. Each has a different outcome. For more information on these commands, see [z/OS MVS System Commands, SA22-7627](https://www.ibm.com/support资).!

**Syntax**

The complete syntax for the SETRRS SHUTDOWN command is:

```
SETRRS SHUTDOWN
```

**Note:** The SETRRS command does not have an abbreviation.

**Parameters**

There are no parameters for this command.

**Example**

To stop RRS from running, enter:

```
SETRRS SHUTDOWN
```
SETSMF Command

In contrast to the SET command, which allows an installation to specify a different SMFPRMxx parmlib member or restart SMF, the SETSMF command allows an installation to add a SUBPARM parameter or replace any previously-specified parameter in the active SMF parmlib member except the ACTIVE, PROMPT, SID, or EXITS parameters. The SETSMF command cannot add a parameter to the active SMF parmlib member. The SETSMF command cannot be used with a SMFPRMxx member that specified NOPROMPT. To avoid possible confusion with the SET SMF command, use the abbreviation SS for the SETSMF command.

Syntax

The complete syntax for the SETSMF command is:

```
SETSMF parameter(value[,value]...)
```

Parameters

The parameters are:

- `parameter` specifies any SMF parameter in the SMFPRMxx member except ACTIVE, PROMPT, SID, or EXITS.
- `value[value]` specifies the new value for the specified parameter.

Notes:

1. More than one parameter can be changed as long as the length of the command does not exceed 124 characters.
2. Both the SUBSYS and SUBPARM specifications can be changed on the same SETSMF command as long as the subsystem name is the same.
3. SET SMF, SETSMF, and DISPLAY SMF commands cannot run simultaneously. One waits for the other to complete before starting.
4. The new values for STATUS or MAXDORM do not take effect until the old ones, if any, expire.

Example 1

To set the SMF parameters for started tasks so that only system records are collected and checkpoint accounting records are taken every 30 minutes, enter:

```
SETSMF SUBSYS(STC,TYPE(0:127),INTERVAL(003000))
```

Example 2

To set the SMF parameter NOMULCFUNC, which indicates that users of the IFAUSAGE service that registered specifying SCOPE=FUNCTION do not need to use IFAUSAGE with the REQUEST=FUNCTIONxxx parameters, enter:

```
SETSMF NOMULCFUNC
```

This allows a measured usage program using SCOPE=FUNCTION, such as DB2, to record only its registration data and omit recording the usage data.
Use the SETSMS command when the Storage Management Subsystem (SMS) is active (running) to change a subset of SMS parameters from the console without changing the active IGDSMSxx member of SYS1.PARMLIB.

Use the SETSMS command to:

- Activate a new SMS configuration by specifying an active configuration data set (ACDS), a source control data set (SCDS), or both data sets. This action affects all MVS systems in the SMS complex.
- Replace the active configuration data set (ACDS) by specifying an ACDS different from the one that SMS is currently using. This action affects all MVS systems in the SMS complex.
- Replace the communications data set. This action affects all MVS systems in the SMS complex.
- Save the active configuration in a data set.
- Change the synchronization interval (INTERVAL). This change applies only to the system on which you issue the SETSMS command.
- Change the interval (DINTERVAL) that SMS waits between reading device statistics from the 3990-3 control unit (applicable only if the 3990-3 is installed and has at least one SMS-controlled volume). This change applies only to the system on which you issue the SETSMS command.
- Change the number of seconds that the dss component of DFMSMS will wait during backup processing for quiesce data set requests to complete (DSTIMEOUT).
- Change the interval that SMS waits between recording cache control unit summaries (applicable only if the 3990-3 is installed and has at least one SMS-controlled volume). This change applies only to the system on which you issue the SETSMS command.
- Change the interval that SMS waits between recording of BMF (buffer management facility) statistics. This change applies only to the system on which you issue the SETSMS command.
- Change the maximum number of times that the buffer management facility (BMF) least recently used (LRU) routine will pass over inactive buffers before making them available for reuse (LRUCYCLES).
- Change the number of seconds that the buffer management facility (BMF) will wait between calls to the BMF data space cache LRU (least recently used) routine (LRUTIME).
- Specify trace options for SMS. This change applies only to the system on which you issue the SETSMS command.
- Specify deadlock detection intervals.
- Change the SMF interval time for recording SMF type 42 records.
- Change the new log of logs name, used by DFSMShs.
- Change the maximum number of unique lock requests that a single unit of recovery can make.
- Change the quiesce exit timeout value to specify the amount of time the DFSMShs quiesce exits will allow to elapse before concluding that a quiesce cannot be completed successfully.
- Change the maximum time that a VSAM RLS or DFSMShs request is to wait for a required lock before the request is assumed to be in deadlock.
■ Change the virtual storage size that is used to cache PDSE directory buffers in the SMSPDSE1 restartable address space. The directory buffers reside in 64-bit addressable virtual memory. The PDSE1_DIRECTORY_STORAGE parameter allows a change of the PDSE1_DIRECTORY_STORAGE that is either defaulted at IPL, or specified in the IGDSMSxx parameter in SYS1.PARMLIB. You must restart the SMSPDSE1 address space in order for this change to become effective.

■ Change the hiperspace storage size that is used for PDSE member caching in the SMSPDSE1 restartable address space. The PDSE1_HSP_SIZE parameter allows a change of the PDSE1_HSP_SIZE that is either defaulted at IPL or specified in the IGDSMSxx parameter in SYS1.PARMLIB. You must restart the SMSPDSE1 address space in order for this change to become effective.

■ Change the buffer-beyond-close option that is used to manage the cache of PDSE directory and member buffers in the SMSPDSE1 restartable address space. The directory buffers reside in 64-bit addressable virtual memory and optionally member data resides in a hiperspace. The PDSE1_BUFFER_BEYOND_CLOSE parameter allows a change of the PDSE1_BUFFER_BEYOND_CLOSE that is either defaulted at IPL, or specified in the IGDSMSxx parameter in SYS1.PARMLIB. You must restart the SMSPDSE1 address space in order for this change to become effective.

For more information about the ACDS, SCDS, and COMMDS data sets, see z/OS DFSMSdfp Storage Administration and z/OS DFSMSdfp Diagnosis.

If you are not sure about the differences between SET SMS and SETSMS, see Table 4-36.

Table 4-36. Comparison of SET SMS with SETSMS

<table>
<thead>
<tr>
<th>Difference</th>
<th>SET SMS Command</th>
<th>SETSMS Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>When and how to use the</td>
<td>Initializes SMS parameters and starts SMS if it has been defined but not started at IPL time. Changes SMS parameters if SMS is already running.</td>
<td>Changes SMS parameters only when SMS is running.</td>
</tr>
<tr>
<td>command</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Where the parameters are</td>
<td>In the IGDSMSxx member of SYS1.PARMLIB.</td>
<td>At the console.</td>
</tr>
<tr>
<td>entered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What default values are</td>
<td>Default values are used for unspecified parameters except for BLOCKTOKENSIZE. If you omit BLOCKTOKENSIZE, the previous value in effect remains in effect. In z/OS 1.7, the original value of BLOCKTOKENSIZE is REQUIRE and in z/OS 1.8 and later the original value of BLOCKTOKENSIZE is NOREQUIRE.</td>
<td>No default values. Unspecified parameters remain unchanged.</td>
</tr>
<tr>
<td>available</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Some combinations of SETSMS parameters are not valid. Table 4-37 shows these incorrect combinations.
**Requirement:** The SCDS is a required parameter if the ACDS does not contain a valid configuration.

**Note:** The SCDS is a required parameter if the ACDS does not contain a valid configuration.

### Table 4-37. Incorrect Combinations of SETSMS Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ACDS</th>
<th>SCDS</th>
<th>COMMDS</th>
<th>SAVEACDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACDS</td>
<td>N/A</td>
<td>N/A</td>
<td>Not Valid</td>
<td>Not Valid</td>
</tr>
<tr>
<td>SCDS</td>
<td>N/A</td>
<td>N/A</td>
<td>Not Valid</td>
<td>Not Valid</td>
</tr>
<tr>
<td>COMMDS</td>
<td>Not Valid</td>
<td>Not Valid</td>
<td>N/A</td>
<td>Not Valid</td>
</tr>
<tr>
<td>SAVEACDS</td>
<td>Not Valid</td>
<td>Not Valid</td>
<td>Not Valid</td>
<td>N/A</td>
</tr>
</tbody>
</table>

### Scope in a Sysplex

The SETSMS command has sysplex scope only if you are changing the SCDS, ACDS, or COMMDS, and only if all systems in the sysplex are in the same SMS complex. See ["Using Commands That Have Sysplex Scope" on page 1-11](#) for an explanation of sysplex scope.

Other parameters that have sysplex scope are as follows:

- `RLSABOVETHEBARMAXPOOLSIZE`
- `RLSFIXEDPOOLSIZE`
- `RLSTMOUT`
- `DEADLOCK`

### Syntax

The complete syntax for the SETSMS command is:

```
SETSMS parameter(value)[,parameter(value)]...
```

**Note:** No imbedded blanks are allowed between parameters on this command.

### Parameters

*parameter(value)* is one of the following:

#### Configuration Parameters

**ACDS(dname)**

The *dname* specifies a data set that has been defined as an active control data set. The information in the data set is copied into the SMS address space to create (or replace) the active configuration. This parameter affects all MVS systems in the SMS complex. The command format is:

```
SETSMS ACDS(dname)
```

**AKP({nnn,nnn[,...,nnn]} |1000})**

Specifies one or more activity keypoint trigger (AKP) values. Each AKP value *(nnn)* is the number of logging operations between the taking of keypoints. You
can specify up to 32 activity keypoint values. AKP values must be specified in the same order as DFSMSstvs instance names. Valid values are from 200 to 65535. The default is 1000.

The command format follows:

**SETSMS AKP(1000)**

**BreakPointValue (0-65520)**

Valid values range from 0 cylinder to 65520 cylinders.

This value specifies the maximum number of cylinders during allocation of VSAM data sets by SMS. This value is used by SMS in making volume selection decisions and subsequently by DADSM. If the allocation request is equal to or higher than the BreakPointValue, the system prefers to satisfy the request from free space available from the cylinder-managed space. If the preferred area cannot satisfy the request, both areas become eligible to satisfy the requested space amount.

**Note:** The BreakPointValue is only used to direct placement on an Extended Address Volume. Generally, for VSAM data set allocation requests that are equal to or larger than the BreakPointValue, SMS prefers Extended Address Volumes; for non-VSAM allocation requests and VSAM allocation requests that are smaller than the BreakPointValue, SMS does not have a preference.

The default is 10.

**COPYSCDS(scds_dsn, acds_dsn)**

Specifies that SMS is to copy an SCDS (specified by scds_dsn) into an ACDS (specified by acds_dsn). Although typically the only way to create an ACDS is to activate an SCDS, you might not want to activate an SCDS for this purpose. For example, you might have a production system that creates and maintains an SCDS for a disaster recovery system, and you want the corresponding ACDS to be available during the IPL of the disaster recovery system. However, you do not want to activate the SCDS on the production system. Without using COPYSCDS, activating the SCDS was the only way to create the disaster recover ACDS. COPYSCDS provides an alternate way to create a copy of a SCDS as an ACDS without having to activate the SCDS. Do not specify COPYSCDS in the same command as ACDS, SCDS, SAVESCDS or SAVEACDS.

**SCDS(dsname)**

SMS is to use the specified source control data set (SCDS) to activate a new configuration. This parameter affects all MVS systems in the SMS complex.

If the ACDS is empty or does not contain a valid configuration (possibly because of a damaged data set), use the SCDS parameter to specify a source control data set. The command format is:

**SETSMS ACDS(dsname),SCDS(dsname2)**

If the ACDS is empty and no SCDS is specified, SMS issues a message that identifies the specified control data set as non-valid.

**Note:** Do not specify the SCDS parameter if the ACDS does contain a valid configuration; the SCDS will overlay the ACDS. To recover from such accidental loss, it is a good idea to maintain a backup copy of the current ACDS to be activated in case of damage to the main copy.

**SAVEACDS(dsname)**

Specifies the ACDS that SMS is to use to save to DASD the active
configurati1on from the SMS address space. SAVEACDS is one way to create a backup ACDS. Do not specify SAVEACDS in the same command as ACDS, SCDS, or SAVESCDS.

**SAVESCDS**(*dsname*)
Specifies the SCDS that SMS is to use to save to DASD the active configuration from the SMS address space. SAVESCDS is one way to create a backup SCDS. Do not specify SAVESCDS in the same command as ACDS, SCDS, or SAVEACDS.

**COMMDS**(*dsname*)
SMS is to use the named data set as the new communications data set.

If the replacement COMMDS is empty, SMS primes it with information from the active configuration. If the data set is not empty, SMS determines which ACDS was used to prime the new data set. If the ACDS named on COMMDS is the same as the one that is active, processing continues with the new COMMDS. Otherwise, SMS prompts the operator (by message IGD076D) to decide whether SMS should use the ACDS named on COMMDS or continue to use the current ACDS.

**Notes:**
1. If SMS cannot re-access the previously active communications data set, the operator must issue the command to change the COMMDS on each MVS system in the SMS complex.
2. The COMMDS parameter is mutually exclusive with ACDS, SCDS, and SAVEACDS.

**FAST_VOLSEL**(ON|OFF)
Specifies whether to use the ‘fast’ approach during SMS volume selection.

If you specify ON, SMS first selects volumes typically until DADSM rejects 100 volumes for insufficient free space. SMS issues message IGD17294I to indicate that ‘fast’ volume selection has been entered and then excludes volumes that do not have sufficient free space in the volume statistics. This ‘fast’ approach can inadvertently exclude volumes that have sufficient free space but for which SMS volume statistics indicates that they do not. SMS volume statistics can occur for the following events:
- The VTOC index is broken.
- OEM products bypass CVAF processing.
- In an SMSplex when the SMS synchronization time interval has not yet been driven to update the SMS configuration with the most current space statistics. These statistics are based on updates that can occur on another system in the SMSplex.

If you specify OFF, SMS uses the ‘normal’ approach to select volumes.

The default is OFF.

**MAXLOCKS**({*max0*},{*incr0*})
Specifies a pair of values in the range of 0 to 999999. The two values are the maximum number of unique lock requests that a single unit of recovery can make, and an increment value. Once the maximum number of unique lock requests is reached, warning messages are issued every time the number of unique lock requests over and above the maximum increases by a multiple of the increment. When the maximum number is reached, warning message IGW859I is issued to the system console, and message IGW10074I is issued to the job log. The messages include the name of the job that is holding the locks. This information will help you to determine whether the job should be canceled,
in which case the unit of recovery will be backed out, and the locks will remain held until the backout completes. Specifying a value of 0 indicates that warning messages IGW859I and IGW10074I should not be issued.

This parameter applies across all systems.

Notes:
1. Lock requests are considered unique if they lock different records within the base cluster. Repeated requests for the same base cluster records will not result in the count being incremented.
2. Warning messages IGW859I and IGW10074I are not issued for units of recovery that are in backout. This is because a unit of recovery that is in backout cannot obtain locks on any additional records.
3. Messages IGW859I and IGW10074I are issued until the unit of recovery reaches commit. Once the unit of recovery reaches commit, no additional messages will be issued.
4. To avoid flooding the system console with messages, messages IGW859I and IGW10074I are issued by an asynchronous timer driven task that wakes up every 10 seconds. This means that the messages will not necessarily reflect the exact values specified for the maximum and the increment, but rather will reflect the values which represent the state of the unit of recovery at the time the task awakens.
5. MAXLOCKS takes into account the number of unique lock requests. It does not count the actual number of locks obtained. The number of locks requested will differ from the number of locks held when alternate indexes are used. If an update modifies alternate keys, a lock is obtained for the base record, for each old alternate key, and for each new alternate key. Therefore, if \( n \) alternate keys are modified, a single lock request can result in obtaining \( (2n+1) \) locks.

Some examples of how this parameter can be specified are:

**MAXLOCKS(0,0)**
Valid - messages IGW859I and IGW10074I will never be issued.

**MAXLOCKS(,)**
Valid - this is the equivalent of specifying MAXLOCKS(0,0); messages IGW859I and IGW10074I will never be issued.

**MAXLOCKS(5000,0)**
Valid - messages IGW859I and IGW10074I will be issued when the asynchronous task wakes up and a unit of recovery has made its 5000th lock request.

**MAXLOCKS(0,2000)**
Not valid

**MAXLOCKS(4500,1000)**
Valid - messages IGW859I and IGW10074I will be issued when the asynchronous task wakes up and a unit of recovery has made its 4500th lock request and again every 1000 unique lock requests thereafter.

**MAXLOCKS(1000,2300)**
Valid - messages IGW859I and IGW10074I will be issued when the asynchronous task wakes up and a unit of recovery has made its 1000th lock request and again every 2300 unique lock requests thereafter.

**MAXLOCKS(3200,)**
Valid - this is the equivalent of specifying MAXLOCKS(3200,0); messages
IGW859I and IGW10074I will be issued when the asynchronous task wakes up and a unit of recovery has made its 3200th lock request.

Not valid

The default for both values is 0.

**PDSE1_DIRECTORY_STORAGE**(nnn)
The operand size values are defined with nnnM for megabytes, or nnnG for gigabytes. For example, to request a 500 megabytes size for the SMSPDSE1 restartable address space 64-bit virtual directory cache, specify SETSMS PDSE1_DIRECTORY_STORAGE(500M). You must restart the SMSPDSE1 address space in order for this change to become effective.

- **Maximum:** 16 Gigabytes
- **Minimum:** 64 Megabytes

**PDSE1_HSP_SIZE(nn)**
Requests up to 2047 megabytes for the PDSE1 hiperspace. You can also indicate that the hiperspace is not to be created by setting PDSE1_HSP_SIZE to 0. If the hiperspace is not created, the system does not cache PDSE member data. You must restart the SMSPDSE1 address space in order for this change to become effective.

**PDSE1 BUFFER BEYOND CLOSE (YES I NO)**
For the SMSPDSE1 address space, specifies whether to keep directory and member data in memory beyond the last close on this system of a PDSE data set. For the NO option, a PDSE directory and member data will be purged from the in-memory cache when the last close of the data set occurs. If you specify the YES option, the system retains the PDSE directory and member data in the in-memory cache beyond the last close of the data set. You must restart the SMSPDSE1 address space in order for this change to become effective.

**QTIMEOUT({nnn|300})**
Specifies the quiesce exit timeout value in seconds. The quiesce timeout value specifies the amount of time the DFSMStvs quiesce exits will allow to elapse before concluding that a quiesce cannot be completed successfully. Specify a value between 60 to 3600. Changing the value of QTIMEOUT affects only those quiesce requests that are submitted after the change is made; it has no effect on quiesce requests that are already in progress. The default is 300.

The command format is:
```setsms qtimeout(300)```

RLS_MAXCFFEATURELEVEL({A|Z})
Specifies the method that VSAM RLS uses to determine the size of the data that is placed in the CF cache structure. If you specify A, caching proceeds using the RLSCFCACHE keyword characteristics that are specified in the SMS data class that is defined for the VSAM sphere. If you do not specify a value, or if you specify Z, then only VSAM RLS data that have a Control Interval (Ci) value of 4K or less are placed in the CF cache structure. The default is Z.

Restrictions:
- If A is specified for the RLS_MAXCFFEATURELEVEL parameter, systems lower than V1R3 will not be able to connect to the CF cache structure.
- If a lower-level system is the first system activated in the sysplex, RLS_MAXCFFEATURELEVEL defaults to Z, and all systems will be able to connect to the CF cache structure.
• If the SETSMS command is used to change the RLS_MAXCFFEATURELEVEL value to A on a mixed-level system, the command is rejected and message IGW500I is issued.

RLS_MAX_POOL_SIZE
Specifies the maximum size in megabytes of the SMSVSAM local buffer pool. SMSVSAM attempts to not exceed the buffer pool size you specify, although more storage might be temporarily used. Because SMSVSAM manages buffer pool space dynamically, this value does not set a static size for the buffer pool.

Use SMF 42, subtype 19 records to help you determine the maximum size of the SMSVSAM local buffer pool.

You can specify a two to four-digit numeric value, with 10 as the minimum value. If you specify a value less than 10, the field is set to 10. If you specify a value greater than 1500, SMSVSAM assumes there is no maximum limit. IBM recommends that you limit the size of the local buffer pool.

The default is 100.

RLSINIT({NO|YES})
Specifies whether you want the SMSVSAM address space started. Specify YES if you want the SMSVSAM address space started as part of system initialization or the V SMS,SMSVSAM,ACTIVE command.

RLSTMOUT({nnn|0})
Specifies the maximum time, in seconds, that a VSAM RLS or DFSMStvs request is to wait for a required lock before the request is assumed to be in deadlock and ended with VSAM return code 8 and reason code 22 (X’16’).
Specify a value in seconds between 0 to 9999. A value of 0 means that the VSAM RLS or DFSMStvs request has no time out value; the request will wait for as long as necessary to obtain the required lock.

VSAM RLS detects deadlocks within VSAM and DFSMStvs. VSAM RLS cannot detect deadlocks across other resource managers, and uses the timeout value to determine when such deadlocks might have occurred. You can specify a global timeout value in the IGDSMSxx member of SYS1.PARMLIB, a step level timeout value on the JCL, or a timeout value on the RPL passed for each VSAM request.

For a particular VSAM RLS or DFSMStvs request, the value used for timeout is:
1. The value specified in the RPL, if any.
2. The value specified in the JCL at the step level, if any.
3. The value specified in the IGDSMSxx member of SYS1.PARMLIB, if any.

RLSTMOUT is a valid parameter for either VSAM RLS or DFSMStvs. If you specify RLSTMOUT but do not specify the TVSNNAME parameter, the value is used only by RLS. For DFSMStvs, the first instance of DFSMStvs brought up within the sysplex determines the value. Subsequent DFSMStvs instances use the value established by the first system, regardless of what might be specified in their members of SYS1.PARMLIB.

RLSTMOUT can be specified only once in a sysplex and applies across all systems in the sysplex.

The default is 0.

RLSABOVETHEBARMAXPOOLSIZE(ALL,size)
SETSMS Command

RLSABOVETHEBARMAXPOOLSIZE(*sysname1*, *size1*; *sysname2*, *size2*;...
sysname3, *size3*)

Specifies the total size of the BMF buffer pool that resides above the bar for either of the following:
- All systems
- Each system referenced in the parameter

Valid values are between 500MB and 2,000,000MB (2 Terabytes).

The default is 0.

RLSFIXEDPOOLSIZE(ALL, *size*)

RLSFIXEDPOOLSIZE(*sysname1*, *size1*; *sysname2*, *size2*;...
sysname3, *size3*)

Specifies the amount of the total real storage, both above and below the 2 gigabyte bar, that will be permanently fixed (pinned) on either of the following:
- All systems
- Each system referenced in the parameter

The default is 0.

Interval Parameters

INTERVAL(*nnn*)

SMS on the command-issuing system is to allow *nnn* seconds (1 to 999) to pass before synchronizing with the other SMS subsystems running on other MVS systems in the complex. The default value from SMS initialization is 15 seconds. This parameter applies only to the system issuing the command.

DINTERVAL(*nnn*)

Directs SMS to allow *nnn* seconds (1 to 999) to elapse between reading device statistics from a 3990-3 control unit. The default is 150 seconds.

DSSTIMEOUT(*nnnn*)

Specifies the number of seconds that the dss component of DFMSMS will wait during backup processing for quiesce data set requests to complete. Specify a value from zero to 65536 seconds (which is more than 18 hours). If you specify a value between 1 and 299 seconds, the system uses a value of 300 seconds (which equals 5 minutes). The default is 0 seconds.

The value specified in the DSSTIMEOUT parameter value is activated when the first instance of the SMSVSAM address becomes active in the sysplex. All subsequent SMSVSAM instances will use the same value.

CACHETIME(*nnnnn*)

Directs SMS to allow *nnnnn* seconds (1 to 86399) to elapse between recording SMS cache control unit summaries for 3990-3 control units. The default is 3600 seconds.

BMFTIME(*nnnnn*)

Specifies that SMS is to allow *nnnnn* seconds (1 to 86399) to elapse between the production of SMS BMF SMF type 42 subtype 1 records and SMFtype 42 subtype 6 interval records. The default is 3600 seconds. This change will take effect at the expiration of the current interval or, for SMSPDSE1, when it is restarted, whichever comes first. The default is 3600 seconds.

DEADLOCK_DETECTION(*iii*, *kkk*)

Specifies the deadlock detection intervals used by SMSVSAM.

iii 1 to 4 digit numeric value in the range 1-9999 that specifies the length in seconds of the local deadlock detection interval. The default for *iii* is 15 seconds.
k.k.k. 1 to 4 digit numeric value in the range 1-9999 that specifies the number of local deadlock cycles that must expire before global deadlock detection is performed. The default for `k.k.k.` is 4 local cycles.

LRUCYCLES(cycles)
Specifies the maximum number of times (5 to 240) that the buffer management facility (BMF) least recently used (LRU) routine will pass over inactive buffers before making them available for reuse. This parameter sets the maximum value, and BMF dynamically changes the actual number of times that it passes over inactive buffers.

LRUCYCLES is related to LRUTIME. A change to the LRUCYCLES value introduced by this parameter will take effect on the next execution of the LRU routine. Most installations should use the default value. In some very high data rate situations you may want to tune this value. You should monitor the SMF 42 type 1 record to determine the amount of caching activity in the BMF data space. See [z/OS MVS System Management Facilities (SMF)](https://www.ibm.com/support/knowledgecenter/STXKQY_2.4.0/com.ibm.zos.v2r3.lm1015.text_1_14.1041.14002.1_4.html) for information about the buffer management statistics recorded in SMF record type 42. The default value is 240 BMF LRU cycles.

LRUTIME(seconds)
Specifies the number of seconds (5 to 60) that the buffer management facility (BMF) will wait between calls to the BMF data space cache LRU (least recently used) routine. That routine releases inactive buffers in the BMF data space that are used to cache PDSE (partitioned data set extended) directory data.

LRUTIME is related to LRUCYCLES. A change to the LRUTIME value introduced by this parameter will take effect on the next execution of the LRU routine. Most installations should use the default value. In some very high data rate situations you may want to tune this value. You should monitor the SMF 42 type 1 record to determine the amount of caching activity in the BMF data space. See [z/OS MVS System Management Facilities (SMF)](https://www.ibm.com/support/knowledgecenter/STXKQY_2.4.0/com.ibm.zos.v2r3.lm1015.text_1_14.1041.14002.1_4.html) for information about the buffer management statistics recorded in SMF record type 42. The default value is 15 seconds.

SMF_TIME(YES or NO)
When SMF_TIME(YES) is specified, DFSMS type 42 SMF records are created at the SMF interval time. This parameter overrides all other DFSMS interval time parameters which relate to SMF type 42 records. SMF_TIME(YES) applies to SMF 42 subtypes 1, 2, 15, 16, 17 and 18.

SMF_TIME(NO) specifies that SMF records will not be synchronized at the SMF interval time.

CF_TIME(nnn or 3600)
Specifies the interval (in seconds) for recording SMF record 42 (subtypes 15, 16, 17, 18) for the SMSVSAM address space’s use of the coupling facility.

If you record these subtypes, you can use CF_TIME to synchronize SMF type 42 data with SMF and RMF data intervals.

Valid values are from 1 to 86399 (23 hours, 59 minutes, 59 seconds). The default is 3600 (one hour).

The SMF_TIME parameter, if set to YES, overrides the CF_TIME parameter.

CICSVR Option Parameters
CICSVR_INIT(YES or NO)
When CICSVR_INIT(YES) is specified, the CICSVR address space will be
started as part of system initialization or by the operator issuing V
SMS,CICSVR,ACTIVE command.

CICSVR_DSNAME_PREFIX(user_prefix)
Defines a prefix for all CICSVR data set names, excluding RCDS data sets,
DWWCON1, DWWCON2, and DWWCOM3 that are created by CICSVR. This
allows users to change the naming convention used by CICSVR.

CICSVR_RCDS_PREFIX(cicsvr_rcds_prefix)
Allows operators to change the prefix of CICSVR Recovery Control Data Set
(RCDS) names from the console without changing the active IGDSMSxx
parmlib member.

CICSVR_ZZVALUE_PARM(zzvalue_string)
Allows operators to change ZZVALUE strings from the operator console without
changing the active IGDSMSxx parmlib member.

Trace and VOLSELMSG Option Parameters

TRACE (ON or OFF)
SMS tracing is to be turned on or off.

The following parameters specify the size of the trace table, the type of errors
to be traced, the jobname or ASID to be traced, and the particular events that
are to be selected (turned on) for tracing or deselected (turned off). The
TRACE, SELECT, and DESELECT parameters apply only to the system on
which the operator issues the SETSMS command.

Default values, if no trace values are specified in SYS1.PARMLIB, consist of
TRACE (ON), SIZE (128K), TYPE (ERROR), JOBNAME (*), which means all
jobs, ASID (*), which means all address spaces, and SELECT (ALL). Final
values consist of the sum of the defaults (where not overridden), the values in
SYS1.PARMLIB, and those added by SETSMS SELECT or removed by
SETSMS DESELECT.

SIZE(nnnnn, or nnnnnK, or nnnM)
Specifies the size of the trace table in kilobytes. If you omit K or M, the default
unit is K. The default value is 128K. The maximum is 255000K or 255M. This
value is rounded up to the nearest 4K.

Note: If you specify a size that is different from the previously-used value, a
new trace data area is built, the old trace data area is deleted, and no
trace data is saved. If, however, the size you specify is the same as the
previously-used size, no new trace data area is built. If you specify zero,
the existing trace data area is deleted without being replaced.

TYPE(ERROR or ALL)
Specifies how you want to trace events and issue volume selection analysis
messages.

ERROR
Specify ERROR to trace error events (TRACE(ON)) and issue volume
selection analysis messages (VOLSELMSG(ON)) on failure allocations. The
default value from SMS initialization is ERROR.

ALL
Specify ALL to trace all events (TRACE(ON)) and issue volume selection
analysis messages (VOLSELMSG(ON)) on all allocations.
USEEAV (YES|NO)
Specifies, at the system level, whether SMS can select an Extended Address Volume during volume selection processing. This check applies to new allocations and when extending data sets to a new volume.

YES
This means that Extended Address Volumes can be used to allocate new data sets or to extend existing data sets to new volumes.

NO
This is the default and means that SMS does not select any Extended Address Volumes during volume selection. Note that data sets might still exist on Extended Address Volumes in either the track-managed or cylinder-managed space of the volume.

When SMS is not active in the system, USEEAV is not available and the installation must use alternate means to control the usage of Extended Address Volumes.

VOLSELMSG(ON|OFF,0|nnnnn|ALL)
Allows you to control volume selection analysis messages issued when you create or extend a SMS-managed data set to a new volume. These analysis messages are written to the hardcopy log and the joblog.

ON|OFF
Controls whether or not SMS volume selection analysis messages are being issued. The default is OFF.

0|nnnnn|ALL
Controls whether or not detailed analysis messages are being issued and the number of volumes to be included in them. The default is 0.

0
Only summarized analysis messages are issued.

nnnnn
Indicate the number of volumes to be included in the message with a range of 0 to 65535.

ALL
Indicates that all volumes used for volume selection will be included in detailed analysis messages.

If you specify VOLSELMSG(nnnnn|ALL), with nnnnn having a value greater then 0 along with TYPE(ALL), you must also specify one of the following parameters to limit the number of detailed analysis messages issued:
• JOBNAMEN
• ASID
• STEPNAME
• DSNAMEN

When all volumes are to be included, volumes are listed by storage group. If only a subset of volumes is to be included, volumes are listed in volume selection preference order with no association to storage group.

The system can issue an excessive number of analysis messages to the spool when the following conditions occur:
• The job or address space creates or extends numerous SMS-managed data sets
• Many volumes are to be included in the analysis messages
SETSMS Command

JOBNAME *(jobname or *)

Specify JOBNAME to limit tracing (TRACE(ON)), issue volume selection messages (VOLSELMSG(ON)), or both, to particular jobs. Specify *, to select all jobs. If you specify JOBNAME, omit ASID.

ASID *(asid or *)

Specify ASID to limit tracing (TRACE(ON)) and/or issue volume selection messages (VOLSELMSG(ON)) to particular address spaces. The default is to permit them for all address spaces. Specify *, to select all address spaces. If you specify ASID, omit JOBNAME.

STEPNAME *(stepname|*)

Limits the number of issued volume selection analysis messages activated by VOLSEGMSG(ON) to either a certain stepname or all stepnames. The default is to issue volume selection analysis messages on all stepnames.

DSNAME *(dsname|*)

Limits the number of issued volume selection analysis messages activated by VOLSEGMSG(ON) to either a certain data set or all data set names. The default is to issue volume selection analysis messages on all data set names. For a VSAM data set, this is the cluster's entry name.

SELECT *(option[,option]...*)

SMS is to add one or more specific events to those that are to be traced. If tracing had been turned off for these events, SMS turns it back on for the specified events. The default is SELECT(ALL). See "Individual Trace Options" for a complete list of the options.

SELECT only adds events; it does not delete any events. Use DESELECT to turn off one or more events.

Both SELECT and DESELECT affect only the system on which you issue the SETSMS command.

DESELECT *(option[,option]...*)

SMS is to delete one or more events from the list of traced events. There is no default for DESELECT. See "Individual Trace Options" for a complete list of the options.

Individual Trace Options

The individual trace options and associated events that you can specify with SELECT or DESELECT are:

- **MODULE**
 - Module entry or exit
- **SMSSJF**
 - Storage management subsystem/scheduler JCL facility interfaces
- **SMSSSI**
 - Storage management subsystem/SSI interfaces
- **ACSINT**
 - Automatic class selection services interfaces
- **OPCMD**
 - Operator commands
- **CONFC**
 - Configuration changes
- **CDSC**
 - Control data set changes
- **CONF$$**
 - Configuration services
- **MSG**
 - Message services
- **DCF**
 - Trace SMS read statistics, Cache maintenance and attribute selection
- **DPN**
 - IDAX device pool
- **ERR**
 - Error recovery and recording services
- **CONFR**
 - Return data from an active configuration
- **CONFA**
 - Activate a new configuration
- **ACSPRO**
 - Perform automatic class selection processing
- **IDAX**
 - SMS interpreter or dynamic allocation
- **DISP**
 - DISP processing exit
SETSMS Command

CATG SMS catalog services
VOLREF SMS VOLREF services
SCHEDP Scheduling services (pre-locate catalog orientation)
SCHEDS Scheduling services (system-select)
TVR Tape volume record update SSI
VTOCL VTOC or data set services (allocate existing data set)
VTOCD VTOC or data set services (delete existing data set)
VTOCR VTOC or data set services (rename existing data set)
VTOCC VTOC or data set services (create new data set)
VTOCA VTOC or data set services (add a volume to a data set)
RCD SMS recording services or SMS fast VTOC/VVDS access
DSTACK Trace execution of the SMS data set stacking SSI
UAFF Unit affinity exit SSI
DEBUG Debug service
ALL All of the options

Examples

Example 1

You find that a system with higher I/O capability is locking out slower systems from accessing the communications data set. After checking the value of the interval, currently set at 15 seconds, you decide the interval should be 20 seconds. To make this change, you enter:

SETSMS INTERVAL(020)

Example 2

Assume that on system MVS3 you want to set the SMS trace table size to 16KB, deselect all trace options, then select three options. To make these changes, enter:

SETSMS DESELECT(ALL),TRACE(ON),SIZE(16K)
SETSMS SELECT(ACSINT,CDSC,CONF)C

To determine the current tracing status on MVS3, enter:

DISPLAY SMS,TRACE

The following display would show the trace table size of 16KB and the ON/OFF status of each of the individual trace entries. In this example only the ACS, CDS, and CONF options would show the ON status.

10.24.04 DISPLAY SMS
IGD002I 11:08:57 DISPLAY SMS 056
TRACE = ON SIZE = 128K TYPE = ERROR
JOBNAME = * ASID = *
TRACING EVENTS:
MODULE = ON SMSSJF = ON SMSSSI = ON ACSINT = ON
OPCMD = ON CONF = ON CDSC = ON CONFS = ON
MSG = ON ERR = ON CONFR = ON CONFA = ON
ACSPRO = ON IDAX = ON DISP = ON CATG = ON
VOLREF = ON SCHEDP = ON SCHEDS = ON VTOCL = ONVTOCD = ON
VTOCR = ON VTOCC = ON VTOCA = ON
RCD = ON DCF = ON DPN = ON TVR = ON
DSTACK = ON UAFF = ON
VOLSELM = (OFF,0) TYPE = ERROR JOBNAME = *
ASID = * STEPNAME = *
DSNAME = *

Example 3
You can use the SETSMS command to turn on tracing for SMS data set stacking and other events:

```
SETSMS SELECT(MODULE,DSTACK,VTOCC)
```

Example 4

You can use the SETSMS command to change the activity keypoint value.

```
SETSMS AKP(300)
```

This results in the following output:

```
SETSMS AKP(300)
IGW467I DFSMS TVS ACTIVITY KEY POINT PARMLIB VALUE 959
CHANGED ON SYSTEM: SYSTEM1
OLD VALUE: 200
NEW VALUE: 300
```

Example 5

You can use the SETSMS command to change the quiesce timeout value.

```
SETSMS QTIMEOUT(500)
```

This results in the following output:

```
SETSMS QTIMEOUT(500)
IGW467I DFSMS TVS QTIMEOUT PARMLIB VALUE 962
CHANGED ON SYSTEM: SYSTEM1
OLD VALUE: 400 1
NEW VALUE: 500 1
```

Example 6

You can use the SETSMS command to change the MAXLOCKS maximum and increment values.

```
SETSMS MAXLOCKS(200,100)
```

This results in the following output:

```
SETSMS MAXLOCKS(200,100)
IGW467I DFSMS TVS MAXLOCKS PARMLIB VALUE 965
CHANGED ON SYSTEM: SYSTEM1
OLD VALUE: 100 50 1
NEW VALUE: 200 100 1
```

These MAXLOCKS values are for example only. In practice, you might want to set the minimum and increment values higher to avoid generating too many messages.

Example 7

You can use the SETSMS command to control how to issue the volume selection analysis messages. Assume you want to issue detailed analysis messages for all volumes on failure allocations, enter:

```
SETSMS VOLSELMSG(ON,ALL) TYPE(ERROR)
```

After the processing completes, check the parameter settings, enter:

```
DISPLAY SMS,VOLSELMSG
```

This results the following report:
Note that because the TYPE parameter value is shared by SMS trace facility and volume selection analysis messages, changing it for volume selection analysis messages will therefore affect SMS tracing.
Use the SETSSI to add, activate, or deactivate a subsystem dynamically. You can issue the SETSSI command from one of the following:

- A console that has master authority
- A console to which an operator with sufficient RACF authority has logged on.

Each subsystem determines whether it can process the SETSSI command by issuing the options request of the IEFSSI macro. See z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG for more information about the IEFSSI macro.

If you issue a SETSSI ACTIVATE or DEACTIVATE command for a subsystem that does not allow SETSSI commands, the system ignores the command and issues an error message to the console.

You can use the SETSSI ADD command to define dynamically any subsystem except the primary subsystem.

Attention: Once a subsystem name is defined to the system, any attempt to start that subsystem (or any started task with the same name as that subsystem) via a START command which does not explicitly specify SUB=JES2 (or JES3) will result in that subsystem or started task being started under the Master subsystem rather than under the Job Entry subsystem. Then, because the only procedure libraries available to the Master subsystem are those specified in the MSTJCLxx’s IEFPDSI data set, any procedures being started that are defined in the Job Entry subsystem’s PROC00 data set but not in the MSTJCLxx’s IEFPDSI data set will be unavailable and will therefore not be found; the system will issue message IEFC612I.

Syntax

The complete syntax for the SETSSI command is:

```
SETSSI (ADD, [SUBNAME|SUB|S]=subname
            [, [CONSNAME|C]=consname]
            [, [INITRTN|I]=initrtn[, [INITPARM|P]=initparm]] )
{DEACTIVATE|DEACT}, [SUBNAME|SUB|S]=subname
{ACTIVATE|ACT}, [SUBNAME|SUB|S]=subname
```

Parameters

The parameters are:

ADD

Directs that a subsystem be added dynamically.

Note that with the exception mentioned in the next paragraph, you cannot specify in a SETSSI ADD command a subsystem initialization routine in a library added in a new LNKLST that was activated after IPL. A job that is already running does not normally use a new LNKLST. Because the SETSSI command runs in the MASTER address space, which started at IPL, it does not normally use a new LNKLST.
There is an exception to the above. You could use a SETPROG LNKLST,UPDATE,ASID=1 command to update the LNKLST prior to issuing the SETSSI ADD command. However, you should use that SETPROG command with caution, because you would be depending on it to complete execution prior to the running job's accessing the updated LNKLST.

DEACTIVATE | DEACT
Specifies that a subsystem is to be dynamically deactivated. DEACTIVATE stops any new requests from being passed to the subsystem's function routines. Function requests that are already processing are allowed to complete. Note that a subsystem is still defined to the system, even if you issued the DEACTIVATE parameter.

Only subsystems with SSI-managed vector tables can be reactivated with the SETSSI command. SSI-managed vector tables are vector tables that were created with the IEFSSVT macro. See z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG for more information on the IEFSSVT macro.

Note: You can only issue the DEACTIVATE command if the target subsystem is dynamic and permits the use of the SETSSI command.

ACTIVATE | ACT
Specifies that a subsystem is to be dynamically activated. You can also use the ACTIVATE command to reactivate a previously deactivated subsystem provided a vector table managed by the SSI is available.

Note: You can only issue the ACTIVATE command if the target subsystem is dynamic and permits the use of the SETSSI command.

SUBNAME | SUB | S=subname
Specifies the subsystem name to be dynamically added, deactivated or activated.

Subsystem names that are not enclosed in apostrophes may contain any character that is valid for operator commands, with the following exceptions:
• , comma
• (left parenthesis
•) right parenthesis
• / slash
• = equals sign

Subsystem names containing these characters must be enclosed in apostrophes.

Subsystem names that contain any character that is not valid for operator commands must be enclosed in apostrophes. See Chapter 4, “MVS System Commands Reference,” on page 4-1 for a list of characters supported by commands.

Note that the SUBNAME parameter applies to the ADD command, DEACTIVATE command, and the ACTIVATE command. For the SETSSI ADD command, note the following when selecting subsystem names:
• If you specify a subsystem name with the characters ‘*’ and ‘?’, the DISPLAY SSI command or the IEFSSI REQUEST=QUERY service specifying that subsystem name may return information about subsystems other than this one. The ‘*’ and ‘?’ are treated as wildcard characters for these services.
SETSSI Command

- If you specify a subsystem name of ‘IPRI’, the DISPLAY SSI command or the IEFSSI REQUEST=QUERY service specifying that subsystem name returns information about the primary subsystem, even though there is already a subsystem named ‘IPRI’.

CONSNAME | C=consname
Specifies the name of the console to which SSI issued messages are routed. CONSNAME is an optional parameter. It can be 2- to 8-bytes long and is also passed to the routine named on the INITRTN keyword (if specified).

INITRTN | I=initrtn
Specifies the name of the subsystem initialization routine. INITRTN is an optional parameter. It can consist of at most eight characters, beginning with an alphabetic or national ($, #, or @) character. The remaining characters can be either alphanumeric or national ($, #, or @). The routine receives control in supervisor state key 0. It must be a program that is accessible through a LINKLIB or the LPALIB.

INITPARM | P=initparm
Specifies the input parameter that is passed to the subsystem initialization routine. INITPARM is an optional parameter. It can be no more than 60 characters long. If you use delimiters such as blanks, commas, apostrophes, equal signs, or parentheses or a ‘/’ in the parameter data, you must enclose the entire field in apostrophes. You must code two consecutive apostrophes to pass an apostrophe as part of the parameter data.

Note: The INITPARM parameter must be specified with the INITRTN parameter. If the INITRTN is not specified, the system issues a syntax error message and the command is not processed.

Notes:
1. In the command invocation, anything after the first blank is treated as a comment.
2. The command invocation cannot be more than 126 characters long. You may need to use the 1-character keyword abbreviations to keep the length of the command invocation within this limit.

Example 1

To define the ‘CAW’ subsystem to the system, call its initialization routine and pass the specified parameter to the initialization routine, enter:
SETSSI ADD, SUBNAME=CAW, INITRTN=CAWINIT, INITPARM=HELLO

Example 2

To temporarily stop new function requests to the subsystem to see if one of the function routines in the ‘CAW’ subsystem is causing abends, enter:
SETSSI DEACTIVATE, SUBNAME=CAW
SETUNI Command

Use the SETUNI command to dynamically set the Unicode environment from the console. Use the SETUNI command to add, delete, and replace tables in storage.

Syntax

The complete syntax for the SETUNI command is:

```
SETUNI {ADD[,FROM(xxxxx),TO(yyyyy),[TECHNIQUE|TECH(zzzzzzzzz)]
[,PAGEFIX(YES|NO)],[DSNAME|DSN(dsname)],[VOLSER|VOL(volser)]
[,CASE([LOCAL|SPECIAL|NORMAL]),[UNIVER(univer)],[PAGEFIX(YES|NO)]
[,DSNAME|DSN(dsname)],[VOLSER|VOL(volser)]
[,NORMALIZE|NORM(normver)],[PAGEFIX(YES|NO)],[DSNAME|DSN(dsname)]
[,VOLSER|VOL(volser)]
[,COLLATE|COLL([UCAver]),[PAGEFIX(YES|NO)],[DSNAME|DSN(dsname)]
[,VOLSER|VOL(volser)]
[,COLRULES|COLRULES(dsname)],[VOLUME|VOL(volser)]
[,IMAGE(zzzzzzzz)],[PAGEFIX(YES|NO)],[DSNAME|DSN(dsname)]
[,VOLSER|VOL(volser)]
[,STRPROFILE=NAME,[PAGEFIX(YES|NO)],[DSNAME|DSN(dsname)]
[,VOLSER|VOL(volser)]}
{DELETE[,FROM(xxxxx),TO(yyyyy),[TECHNIQUE|TECH(zzzzzzzzz)],FORCE(YES)]
[,CASE([LOCAL|SPECIAL|NORMAL]),[UNIVER(univer)],FORCE(YES)]
[,NORMALIZE|NORM(normver)],FORCE(YES)]
[,COLLATE|COLL([UCAver]),[COLRULES|COLRULES(dsname)]],FORCE(YES)]
{REPLACE[,FROM(xxxxx),TO(yyyyy),[TECHNIQUE|TECH(zzzzzzzzz)]
[,PAGEFIX(YES|NO)],[DSNAME|DSN(dsname)]
[,FREE(YES,FORCE)]
[,CASE([LOCAL|SPECIAL|NORMAL]),[UNIVER(univer)],[PAGEFIX(YES|NO)]
[,DSNAME|DSN(dsname)],FREE(YES,FORCE)]
[,NORMALIZE|NORM(normver)],[PAGEFIX(YES|NO)]
[,DSNAME|DSN(dsname)],[VOLSER|VOL(volser)]
[,FREE(YES,FORCE)]
[,COLLATE|COLL([UCAver]],[PAGEFIX(YES|NO)]
[,DSNAME|DSN(dsname)],[VOLSER|VOL(volser)]
[,COLRULES|COLRULES(dsname)],[VOLUME|VOL(volser)]
[,FREE(YES,FORCE)]
{REALSTORAGE ([I]nnnnnn[KB]|G])}
{DELETE INACTIVE}
{DELETE ALL,FORCE(YES)}
```

Parameters

The parameters are:

```
ADD,FROM(xxxxx),TO(yyyyy),[TECHNIQUE | TECH(zzzzzzzzz)]
[,PAGEFIX(YES|NO)],[DSNAME | DSN(dsname)],[VOLSER | VOL(volser)]
```

Adds specific tables to the Unicode environment.

```
xxxxx
```

Specifies the source CCSID of the character conversion table to be added. xxxxx is a five-character name that identifies the table.
SETUNI Command

yyyy
Specifies the target CCSID of the character conversion table to be added.
yyyy is a five-character name that identifies the table.

zzzzzzzz
Specifies the technique search order for the character conversion table to be added. **zzzzzzzz** is an eight-character alphanumeric field. Possible values are one or more of the following:
- R - Roundtrip conversion
- E - Enforced Subset conversion
- C - Customized conversion
- L - Language Environment-Behavior conversion
- M - Modified Language Environment-Behavior conversion
- 0-9 - User-defined conversions

Note: If CCSIDs from-CCSID or to-CCSID involves a mixed conversion, the result varies for different orders of the techniques in the **zzzzzzzz** field.

If CCSIDs from-CCSID or to-CCSID involves a direct conversion, the result is the same for different orders of the techniques in the **zzzzzzzz** field.

dsname
Specifies the name of the data set that contains the specific tables.

The specified **dsname** must have similar characteristics as the SYS1.SCUNTBL data set provided. The size of the data set can be unequal.

If no **dsname** is specified, SYS1.SCUNTBL is used as the default.

volser
Specifies the volume serial number of the device on which the tables are to be loaded. **volser** can be from one- to six-characters.

ADD,CASE([LOCAL | SPECIAL | NORMAL])[,UNIVER(univer)][,PAGEFIX(YES|NO)][,DSNAME | DSN(dsname)][,VOLSER | VOL(volser)]
Adds the character case conversion tables to the Unicode environment. Local, Special, and Normal are optional and can be defined in the same statement only once.

univer
Specifies the Unicode standard version to be loaded. Valid values are:
- UNI300
- UNI301
- UNI320
- UNI401
- UNI410
- UNI500

dsname
Specifies the name of the data set that contains the specific tables.

The specified **dsname** must have similar characteristics as the SYS1.SCUNTBL data set provided. The size of the data set can be unequal.
If no `dsname` is specified, SYS1.SCUNTBL is used as the default.

`volser`
Specifies the volume serial number of the device on which the tables are to be loaded. `volser` can be from one- to six-characters.

`ADD,NORMALIZE | NORM ([normver])[,PAGEFIX(YES|NO)] [,DSNAME | DSN(dsname)] [,VOLSER | VOL(volser)]`
Adds the normalization tables to the Unicode environment.

`normver`
Specifies the Unicode standard table version to be loaded. Possible values are one of the following:
- `UNI301`
- `UNI320`
- `UNI401`
- `UNI410`

`dsname`
Specifies the name of the data set that contains the specific tables.

The specified `dsname` must have similar characteristics as the SYS1.SCUNTBL data set provided. The size of the data set can be unequal.

If no `dsname` is specified, SYS1.SCUNTBL is used as the default.

`volser`
Specifies the volume serial number of the device on which the tables are to be loaded. `volser` can be from one- to six-characters.

`ADD,COLLATE | COLL([UCAver])[,PAGEFIX(YES|NO)] [,DSNAME | DSN(dsname)] [,VOLSER | VOL(volser)] [,LOCALE(locale),[DSNAME(dsname)]] [,VOLUME|VOL(volser)]) [,COLRULES(colrules),[DSNAME(dsname)]]`
Adds the collation tables to the Unicode environment.

`UCAver`
Specifies the Unicode Collation Algorithm (UCA) versions. Possible values are one or more of the following:
- `UCA301`
- `UCA400R1`
- `UCA410`

`dsname`
Specifies the name of the data set that contains the specific tables.

The specified `dsname` must have similar characteristics as the SYS1.SCUNTBL data set provided. The size of the data set can be unequal.

If no `dsname` is specified, SYS1.SCUNTBL is used as the default.

`volser`
Specifies the volume serial number of the device on which the tables are to be loaded. `volser` can be from one- to six-characters.

`locale`
Specifies the local member name where collation rules are to be loaded.
SETUNI Command

colrules
Specifies the User Collation Rules (UCR) member name where collation rules are to be loaded.

ADD,IMAGE=zzzzzzzz[,PAGEFIX(YES|NO)][,DSNAME | DSN(dsname)][,VOLSER | VOL(volser)]
Adds an image to the Unicode environment, whether the image is a member of the parmlib concatenation. If the image specified already exists in storage, the table is not added.

zzzzzzzz
Specifies the name of the conversion image to be added. The image member specified must be present in SYS1.PARMLIB or in another data set in the logical parmlib concatenation. zzzzzzzzz is an eight-character alphanumeric field.

Value Range: any valid z/OS member name

Example: IMAGE=CUNUNI01

Note: When an image is loaded with the IMAGE statement, the existing table in the Unicode environment are not replaced; only those tables that are not currently available in the Unicode environment are loaded from the Image.

dsname
Specifies the name of the data set that contains the specific tables.

The specified dsname must have similar characteristics as the SYS1.SCUNTBL data set provided. The size of the data set can be unequal.

If no dsname is specified, SYS1.SCUNTBL is used as the default.

volser
Specifies the volume serial number of the device on which the tables are to be loaded. volser can be from one- to six-characters.

ADD,STRPROFILE=NAME[,PAGEFIX(YES|NO)][,DSNAME | DSN(dsname)][,VOLSER | VOL(volser)]
Adds the profile to the Unicode environment.

dsname
Specifies the name of the data set that contains the specific tables.

The specified dsname must have similar characteristics as the SYS1.SCUNTBL data set provided. The size of the data set can be unequal.

If no dsname is specified, SYS1.SCUNTBL is used as the default.

volser
Specifies the volume serial number of the device on which the tables are to be loaded. volser can be from one- to six-characters.

DELETE,FROM(xxxxx),TO(yyyyy)[,TECHNIQUE | TECH(zzzzzzzz)], FORCE(YES)
Remove specific tables from the Unicode environment.

xxxxx
Specifies the source CCSID of the character conversion table to be removed. xxxxx is a five-character name that identifies the table to be removed.
SETUNI Command

yyyy
Specifies the target CCSID of the character conversion table to be removed. *yyyyy* is a five-character name that identifies the table to be removed.

zzzzzz
Specifies the technique search order for the character conversion table to be removed. *zzzzzzzz* is an eight-character alphanumeric field. Possible values are one or more of the following:
- R - Roundtrip conversion
- E - Enforced Subset conversion
- C - Customized conversion
- L - Language Environment-Behavior conversion
- M - Modified Language Environment-Behavior conversion
- 0-9 - User-defined conversions

If no technique search order is specified, the default is RECLM.

Note: If CCSIDs from-CCSID or to-CCSID involves a mixed conversion, the result varies for different orders of the techniques in the *zzzzzzzz* field.

If CCSIDs from-CCSID or to-CCSID involves a direct conversion, the result is the same for different orders of the techniques in the *zzzzzzzz* field.

FORCE(YES)
Specifies that the system will not check whether applications are currently using the tables. The storage occupied by the tables will be returned to the system.

FORCE(YES) is a required parameter.

DELETE,CASE([LOCAL | SPECIAL | NORMAL]),[UNIVER(univer)],FORCE(YES)
Removes the character case conversion tables from the Unicode environment. Local, Special, and Normal are optional and can be defined in the same statement only once.

univer
Specifies the Unicode standard version to be loaded. Valid values are:
- UNI300
- UNI301
- UNI320
- UNI401
- UNI410
- UNI500

FORCE(YES)
Specifies that the system will not check whether applications are currently using the tables. The storage occupied by the tables will be returned to the system.

FORCE(YES) is a required parameter.

DELETE,NORMALIZE | NORM([normver]),FORCE(YES)
Removes the normalization tables from the Unicode environment.
SETUNI Command

`normver`
Specifies the Unicode standard table version to be deleted. Possible values are one of the following:

- UNI301
- UNI320
- UNI401
- UNI410

`FORCE(YES)`
Specifies that the system will not check whether applications are currently using the tables. The storage occupied by the tables will be returned to the system.

`FORCE(YES)` is a required parameter.

`DELETE,COLLATE`
`COLL([UCAver])[[[locale]][,[COLRULES(colrules)]],FORCE(YES)]`
Removes the collation tables from the Unicode environment.

`UCAver`
Specifies the Unicode Collation Algorithm (UCA) versions. Possible values are one or more of the following:

- UCA301
- UCA400R1
- UCA410

`locale`
Specifies the local member name where collation rules are to be loaded.

`colrules`
Specifies the User Collation Rules (UCR) member name where collation rules are to be loaded.

`FORCE(YES)`
Specifies that the system does not check whether applications are currently using the tables. The storage occupied by the tables is returned to the system.

`FORCE(YES)` is a required parameter.

`DELETE,STRPROFILE=NAME[,DSNAME|DSN(dsname)][,VOLSER | VOL(volser)]`
Removes the profile from the Unicode environment.

`dsname`
Specifies the name of the data set that contains the specific tables.

The specified `dsname` must have similar characteristics as the SYS1.SCUNTBL data set provided. The size of the data set can be unequal.

If no `dsname` is specified, SYS1.SCUNTBL is used as the default.

`volser`
Specifies the volume serial number of the device on which the tables are to be loaded. `volser` can be from one- to six-characters.

`REPLACE,FROM(xxxxx),TO/yyyyy[,TECHNIQUE | TECH(zzzzzzzz)]
[,PAGEFIX(YES|NO)][,DSNAME | DSN(dsname)][,VOLSER | VOL(volser)][,FREE(NO|YES|FORCE)]`
Replaces specific tables that might be currently in the Unicode environment. If a table to be replaced is not in storage, the system adds the table.
xxxx
Specifications the source CCSID of the conversion table to be replaced. xxxxx is a five-character name that identifies the conversion table.

yyyy
Specifies the target CCSID of the conversion table to be replaced. yyyy is a five-character name that identifies the conversion table.

zzzzzzzz
Specifies the technique search order for the conversion table to be replaced. zzzzzzzzz is an eight-character alphanumeric field. Possible values are one or more of the following:
• R - Roundtrip conversion
• E - Enforced Subset conversion
• C - Customized conversion
• L - Language Environment-Behavior conversion
• M - Modified Language Environment-Behavior conversion
• 0-9 - User-defined conversions

If no technique search order is specified, the default is RECLM.

Note: If CCSIDs from-CCSID or to-CCSID involves a mixed conversion, the result varies for different orders of the techniques in the zzzzzzzzz field.

If CCSIDs from-CCSID or to-CCSID involves a direct conversion, the result is the same for different orders of the techniques in the zzzzzzzzz field.

dsnname
Specifies the name of the data set that contains the specific tables.

The specified dsname must have similar characteristics as the SYS1.SCUNTBL data set provided. The size of the data set can be unequal.

If no dsname is specified, SYS1.SCUNTBL is used as the default.

volsen
Specifies the volume serial number of the device on which the tables are to be loaded. volsen can be from one- to six-characters.

FREE
Specifies whether the storage associated with the table is to be released.

NO Unicode will not release the storage associated with the table.

YES,FORCE Release the storage associated with the table. The system does not check whether applications are currently using the tables.

When FREE is not specified, the default is NO.

REPLACE,CASE([LOCAL | SPECIAL | NORMAL]),[UNIVER(univer)],[PAGEFIX(YES|NO)],[DSNAME | DSN(dsname)],[VOLSER | VOL(volsen)],[FREE(NO | YES,FORCE)]
Replaces the character case conversion tables currently in the Unicode environment. Local, Special, and Normal are optional and can be defined in the same statement only once.

univer
Specifies the Unicode standard version to be loaded. Valid values are:
SETUNI Command

- UNI300
- UNI301
- UNI320
- UNI401
- UNI410
- UNI500

dsname
Specifies the name of the data set that contains the specific tables.
The specified dsname must have similar characteristics as the SYS1.SCUNTBL data set provided. The size of the data set can be unequal.
If no dsname is specified, SYS1.SCUNTBL is used as the default.

volser
Specifies the volume serial number of the device on which the tables are to be loaded. volser can be from one- to six-characters.

FREE
Specifies whether the storage associated with the table is to be released.
NO Unicode will not release the storage associated with the table.
YES,FORCE Release the storage associated with the table. The system does not check whether applications are currently using the tables.

When FREE is not specified, the default is NO.

REPLACE,NORMALIZE,NORM([normver]),PAGEFIX(YES.NO),DSNAME,DSN(dsname),VOLSER,VOL(volser),FREE(NO,YES,FORCE)
Replaces the normalization tables currently in the Unicode environment.

normver
Specifies the Unicode standard table version to be replaced. Possible values are one of the following:
- UNI301
- UNI320
- UNI401
- UNI410

dsname
Specifies the name of the data set that contains the specific tables.
The specified dsname must have similar characteristics as the SYS1.SCUNTBL data set provided. The size of the data set can be unequal.
If no dsname is specified, SYS1.SCUNTBL is used as the default.

volser
Specifies the volume serial number of the device on which the tables are to be loaded. volser can be from one- to six-characters.

FREE
Specifies whether the storage associated with the table is to be released.
NO Unicode will not release the storage associated with the table.
YES,FORCE
 Release the storage associated with the table.

When FREE is not specified, the default is NO.

REPLACE,COLLATE=COLL([UCAver],[PAGEFIX=YES|NO]) [,DSNAME | DSN(dsname)] [,VOLSER | VOL(volser)] [,LOCALE(locale)][,DSNAME(dsname)] [,VOLUME|VOL(volser)] | [,COLRULES(colrules),DSNAME(dsname)] [,VOLUME|VOL(volser)] [,FREE(NO|YES,FORCE)]
Replaces the collation tables currently in the Unicode environment.

UCAver
 Specifies the Unicode Collation Algorithm (UCA) versions. Possible values are one or more of the following:
 - UCA301
 - UCA400R1
 - UCA410

dsnamename
 Specifies the name of the data set that contains the specific tables.
 The specified dsname must have similar characteristics as the SYS1.SCUNTBL data set provided. The size of the data set can be unequal.
 If no dsname is specified, SYS1.SCUNTBL is used as the default.

volser
 Specifies the volume serial number of the device on which the tables are to be loaded. volser can be from one- to six-characters.

locale
 Specifies the local member name where collation rules are to be loaded.

colrules
 Specifies the User Collation Rules (UCR) member name where collation rules are to be loaded.

FREE
 Specifies whether the storage associated with the table is to be released.
 NO Unicode will not release the storage associated with the table.
 YES,FORCE Release the storage associated with the table.

When FREE is not specified, the default is NO.

REPLACE,STRPROFILE=NAME[,PAGEFIX=YES|NO][,DSNAME | DSN(dsname)][,VOLSER | VOL(volser)]
Replaces the current profile in the Unicode environment.

dsnamename
 Specifies the name of the data set that contains the specific tables.
 The specified dsname must have similar characteristics as the SYS1.SCUNTBL data set provided. The size of the data set can be unequal.
 If no dsname is specified, SYS1.SCUNTBL is used as the default.
SETUNI Command

volser

Specifies the volume serial number of the device on which the tables are to be loaded. *volser* can be from one- to six-characters.

**REALSTORAGE nnnnnn[K|M|G] [:]

Defines the upper storage limit, in pages, to be used by the conversion environment. For information about the amount of storage required for a conversion environment, see [z/OS Support for Unicode: Using Unicode Services](#).

Value Range: 0 to 524287.

Example:

```
REALSTORAGE 0; /* no explicit limit */
REALSTORAGE 12800; /* 50 MB limit */
```

Notes:

1. The request to load a new conversion environment will be rejected when the value of the REALSTORAGE keyword is lower than the amount of storage needed.
2. The selection of '0' results in no limit (=524287).

DELETE mode

Deletes partially or completely the Unicode environment.

INACTIVE

Deletes all the unreferenced control entries within the current Unicode environment and reorganizes the Unicode environment to eliminate storage gaps in it.

The string literal INACTIVE must be specified.

Note: Unreferenced control entries are entities that contain data of the current supported tables and can be obtained while replacing or deleting tables from the Unicode environment.

ALL

Deletes the whole Unicode environment removing all control structures and tables from the environment.

Note: FORCE(YES) is required for this keyword.

FORCE(YES)

Specifies that the system will not check whether applications are currently using the tables. The storage occupied by the tables will be returned to the system.

FORCE(YES) is a required parameter.

Example 1:

```
DELETE INACTIVE;
```

Example 2:

```
DELETE ALL,FORCE(YES)
```

Note: DELETE mode commands are intended for Unicode environment maintenance only. No Unicode calls should be running in the Unicode environment during the execution of these commands.

Example 1

```
SETUNI ADD,CASE,DSN=SYS1.SCUNTBL,VOL=XLAD01
```
Example 2

SETUNI ADD, FROM=1200, TO=37, TECH=ER, DSN=SYS1.SCUNTB1, VOL=XLAD01
SETXCF Command

Use the SETXCF command to control the cross-system coupling facility (XCF). Table 4-38 summarizes the information that the SETXCF command provides. Use it to access the pages on which you can find details about a particular use of the SETXCF command.

Table 4-38. Summary of the SETXCF Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETXCF COUPLE</td>
<td>"SETXCF COUPLE Command"</td>
</tr>
<tr>
<td>SETXCF FORCE</td>
<td>"SETXCF FORCE Command" on page 4-540</td>
</tr>
<tr>
<td>SETXCF FUNCTIONS</td>
<td>"SETXCF FUNCTIONS Command" on page 4-543</td>
</tr>
<tr>
<td>SETXCF MODIFY</td>
<td>"SETXCF MODIFY Command" on page 4-543</td>
</tr>
<tr>
<td>SETXCF PRSMPOLICY</td>
<td>"SETXCF PRSMPOLICY Command" on page 4-545</td>
</tr>
<tr>
<td>SETXCF START</td>
<td>"SETXCF START Command" on page 4-546</td>
</tr>
<tr>
<td>SETXCF STOP</td>
<td>"SETXCF STOP Command" on page 4-555</td>
</tr>
</tbody>
</table>

Scope in a Sysplex

The following table describes the conditions under which the SETXCF command has sysplex scope. See "Using Commands That Have Sysplex Scope" on page 1-11 for an explanation of sysplex scope.

Table 4-39. Sysplex Scope for the SETXCF Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETXCF COUPLE</td>
<td>Has sysplex scope only when you specify PSWITCH, ACOUPLE, or PCOUPLE, and all systems have access to the specified couple data set.</td>
</tr>
<tr>
<td>SETXCF FORCE</td>
<td>Has sysplex scope only when all systems are connected to the same coupling facility.</td>
</tr>
<tr>
<td>SETXCF START</td>
<td>Has sysplex scope only when you specify POLICY, REBUILD, REALLOCATE, MSGBASED, or MAINTMODE.</td>
</tr>
</tbody>
</table>

Syntax

The syntax for each variation of the SETXCF command is shown immediately preceding its respective parameter list.

SETXCF COUPLE Command

Use the SETXCF COUPLE command to:

- Switch a current alternate couple data set to a primary couple data set. The switch can be for either sysplex couple data sets or other types of couple data sets.
- Specify a primary non-sysplex couple data set, such as CFRM, SFM, WLM.
- Specify an alternate couple data set.
- Change options specified in the COUPLExx parmlib member.

For more information about the SETXCF COUPLE parameters see Z/OS MVS Setting Up a Sysplex and Z/OS MVS Initialization and Tuning Reference.
The parameters are:

PSWITCH

Switches the current alternate sysplex couple data set to become the primary sysplex couple data set. The command is complete when systems in the sysplex acknowledge the switch. This command removes the current primary sysplex couple data set from service.

Note: If the new primary sysplex couple data set has been formatted to support greater than eight systems in the sysplex, the following occurs:

- If the current RMAX value is less than 99, the system automatically increases the RMAX value to 99. The system issues message IEA403I to indicate this change. You cannot lower the value of RMAX. A minimum RMAX value of 99 is enforced for performance reasons.

ACOUPLE=(alternatedsname,alternatevolume)

Specifies the data set to use as an alternate sysplex couple data set. This data set must be defined and formatted with the XCF format utility and for each parameter specified in the utility, the parameter values must be equal to or greater than the parameter values that were used to format the current primary couple data set. See [z/OS MVS Setting Up a Sysplex](http://www.ibm.com) for additional information about planning for couple data sets.

Specify the volume only when the data set is not cataloged. You need to use parentheses only when you specify the volume. Once the command completes, any previous alternate sysplex couple data set is removed from service. The specified alternate sysplex couple data set must be accessible and usable from all systems in the sysplex.

The data set named `alternatedsname` can have one or more name segments, separated by periods, and cannot exceed a total length of 44 characters. Each name segment is one to eight alphanumeric, hyphen (-), and national ($,#,@) characters, but must begin with an alphabetic or national character.

The volume `alternatevolume` must be specified as one to six alphanumeric or national characters, and may begin with any of these characters.
INTERVAL=
Specifies the length of the failure detection interval for the system. timeinterval
is specified in seconds and ranges from 3 to 86400 (24 hours).

IBM suggests that the default value (the derived spin failure detection interval)
be used. If you specify the INTERVAL value explicitly, it should be no more than
twice the derived spin failure detection interval based on the following
considerations: the user-specified INTERVAL must be greater or equal to the
derived spin failure detection interval so that the system can have a chance to
recover before XCF initiates system failure processing; however, if the value is
too large, it might allow sympathy sickness to spread throughout the sysplex.

The default INTERVAL value is derived from the excessive spin processing
parameters in EXSPATxx. For more information about how the default
INTERVAL value is computed, see cit bibid="ieae200" props="pdfbook">.

OPNOTIFY=
Specifies in seconds how long a system must appear to be inoperative before
XCF notifies the operator. Either an absolute value (in the form of xxx) or a
relative value (in the form of +xxx) is accepted. The absolute value ranges from
3 to 86400 (24 hours); the relative value ranges from 0 to 86400.

• When an absolute value is specified, the OPNOTIFY value must be greater
than or equal to the INTERVAL value if INTERVAL is specified. The effective
OPNOTIFY value used by the system is the greater one of the indicated
OPNOTIFY value and the effective failure detection interval.

• When a relative value is specified, the effective OPNOTIFY value used by
the system is the sum of the effective failure detection interval plus the
relative OPNOTIFY value.

• When this parameter is omitted, the default value is a relative value of +3.
Thus the effective OPNOTIFY value used by the system equals three plus
the effective failure detection interval.

CLEANUP=
Specifies the time interval that XCF waits for multisystem applications to
complete cleanup functions. The interval begins after XCF sends notification to
group members that the system on which they are running is being removed
from the sysplex. timeinterval is specified in seconds and ranges from 0 to
86400 (24 hours).

MAXMSG=defaultmaxmsgbuffers
Specifies the default value used if the MAXMSG keyword is not specified on the
SETXCF START command. The MAXMSG value must be a number from 1 to
999999. See [z/OS MVS Setting Up a Sysplex] for further information about
determining message buffer space.

RETRY=defaultretrylimit
Specifies the default value used if the RETRY keyword is not specified on the
SETXCF START command. It is the number of failures that XCF tolerates
before it marks a path as inoperative. Specify a value between 3 and 255.

CLASSLEN=defaultclasslength
Specifies the default message length for the transport classes, used if the
CLASSLEN keyword is not specified on the SETXCF START command. XCF
uses this length to optimize its processing for messages sent in a transport
class. Specify a value between 0 and 62464.

TYPE=(name,name...)
Specifies the type of data stored in this couple data set.
The supported names include:
SYSPLEX for sysplex (XCF) types
ARM for automatic restart management
CFRM for coupling facility resource management
LOGR for system logger
SFM for sysplex failure management
WLM for workload management
BPXMCDs for UNIX System Services

Other TYPES might exist for other components. Please check the component documentation for information on what to specify for TYPE in this and other XCF operator commands and the XCF COUPLExx parmlib member.

The name or names specified must correspond to the name or names used when the couple data set was formatted with the couple data set format utility, IXCL1DSU. See z/OS MVS Setting Up a Sysplex for a description of the couple data set format utility.

The following keywords all refer to the couple data sets that support the service specified by the TYPE keyword.

PCOUPLE=(primarydsname,primaryvolume)
Specifies the data set to use as the primary couple data set for the type of service specified by TYPE=. Note that you cannot specify PCOUPLE to identify the sysplex couple data set (which is initially specified in the COUPLExx parmlib member).

The data set must be defined and formatted with the XCF format utility.

If the service is already operational in the sysplex, the system ignores the data set specified by PCOUPLE. Instead, the system attempts to make the service available to the system by using the couple data set that is currently supporting the service on other systems in the sysplex.

If the service is not already operational in the sysplex, the system attempts to use the specified data set as the primary couple data set for the service specified.

When TYPE=(CFRM) is specified and the CFRM couple data set is added to the sysplex, it MUST NOT BE REMOVED OR DELETED. If the CFRM couple data set is removed from the sysplex, the sysplex system will enter a non-restartable WAIT STATE. This is true even if no CFRM policies were activated.

ACOUPLE=(alternatedsname,alternatevolume)
Specifies the data set to use as the alternate couple data set for the type of service specified by TYPE=. The data set must already be allocated on the volume specified. The data set must be defined and formatted with the XCF format utility.

For each parameter specified in the format utility, the parameter values must be equal to or greater than the parameter values that were used to format the current primary couple data set. See "Planning the Couple Data Sets" in z/OS MVS Setting Up a Sysplex for additional information.

When you add a new alternate couple data set to the sysplex, the system copies the policies on the primary couple data set to that new alternate couple data set. The policies it copies from the primary couple data set replace any policies that existed on the alternate couple data set.

You do not need to specify the alternatevolume. If the volume is not specified, the data set must be cataloged. If the volume is specified, the system does not use the catalog to locate the data set.
SETXCF Command

If the system can use the specified couple data set for the service specified, then the data set becomes the alternate couple data set for that service. The system deallocates the data set that the system had been using as the alternate couple data set for the service at the time the SETXCF command was issued if the data set is no longer in use for any service in the sysplex.

PSWITCH

Specifies that the current alternate couple data set for the type of service defined is to become the primary couple data set. The system stops using the current primary couple data set and deallocates it if it is no longer in use by any service in the sysplex.

Using the TYPE Keyword

Remember the following when using the TYPE keyword:

- If you use PSWITCH with the TYPE keyword, the couple data set switched is the one containing the type of data specified (ARM, BPXMCDS, CFRM, LOGR, SFM or WLM).
 If you use PSWITCH without the TYPE keyword, the sysplex couple data set is switched.

- If you use ACOUPLE with the TYPE keyword, the alternate couple data set is the one containing the type of data specified (ARM, BPXMCDS, CFRM, LOGR, SFM or WLM). The specified alternate couple data set must be accessible and usable from all systems in the sysplex that are using the policy for that service.
 If you use ACOUPLE without the TYPE keyword, the alternate couple data set is the sysplex couple data set and, as such, must be accessible and usable from all systems in the sysplex.

SETXCF FORCE Command

Use the SETXCF FORCE command to clean up coupling facility structures without connections, persistent connections to coupling facility structures, coupling facility structure dumps, coupling facility structure dump serialization, Automatic Restart Management (ARM) elements, or structures pending-deallocation from a coupling facility that is no longer connected to any systems in the sysplex.

A structure is identified by its structure name, which can be up to 16 characters long. The name can contain numeric characters, uppercase alphabetic characters, national characters ($, @, #), or an underscore (_). The structure name must begin with an uppercase alphabetic character. Structure names provided by IBM begin with SYS or the letters A through I.

Note that if you issue the SETXCF FORCE command for a coupling facility resource (that is not already pending deletion) from a system that does not have connectivity to the coupling facility that contains the resource, the system accepts the command; however, the command remains pending until either the system establishes connectivity with the coupling facility or another system processes the deletion.

When forcing deregistration of an ARM element, you must issue the command from the system on which the element registered. If the system on which the element registered is no longer active, issue the command from any system in the sysplex. The system will respond to a valid ARMDEREGISTER command with a message
indicating whether the command was completed or rejected — IXC393I. If the element might be in use by the system, you must reply to the IXC394A message issued before getting the IXC393I.

Attention: To reduce the risk of losing data, do not force the deletion of structures, connections, or ARM elements unless you understand their use in the sysplex by applications or subsystems.

For additional information about the circumstances under which to issue the SETXCF FORCE command, see “Coupling Facility Replacement and Reconfiguration Guidelines” in cit bibid="ieaf100" props="pdfbook">.

For more information about the SETXCF FORCE parameters see both cit bibid="ieaf100" props="pdfbook"> and cit bibid="ieae200" props="pdfbook">.

```
SETXCF FORCE,
  \{STRUCTURE,STRNAME=(strname[,strname]...)\}
  \{CONNECTION,STRNAME=strname,CONNAME={(conname[,conname]...)}\}
  \{STRDUMP,STRNAME=strname[,STRDUMPID=strdumpid]\}
  \{STRDUMPSERIAL,STRNAME=strname[,STRDUMPID=strdumpid]\}
  \{ARMDEGERISTER,ELEMENT=element\}
  \{PNDSTR,CFNAME=cfname\}
```

STRUCTURE or STR
Directs the system to force the deletion of a named coupling facility structure. If a dump for the specified structure is in progress, deallocation of the structure remains pending until either the dump is complete or the dump is forced using the STRDUMP option. The system notifies the operator that the command is accepted but that the structure is pending deallocation.

STRNAME or STRNM=(strname[,strname]...)
Identifies one or more persistent coupling facility structures to delete. In order to delete the structure with the SETXCF FORCE command, the structure must have no active connections. If only failed-persistent connections to the structure exist, the structure can be deleted with the SETXCF FORCE command.

CONNECTION or CON
Directs the system to force the deletion of a failed-persistent connection. The system will not force failed-persistent connections to a persistent lock or serialized list structure because of the possibility of an undetected loss of data. The system will reject such a FORCE,CONNECTION request with message IXC354I or IXC363I.

STRNAME or STRNM=strname
Specifies the name of an active structure that contains the connection to be deleted. *strname* can be up to 16 alphanumeric characters long and must begin with an uppercase alphabetic character.

CONNAME= or CONNM=(conname[,conname]...) or ALL
Directs the system to delete one or more connections to the named structure. You can use SETXCF FORCE only to delete a failed-persistent connection.
SETXCF Command

When you specify CONNAME=ALL, you request the system to delete all failed-persistent connections to the specified structure.

STRDUMP or STRD

Specifies the system is to force the deletion of a structure dump. The structure is either actively in use by the sysplex or pending deallocation. Under normal operating conditions when a structure dump is associated with a structure in the coupling facility, the structure dump identifier is recorded in the active CFRM policy. However, if a situation arises where the structure dump identifier does not get recorded in the active CFRM policy, the SETXCF FORCE,STRDUMP command can still be used to delete the structure dump. To force the structure dump in this case, omit the STRDUMPID= keyword and the system will determine the structure dump identifier.

STRNAME= or STRNM=strname

Specifies the name of the structure for which to delete the structure dump.

STRDUMPID= or STRDID=stdumpid

Identifies the structure dump to be deleted. The structure dump identifier uniquely differentiates between a structure dump associated with a structure actively in use in the sysplex and a structure dump associated with a structure pending deallocation. Use the DISPLAY XCF,STRUCTURE command to determine the structure dump identifier.

The structure dump identifier can be up to four hexadecimal digits. If you omit this keyword, the structure dump associated with the named structure actively in use in the sysplex is the one that is deleted.

STRDUMPSEQ or STRDSER

Specifies that the system is to release its dumping serialization for a coupling facility structure. The structure must be actively in use in the sysplex. Under normal operating conditions when a structure dump is associated with a structure in the coupling facility, the structure dump identifier is recorded in the active CFRM policy. However, if a situation arises where the structure dump identifier does not get recorded in the active CFRM policy, the SETXCF FORCE,STRDUMPSEQ command can still be used to release the structure dump serialization. To force the structure dump serialization in this case, omit the STRDUMPID= keyword and the system will determine the structure dump identifier.

STRNAME= or STRNM=strname

Identifies the structure for which to release dump serialization.

STRDUMPID= or STRDID=stdumpid

Identifies the structure dump associated with the structure for which to release dump serialization.

AMDREREGISTER

Directs the system to force deregistration of an ARM element.

ELEMENT

Identifies the name of the ARM element to be deregistered.

PNDSTR

Specifies the system is to remove structures that are pending-deallocation from the CFRM active policy because of the loss of connectivity to the coupling facility. Structures pending-deallocation because of a structure dump will not be removed.

CFNAME

Identifies the name of the coupling facility. The coupling facility specified
should be a coupling facility that is not connected to any systems in the
sysplex and is going to remain inaccessible for an extended period of time
(because of permanent removal for example) or a coupling facility that will
be brought back online with all structures removed (because of a CF
deactivate/reactivate or reboot for example).

SETXCF FUNCTIONS Command

Use the SETXCF FUNCTIONS command to enable or disable optional functions
provided by the XCF and XES components of z/OS. The SETXCF FUNCTIONS
command is effective only on the system where the command was issued (system
scope only).

```plaintext
SETXCF FUNCTIONS {ENABLE=(function[,function ...])}
{DISABLE=(function[,function ...])}
```

ENABLE=(function[,function ...])

Enables one or more optional functions. The parentheses can be omitted if only
one function is specified.

DISABLE=(function[,function ...])

Disables one or more optional functions. The parentheses can be omitted if only
one function is specified.

See topic "The FUNCTIONS Statement" in cit bibid="ieaf100" props="pdfbook"> for
a description of the optional functions currently defined.

SETXCF MODIFY Command

Use the SETXCF MODIFY command to change current XCF parameters. The
system changes only those parameters explicitly provided on the SETXCF MODIFY
command; all other parameters associated with the resource remain the same.
• Modify inbound paths.
• Modify outbound paths.
• Modify local message space.
• Modify transport classes.

The complete syntax for the SETXCF MODIFY command is:

```plaintext
SETXCF MODIFY,{PATHIN,{DEVICE=([/]indevnum[,[/]indevnum][,...])}}
{STRNAME=(strname[,strname][,...])}
   [,MAXMSG=maxmsgbuffers]
   [,RETRY=retrylimit]
{PATHOUT,{DEVICE=([/]outdevnum[,[/]outdevnum][,...])}}
{STRNAME=(strname[,strname][,...])}
   [,CLASS=classname]
   [,MAXMSG=maxmsgbuffers]
   [,RETRY=retrylimit]
{LOCALMSG,MAXMSG=maxmsgbuffers}
   [,CLASS=classname]
{CLASSDEF,CLASS=classname}
   [,CLASSLEN=classlength]
   [,MAXMSG=defaultmaxmsgbuffers]
   [,ADDSGROUP=(groupname[,groupname][,...])]
   [,DELSGROUP=(groupname[,groupname][,...])]
```
The parameters are:

PATHIN or **PI,DEVICE=** or **DEV=(/indevnum[,/indevnum]...) [.RETRY=retrylimit]**

Specifies the device number of one or more inbound signalling paths. A device number, *indevnum*, is 3 or 4 hexadecimal digits, optionally preceded by a slash (/). If you specify only one device, you do not need to enter the parentheses.

Use the RETRY keyword to modify the retry limit and the MAXMSG keyword to modify the amount of message buffer space. You must specify at least one of the MAXMSG or RETRY keywords. The MAXMSG value must be a number from 1 to 999999.

PATHIN or **PI,STRNAME** or **STRNM=(strname[,strname]...)**

Specifies the name of one or more coupling facility structures that are associated with defined XCF inbound signalling paths and that are to be modified.

The structure name can be up to 16 alphanumeric characters long, and must begin with an uppercase alphabetic character. If you specify only one structure name, you do not need to enter the parentheses.

PATHOUT or **PO,DEVICE=** or **DEV=(/outdevnum[,/outdevnum]) [.MAXMSG=maxmsgbuffers][.RETRY=retrylimit]**

Specifies the device number of one or more outbound signalling paths. A device number, *outdevnum*, is 3 or 4 hexadecimal digits, optionally preceded by a slash (/). If you specify only one device, you do not need to enter the parentheses.

Use the RETRY keyword to modify the retry limit, the CLASS keyword to modify the transport class assignment, and the MAXMSG keyword to modify the amount of message buffer space. You must specify at least one of the MAXMSG, CLASS, or RETRY keywords. The MAXMSG value must be a number from 1 to 999999.

PATHOUT or **PO,STRNAME** or **STRNM=(strname[,strname]...)**

Specifies the name of one or more coupling facility structures that are associated with defined XCF outbound signalling paths and that are to be modified.

The structure name can be up to 16 alphanumeric characters long, and must begin with an uppercase alphabetic character. If you specify only one structure name, you do not need to enter the parentheses.

LOCALMSG or **LM,MABXMSG=maxmsgbuffers [.CLASS=classname]**

Within a particular transport class, you can modify the amount of message buffer space made available for local message traffic after the creation of the class definition. The total amount of buffer space for the transport class (indicated by the optional keyword CLASS) is *maxmsgbuffers* plus the value specified or defaulted to on the MAXMSG parameter on the CLASSDEF statement of the COUPLEExx parmlib member. The MAXMSG value must be a number from 1 to 999999.

If you omit CLASS, the change affects the default transport class, named DEFAULT.

CLASSDEF or **CD,CLASS=classname**

Specifies the transport class to be modified. You must specify at least one of the CLASSLEN, MAXMSG, ADDGROUP, or DELGROUP keywords.
Use the CLASSLEN keyword to modify the message length.

MAXMSG= defaultmaxmsgbuffers

Use the MAXMSG keyword to modify the message buffer space. By changing the MAXMSG value, you change the amount of message buffer space initially allotted to each system for the indicated transport class. However, changing the MAXMSG value does not affect it for any existing resource — such as an outbound XCF path — in the class. The MAXMSG value must be a number from 2 to 999999. See [z/OS MVS Setting Up a Sysplex](https://www.ibm.com/support/knowledgecenter/SSG27H_4.3.0/com.ibm.zos.v1r11.mvs.zos.setupsysplex.doc/r/mvsshelc_sympgp.htm) for further information about determining message buffer space.

ADDGROUPE *(groupname[,groupname]...)*

Specifies one or more groups to be added to the set of groups assigned to the transport class. Groups, possibly including undesignated groups, were assigned to this class when it was created. Explicitly assigning a group to this class does not delete the UNDESIG group from the class.

The group name *groupname* must be specified as one to eight alphanumeric and national ($,#,@) characters, and may begin with any of these characters.

DELGROUPE *(groupname[,groupname]...)*

One or more groups to be deleted from the set of groups assigned to the transport class. If this command deletes the last assigned group from a transport class, XCF automatically assigns the undesignated groups to the class. If a transport class has no groups explicitly assigned to it, undesignated groups cannot be deleted from the class.

The group name *groupname* must be specified as one to eight alphanumeric and national ($,#,@) characters, and may begin with any of these characters.

SETXCF PRSMPOLICY Command

Use the SETXCF PRSMPOLICY (or PRSMPOL) command to either:

- Activate an XCF PR/SM policy, or
- Deactivate a current active XCF PR/SM policy.

In a multisystem sysplex on PR/SM, the XCF PR/SM policy provides a way for the installation to obtain high availability for multisystem applications on the MVS systems in the sysplex. See [z/OS MVS Initialization and Tuning Reference](https://www.ibm.com/support/knowledgecenter/SSG27H_4.3.0/com.ibm.zos.v1r11.mvs.zos.initref.doc/r/mvsshelc_symfgp.htm) and [z/OS MVS Setting Up a Sysplex](https://www.ibm.com/support/knowledgecenter/SSG27H_4.3.0/com.ibm.zos.v1r11.mvs.zos.setupsysplex.doc/r/mvsshelc_sympgp.htm) for information about the XCF PR/SM policy.

Note: When an active Sysplex Failure Management policy is in effect in the sysplex, the system rejects the SETXCF PRSMPOLICY command.

```
SETXCF PRSMPOLICY,{DEACTIVATE|ACTIVATE=memname}
```

The parameters are:

ACTIVATE= *memname*

Specifies the member in SYS1.PARMLIB that contains the XCF PR/SM policy to be activated. If an error occurs while processing the member, the current XCF PR/SM policy, if any, remains in effect.

DEACTIVATE

Specifies that all XCF PR/SM policy processing is to be stopped.
SETXCF Command

Example

To activate the XCF PR/SM policy contained in member XCFPOL03 parmlib member, enter:

```
SETXCF PRSMPOLCY,ACTIVATE=XCFPOL03
```

SETXCF START Command

Use the SETXCF START command to:

- Start new inbound signalling paths or restart inoperative inbound signalling paths
- Start outbound signalling paths or restart inoperative outbound signalling paths
- Define transport classes
- Start using a new administrative policy as an active policy
- Start rebuilding one or more coupling facility structures either in the same coupling facility or in another coupling facility
- Start populating a coupling facility that has been newly brought into service or returned to service in a sysplex with structures selected from the set of those defined in the active CFRM policy. The structures selected are those that list the coupling facility to be populated as higher in the structure’s preference list than the coupling facility in which the structure already is allocated
- Start user-managed duplexing of one or more structures in a coupling facility into another coupling facility
- Start altering the size of a coupling facility structure
- Start the REALLOCATE process. The REALLOCATE process uses the XCF structure allocation algorithm and the structure definition in the active or pending CFRM policy to evaluate each allocated structure. When this evaluation indicates that adjustments can be made for an allocated structure, then REALLOCATE processing makes the appropriate adjustments.
- Transition from a policy-based event and confirmation management protocol to a message-based event and confirmation management protocol.
- Place a specific coupling facility or a list of coupling facilities into maintenance mode. When a coupling facility is in maintenance mode, the XCF structure allocation algorithm prevents the allocation of a coupling facility structure in the coupling facility.

An inoperative signalling path remains defined to XCF but is not in use. DISPLAY XCF lists inoperative as well as active signalling paths. When you restart an inoperative signalling path with SETXCF START, you can alter MAXMSG, RETRY, and CLASS. These values take effect when XCF restarts the signalling path.
The complete syntax for the SETXCF START command is:

```
SETXCF START,{CLASSDEF,CLASS=classname
[,[CLASSLEN=classlength]
[,MAXMSG=maxmsgbuffers]
[,GROUP=(groupname[,groupname]...)]

{MSGBASED}
{PATHIN,{DEVICE=([/]indevnum[,[/]indevnum]...)}
{STRNAME=(strname[,strname]...)}
[,MAXMSG=maxmsgbuffers]
[,RETRY=retrylimit]

{PATHOUT,{DEVICE=([/]outdevnum[,[/]outdevnum]...)}
{STRNAME=(strname[,strname]...)}
[,MAXMSG=maxmsgbuffers]
[,RETRY=retrylimit]
[,CLASS=classname]

{POLICY,TYPE=name,POLNAME=polname
{REBUILD,{POPULATECF=cfname}
{DUPLEX,]
{STRNAME=(strname[,strname]...)}
{CFNAME=(cfname[,cfname]...)}
[,LOCATION={NORMAL|OTHER}]
[,LESSCONN={TERMINATE|CONTINUE}]

{ALTER,STRNAME=strname,SIZE=size
{REALLOCATE
{MAINTMODE,CFNAME=(cfname[,cfname]...)}
```

CLASSDEF or CD,CLASS=classname

Specifies a definition for a new transport class. You must specify the *classname* as one to eight alphanumeric and national ($,#,@) characters, and may begin with any of these characters. The DEFAULT transport class always exists. If you specify only one class, you do not need to enter the parentheses.

CLASSLEN=classlength

Specifies the message length for this transport class, where *classlength* must be a number between 0 and 62464. If you omit this keyword, the system uses the current CLASSLEN value (specified either on the SETXCF COUPLE command or in the COUPLExx parmlib member).

MAXMSG=maxmsgbuffers

Specifies the default amount of message buffer space allotted for messages sent in this transport class, where MAXMSG value must be a number between 2 and 999999. See [z/OS MVS Setting Up a Sysplex](https://www.ibm.com/support/knowledgecenter/SSEPGY_2.2.0/com.ibm.zos.security.faq.doc/faq001a.html) for further information about determining message buffer space.

If you omit this keyword, the system uses the MAXMSG value specified on either the SETXCF COUPLE command or in the COUPLE statement in the COUPLExx parmlib member).

GROUP or GRP={groupname[,groupname]...)

Assigns one or more groups to the transport class. The order in which groups are specified is unimportant; all groups have equal access to the signalling services. If you omit this keyword, XCF assigns all groups not currently assigned (the UNDESIG groups), to the classname specified on the CLASSDEF parameter.
SETXCF Command

You must specify the group name *groupname* as one to eight alphanumeric and national ($,#,@) characters, and may begin with any of these characters.

MSGBASED
Switch to a message-based event and confirmation management protocol from a policy-based event and confirmation protocol. The sysplex must be running with a version of the CFRM couple data set that supports message-based event and confirmation processing in order for this command to execute successfully. The system chooses the system where the SETXCF START,MSGBASED command was issued as the new event managing system.

PATHIN or PI,DEVICE or DEV=(\[/\]indevnum[\]/\]indevnum]...)
Specifies the device number of one or more inbound signalling paths that XCF can use. A device number, *indevnum*, is 3 or 4 hexadecimal digits, optionally preceded by a slash (/). If you specify only one device, you do not need to enter the parentheses.

The specified device must be unallocated. The system at the other end of a signalling path must be inactive or part of the sysplex, and the other end of the path must be defined to XCF as an outbound path.

Once the command completes, the other systems in the sysplex can begin to send signalling traffic on the path to this system. For a signalling path device that is not online, MVS can vary the device online when you use this command to start the signalling path. The device remains defined to XCF until the definition is deleted through the SETXCF STOP command.

PATHIN or PI,STRNAME or STRNM=(strname,strname...)
Specifies the name of one or more coupling facility structures that XCF can use as inbound signalling paths. The designated structure is defined as a signalling path only to this system and not to every system in the sysplex. Other systems that are connected to the structure must also define the structure for use as a signalling path.

The structure name *strname* can be up to 16 alphanumeric characters long and must begin with ‘IXC’. The remaining characters can be numeric, uppercase alphabetic, national characters ($, @, #), or an underscore (_). If you specify only one structure name, you do not need to enter the parentheses.

MAXMSG=maxmsgbuffers
Specifies the maximum amount of message buffer space, in kilobytes, that XCF can use to receive messages through the inbound signalling path. If you omit this keyword, the system uses the current MAXMSG value (specified on either the SETXCF COUPLE command or the COUPLE statement of the COUPLExx parmlib member). The MAXMSG value must be a number from 1 to 999999.

RETRY=retrylimit
Specifies the *retrylimit* for the inbound signalling paths. If you omit this keyword, the system uses the RETRY value, a number between 3 and 255 specified on either the SETXCF COUPLE command or the COUPLE statement of the COUPLExx parmlib member.

PATHOUT or PO,DEVICE or DEV=(\[/\]outdevnum[\]/\]outdevnum)...)
Specifies the device number of one or more outbound signalling paths that XCF can use. A device number, *outdevnum*, is 3 or 4 hexadecimal digits, optionally preceded by a slash (/). If you specify only one device, you do not need to enter the parentheses.
The specified device must be unallocated. The system at the other end of the path must be inactive or part of the sysplex, and the other end of the path must be defined to XCF as an inbound path. Once the command completes successfully, the other system in the sysplex can begin to receive signalling traffic on the path from this system. For a signalling path device that is not online, MVS can vary the device online when you use this command to start the signalling path. The device remains defined to XCF until the definition is deleted through the SETXCF STOP command.

PATHOUT or PO,STRNAME or STRNM=(strname,strname,...)

Specifies the name of one or more coupling facility structures XCF can use as outbound signalling paths. The designated structure is defined only to this system, not to every system in the sysplex. Other systems connected to the structure must also define the structure for use as a signalling path.

The structure name `strname` can be up to 16 alphanumeric characters long and must begin with ‘IXC’. The remaining characters can be numeric, uppercase alphabetic, national characters ($, @, #), or an underscore (_). If you specify only one structure name, you do not need to enter the parentheses.

MAXMSG=maxmsgbuffers

Specifies the amount of message buffer space contributed by this signalling path. If you omit this keyword, the system uses the current MAXMSG value for the transport class that this path is assigned. The MAXMSG value must be a number between 1 and 999999.

RETRY=retrylimit

Specifies the `retrylimit` for the outbound signalling path. If you omit this keyword, the system uses the current RETRY value, a number between 3 and 255 specified on either the SETXCF COUPLE command or the COUPLE statement of the COUPLExx parmlib member.

CLASS=classname

Specifies the name of the transport class to which the outbound signalling paths are assigned. If you omit this keyword, the system uses the DEFAULT transport class. The classname must be previously defined. You must specify the `classname` as one to eight alphanumeric and national ($,#,@) characters, and may begin with any of these characters.

POLICY or POL,TYPE=name,POLNAME or POLNM=polname

Specifies that the administrative policy named is to be made active in the sysplex or that the active policy is to be changed. The system from which the SETXCF command is issued must have access to the couple data set supporting the service.

See [z/OS MVS Setting Up a Sysplex](https://www.ibm.com/support/docview.ws?id=204527997) for information about transitioning to a new administrative policy.

TYPE=name

Specifies the `name` of the service that is using the couple data set for policy data. The supported services are:

- ARM for automatic restart management
- CFRM for coupling facility resource management
- SFM for sysplex failure management

POLNAME or POLNM=polname

Specifies the name of the administrative policy to be made active.

Note: When TYPE=ARM is specified, POLNAME is optional. If no policy name is specified, the policy defaults will be used.
REBUILD or RB,POPULATECF or POPCF=cfname
Specifies the name of the coupling facility that is to be populated with structures selected from the set of allocated structures in the active CFRM policy.

A structure rebuild will be attempted for each allocated structure in the policy that contains the specified coupling facility in its preference list, if the specified coupling facility is at a higher position in the preference list than the coupling facility in which the structure currently is allocated. If the structure is allocated in a more preferable coupling facility already, the rebuild will not continue.

POPULATECF rebuild processing assumes LOCATION=OTHER. LOCATION and LESSCONN options cannot be specified.

Each structure that contains the specified coupling facility at a higher position in its preference list will be processed serially to completion (either stopped or completed) before the next structure is selected. The serial nature of this processing allows even XCF signalling structures to be selected for coupling facility population.

The coupling facility name can be up to 8 alphanumeric characters long and must begin with an uppercase alphabetic character. The name can contain numeric characters, uppercase alphabetic characters, national characters ($, @, #), or an underscore (_).

REBUILD or RB,DUPLEX,STRNAME or STRNM=(strname,[strname]...) or STRNAME=(strname,[strname]...) or STRNM=[strname,[strname]...]
Specifies the name of one or more coupling facility structures that are to be duplexed in another coupling facility.

If user-managed structure duplexing is not supported for the target structure, the duplexing operation will not be started and the system issues a message to the operator.

Duplexing rebuild processing assumes LOCATION=OTHER and LESSCONN=TERMINATE. Other LOCATION and LESSCONN options cannot be specified.

The structure name can be up to 16 characters long and can contain numeric characters, uppercase alphabetic characters, national characters ($, @, #), or an underscore (_). The name must begin with an uppercase alphabetic characters. IBM names begin with SYS, or letters A-I.

If you specify only one structure name, you do not need to enter the parentheses.

REBUILD or RB,DUPLEX,CFNAME=(cfname,[cfname]...) or CFNAME=(cfname,[cfname]...) or CFNAME=[cfname,[cfname]...]
Specifies the name of one or more coupling facilities for which all structures are to be duplexed in a different coupling facility.

The system attempts to start a duplexing operation for each structure that is currently allocated in the specified coupling facility.

If structure duplexing is not supported for a particular structure, the system issues a message to the operator.

The coupling facility name can be up to 8 alphanumeric characters long and can contain numeric characters, uppercase alphabetic characters, national characters ($, @, #), or an underscore (_). It must begin with an uppercase alphabetic character.

If you specify only one coupling facility name, you do not need to enter the parentheses.
**REBUILD or RB,STRNAME or STRNM=(strname,strname)...
**
Specifies the name of one or more coupling facility structures that are to be rebuilt in the same coupling facility or another coupling facility. The structure name can be up to 16 alphanumeric characters long and must begin with an uppercase alphabetic character. IBM names begin with SYS, or letters A-I. If you specify only one structure name, you do not need to enter the parentheses.

**REBUILD or RB,CFNAME or CFNM=(cfname,cfname)...
**
Specifies the name of one or more coupling facilities for which all structures other than XCF signalling structures are to be rebuilt. The coupling facility name can be up to 8 alphanumeric characters long and must begin with an uppercase alphabetic character. If you specify only one coupling facility name, you do not need to enter the parentheses.

For any given structure, the system might not start rebuild. [z/OS MVS Programming: Sysplex Services Guide](#) lists the requirements for rebuild initiation. For example, if the named coupling facility contains one or more XCF signalling structures, the system does not start rebuild for them. To rebuild an XCF-signalling structure, issue the `SETXCF START,REBUILD,STRNAME=...` command for one structure at a time.

**LOCATION=NORMAL or OTHER
**
Specifies the location where the new structure or structures can be rebuilt.

- If you specify LOCATION=NORMAL, the new structure can be allocated in any coupling facility in the preference list, following the normal allocation rules.
- If you specify LOCATION=OTHER, the new structure cannot be allocated for rebuild in the same coupling facility as the original structure. The new structure can be allocated in any other coupling facility in the preference list, following the normal allocation rules.

Duplexing rebuild and POPULATECF processing assume LOCATION=OTHER.

Note that before the rebuild process begins, you might need to change the administrative policy to specify where the structure can reside and then activate the policy. The CFRM administrative policy contains the preference list that specifies coupling facilities where a structure can reside.

**LESSCONN or LC=TERMINATE or CONTINUE
**
Specifies the action the system is to take when rebuilding the structure results in a new structure that has poorer connectivity relative to the set of active structure connectors than the old structure does.

- With LESSCONN=TERMINATE, the system stops the rebuild processing for the new structure if connectivity relative to the set of active connectors to the structure is not equal or better than it was to the current structure.

LESSCONN=TERMINATE is the default system action. This protects active connectors against inadvertently losing connectivity to the structure as a result of rebuilding the structure.

Duplexing rebuild processing assumes LESSCONN=TERMINATE.

- With LESSCONN=CONTINUE, the system allows the rebuild processing for the new structure even if connectivity relative to the set of active connectors to the structure is poorer than it was to the current structure.
Attention: Because this might cause active connectors to lose connectivity to the structure, do not use this keyword unless you understand the impact to the application or subsystem.

Some connectors stop the rebuild if a loss of connectivity is observed, but most connectors disconnect from the structure to allow the rebuild to complete. For many exploiters, disconnecting from the structure is likely to result in losing the sysplex-related functionality (for example, loss of data sharing capability) on that system. For critical system exploiters, this may result in a system wait state. See the application or subsystem documentation for recommendations.

ALTER,STRNAME or **STRNM=strname,SIZE=size**

Specifies that structure alter processing is to be initiated.

STRNAME or **STRNM=strname**

Specifies the name of the coupling facility structure to be altered. You may specify only one structure name. The name can be up to 16 alphanumeric characters long and must begin with an uppercase alphabetic character. The name can contain numeric characters, uppercase alphabetic characters, national characters ($,@,#) or an underscore(_). IBM names begin with SYS, or letters A-I.

SIZE=size

Specifies the target size of the structure to be altered. Specify size in units of 1K. Size is bounded by the minimum and maximum sizes determined when the structure was allocated. The minimum size of a structure is determined by the coupling facility; the maximum size of a structure is established by the installation in the CFRM policy. (Use the DISPLAY XCF,STRUCTURE,STRNAME=strname command to determine the maximum structure size allowed.)

REALLOCATE or **REALLOC**

Specifies that the REALLOCATE process is to be initiated.

The REALLOCATE process evaluates each allocated structure to recognize the need to make the following adjustments:

- Relocate the structure instance or instances
- Complete a pending policy change
- Trigger MVS-initiated duplexing

The evaluation of each allocated structure uses the XCF structure allocation algorithm and either the active or pending CFRM policy definition for the structure. Message IXC574I is written to the hardcopy log to show the current location of instances allocated in coupling facilities, the policy information used, and the evaluation result. Then it compares the current location with the location identified by evaluation to determine what if any adjustments are needed.

By evaluating the allocated structure, the REALLOCATE process can recognize that the structure is optimally located and immediately complete a change to the policy definition for the structure when the change does not affect the size. In addition, REALLOCATE processing is a triggering event for MVS-initiated duplexing rebuild when it finds the structure is not duplexed and DUPLEX(ENABLED) is specified for the structure in the CFRM policy.

The REALLOCATE process recognizes the need to relocate structure instances when one of the following conditions is detected:
There is a change to the policy definition for the structure affecting the structure size or location.

The structure is not optimally located.

To control the relocation of a specific structure by the REALLOCATE process, you can specify the ALLOWREALLOCATE(YES|NO) keyword for the structure in the CFRM policy.

- If you specify or default to ALLOWREALLOCATE(YES) for the structure in the CFRM policy:

 When the REALLOCATE process recognizes the need to relocate structure instances (see the preceding description of such conditions), the structure is selected as the target of the REALLOCATE process and the structure rebuild process is used to make the adjustments. Structure rebuild process supports the following:

 - User-managed rebuild
 - User-managed duplexing rebuild
 - System-managed rebuild
 - System-managed duplexing rebuild

 Multiple steps may need to be taken to complete the relocation of a selected structure. The steps are accomplished using structure rebuild processing (for example, user-managed rebuild) to adjust the location or activate a pending policy change for the structure that is the target of the REALLOCATE process. Messages to the operator document the steps being taken for each structure that is examined.

 - For a simplex structure, one step (rebuild) is used to adjust the location or to activate a pending policy change.

 - For a duplexed structure, two or three steps are used. The first step stops duplexing and one or more subsequent steps are used as needed to adjust the location, activate a pending policy change, and to reduplicate the structure. If a subsequent step cannot be started, the system issues message IXC546I with an explanation.

 - A duplexed structure can also be converted to simplex structure when one of the duplexed structure instances is allocated in a coupling facility that does not permit structure allocation (for example, maintenance mode) and it is not possible to reduplicate the structure. In this case, one or two steps are used. The first step stops duplexing and a second step might be needed to relocate the simplex structure or activate a pending policy change.

- If you specify ALLOWREALLOCATE(NO) for the structure in the CFRM policy:

 The REALLOCATE process evaluates the allocated structure but does not select the structure as the target of the REALLOCATE process. However, when NO is specified it is still possible for the REALLOCATE process to do the following adjustments if applicable:

 - Complete a pending policy update when the pending change does not affect the size or location.

 - Trigger an MVS-initiated duplexing rebuild when DUPLEX(ENABLED) is specified for the structure and the structure is not duplexed.

When the REALLOCATE process does not select an allocated structure, message IXC544I is issued with an explanation.
When the start request is accepted, the DISPLAY XCF,STR or the DISPLAY XCF,CF command shows the REALLOCATE PROCESS IS IN PROGRESS. For a summary of allocated structure status, use the DISPLAY XCF,STR,STATUS=ALLOCATED command:

- The structure that is the current target indicates TARGET OF REALLOCATE PROCESS.
- Allocated structures which have not been evaluated indicate REALLOCATE EVALUATION PENDING.
- Structures which have been processed do not have additional status indicators displayed but the log can be examined to determine the action taken.

When the entire process completes for all structures, the processing provides a report (message IXC545I) summarizing the actions that were taken as a whole. The REALLOCATE process evaluates all allocated structures, in a serial (one structure at a time) fashion. Each selected structure is processed to completion before the next structure is evaluated. The serial nature of this processing allows even XCF signalling structures to be selected for relocation.

REALLOCATE processing evaluates a structure based on the CFRM policy and on the current conditions (for example, available coupling facilities, coupling facility attributes, and connection attributes), and for each structure selected for processing, takes the necessary steps to adjust the location of the structure’s allocated instances. From the time a structure is evaluated to the time when the steps using structure rebuild processing cause a new instance to be allocated, it is possible for the conditions to have changed. The result is that the current conditions are used when the structure allocation algorithm is applied. The REALLOCATE process does not validate the resulting location of the allocated instances but relies on the result of applying the XCF allocation criteria. Because of this, it is possible that the coupling facilities shown as preferred when message IXC574I was written to the hardcopy log with the evaluation information are not the coupling facilities containing the allocated instances when the necessary steps finish. Where REALLOCATE processing intersects with other environmental changes (for example, starting or stopping a structure rebuild process due to a policy change, a coupling facility failure, or loss of connectivity to a coupling facility), the other ongoing process will take precedence with REALLOCATE processing issuing messages IXC544I or IXC546I as appropriate. For some environmental changes (for example, a coupling facility failure), the installation may choose to stop the REALLOCATE process.

Consider the following when you use the SETXCF START,REALLOCATE command:

- Move structures out of a coupling facility following a CFRM policy change that deletes/changes that coupling facility (for example, in preparation for a coupling facility upgrade).
- Move structures back into a coupling facility following a CFRM policy change that adds/restores the coupling facility (for example, following a coupling facility upgrade/add).
- Clean up pending CFRM policy changes that may have accumulated for whatever reason, even in the absence of any need for structure “relocation” per se.
- Clean up simplex or duplexed structures that were allocated in or moved into the “wrong” coupling facilities, for whatever reason (for example, the “right” coupling facility was inaccessible at the time of allocation).
• Clean up duplexed structures that have primary and secondary "reversed" because of a prior condition which resulted in having duplexing stopped with KEEP=NEW and the structure reduplexed.

Notes:
1. The REALLOCATE process is mutually exclusive with the POPULATECF function, which can be started either by the SETXCF operator command or the IXLREBLD programming interface.
2. The REALLOCATE process can only be started or stopped using the SETXCF command.
3. Support for the REALLOCATE process is provided by APAR OA03481.
 • The REALLOCATE process cannot be started if there exists an active system in the sysplex that does NOT have the APAR installed. The SETXCF START,REALLOCATE command is rejected.
 • An in-progress REALLOCATE process is stopped immediately when an active system without the APAR installed is discovered in the sysplex. The SETXCF START,REALLOCATE command was accepted but subsequently an active system without the APAR installed was discovered by an up-level system which immediately stopped the process.
 In both cases, message IXC543I is issued with explanatory text.
4. Enhancements for the REALLOCATE process are provided by APAR OA08688.
 • A structure-level control is provided to prevent REALLOCATE processing from selecting particular structures while allowing it to initiate structure rebuilds for others. This control is achieved by providing an option on the CFRM STRUCTURE parameter to the XCF Administrative Policy Utility (IXCMIAPU). The option is ALLOWREALLOCATE. See z/OS MVS Setting Up a Sysplex Appendix C under section Coding the Administrative Data Utility for topic CFRM Parameters for Administrative Data Utility.
 • For a simplex structure with DUPLEX(ENABLED) specified, the REALLOCATE process is a triggering event. Message IXC536I is issued when MVS is able to initiate a duplexing rebuild for the structure identified by REALLOCATE processing.
 • When a pending policy change does not affect size, REALLOCATE processing avoids structure rebuild processing when evaluation with the pending policy shows that the structure does NOT need relocating. It completes the pending change. Message IXC544I is issued indicating ALLOCATED IN PREFERRED CF AND POLICY CHANGE MADE.
 • With this enhancement, REALLOCATE processing will ignore a specified exclusion list in some cases, so as to avoid anomalies when honoring the exclusion list would have precluded structures from relocating to the optimal location.

MAINTMODE,CFNAME=(cfname,[cfname...])
Sets the specified coupling facility or facilities into maintenance mode. When in maintenance mode, a CF is not eligible for CF structure allocation purposes. The XCF structure allocation algorithm modifies the CF selection processing accordingly.

SETXCF STOP Command
Use the SETXCF STOP command to:
• Stop one or more inbound signalling paths.
The SETXCF STOP command is used to:

- Stop one or more outbound signalling paths.
- Delete the definition of a transport class.
- Stop using an administrative policy.
- Stop rebuilding one or more coupling facility structures.
- Stop populating a coupling facility that had been newly brought into service in a sysplex with structures selected from the set of those defined in the active CFRM policy.
- Stop user-managed duplexing of one or more structures in a coupling facility and specify the structure that is to remain in use.
- Stop altering a coupling facility structure.
- Stop an in-progress REALLOCATE process.
- Transition from a message-based event and confirmation management protocol to a policy-based event and confirmation management protocol.
- Remove a specific coupling facility or a list of coupling facilities from maintenance mode. When the coupling facility is out of maintenance mode, the XCF allocation algorithm can select the CF for allocating a coupling facility structure.

The complete syntax for the SETXCF STOP command is:

```
SETXCF STOP,[PATHIN,{DEVICE=([/]indevnum[,[/]indevnum]...)}]
{STRNAME=(strname[,strname]...) }
[,,UNCOND=NO|YES]
{PATHOUT,{DEVICE=([/]outdevnum[,[/]outdevnum]...)}
{STRNAME=(strname[,strname]...) }
[,,UNCOND=NO|YES]
{CLASSDEF,CLASS=classname }
{MSGBASED}
{POLICY,TYPE=name }
{REBUILD,{POPULATECF=cfname}
 {DUPLEX,}
 {STRNAME=(strname[,strname]...) }
 {,KEEP=NEW|OLD}
 {CFNAME=(cfname[,cfname]...) }
{ALTER,STRNAME=strname }
{REALLOCATE,[,FORCE] }
{MAINTMODE,CFNAME=(cfname[,cfname]...) }
```

ALTER,STRNAME or STRNM=strname

Specifies that structure alter processing should be stopped for the named structure. (Use the DISPLAY XCF,STRUCTURE command to determine which structures are being altered.)

The SETXCF STOP,ALTER command can be used to stop an alter in progress that was initiated either with a SETXCF START,ALTER command or with the IXLALTER programming interface.

STRNAME or STRNM=strname

Identifies the structure for which to stop structure alter processing.

CLASSDEF or CD,CLASS=classname

Deletes the definition for the specified transport class and frees the space allocated for message buffers. The transport class must be defined to XCF.
can delete a transport class only when no signalling paths are currently assigned to the class. You cannot delete the DEFAULT transport class definition.

MSGBASED

Switch to a policy-based protocol from the current message-based event and confirmation management protocol.

PATH or **PI**, **DEVICE**=([/indevnum],[/indevnum]...)

 Specifies the device number of one or more inbound signalling paths that XCF should no longer use. A device number, *indevnum*, is 3 or 4 hexadecimal digits, optionally preceded by a slash (/). If you specify only one device, you do not need to enter the parentheses.

A specified device must be defined to XCF as an inbound path.

Once the command completes successfully, XCF stops receiving signalling traffic along these paths and deallocates the device. The device is no longer defined to XCF as a signalling path. If a specified signalling path is the last path from another system in the sysplex, XCF rejects the command.

PATH or **PI**, **STRNAME** or **STRNM**=(strname,strname)...

 Specifies the name of one or more coupling facility structures that XCF should no longer use. The specified structure must be defined to XCF as an inbound path.

The structure name can be up to 16 alphanumeric characters long and must begin with an uppercase alphabetic character. If you specify only one structure name, you do not need to enter the parentheses.

UNCOND=**NO** or **YES**

UNCOND=**NO** stops a signalling path when no other stop commands are active against that path. **UNCOND**=**YES** stops a signalling path even when another stop command is active against that path. This operand stops an outstanding stop request and initiates a new one, recovering path resources so they are not lost for the duration of the IPL. Because a STOP command with the **UNCOND**=**YES** option might cause loss of signals, the system accepts the command only when an outstanding stop is active against a path.

Note: Use **UNCOND**=**YES** only at the direction of the system programmer.

PATHOUT or **PO**, **DEVICE**=([/outdevnum],[/outdevnum]...)

 Specifies the device number of one or more outbound signalling paths that XCF should no longer use to send messages. A device number, *outdevnum*, is 3 or 4 hexadecimal digits, optionally preceded by a slash (/). If you specify only one device, you do not need to enter the parentheses.

XCF stops sending signalling traffic along these paths, leaving the devices unallocated. The device is no longer defined to XCF as a signalling path. If a specified path is the last path to another system in the sysplex, XCF rejects the command.

PATHOUT or **PO**, **STRNAME** or **STRNM**=(strname,strname)...

 Identifies one or more coupling facility structures that XCF should no longer use. The specified structure must be defined to XCF as an outbound path.

The structure name can be up to 16 alphanumeric characters long and must begin with an uppercase alphabetic character. If you specify only one structure name, you do not need to enter the parentheses.
SETXCF Command

UNCOND=NO or YES
UNCOND=NO stops a signalling path when no other stop commands are active against that path. UNCOND=YES stops a signalling path even when another stop command is active against that path. This operand stops an outstanding stop request and initiates a new one, recovering path resources so they are not lost for the duration of the IPL. Because a STOP command with the UNCOND=YES option could cause loss of signals, the system accepts the command only when an outstanding stop is active against a path.

Note: Use UNCOND=YES only at the direction of the system programmer.

POLICY or POL,TYPE=name
Directs the system to deactivate the active policy for the type of service named.

TYPE=name
Specifies the name of the service that is using the couple data set for policy data. The supported service names are:
- ARM for automatic restart management
- CFRM for coupling facility resource management
- SFM for sysplex failure management

REBUILD or RB,POPULATECF or POPCF=cfname
Specifies the name of the coupling facility in which structure population is to stop. All structure rebuilds that were initiated by a SETXCF START,REBUILD,POPULATECF command will be stopped.

Note that you also can use the SETXCF STOP,REBUILD,CFNAME or SETXCF STOP,REBUILD,STRNAME to stop structure rebuilds that were initiated by a SETXCF START,REBUILD,POPULATECF command.

REBUILD or RB,DUPLEX,STRNAME or STRNM=(strname[,...])
Specifies the name of one or more coupling facility structures for which duplexing is to be stopped. You must also specify with the KEEP keyword which of the duplexed structures should remain after the duplexing operation has stopped.

The structure name can be up to 16 alphanumeric characters long and must begin with an uppercase alphabetic character. IBM names begin with SYS, or letters A-I. If you specify only one structure name, you do not need to enter the parentheses.

KEEP=NEW|OLD
Specifies which of the duplexed structures should remain after duplexing has stopped.

KEEP=NEW specifies that processing should switch to the new structure.
KEEP=OLD specifies that processing should fall back to the old structure.

Note: If the CFRM active policy specifies that the structure is DUPLEX(ENABLED), it is possible that the system will attempt to duplex the structure again immediately after the completion of the SETXCF STOP processing. To avoid this, change the structure’s DUPLEX setting in the CFRM policy to DUPLEX(ALLOWED) before initiating the SETXCF STOP or to DUPLEX(DISABLED) which will cause XES to initiate the stop processing. The structure’s DUPLEX setting can be changed back to DUPLEX(ENABLED) when required.
REBUILD or RB,DUPLEX,CFNAME=(cfname[,cfname]...)
Specifies the name of one or more coupling facilities in which structure duplexing is to stop.

Duplexing will be stopped for each structure in each specified coupling facility so that no structures involved in structure duplexing processing remain in the coupling facility. The structures are processed serially.

- If the specified coupling facility contains the new structure in the duplexed pair of structures, the system will fall back to the old structure.
- If the specified coupling facility contains the old structure in the duplexed pair of structures, the system will switch to the new structure.

The coupling facility name can be up to 8 alphanumeric characters long and must begin with an uppercase alphabetic character. If you specify only one coupling facility name, you do not need to enter the parentheses.

Note: If the CFRM active policy specifies that a structure in the coupling facility for which SETXCF STOP processing is requested is DUPLEX(ENABLED), it is possible that the system will attempt to duplex the structure again immediately after the completion of the SETXCF STOP processing. To avoid this, change the structure’s DUPLEX setting in the CFRM policy to DUPLEX(ALLOWED) before initiating the SETXCF STOP processing or to DUPLEX(DISABLED) which will cause XES to initiate the stop processing. The structure’s DUPLEX setting can be changed back to DUPLEX(ENABLED) when required.

REBUILD or RB,STRNAME or STRNM=(strname[,strname]...)
Specifies the name of one or more coupling facility structures for which rebuild processing is to stop. The structure name can be up to 16 alphanumeric characters long and must begin with an uppercase alphabetic character. IBM names begin with SYS, or letters A-I. If you specify only one structure name, you do not need to enter the parentheses.

REBUILD or RB,CFNAME or CFNM=(cfname[,cfname]...)
Specifies the name of one or more coupling facilities for which rebuild processing is to stop for all structures. The coupling facility name can be up to 8 alphanumeric characters long and must begin with an uppercase alphabetic character. If you specify only one coupling facility name, you do not need to enter the parentheses.

ALTER,STRNAME or STRNM=strname
Specifies that structure alter processing should be stopped for the named structure. (Use the DISPLAY XCF,STRUCTURE command to determine which structures are being altered.)

The SETXCF STOP,ALTER command can be used to stop an alter in progress that was initiated either with a SETXCF START,ALTER command or with the IXLALTER programming interface.

STRNAME or STRNM=strname
Identifies the structure for which to stop structure alter processing.

REALLOCATE[,FORCE] or REALLOC[,FORCE]
Specifies that an in-progress REALLOCATE process is to be stopped.

When stopping without specifying FORCE, REALLOCATE processing completes the steps for the current target structure then finishes. The status of the REALLOCATE processing will be “STOPPING” as shown by either the DISPLAY XCF,STR or the DISPLAY XCF,CF operator command.
SETXCF Command

When stopping with FORCE specified, REALLOCATE processing finishes immediately AND the step(s) for the current target structure might NOT be completed. Use the FORCE option when structure rebuild processing for the structure which is the target of the REALLOCATE process is not making progress.

When the process finishes, for the structures selected prior to the operator stopping the process, the processing provides a report (message IXC545I) summarizing the actions that were taken up to the time that processing was stopped.

To stop the REALLOCATE process does NOT require issuing the command without FORCE specified before issuing with FORCE specified.

MAINTMODE, CFNAME=(cfname, [cfname...])

Removes the maintenance mode indication from the specified coupling facility or facilities. When in maintenance mode, a CF is not eligible for CF structure allocation purposes. When the coupling facility is out of maintenance mode, the XCF allocation algorithm can select the CF for allocating a coupling facility structure.
The SLIP command controls SLIP (serviceability level indication processing), a diagnostic aid that intercepts or traps certain system events and specifies what action to take. Using the SLIP command, you can set, modify, and delete SLIP traps.

Table 4-40. Summary of the SLIP Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLIP SET</td>
<td>“Setting a SLIP Trap” on page 4-568</td>
</tr>
<tr>
<td>SLIP MOD</td>
<td>“Modifying an Existing SLIP Trap” on page 4-627</td>
</tr>
<tr>
<td>SLIP DEL</td>
<td>“Deleting an Existing SLIP Trap” on page 4-628</td>
</tr>
</tbody>
</table>

General information about the SLIP command is in the following topics:
- “Syntax”
- “Using SLIP Commands”
- “Processing of SLIP Commands” on page 4-562
- “Coding SLIP Command Parameters” on page 4-563

Syntax

The following introductory syntax gives you an overview of the entire command.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLIP SET[,options],END</td>
<td>Command for an error event trap (non-PER)</td>
</tr>
<tr>
<td>SLIP SET,IF[,options],END</td>
<td>Command for an instruction fetch PER trap</td>
</tr>
<tr>
<td>SLIP SET,SBT[,options],END</td>
<td>Command for a successful branch PER trap</td>
</tr>
<tr>
<td>SLIP SET,SA</td>
<td>SAS[,options],END</td>
</tr>
<tr>
<td>SLIP MOD[,options]</td>
<td>Command to modify an existing trap</td>
</tr>
<tr>
<td>SLIP DEL[,options]</td>
<td>Command to delete an existing trap</td>
</tr>
</tbody>
</table>

Notes:
- You must specify SET, MOD, or DEL immediately following SLIP.
- If you specify IF, SBT, SA, or SAS, it must immediately follow SET.
- You must specify END at the end of all SLIP SET commands.

More detailed syntax is presented in the following:
- “Syntax for an Error Event SLIP SET Command” on page 4-574
- “Syntax for an Instruction Fetch or Successful Branch SLIP SET PER Command” on page 4-575
- “Syntax for a Storage Alteration SLIP SET PER Command” on page 4-576
- “Syntax for the ACTION Parameters for the SLIP SET Command” on page 4-577
- “Modifying an Existing SLIP Trap” on page 4-627
- “Deleting an Existing SLIP Trap” on page 4-628

Using SLIP Commands

Use a SLIP command only at the direction of the system programmer. You can enter a SLIP command:
- On a console with MVS master authority.
- On a TSO terminal in OPERATOR mode.
- In a TSO CLIST.
SLIP Command

In the CLIST, use the line continuation character at the end of each line and the END parameter at the end of the last line.

- In an IEACMD00, COMMNDxx, or IEASLPxx parmlib member.

While you can enter a SLIP command in any of these members, IBM recommends that you place your SLIP commands in IEASLPxx and enter a SET SLIP=xx command to activate the member. IEACMD00 and COMMNDxx require that a command be on a single line. Also, SLIP may process commands in IEACMD00 and COMMNDxx in any order, but processes commands in IEASLPxx in the order in which they appear.

SLIP Traps in Systems in a Sysplex
For a sysplex containing similar systems, certain problems might require identical SLIP traps on those similar systems. To set up these traps, do the following:

1. Assign similar names to identical jobs on different systems. The names should form a pattern, such as JOB1, JOB2, JOB3, and so on.
2. Create one IEASLPxx member containing the trap you need for the problem.
 Use a REMOTE parameter in the SLIP command so that, the first time a trap matches on a system, the action will also be taken on other systems in the sysplex. For example, the SLIP command could request a dump on its system and, through REMOTE, on all the similar systems.
 Use an IDGROUP parameter so that, after the match, the identical traps on the other systems will be disabled.
 Use wildcards in parameters so that the command will process in all systems in the sysplex. For example, JOB? would indicate JOB1, JOB2, JOB3, and so on.
3. Place the member in the shared parmlib data set or in the parmlib data set for each of the similar systems.
4. In systems using JES2 or JES3, activate the member or members with the following command entered on one of the systems:

   ```language
   ROUTE *ALL,SET SLIP=xx
   ```

 If only some systems in the sysplex are similar, use a ROUTE command specifying a named subset of systems; see "ROUTE Command" on page 4-395 for details.

When a SLIP trap results in SVC dumps from multiple systems, each dump contains the same incident token. You can use the incident token to correlate the multiple dumps to one problem.

Processing of SLIP Commands
For an error event, the system gives control to SLIP before giving control to ESTAE or FRR recovery routines. This sequence allows SLIP to capture information before recovery routines change it, thus providing the advantage of working with the original problem data.

When you have defined more than one SLIP trap and SLIP gets control, SLIP first examines the most-recently defined trap. If SLIP does not find a match condition, it proceeds to the previously defined trap.

Any SLIP trap affects system performance, but PER traps can have a measurable effect on performance. Therefore, use conditions to filter the events being checked for matches, especially for PER traps. Improper use of PER traps can cause severe performance problems. See "Setting Effective SLIP PER Traps" on page 4-570.
Coding SLIP Command Parameters

The parameters can contain:
- Wildcard characters. See "Using Wildcards in Commands" on page 1-17.
- Indirect addresses.

Indirect Addresses

An indirect address is the address of a location or a general purpose register that contains another address. You can use indirect addressing with the following SLIP command parameters: DATA, LIST, REFAFTER, REFBEFOR, RANGE, STDATA, SUMLIST, SYSLIST and TRDATA.

Note: Indirect addresses used with SLIP are similar to those used with the TEST command in TSO except that:
- Unlimited levels of indirect addressing are permitted.
- Symbols are not used.
- Absolute addresses are not followed by a period.
- Address modifiers must be hexadecimal.

The elements of an indirect address used by SLIP are:

1. A direct address, which consists of 1 to 8 hexadecimal digits optionally followed by one or more displacements.

2. A 32-bit register (or the low half of a 64-bit register), in the form nR, where n is a decimal number from 0 to 15.

3. A 64-bit register, in the form nG, where n is a decimal number from 0 to 15. Note, if the G suffix is used on an ESA/390 system, it is translated to R.

4. Symbolics, which include the following forms:
 - BEAR (breaking event address register). Use the BEAR symbolic to access the address from where the last successful branch occurred, before the event that caused the SLIP action processor to receive control. When SLIP receives control for a MEMTERM, the value of the BEAR symbolic is 0.
 - BPER (beginning PER range). Use the BPER symbolic wherever an indirect address is used to refer to the beginning PER range. The BPER symbolic is most useful when using dynamic PER traps where the PER range of a subsequently activated trap is unknown when the traps are set.

 Note: When using REFBEFOR or REFAFTER, the value of BPER cannot be changed. For example, REFBEFOR (BPER,EQ,01) is not allowed.

5. An indirection indicator, which can be a percent sign (%), a question mark (?), or an exclamation point (!). The indirection indicator says that the information at the direct address or in the register is a fullword pointer to the data. A percent sign means that the pointer is a 24-bit address. A question mark means that the pointer is a 31-bit address. An exclamation point means that the pointer is a 64-bit address.

6. A displacement, which begins with a plus or minus sign and consists of 1 to 4 hexadecimal digits. The maximum displacement allowed is 7FFF.

In the expression

128%+4%+8%+C

128 is a direct address.
% signs indicate 24-bit indirect addressing.
+4, +8, and +C are displacements.

In the expression
2R??+4?+8?+C

2R is the register (general purpose register 2).
?? and ? indicate 31-bit indirect addressing.
2R?? is equivalent to 2R+0?.
+4, +8, and +C are displacements.

To refer to data when the address of the data is located at A24, specify A24?.
Graphically:

To refer to data when the address of the data is in general purpose register 2, specify 2R%. Graphically:

You can indicate as many levels of indirect addressing as necessary by following the initial indirect address with a corresponding number of percent signs or question marks. You can also include plus or minus displacement values. For instance, you can specify 5R%+4?. Graphically:

Shorthand Method for Specifying Addresses: When specifying more than one address in a SLIP parameter, you can use a shorthand method to specify any address after the first. The first address is written out completely and defines the base. The base consists of everything in the first address except the last displacement. (If no displacement is specified, SLIP assumes a displacement of zero.) When you specify subsequent addresses, you can omit the base.

The following example shows two ways of specifying a range from 2R%+4 through 2R%+7. In the shorthand method, the base is 2R% and SLIP adds the base to the displacement you specify.
When you are using shorthand to specify an address range, make sure that the ending address is greater than the starting address. Because SLIP does not consider the base to include the last displacement, the displacement you specify for the ending address must be greater than the displacement you specify for the starting address.

For example, it would be incorrect to specify a range as \(2R%+4,+3\). An error condition exists because the ending address is less than the starting address.

Indirect Addressing with the DATA, REFBEFOR, and REFAFTER Parameters:
The following discussion applies to the DATA, REFBEFOR and REFAFTER parameters when you specify multiple targets and use base/displacement shorthand.

The first direct or indirect address is written out completely and establishes the base. Subsequent addresses are written as plus or minus displacements from the base. For example,

\[
2R%+4,EQ,A24,2R%+8,NE,B66
\]

is written using shorthand form as

\[
2R%+4,EQ,A24,+8,NE,B66
\]

You must establish a direct or indirect base address before using displacements. In the following example, \(2R\) specifies the contents of general purpose register 2, not an address. Therefore, the example using a \(+6\) displacement is incorrect.

\(2R,EQ,C12,+6,NE,D01\)
Indirect Addressing with the LIST, RANGE, SUMLIST and TRDATA Parameters: When indirect addressing is used with the LIST, SUMLIST, RANGE or TRDATA parameters, the indirect addresses point to the beginning and end of a field of data. The following example shows a starting and ending address:

\[
\begin{array}{c}
\text{start} \\
10\%+2\%C\%\%, 10\%+2\%C\%\%+3\%F \\
\text{end}
\end{array}
\]

The same example in shorthand is:

\[
\begin{array}{c}
\text{start} \\
10\%+2\%C\%\%, +3\%F \\
\text{end}
\end{array}
\]

Graphically:

Qualifying Direct or Indirect Addresses to Address Spaces: You can qualify direct or indirect addresses in the DATA, REFBFOR, REFAFTER, LIST, RANGE, SUMLIST, and TRDATA parameters of the SLIP command. The qualifier can be the address space name or the job name of the job associated with the address space. If you omit an address space or job name qualifier, SLIP processing uses the current address space. The formats of the qualifiers are:

- `asid.addr`
- `'jobname'.addr`

`asid` is an explicit or symbolic address space qualifier. An explicit `asid` is a 1- to 4-digit hexadecimal ASID number. A symbolic `asid` is one of the following:

- CURRENT or CU Current address space
SLIP Command

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HASID or H</td>
<td>Home address space</td>
</tr>
<tr>
<td>I</td>
<td>Address space where the instruction executed</td>
</tr>
<tr>
<td>PASID or P</td>
<td>Primary address space</td>
</tr>
<tr>
<td>SA</td>
<td>Current alteration space used by an SA or SAS trap</td>
</tr>
<tr>
<td>SASID or S</td>
<td>Secondary address space</td>
</tr>
</tbody>
</table>

jobname

Is the job name that is associated with the address space. A `jobname` can be 1 to 8 alphanumeric and national ($, #, @) characters and is enclosed in single quotation marks. You can specify wildcards in `jobname` with the following exception: an * must be a suffix and cannot appear alone.

See "Using Wildcards in Commands" on page 1-17. When a `jobname` with wildcards qualifies an address, the system selects one job, whose corresponding address space has the lowest address space identifier (ASID).

addr

Is either a direct address of 1 to 8 hexadecimal digits or an indirect address.

Example: To list 8 bytes of data from address space 3 and 32 bytes of data from the primary address space at the time of interrupt or error, enter:

```
LIST=(3,3FC210,3FC217,P.3R%, +1F)
```

Indirect Addressing Using a Register: When you specify a register, SLIP normally uses the contents of the general purpose register to calculate an address. It uses the address space or data space associated with the related access register when all the following conditions are true:

- CURRENT is specified, or defaulted to
- The processor is in access register (AR) ASC mode
- The indirect address starts with a register indirection.

SLIP will continue to use that space until changed explicitly by a qualifier.

CURRENT can reset the space by negating the space previously found through an access register. The LIST value shown in the following example provides three storage ranges, in pairs. In AR ASC mode, the first two ranges are associated with access register 3. The third range is associated with location 8000 in the primary space.

When no register indirection is specified, SLIP will use the current address space.

```
LIST=(CU.3R%,+3,+6,+9,CU.8000,+4)
```

The LIST parameter value shown in the following example, also provides three storage ranges. In AR ASC mode the first range, 3R% to 4R%, is associated with the space indicated by access register 3. The second range, 5R% to 6R%, is also associated with the space indicated by access register 3.

The associated space changes only when the symbolic CURRENT is explicitly specified for the third pair, 7R% to 8R%. The symbolic CURRENT in this example changes the associated space to that indicated by access register 7.

```
LIST=(CU.3R%,4R%,5R%,6R%,CU.7R%,8R%)
```

You can use the BEAR symbolic to capture data about a wild branch as follows:

```
SLIP SET,C=0C1,DATA=(BEAR,EQ,nn),A=SVCD,E
```
In this example, if SLIP were entered to process an ABEND 0C1 and if the last successful branch occurred from \(nn \) (for example a possible branch to low storage from \(nn \)), an SVC dump is to be taken. The value of the BEAR symbolic is contained within SDWABEA in the dump.

You can use the BPER symbolic in conjunction with a dynamic PER trap where the range for an activated trap can be unknown.

\[
\text{SLIP SET,IF,LPAMOD=(MYMOD,60),A=TARGETID,\,TI=TRP2,\,ID=TRP1,E}
\]
\[
\text{SLIP SET,SA,A=SVCD,RA=(1R?),DATA=(BPER?,EQ,00),ID=TRP2,E}
\]

In this example, these two traps constitute a dynamic PER activation chain. The author is interested in taking an SVC dump when the first byte of the storage buffer that register 1 points to at offset 60 into MYMOD becomes zero. Without the use of the symbolic, you can not reference the address of this buffer in the trap.

Setting a SLIP Trap

The SLIP commands used to set SLIP traps are described in the following topics:

- "Structure of a SLIP SET Command"
 - Events
 - Conditions
 - Actions
 - Types of SLIP SET Parameters
- "Setting Effective SLIP PER Traps" on page 4-570
 - Keeping PER Traps from Slowing System Performance
 - PSWs Disabled for PER
 - Ignored PER Traps
 - Recursive Traps
 - PER Monitoring and Checkpoint/Restart
 - Dynamic PER Traps
- "Syntax for an Error Event SLIP SET Command" on page 4-574
- "Syntax for an Instruction Fetch or Successful Branch SLIP SET PER Command" on page 4-575
- "Syntax for a Storage Alteration SLIP SET PER Command" on page 4-576
- "Syntax for the ACTION Parameters for the SLIP SET Command" on page 4-577
- "SLIP SET Parameters" on page 4-583

Structure of a SLIP SET Command

In SLIP SET traps, you can indicate what kinds of **events** you want trapped and the system **conditions** for the trap, then specify what **action** the system is to take when the event occurs during the specified conditions.

Events: The kinds of events you can intercept are:

- **Error event:** This is also called a **non-PER** event. The trap is set by the command:
 \[
 \text{SLIP SET[,options],END}
 \]
 The error events are:
 - An ABEND macro issued by a task
 - Dynamic address translation error
 - Software error caused by a machine check
 - Abnormal end of an address space
 - Paging I/O error
 - Program check interruption
 - Restart interruption
Note: SLIP does not trap errors that are intercepted by SPIE or ESPIE routines.

Program event recording (PER) event: The PER events are:

- **Instruction fetch:** The trap is set by the command:

 SLIP SET,IF[,options],END

- **Successful branch:** The trap is set by the command:

 SLIP SET,SBT[,options],END

- **Storage alteration:** The trap is set by one of these commands:

 SET SET,SA[,options],END
 SET SET,SAS[,options],END

Notes:
1. The parameters IF, SA, SAS, and SBT are positional. If you specify any one of them, it must directly follow a comma immediately after SLIP SET.
2. It is not possible to set a SLIP trap for the storage alteration of a hiperspace.

Conditions: The error and PER events you can trap are quite general, and you probably would not want to take an action each time such an event occurs. To narrow the scope of SLIP processing, you can qualify the event by requesting exactly what condition the system must be in when the error or PER event happens in order for the action to occur. The system checks each specified condition to see if it corresponds to the system condition at the time of the error or PER interruption.

The conditions you specify serve as filters to screen out those events in which you are not interested. A **match** for the trap occurs when the specified conditions are the same as the system conditions. A **no-match** occurs when the specified conditions are not the same as the system conditions. Only when all the conditions you specify match the system conditions will your action be taken.

Among the conditions you can specify are:

- The system mode at the time of the error or PER interruption
- A user or system completion code and reason code associated with an error
- The name of a job that must be in control at the time of the error or PER interruption
- The name of the job step program that must be in control at the time of the error or PER interruption
- The module name, entry point name, or address range where the error or PER interruption must occur
- The address space that must be in control at the time of the error or PER interruption
- The contents of specific storage locations and/or registers at the time of the error or PER interruption

If you omit a particular condition, the system does not check for that condition.

Actions: When one of these events occurs, you can take one of the following actions:

- Request an SVC dump tailored specifically to your needs
- Cause a system trace record to be written (PER only)
- Cause a generalized trace facility (GTF) trace record to be written
- Cause a logrec record to be written
SLIP Command

- Put the system in a wait state
- Suppress system or problem program dumps (for error events only)
- Cause the recovery routines of the interrupted program to get control (PER only)
- Ignore the event

You can also request an additional action to be taken before or after the main action.

Types of SLIP SET Parameters: SLIP SET parameters are in five functional groups: event, condition, action, trap control, and specialized.

Table 4-41. Summary of the SLIP SET parameters

<table>
<thead>
<tr>
<th>Function:</th>
<th>Parameters:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event parameters: Indicate the event to be monitored and trapped.</td>
<td>IF SAS SBT</td>
</tr>
<tr>
<td>Condition parameters: To narrow the scope of the trap, the condition parameters specify system conditions that qualify the event.</td>
<td>ADDRESS JOBNAME NUCMOD ASID JSPGM PSWASC ASIDSA LPAEP PVTEP COMP LPAMOD PVTMOD DATA MODE RANGE DSSA MSGID REASON ERRYPF NUCPEP</td>
</tr>
<tr>
<td>Action parameters: These parameters specify what the system is to do when the trap matches.</td>
<td>IGNORE RECORD SUBTRAP NODUMP RECOVERY SVCD NOSUP REFAFTER SYNSVCD NOSVCD REFBFOR TARGETID NOSYSA STDUMP TRACE NOSYSM STOPGTF TRDUMP NOSYSU STRACE WAIT</td>
</tr>
<tr>
<td>The following parameters are options to tailor the action that the system is to do.</td>
<td>ASIDDST LIST SDATA TRDATA DSPNAME REMOTE STRLIST GTFID REFAFTER SUMLIST JOBLIST REFBFOR TARGETID</td>
</tr>
<tr>
<td>Trap control parameters: These parameters control the operation of the trap.</td>
<td>DISABLE IDGROUP PRCNTLIM ENABLE MATCHLIM</td>
</tr>
<tr>
<td>Specialized parameters:</td>
<td>DEBUG ID RBLEVEL END OK</td>
</tr>
</tbody>
</table>

Setting Effective SLIP PER Traps
This topic describes where to place SLIP PER traps and how to keep SLIP PER traps from affecting system performance.

Note: Only one PER trap with an action other than IGNORE can be eligible for checking at any one time. But see "Multiple PER Traps" on page 4-571.

Keeping PER Traps from Slowing System Performance: For PER traps, limit PER monitoring to minimize slowing of the system:

- To reduce the range of storage monitored by the PER hardware:
 - For instruction fetch or successful branch PER traps, use the value in the LPAEP, LPAMOD, NUCEP, NUCMOD, PVTEP, PVTMOD, or RANGE parameter
 - For storage alteration PER traps, use the RANGE value

 Limiting the range avoids processing unnecessary PER interrupts.
For non-IGNORE PER traps, use the JOBNAME parameter to limit PER monitoring to the address spaces in which the specified job runs. Use JOBNAME rather than ASID so that SLIP does PER monitoring for the job, even if some of the work runs in an address space other than the one in which the job was dispatched.

But, if a non-IGNORE PER trap might produce PER interrupts in an undesired address space, do the following:
- Use the ASID parameter to limit PER monitoring to the address space(s) identified on the parameter.
- Use MODE=HOME to request PER monitoring only when the unit of work runs in the address space in which it was dispatched.

If a PER trap will produce PER interrupts for only one job or in only the desired address spaces, even if PER is active in all address spaces, perhaps because of the range specified, then do not specify an ASID parameter or MODE=HOME.

If you do not take measures to limit SLIP’s use of system resources, your system may encounter performance problems. Use a monitoring product, such as RMF, to monitor the amount of system resources SLIP is using.

Note: The SLIP PER support is designed not to disrupt processing, even though this design means that a trap might fail to collect data or might not cause a requested action.

PSWs Disabled for PER: Certain processing cannot tolerate PER interrupts. For that processing, the PSW PER bit is set off to prevent interrupts. PER is disabled in the new PSWs for:
- Program check
- Machine check
- Restart

PER remains disabled in such critical paths until processing reaches a point where a PER interrupt can be accepted.

Ignored PER Traps: SLIP ignores — that is, does not process — PER events if:
- The PER interrupt occurred while DAT was off. SLIP PER support applies only to virtual addresses.
- The PER interrupt is redundant. See Principles of Operation for a description of redundant PER interrupts.
- The PER interrupt occurred, but an enabled non-IGNORE PER trap does not exist. SLIP does the following:
 - Ignores a PER interrupt caused by a non-SLIP tool that set up the PER control registers.
 - Turns off the PER bit in the resume PSW before returning to the first level interrupt handler (FLIH) for program checks. When the PER bit is off, the SLIP trap will not match.

Multiple PER Traps: It is not necessary to set SLIP traps individually and run a failing job multiple times, using one trap for each execution until a dump is taken. You can set SLIP PER traps at multiple points in a load module as follows: use a non-IGNORE PER trap to monitor the range that encompasses all of the points in which you are interested, followed by several IGNORE PER traps to prevent the SLIP action from being taken on the intervening instructions in which you are not interested. For example:
In the above example, SLIP ID=JW01 would be set (disabled) first, followed immediately by SLIP IDs JW02, JW03, JW04, and JW05, all of which would also be set disabled. The final SLIP command (SL MOD,EN,ID=JW0*) would then enable all five of the SLIPs, but in reverse order, which is exactly what is required. Thus, the messages issued would be:

IEE727I SLIP TRAP ID=JW01 SET
IEE727I SLIP TRAP ID=JW02 SET
IEE727I SLIP TRAP ID=JW03 SET
IEE727I SLIP TRAP ID=JW04 SET
IEE727I SLIP TRAP ID=JW05 SET

IEE727I SLIP TRAP ID=JW05 ENABLED
IEE727I SLIP TRAP ID=JW04 ENABLED
IEE727I SLIP TRAP ID=JW03 ENABLED
IEE727I SLIP TRAP ID=JW02 ENABLED
IEE727I SLIP TRAP ID=JW01 ENABLED

When the failing job was then executed (only one execution would be necessary) a PER (hardware) interruption would be taken on the execution of every instruction in the specified range (58CA4,85440). At each of those interruptions, the software PER routines would gain control; they would run the chain of enabled SLIP traps to see if there were any IGNORE traps encompassing the specific address at which that particular interruption had occurred.

If the system does find an IGNORE trap, PER processing for that interruption would then be complete and control would return to the application program to continue executing. However, if the system does not find an IGNORE trap, it will take the action specified in the non-IGNORE trap (JW01). This is a dump at exactly the desired point, that is, at the instruction beginning at one of the locations 58CA4, 5C80C, 5D0B4, 5DD9E, or 85440.

For convenience you can enter all of these SLIP traps in an IEASLPxx member and then set (SET SLIP=xx) to that member. That way, if you’ve made an error in one of the SLIPs you need only correct that one error, add five SLIP DEL,ID=JWxx statements to the beginning of the IEASLPxx member, and then reset to that member. This process is easier than reentering every SLIP trap from the console. If you do this, the above IEE727I message would be preceded by

SET SLIP=xx

IEE252I MEMBER IEASLPxx FOUND IN PARMLIB

and followed by

IEE536I SLIP VALUE xx NOW IN EFFECT

Recursive Traps: Do not specify a recursive trap, that is, do not place a PER trap in a function and then specify an action that causes SLIP to use the function. Some system services that SLIP uses check for recursion and prevent it.

For example, suppose a SLIP trap is placed in generalized trace facility (GTF) entry code and the trap specifies ACTION=TRACE. When the trap matches, GTF does not write a trace record because of the recursive checks within GTF.
A similar situation exists with other trace actions, dump actions, and wait. In general, recursions result in the action not being taken. Avoid recursions by choosing an appropriate SLIP action.

PER Monitoring and Checkpoint/Restart: Checkpoint/restart does not include support for SLIP PER monitoring. The effects of PER on restarting a checkpointed program follow:

- **No PER monitoring before checkpoint, no PER monitoring after restart:** A program is running in an address space not monitored for PER interrupts; the program is checkpointed. If the program is restarted in an address space monitored for PER interrupts, SLIP does not monitor the restarted program.

- **PER monitoring before checkpoint, no PER monitoring after restart:** A program is running in an address space monitored for PER interrupts; the program is checkpointed. If it is restarted in an address space not monitored for PER interrupts, but other address spaces are being monitored, unwanted PER interrupts may occur, depending on the PER control register settings. If unwanted PER interrupts occur in the restarted program, SLIP disables the PSW PER bit in the restarted program. This action can eventually remove all performance problems because of the unwanted PER interrupts from the restarted program.

- **PER monitoring before checkpoint, no PER monitoring after restart:** A program is running in an address space monitored for PER interrupts; the program is checkpointed. If the program is restarted and PER monitoring is not active in the system, the system performance might slow down because the PSW PER bit is enabled in the restarted program.

Dynamic PER Traps: TARGETID, along with indirect addressing on the RANGE parameter, allows you to activate a new PER trap dynamically once the previous trap has been deactivated as a result of MATCHLIM. In the next example, specifying TARGETID=TR2 on the first PER trap will cause the second PER trap, ID=TR2, to activate when the first trap deactivates. The address range of the second PER trap is determined by the contents of register 1 when the MATCHLIM occurs.

First PER trap:
```plaintext
SLIP SET,IF,RANGE=10000,TARGETID=TR2,ACTION=TARGETID,END
```

Second PER trap:
```plaintext
SLIP SET,SA,DISABLE,RANGE=1R?,ID=TR2,ACTION=SVCD,END
```

The second PER trap can specify a third trap and so on. There is no limit to the number of traps in a chain of dynamic traps, which is called a dynamic PER activation chain.

Each PER trap can be of any kind and have its own unique set of matching criteria or filters. However, PER traps will be active only for address spaces specified in the initial trap by the JOBNAME, ASID, and MODE=HOME parameters. Therefore IBM recommends that an ASID parameter specified in the initial trap must include all address spaces for the subsequent traps. For example, it makes sense to specify ASID=(1,2,3) on the initial trap and ASID=(1,2) on the second trap, but not the reverse, because no units of work would be monitored in ASID=3.

Rules for dynamic PER traps:
- TARGETID can be used with all PER traps except IGNORE.
When TARGETID is one of the parameters, you must also specify it as one of the actions. Otherwise the TARGETID parameter will be ignored.

- Each of the PER traps can have its own independent action.
- When TARGETID is specified the default value for MATCHLIM is 1.
- The RANGE parameter on all PER traps support indirect addressing.
- A dynamic PER activation chain is defined when every TARGETID can be associated with some PER trap. SLIP does not allow the traps of the chain to be enabled unless the definition is complete.

A PER trap within a dynamic PER activation chain cannot target itself or a preceding trap in the chain. In other words, a dynamic PER activation chain cannot be a circular chain.

Members of the chain cannot be deleted. Any attempt to delete a member will result in message IEE408I being issued.

You can disable any trap in the chain in order to delete the chain. This can aid in tracking down the currently active trap.

- SLIP allows specification of NUCMOD, PVTMOD, and LPAMOD on the trap. However for PVTMOD, the cross memory lock (CML) of the primary address space that existed at the time of the PER interrupt must be immediately obtainable in order to search for the specified load module. If the CML is obtainable but the system does not find the specified load module, it puts the target trap into an enabled but inactive state.

Syntax for an Error Event SLIP SET Command

The following considerations apply:

- Do not enter a SLIP trap that uses all the defaults (SLIP SET,END). The defaults (ENABLE, RBLEVEL=ERROR, ACTION=SVCD, and MATCHLIM=1) cause the system to issue message IEA412I and request an SVC dump for a non-error condition.
- If you specify only one nodump value on the ACTION parameter, you do not need to enclose it in parentheses.

```plaintext
SLIP SET

[,ADDRESS=(start[,end]) ]
 [,LPAEP=(name[,start[,end]])]
 [,LPAMOD=(name[,start[,end]])]
 [,NUCEP=(name[,start[,end]])]
 [,NUCMOD=(name[,start[,end]])]
 [,PVTMOD=(name[,start[,end]])]
 [,ASID=(asid[,asid]...)]
 [,COMP=code[,REASON=code]]
 [,DATA=(comparison[,comparison]...)]
 [,ERRYP=(type,[,type]...)]
 [,JOBNAME={userid | jobname}]
 [,JSPGM=name]
 [,MSGID=message-id]
 [,MODE= (mode[,mode]...[ANY | EVERY])] 
 [,PSWASC=(mode[,mode]...)]
```

4-574 z/OS V1R11.0 MVS System Commands
SLIP Command

Syntax for an Instruction Fetch or Successful Branch SLIP SET PER Command

The following considerations apply:

- Only one PER trap with an action other than IGNORE can be eligible for checking at any one time.
- Except when ACTION=IGNORE is specified, one of the following parameters is required: LPAEP, LPAMOD, NUCEP, NUCMOD, PVTEP, PVTMOD, or RANGE. With ACTION=IGNORE, these parameters are optional.
- If you specify only one value in the ACTION parameter, you do not need to enclose it in parentheses.

SLIP SET,[IF|SBT]

[.LPAEP=(name[,start[,end]])]
[.LPAMOD=(name[,start[,end]])]
[.NUCEP=(name[,start[,end]])]
[.NUCMOD=(name[,start[,end]])]
[.PVTEP=(name[,start[,end]])]
[.PVTMOD=(name[,start[,end]])]
[.RANGE=(start[,end])]

[.ASID=(asid[,asid]...)]

[.DATA=(comparison[,comparison]...)]

[.JOBNAME={userid | jobname}]

[.JSPGM=name]

[.MODE= (mode[,mode]...[,ANY | EVERY])]

[.PSWASC=(mode[,mode]...)]
SLIP Command

Syntax for a Storage Alteration SLIP SET PER Command
Use the SLIP SET,SA command to set a PER storage alteration trap.

Use the SLIP SET,SAS command to set a PER storage alteration trap pertaining to the STURA assembler instruction. The command traps a store into the virtual address range as well as a store done by STURA. The trap can use other parameters to check changes to the virtual range.

The following considerations apply:
- Only one PER trap with an action other than IGNORE can be eligible for checking at any one time.
- Except when ACTION=IGNORE is specified, the RANGE parameter is required. With ACTION=IGNORE, RANGE must not be specified.
- If you specify only one value in the ACTION parameter, you do not need to enclose it in parentheses.
SLIP SET,(SA|SAS)

[,ADDRESS=(start[,end])]
[,LPAP=(name[,start[,end]])
[,LPAMOD=(name[,start[,end]])
[,NUCEP=(name[,start[,end]])
[,NUCMOD=(name[,start[,end]])
[,PVTEP=(name[,start[,end]])
[,PVTMOD=(name[,start[,end]])

[,RANGE=(start[,end])]
[,ASID=(asid[,asid]...)]
[,ASIDS=(asid | 'jobname'[,asid | 'jobname']...)]
[,DATA=(comparison[,comparison]...)]
[,DSSA=(asid.name | 'jobname'.name[,asid.name | 'jobname'.name]...)]
[,JOBNAME={userid | jobname}]
[,JSPGM=name]
[,MODE=(mode[,mode]...[,ANY | EVERY])]
[,PSWASC=(mode[,mode]...)]

[,ACTION=

[(IGNORE [,RECOVERY])]
[(RECOVERY [,REFAFTER] [,REFBEFORE] [,STOPGT], [TARGETID])[options]]
[(STDUMP [,REFAFTER] [,REFBEFORE] [,STOPGT], [TARGETID])[options]]
[(STOPGT [,REFAFTER] [,REFBEFORE] [,TARGETID])[options]]
[(STRACE [,REFAFTER] [,REFBEFORE] [,STOPGT], [TARGETID])[options]]
[(SYNCSVCD [,REFAFTER] [,REFBEFORE] [,STOPGT], [TARGETID])[options]]
[(SVCD [,REFAFTER] [,REFBEFORE] [,STOPGT], [TARGETID])[options]]
[(TRACE [,RECOVERY] [,REFAFTER] [,REFBEFORE] [,STOPGT], [TARGETID])[options]]
[(TRDUMP [,RECOVERY] [,REFAFTER] [,REFBEFORE] [,STOPGT], [TARGETID])[options]]
[(WAIT [,RECOVERY] [,REFAFTER] [,REFBEFORE] [,STOPGT], [TARGETID])[options]]

[,ENABLE | ,DISABLE]

[,IDGROUP=groupid]

[,MATCHLIM=m]
[,MATCHLIM=1] for ACTION=SVCD or ACTION=SYNCSVCD
[,MATCHLIM=50] for ACTION=STDUMP or ACTION=STRACE

[,PRCNTLIM=p] [PRCNTLIM=10]

[,DEBUG]
[,ID=trapid]
[,OK]

,END

Syntax for the ACTION Parameters for the SLIP SET Command

ACTION=IGNORE[,option]
ACTION=IGNORE[,RECOVERY])

Where option is:

[,RECORD]
SLIP Command

ACTION=(nodump[,nodump]...)[,option]

Where nodump is:

NODUMP
NOSVCD
NOSYSA
NOSYSM
NOSYSU

Where option is:

[,RECORD]

ACTION=NOSUP[,option]

Where option is:

[,RECORD]

ACTION=RECORD

ACTION=RECOVERY
ACTION=(RECOVERY[,REFAFTER][,REFBEFOR][,TARGETID)][,options]

Where the options are:

[,REFAFTER=(triplet[,triplet]...)]
[,REFBEFOR=(triplet[,triplet]...)]
[,TARGETID=(trapid)]

ACTION=REFAFTER,REFAFTER=(triplet[,triplet]...)
ACTION=REFBEFOR,REFBEFOR=(triplet[,triplet]...)

ACTION=STDUMP[,options]
ACTION=(STDUMP[,REFAFTER][,REFBEFOR][,STOPGTF][,TARGETID])[,options]

Where the options are:

[,ASIDLST=(asid[,asid]...)]
[,DSPNAME=(asid.name | 'jobname'.name[,asid.name | , 'jobname'.name]...)]
[,LIST=(start,end[,start,end]...)]
[,REFAFTER=(triplet[,triplet]...)]
[,REFBEFOR=(triplet[,triplet]...)]
[,SDATA=(area[,area]...)]
| ,SDATA=(NOALLPSA, NOALLSQA,NOSUM,TRT)
[,SUMLIST=(start,end[,start,end]...)]
[,TARGETID=(trapid)]

ACTION=STOPGTF
ACTION=STRACE
ACTION=(STRACE[,REFAFTER][,REFBEFOR],[STOPGTF],[TARGETID])[,options]

Where the options are:

[,REFAFTER=(triplet[,triplet]...)]
[,REFBEFOR=(triplet[,triplet]...)]
[,TARGETID=(trapid)]
[,STDATA=(start,end[,start,end]...)]
ACTION=SVCD[,options]
ACTION=(SVCD[,RECOVERY][,REFAFTER][,REFBEFORE][,STOPGTF][,TARGETID)][,options]

Where the options are:

[,ASIDLST=(asid[,asid]...)]
[,DSPNAME=(asid.name | 'jobname'.name[,asid.name | , 'jobname'.name]...)]
[,JOBLIST=(jobname[,jobname]...)]
[,LIST=(start,end[,start,end]...)]
[,RECORD]
[,REFAFTER=(triplet[,triplet]...)]
[,REFBEFORE=(triplet[,triplet]...)]
[,REMOTE= {COND,remote}|
 {COND,remote}[,(remote)...]
 {remote}[,(remote)]]
[,SDATA=(area[,area]...)]
[,STRLIST=(s-option[,s-option]...)]
[,SUMLIST=(start,end[,start,end]...)]
[,TARGETID=(trapid)]

Where remote in the REMOTE parameter is:

[,SYSLIST=(sysname,group.member,group.*,(start),...)]
[,ACTION=SVCD | WAIT]
[,ASIDLST=(asid[,asid]...)]
[,DSPNAME=(asid.name | 'jobname'.name[,asid.name | , 'jobname'.name]...)]
[,JOBLIST=(jobname[,jobname]...)]
[,LIST=(start,end[,start,end]...)]
[,SDATA=(area[,area]...)]
[,STRLIST=(s-option[,s-option]...)]

Where s-option in the STRLIST parameter is:

STRNAME=strname
[,CONNAME=conname]
[,ACCESSTIME={ENFORCE | NOLIMIT}]
[,LOCKENTRIES]
[,USERCNTLS]
[,EVENTQS]
[,EMCONTROLS={ALL | (list)}]
[,COCLASS | STGCLASS | LISTNUM={ALL | (list)}]
[,ADJUNCT=(CAPTURE|DIRECTIO)]
[,ENTRYDATA={UNSERIALIZE|SERIALIZE}]
[SUMMARY]
ACTION=SYNCSVCD[,options]
ACTION=(SYNCSVCD[,REFAFTER],[REFBEFORE],[STOPGTF],[TARGETID])[,options]

Where the options are:

[,ASIDLST=(asid[,asid]...)]
[,DSPNAME=(asid.name | 'jobname'.name[,asid.name | 'jobname'.name]...)]
[,LIST=(start,end,[start,end]...)]
[,REFAFTER=(triplet[,triplet]...)]
[,REFBEFORE=(triplet[,triplet]...)]
[,REMOTE=({UNCOND | COND,remote})
 {({UNCOND COND,(remote),,(remote)...)})
 {({remote},(remote)...)}}
[,SDATA=(area[,area]...)]
[,SDATA=(ALLPSA,CSA,LPA,NUC,RGN,
 SQA,SUM,INT)]
[,STRLIST=(s-option[,s-option]...)]
[,SUMLIST=(start,end,[start,end]...)]
[,TARGETID=(trapid)]

Where remote in the REMOTE parameter is:

[,SYSLIST=(sysname,group.member,group.*,,(start),...)]
[,ACTION=SYCVD | WAIT]
[,ASIDLST=(asid[,asid]...)]
[,DSPNAME=(asid.name | 'jobname'.name[,asid.name | 'jobname'.name]...)]
[,JOBLIST=('jobname',,jobname)...
[,LIST=(start,end,[start,end]...)]
[,SDATA=(area[,area]...)]
[,STRLIST=(s-option[,s-option]...)]

Where s-option in the STRLIST parameter is:

STRNAME=strname
[,CONNNAME=conname]
[,ACCESSTIME={ENFORCE | NOLIMIT}]
[,LOCKENTRIES]
[,USERCNTLIS]
[,EVENTQS]
[,,(EMCONTROLS={ALL | (list)})]
[,,(CCLASS | STGCLASS | LISTNUM={ALL | (list)})
 {([,ADJUNCT={CAPTURE|DIRECTIO}[,ENTRYDATA={UNSERIALIZE|SERIALIZE}]})
 {([,SUMMARY]})}

ACTION=TARGETID,TARGETID=(trapid)
SLIP Command

ACTION=TRACE[,options]

ACTION=(TRACE[,RECOVERY][,REFAFTER][,REFBEFOR],[STOPGTF],[TARGETID)][,options]

Where the options are:

1. **[,RECORD]**
2. **[,REFAFTER=(triplet[,triplet]...)]**
3. **[,REFBEFOR=(triplet[,triplet]...)]**
4. **[,TARGETID=(trapid)]**
5. **[,TRDATA=((STD[,REGS][,list]])**
 - **{REGS[,list] }**
 - **{list }**

ACTION=TRDUMP[,options]

ACTION=(TRDUMP[,RECOVERY][,REFAFTER][,REFBEFOR],[STOPGTF],[TARGETID)][,options]

Where the options are:

1. **[,ASIDLST=(asid[,asid]...)]**
2. **[,DSPNAME=(asid.name | 'jobname'.name[,asid.name | 'jobname'.name]...)]**
3. **[,LIST=(start,end[,start,end]...)]**
4. **[,RECORD]**
5. **[,REFAFTER=(triplet[,triplet]...)]**
6. **[,REFBEFOR=(triplet[,triplet]...)]**
7. **[,SOATA=(area[,area]...)]**
8. **[,SDATA=(NOALLPSA,NOALLSQA,NOSUM,TRT)]**
9. **[,STRLIST=(s-option[,s-option]...)]**
10. **[,SUMLIST=(start,end[,start,end]...)]**
11. **[,TARGETID=(trapid)]**
12. **[,TRDATA=((STD[,REGS][,list]])**
 - **{REGS[,list] }**
 - **{list }**

Where **s-option** in the STRLIST parameter is:

- **STRNAME=strname**
- **[,CONNAME=conname]**
- **[,ACCESSTIME={ENFORCE | NOLIMIT}]**
- **[,LOCKENTRIES]**
- **[,USERCNTLS]**
- **[,EVENTQS]**
- **[,EMCONTROLS={ALL | (list)}]**
- **[,CCCLASS | STGCLASS | LISTNUM)={ALL | (list)}]**
- **{[,ADJUNCT={CAPTURE|DIRECTIO}],ENTRYDATA={UNSERIALIZE|SERIALIZE]}**
- **{[,SUMMARY] }**
ACTION=WAIT[,options]
ACTION=(WAIT[,RECOVERY][,REFAFTER][,REFBEFORE][,STOPGTF][,TARGETID]][,options]

Where the options are:

[,RECORD]
[,REFAFTER={(triplet[,triplet]...)}]
[,REFBEFORE={(triplet[,triplet]...)}]
[,REMOTE={ (UNCOND | COND,remote) }
 { (UNCOND | COND,(remote) [, (remote)]...)
 { (remote) [, (remote)]...}

[,TARGETID=(trapid)]

Where remote in the REMOTE parameter is:

[,SYSLIST={(sysname,group.member,group.*, (start),...)]
[,ASIDLST={(asid[,asid]...)}
[,DSPNAME={(asid.name | 'jobname'.name[,asid.name | , 'jobname'.name]...)]
[,JOBLIST=(jobname[,jobname]...)]
[,LIST=(start,end,[start,end]...)]
[,SDATA={(area[,area]...)]
[,STRLIST={(s-option[,s-option]...)]

Where s-option in the STRLIST parameter is:

STRNAME=strname
[,CONNAME=conname]
[,ACCESSTIME={ENFORCE | NOLIMIT}]
[,LOCKENTRIES]
[,USERCNTLS]
[,EVENTQS]
[,EMCONTROLS={ALL | (list)}]
[,((COCLASS | STGCLASS | LISTNUM)={ALL | (list)})
 { ([ADJUNCT={CAPTURE|DIRECTIO}][ENTRYDATA={UNSERIALIZE|SERIALIZE}])
 { [SUMMARY] }
 }

SLIP SET Parameters
The parameters are presented alphabetically.

ACTION=value
ACTION=(value[,value]...)

Specifies what you want the system to do when the trap matches system conditions. The value is:

- IGNORE
- nodump, which is NODUMP, NOSVCD, NOSYSA, NOSYSM, and/or NOSYSU
- NOSUP
- RECORD
- RECOVERY
- REFAFTER
- REFBEFORE
- STOPGTF
- STDUMP
- STRACE
- SUBTRAP
SLIP Command

- SVCD
- SYNCSVCD
- TARGETID
- TRACE
- TRDUMP
- WAIT

If you omit the ACTION parameter, the default is ACTION=SVCD. If you specify more than one value, enclose the values in parentheses and separate them by commas.

Abbreviation: A

ACTION=IGNORE

When the trap matches for an error or PER event, requests that the system resume normal processing.

You can use IGNORE in a narrowly defined trap to exclude a subset of events from being trapped by a more general trap. For PER traps, the IGNORE trap must be the same type (IF, SA, SAS or SBT) as the more general trap or it will not be tested. For IF and SBT PER traps, use IGNORE traps to simulate multiple ranges for monitoring.

An IGNORE trap does not prevent PER interrupts from occurring in the range specified in the IGNORE trap; consider this fact when you set a percent time limit (PRCNTLIM) for a more general IF or SBT PER trap.

Use MATCHLIM on an IGNORE trap to ignore a specified number of events before SLIP takes the action on an associated non-IGNORE trap.

Note: If a recovery routine requests a dump, ACTION=IGNORE on a SLIP trap matching the error event will not suppress the dump. Specify NODUMP to suppress the dump.

Example:

```
ACTION=IGNORE
```

ACTION=nodump

ACTION=(nodump, nodump)*

When the trap matches for an error event, suppresses any dumps for the error requested by the system or a program.

This ACTION value is not valid for a PER trap.

The *nodump* is one of the following. If you specify only one value, omit the parentheses.

NODUMP

Suppresses SVC, SYSABEND, SYSUDUMP, or SYSMDUMP dumps requested while the system processes the error. NODUMP is useful for preventing dumps that may not be needed because accompanying messages provide all the needed problem data.

Note: NODUMP may not be effective for abend codes of 13E, 222, 33E, and 922.

NOSVCD

Suppresses all SVC dumps requested while the system processes the error.
NOSYSA
Suppresses all SYSABEND dumps requested while the system processes the error.

NOSYSM
Suppresses all SYSMDUMP dumps requested while the system processes the error.

NOSYSU
Suppresses all SYSUDUMP dumps requested while the system processes the error.

Example:
ACTION=(NOSYSA,NOSYSM)

When you specify ACTION=NODUMP, make sure the SLIP trap is specific. If your SLIP trap is too general, you might suppress dumps needed for other problems. For example, if you specify only a system completion code, all dumps for that code are suppressed. However, if you specify both a completion code and a job name, other jobs that abend with that completion code still produce dumps. The following example shows a specific SLIP definition with a completion code and job name:

SLIP SET, ACTION=NODUMP, COMP=806, JOBNAME=D10AXH1A, END

If a second error occurs during system processing for an event with ACTION=NODUMP specified, any dump requested for the second error is also suppressed. You can determine if a second error has occurred by checking both the job output messages and the logrec output. If either contains more than one abend, a second error occurred. If you need a dump for the second error, disable the SLIP trap that specifies ACTION=NODUMP and rerun the failing job.

ACTION=NOSUP
When the trap matches for an error event, prevents suppression by dump analysis and elimination (DAE) of any dumps requested for the error by the system or a program.

This ACTION value is not valid for a PER trap.

Example:
ACTION=NOSUP

ACTION=RECORD
When the trap matches for an error event, forces logrec data set recordings for every recovery routine, regardless of what the recovery routine specifies.

This ACTION value is not valid for a PER trap.

You can specify RECORD as the only ACTION value or as an option of the ACTION parameter in an error event trap. RECORD is not valid for a PER trap.

Example: To force a logrec recording for a X'0C6' abend by function recovery routines (FRRs) and ESTAE routines, enter:

SLIP SET, C=0C6, ACTION=RECORD, END

ACTION=RECOVERY
Initiates recovery processing for the interrupted process when the trap matches for a PER event. Any other action you specify is done before the recovery processing begins. Recovery processing initially causes the system to issue an X'06F' abend, but the recovery routines might change the abend code.

This ACTION value is not valid for an error event trap.
You can specify RECOVERY as the only ACTION value or with an ACTION value of IGNORE, SVCD, TRACE, TRDUMP, or WAIT in a PER trap.

Use the RECOVERY value carefully to avoid unexpected results. Before using RECOVERY, familiarize yourself thoroughly with the MVS recovery principles. In particular, ensure that recovery procedures have been established at the point where you are forcing recovery processing, and know what the recovery routines will do under the circumstances in which you are forcing recovery processing. See z/OS MVS Programming: Authorized Assembler Services Guide for more information about recovery processing.

ACTION=REFAFTER
ACTION=REFBEFORE

When the trap matches for a PER event, refreshes the contents of storage locations or registers.

This ACTION value is not valid for an error event trap or when the action is IGNORE.

When another action value is specified, REFAFTER or REFBEFORE specifies the time when SLIP performs the refresh. For example:

- **ACTION=(SVCD,REFAFTER)** causes the refresh to occur after the dump has been requested.
- **ACTION=(SVCD,REFBEFORE)** causes the refresh to occur before the dump is requested.

When you specify REFAFTER or REFBEFORE as an ACTION value, you must also specify the REFAFTER or REFBEFORE parameter as an option.

ACTION=STDUMP

Writes a SLIP system trace record when the trap matches for a PER event, and schedules an SVC dump when the trap is disabled or deleted. This SVC dump includes the registers and PSW for the current task.

This ACTION value is not valid for an error event trap. The ACTION=STDUMP parameter overrides DAE suppression.

Consider the following in selecting parameters to appear with ACTION=STDUMP:

- The following parameters require less SLIP processing to find a matching trap for an IF or SBT trap:
 - ASIDLST
 - ENABLE/DISABLE
 - END
 - ID
 - LIST
 - LPAEP/LPAMOD/NUCEP/NUCMOD/RANGE
 - MATCHLIM
 - SDATA
 - SUMLIST

- The following parameters require less SLIP processing to find a matching trap for an SA or SAS trap:
 - ASIDLST
 - ENABLE/DISABLE
 - END
 - ID
 - LIST
 - MATCHLIM
 - RANGE
If you use parameters other than these with ACTION=STDUMP, SLIP processing uses more system resources.

The default match limit for STDUMP is 50 when the only parameters specified are those listed above. Otherwise there is no default.

ACTION=STRACE

When the trap matches for a PER event, writes at least one SLIP system trace record.

This ACTION value is not valid for an error event trap.

Considerations in selecting parameters to appear with ACTION=STRACE are:

- The following parameters require less SLIP processing to find a matching trap for an IF or SBT trap:
 - ENABLE/DISABLE
 - END
 - ID
 - LPAEP/LPAMOD/NUCEP/NUCMOD/RANGE
 - MATCHLIM

- The following parameters require less SLIP processing to find a matching trap for an SA or SAS trap:
 - ENABLE/DISABLE
 - END
 - ID
 - MATCHLIM
 - RANGE

- If you use parameters other than these with ACTION=STDUMP, SLIP processing uses more system resources.

- If the STDATA keyword is omitted, no variable data will be recorded in the system trace record.

- The default match limit for STRACE is 50 when the only parameters specified are those listed above. Otherwise there is no default.

ACTION=STOPGTF

Turns off GTF tracing when the SLIP trap becomes disabled (or deleted). This can happen either by operator command (for example the SLIP MOD or SLIP DEL command) or when the MATCHLIM or PRCNTLIM parameters on the SLIP command take effect. Using STOPGTF helps prevent the trace buffer from wrapping once the trap matches.

You can use STOPGTF with the GTFID, TRACE, and TRDUMP keywords. For example, if you specify ACTION=(STOPGTF,TRACE), SLIP produces a GTF trace records until the trap becomes disabled.

You can use ACTION=STOPGTF with IDGROUP=idgroup to stop GTF in a sysplex. When a trap is disabled on reaching the MATCHLIM or PRCNTLIM for the trap, the identical traps on the other systems will be disabled and thus the GTF tracing for the trap in the sysplex is turned off too.

ACTION=SUBTRAP

When the trap matches for a PER event, allows the SLIP user to request different sets of actions depending upon system conditions at the time of the PER interrupt.
You can use the SUBTRAP action much the same way as the IGNORE action, except that most other actions are permissible on the trap. The SUBTRAP action imposes no default MATCHLIM value, but other specified ACTION keywords can impose one.

This ACTION value is not valid for an error event trap and when the action is TARGETID.

Example:
```
ACTION=SUBTRAP
```

ACTION=SVCD

When the trap matches for an error or PER event, schedules an SVC dump for the current or failing address space and issues an SPER system trace record to record exactly when the match occurred. For more information about SVC dumps, see the SVC dump chapter of the z/OS MVS Diagnosis: Tools and Service Aids.

The SVCD value overrides DAE suppression but does not override suppression specified in a CHNGDUMP NODUMP operator command. If the dump cannot be written, perhaps because another SVC dump is in progress, SLIP issues message IEA412I, continues processing, and does not reschedule the dump.

The ASIDLST, DSPNAME, JOBLIST, LIST, SDATA, and SUMLIST parameters specify the data to be included in the dump. The SVC dump the system schedules includes the registers and PSW for the current or failing task.

If you omit an ASIDLST parameter, the dump includes the following address spaces. Note that the home address space is the space of the issuer of the CALLRTM TYPE=MEMTERM macro.

- RTM1: Failing address space, which is identified in SDWAFMID, or the home address space
- RTM2: Failing address space, which is identified in RTM2FMID, or the home address space
- MEMTERM: Master address space for the scheduled dump and the home address space for the summary dump.
- PER: Home address space
- REMOTE: For a dump on a remote system as requested by the REMOTE parameter, the XCF address space (XCFAS)

If dumping of a failing address space fails, that is, the SDUMP macro returns a nonzero return code, SLIP schedules a dump in the home address space but puts no problem data in the SDUMP 4K SQA buffer. If the second dump fails, SLIP issues message IEA412I.

Attention: Avoid using a general trap, such as, SLIP SET,COMP=0C4,ACTION=SVCD,END. The system normally has many expected program interrupts, each resulting in a 0C4 completion code.

SLIP has a default match limit of 1 on all traps that specify, or default to, ACTION=SVCD. The match limit can be changed by the MATCHLIM parameter when setting the SLIP trap. You can further qualify the SLIP trap by using other parameters, such as DATA and PVTMOD. These additional parameters prevent unwanted matches.

Example:
```
ACTION=SVCD,SDATA=(SQA,PSA,SUM)
```

ACTION=SYNCSVCD
When the trap matches for a PER event, schedules a synchronous SVC dump (SYNCSVCD) for the current or failing address space and issues an SPER system trace record to record exactly when the match occurred. The SYNCSVCD parameter overrides DAE suppression.

This ACTION value is not valid for an error event trap.

The ASIDLST, DSPNAME, JOBLIST, LIST, SDATA, and SUMLIST parameters indicate the data to be included in the dump. The SVC dump the system schedules includes the registers and PSW for the current or failing task.

SLIP will stop the unit of work before starting the dump to ensure that the restart occurs after the dump has completed. SLIP stops the work only when all of the following conditions exist when the PER interrupt occurs:

- The system is enabled and unlocked
- The system is in task mode

Because the PER interrupt occurs on completion of the instruction, an instruction type such as SVC will cause the system not to meet the criteria listed above. If the system is disabled or locked when the PER interrupt occurs, a regular SVC dump will be taken instead.

SLIP has a default match limit of 1 on all traps that specify, or default to, ACTION=SYNCSVCD. You can change the match limit by the MATCHLIM parameter when setting the SLIP trap. You can further qualify the SLIP trap by using other parameters, such as DATA and PVTMOD. These additional parameters prevent unwanted matches.

Examples:

```
ACTION=SYNCSVCD
ACTION=SYNCSVCD,SDATA=(SQA,PSA,SUM)
```

ACTION=TARGETID

When the trap matches for a PER event, specifies that another PER trap is to be activated once the trap specified in this SLIP command has been deactivated as a result of MATCHLIM.

This ACTION value is not valid for an error event trap or when the action is IGNORE.

When you specify TARGETID as an ACTION value, you must also specify the TARGETID parameter as an option.

The default match limit for ACTION=TARGETID is 1.

ACTION=TRACE

When the trap matches for an error or PER event, writes at least one generalized trace facility (GTF) SLIP trace record. Use a TRDATA parameter to specify the type and content of the GTF SLIP trace record.

For the record to be built and recorded, GTF with the SLIP option must be active. Be sure to stop GTF after the SLIP trap completes.

ACTION=TRACE can record small or large amounts of data. It is useful when you need a small amount of data each time a trap matches, such as when checking the path through a module.

Two problems can cause fields to be unavailable:

- The system uses the registers at the time of the event to resolve indirect addresses specified for trace record fields. If circumstances cause the registers to be unavailable, indirect addresses using a register value cannot be resolved, and related fields cannot be collected.
SLIP Command

- The field is paged out or one of the pointers to the field is paged out.

If using indirect addresses, specify the REGS option of TRDATA to see the general purpose registers and the access registers used to resolve the addresses.

Example:
ACTION=TRACE

ACTION=TRDUMP

When the trap matches for an error or PER event, writes at least one generalized trace facility (GTF) SLIP trace record and, when the trap is disabled or deleted, schedules an SVC dump.

For the record to be built and recorded, GTF with the SLIP option must be active. Be sure to stop GTF after the SLIP trap completes.

The ASIDLST, DSPNAME, LIST, SDATA, and SUMLIST parameters are used to tailor the dump and TRDATA is used to tailor the trace records. The SVC dump the system schedules includes the registers and PSW for the current or failing task.

The ACTION=TRDUMP parameter overrides DAE dump suppression.

Example:
ACTION=TRDUMP, TRDATA=(STD, REGS), SDATA=(TRT, SQA)

ACTION=WAIT

When the trap matches for an error or PER event, issues an SPER system trace record to record exactly when the match occurred and displays the following information in message IEE844W and places the system in a wait:

- SLIP identifier
- Type of trap and related information:
 - RTM1: The address of the system diagnostic work area (SDWA)
 - RTM2: The address of the RTM2 work area (RTM2WA)
 - MEMTERM: The address of the address space control block (ASCB)
 - PER: The address and code of PER
- PSW at the time of error event or PER interruption
- Control registers 3 and 4 contents, which indicate the primary (PASID) and secondary (SASID) address spaces
- Contents of general registers 0 to 15

When SLIP processes an ACTION=WAIT trap, it also places information in an area pointed to by PSA location X'40C'. On a z/Architecture system, a 7th word at offset X'18' is added to that information. The 7th word contains the address of a 64-byte area that contains the high halves (bits 0–31) of the 64-bit GPRs in order GPR0 to GPR15. The second word, at offset X'04', contains the address of a 64-byte area that contains the low halves (bits 32–63) of the 64-bit GPRs in order GPR0 to GPR15.

The system instructs you to restart the system when you are finished looking at the message. The system restarts unless you did something during the wait to prevent a restart. Generating a stand-alone dump, for example, prevents a restart.

If the system cannot display the message, for example, because the console is unavailable, the system enters a restartable wait state (code 01B). You can then restart the system, if a restart is possible, depending on your actions during the wait.
Note: If the SLIP command is entered from a TSO terminal in OPERATOR mode, the system does not accept this parameter.

Example:

ACTION=WAIT
ADDRESS=start
ADDRESS=(start,[end])

For a storage alteration PER trap, specifies the virtual address or range of addresses that must contain the instruction that causes the storage alteration.

For an error event trap, specifies the virtual address or range of addresses in which the error must occur. The RBLEVEL parameter controls the PSW address that is used to decide if ADDRESS matches, for an enabled, unlocked, task mode error that is matched against an error event trap.

Each address is 1 to 8 hexadecimal digits. The starting address must be less than or equal to the ending address.

ADDRESS is not valid for an instruction fetch (SLIP SET,IF) or successful branch (SLIP SET,SBT) PER trap.

Abbreviation: AD

Example:

ADDRESS=(CD300,CD400)

ASID=asid
ASID=(asid[asid]...)

For an error event or PER trap, specifies the address space identifier (ASID) for the address space that must be in control when the error event or PER interruption occurs.

Each asid is 1 to 4 hexadecimal digits. You can specify one to 16 ASIDs. If you specify one ASID, you can omit the parentheses.

For PER traps with an action of IGNORE, you can limit the address spaces being monitored by the following:

- ASID parameter
- JOBNAME parameter
- MODE=HOME parameter

If you omit all of these parameters, PER monitoring is active in all address spaces and may cause performance problems.

If you specify both ASID and JOBNAME, one of the specified address spaces must be the one in which the job is running or the trap will not match.

If you omit MODE=HOME, PER monitoring will be active only for the address space(s) specified by the ASID parameter for the job specified by the JOBNAME parameter. If you omit MODE=HOME and ASID but specify JOBNAME, PER monitoring will be active for any address space(s) in which the job runs.

The ASID parameter is useful when monitoring storage alteration of an address range that falls in the private area.

Note: For PER traps that do not specify ACTION=IGNORE and for which the ASIDs to be monitored are known, but for which no extra PER interrupts will occur if all ASIDs are monitored, it is best not to specify the ASID parameter or MODE=HOME.

Abbreviation: AS
Example:
ASID=\{(1,7,1A)\}

ASIDLST=asid
ASIDLST=\{(asid,asid)\}

As an option of an ACTION or REMOTE parameter, specifies the address space or spaces to dump.

The \textit{asid} is 1 to 4 hexadecimal digits or a symbolic ASID. You can specify one to 15 ASIDs. If you specify only one ASID, you can omit the parentheses. The symbolic values are:

- CURRENT or CU: Current address space.
- HASID or H: Home address space.
- I: Address space where the instruction ran.
- LLOC: Address space that is locked.
- PASID or P: Primary address space.
- SA: Current alteration space used by an SA trap. If the alteration space is a data space, the data space will be dumped.
- SASID or S: Secondary address space.

\textbf{Note:} Zero indicates the current address space.

\textbf{Abbreviation:} AL

Example:
ASIDLST=\{(0,C)\}

ASIDSA=asid
ASIDSA='jobname'
ASIDSA=\{(asid,'jobname',asid,'jobname')\}

For a storage alteration (SLIP SET, SA or SAS) trap, specifies up to 16 address spaces to be monitored for storage alterations.

If neither ASIDSA nor DSSA is specified, the trap applies to all storage alterations in all address spaces, data spaces, and hiperspaces in the address range in the RANGE parameter.

ASIDSA eliminates data spaces and hiperspaces from being monitored and restricts the trap to one or more address spaces or jobs. You can specify an address space name in two forms:

- \textit{asid}
- \textit{jobname}'

\textit{asid}

Specifies the address space identifier (ASID) of an address space to be monitored. The \textit{asid} can be an explicit hexadecimal ASID or a symbolic ASID. The symbolic values are:

- CURRENT or CU: Current address space.
- HASID or H: Home address space.
- I: Address space where the instruction executed.
- PASID or P: Primary address space.
- SA: Current alteration space used by an SA or SAS trap. It must be an address space. If the storage alteration occurs in a data space or a hiperspace, the trap will not match.
- SASID or S: Secondary address space.
jobname

Specifies the job name associated with an address space that is being altered. The *jobname* is 1 to 8 alphanumeric and national characters ($, #, @) and is enclosed in single quotation marks. You can specify wildcards in the *jobname* with the following exception: an * must be a suffix and cannot appear alone. See ["Using Wildcards in Commands" on page 1-17](#).

Abbreviation: ASA

Examples:

Example 1: When the PER2 hardware feature is present and the address space is known explicitly (not symbolically), it is particularly beneficial to specify ASIDSA.

ASIDSA=(5,3A,17B,24E,'JOB1','JOB*')

Example 2: A storage alteration of the word at common location 600 in the prefix storage area (PSA) results in a trap for which SLIP performs match processing. Because ASIDSA=SA is specified, SLIP will not check for a match for a storage alteration event that occurs in either a data space or a hiperspace.

RANGE=(600,603),ASIDSA=SA

COMP=code

For an error event trap, specifies a system or user completion code that is associated with the error.

For a system completion code, the form is *hhh*, three hexadecimal digits. You can indicate a set of codes by substituting x's for one or more of the digits. For example, x23 means 123, 223, 323, 423, and so forth. You can use an x in any position.

For a user completion code, the form is Udddd, where U indicates a user code followed by four decimal numbers. Use an x for any of the numbers to specify a set of codes. For example, U102x means U1021, U1022, U1023, and so forth.

Notes:

1. The SLIP action is not taken when the abend completion code is originally a program check (code 0C4) that the system converts to a new value. The following abend completion codes may be originally a program check and converted ones: 11A, 12E, 15D, 15F, 200, 212, 25F, 279, 282, 42A, 430, 57D, 700, 72A, A00, B00, and E00. Note that the SLIP action is taken when the abend is not converted, even for these completion codes. For example, the action is taken for SLIP C=15F,RE=190,A=.

2. For abend completion codes 201, 202, 402, 6FC and 702, the SLIP action might not be taken. In certain paths, each of these codes is originally a program check, as described in Note 1. In other paths, the abend is issued directly. To cover fully such a case, you should set, for example, one SLIP trap specifying COMP=201 and another specifying COMP=0C4 or ERRTP=PROG.

3. SLIP cannot trap the 922 and 13E abend codes used to purge subtasks.

4. If any completion code is changed by a recovery routine with the SETRP macro, specify the original completion code in the SLIP command. For example, if a code of 800 was originally a code of 171, specify a code of 171 on the COMP parameter.

5. Avoid setting a general trap, such as:

SLIP SET,COMP=0C4,ACTION=SVCD,END
The system normally has many expected program interrupts, each resulting in a 0C4 completion code.

Abbreviation: C

Example:

COMP=U123x, REASON=8

DATA= (comparison)

DATA= (comparison[, comparison]...)

For an error event or PER trap, specifies logical comparison of a target location to a value. The *comparisons* represents a triplet or group of triplets, where each *triplet* consists of a target, operator, and value, as follows:

```
comparison
  begins with this bit
  comparison
  by contents (C) or address (A)

  size of
  comparison

  target[(b)], operator[[A | C][n]], value
```

You can specify any number of DATA triplets. You can use AND (&) and OR (I) to logically combine the DATA triplets. Use parentheses to group and order your comparisons. You can specify any number of parentheses, up to a nested depth of 16 parentheses. Some rules for coding the DATA parameter are:

- Either a comma or a parenthesis must precede and follow each AND and OR.
- The symbols & and I do not need to be preceded and followed by a comma or a parenthesis. The commas and parentheses are optional.
- If two DATA triplets are separated by only a comma (without a parenthesis on either side of the comma), AND is the default for the logical comparison. This is the only default on the DATA parameter.

The parts of a triplet are:

target

Specifies the address of a storage location or a general purpose register (GPR) whose contents SLIP compares against the value supplied. The target can be:

- A direct address of 1 to 16 hexadecimal digits using the G suffix, or 1 to 8 hexadecimal digits using the R suffix. (See "Qualifying Direct or Indirect Addresses to Address Spaces" on page 4-566.)
- A GPR in the form xG or xR where x is 0 – 15.
- An indirect address (see "Indirect Addresses" on page 4-563).
If SLIP cannot establish addressability to the target location, SLIP issues message IEA413I and increments the counter for the trap.

\[b \rightarrow \text{binary compare} \]

If specified, \(b \) modifies the target address by indicating the bit position where a binary comparison is to start. For 64–bit registers, \(b \) can be 0 – 63. The starting bit position plus the bit size for 64–bit register comparison must not exceed 63. For 31–bit registers, \(b \) can be 0 – 31. The starting bit position plus the bit size for 31–bit register comparison must not exceed 31.

\[\text{operator} \]

Specifies the relationship that must exist between the contents of the target location and the value for the comparison to be successful.

- EQ – equal
- NE – not equal
- GT – target greater than value
- LT – target less than value
- NG – target not greater than value
- NL – target not less than value

If you do not include either \(C \) or \(A \) with the operator, SLIP does a value compare. In a value compare, SLIP compares the contents of the target address to the specified value.

\[\text{C} \rightarrow \text{contents compare} \]

SLIP processing is to compare the contents of the address specified as the target with the contents of the address specified as the value.

\[\text{A} \rightarrow \text{address compare} \]

SLIP processing is to compare the contents of the address specified as the target with the address specified as the value. Do not request a binary compare with an address compare. For example, (1R(0),EQA,2R%) is not a valid combination of binary compare (1R(0)) and address compare (EQA). In a 4-byte compare, bit 0 is ignored; bits 1 to 31 are compared.

\[n \]

The number of bytes or bits that SLIP processing is to compare for a contents or address compare. When you request a binary compare, the range is 1 to 8 bits, with the default being one bit. Otherwise, the range is 1 to 4 bytes with the default being 4 bytes.

Note: When SLIP does either a contents compare or an address compare, it looks at the first \(n \) bytes of storage, but the last \(n \) bytes of a register.

\[\text{value} \]

Specifies the value to which the contents of the target are to be compared.

- If you omit \(A \) or \(C \) as part of the operator, the value can be a constant, with the length determining the number of bytes or bits SLIP processing compares with the target.

 If \(b \) is specified, the value is binary digits. If \(b \) is not specified, the value is hexadecimal digits. For example, 5R,EQ,01 is hexadecimal; 5R(0),EQ,01 is binary.

 For binary comparisons, the length of the value establishes the length of the comparison. The maximum length for a binary comparison is 8 bits. The binary comparison can cross a byte boundary but not a register boundary.

 For hexadecimal comparisons when the target is not a register, the length of the value establishes the length of the comparison. The
maximum length of the comparison, however, is 4 bytes. The value can
be 1 to 8 hexadecimal digits (for example, A24,EQ,3CA79 compares two
and a half bytes of data starting at location A24).

For hexadecimal comparisons when the target is a register, the length of
the comparison is 4 bytes, and the value is right-justified (for example,
2R,EQ,4 and 2R,EQ,00000004 are equivalent).

Underscores ("_") may be used at any point within the hexadecimal
specification to make entering 64-bit data easier. Underscores are
ignored during processing and do not count towards the limit on the
number of hexadecimal digits.

If you specify A or C as part of the operator, the value can be:
- A direct address of 1 to 16 hexadecimal digits
- A GPR in the form xG or xR where x is 0 - 15
- An indirect address

Abbreviation: DA

Examples: Examples of DATA parameters follow.

Example 1

The following expression is true if general purpose register 2 contains either 0
or 4:

\[
\text{DATA}=(2R,EQ,0,OR,2R,EQ,4)
\]

where
- 2R is the target (general purpose register 2)
- EQ is the operator (equal)
- 0 and 4 are the values in hexadecimal

Example 2

The following expression groups triplets for SLIP to evaluate.

\[
\text{DATA}=(3R,EQ,8,\text{AND}(4R,EQ,0,\text{OR}(4R,EQ,4,\text{AND},5R,NE,0)\text{OR},4R,EQ,8))
\]

Example 3

The following expression is true if the contents of register 1 are the same as the
address that is 6 bytes beyond the location that register 3 is pointing to:

\[
\text{DATA}=(1R,EQA(4),3R?+6)
\]

Note that SLIP compares bits 1 — 31 of register 1 to the address that is 6
bytes beyond the location to which register 3 is pointing.

Example 4

The following expression is true if the contents of register 1 is the same as the
contents of register 2:

\[
\text{DATA}=(1R,EQC,2R)
\]

Example 5

The following expression is true if the contents of register 1 is the same as the
contents at location 224:

\[
\text{DATA}=(1R,EQC,224)
\]

Example 6

The following expression is true if the contents of register 1 is 224.

\[
\text{DATA}=(1R,EQ,224)
\]

Example 7
The following expression is true if the first two bytes at the location pointed to by register 1 are equal to the first two bytes at the location determined by adding 150 to the contents of the word at location X’10’.

\[\text{DATA} = (1R?, \text{EQC}(2), 10?+150) \]

Example 8

The following expression is true if the first two bits at the location pointed to by register 1 are equal to the first two bits at the location determined by adding X’150’ to the contents of the word at location 10.

\[\text{DATA} = (1R?(0), \text{EQC}(2), 10?+150) \]

Example 9

The following expression is true if the last 3 bytes (bits 8 — 31) of the address in register 1 are the same as the address that is 4 bytes beyond the location that register 3 is pointing to:

\[\text{DATA} = (1R, \text{EQA}(3), 3R?+4) \]

Example 10

The following expression is true if the last 3 bytes of register 1 are the same as the first 3 bytes at the location pointed to by register 2:

\[\text{DATA} = (1R, \text{EQC}(3), 2R?) \]

Example 11

The following expression is true if the 64-bit contents of GPR 11 equal the hexadecimal value X’0123456799999999’:

\[\text{DATA} = (11G, \text{EQ}, 01234567_{-99999999}) \]

DEBUG

For a SLIP SET trap, allows you to determine why a trap that you set is not working as you expected by indicating which of the conditions you established is not being met. DEBUG provides trap information each time the trap is tested rather than just when it matches.

The generalized trace facility (GTF) and its trace option for SLIP records must be active. Each DEBUG trace record contains SLIP information plus two bytes: the first byte contains a value indicating the failing parameter and the second byte contains zero.

For a description of the DEBUG values, see the SLIP debug trace record for GTF in \[z/OS MVS Diagnosis: Tools and Service Aids\].

Example:

```
DEBUG
```

DISABLE

For a SLIP SET trap, indicates that the trap set is to be initially inactive, that is, ineligible for checking. If DISABLE is omitted, ENABLE is the default.

Abbreviation: D

Example:

```
DISABLE
```

DSPNAME

- **asid.name**
- **'jobname'.name**
- **(asid.name I 'jobname'.name[, asid.name I 'jobname'.name]...)**

As an option of an ACTION or REMOTE parameter, specifies the data space or spaces to be included in an SVC dump.
SLIP Command

Specify from 1 to 15 data space names in the parameter. When you specify more than one name, enclose the data space names in parentheses and separate them by commas. When you specify only one name, you can omit the parentheses. You can specify a data space name in two forms:

\[
\text{asid.name} \\
\text{jobname'.name}
\]

\text{asid}

Specifies the address space identifier (ASID) of the address space related to a data space to be monitored. The asid can be an explicit hexadecimal ASID or a symbolic ASID. The symbolic values are:

- \text{CURRENT or CU} Current address space.
- \text{HASID or H} Home address space.
- \text{HOME} Home address space.
- \text{I} Address space where the instruction executed.
- \text{LLOC} Address space that is locked.
- \text{PASID or P} Primary address space.
- \text{SA} Current alteration space used by an SA trap
- \text{SASID or S} Secondary address space.

\text{jobname}

The name of the job associated with the data space. The jobname is 1 to 8 alphanumeric and national ($, #, @) characters and must be enclosed in single quotation marks. You can specify jobname in a DSPNAME parameter:

\begin{itemize}
 \item With ACTION=SVCD
 \item On the REMOTE parameter for an ACTION=SVCD trap
\end{itemize}

You can specify wildcards in the jobname. See "Using Wildcards in Commands" on page 1-17.

\text{name}

Specifies the 1 to 8 character name associated with the data space at its creation. You can specify wildcards in the name on the DSPNAME option. See "Using Wildcards in Commands" on page 1-17.

The name must be specified, unless the trap event is SA. For an SA trap event, the data space of the storage being altered is dumped.

When the interrupted unit of work holds a lock higher than the RSM lock, the system cannot determine the specific data spaces. In this case, no data spaces are included in the dump.

Abbreviation: DN

Examples:

\begin{verbatim}
DSPNAME=(0006.SDUMPCSA)
DSPNAME=('*'.SPD*,'*ABC*'.S?P?,0012.SPD20)
\end{verbatim}

\text{DSSA=asid.name}
\text{DSSA=jobname'.name}
\text{DSSA=(asid.name | jobname'.name| asid.name | jobname'.name|...)}

For a storage alteration (SLIP SET,SA or SAS) trap, specifies one or more data spaces to be monitored.

You can specify 1 to 16 data space names. You can specify a data space name in two forms:

\[
\text{asid.name} \\
\text{jobname'.name}
\]
Specifies the address space identifier (ASID) of the address space related to a data space to be monitored. The *asid* can be an explicit hexadecimal ASID or a symbolic ASID. The symbolic values are:

- **CURRENT** or **CU**: Current address space.
- **HASID** or **H**: Home address space.
- **I**: Address space where the instruction executed.
- **LLOC**: Address space that is locked.
- **PASID** or **P**: Primary address space.
- **SA**: Current alteration space used by an SA trap.
- **SASID** or **S**: Secondary address space.

The name of the job associated with the data space. The *jobname* is 1 to 8 alphanumeric and national ($, #, @) characters and must be enclosed in single quotation marks. You can specify wildcards in the *jobname* with the following exception: an * must be a suffix and cannot appear alone. See “Using Wildcards in Commands” on page 1-17.

Specifies the 1 to 8 character *name* associated with the data space at its creation.

Notes:
1. When SA is specified with *name*, the storage alternation must occur in the named data space for the trap to match.
2. When *name* is not specified, the trap will match on a storage alternation into any data space owned by the specified address space.
3. When SA is specified without *name* and the storage alternation is in an address space, no match will result for that address space.
4. When the PER2 hardware feature is present and you can specify the data space explicitly (not symbolically), it is particularly beneficial to specify DSSA.

Example:

```
DSSA=(ASID.DSPACE1,I.DSPACE2)
```

For a SLIP SET trap, indicates that the trap defined is to be initially active, that is, eligible for checking. If DISABLE is omitted, ENABLE is the default.

Abbreviation: EN

Example:

```
ENABLE
```

For a SLIP SET trap, marks the end of the SLIP SET command. If you omit this parameter, the system prompts you for additional parameters.

Abbreviation: E

For an error event trap, specifies one or more error events, which satisfy the match test. If you specify ALL or more than one error type, the occurrence of any one of them satisfies the match test. If you omit ERRTYP, the omission has the same effect as specifying ERRTYP=ALL,
SLIP Command

The type is one of the following:

- **ABEND**: An ABEND macro issued by a task
- **ALL**: All of the error conditions
- **DAT**: Dynamic address translation error
- **MACH**: Software error caused by a machine check
- **MEMTERM**: Abnormal end of an address space
- **PGIO**: Paging I/O error
- **PROG**: Program check interruption
- **REST**: Restart interruption

Note: The system intercepts restart interruptions only when both of the following conditions are true:
- The operator initiated the restart.
- The operator requested that the system abnormally end a program running on the restarted processor.

- **SVCERR**: SVC error caused by issuing an SVC instruction while locked, disabled, or in SRB mode

Abbreviation: ER

Example:

```
ERRTYP=(MACH,DAT)
```

GTFID=id

GTFID=(id[,id]...)

For a SLIP SET trap, specifies a GTF identifier (GTFID) to selectively stop a subset of GTF tracing. The id is 1 to 8 characters. You can specify one to a maximum of 15 IDs.

You must use the GTFID parameter in conjunction with ACTION=STOPGTF. When the SLIP trap matches, the GTF instances associated with the specified IDs are stopped. If you do not specify GTFID, the default is that all GTF instances are stopped.

Example:

```
GTFID=(HM1)
```

ID=trapid

For a SLIP SET trap, specifies a trap identifier. The trapid is 1 to 4 alphanumeric or national ($, #, @) characters. If ID is not indicated in a SLIP SET command, the system assigns a unique id.

Example:

```
ID=PER1
```

IDGROUP=idgroup

For a SLIP SET trap, specifies the name of a group of related traps. The idgroup name is 1 to 16 alphanumeric or national ($, #, @) characters. An idgroup is self-defining, that is, it consists of all SLIP traps that specify the same idgroup name.

In a sysplex, the traps in the group can be on the same or different systems. More than one idgroup can be defined at the same time on a system or sysplex.
When a system disables one trap on reaching the MATCHLIM or PRCNTLIM for the trap, the system or systems disable all the traps in the group. If you specify any action to be taken after the traps are disabled, the action can have a sysplex scope. For example, if you specify ACTION=STOPGTF, the GTF tracing for that trap will be turned off on all systems in the sysplex.

Note: If the operator deletes or disables one trap in a group, only that trap is disabled; the other traps in the group continue.

Set up a group when you are trying to diagnose a problem that can occur on several or all of the systems in a sysplex. After the trap occurs and is disabled on one system, the IDGROUP parameter disables the traps on the other systems, so that manual operator intervention is not needed.

Abbreviation: IG

Example:

IDGROUP=TRAPGROUP3

IGNORE

See the ACTION=IGNORE parameter.

IF

Specifies the event as an instruction fetch. This parameter is positional; it must appear following SET and a comma.

JOBLIST=jobname

JOBLIST=(jobname[,**jobname]**)...**

As an option of an ACTION or REMOTE parameter, identifies the names of jobs whose address spaces are to be dumped when the action is SVCD or SYNSVCD in:

- The system in a sysplex that consists of one system
- The local system in a sysplex
- Another system in a sysplex, if REMOTE is specified

Specify from 1 to 15 job names. When you specify more than one name, enclose the names in parentheses and separate them by commas. When you specify only one name, you can omit the parentheses.

A jobname is 1 to 8 alphanumeric and national ($, #, and @) characters. You can specify wildcards in a jobname. See "Using Wildcards in Commands" on page 1-17.

Abbreviation: JL

Examples:

JOBLIST=(job1)

JOBLIST=(job2,TRAN*,A??XYZ)

JOBLIST=(job1,job2,job3)

JOBNAME=userid

JOBNAME=jobname

For an error event or PER trap, specifies the user ID of a TSO/E user or the job name of the job or started task to be monitored.

The userid is 1 to 7 characters and the jobname is 1 to 8 characters. You can specify wildcards in the userid or jobname with the following exception: an * must be a suffix and cannot appear alone. For example, JOBNAME=*MASTER* is NOT valid, while JOBNAME=?MASTER? is valid. See "Using Wildcards in Commands" on page 1-17.
For error event traps, the specified job name must be for the home (dispatched) address space.

For non-IGNORE PER traps, JOBNAME limits PER monitoring to the address spaces in which the specified job runs. If the unit of work runs in an address space other than the one in which it was dispatched, PER monitoring will also be active in that address space for that particular job.

For PER traps that do not specify ACTION=IGNORE, you can limit the address spaces being monitored by the following:

- ASID parameter
- JOBNAME parameter
- MODE=HOME parameter

If you omit all of these parameters, PER monitoring is active in all address spaces and may cause performance problems.

If you specify both ASID and JOBNAME, one of the specified address spaces must be the one in which the job is running or the trap will not match.

If you omit MODE=HOME, PER monitoring will be active only for the address space(s) specified by the ASID parameter for the job specified by the JOBNAME parameter. If you omit MODE=HOME and ASID but specify JOBNAME, PER monitoring will be active for any address space(s) in which the job runs.

Abbreviation: J

Example:

```plaintext
JOBNAME=D10AXX1
```

JSPGM= name

For an error event or PER trap, specifies the 1 to 8 character name of the job step program that is to be monitored for a match. On error event traps, JSPGM causes a no-match if ERRTYP specifies MEMTERM.

Abbreviation: JS

Example:

```plaintext
JSPGM=IFOX00
```

LIST=(start,end)

As an option of an ACTION or REMOTE parameter, specifies one or more storage areas to be included in an SVC dump. Each area is defined by a set of starting and ending addresses, which can be either direct or indirect. (See "Indirect Addresses" on page 4-563.) A starting address must be less than or equal to the ending address.

LIST is similar to the SUMLIST parameter; the area specified by LIST is in a scheduled SVC dump while the area specified by SUMLIST is in a disabled summary dump.

Abbreviation: LS

Example:

```plaintext
ACTION=SVCD, LIST=(152,155,10%+2C%%,+3F)
```

LPAEP= name

For an error event or PER trap, monitors modules in the link pack area (LPA). The values are:
name
The entry point name or alias. The *name* is 1 to 8 characters. If the last character is an asterisk (*), SLIP interprets the asterisk as X'C0'. (Certain module names end with the character X'C0'.) If only *name* is specified, the range of monitoring is from the entry point or alias to the end of the module.

start

end

Offsets from the entry point or alias; they indicate the start and end of the range to be monitored. The *start* must be less than or equal to the *end*. For more information, see the notes for the RANGE parameter. If you specify only *start*, the range consists of that single address.

For an error event trap and an IF or SBT PER trap, LPAEP establishes the range of addresses to be monitored.

For an SA or SAS PER trap, LPAEP indicates that the storage alteration must be caused by an instruction within the specified range.

For an enabled, unlocked, task mode error that is matched against an error event trap, the RBLEVEL parameter controls the PSW address that is used to decide if LPAEP matches.

Example:

LPAEP=IEECB907, ...

If the system does not find the module in the LPA when processing the SLIP command, it assumes that you may later add the module dynamically to the LPA, and issues message IEE101I.

LPAMOD=name

LPAMOD=(name[,start[, end]])

For an error event or PER trap, monitors modules in the link pack area (LPA). The values are:

name
The module name or alias. The *name* is 1 to 8 characters. If the last character is an asterisk (*), SLIP interprets the asterisk as X'C0'. (Certain module names end with the character X'C0'.) If *name* is the alias, SLIP processing uses the load module name. If only *name* is specified, the range of monitoring is the entire module.

start

end

Offsets from the start of the module; they indicate the start and end of the range to be monitored. The *start* must be less than or equal to the *end*. For more information, see the notes for the RANGE parameter. If you specify only *start*, the range consists of that single address.

For an error event trap and an IF or SBT PER trap, LPAMOD establishes the range of addresses to be monitored.

For an SA or SAS PER trap, LPAMOD indicates that the storage alteration must be caused by an instruction within the specified range.

For an enabled, unlocked, task mode error that is matched against an error event trap, the RBLEVEL parameter controls the PSW address that is used to decide if LPAMOD matches.
SLIP Command

If the system does not find the module in the LPA when processing the SLIP command, it assumes that you may later add the module dynamically to the LPA, and issues message IEE101I.

Abbreviation: L

Examples:

Example 1:

LPAMOD=(IEAVTXYZ,2C)

Example 2: To monitor events in a load module for occurrences of SVC60,

enter:

LPAMOD=IGC0006*

MATCHLIM= *m*

For an error event or PER trap, specifies that the SLIP trap is to be disabled after *m* matches, where *m* is an integer from 1 to 65535. The default values for MATCHLIM are:

- If you specify TARGETID the default for MATCHLIM is 1.
- If you omit MATCHLIM but specify ACTION=SVCD or ACTION=SYNCSVCD, the trap is disabled after one match.
- If you omit MATCHLIM for a PER trap with ACTION=STRACE or ACTION=STDUMP, see the documentation of those keywords regarding MATCHLIM processing.
- If you omit MATCHLIM for any other type of trap, the trap can match any number of times. No other parameters are considered in determining the default for MATCHLIM.
- If you specify multiple action parameters that each have a default match limit, the system selects the lowest default.

Use a DISPLAY operator command to display the number of times that the conditions for a SLIP trap are met since the last time the trap was enabled.

Note: Between the instant matchlim is reached and when the trap is actually disabled, a small amount of time elapses. It is possible for the trap to match on another CPU during this small time interval. If this occurs, matchlim will actually be exceeded, with unexpected results. Therefore, use caution in setting a trap in a heavily used module as, for example, the dispatcher.

Abbreviation: ML

Example:

MATCHLIM=50

MODE= *mode*

MODE= *(mode[,...][, ANY | EVERY])*
For an error event or PER trap, specifies the mode the system must be in for the trap to match. You can specify more than one mode. You can indicate how many modes are needed to cause a match by one of the following.

- **ANY** Any one of the listed modes
- **EVERY** Every one of the listed modes

ANY and EVERY cannot appear alone without one or more modes and cannot appear together.

The modes are:

- **DIS** Physically disabled for I/O and external interruptions
SLIP Command

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOC</td>
<td>Holding any global lock</td>
</tr>
<tr>
<td>GLOCSLD</td>
<td>Holding a global suspend lock</td>
</tr>
<tr>
<td>GLOCSLP</td>
<td>Holding a global spin lock</td>
</tr>
<tr>
<td>HOME</td>
<td>Executing in the home (dispatched) address space</td>
</tr>
<tr>
<td>LLOC</td>
<td>Holding a local lock</td>
</tr>
<tr>
<td>LOCK</td>
<td>Holding any lock</td>
</tr>
<tr>
<td>PKEY</td>
<td>Problem program key (8 or more)</td>
</tr>
<tr>
<td>PP</td>
<td>Problem program state</td>
</tr>
<tr>
<td>RECV</td>
<td>Recovery routine in control</td>
</tr>
<tr>
<td>SKEY</td>
<td>System key (7 or less)</td>
</tr>
<tr>
<td>SRB</td>
<td>SRB mode</td>
</tr>
<tr>
<td>SUPER</td>
<td>Supervisor state</td>
</tr>
<tr>
<td>SUPR</td>
<td>Supervisor control mode (any bit set in PSASUPER)</td>
</tr>
<tr>
<td>TCB</td>
<td>TCB mode</td>
</tr>
<tr>
<td>TYP1</td>
<td>Type 1 SVC in control</td>
</tr>
<tr>
<td>ALL</td>
<td>All of the above except HOME</td>
</tr>
</tbody>
</table>

Notes:

1. Specifying the LLOC, LOCK, or ALL option of the MODE parameter automatically includes the cross memory local lock (CML).
2. Like ASID and JOBNAME, MODE=HOME limits PER monitoring. For non-IGNORE PER traps, specifying MODE=HOME indicates that PER monitoring is to be active only when the unit of work executes in the address space in which it was dispatched.
3. For an enabled, unlocked, task mode error that is matched against an error event trap, the RBLEVEL parameter controls the PSW address that is used to decide if MODE matches.
4. Whenever you specify HOME, regardless of the ANY/EVERY option you specify or default to, the unit of work must be executing in the home (dispatched) address space. If you specify or default to the ANY option, at least one of the other modes you specify must be the same as the system mode for a match to occur.
5. The RECV mode cannot be specified on a PER trap.

Abbreviation: M

Example:

```
MODE=(LLOC,SRB,EVERY)
```

MSGID= message-id

Causes control to be passed to the SLIP action processor under the unit of work issuing the WTO when the MSGID of the WTO matches the message ID specified on the MSGID parameter. The slip action processor gets control after SSI and MPF processing.

The input MSGID can be a maximum of 10 characters. When the MSGID is not contained within single quotation marks, only alphanumeric characters are accepted. The character immediately following the MSGID in the WTO must be blank for the trap to match. When a quoted MSGID is specified, the MSGID might contain any characters. The character immediately following the MSGID in the WTO need not be blank. For example, MSGID='AMSGID' will match a WTO whose first characters are AMSGIDX, but MSGID=AMSGID will not.

Except in the case of connected branch entry WTOs, SLIP will perform match processing on each line of the multiline messages. For example, if a SLIP is set on the IEE852I message with a MATCHLIM=5 and ACTION=SVCD, five dumps will be produced for the same issuance of the message since it has multiple lines of output.
SLIP does not get control:
- For messages that are reissued, for example, messages that are issued on
 one system and appear on another, or branch entry WTOs that are reissued.
- For branch entry WTO if the NLCKS, LOADWAIT, or SYNCH=YES parameter
 is specified on the WTO invocation.
- For branch entry WTO in certain situations where abending the unit of work
 may cause system problems.
- For branch entry WTOs that are issued when FRRs do not use the normal
 stack. For example, when FRR is on the supervisor stack. (All user programs
 use the normal stack.)
- For minor lines associated with a branch entry WTO.

When the SLIP action processor gets control these registers are set:
- Register 2 — contains the address of the SLIP message data area, found in
 mapping macro IHASLMSG.
- Register 3 — contains the address of the text (or the major line if there are
 minors associated with the major).
- Register 4 — contains the address of the SLIP message data area,
 associated with the minor line, or 0 if there is no minor line (applicable for
 SVC WTO only).
- Register 5 — contains the address of the text for the minor line or 0 if there
 is no minor line (applicable for SVC WTO only).

Once in the SLIP action processor, the MSGID filter along with all other SLIP
keywords that may have been specified (for example, DATA or JOBNAME)
apply in determining whether the trap will match.

NODUMP
NOSVCD
NOSYSA
NOSYSM
NOSYSU

See the ACTION=nodump parameter.

NOSUP

See the ACTION=NOSUP parameter.

NUCEP=name
NUCEP=(name[,start[,end]])
NUCMOD=name
NUCMOD=(name[,start[,end]])

For an error event or PER trap, monitors modules in the nucleus. There is no
difference between the NUCMOD and NUCEP parameters. The values are:

name
The module name. The name is 1 to 8 characters. If the last character is an
asterisk (*), SLIP interprets the asterisk as X'C0'. (Certain module names
end with the character X'C0'.) If only name is specified, the range of
monitoring is the entire module.

start
end
Offsets from the start of the module; they indicate the start and end of the
range to be monitored. The start must be less than or equal to the end. For
more information, see the notes for the RANGE parameter. If you specify
only start, the range consists of that single address.
For an error event trap or IF, SBT PER trap, NUCMOD or NUCEP establishes the range of addresses to be monitored.

For an SA or SAS PER trap, NUCMOD or NUCEP indicates that the storage alteration must be caused by an instruction within the nucleus module or within the specified range.

For an enabled, unlocked, task mode error that is matched against an error event trap, the RBLEVEL parameter controls the PSW address that is used to decide if NUCMOD or NUCEP matches.

Abbreviation: N

Example:

NUCMOD=(IEAVTRTS,C4)

OK

For a SLIP SET trap, omits checking that could result in WTOR messages IEE604D and IEE831D. IBM recommends that you use the OK parameter only when issuing SLIP from a parmlib member.

PRCNTLIM=

For a PER trap, specifies a software limit for PER processing by indicating a maximum percentage of system time that can be devoted to processing caused by PER interruptions. At least 33.55 seconds must have elapsed since the first PER interruption before a trap will be disabled because of this limit.

The range of integers for \(p \) is 1 to 99. You should use caution in specifying 99 because it means that no percent limit checking is done.

Use PRCNTLIM to tell SLIP processing to disable a SLIP trap when both of the following occur:

- A PER interrupt occurs.
- SLIP determines that the specified PRCNTLIM value has been reached.

The value computed to test PRCNTLIM is an approximation. SLIP makes this calculation only when a PER interrupt occurs, so the PRCNTLIM parameter does not cause the trap to be disabled until a PER interrupt occurs.

If you omit PRCNTLIM, the default is 10.

Abbreviation: PL

Example:

PRCNTLIM=20

PSWASC=

PSWASC=(mode[,...])

For an error event or PER trap, specifies the PSW address space control (PSWASC) mode the system must be in for the trap to match. The **mode** is:

- HOME: Home ASC mode
- PRIMARY: Primary ASC mode
- SECONDARY: Secondary ASC mode
- AR: Access register ASC mode

One or more modes can be specified; the trap will match if the PSWASC mode is one of the specified values.

Allowable Abbreviations:

- PA for PSWASC
- H for HOME
- P for PRIMARY
- S for SECONDARY
Example:
PSWASC=(AR,S)
PVTMOD=(name)
PVTMOD=(name[start, end])

For an error event or PER trap, requests that SLIP monitor modules in the private area. The values are:

name
The entry point name or alias. The name is 1 to 8 characters. If the last character is an asterisk (*), SLIP interprets the asterisk as X'C0'. (Certain module names end with the character X'C0'.) If only name is specified, the range of monitoring is from the entry point or alias to the end of the module.

'name'
The last characters of a posix executable file. The 'name' is 1 to 80 characters. It may contain any characters, and it is case sensitive. PVTMOD or PVTEP may be used interchangeably with the same results.

Note: If entering the slip trap through a parmlib member (such as ieaslpxx) then you may not be able to enter 80 characters because the PVTMOD/EP parameter must fit on a line. All the rules that apply to PVTMOD/PVTEP processing apply here, except that only the last characters of posix executable files are compared with the specified 'name' to determine whether a match has occurred. For example, if PVTMOD='n/sh' and the path name of the file being matched with is /bin/sh, a match will occur.

start
Offsets from the entry point or alias; they indicate the start and end of the range to be monitored. The start must be less than or equal to the end. For more information, see the notes for the RANGE parameter. If you specify only start, the range consists of that single address.

For an error event trap and an IF or SBT PER trap, PVTEP establishes the range of addresses to be monitored.

For an SA or SAS PER trap, PVTEP indicates that the storage alteration must be caused by an instruction within the specified range.

For an enabled, unlocked, task mode error that is matched against an error event trap, the RBLEVEL parameter controls the PSW address that is used to decide if PVTEP matches.

When an error event or PER interruption occurs, SLIP searches for the private module first in the current primary address space and then in the dispatched address space. A match occurs only when the address of the instruction with the error or interrupt is found within the boundaries of this copy of the module.

Notes:
1. To check in a private area module, SLIP must obtain the local lock when PVTEP or PVTMOD is specified for any trap other than a PER SBT trap or a PER IF trap.
2. SLIP is capable of monitoring a single PER range. When a duplicate module is found, SLIP will recognize only the first module and will not notify the user of the possible conflict.

Example:
PVTMOD=(MYEP,10,40)
PVTMOD=name
PVTMOD=(name[start, end])
PVTMOD (or PVTEP) = 'name'
PVTMOD (or PVTEP) =('name[start, end])

For an error event or PER trap, monitors modules in the private area. The values are:

name
The module name or alias. The name is 1 to 8 characters. If the last character is an asterisk (*), SLIP interprets the asterisk as X'C0'. (Certain module names end with the character X'C0'.) If name is an alias, SLIP processing uses the load module name. If only name is specified, the range of monitoring is the entire module.

'name'
The last characters of a posix executable file. The 'name' is 1 to 80 characters. It may contain any characters, and it is case sensitive.

PVTMOD or PVTEP may be used interchangeably with the same results. All the rules that apply to PVTMOD/PVTEP processing apply here, except that only the last characters of posix executable files are compared with the specified 'name' to determine whether a match has occurred. For example, if PVTMOD='n/sh' and the path name of the file being matched with is /bin/sh, a match will occur.

start
end
Offsets from the start of the module; they indicate the start and end of the range to be monitored. The start must be less than or equal to the end. For more information, see the notes for the RANGE parameter. If you specify only start, the range consists of that single address.

Private area modules can reside (starting at different addresses) in several address spaces. To resolve the range of addresses to be monitored for PVTMOD to a particular address space, use either the JOBNAME parameter with MODE=HOME or the ASID parameter. If neither parameter is specified and the module is loaded into several address spaces, the system might resolve the PER range to any one of those address spaces.

For an error event trap and an IF or SBT PER trap, PVTMOD establishes the range of addresses to be monitored.

For an SA or SAS PER trap, PVTMOD indicates that the storage alteration must be caused by an instruction within the specified range.

For an enabled, unlocked, task mode error that is matched against an error event trap, the RBLEVEL parameter controls the PSW address that is used to decide if PVTMOD matches.

To check for a private area module, SLIP must obtain the local lock. SLIP cannot obtain the local lock, it cannot check the private area module, and the trap will not match.

On an error or interrupt, SLIP searches for the private module first in the current primary address space and then in the dispatched address space. A match occurs only when the address of the instruction with the error or interrupt is found within the boundaries of this copy of the module.
Notes:

1. To check in a private area module, SLIP must obtain the local lock when PVTEP or PVTMOD is specified for any trap other than a PER SBT trap or a PER IF trap.

2. SLIP is capable of monitoring a single PER range. When a duplicate module is found, SLIP will recognize only the first module and will not notify the user of the possible conflict.

3. PVTMOD processing does not support modules brought into storage using the LOAD macro with the ADDR parameter. To monitor those modules, use the RANGE parameter instead of PVTMOD.

Abbreviation: P

Example:

PVTMOD=(MYMOD,1C,1F)

RANGE=start
RANGE=(start,end)

For a PER trap, specifies the starting and ending addresses of virtual storage to be monitored. The addresses can be either direct or indirect. For indirect addressing, see “Indirect Addresses” on page 4-563.

If you specify only start, the range consists of that 1 byte. If the starting address is greater than the ending address, the addresses wrap around.

RANGE is not valid for error event traps. RANGE cannot be specified on an ACTION=IGNORE storage alteration PER trap.

The following notes apply to all SLIP parameters that have start, end options to indicate a range.

Notes:

1. Consider the range carefully on any PER trap. A wide range could cause performance to degrade because of the processing overhead for many PER interrupts. For example, for an address range that wraps storage, such as (700,600), PER events might occur too fast for the system to disable the trap. If this happens, manually reset control registers 9, 10, and 11 to zero. This disables PER and also defines a minimum address range.

2. For successful branch monitoring, hardware PER processing does not check the address range specified on the LPAEP, LPAMOD, NUCEP, NUCMOD, PVTEP, PVTMOD, and RANGE parameters. Therefore, a branch taken by an instruction anywhere in the system would cause a successful branch PER interrupt.

 To simulate successful branch monitoring for an address range, SLIP initially sets up instruction fetch monitoring for the desired address range. Then, when the processor gets to an instruction within the requested range (indicated by an instruction fetch PER interrupt), SLIP automatically switches PER monitoring to successful branch mode. Thus, the branch into the range does not cause a PER interrupt and does not match the trap for that instruction.

 You should be aware that the first PER event that occurs when the processor enters the requested range may not be a successful branch event. This extra instruction fetch event might affect values you supplied for other parameters, such as MATCHLIM. When the processor leaves the requested range, PER monitoring returns to instruction fetch monitoring on the range, thus avoiding unnecessary PER interrupts. If the instructions
being monitored are enabled for I/O and/or external interrupts, control may leave and then re-enter the monitored range due to normal interrupt processing.

3. Mode switching does not occur for successful branch PER traps with ACTION=IGNORE specified. This means that if the initial entry into a monitored area matches an IGNORE trap, the mode remains instruction fetch and the extra event is delayed.

 For successful branch monitoring, if an Execute instruction has a successful branch target, the location of the Execute instruction is used to determine whether or not the branch was within the monitored area without regard to the location of the executed branch.

4. If a RANGE address string is long, one or more displacements can be moved to the next line. In this case the new line must start with either + or -.

5. The RANGE parameter must end with a comma or a closing parenthesis at the same line.

For an SAS PER trap, a storage alteration by a STURA instruction at any address is accepted.

Abbreviation: RA

Examples:

```
RANGE=(600,700)
```

RBLEVEL=ERROR

RBLEVEL=NOTSVRB

RBLEVEL=PREVIOUS

For an error event trap, indicates the request block (RB) that contains the registers and PSW of interest for a particular error. SLIP uses the following identified by RBLEVEL:

- PSW when processing the ADDRESS, LPAEP, LPAMOD, PVTEP, PVTMOD, MODE, NUCEP, and NUCMOD parameters
- Registers when processing the DATA, TRDATA, LIST, SUMLIST, and TRDATA parameters

RBLEVEL applies only to unlocked, task mode errors.

ERROR

The PSW is obtained from the request block (RB) prior to the ABEND RB. The registers are obtained from the ABEND RB.

PREVIOUS

The RBs used are each one RB prior to the RBs used for ERROR.

NOTSVRB

The PSW is obtained from the most recent non-SVRB and the registers are obtained from the associated SVRB.

Abbreviation: RB

Example:

```
RBLEVEL=NOTSVRB
```
SLIP Command

REASON=\textit{code}
For an error event trap, specifies a user or system reason code to be associated with the error in the accompanying COMP parameter. The REASON parameter cannot be coded without the COMP parameter.

For the reason code, enter 1 to 8 hexadecimal digits. If the code is fewer than 8 digits, the system pads it on the left with zeroes. For example, REASON=4 means a reason code of 00000004.

You can indicate a set of reason codes by substituting x's for up to 7 digits. For example, REASON=44XXXXX means any reason code that begins with the digits 0044; the last 4 digits can be any hexadecimal value. You can use x's in any position.

Note: To match the REASON parameter, the reason code must have been specified via the REASON parameter of the ABEND, SETRP, or CALLRTM macro.

Abbreviation: RE

Example:
\texttt{COMP=U123x,REASON=8}

RECORD
See the ACTION=RECORD parameter.

RECOVERY
See the ACTION=RECOVERY parameter.

REFAFTER
See the ACTION=REFAFTER parameter.

REFBEFORE
See the ACTION=REFBEFORE parameter.

REFAFTER=\texttt{(triplet)}

REFBEFORE=\texttt{(triplet)}

As an option of an ACTION parameter, specifies the refresh to be taken after or before the action specified for the SLIP trap. The parameter must be specified if the ACTION parameter includes REFAFTER or REFBEFORE.

The following syntax for a triplet is identical for REFAFTER and REFBEFORE.

\texttt{target[(b)],EQ|EQA|EQC[(n)],value}

The parameters in a \textit{triplet} are:

target
Specifies the first triplet operand, which could be the address of a storage location or a general purpose register (GPR), to be refreshed with the supplied value. The target can be:
- A direct address (virtual address) of 1 to 8 hexadecimal digits
- A general purpose register, \texttt{xR}, where \texttt{x} is 0 through 15
- An indirect address (see “Indirect Addresses” on page 4-563)

b
If specified, \texttt{b} modifies the target address by indicating the starting bit for a binary refresh. For registers, \texttt{b} can be 0 through 31. The starting bit position plus the bit size for the refresh must not exceed 31.
Specifies the second triplet operand, which refreshes the contents of the target address with a binary or hexadecimal value.

EQA
Refreshes the target address with the address specified in the *value* parameter. A binary refresh must not be specified with EQA.

EQC
Refreshes the contents of the address specified as the target with the contents of the address specified in the *value* parameter.

n
Specifies the number of bytes or bits processed for a contents (EQC) or address (EQA) refresh. When *b* is specified with the target, the range is from 1 to 8 bits with the default being 1 bit. Otherwise, the range is 1 to 4 bytes with the default being 4 bytes.

Note: When SLIP does a contents or an address refresh, it refreshes the first *n* bytes of storage and the last *n* bytes of a register.

value
Specifies the third triplet operand. The *value* refreshes the target address. When the **EQ** parameter is specified without A or C, the value can be:

- A constant, whose length determines the number of bytes or bits to be refreshed.
- Binary digits, if *b* is specified with the target address. If *b* is not specified, the value is in hexadecimal digits. For example, 6R(0),EQ,01 is binary and 6R,EQ,01 is hexadecimal. For binary refreshes, the length of the value establishes the length of the refresh.
 - The maximum length for a binary refresh is 8 bits.
 - Binary refreshes can cross byte boundaries but not register boundaries.
- Hexadecimal digits, whose length determines the number of bytes to be refreshed, when the target is not a register. However, the maximum length of the value is 4 bytes. If you specify B36,EQ,8AD62, two and a half bytes of data are refreshed starting at location X'B36'.

 If the target address is a register, the length of the refresh is 4 bytes, and the value is right-justified. For example, 4R,EQ,8 is equivalent 4R,EQ,00000008.

If **EQA** or **EQC** is specified, the value can be:

- A direct address (virtual address) of 1 to 8 hexadecimal digits
- A general purpose register, xR or xG, where x is 0 to 15
- An indirect address (see “Indirect Addresses” on page 4-563)

Considerations for storage refreshes:

- SLIP processes the PER interrupt after the instruction has fully completed, except possibly for MVCL or CLCL instructions. The refresh will occur at that time.
- Storage being modified must be paged in when the modification occurs.
- Refreshes are processed one triplet at a time until one fails, at which time the refreshing processing stops.
- Use REFBEFOR when you need to refresh storage on which some subsequent SLIP action may depend; use REFAFTER otherwise.
Low storage refreshes, for addresses 0 to X'1FF', are allowed if direct addressing is used.

Note: Do not use the REFBEOFOR or REFAFTER parameters to refresh system-protected areas like the PSA, nucleus, reentrant programs, and so on. Doing so will cause SLIP to receive an abend X'0C4'.

Abbreviation: RFA or RFB

Examples:

Example 1: In the following trap, every time the contents of locations X'10000' to X'10003' in the address space for a job named CONS is modified, the trap causes the current contents to be recorded in a trace record and then stores X'00000A24' into location X'10000'.

```
SLIP SET,SA,RANGE=(10000,+3),ACTION=(REFAFTER,TRACE),
       TRDATA=('CONS'.10000,+3),
       REFAFTER=('CONS'.10000,EQ,00000A24),ASIDA=('CONS'),END
```

Example 2: When the trap matches, an SVC dump is requested the storage will contain the value of X'3000' in address space A, then storage locations X'3000' and X'3001' are modified and register 1 is set to 0.

```
SLIP SET,IF,LPAMOD=(MYMOD,40,42),ACTION=(SVCD,REFAFTER),
       SUMLIST=(0FC.3000,4000),REFAFTER=(0FC.3000,EQC(2),
               0FD.4000,1R,EQ,00000000),END
```

Example 3: The following trap sets the first 3 bits of location '3000'X in the home address space of DUMPSRV to '101'B.

```
SLIP SET,IF,LPAMOD=(MYMOD,40,42),ACTION=(SVCD,REFBEFOR),
       REFBEFOR=('DUMPSRV'.3001,EQA(3),2R?+30),END
```

Example 4: The low-order 3 bytes of the virtual address are generated by adding X'30' to the value in general purpose register (GPR) 2 will be stored in DUMPSRV at location X'3001'.

```
SLIP SET,IF,LPAMOD=(MYMOD,40,42),A=(SVCD,REFBEFOR),
       REFBEFOR=('DUMPSRV'.3001,EQA(3),2R?+30),END
```

REMOTE=(UNCOND | COND,remote)

REMOTE=(UNCOND | COND,(remote)[,(remote)]...)

REMOTE=(remote)

REMOTE=((remote)[,(remote)]...)

As an option of an ACTION parameter, allows SLIP to specify actions to be taken within the sysplex, on systems other than the system on which the trap matches. A SLIP trap on one system can initiate an SVC dump or load a wait state on another system. The REMOTE parameter values specify other system(s) in the sysplex, actions for those systems, and options for dumps on those systems. The REMOTE parameter can be specified only when the ACTION for the local system is SVCD, SYNC SVC, or WAIT.

The parameters within the REMOTE parameter are: UNCOND, COND, SYSLIST, ACTION, ASIDLST, DSPNAME, JOBLIST, LIST, SDATA, and STRLIST.

For a system running z/OS V1R2 or higher in z/Architecture mode, the remote LIST parameter can contain 64-bit addresses. However, if the LIST parameter is sent to either a pre-z/OS V1R2 system, or to a z/OS V1R2 system running in ESA mode, the entire remote LIST specification is ignored.

UNCOND

COND

On a REMOTE parameter, indicates if the remote actions should be...
performed conditionally or unconditionally when the trap matches. COND or UNCOND must be the first value specified on the REMOTE parameter. If you omit UNCOND, you do not need to code a comma in its place.

You can specify COND only on a PER trap when the action for the local system is ACTION=WAIT. Use COND when it is more important that a unit of work be stopped than for the action on the remote system to occur.

When COND is specified:
- When the SLIP trap matches for a PER interrupt and the task is enabled, unlocked, and in task mode, then the task is stopped, the actions on the other systems in the sysplex are scheduled, and the local system is put into a restartable wait state.
- When the SLIP trap matches for a PER interrupt and the task cannot be safely stopped, the actions on the other systems are ignored and the local system is put into a restartable wait state.

When UNCOND is specified and the SLIP trap matches for a PER interrupt:
- The actions on the other systems in the sysplex are scheduled.

SYSLIST=(sysname,group.member,group.*, (start),...)

On a REMOTE parameter, identifies systems in the sysplex on which the actions specified in remote will be performed. You can specify any combination of system names and/or member specifications. When group.* is specified, all systems where any member of the group is running are affected. If you omit SYSLIST, the default is all systems. When a system is identified more than once, implicitly or explicitly, the first occurrence is used, the others are ignored.

You can also specify a (start) address in place of any or all system names. The address can be either direct or indirect (see “Indirect Addresses” on page 4-563) When specified, the address will be resolved when the trap matches, and the 8 byte remote system name retrieved from the specified storage.

Any trailing blanks found after the system name will be ignored.

Examples:

SYSLIST=(sys1)
SYSLIST=(sys1,sys2,sys3)
SYSLIST=(mygroup.member1,hisgrp.*)
SYSLIST=(sys1,group1.memberA,thegroup.member2)
SYSLIST=(sys1,group1.*, (2R?), (2R?+8))

ACTION=SVCD

ACTION=WAIT

On a REMOTE parameter, identifies the action to be taken by the systems identified in SYSLIST: to initiate an SVC dump or load a wait state. The dump options are ASIDLST, JOBLIST, DSPNAME, LIST, and SDATA. Dump options are processed only when the action is specified as SVCD or is the default.

When ACTION is not specified within the REMOTE parameter:
- If the local action is WAIT, the default action is WAIT.
- If the local action is SVCD or SYNCSVCD, the default action is SVCD.

All systems identified in SYSLIST use the default SLIP SVCD parameters as their default dump options.

ASIDLST, DSPNAME, JOBLIST, LIST, SDATA, and STRLIST

On a REMOTE parameter, the syntax is identical to the parameters for the
dump option on the local system. When specified without an equal sign (=) and value, the options specified for the local system are used for the systems identified in SYSLIST.

Note: The only symbolic ASIDs accepted for the ASIDLST parameter are PRIMARY or CURRENT.

If no options are specified for the subparameters in the REMOTE parameter, the systems identified in SYSLIST use the options of the local system. For example, if you issue the SLIP SET,...,SDATA=(SQA),RM=(SDATA),END command, the systems identified in SYSLIST would dump SQA for SDATA.

Allowable Abbreviations:
- RM for REMOTE
- SY for SYSLIST

Examples:
- REMOTE=(COND,(SYSLIST=MYGROUP.*,ACTION=WAIT))
- REMOTE=((SYSLIST=(SYS1,SYS2),ACTION=WAIT),(SYSLIST=SYS3,ACTION=SVCD))
- REMOTE=(COND,ACTION=SVCD,JL=(J1,J2),AL=(5,6),SDATA=COUPLE)
- REMOTE=(ACTION=SVCD,SDATA,DSPNAME)

SA
Specifies the event as a storage alteration. This parameter is positional; it must appear following SET and a comma. See “ASIDSA parameter” on page 4-592 for further information.

SAS
Specifies the event as a storage alteration caused by a STURA instruction. This parameter is positional; it must appear following SET and a comma. See “ASIDSA parameter” on page 4-592 for further information.

SBT
Specifies the event as a successful branch caused by a branch instruction into the specified range or a branch within the specified range. This parameter is positional; it must appear following SET and a comma.

SDATA=area
As an option of an ACTION or REMOTE parameter, specifies the kind of system areas to dump. You can specify any combination of the following, enclosed in parentheses and separated by commas:
- ALLNUC
- ALLPSA
- COUPLE
- CSA
- GRSQ
- LPA
- LSQA
- NOALLPSA
- NOSQA
- NOSUMDUMP
- NUC
- PSA
- RGN
- SQA
- SUMDUMP
- SWA
- TRT
WLM
XESDATA

If you specify only one area, you can omit the parentheses. See the CHNGDUMP command for descriptions of these dump options. Note, however, that the CHNGDUMP command does not affect SLIP processing of the SDATA parameter.

If you specify SDATA, the default SDATA options are:

- For ACTION=SVCD or SYNCSVCD: SQA.
- For ACTION=STDUMP or TRDUMP: NOSQA.

If you do not specify SDATA, the default SDATA options are:

- For ACTION=SVCD or SYNCSVCD: ALLPSA, CSA, LPA, NUC, RGN, SQA, SUMDUMP, and TRT.
- For ACTION=STDUMP or TRDUMP: NOALLPSA, NOSQA, NOSUM, and TRT.

SDATA options are added and overridden according to installation-defined defaults.

SDATA options override the installation-defined defaults set by the CHNGDUMP command for any parameters that can be specified. Also, although it cannot be specified via the SLIP command, SDATA=SERVERS is always used for SLIP.

Allowable Abbreviations:
- SD for SDATA
- NOALL for NOALLPSA
- NOSUM for NOSUMDUMP
- SUM for SUMDUMP

Example:
ACTION=SVCD,SDATA=(SQA,TRT,SUM)

STDATA=(start,end,[start,end])

As an option of the STRACE or STDUMP parameter, specifies one or more storage areas to be included in the system trace record. Each area is defined by a set of starting and ending addresses, which can be either direct or indirect (see "Indirect Addresses" on page 4-563). A starting address must be less than or equal to the ending address.

The variable data included in the system trace record is limited to 20 bytes. The length of each range will be rounded up to the nearest multiple of 4 bytes.

SET

Specifies that the SLIP command sets a trap. This parameter is positional; it must appear following a blank after SLIP.

STDUMP

See the ACTION=STDUMP parameter.

STRACE

See the ACTION=STRACE parameter.

STRLIST=(s-option)

STRLIST=(s-option[,s-option]...)

As an option of an ACTION or REMOTE parameter, includes in the dump one or more coupling facility structures. A structure is identified in a s-option value, which consists of the following parameters; STRNAME is required in STRLIST, the other parameters are optional.

STRNAME=strname

In the STRLIST parameter, designates a coupling facility list or cache
structure. The *strname* is the name of the structure to be included in the dump. The *strname* is 1 to 15 characters and must begin with a letter.

Any dump options for this structure are replaced when you issue this SLIP command.

Abbreviation: STRNM

CONNAME=conname

In the STRLIST parameter for a coupling facility cache structure, requests the user registry information for this user be included in the dump. The *conname* is the name of a connected user. If the connected user represented by the *conname* does not exist, the dump will not contain user registry information.

Abbreviation: CONNM

ACCESSTIME=ENFORCE
ACCESSTIME=NOLIMIT

In the STRLIST parameter, indicates whether the dump time limit specified on the ACCESSTIME parameter of the IXLCONN macro is in effect.

When ACCESSTIME=ENFORCE is specified, the system holds structure dump serialization no longer than the time interval specified on the IXLCONN macro. This is the default. If ACCESSTIME=0 is specified on the IXLCONN macro and ACCESSTIME=ENFORCE is specified on the SLIP command, the structure will not be included in the dump.

When ACCESSTIME=NOLIMIT is specified, the dump time limit is not in effect and the system will hold structure dump serialization until processing is completed.

Allowable Abbreviations:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>ACCESSTIME</td>
</tr>
<tr>
<td>ENF</td>
<td>ENFORCE</td>
</tr>
<tr>
<td>NOLIM</td>
<td>NOLIMIT</td>
</tr>
</tbody>
</table>

LOCKENTRIES

In the STRLIST parameter for a coupling facility list structure, the system includes in the dump the lock table entries for the requested structure. Because coupling facility cache structures do not have lock table entries, this parameter is ignored when specified for a coupling facility cache structure.

Abbreviation: LOCKE

USERCNTLS

In the STRLIST parameter, requests that the user attach controls be included in the dump.

Abbreviation: UC

COCLASS=ALL
COCLASS=(list)

In the STRLIST parameter for a coupling facility cache structure, specifies which cast-out classes are included in the dump. For each cast-out class, the cast-out class controls are dumped and the directory information for each of the entries within the requested cast-out classes are dumped (if SUMMARY is not specified).

COCLASS is not valid for a coupling facility list structure.
When COCLASS=ALL is specified, the cast-out class controls for all cast-out classes are dumped along with the directory information for all entries within the classes (if SUMMARY is not specified).

When COCLASS=(list) is specified, the cast-out class controls for (list) are dumped along with the directory information for the entries in the requested cast-out classes (if SUMMARY is not specified). The values specified in a range are the decimal cast-out class values in the range 0 to 65535. When a requested class does not exist, it is not dumped.

The list represents a list of values, ranges of values, or values and ranges of values, in any combination. For example:

(start1-end1,value2,start3-end3, ...)

Abbreviation: COC

STGCLASS=ALL
STGCLASS=(list)
In the STRLIST parameter for a coupling facility cache structure, specifies which storage classes are included in the dump. For each storage class, the storage class controls are dumped and the directory information for each of the entries within the requested storage classes are dumped (if SUMMARY was not specified).

COCLASS is not valid for a coupling facility list structure.

When STGCLASS=ALL is specified, the storage class controls for all storage classes are dumped along with the directory information for all entries within the classes (if SUMMARY is not specified).

When STGCLASS=(list) is specified, the storage class controls for (list) are dumped along with the directory information for the entries in the requested storage classes (if SUMMARY is not specified). The values specified are the decimal storage class values, 0 to 255. When a requested class does not exist, it is not dumped.

The list represents a list of values, ranges of values, or values and ranges of values, in any combination. For example:

(start1-end1,value2,start3-end3, ...)

Abbreviation: SC

LISTNUM=ALL
LISTNUM=(list)
In the STRLIST parameter for a coupling facility list list structure, specifies which lists are included in the dump. The list controls are dumped along with the entry controls for the entries on each requested list (if SUMMARY is not specified).

LISTNUM is not valid for a coupling facility cache structure.

When LISTNUM=ALL is specified, the list controls for all lists in the coupling facility list list structure are dumped along with the entry controls (if SUMMARY is not specified).

When LISTNUM=(list) is specified, the list controls for (list) are included in the dump along with the entry controls for those lists. The values specified are the decimal list values, 0 to 4294967295. The system ignores a zero, but does not treat a zero as an error. When a requested list does not exist, it is not dumped.

The list represents a list of values, ranges of values, or values and ranges of values, in any combination. For example:
ADJUNCT=CAPTURE

In the STRLIST parameter, requests that the adjunct data for each entry specified by the range be included in the dump. When this parameter is not specified or when adjunct data does not exist for this structure, the adjunct data is not included in the dump.

ADJUNCT may not be specified with SUMMARY.

When ADJUNCT=CAPTURE is specified, the adjunct data is captured in the facility dump space along with the directory information while dumping serialization is held.

When ADJUNCT=DIRECTIO is specified, the adjunct data is written directly to the dump data set after the directory information is captured. The adjunct data is not captured in the structure dump table. Note that the adjunct data may be changing as dumping proceeds.

Allowable Abbreviations:
- ADJ for ADJUNCT
- CAP for CAPTURE
- DIO for DIRECTIO

ENTRYDATA=UNSERIALIZE
ENTRYDATA=SERIALIZE

In the STRLIST parameter, indicates that the entry data for each entry within the requested range is included in the dump. When this parameter is not specified or when entry data does not exist for the structure, entry data is not included in the dump.

ENTRYDATA may not be specified with SUMMARY.

When ENTRYDATA=UNSERIALIZE is specified, the entry data is dumped after structure dump serialization is released. Note that the entry data may be changing relative to the entry controls that were captured while structure dump serialization was held.

When ENTRYDATA=SERIALIZE is specified, the entry data is dumped while serialization is held. If ACCESTIME=ENFORCE is specified and the dump time limit expires before the entry data is written to the dump data set, the system continues to write the entry data to the dump data set even though serialization is not held.

Allowable Abbreviations:
- EDATA for ENTRYDATA
- UNSER for UNSERIALIZE
- SER for SERIALIZE

SUMMARY

In the STRLIST parameter, requests a summary of the range of classes or lists that is dumped. The directory information for the entries is excluded from the dump.

SUMMARY may not be specified with ADJUNCT or ENTRYDATA.

Abbreviation: SUM
Notes for the STRLIST Parameter:

1. A syntax error message is issued if STRNAME is not the first parameter in STRLIST.

2. If CONNAME and ACCESSTIME are specified more than one time for a structure, the first CONNAME and the last ACCESSTIME are used.

3. When a list number, a storage class, a cast-out class, or an entry is specified in the STRLIST more than once, it will be dumped more than once. An example of this is when STGCLASS=ALL is specified with COCLASS=ALL. All entries in the coupling facility cache structure are dumped twice. Once grouped by storage class and again grouped by cast-out class.

4. When LISTNUM, STGCLASS, or COCLASS is not specified, no list or class controls are dumped and no entries are dumped.

5. If a large amount of data is requested to be dumped, the system may not be able to dump all the data completely. You can expect to dump up to a maximum of 47 structures, if you specify no more than six ranges. If you must specify more than six ranges, you must specify fewer structures. For each structure less than 47 that you specify, you can specify another 10 ranges, as follows:

<table>
<thead>
<tr>
<th>Number of Structures</th>
<th>Number of Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>6</td>
</tr>
<tr>
<td>46</td>
<td>16</td>
</tr>
<tr>
<td>45</td>
<td>26</td>
</tr>
<tr>
<td>44</td>
<td>36</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

6. If the system cannot dump all the data you requested, it prioritizes the data according to your specifications on the command.
a. The system will attempt to dump the first requested structure first.
 - Within that structure, the system processes the LOCKENTRIES, USERCNTLS, COCLASS, STGCLASS, and LISTNUM parameters in the order that they are specified. COCLASS, STGCLASS, and LISTNUM may be specified more than once for a single structure.
 - The system dumps requested serialized data before requested unserialized data, starting with the first requested data in the structure and proceeding through the last data that was requested as serialized.

b. The system then dumps the next-requested structure data, starting with the first requested data in the structure and proceeding through the last data that was requested as serialized.

c. The system continues in this manner until all serialized data in all requested structures has been prioritized for dumping.

d. The system then dumps any remaining data that was requested as unserialized and that may not have been dumped, beginning with the first-requested structure.

SUMLIST=(start,end)

SUMLIST=(start,end[,start,end]...)

As an option of an ACTION parameter, specifies one or more storage areas to be included in a disabled summary dump. Each area is defined by a set of starting and ending addresses, which can be either direct or indirect. (See "Indirect Addresses" on page 4-563.) A starting address must be less than or equal to the ending address.
Specify SUMLIST with ACTION=SVCD or ACTION=TRDUMP when the SUMDUMP option is specified or is the default in the SDATA parameter.

SUMLIST is similar to the LIST parameter; the area specified by LIST is in a scheduled SVC dump while the area specified by SUMLIST is in a disabled summary dump.

Abbreviation: SL

Example:

ACTION=SVCD,SUMLIST=(152,155,2R%,+3)

SVCD

See the ACTION=SVCD parameter.

SYNCSVCD

See the ACTION=SYNCSVCD parameter.

TARGETID

See the ACTION=TARGETID parameter.

TARGETID=trapid

As an option of an ACTION parameter, specifies the trap to be activated when the current trap is deactivated as a result of MATCHLIM. The trapid identifies the next PER trap to be activated, where 1 to 4 alphanumeric or national ($, #, @) characters specifies the trap identifier. For example:

TARGETID=PER2.

Specifying TARGETID=trapid on the first PER trap associates the trap with the SLIP trap ID of the second trap. The second PER trap can specify a third trap and so on. There is no limit to the number of traps in a chain of dynamic traps, called a dynamic PER activation chain. The range of the target trap is evaluated in the matching environment of the prior trap in the activation chain. Storage areas associated with RANGE must be paged in when the match occurs.

Indirect addressing on the RANGE parameter allows storage locations and registers to be resolved when their values are known.

When TARGETID is used as a parameter, it must also be specified as one of the ACTION values. Failure to do so will result in the TARGETID parameter being ignored.

Abbreviation: TI

Example 1

The following dynamic per trap example can do alterations on the first X'20' bytes of the storage obtained by the GETMAIN command. Assume that the GETMAIN command is issued prior to location X'100' in module MYMOD, such that the address of the obtained storage is in GPR 1.

SLIP SET,IF,PVTMOD=(MYMOD,100),DISABLE,ACTION=(TARGETID,TRACE),
TARGETID=H2, ID=H1, ASID=(0FC), END

SLIP SET,SA,ASIDSA=(0FC), RANGE=(1R?,+20),
ACTION=WAIT, ID=H2, DISABLE, END

Example 2

This example uses indirect addressing on the RANGE keyword to trap on alterations to one byte of storage. The address is found at offset X'50' into the CVT. See "Dynamic PER Traps" on page 4-573 for more details.

SLIP SET,SA,RANGE=10?+50?,A=WAIT, JOBNAME=CONS, END
SLIP Command

TRACE
See the ACTION=TRACE parameter.

TRDATA=(STD[,REGS][,list])
TRDATA=(REGS[,list])
TRDATA=(list)
As an option of an ACTION=TRACE or ACTION=TRDUMP parameter, indicates the type and contents of the generalized trace facility (GTF) records to be collected in the requested GTF trace.

STD
Indicates that GTF is to write a SLIP standard trace record, as described in [*z/OS MVS Diagnosis: Tools and Service Aids*](#).

REGS
Indicates that the SLIP trace records are to contain the contents of the 16 general purpose registers at the time of the error event or PER interruption.

list
Specifies one or more sets of addresses for one or more storage areas to dump. Each area cannot exceed 65535 bytes. The addresses can be direct or indirect. For each set, the starting address must be less than or equal to the ending address. (See “Indirect Addresses” on page 4-563.)

Abbreviation: TD

Example:
```plaintext
SLIP ACTION=TRACE,TRDATA=(STD,REGS,152,155)
```

TRDUMP
See the ACTION=TRDUMP parameter.

WAIT
See the ACTION=WAIT parameter.

SLIP SET Examples

Example 1
This example establishes an enabled SLIP trap with an ID of 0002. It requests an SVC dump (by default) if there is an 0C4 program check interruption while module MOD01 and job JOBXYZ are in control.
```plaintext
SLIP SET,ENABLE,ID=0002,COMP=0C4,ERRTYP=PROG,JOBNAME=JOBXYZ,
LPAMOD=MOD01,END
```

Example 2
This example sets up an error event (non-PER) trap with an ID of DUM1 that suppresses all SYSABEND dumps for the 806 system completion code.
```plaintext
SLIP SET,COMP=806,ID=DUM1,ACTION=NOSYSA,END
```

Example 3
This command sets an instruction fetch PER trap that will cause an SVC dump when the instruction at CD3100 is executed. PER monitoring will be active in all address spaces in the system because neither ASID nor JOBNAME was specified.
```plaintext
SLIP SET,IF,ENABLE,ACTION=SVCD,RANGE=CD3100,END
```

Example 4
This example sets up a trap for a successful branch trace of the path taken through
the LPA module MOD01 starting at offset 108 (hex) through 4FC during the
execution of JOBX. After 20 standard SLIP records have been written the trap is
automatically disabled.

SLIP SET,SBT,ENABLE,ID=PER1,LPAMOD=(MOD01,108,4FC),JOBNAME=JOBX,
ACTION=TRACE,MATCHLIM=20,END

Example 5

This command defines a trap that will cause an SVC dump when storage location
CD3010 is altered. MATCHLIM is 1 and PRCNTLIM is 10 by default.

SLIP SET,SA,ENABLE,ACTION=SVCD,RANGE=CD3010,END

Example 6

This example sets up two SLIP traps, both initially disabled, and then enables them
both with a SLIP MOD command. The second trap prevents the first trap from
matching for the subset of instructions specified by LPAMOD.

SLIP SET,IF,DISABLE,LPAMOD=(MODX,110,1FB),JOBNAME=JOB1,MATCHLIM=500,
ACTION=TRACE,TRDATA=(STD,REGS),END
SLIP SET,IF,DISABLE,LPAMOD=(MODX,1C4,1D7),ACTION=IGNORE,END
SLIP MOD,ENABLE,ALL

Note: The IGNORE trap is specified after the non-IGNORE trap because traps are
processed for match tests in last-in, first-out order.

Example 7

The SLIP trap will match on a branch instruction into LPA module MODZ starting at
offset 220 (hex) through 240. When the trap is matched, the actions specified in the
REMOTE parameter will be performed unconditionally. Systems SYS1 and SYS2
will be placed into a restartable wait state. System SYS3 will schedule an SVC
dump. The dump for system SYS3 will include address spaces 3 and 4. The local
system will also schedule an SVC dump. The dump for this system will include
address spaces 0 and C.

SLIP SET,SBT,ACTION=SVCD,ASIDLST=(0,C),LPAMOD=(MODZ,220,240),
REMOTE=(UNCOND,(SYSLIST=(SYS1,SYS2),ACTION=WAIT),
(SYSLIST=(SYS3),ACTION=SVCD,ASIDLST=(3,4))),END

Example 8

The SLIP trap does not contain the parameters ASIDSA or DSSA. Normally,
message IEE604D would be issued; however, because the OK parameter is also
specified, SLIP will continue processing without issuing the WTOR.

SLIP SET,SA,OK,RANGE=(1000,2000),END

Example 9

This example and the next show how to use the STOPGTF parameter. This one
stops GTF tracing when the instruction at offset 50 in module MYMOD is executed.
In this case, the GTF records originate from some source, perhaps other than SLIP:

SLIP SET,IF,PVTMOD=(MYMOD,50),ACTION=STOPGTF,END

Example 10
Like the previous example, this example shows how to use the STOPGTF parameter. This example stops GTF tracing when the instruction at offset 50 into module MYMOD is executed. With ML=100 specified, only 100 trace records are written, after which the SLIP trap is disabled, and all GTF tracing is stopped:

```
SLIP SET,IF,PVTMOD=(MYMOD,50),ACTION=(STOPGTF,TRACE),ML=100,END
```

Example 11

This example shows how to use the GTFID parameter. In this example, the operator starts two GTF instances HM1 and HM2. When a unit of work takes an abend with code FFFx, the SLIP trap deactivates the instance HM1, leaving HM2 active:

```
START GTFX.HM1
START GTFX.HM2
SLIP SET,C=FFF,A=STOPGTF,GTFID=(HM1),E
```

Example 12

This example shows how to use the SUBTRAP parameter. When the first instruction in IEFBR14 is executed, a PER interrupt occurs and the SLIP action processor tries to determine whether trap TRP1 is a match. If it matches, a trace record is generated and no further action is taken; otherwise, the SLIP action processor checks whether TRP2 matches:

```
SLIP SET,IF,LPAMOD=(IEFBR14,0),A=SVCD,ID=TRP2,E
SLIP SET,IF,DATA=(1R,EQ,0),A=(SUBTRAP,TRACE),ID=TRP1,E
```

Example 13

This example shows how to use the MSGID parameter. This trap matches on the command response from the DISPLAY TIME command:

```
IEE136I LOCAL: TIME=16.37.02 DATE=2001.102...
```

where the significant time is hour 16 (meaning the time is between 4:00 and 4:59 p.m.):

```
SLIP SET,MSGID=IEE136I,DATA=(3R?+14,EQ,F1F6),ACTION=WAIT,ML=1,END
```

Example 14

This example shows how to use 64-bit addresses on the RANGE parameter. It requests a dump when the first above-the-bar page is modified by job TEMP5:

```
SLIP SET,SA,ASIDSA=(SA),RANGE=(1_00000000,+,FFF),ACTION=SVCD,JOBNAME=TEMP5,END
```

Example 15

This example shows how to include a small amount of above-the-bar virtual storage as part of the summary dump capture phase, which is captured synchronously under the unit of work that took the PER interrupt, and a larger portion as part of the non-summary dump phase. Note that there is a limit on the amount of storage that can be captured in the summary dump phase:

```
SLIP SET,IF,PVTMOD=(MYMOD,13E),SUMLIST=(6G!,+,FFF),LIST=(1_00000000,2_00000000),END
```

Example 16
This is an example of a REMOTE LIST, which can be used to dump storage in the address space whose jobname is TEMP5. It can be used on systems running z/OS V1R2 or higher in z/Architecture mode. The REMOTE LIST parameter is ignored on z/OS V1R1 and OS/390 systems:

```
SLIP SET,IF,PVTMOD=(MYMOD,13E),
    REMOTE=(ACTION=SVCD,LIST=('TEMP5'.1_00000000,2_00000000,10000,+FFF)),
    ACTION=SVCD,END
```

Example 17

This is an example of using 64-bit operands in the TRDATA keyword. Eight bytes of data are fetched from address 1_00000000; the resulting address is used to fetch another 8 bytes, which is used as the starting address to capture X'10' bytes of storage in a trace buffer:

```
SLIP SET,IF,PVTMOD=(MYMOD,13E),ACTION=TRACE,TRDATA=(1_00000000!,+10),ML=1,END
```

Example 18

This example shows how to compare data in bits 32–64 of register 6 (the default), but ensures that bits 0–31 of register 6 are zero:

```
SLIP SET,IF,PVTMOD=(MYMOD,1A6),DATA=(1_00100000,EQC,6G),ACTION=WAIT,END
```

Example 19

This example is similar to the previous example, except that the order of the values specified on EQC is reversed. This SLIP trap compares data in all 8 bytes of register 6 (the default):

```
SLIP SET,IF,PVTMOD=(MYMOD,1A6),DATA=(6G,EQC,1_00100000),ACTION=WAIT,END
```

Example 20

This example compares four bits of data starting at bit 10 in register 6 with the data at address 1_00101000 starting at bit 10:

```
SLIP SET,IF,PVTMOD=(MYMOD,1B2),DATA=(6G(10),EQC(4),1_00101000),ACTION=WAIT,END
```

Example 21

This example compares two bits of data starting at bit 2 at the specified address with a constant:

```
SLIP SET,IF,PVTMOD=(MYMOD,1B2),DATA=(1_00101001(2),EQ,10),ACTION=WAIT,END
```

Example 22

This example stores eight bytes from 1_00000000 into the buffer addressed by register 7:

```
SLIP SET,IF,PVTMOD=(MYMOD,1B2),REFBEFORE=(7G!,EQC(8),1_00000000),ACTION=(REFBEFORE),END
```

Example 23

This example moves eight bits starting from bit position 4 at 1_00101000 to bit position 4 of register 6:

```
SLIP SET,IF,PVTMOD=(MYMOD,1B2),REFBEFORE=(6G4,EQC(8),1_00101000),ACTION=(REFBEFORE),END
```

Modifying an Existing SLIP Trap

Use the SLIP MOD command to modify an existing SLIP trap.
SLIP Command

Syntax

```
SLIP MOD{,ENABLE | ,DISABLE}{,ALL | ,ID=trapid}
```

Parameters

MOD
- Specifies that the SLIP command modifies one or all existing SLIP traps. This parameter is positional; it must appear following a blank after SLIP.

ENABLE
- The specified SLIP trap is to be made active.

 Abbreviation: EN

DISABLE
- The specified SLIP trap is to be made inactive.

 Abbreviation: D

ALL
- Every SLIP trap present in the system is to be modified. To find out what SLIP traps are in the system, issue DISPLAY SLIP.

ID=trapid
- Only the SLIP trap with the identifier `trapid` is to be modified.

 Where asterisks (*) replace any or all of the 4 characters of the identifier, all SLIP traps whose IDs match the non-asterisk characters are to be modified. If you specify fewer than 4 characters, the ID is padded on the right with blanks. A matching identifier must have blanks in those positions.

 The asterisks allow you to group your SLIP traps by common characters in their IDs and enable and disable them as a group.

CAUTION:
- The **ALL** parameter is extremely powerful because it modifies both the traps of *every* SLIP user and the traps the system uses to suppress unnecessary dumps. Issue SLIP MOD,ENABLE,ALL or SLIP MOD,DISABLE,ALL, therefore, only if you understand all its consequences for your system.

Example 1

The following SLIP command is used to deactivate the SLIP trap associated with identifier 0024. This SLIP trap can be activated again with the SLIP MOD,ENABLE,ID=0024 command.

```
SLIP MOD,DISABLE,ID=0024
```

Example 2

Disable all SLIP traps with an identifier having ‘A’ as the first character and ‘B’ as the third character.

```
SLIP MOD,DISABLE,ID=A*B*
```

Deleting an Existing SLIP Trap

Use the SLIP DEL command to delete a SLIP trap.
Syntax

\[
\text{SLIP \text{DEL}(,\text{ALL } | ,\text{ID}=\text{trapid})}
\]

Parameters

DEL

Specifies that the SLIP command remove one or all SLIP traps from the system. This positional parameter must appear following a blank after SLIP.

ALL

Every SLIP trap in the system is to be deleted. To find out what SLIP traps are in the system, issue DISPLAY SLIP.

ID=trapid

Only the SLIP trap with the identifier *trapid* is to be deleted.

Note: To delete more than one, but not all SLIP traps, you must enter a separate SLIP DEL command for each ID.

Attention: The ALL parameter is extremely powerful because it deletes both the traps of every SLIP user and the traps the system uses to suppress unnecessary dumps. Issue SLIP DEL,ALL, therefore, only if you understand all its consequences for your system.

Example

Use the following SLIP command to delete the SLIP trap with identifier 0008. This SLIP trap cannot be reactivated by a SLIP MOD command.

\[
\text{SLIP \text{DEL},ID=0008}
\]
Use the START command to start started tasks, which support system functions such as IMS, CICS, and RACF. Started tasks are defined in cataloged procedures (residing in procedure libraries) or through jobs residing in a partitioned data set defined in master JCL.

Note: In general, IBM recommends that when you start a subsystem, you make the subsystem name specified in the IEFSSNxx parmlib member the same as that of the member you use from SYS1.PROCLIB. If the names do not match, you may receive error messages when you start the subsystem.

The following figure lists the tasks the START command can perform. Use it as an index to details about particular uses of the command.

Table 4-42. Summary of the START Command

<table>
<thead>
<tr>
<th>Topic</th>
<th>Command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Starting a System Task from a Console" on page 4-631</td>
<td>START membername</td>
</tr>
<tr>
<td>"Starting the APPC/MVS Address Space" on page 4-635</td>
<td>START APPC</td>
</tr>
<tr>
<td>"Starting the APPC/MVS Transaction Scheduler Address Space" on page 4-636</td>
<td>START ASCH</td>
</tr>
<tr>
<td>"Starting the Common Event Adapter Address Space" on page 4-636</td>
<td>START CEA</td>
</tr>
<tr>
<td>"Starting the Generalized Trace Facility" on page 4-637</td>
<td>START GTF</td>
</tr>
<tr>
<td>"Starting Hardware Instrumentation Services (HIS)" on page 4-639</td>
<td>START hisproc</td>
</tr>
<tr>
<td>"Starting the Base Control Program internal interface (BCPii) address space after BCPii has been terminated" on page 4-639</td>
<td>START HWISTART</td>
</tr>
<tr>
<td>"Starting the Library Lookaside (LLA) Address Space" on page 4-640</td>
<td>START LLA</td>
</tr>
<tr>
<td>"Starting the Object Access Method (OAM)" on page 4-641</td>
<td>START OAM</td>
</tr>
<tr>
<td>"Starting Resource Recovery Services (RRS)" on page 4-641</td>
<td>START RRS</td>
</tr>
<tr>
<td>"Starting the System Object Model® (SOM) Subsystem" on page 4-642</td>
<td>START SOM</td>
</tr>
<tr>
<td>"Starting TSO/VTAM Time-Sharing" on page 4-643</td>
<td>START membername</td>
</tr>
<tr>
<td>"Starting the Virtual Lookaside Facility or Data Lookaside Facility" on page 4-644</td>
<td>START VLF or START DLF</td>
</tr>
<tr>
<td>"Starting an External Writer" on page 4-645</td>
<td>START XWTR</td>
</tr>
</tbody>
</table>

Syntax

The syntax for each variation of the START command is shown immediately preceding its respective parameter list.

START or S

Note: For any variation of the START command, if you specify volumeserial and omit devicetype (or devnum), you must supply a comma for the missing devicetype (or devnum). Do not supply any commas, however, after the last parameter you specify.
Starting a System Task from a Console

Use the START command to start a system task from a console.

Naming Considerations for Started Tasks: The job name or identifier of the started task is important for the following reasons:

- The name or identifier is used on DISPLAY, MODIFY, RESET, CANCEL, FORCE, and STOP commands for the started task.
- The jobname or identifier is part of the RACF resource name passed to the SAF interface.
- The job name and member name are passed to a security product (such as RACF) to give the task a user identification.
- The job name is used in SMF records to identify the task.

The job name for a given started task can be assigned based on a variety of inputs. These inputs are examined in the following order, so that if item #1 is not specified, item #2 is used. If neither #1 nor #2 is specified, then #3 is used, and so on.

1. The jobname specified in the JOBNAME= parameter of the START command or
 The identifier specified on the START command.
2. The jobname specified on the JOB JCL statement within the member.
3. The device number specified on the START command, or the device number associated with the device type specified on the START command or
 The device number associated with the device type specified on the START command.
4. The device number associated with the IEFRDER DD statement within the member.
5. The member name.

IBM recommends that you use the JOBNAME parameter rather than an identifier. If you use the JOBNAME parameter, SMF records, messages, and automated programs can reflect or react to job status; identifiers can only be viewed at a console.

Note: JOBNAME and identifier are mutually exclusive; you cannot specify both parameters on the START command.

```
$ membername[.identifier]
    [,devicetype[/devnum][,volumeserial]]
    [,parameters]
    [,JOBNAME=jobname]
    [,JOBACCT=acct_info]
    [,SUB=subsystemname]
    [,REUSASID=YES]
    [,keyword=option[,keyword=option]...]
```

Note: The "parameters" field in the preceded table is the equivalent to the 'Options' field as documented in the START command section in **Z/OS Communications Server: SNA Operation**.

`membername`

The 1 to 8 character name of a member of a partitioned data set that contains
the source JCL for the task to be started. The member may be either a job or a
cataloged procedure. The subsystem that selects the job determines which JCL
procedure library is called, usually MSTR, JES2 or JES3.

identifier
The name identifying the task to be started. This name can be up to 8
characters long. The first character must be alphabetical. If you omit an
identifier and the started task does not have an IEFRDER DD statement, the
system uses the job name as the identifier.

If you omit an identifier and the started task has an IEFRDER DD statement,
the device allocated to that started task becomes the identifier name.

Note: The system allows multiple started tasks with the same *membername*
and *identifier* to execute concurrently.

JOBNAME=jobname
The name that will be assigned to the job.

- If the source JCL is a procedure and you omit the JOBNAME keyword, the
 member name will be assigned as the job name.
- If the source JCL is a job and you omit the JOBNAME keyword, the system
 will use the job name assigned on the JOB statement in the JCL.

If you specify the JOBNAME keyword, the member name will be used only to
identify the member that contains the JCL for the started task.

If you specify the JOBNAME keyword, you cannot specify *identifier*.

JOBACCT=acct_info
An account number, and any other accounting information that your installation
requires, such as your department and room number.

The JOBACCT parameter specifies accounting data in the JCL JOB statement
for the started task. If the source JCL was a job and already specified
accounting data, the value specified on the JOBACCT parameter overrides the
accounting data in the source JCL.

For a detailed description of the accounting information format and syntax rules,
see [z/OS MVS JCL Reference](https://www.ibm.com). The length of *acct_info* cannot exceed 44 characters.

devicetype
The device type of the output device (if any) associated with the task.

Note: *devicetype* and *devnum* are mutually exclusive. You cannot specify both
parameters on a START command.

[/]devnum
The device number of the device to be started. A device number is 3 or 4
hexadecimal digits. A slash (/) must precede a 4-digit number and is optional
before a 3-digit number.

Note: *devnum* and *devicetype* are mutually exclusive. You cannot specify both
parameters on a START command.

volumeserial
If devicetype is a tape or direct access device, the volume serial number of the
volume mounted on the device.

parameters
Program parameters passed to the started program.
START Command

SUB=subsystemname

The name of the subsystem that selects the task for processing. The name must be one to four characters, defined in the IEFSSNxx parmlib member, and the subsystem must be active. If SUB= is not specified, the primary subsystem, as specified in IEFSSNxx, will select the task.

There is an exception to the above: If the name of the task being started is the same as that of a subsystem, the task will be started under the Master subsystem (MSTR). Then, because the only procedure libraries available to the Master subsystem are those specified in the MSTJCLxx's IEFPDSI data set, any procedures being started that are defined in the Job Entry subsystem's PROC00 data set but not in the MSTJCLxx data set, will be unavailable and will therefore not be found; the system will issue message IECF612I.

When the task being started is a subsystem and you omit SUB=, it is started under the master subsystem (MSTR) unless the subsystem itself asks to start under the Job Entry subsystem or the SSCTUPSS bit if the subsystem's SSCVT is on.

When you specify SUB=, you override the subsystem's request regarding under which subsystem the task should be started.

REUSASID=YES

When REUSASID=YES is specified on the START command and REUSASID=YES is specified in the DIAGxx parmlib member, a reusable ASID is assigned to the address space created by the START command. If REUSASID=YES is not specified on the START command or REUSASID(NO) is specified in DIAGxx, an ordinary ASID is assigned.

You can use REUSASID=YES for address spaces that result in message IEF352I ADDRESS SPACE UNAVAILABLE when they terminate. Before specifying REUSASID=YES, ensure that the program being started supports running with a reusable ASID. Otherwise, specifying REUSASID=YES might result in system abends 0D3. For more information about reusing ASIDs, see [z/OS MVS Programming: Extended Addressability Guide](https://publib.boulder.ibm.com/infocenter/zos/v2r13/topic/com.ibm.zos.zosix660.html).

keyword=option

Any appropriate keyword parameter you specify to override the corresponding parameter in the cataloged procedure. The maximum length of each keyword=option is 66 characters. No individual value within this field may be longer than 44 characters in length. You can specify:

- JCL JOB statement keyword parameters, to modify the JOB statement for the started task
- JCL EXEC statement keyword parameters, to override EXEC statements in the procedure being started (if the target of the START command is a procedure)
- JCL DD statement keyword parameters, to modify the IEFRDER DD statement (if it exists)
- JCL symbol names, to provide values for use in the started task

Parameters on JOB Statements

JOB statement keyword parameters are accepted for both started jobs and started procedures. For started jobs, the keyword specified on the START command overrides or nullifies the corresponding keyword in the source JCL.

You can specify the following job-level keywords:

- ADDRSPC
- BYTES
START Command

- CARDS
- COND
- JESLOG
- LINES
- MSGCLASS
- MSGLEVEL
- NOTIFY
- PAGES
- PERFORM
- PRTY
- REGION
- TIME

You cannot specify the following job-level keywords, unless you code them with no values (to nullify the same keywords in the source JCL):
- USER
- GROUP
- PASSWORD
- RESTART
- SECLABEL
- TYPRUN

The system ignores the following keywords when they are specified on the START command, unless you code them with no values (to nullify the same keywords in the source JCL):
- RD
- CLASS

Note: For a started task:
- In a JES2 environment the system ignores the CLASS keyword.
- In a JES3 environment the system ignores all CLASS related attributes and functions except for device fencing, SPOOL partitioning, and track group allocation. For more information about CLASS attributes and functions, see [z/OS JES3 Initialization and Tuning Guide](https://www.ibm.com/docs/en/zos?topic=initialization-tuning).

Parameters on EXEC Statements

EXEC statement keywords that have the same name as JOB statement keywords (for example, COND, REGION, and TIME), are treated as JOB statement keywords.

Notes:
1. If you specify an option that must have lower case characters, enclose it within apostrophes.
2. If you specify an option within apostrophes, for example, ‘DUMMY’, use the correct case letters within the apostrophes. START command processing does not convert lower case characters to uppercase. Thus, entering lower case letters might cause a JCL error or an abend. Similarly, entering upper case letters where lower case is required (UNIX Services, for example) may cause incorrect results.
3. If you are overriding a data set name in the cataloged procedure and the name of the data set is 44 characters long, use DSN=name. If you specify DSNAME=name, the START procedure stops and returns message IEF640I.
4. If you need information on started task considerations or use of overrides and symbols, see [z/OS MVS JCL Reference](https://www.ibm.com/docs/en/zos?topic=mvs-jcl).

START Command 4-634 z/OS V1R11.0 MVS System Commands
Example 1
To start JES2, enter:
S jes2

Example 2
To start JES2 with a job name of JES2 from a procedure named JESNOW, with an account number and other accounting information, enter:
S JESNOW,JOBNAME=JES2,JOBACCT=(D548-8686,'12/8/85',PGMBIN)

Starting the APPC/MVS Address Space
Use the START APPC command to start the Advanced Program-to-Program Communication/MVS (APPC/MVS) address space.

S APPC,SUB=MSTR[,APPC=(nn[,nn]...[,L])]

The parameters are:

APPC,SUB=MSTR
Invokes the APPC/MVS procedure and creates the APPC/MVS address space.

APPC=
Indicates which APPCPMxx parmlib members APPC/MVS is to use. The default member is APPCPM00. If you specify only one parmlib member, you do not need to enter the parentheses.

The APPCPMxx members can reside in SYS1.PARMLIB or any other parmlib data set that is specified on an //IEFPARM DD statement in the master scheduler JCL. However, APPC/MVS cannot process data sets specified in the master scheduler JCL until the operator enters a SET APPC command. For information about how to specify configuration information in a parmlib data set other than SYS1.PARMLIB, see the description of starting APPC and ASCH in [Z/OS MVS Planning: APPC/MVS Management](#).

L
The system will display parmlib statements on the operator's console as it processes them.

Example 1
START the APPC/MVS address space with parmlib member APPCPM00.
S APPC,SUB=MSTR

Example 2
START the APPC/MVS address space with parmlib member APPCPM01.
S APPC,SUB=MSTR,APPC=01

Example 3
START the APPC/MVS address space with parmlib members APPCPM03 and APPCPM06, and list the parmlib statements as the system processes them.
S APPC,SUB=MSTR,APPC=(03,06,L)
START Command

Starting the APPC/MVS Transaction Scheduler Address Space
Use the START ASCH command to start the ASCH (APPC/MVS transaction scheduler) address space.

```
S ASCH,SUB=MSTR[,ASCH=(nn[,nn]...[,L])]
```

The parameters are:

ASCH,SUB=MSTR
Invokes the ASCH procedure and creates the ASCH address space.

ASCH=
Indicates which ASCHPMxx parmlib members APPC/MVS is to use. The default member is ASCHPM00. If you specify only one parmlib member, you do not need to enter the parentheses.

The ASCHPMxx members can reside in SYS1.PARMLIB or any other parmlib data set that is specified on an //IEFPARM DD statement in the master scheduler JCL. However, APPC/MVS cannot process data sets specified in the master scheduler JCL until the operator enters a SET ASCH command. For information about how to specify configuration information in a parmlib data set other than SYS1.PARMLIB, see the description of starting APPC and ASCH in z/OS MVS Planning: APPC/MVS Management.

L
The system will display the parmlib statements on the operator’s console as it processes them.

Starting the Common Event Adapter Address Space
Common Event Adapter (CEA) address space is started automatically during system initialization.

If the CEA address space terminates, all clients are disconnected and all subscriptions are unsubscribed.

After the CEA address space is restarted:
- The CEA address space becomes operational.
- New connections with clients are accepted.
- Subscription requests are honored.
- Callers need to reconnect and re-subscribe.

```
S CEA
```

There are no parameters.

Example
To start CEA, enter:
```
S CEA
```

After the initialization is complete, the system returns the following information:
```
CEA0102I  COMMON EVENT ADAPTER INITIALIZATION COMPLETE.
```
Starting the Generalized Trace Facility

Use the START GTF command to start the generalized trace facility.

The parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTF</td>
<td>The name of the IBM-supplied cataloged procedure that invokes GTF.</td>
</tr>
<tr>
<td>membername</td>
<td>The name of the member that contains the source JCL that invokes GTF. The source JCL can be either a cataloged procedure (for example, residing in SYS1.PROCLIB) or a job residing in a partitioned data set. The name can be either the IBM-assigned name (GTF) or a user-assigned name.</td>
</tr>
<tr>
<td>identifier</td>
<td>The user-determined name identifying this specific GTF session. If you omit an identifier, the system automatically uses the job name as the identifier.</td>
</tr>
<tr>
<td>devicetype</td>
<td>The device type, such as 3211, of the writer to be started. The device type provided in the IBM-supplied cataloged procedure for GTF is used unless overridden by this command.</td>
</tr>
<tr>
<td>Note: devicetype and devnum are mutually exclusive.</td>
<td></td>
</tr>
<tr>
<td>[/]devnum</td>
<td>The device number of the writer to be started. A device number is 3 or 4 hexadecimal digits. A slash (/) must precede a 4-digit number and is optional before a 3-digit number.</td>
</tr>
<tr>
<td>Note: devicetype and devnum are mutually exclusive.</td>
<td></td>
</tr>
<tr>
<td>volumeserial</td>
<td>The serial number of a magnetic tape or direct access volume to receive the trace data.</td>
</tr>
<tr>
<td>MODE=INT</td>
<td>Trace data is to be maintained in the GTF address space.</td>
</tr>
<tr>
<td>MODE=DEFER</td>
<td>Trace data is to be maintained in the GTF address space until the operator enters STOP GTF. Then, during end processing GTF will transfer the data from its address space to the output data set.</td>
</tr>
<tr>
<td>MODE=EXT</td>
<td>Trace data is to be maintained in an external data set.</td>
</tr>
<tr>
<td>BLOK=</td>
<td>Reserves common storage buffers to collect GTF data.</td>
</tr>
</tbody>
</table>
START Command

nnnK or nnM
The decimal number for the amount of storage in kilobytes(K) or megabytes(M). The minimum amount, also the default amount, is 40K.

numpages
The decimal number for the amount of 4096-byte pages of storage.

TIME=YES
Each logical trace record is to be time-stamped. If this parameter is omitted, individual records will be time-stamped. TIME=NO is not supported.

DEBUG=YES
GTF stops whenever an error is encountered while a trace record is being created. If this parameter is not specified, GTF attempts to recover from the error condition but might not be able to record future events of the same type.

MEMBER=xxxxxxxx
The parmlib member to be accessed by this invocation of GTF. If this parameter is omitted, GTFPARM is used.

REGION=nnnnK
The maximum size of the GTF address space in bytes. You can specify any number from 832K to 2880K.

keyword=option
Any appropriate keyword specified to override the corresponding parameter in the cataloged procedure. The maximum length of each keyword=option is 66 characters. No individual value within this field may be longer than 44 characters in length. If you are overriding a symbolic parameter, do not use any of the DD keywords. For example, do not use UNIT= to override the devicetype positional parameter in the cataloged procedure.

SADMP= or SA={nnnK or nnM}
The number of bytes of GTF data that will appear in a stand alone dump. The default is 40K.

SDUMP= or SD={nnnK or nnM}
The number of bytes of GTF data that will appear in an SVC dump (SDUMP). The default is 40K.

NOPROMPT or NP
If specified, indicates that the operator will not be prompted to specify trace options. Message AHL125A and AHL100A will not be issued. Use this parameter when you have a parmlib member set up with the desired GTF options and you want to avoid multiple replies in a sysplex environment.

ABDUMP= or AB={nnnK or nnM}
The number of bytes of GTF data that will appear in a SNAP or ABEND dump. The default is 0 K, which means that no GTF output data will appear in a SNAP or ABEND dump.

Example 1
This example starts a GTF session with the identifier EXAMPLE and with trace data maintained in the GTF address space. The DSN keyword is entered to override a symbolic parameter defined in the cataloged procedure.
S GTF.EXAMPLE,,,(MODE=INT),DSN=NULLFILE

Example 2
This example starts a GTF session with the trace data recorded on an external device. Because it is not apparent which is the GTF recording device, you have to display active jobs with the DA,LIST command before you can stop GTF. The GTF session started in this example could run in an address space of a maximum of one megabyte.

\[S \text{ GTF}.,,(\text{MODE=} \text{EXT}), \text{REGION=}1000k \]

Starting Hardware Instrumentation Services (HIS)

For IBM System z10 or later machines, use the START hisproc command to:

- Start the hardware instrumentation services (HIS) address space
- Create a new instrumentation started task, hisproc

Hardware instrumentation services (HIS) is a function that collects hardware event data for processors in SMF records type 113, subtype 2, as well as a UNIX System Services output files. You can only use HIS for IBM System z10 or later machines.

You must start the HIS address space on each system where you want to collect data. Then you must configure and activate HIS data collection (hardware event counters and sampling facilities) for each system by issuing the MODIFY hisproc command. See the following references:

- "Setting up hardware event data collection" on page 1-39 for more information about setting up hardware event data collection services.
- "Start, configure, and stop hardware event data collection" on page 4-352 for information about the MODIFY hisproc command.

Note that it is important to assign a sufficiently high dispatch priority to the instrumentation started task hisproc, so that the task can write sampling data to the .SMP output files in a timely manner.

\[S \text{ hisproc} \]

The parameters are:

- **hisproc**
 - The name of the HIS catalogued startup procedure.

Example

To start the HIS address space, enter:

\[S \text{ hisproc} \]

After the initialization is complete, the system returns the following message:

HIS002I hisproc INITIALIZATION COMPLETE

Starting the Base Control Program internal interface (BCPii) address space after BCPii has been terminated

Use the START HWISTART command to restart the base control program internal interface (BCPii) address space after the operator stops or cancels the HWIBCPII address space, or after the address space terminates on its own. The system restarts the HWIBCPII address space and all BCPii interfaces become available. The system then issues event notification facility (ENF) signal 68 to signal that
BCPii APIs can now be issued. See Base Control Program internal interface (BCPii) services in z/OS MVS Programming: Callable Services for High-Level Languages.

The name of the cataloged procedure that IBM supplies in SYS1.PROCLIB for starting the BCPii address space is HWISTART.

```
S HWISTART
```

The parameter is:

HWISTART

The name of the IBM-supplied cataloged procedure that calls BCPii.

See “Stopping the Base Control Program internal interface (BCPii) address space” on page 4-651 for information about the STOP HWIBCPII command.

Starting the Library Lookaside (LLA) Address Space

Use the START LLA command to start the LLA address space.

```
S LLA[,SUB=MSTR][,REUSASID=YES][,LLA=xx]
```

The parameters are:

LLA

Invokes the LLA procedure and creates the LLA address space.

The START LLA command is initially issued by the system from the logical parmlib member IEACMD00. Use this command if LLA stops, either because of an error or as a result of a STOP LLA command.

SUB=MSTR

Indicates that the master subsystem will process the task. If you omit this parameter, the system issues message CSV209I indicating that the request to start LLA is ended and the system re-issues the command with SUB=MSTR.

REUSASID=YES

Indicates that a reusable ASID should be assigned to the LLA address space.

LLA=xx

Indicates which CSVLLAnn parmlib member LLA is to use. If you omit LLA=xx, LLA will build its directory using only the LNKLST libraries.

Notes:

1. System performance is degraded if LLA stops.
2. LLA provides better performance when VLF services are available, so it is better (although not necessary) to start VLF before starting LLA. However, the operation of LLA does not depend upon VLF.
3. Place the S LLA and S VLF commands in either the IEACMD00 or COMMANDxx members of the logical parmlib data set.
Starting the Object Access Method (OAM)

Use the START OAM to start the object access method.

S {OAM[membername][.identifier][,OAM=xx]}

Starting Resource Recovery Services (RRS)

Use the START RRS command to start resource recovery services (RRS). To start RRS during system initialization, add a START RRS command to the COMMNDxx parmlib member.

Before you can start RRS, your installation must have defined RRS as a subsystem in the IEFSSNxx parmlib member. For RRS to process requests for resources, system logger must be active.

The name of the cataloged procedure that IBM supplies in SYS1.SAMPLIB for starting the RRS subsystem is ATRRRS. Your installation should copy SYS1.SAMPLIB(ATRRRS) to SYS1.PROCLIB(RRS). If your installation replaces membername RRS with its own procedure for starting RRS, it should ensure that the name of its procedure matches the name of the subsystem specified in the IEFSSNxx parmlib member it uses. Otherwise, you may receive error messages when you start the subsystem.

You can cold start RRS/MVS when the RRS resource manager data log is empty. Cold start processing clears all active log streams except the RRS archive log, which is never cleared.

When the RRS data log contains resource manager data you can warm start RRS/MVS. Warm start processing restores the status of all incomplete backout or commit requests.

Only one copy of RRS can be running on a system. The system will reject an attempt to start a second RRS, even if you specify a different procedure as the first parameter of the START command.

S RRS[membername[,CTMEM=CTnRRSxx][,GNAME=1grpname][,JOBNAME=jobname]}

The parameters are:

RRS|membername

Invokes the RRS procedure and creates the RRS address space. If your installation has created a different procedure for starting RRS, use the member name of your procedure.

CTMEM=CTnRRSxx

Identifies the CTnRRSxx parmlib member that contains the options RRS component trace is to use when RRS starts the trace. If you omit this optional
START Command

parameter, RRS traces only unexpected events until a time when the TRACE CT command specifies different trace options.

GNAME=igrpname
Specifies the log group name. A log group is a group of systems that share an RRS workload. Specify a value if your installation has multiple RRS workloads. Otherwise, the name defaults to the sysplex name. If you specify a name, it must be 1-8 characters long. The first character must be alphabetic or one of the national characters ($, #, or @), while the remaining characters may be alphanumeric or $, #, or @.

You can find additional information about RRS logging in z/OS MVS Programming: Resource Recovery.

JOBNAME=jobname
Specifies the subsystem name defined in the IEFSSNxx parmlib member corresponding to RRS. The issuer of FORCE jobname,ARM must use this name to bring RRS down, if that proves necessary. If you omit this parameter, the system uses the started JCL procedure name.

Example

The following example starts RRS with the CTWRRS01 parmlib member:

START RRS, JOBNAME=RRS, CTMEM=CTWRRS01

Starting the System Object Model® (SOM) Subsystem

Use the START SOM command to start the distributed system object model (SOM) subsystem. This is the extension to the OS/390 SOMobjects® product that allows programs to communicate with objects in other processes that reside in other address spaces or on other systems. Your installation may place this command in a COMMNDxx member of the logical parmlib data set.

Note: You must activate the OMVS address space before you issue a START SOM command. See “Configuring Your SOMobjects Environment” in OS/390 SOMobjects Configuration and Administration Guide, GC28-1851, for more information on what things you must do before starting SOM.

S {SOM | procedure-name}[,SUB={MSTR,JES2,JES3}]

The parameters are:

SOM
The name for the SOM subsystem. It corresponds to the cataloged procedure in SYS1.PROCLIB that starts SOM.

procedure_name
Your installation’s name for the SOM subsystem. The name must correspond to a procedure cataloged in SYS1.PROCLIB or to a data set concatenated to SYS1.PROCLIB. IBM recommends that an installation use the name SOM. If your installation uses a different name, that name must be one to four characters long, begin with an alphabetic character (A-Z), contain only alphanumeric characters (A-Z or 0-9), and not conflict with any other subsystem name in the same system, or with the name of any system command.

SUB=subsystem name
Specifies the subsystem you designate to process the task, such as MSTR (the
master subsystem) or JES2 or JES3 to specify that subsystem's scheduler.
(Make sure to send all your output to a data set if you specify MSTR.)

If you omit this parameter, the JES subsystem scheduler starts SOM. The
resulting dependency on JES requires SOM to be stopped when stopping JES.

Example

The following command starts the SOM subsystem:

S SOM

Starting TSO/VTAM Time-Sharing

Use the START command to start TSO once VTAM is active. This command
creates the terminal control address space (TCAS), which accepts requests by
terminal users for logon to TSO.

The parameters are:

membername
- The name of the member that contains the source JCL for the started task. The
 member can be a cataloged procedure (for example, residing in
 SYS1.PROCLIB) or a job that starts TSO/VTAM time-sharing. Many installations
 use TCAS as the membername.

identifier
- The user-determined name identifying this specific time-sharing session. If you
 omit an identifier, the system automatically uses the job name as the identifier.

devicetype
- The device type of an output device where time-sharing parameters from
 SYS1.PARMLIB are listed. This operand is useful only if the PRINTOUT DD
 statement of the cataloged procedure invoked by the START command
 specifies DDNAME=IEFRDER. If the PRINTOUT DD statement specifies a
 SYSOUT device, the parameter values are listed on that device.

 Note: devicetype and devnum are mutually exclusive.

[/]devnum
- The device number of an output device where time-sharing parameters from
 SYS1.PARMLIB are listed. A device number is 3 or 4 hexadecimal digits. A
 slash (/) must precede a 4-digit number and is optional before a 3-digit number.

 Note: devicetype and devnum are mutually exclusive.

volumeserial
- If devicetype is a tape or direct access device, the volume serial number of the
 volume mounted on the device.

MEMBER=name
- The name of the member in Parmlib that contains TSO/VTAM time-sharing
 parameters.
MEMBER=nn
A two-digit decimal number that forms the suffix for specifying the name of the
member in Parmlib that contains TSO/VTAM time-sharing parameters, where
the name has the form TSOKEYnn.

USERMAX=ninnnn
The maximum number (0 to 32,767) of users that can be logged on to
TSO/VTAM time-sharing at any one time. If USERMAX is not specified here or
in the parmlib member that contains TSO/VTAM time-sharing parameters, a
value of 40 is used.

GNAME=name
The generic resource name for TSO/VTAM to use while operating in an OS/390
sysplex environment. You may specify this keyword only when TSO/VTAM is
operating within a sysplex.

GNAME=NONE
Specifies that TSO/VTAM will not use a generic resource name. If you specify
this value on the START command, the system will ignore any GNAME value in
the TSOKEY00 parmlib member.

keyword=option
Any appropriate keyword specified to override the corresponding parameter in
the cataloged procedure. The maximum length of each keyword=option is 66
characters. No individual value within this field may be longer than 44
characters in length. If you are overriding a symbolic parameter, do not use any
of the DD keywords. For example, do not use UNIT= to override the device
type positional parameter in the cataloged procedure.

If more than one Parmlib name is specified, or if no name is specified, the order of
priorities that determines which time-sharing parameters are used is:
1. The member name coded on the PARMLIB DD statement.
2. The MEMBER operand of the START command.
3. The keyword operand of the START command.
4. The default member TSOKEY00 if a member is not specified but a Parmlib (that
 contains TSOKEY00) is.
5. The default values in the TCAS program if neither a member nor a parmlib is
 specified.

Starting the Virtual Lookaside Facility or Data Lookaside Facility
Use the START VLF command to start the virtual lookaside facility (VLF) and the
START DLF command to start data lookaside facility (DLF). VLF is an MVS service
that enables applications to minimize I/O operations for frequently retrieved objects.
DLF is an MVS service that provides the capability for multiple jobs to share access
to large data objects in storage. It enables QSAM and VSAM applications to
minimize I/O operations.

VLF and DLF will not start if already active on the system; the START command will
be rejected. Also, they will not start if the parmlib is not allocated to the appropriate
started task; if the specified parmlib member is not found, or is empty; or if there is
no valid class found in the specified parmlib member. If you need to change the
specified parmlib member, you must stop the service, VLF or DLF, then start it
again, specifying the new parmlib member.
The parameters are:

VLF, SUB=MSTR
Invokes the VLF procedure that starts the virtual lookaside facility (VLF).

DLF, SUB=MSTR
Invokes the DLF procedure that starts DLF.

REUSASID=YES
Indicates that a reusable ASID should be assigned to the VLF or DLF address space.

NN=xx
Indicates that the system is to start VLF using the COFVLFxx member of the logical parmlib or that the system is to start DLF using the COFDLFxx member of the logical parmlib. In each case, replace xx with two alphanumeric characters that match the suffix of the parmlib member.

If you do not identify a parmlib member, VLF uses the default parmlib member COFVLF00 and DLF uses the default parmlib member COFDLF00. See [z/OS MVS Initialization and Tuning Reference](http://www.ibm.com) for further information about the use of the COFVLFxx or COFDLFxx member.

Starting an External Writer

Use the **START XWTR** command to start an external writer.

The parameters are:

XWTR
The name of the IBM-supplied cataloged procedure that invokes the external writer.

membername
The name of the member that contains the source JCL that starts and defines the external writer. The member can contain a cataloged procedure (for example, residing in SYS1.PROCLIB) or a job residing in a partitioned data set. The name can be either the IBM-assigned name (XWTR) or a user-assigned name.

identifier
The identifier of the writer to be started. This name consists of up to eight characters. The first one must be alphabetical. If you do not assign an identifier, the system uses the device number of the device allocated to the writer as the identifier.

devicetype
The device type, such as 3211, of the writer to be started.

Note: devicetype and devnum are mutually exclusive.
START Command

[/]devnum
 The device number of the writer to be started. A device number is 3 or 4 hexadecimal digits. A slash (/) must precede a 4-digit number and is optional before a 3-digit number.

 Note: devicetype and devnum are mutually exclusive.

volumeserial
 The serial number, up to six characters, of the magnetic tape or direct access volume the writer is to use.

classes
 The output classes, in priority sequence, the writer is to process. You can specify up to eight output classes, naming them in sequence without separating them by commas.

keyword=option
 Any appropriate keyword specified to override the corresponding keyword in the cataloged procedure. The maximum length of each keyword=option is 66 characters. No individual value within this field may be longer than 44 characters in length. If you are overriding a symbolic parameter, do not use any of the DD keywords. For example, do not use UNIT= to override the devicetype positional parameter in the cataloged procedure.

Example

To start an external writer with the identifier A, enter:
S XWTR.A,282
STOP Command

Use the STOP command to stop system functions and jobs in execution. Note that you can communicate with the currently running program only if it was designed to recognize the STOP command. If the program does not recognize the STOP command, MVS issues message IEE342I STOP REJECTED--TASK BUSY.

Note to Programmers: For more information, see the section on communicating with a program using EXTRACT and QEDIT in [z/OS MVS Programming: Authorized Assembler Services Guide](#).

The following figure lists tasks the STOP command can perform. Use it as an index to details about particular uses of the command.

Table 4-43. Summary of the STOP Command

<table>
<thead>
<tr>
<th>Topic:</th>
<th>Command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Stopping a Running Program"</td>
<td>STOP jobname.identifier</td>
</tr>
<tr>
<td>"Stopping an ASCH Initiator" on page 4-650</td>
<td>STOP ASCHINT</td>
</tr>
<tr>
<td>"Stopping the Data Lookaside Facility (DLF)" on page 4-650</td>
<td>STOP DLF</td>
</tr>
<tr>
<td>"Stopping the Hardware Instrumentation Services (HIS)" on page 4-650</td>
<td>STOP hisproc</td>
</tr>
<tr>
<td>"Stopping the Base Control Program internal interface (BCPii) address space" on page 4-651</td>
<td>STOP HWIBCPII</td>
</tr>
<tr>
<td>"Stopping the Library Lookaside (LLA) Address Space" on page 4-652</td>
<td>STOP LLA</td>
</tr>
<tr>
<td>"Stopping the Object Access Method (OAM) Address Space" on page 4-652</td>
<td>STOP OAM</td>
</tr>
<tr>
<td>"Stopping a System Object Model (SOM)" on page 4-652</td>
<td>STOP SOM</td>
</tr>
<tr>
<td>"Stopping a Temporary File System (TFS)" on page 4-653</td>
<td>STOP TFS</td>
</tr>
<tr>
<td>"Stopping the Virtual Lookaside Facility (VLF)" on page 4-653</td>
<td>STOP VLF</td>
</tr>
</tbody>
</table>

Syntax

The syntax for each variation of the STOP command is shown immediately preceding its respective parameter list.

STOP or P

Stopping a Running Program

You can use the STOP command to stop a running program when that program was designed to listen for the STOP command. If the program does not recognize the input specified on the STOP command, MVS issues message IEE342I STOP REJECTED--TASK BUSY.

Note to Programmers: For more information, see the section on communicating with a program using EXTRACT and QEDIT in [z/OS MVS Programming: Authorized Assembler Services Guide](#).

P [jobname.]identifier[,A=asid]
Parameters

The parameters are:

jobname

The name of the batch job, started task, or APPC/MVS transaction program to be stopped.

The job name for a given started task can be assigned based on a variety of inputs. These inputs are examined in the following order, so that if item #1 is not specified, item #2 is used. If neither #1 nor #2 is specified, then #3 is used, and so on.

1. The jobname specified in the JOBNAME= parameter of the START command
 or
 The identifier specified on the START command.
2. The jobname specified on the JOB JCL statement within the member.
3. The device number specified on the START command, or the device number associated with the device type specified on the START command
 or
 The device number associated with the device type specified on the START command.
4. The device number associated with the IEFRDER DD statement within the member.
5. The member name.

identifier

The identifier assigned to the job or address space. (Refer to "Displaying Started Task Status" on page 4-174 for information about determining the jobname and identifier of currently active address spaces.)

The following types of identifiers can be used:

- The identifier that was specified on the START command.
- `/devnum`, the device number specified on the START or MOUNT command. A device number is 3 or 4 hexadecimal digits, optionally preceded by a slash (/). You can precede the device number with a slash to prevent ambiguity between the device number and a device type or identifier.
- `devicetype`, the type of device specified when the START or MOUNT command was issued.

If no identifier was specified, the identifier “STARTING” is temporarily assigned until the system can assign another according to the following order of precedence:

1. If an identifier was not specified on the START command, the identifier is the device type (for example, 3410) or device number (for example, X’0000’) specified on the START or MOUNT command.
2. If an identifier, a device type, or a device number was not specified on the START or MOUNT command, the identifier is the device type specified on an IEFRDER DD statement (invoking a cataloged procedure) in the JCL.
3. If none of the above was specified, the identifier defaults to the job name.

When (and only when) you specify jobname with identifier, the identifier can be represented by any of the following:

- An asterisk
- One or more characters from the beginning of the identifier,
- The entire identifier
When you use the asterisk format, the command takes effect on all address spaces that begin with the specified characters. Device numbers are assumed to be 4-digit numbers; for example, /13* would match on 1301, 1302, and so on, but would not match on 13C.

Specifying both the job name and the entire identifier causes the command to take effect on all the work units running with that combination of job name and identifier. If you are uncertain of an identifier or device number:
- Use the DISPLAY A,LIST command to display active jobs
- Use the DISPLAY ASCH,A command to display active TP jobnames.
- Use the DISPLAY A,A command to display active initiator address spaces.

A=asid
The address space identifier, in hexadecimal, of the job, started task, writer, transaction program, or initiator address space to be stopped.

If you issue a STOP command with a non-unique identifier, device name, or device type, multiple tasks might be stopped. To make sure that the STOP command stops only one task, add a unique job name to the START command membername; use that same unique job name on the STOP command.

If you enter the STOP command and one or more terminals are still active, you are asked to respond to the following message:
* id IKT010D nn USERS ACTIVE – REPLY ‘SIC’ or ‘FSTOP’

Reply ‘* ‘SIC’ to cancel the active users normally. This reply allows them to receive any messages queued for them, and it allows TSO/VTAM to perform its normal termination processing. Reply ‘FSTOP’ to force immediate cancellation of the active users. The users do not receive any messages queued for them, and TSO/VTAM does not perform its normal termination processing (that is, task resource manager processing is bypassed). Use FSTOP only if ‘SIC’ is ineffective.

Example 1
If the job SYSDA has been written to accept a STOP command, it stops. Otherwise, the following command has no effect.
P SYSDA

Example 2
To stop writer 00E after it processes the current data set, enter:
P XWTR.00E
or
P 00E

Example 3
To stop the GTF session started with an identifier of ABCD, enter:
P ABCD

Example 4
To stop writer ABCD after it processes the current data set, enter:
P XWTR./ABCD
STOP Command

or
P /ABCD

Example 5

To stop the GTF session with an identifier of EXAMPLE, enter:
P EXAMPLE

Stopping an ASCH Initiator

Use the following form of the STOP command to stop an ASCH initiator.

\[
P \{\text{ASCHINT,A=asid}\}
\]

ASCHINT,A=asid

ASCHINT is the generic name for the ASCH initiator and A=asid is the address space identifier, in hexadecimal, of the ASCH initiator to be stopped.

Example

To stop the ASCH initiator address space, whose asid is E, enter:
P ASCHINT,A=E

Stopping the Data Lookaside Facility (DLF)

Use the STOP DLF command to stop the data lookaside facility (DLF). Before entering STOP DLF, you must enter the MODIFY DLF,MODE=DRAIN or QUIESCE command.

\[
P \text{DLF}
\]

The parameter is:

DLF

The job name assigned to the data lookaside facility (DLF) address space. Using this parameter will stop DLF as soon as all DLF objects are disconnected for all users.

This command activates the address space termination process. You can use the MODIFY DLF,MODE=NORMAL command to end the DLF shutdown process. To restart DLF after the shutdown process has completed, you can use the START DLF command.

Stopping the Hardware Instrumentation Services (HIS)

For IBM System z10 or later machines, use the STOP hisproc command to:

- Stop the hardware instrumentation services (HIS) address space
- Stop an active hardware event data collection run by terminating the HIS started task, hisproc

To begin a hardware event data collection run after you have issued the STOP hisproc command, you must restart the HIS address space by issuing the START hisproc command and then start collection using the $hisproc,BEGIN command.
STOP Command

See “Start, configure, and stop hardware event data collection” on page 4-352.

P hisproc

The parameters are:

hisproc

The name of the HIS catalogued startup procedure.

Example

To stop the HIS address space and an active hardware event data collection run, enter:

P hisproc

When you enter the STOP hisproc command, the system displays the following message:

HIS012I hisproc DATA COLLECTION ENDED

Stopping the Base Control Program internal interface (BCPii) address space

Use the STOP HWIBCPII command to shut down the Base Control Program internal interface (BCPii) address space. You may choose to issue this command to stop BCPii for maintenance updates or repeated failures of BCPii services. The system stops the HWIBCPII address space, and BCPii interfaces are no longer available.

After the STOP HWIBCPII command has been issued, address space cleanup begins. The system will issue event notification facility (ENF) signal 68 to communicate when BCPii is no longer available. The system also cleans up all currently running BCPii work, and does not honor any subsequent BCPii API calls.

P HWIBCPII

The parameter is:

HWIBCPII

The name of the BCPii address space.

See the following references for additional BCPii information:

- “Starting the Base Control Program internal interface (BCPii) address space after BCPii has been terminated” on page 4-639 for information about the START HWISTART command that restarts the BCPii address space.

- Base Control Program internal interface (BCPii) services in Z/OS MVS Programming: Callable Services for High-Level Languages for a description of BCPii and its associated services.

- “CANCEL Command” on page 4-21 for information about the CANCEL command that you might issue if the STOP HWIBCPII command does not result in the BCPii address space completely terminating.
Stopping the Library Lookaside (LLA) Address Space

Use the STOP LLA command to stop the LLA address space.

```
P LLA
```

The parameter is:

LLA

The job name assigned to the LLA address space.

Stopping LLA might be done when two or more systems have shared access to the same LLA directories and modifications are to be made to these shared directories. After stopping LLA and modifying the shared LLA data sets as needed, the operator can use the START LLA command to restart LLA. System performance will be degraded until you restart LLA, but this procedure allows that the updates will be made simultaneously on all of the sharing systems.

Stopping the Object Access Method (OAM) Address Space

Use the STOP OAM command to stop the OAM address space.

Stopping a System Object Model (SOM)

Use the STOP SOM command to stop the distributed SOM subsystem. This is the extension to the OS/390 SOMobjects product that allows programs to communicate with objects in other processes that reside in other address spaces or other systems. Executing this command causes the SOM subsystem to wait for all servers to end, and then to stop. See **OS/390 SOMobjects Configuration and Administration Guide**, GC28-1851, for more information on stopping the SOM subsystem.

```
P SOM
```

The parameter is:

SOM

The name for the SOM subsystem. It corresponds to the cataloged procedure in SYS1.PROCLIB that starts SOM. A sample cataloged procedure is located in MVSDSOM.DR03.SGOSJCL(PROCDSVR).

Note: In order for this command to be effective, the SOM daemon address space must be active.

Example

To stop the SOM daemon address space, enter:

```
P SOM
```
When you enter the STOP SOM command, the system displays these messages:
GOS041I SOM/MVS SOMI WAITING FOR SERVERS TO END.
GOS010I SOM/MVS SOMI ENDED.

The system might also display the following message:
IEF352I ADDRESS SPACE UNAVAILABLE

This is normal and you should not report it as a problem. The consequence of purging SOM is that it makes the address space identifier (ASID) permanently unusable, for system integrity reasons.

Stopping a Temporary File System (TFS)

Use the STOP TFS command to stop a TFS running in a colony address space. If no file TFS systems are mounted, executing this command causes TFS to exit. A WTOR is issued, allowing TFS to be restarted. This command is not supported if TFS runs in the z/OS Unix kernel address space.

P TFS

The parameter is:

TFS

The name of the TFS colony address space to be stopped.

Stopping the Virtual Lookaside Facility (VLF)

Use the STOP VLF command to stop the virtual lookaside facility (VLF).

P VLF

The parameter is:

VLF

The jobname assigned to the virtual lookaside facility (VLF). Using this parameter stops VLF with message number COF033I.

Performance Implication: Stopping VLF can degrade system performance.
STOPMN Command

Use the STOPMN command to stop the continual display of job status, data set status, or time-sharing user session activity initiated in response to the MONITOR command or MONITOR parameters on the CONSOLE and INIT statements in the CONSOLLxx parmlib member.

Syntax

The complete syntax for the STOPMN command is:

```
PM {JOBNAMES[,{L=a|name|name-a}]} 
   {DSNAME } 
   {SPACE } 
   {STATUS[,{L=a|name|name-a}]} 
   {SESS[,{L=a|name|name-a}]} 
```

Parameters

The parameters are:

JOBNAMES

Stop the jobname display specified in the MONITOR JOBNAMES command.

DSNAME

Stop the display of non-temporary data set names specified in the MONITOR DSNAME command.

SPACE

Stop the display of available space on direct access volumes specified in the MONITOR SPACE command.

STATUS

Stop the display of data set names, volume serial numbers, and status specified in the MONITOR STATUS command.

SESS

Stop the display of time-sharing user identifiers.

L=a, name, or name-a

The display area (a), name of the console (name), or both (name-a) where the display is to be stopped unless routing instructions are in effect. If you omit this keyword, the display is stopped at the console at which you enter the PM command.

Example: To discontinue the display of job name information that appears when a job is initiated or stopped, enter:

```
PM JOBNAMES
```
Use the SWAP command to initiate an operator request for dynamic device reconfiguration (DDR) and to activate or deactivate system-initiated DDR. DDR is described in "Responding to Failing Devices" on page 1-50.

Because a system-initiated DDR swap is automated in an IBM 3495 Tape Library Dataserver, the operation usually completes without operator intervention. Messages that do not require operator intervention are not sent to the console but are sent to the hardcopy log, where they are available for tracing and debugging. Note that the operator can still initiate swaps in an IBM 3495 Tape Library Dataserver. Table 4-44 summarizes the information that the SWAP command provides. Use it to access the pages on which you can find details about a particular use of the SWAP command.

Table 4-44. Summary of the SWAP Command

<table>
<thead>
<tr>
<th>Command:</th>
<th>Topic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWAP devnum1,devnum2</td>
<td>"Operator-Requested DDR"</td>
</tr>
<tr>
<td>SWAP OFF SWAP ON</td>
<td>"System-Initiated DDR" on page 4-656</td>
</tr>
</tbody>
</table>

Syntax

The syntax for each variation of the SWAP command is shown immediately preceding its respective parameter list.

SWAP or G

Operator-Requested DDR

Use the following form of the SWAP command when it is necessary to move a volume to another device, for example, when the device requires maintenance.

G [/]devnum1, [/]devnum2

[/]devnum1

The device number of the device from which the volume is to be swapped.

[/]devnum2

The device number of the device to which the volume is to be swapped.

devnum1 and devnum2 must be of the same device type and have compatible features. A device number is 3 to 4 hexadecimal digits, optionally preceded by a slash (/).

To perform a dynamic device reconfiguration, enter a SWAP command. Then:

1. Wait for system message IGF500D or IGF509D and reply with one of the following:

 YES The system is to proceed as indicated.
 NO The swap request is to be canceled.

 devnum2 An alternate “to” device is to be used.

2. After replying YES or devnum2, wait for the following message before proceeding with the swap:

 * id IGF502E PROCEED WITH SWAP OF devnum1 TO devnum2
Notes:

1. When the alternate “to” (devnum2) device is offline, the system takes the ‘from’ device offline:

 IEF8801 devnum1 NOW OFFLINE BY DDR

2. The system never requests DDR for readers, printers, or punches, but you can request a swap of these devices. Unit record devices must be in a not-ready state when you enter the SWAP command. Devices with mounts pending cannot be swapped.

3. If you are using a 3348 Model 70F Data Module, make sure that the “to” 3340 device has the fixed-head feature installed.

4. A device with a 3-digit device number can be swapped to a device with a 4-digit device number, but not the reverse.

Example 1

To move a volume from a device with device number 183 to a device with device number 283, enter:

```
swap 183,283
```

Example 2

To move a volume from a device with device number 183 to a device with device number 3330, enter:

```
swap 183,/3330
```

System-Initiated DDR

If a permanent I/O error occurs on a DDR-supported device, and it is an error that DDR recognizes, the system requests that the volume be moved.

Use the following form of the SWAP command to activate or deactivate system-initiated DDR.

```
G {OFF | ON}
```

The parameters are:

OFF

System-initiated DDR is to be deactivated. Any further swapping of devices must be done by operator-initiated DDR.

ON

System-initiated DDR is to be activated for any further swapping of devices.

Note: If a system-initiated DDR is in progress, the swap will be completed before system-initiated DDR can be deactivated. Entering G=OFF will not effect any swap already in progress.

Example

To deactivate system-initiated DDR, enter:

```
g off
```
SWITCH Command

Use the SWITCH command as follows:

- If you are using SMF data sets to record SMF records, the SWITCH SMF command manually switches the recording of SMF data from one data set to another. The SWITCH SMF command also passes control to the IEFU29 dump exit, if one exists.
- If you are using log streams to record SMF (system management facilities) records, the SWITCH SMF command writes data from an SMF buffer to a log stream in preparation for running the dump program to dump SMF data. The SWITCH SMF command also passes control to the IEFU29L dump exit, if one exists.

Scope in a Sysplex

The SWITCH command has sysplex scope only when you specify the CN parameter. See "Using Commands That Have Sysplex Scope" on page 1-11 for an explanation of sysplex scope.

Syntax

The complete syntax for the SWITCH command is:

```
I {SMF }
```

Parameters

The parameters are:

SMF

If you use SMF data set recording, this parameter specifies that the recording of SMF data is transferred from one SMF data set to another. All SMF data in storage is to be written out before the transfer is made.

If you use SMF log stream recording, this parameter specifies that all the SMF log stream data be transferred from the buffers into the corresponding SMF log streams.
Trace Command

Use the TRACE command to:
- Start, stop, or modify system trace
- Start, stop, or modify master trace
- Start, stop, or modify component trace
- Start, stop, or modify transaction trace
- Display the current status of system trace, master trace, component trace, and transaction trace

During system initialization, or whenever you reactivate system trace after a system trace failure, the system creates a TRACE address space. That address space contains the system trace table. When the TRACE address space is created, the initial status of system trace (address space and explicit tracing functions) is on, the initial status of the branch tracing function of system trace is off, and the initial space set aside for system trace entries for each processor is 64K.

You can issue TRACE ST, TRACE MT, TRACE CT, and TRACE TT from any console with master authority. You can issue TRACE STATUS from any console.

Syntax

The complete syntax for the TRACE command is:

```
TRACE [STATUS ]
 [ST[nnk|nnM|nnnG],BR={ON|OFF}[,MODE={ON|OFF}]]
 [ST,OFF]
 [MT,nnnK,OFF]
 [CT{,WTRSTART=membername[,WRAP|NOWRAP]}]
 [CT{,WTRSTOP=jobname[,FLUSH|NOFLUSH]}]
 [CT[ST[BUFSIZ=nnnnnK|nnnnnM|nnnG],BR={ON|OFF}[,MODE={ON|OFF}]]
 [ST,OFF]
 [MT,nnnK,OFF]
 [CT{,WTRSTART=membername[,WRAP|NOWRAP]}]
 [CT{,WTRSTOP=jobname[,FLUSH|NOFLUSH]}]
 [CT[,OFF]
 [TT[,COLL=collection name ]]
 [,CON=connection type ]
 [,COR=correlation info ]
 [,LU=logical unit name ]
 [,LVL=level ]
 [,NET=netid ]
 [,PKG=package name ]
 [,PLAN=Pl=plan name ]
 [,PRF=perform ]
 [,PROC=proc name ]
 [,PRS=process ]
 [,SUB=subsystem ]
 [,TC=transaction class ]
 [,TRAN=transaction name ]
 [,USER=userid ]
 [,WTR=membername|STOP]
 [,LATENT=Y|N]
 [,BUFSIZ=nnnK|nnmM]
 [,OFF={nn|ALL}]
```

Parameters

STATUS

The system is to display the current status of master trace. Status information includes the current size of the master trace table.
The display tells the operator to use the DISPLAY TRACE command to obtain status for system and component trace.

ST

The system is to change the on or off status of system trace, the size of the system trace table, or the on or off status of the branch tracing function of system trace. Unless you specify ST=OFF, the system assumes you want to re-create the TRACE address space if it has terminated and turn system trace on if it is not on already.

nnnK

The amount of preferred, central storage in K bytes set aside for system trace table entries for each processor. You can specify for nnn any decimal number from 1 to 999. As the minimum trace table size for a processor is 1M, any request between 1-999K is interpreted as a request for 1M.

nnnM

The amount of preferred, central storage in M bytes set aside for system trace table entries for each processor. You can specify for nnn any decimal number from 1 to 999.

nG

The amount of preferred, central storage in G bytes set aside for system trace table entries for each processor. You can specify for n any decimal number from 1 to 9.

Remember: Supply a reasonable value to the nnnM or nG parameter after considering the available central storage and the actual storage required for system trace. Supplying a large value for nnnM or nG might cause a shortage of pageable storage in the system.

If you omit the nnnM or nG parameter, the system assumes 1M for each processor, or the size established by the last TRACE command that specified a table size during the IPL.

BR=ON or **OFF**

The system is to turn on or turn off the branch tracing function of system trace. The address space and explicit tracing functions remain on as long as system trace remains on. If you omit this parameter, the system assumes that the status of branch tracing remains unchanged.

BR=ON is intended for use in system software problem determination and diagnosis situations only. Branch tracing consists of tracing these four types of branches:

- Branch and stack (BAKR)
- Branch and link (BALR)
- Branch and save (BASR)
- Branch and save and set mode (BASSM)

Restriction: You cannot specify the BR= parameter if you specify ST=OFF.

Attention: Turning branch tracing ON tends to affect your system performance and use very large amounts of storage. Do not use branch tracing as the default for system tracing on your system. Only use it for short periods of time to solve a specific problem. The default system tracing does not include branch instructions.

MODE=ON or **OFF**

The system is to turn on or turn off the mode tracing function of system trace. Mode tracing consists of recording occurrences of entering and
leaving 64-bit mode. The specification of branch tracing and mode tracing is separated. Therefore, the BR= parameter will not have any effect on mode tracing.

Restriction: You cannot specify the MODE= parameter if you specify ST=OFF.

Attention: Turning mode tracing ON tends to affect your system performance and use very large amounts of storage. Do not use mode tracing as the default for system tracing on your system. Only use it for short periods of time to solve a specific problem. The default system tracing does not include mode tracing.

BUFSIZ=nnnnnK or nnnnnM or nnnG
The system is to specify the total storage for all trace buffers in kilobytes (K), megabytes (M), or gigabytes (G). The size specified is divided by the number of installed CPUs and rounded up to the next megabyte to arrive at trace storage required per CPU.

Note: The total trace buffer size allocated can exceed the BUFSIZ specified in the TRACE command because of this rounding.

Remember: Supply a reasonable value to the BUFSIZ parameter after considering the available central storage and the actual storage required for system trace. Supplying a large value for BUFSIZ may cause shortage of pageable storage in the system.

OFF
The system is to stop system trace and free the system trace table. The system does not terminate the TRACE address space. Therefore, if you start system trace again while the TRACE address space is still active, the on or off status of the different system trace functions and the size of the system trace table return to the values they had the last time system trace was on.

MT
The system is to change the on or off status of master trace or the size of the master trace table. Unless you specify MT,OFF, the system assumes you want to turn master trace on if it is not on already.

nnnK
The master trace table size you want the system to use. You can specify for nnn any decimal number from 16 to 999. If a master trace table already exists, this new table replaces it. If you omit this parameter, the system assumes a table size of 24K.

OFF
The system is to stop master trace.

CT
Specifies the component tracing options for an MVS component or an application. The system programmer will supply the trace parameters. To determine if the component to be traced allows the following parameters, see "component traces" in z/OS MVS Diagnosis: Tools and Service Aids.

WTRSTART=membername
Identifies the name of the member that contains the source JCL that invokes a component trace external writer. The membername is 1 to 7 characters. The system also opens the data sets the writer uses. The
member can be a SYS1.PROCLIB cataloged procedure or a job. Many installations use a cataloged procedure in SYS1.PROCLIB.

After you enter a TRACE CT,WTRSTART command, you should turn the trace on and connect the writer with a WTR parameter in the reply for a TRACE CT command or in a parmlib member, if specified.

WRAP or NOWRAP

If you specify WRAP, when the system reaches the end of the data set or group of data sets, it writes over the oldest data at the start of the data set or the start of the first data set. If you specify NOWRAP, the system stops writing to the data set or sets when the data set or sets are full.

If the WTRSTART parameter on the CTncccx parmlib member or TRACE CT command specifies NOWRAP, the system uses the primary and secondary extents of the data set or sets. If the WTRSTART parameter specifies WRAP or omits the parameter, the system uses only the primary extent or extents.

WTRSTOP=jobname

Identifies the name of the job for a currently running component trace external writer that the system is to stop. The *jobname* is 1 to 7 characters. The system also closes the data sets the writer used.

The *jobname* is either:
- Member name, if the source JCL is a procedure
- Job name, if provided on a JOB statement within the source JCL

If you specify or default FLUSH, the writer will stop when it has finished writing out its current buffers. If you specify NOFLUSH, the writer stops immediately.

Before you enter a TRACE CT,WTRSTOP command, you must either:
- Turn the trace off, or
- Disconnect the component trace external writer from the trace leaving the trace on.

To disconnect the external writer while leaving the trace on enter the TRACE CT,ON command with WTR=DISCONNECT in the reply or in a CTncccx parmlib member, if specified.

If the trace is not turned off or disconnected from the writer, message ITT121I informs the operator of the condition and the writer will not stop.

ON

If the component trace is currently off, a TRACE CT,ON command turns it on. If the component trace is currently on and can be changed, a TRACE CT,ON command changes the trace options. An installation-supplied application trace can also have head level and sublevel traces, if specified in the CTRACE DEFINE macro that defined the trace.

Whenever a trace that has sublevel traces is changed, all sublevel traces currently in the LIKEHEAD state will also be changed. Therefore, a change may cascade down a number of levels.

A head trace may have been defined so that it is not allowed to be changed (HEADOPTS=NO on the CTRACE DEFINE macro). If this is the case, the trace is really just a place holder for options for other traces.

nnnnK
Specifies the size, in kilobytes (K) or megabytes (M), of the trace buffer you want the system to use. Specifying the buffer size also turns the trace on.

K is the buffer size in kilobytes, where nnnn is a decimal number from 1 to 9999. **M** is the buffer size in megabytes, where nnnn is a decimal number from 1 to 2047.

When the size is not specified, the system uses the component-defined default or the size specified in a CTnccxx parmlib member.

The size specified for an installation-supplied application trace must be within the range specified on the CTRACE DEFINE macro for the trace; see the programmer for the size value.

OFF

The system is to turn off tracing for the component. If the component is connected to a component trace external writer, the trace will be implicitly disconnected from the writer.

Some components do not turn tracing completely off. Instead, they reduce the tracing activity to the minimum required for serviceability data in a dump. If the CTRACE DEFINE macro that defined the trace specified the MINOPS parameter, tracing is reduced to a minimum and component trace writes a message to the operator.

If a component level trace has sublevel traces that are defined with the LIKEHEAD parameter on the CTRACE DEFINE macro, the sublevel traces will either be reduced to the minimal tracing or turned off, in the same manner as their head level component trace.

COMP=name

Identifies the component trace affected by the command. name is the external name for the component trace; it is provided for an IBM-supplied component and must be provided by a system programmer for an installation-supplied application trace. This parameter is required.

SUB=(subname**)**

Identifies a sublevel trace for a component or application with multiple traces. Subname is defined by the component or installation-supplied application.

The SUB parameter is limited to a single subname; multiple subnames are not supported.

If the sublevel trace name contains any national characters ($ # @), you must enclose the name in quotation marks. Otherwise, quotation marks are not required. In all cases you may specify the alphabetic characters in upper or lower case.

If subname is a head level, all of the head’s sublevel traces that are defined with a LIKEHEAD=YES parameter inherit the options specified in the reply to this command. Therefore, the options you specify for a head level can affect many sublevel traces.

Omitting the SUB parameter for a head level that is defined with HEADOPTS=YES affects all sublevel traces with the LIKEHEAD attribute.

PARM=mem

Identifies a parmlib member that contains the options to be used for tracing. Using a parmlib member allows the operator to initiate the trace, change it, or stop it without a message prompting for options.
Any option specified on the TRACE command overrides the option specified in the parmlib member.

TT Specifies the transaction trace options. The system programmer will supply the trace parameters. To determine which trace parameters to use, see "Specifying TRACE TT Options." For further information, see “Transaction Trace” in [z/OS MVS Diagnosis: Tools and Service Aids](http://www.ibm.com/support/docview.wss?rs=840&uid=swg21685209).

Specifying TRACE CT Options

In response to a TRACE CT,ON command without the PARM parameter, the system prompts you to specify the component trace options you want with message ITT006A. Use the REPLY command to respond to that message. You can specify each option, ASID, JOBNAME, OPTIONS, or WTR only if the component or application supports it. You can enter the DISPLAY TRACE command before entering a TRACE CT command to verify which options are supported.

The REPLY command syntax for specifying TRACE CT options is:

```plaintext
R id[,ASID=(nnnn...)]
    [,JOBNAME=(name...)]
    [,OPTIONS=(option...)]
    [,WTR={membername|DISCONNECT}]
    [,CONT|END ]
```

Note: When you specify CONT or END, it must be the last parameter on the input line.

- **id** The identification number (0-9999), as specified on the prompting message.
- **ASID=(nnnn,nnnn)…**
 Specifies the address space identifiers (ASIDs) of address spaces to be used as a filter for tracing. Events in these ASIDs are to be recorded by the component trace.
 The parameter contains a list of 0 to 16 hexadecimal ASIDs separated by commas. An empty ASID list, ASID=(), turns off filtering by address spaces. In the ASID parameter, list all address spaces to be traced; address spaces specified for previous traces will not be traced unless listed.
- **JOBNAME=(name,name)…**
 Specifies the names of jobs to be used as a filter for tracing. Events in these jobs are to be recorded by the component trace.
 The parameter contains a list of 0 to 16 job names separated by commas. An empty job list, JOBNAME=(), turns off filtering by jobs. In the JOBNAME parameter, list all jobs to be traced; jobs specified for previous traces will not be traced unless listed.
- **OPTIONS=(option,option)…**
 Specifies component-specific options for tracing. See [z/OS MVS Diagnosis: Tools and Service Aids](http://www.ibm.com/support/docview.wss?rs=840&uid=swg21685209) for the options for an IBM-supplied component that supports component tracing. Refer to the installation-supplied application for the options for the application.
 The options for some IBM-supplied component traces can be changed while the trace is running; to change the options for others, stop the trace and restart it with the new options. An installation-supplied application trace defined with MOD=YES in the CTRACE DEFINE macro can be changed while running.
The options for a head level defined with HEADOPTS=NO cannot be changed. When you change a head level that was defined with HEADOPTS=YES, all of the sublevel traces currently in LIKEHEAD status will also be changed. Therefore, a change may cascade down a number of levels.

Omit OPTIONS to allow the component to use its default options.

WTR=membername

WTR=DISCONNECT

Connects or disconnects the component trace external writer and the trace. *membername* identifies the name of the member that contains the source JCL that invokes the external writer. The member can be a SYS1.PROCLIB cataloged procedure or a job. The *membername* in the WTR parameter must match the *membername* in a previous TRACE CT,WTRSTART command.

WTR=DISCONNECT disconnects the writer and the trace. The component continues tracing and placing the trace records in the address-space buffer, but stops passing trace records to the external writer.

You must also specify a TRACE CT,WTRSTART or TRACE CT,WTRSTOP command to start or stop the writer.

CONT or END

Specifies that the reply continues on another line. The system reissues the same prompting message. You then can continue the reply. You can repeat any parameters on the continuation line, except END. Repeated parameters are strung together. They do not overlay each other. You must specify END to complete the response. END identifies the end of the REPLY.

Example 1

To turn off system trace, enter:

```
TRACE ST,OFF
```

Example 2

System trace is off. The last time system trace was on, 16K of storage was set aside for system trace table entries for each processor. To turn on system trace, turn on the branch tracing function of system trace, and increase the space for system trace table entries to 250K for each processor, enter:

```
TRACE ST,250k,BR=ON
```

Example 3

To turn on master trace, if it is not already on, and to define a master trace table of 100K, enter:

```
TRACE MT,100k
```

Example 4

To modify component trace for the GRS component by specifying a different parmlib member, enter:

```
TRACE CT,ON,COMP=SYSGRS,PARM=CTYGRS02
```
Specifying TRACE TT Options

The TRACE TT command specifies the definition of a transaction trace (TTrace) filter set, definition or change in the TTrace processing options, removal of a TTrace filter set, or stopping of TTrace in the sysplex.

COLL | **C**=collection

specifies a collection name to be used as a filter for tracing. Collection name identifies the customer-defined name for a group of associated packages.

The collection name consists of 1 through 18 characters.

CON=connection type
specifies a connection type to be used as a filter for tracing. Connection type identifies the type associated with the environment creating the work request, which may reside anywhere within the network.

The connection type consists of 1 through 8 characters.

COR=correlation info
specifies correlation information to be used as a filter for tracing. Correlation information identifies the name associated with the user or program creating the work request, which may reside anywhere within the network.

The correlation information consists of 1 through 18 characters.

LU=logical unit name
specifies the LUNAME to be used as a filter, allowing work related to this logical unit to be traced.

The luname consists of 1 through 8 characters.

LVL=level
specifies the trace level indicator to be assigned to this filter set. Valid trace level indicators are 1, 2, 3, and 128-255.

The level consists of 1 through 3 numeric characters.

The default trace level value is 2.

Trace level indicators 0, and 4 through 127 are reserved.

NET=netid
specifies a NETID name to be used as a filter, allowing work related to this network ID to be traced.

The netid consists of 1 through 8 characters.

Specifying NET requires the specification of the LU keyword.

PKG=package
specifies a package name to be used as a filter for tracing. The package name identifies a set of associated SQL statements.

The package name consists of 1 through 8 characters.

PLANPL=plan name
specifies a name to be used as a filter for tracing. The plan name identifies the access plan name for a set of associated SQL statements.

The plan name consists of 1 through 8 characters.

PRF=perform
specifies perform information to be used as a filter for tracing. Perform information identifies the performance group number (PGN) associated with the work request.
The perform information consists of 1 through 8 characters.

PROCP= *proc name*

specifies the proc name to be used as a filter for tracing. Proc name identifies the DB2-stored SQL Procedure name associated with the work request.

The proc name consists of 1 through 18 characters.

PRS= *process*

specifies process information to be used as a filter for tracing. Process information identifies the process name associated with the work request.

The process information consists of 1 through 32 characters.

SUB= *subsystem*

specifies subsystem information to be used as a filter for tracing. Subsystem information identifies character data related to the work request that is passed by the work manager for use in WLM classification.

The subsystem information consists of 1 through 18 characters.

TC= *transaction class*

specifies the transaction class to be used as a filter for tracing. Transaction class identifies a class name within the subsystem.

The transaction class information consists of 1 through 8 characters.

TRANIT= *transaction_name*

specifies a transaction name to be used as a filter for tracing.

Although the transaction name has specific meaning to many subsystems (those that exploit WLM classify), the transaction name identifies the name of the work request desired to be traced across the set of components that may handle it. See [z/OS MVS Planning: Workload Management](https://www.ibm.com) for information on transaction name and jobname.

The transaction name consists of 1 through 8 characters.

USERIU= *userid*

specifies a userid to be used as a filter for tracing.

userid is the name of a single userid for whom the tracing is to be done.

The userid consists of 1 through 8 characters.

WTR= *membername* | **STOP**

indicates that the external writer is to be started for recording transaction trace entries in a data set, or stopped if it was already started. This is an optional keyword.

membername

identifies the member that contains the source JCL that invokes the component trace external writer. The system opens the data sets that the writer uses. The member can be a SYS1.PROCLIB catalogued procedure or a job.

If WTR= is not specified, the trace data is saved in the TTRACE data space and can be obtained by dumping the data space.

The external writer may be started on the first invocation of the TRACE TT command or on any subsequent TRACE TT command prior to the TRACE TT,OFF command. Only one external writer may be started on any instance of transaction trace.
The external writer proc name **must** be the same on every system in the sysplex that is participating in transaction trace. Each system may define a proc with the same name or share a common writer proc.

If trace is already running, the writer may be started with a TRACE TT,WTR= command without specifying any filter parameters.

Trace entries are recorded in the external writer data set from the time the external writer is started until the external writer is stopped with a TRACE TT,WTR=STOP or trace is turned off with a TRACE TT,OFF,ALL. When the end of the data set is reached, it starts writing from the top of the data set, overlaying the oldest entries. Specifying a "membername" when transaction trace is not active (that is, no filter has been specified) results in an error message.

STOP

indicates that the external writer that was previously started needs to be stopped. No more trace entries are recorded in the external writer data set.

Any trace records currently in the buffers are written prior to stopping the external writer. An error message is issued if WTR=STOP is issued when no external writer is active.

BUFSIZE=nnnK or nnM

specifies the size of the TTrace data space the system is to use, in kilobytes (K) or megabytes (M).

nnK is the buffer size in kilobytes, where nnn is a decimal number from 16 to 999.

nnM is the buffer size in megabytes, where nn is a decimal number from 1 to 32.

The buffer size may be changed anytime when trace is active. This includes when the initial TRACE TT command is issued. Specifying a buffer size when transaction trace is not active (that is, no filter has been specified) results in an error message. The default size is 1M.

The scope of this buffer size change affects TTrace processing until the buffer size is changed on a subsequent command or after a system IPL. That is, the buffer size persists if TTrace is turned off and turned on at a later time.

The buffer size is rounded up to a page boundary (that is, multiples of 4K).

This is an optional keyword.

LATENT=(Y|N)

specifies whether latent transactions need to be traced.

A *latent transaction* is defined by *all* of the following:

- The transaction is currently active in the system.
- The transaction is marked for tracing.
- The filter value used to mark the transaction eligible for tracing is no longer active, that is, TRACE TT,OFF=nn was issued to turn that filter off.

Y specifies that latent transactions, if any, can continue to be traced. Y is the default value.

N specifies to not trace latent transactions. Any current active transactions that do not have an active filter will not be traced from this point on.
The scope of the latent parameter setting affects TTrace processing until the parameter is changed on a subsequent command or after a system IPL. That is, the parameter value persists if TTrace is turned off and then turned on at a later time.

OFF=(nn|ALL)
turns the specified active transaction trace OFF across the sysplex.

- **nn** specifies the filter set number of the trace to be turned off.

 nn is an integer from 1-99 that identifies a particular transaction trace filter set. Use DISPLAY TRACE,TT to display the active TTrace filter sets.

- **ALL** specifies that all the active transaction traces should be turned off across the sysplex.

 No additional trace entries are recorded. Any data in the trace buffers is written out to the data space and external writer data set. The external writer, if it was started, is also stopped.

 A message is issued to the operator console to indicate that transaction trace is no longer active on the system and a DUMP command may be issued to access the trace in the data space.
UNLOAD Command

Use the UNLOAD command to unload mounted tape or DASD volumes.

In a JES3 complex, use the UNLOAD command carefully. When you request that a volume be removed from a JES3-managed direct access device, you must enter an UNLOAD command on each system in the complex that has access to the device. In addition, if you are requesting that a volume be removed from a JES3-managed unit, you must also enter a JES3 unload command (*MODIFY,S,U=...). See z/OS JES3 Commands.

Scope in a Sysplex

The UNLOAD command has sysplex scope only when you issue the command against an automatically switchable tape device. See “Using Commands That Have Sysplex Scope” on page 1-11 for an explanation of sysplex scope.

Syntax

The complete syntax for the UNLOAD command is:

```
U [/]devnum
```

Parameters

`[/]devnum`

The device number of the device to be unloaded. A device number is 3 or 4 hexadecimal digits, optionally preceded by a slash `/`.
VARY Command

Table 4-45 summarizes the information that the VARY command provides. Use it to access the pages on which you can find details about a particular use of the VARY command.

Uses of the VARY command for TCPIP activity and functions are described in z/OS Communications Server: IP Configuration Reference.

Uses of the VARY command for VTAM network activity and functions are described in z/OS Communications Server: SNA Operation.

Note: To change the online or offline status of processors, channel paths, ESTOR elements, and central storage sections, see the CONFIG command.

<table>
<thead>
<tr>
<th>Command:</th>
<th>Topic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARY CN,ACTIVATE</td>
<td>"Controlling Problem Determination Mode for the System Console" on page 4-672</td>
</tr>
<tr>
<td>VARY CN,DEACTIVATE</td>
<td>"Controlling Problem Determination Mode for the System Console" on page 4-672</td>
</tr>
<tr>
<td>VARY CN,AUTOACT=</td>
<td>"Controlling Problem Determination Mode for the System Console" on page 4-672</td>
</tr>
<tr>
<td>VARY CN</td>
<td>"VARY CN command" on page 4-675</td>
</tr>
<tr>
<td>VARY ...,CONSOLE</td>
<td>"VARY CONSOLE command" on page 4-680</td>
</tr>
<tr>
<td>VARY ...,HARDCPY</td>
<td>"Controlling Hardcopy Processing" on page 4-683</td>
</tr>
<tr>
<td>VARY conspec...,ONLINE</td>
<td>"Placing a Console Online or Offline" on page 4-686</td>
</tr>
<tr>
<td>VARY conspec...,OFFLINE</td>
<td></td>
</tr>
<tr>
<td>VARY devspec...,AUTOSWITCH</td>
<td>"Defining a Tape Device as Automatically Switchable" on page 4-687</td>
</tr>
<tr>
<td>VARY devspec...,ONLINE</td>
<td>"Placing an I/O Device or a Range of I/O Devices Online or Offline" on page 4-688</td>
</tr>
<tr>
<td>VARY devspec...,OFFLINE</td>
<td></td>
</tr>
<tr>
<td>VARY devspec...,AVAILABLE</td>
<td>AVAIL</td>
</tr>
<tr>
<td>VARY GRS</td>
<td>"Controlling a Global Resource Serialization Complex" on page 4-693</td>
</tr>
<tr>
<td>VARY PATH</td>
<td>"Placing an I/O Path or Paths Online or Offline" on page 4-695</td>
</tr>
<tr>
<td>VARY SMS CFCACHE</td>
<td>"Changing the state of coupling facility cache structures and volumes" on page 4-698</td>
</tr>
<tr>
<td>VARY SMS CFLS</td>
<td></td>
</tr>
<tr>
<td>VARY SMS CFVOL</td>
<td></td>
</tr>
<tr>
<td>VARY SMS FALLBACK</td>
<td></td>
</tr>
<tr>
<td>VARY SMS,SHCDS</td>
<td></td>
</tr>
<tr>
<td>VARY SMS,SHCDS CFRESET</td>
<td></td>
</tr>
<tr>
<td>VARY SMS,SMSVSAM</td>
<td></td>
</tr>
<tr>
<td>VARY SMS,DRIVE</td>
<td>"Placing an Optical Drive or Library Online or Offline" on page 4-701</td>
</tr>
<tr>
<td>VARY SMS,LIBRARY</td>
<td>"Placing a System-Managed Tape Library Online or Offline" on page 4-701</td>
</tr>
<tr>
<td>VARY SMS,PDSE,ANALYSIS</td>
<td>"Analyzing the State of the PDSE Subsystem" on page 4-701</td>
</tr>
</tbody>
</table>
You cannot specify the names of extended MCS consoles or of a system console in the following VARY commands:

- VARY CONSOLE
- VARY OFFLINE
- VARY ONLINE

You cannot specify the names of SMCS consoles in the following VARY commands:

- VARY CONSOLE
- VARY ONLINE

Scope in a Sysplex

The following table describes the conditions under which the VARY command has sysplex scope. See "Using Commands That Have Sysplex Scope" on page 1-11 for an explanation of sysplex scope. If a command has no entry under “Conditions”, then the command has sysplex scope under all circumstances and for all variations.

Table 4-46. Sysplex Scope for VARY Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARY CN</td>
<td>Has sysplex scope unless all of the following are true:</td>
</tr>
<tr>
<td></td>
<td>• You issue VARY CN(conspec),ONLINE without specifying SYSTEM=.</td>
</tr>
<tr>
<td></td>
<td>• You do not specify SYSTEM= in the CONSOLxx member of Parmlib that defines this console.</td>
</tr>
<tr>
<td></td>
<td>• The console has never been active in the sysplex.</td>
</tr>
</tbody>
</table>
VARY Command

Table 4-46. Sysplex Scope for VARY Command (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARY SMS, STORGRP</td>
<td>VOLUME</td>
</tr>
<tr>
<td></td>
<td>• You specify (storgrp</td>
</tr>
<tr>
<td></td>
<td>• You specify (storgrp</td>
</tr>
<tr>
<td>VARY SWITCH</td>
<td>Logical partition cluster scope — see the “Intelligent Resource Director” chapter in z/OS MVS Planning: Workload Management for more information.</td>
</tr>
<tr>
<td>VARY XCF</td>
<td>All</td>
</tr>
<tr>
<td>VARY WLM</td>
<td>All</td>
</tr>
</tbody>
</table>

Syntax

The syntax for each variation of the VARY command is shown immediately preceding its respective parameter list.

VARY or V

Controlling Problem Determination Mode for the System Console

Use this form of the VARY command to control problem determination mode for the system console. If you are not sure of the system console names, enter the DISPLAY CONSOLES command with KEY=SYSCONS.

Problem determination mode allows you to receive messages and send commands on the system console to debug hardware and software problems. After initialization, the system console is NOT in problem determination mode and receives a minimal set of messages. You can place the system console in problem determination mode by entering the VARY CN,ACTIVATE command.

The first time the system console is placed into problem determination mode, it receives its attributes from its CONSOLE statement in CONSOLxx. On subsequent ACTIVATEs, it receives the attributes it had when it was last DEACTIVATEd. (Use the DISPLAY CONSOLES command to see if the system console is in problem determination mode. If it is, the display will show COND=(A,PD).)

Use the DISPLAY CONSOLES command to see which attributes are in effect for the system console when it is in problem determination mode. Use the VARY, CONTROL, or MONITOR commands to change console attributes for the system console when in problem determination mode.

If the system console is already in problem determination mode, the system rejects the command.

VARY CN,ACTIVATE Command

The syntax of the VARY CN,ACTIVATE command is:

VARY CN{conspec1|*}, {ACTIVATE|ACT}
VARY Command

CN(conspec1 or *)
Change the mode of the specified system console to problem determination mode. conspec1 is the system console name. An asterisk (*) indicates the system console from which you enter the command. You must enter the command from the system console that you want to activate.

ACTIVATE or ACT
The system is to activate problem determination mode for the specified system console.

Note: If you did not specify message level for the system console in CONSOLxx, the system console receives all messages except broadcast messages.

Restrictions:
1. The VARY CN,ACTIVATE command affects only the system console on which you enter the command. You cannot enter multiple system console names.
2. If you enter an asterisk (*) on the CN parameter of the VARY CN,ACTIVATE command, do not specify system symbols in the command. The system will not substitute text for the system symbols.

VARY CN,DEACTIVATE Command
You can remove the system console from problem determination mode by entering the VARY CN,DEACTIVATE command. When the command takes effect, the system console receives a minimal set of messages. You cannot use the VARY, CONTROL, or MONITOR commands to change console attributes for the system console when it is NOT in problem determination mode.

If you issue the command for a system console that is NOT in problem determination mode, the command has no effect. The VARY CN,DEACTIVATE command can affect any system console in the sysplex. Thus, you can route the command from any console with the proper authority to the target system console.

For information on the effect of issuing a VARY CN(syscons),ACTIVATE command while an AUTOACT group is defined, see “Suspending AUTOACT processing” on page 4-674.

The syntax of the VARY CN, DEACTIVATE command is:

VARY CN(conspec1|*),{DEACTIVATE|DEACT}

CN(conspec1 or *)
Remove the specified system console from problem determination mode. conspec1 is the system console name. An asterisk (*) indicates the system console on which the command is entered. You can enter the command from any authorized console (master authority) for the designated system console you want to deactivate.

DEACTIVATE or DEACT
The system is to deactivate problem determination mode for the specified system console.
VARY Command

VARY CN,AUTOACT= Command
You can configure the system console so that the commands VARY CN,ACTIVATE and VARY CN,DEACTIVATE are issued automatically to ensure that messages are sent to the system console when no other consoles are available. If you specify an automatic activate group (AUTOACT) for the system console, the VARY,CN AUTOACT= command uses the name of a console group from CNGRPxx.

If an AUTOACT group is defined and not suspended:
• When all of the consoles in AUTOACT are inactive, the system console will automatically be placed into PD mode.
• If any console in AUTOACT becomes active after the system console has automatically been placed into PD mode, the system console will then automatically be removed from problem determination (PD) mode.
• The consoles in the AUTOACT group can be of any type (MCS, SMCS or EMCS).
• In a sysplex environment, the consoles in the AUTOACT group can be attached to any system in the sysplex.

Suspending AUTOACT processing: If a VARY CN(syscons),ACTIVATE or a VARY CN(syscons),DEACTIVATE command is issued while an AUTOACT group is defined, and the command was NOT issued automatically by the AUTOACT processing, then AUTOACT processing will be suspended. This suspension means that the system console's mode will not be changed automatically by MVS. When the opposite (ACTIVATE or DEACTIVATE) command is issued, AUTOACT processing will resume.

The syntax of the VARY CN,AUTOACT= command is:

VARY CN{conspec1|*},{AUTOACT=console group name|*NONE*}

CN(conspec1 or *)
Add, change, or remove the specification of an automatic activate group for the specified system console. conspec1 is the system console name. An asterisk (*) indicates the same console from which you enter the command. You can enter the command from any authorized console (master authority) for the designated system console you want to change.

Note: This command will not work if conspec1 is not a system console.

console group name or *NONE*
console group name indicates the new or changed group name which is to be the automatic activate group for the system console. console group name must be defined in the current CNGRPxx. *NONE* indicates that the automatic activate group specification is to be removed from the system console. The system console will not be activated or deactivated automatically.

Controlling MCS and SMCS Consoles
Use the following forms of the VARY command to:
• Change the authority of a console
• Define or change the routing codes that send system messages to a console

The consoles specified on these commands must be defined as consoles in the CONSOLxx Parmlib member. Extended MCS consoles can also be accepted.
VARY CN command

The VARY CN command is used to set attributes for MCS, SMCS and extended MCS consoles. It only changes the attributes of the console when the console is active. If the console is not active, message IEE871I is issued, and the attributes are not changed. LU and LOGON are two attribute exceptions and they can be changed for inactive SMCS consoles. The syntax of the VARY CN command is:

```
V CN({(*)|conspec1[,conspec1]...})
[,AMSCOPE={{(*)|name[,name]...}}]
[,AUTH={ALL|INFO|MSTR|SYS][IO][CONS]}
[,AROUT={[rtcode[,rtcode]...]]
[,DMSCOPE={{(*)|name[,name]...}}]
[,DROUT={[rtcode[,rtcode]...]]}
[,INTIDS={Y|N}]
[,LOGON=OPTIONAL|REQUIRED|AUTO|DEFAULT]}
[,LU={luname|*NONE*}]
[,MSCOPE=(*ALL)|{(*)|name[,name]...}]
[,OFFLINE[,FORCE],ONLINE[,SYSTEM=sysname][,FORCE]}
[,ROUT=(ALL|NONE|[rtcode[,rtcode]...])]
[,UNKNIDS={Y|N}]```

Notes:

1. You do not have to put a single AUTH=operand, or a single MSCOPE= operand, or a single routing code in parentheses. You must put a single console in parentheses.

2. Active MCS/SMCS/EMCS consoles can have their attributes changed. If the console is inactive, message IEE871I "CN=consname NOT ACTIVE. CAN NOT CHANGE CONSOLE ATTRIBUTES" is issued. Only the LU and LOGON attributes can be changed for a SMCS console that is inactive.

3. When LU=*NONE* is specified, the VARY command no longer requires the LOGON keyword to be specified with the LU keyword.

4. If the OFFLINE keyword was specified, then the following keywords cannot be specified:
   - LU
   - LOGON

   Syntax error message ASA103I is issued for this incorrect combination of keywords.

5. If the OFFLINE keyword was specified, with other attribute keywords besides LU or LOGON, the OFFLINE will deactivate the console, but the attribute keywords will not execute. Message IEE871I will be issued.

6. In console services shared mode, the effect of the VARY attribute command lasts for the duration of the IPL. In distributed mode, the effect of the command lasts only for the duration of the console being active.

CN
Change the indicated authority for the specified console name(s). When you are uncertain of the current console names, enter a DISPLAY CONSOLES command; see "Displaying Console Status Information" on page 4-119 for further information on this command.

**conspec1**
Represents one of the following:

| nnnnnnnn | The name of the console device |
VARY Command

* The console that you are currently issuing commands from.

**AMSCOPE**
Adds one or more system names to the list of systems from which the console can receive messages. If you specify more than one system name, separate the names with commas.

You can also specify an asterisk (*), which means that the console is to receive messages from the system to which it is attached. If the console is later attached to a different system, the console will start receiving message from that different system. For example, specifying **AMSCOPE(SYS1,SYS2,*)** causes a console to receive messages from systems SYS1, SYS2, and the system to which the console is attached.

**AUTH=**
Specifies the system command groups that the console is authorized to enter. This command requires MASTER authority and might be protected with a security product OPERCMDS resource class with the MVS.VARYAUTH.CN profile, which requires CONTROL authority. In addition, the MVS.VARY.CN profile, which requires UPDATE authority, must also be specified. Table 3-6 on page 3-25 lists the commands and their associated groups.

**MASTER**
One or more specified consoles are authorized to enter all system operator commands.

**ALL**
One or more specified consoles are authorized to enter INFO, SYS, IO, and CONS commands.

**INFO**
One or more specified consoles are authorized to enter only INFO commands.

**(SYS, IO, CONS)**
One or more specified consoles are authorized to enter INFO commands as well as SYS, IO, or CONS commands (depending on which commands you include). Enter them in any order.

**AROUT=rcode**
The system is to add one or more specified routing codes or the routing codes in the specified range(s) to the routing codes already defined for the console. You can specify single routing codes (rcode), ranges of routing codes (rcode-rcode), or a combination of single routing codes and ranges of routing codes on the same AROUT operand. For example, specifying AROUT(2,11-14,28) adds routing codes 2, 11, 12, 13, 14, and 28.

**DMSCOPE**
Deletes one or more system names from the list of systems from which the console can receive messages. If you specify more than one system name, separate the names with commas.

If the console currently is defined to receive messages from the system to which it is attached, you can also remove that definition. To do this, specify an asterisk on the DMSCOPE parameter.

For example, if you have issued VARY CN AMSCOPE(SYS1,SYS2,*), the console receives messages from SYS1, SYS2, and whatever system the console is currently attached to.

- If the console is attached to SYS1, it receives messages from SYS1 and SYS2. Issuing VARY CN DMSCOPE(*) has no effect on the console until the
console is moved to a system other than SYS1 or SYS2. When it is moved to the other system, the console does not receive messages from that system.

- If the console is attached to SYS3, it receives messages from SYS3 as well as SYS1 and SYS2. When you issue VARY CN DMSCOPE(*), the console immediately stops receiving messages from SYS3.

**DROUT=rtcode**

The system is to remove the specified routing code(s) or the routing codes in the specified range(s) from the routing codes already defined for the console. You can specify single routing codes (\textit{rtcode}), ranges of routing codes (\textit{rtcode-rtcode}), or a combination of single routing codes and ranges of routing codes on the same DROUT operand. For example, specifying DROUT(2,11-14,28) deletes routing codes 2, 11, 12, 13, 14, and 28.

**INTIDS=**

Whether the specified console can receive messages which are directed to console ID zero. These messages are usually the command responses for internally issued commands.

- **Y** The specified console is to receive these messages.
- **N** The specified console is not to receive these messages. This is the default value.

**LOGON=value**

This allows the operator to change the unique LOGON value of the specified console. The LOGON attribute can also be changed for inactive SMCS consoles. The LOGON keyword cannot be specified when the OFFLINE keyword is specified. The LOGON \textit{value} is one of the following:

- **OPTIONAL** Indicates that this console does not require LOGON
- **REQUIRED** Indicates that this console requires an operator to logon before issuing commands
- **AUTO** Indicates that this console is automatically logged on
- **DEFAULT** Indicates that this console is to use the LOGON specification on the DEFAULT statement

**LU= luname OR "NONE"**

Allows the operator to change or turn off the predefined LU name of a SMCS console. See \textit{z/OS MVS Planning: Operations} for more information on predefined LUs. This command is only valid for SMCS consoles. If the command is issued for a non-SMCS console, then message IEE044I is issued. If the console is active, the only LU value that would be accepted is
**VARY Command**

the LU that the console is active on or "NONE". If a different LU is specified for an active console, then message IEE045I is issued. The LU keyword cannot be specified if the OFFLINE keyword is specified. If the console is not active, any LU can be specified. This command requires MASTER authority. It might be protected with the RACF OPERCMDS resource class with the MVS.VARYLU.CN profile, which requires CONTROL authority. In addition, the MVS.VARY.CN profile, which requires UPDATE authority, must also be specified.

**Value Range:** Is from 2 to 8 characters. The first character must begin with the letters A through Z or with a #, $, or @; the remaining characters can be A through Z, 0 through 9, or #, $, or @.

**MSCOPE**

In a sysplex, specifies which systems the console is to receive messages from.

- **ALL**
  - The console will receive system messages from all active systems in the sysplex.
- *name*
  - The console will receive system messages from the specified system name or system names in the sysplex.

**OFFLINE**

Deactivates an MCS or SMCS console and places the device in offline status (has the same effect as VARY device,OFFLINE for the device, when VARY device,OFFLINE is issued on the system where the console is attached). VARY CN(...),OFFLINE is sysplex-wide in scope, and does not have to be issued from the system where the console is active. Attributes specified with the OFFLINE keyword will not be changed. The OFFLINE will deactivate the console, but the attribute changes will be ignored. If LU or LOGON were specified, then message ASA103I will be issued (and the OFFLINE will not execute). Any other keywords, message IEE871I will be issued, but the OFFLINE keyword will deactivate the console.

**ONLINE**

Activates a device defined in the CONSOLxx parmlib member as an MCS console. MVS determines the system on which to activate the console in the following order:

1. The system specified on the SYSTEM keyword (if you specify SYSTEM on the VARY CN command)
2. The system on which this console was last active (if the console was previously active)
3. The system specified on the SYSTEM keyword in CONSOLxx (if you specified SYSTEM on the CONSOLE statement in CONSOLxx for this device)
4. The system on which the command is processed.

VARY CN(...),ONLINE does not accept extended MCS or SMCS console names as input.

If you specify a list of consoles, MVS attempts to process each console specified in the list:

- If a console is already active, MVS issues the same message (the DISPLAY C output - message CNZ4100I) as when activating a console.
• If a console is already active on another system (for example, if you specify
SYSTEM=SYS1 and the console is already active on SYS2), then MVS
issues message CNZ0005I.

• If the console cannot be activated, MVS issues a message appropriate to the
situation. There are a number of such messages, including:
  – IEE025I (the console device has no logical paths)
  – IEE274I (the console name is not defined as a console in the sysplex)
  – IEE420I (the console is an extended MCS console)
  – IEE606I (the console name is not defined on this system)

FORCE
Activates an MCS console even when the console is being kept offline by a
configuration manager. If you issue the VARY CN,ONLINE command and
receive a message indicating that the device is being kept offline by a
configuration manager, you can issue the VARY CN,ONLINE,FORCE command
if necessary.

The FORCE keyword can only be specified if ONLINE is also specified.

When specified with the OFFLINE keyword, it acts just like a VARY
dev,OFFLINE,FORCE command.

SYSTEM
Specifies the system on which the console is to be activated. SYSTEM
overrides any default system specification (for example, the SYSTEM keyword
on the CONSOLE statement). SYSTEM is valid only if you specify the ONLINE
keyword.

The SYSTEM value applies to all values in the list of console names. If the
system specified as the SYSTEM keyword value is not active in the sysplex,
you will receive an error message.

ROUT=
The routing codes of messages the console(s) can receive. These codes
replace those previously assigned. See Table 3-8 on page 3-38 for a list of
routing codes.

You can specify single routing codes (rtcode), ranges of routing codes
(retcode-rtcode), or a combination of single routing codes and ranges of routing
codes on the same ROUT operand. For example, specifying ROUT(2,11-14,28)
assigns routing codes 2, 11, 12, 13, 14, and 28.

Note: The system processes the ROUT, AROUT, and DROUT operands in the
order that you specify them in the command.

ALL
The console receives all system-to-operator messages.

NONE
The console does not receive any system-to-operator messages.

rtcode
The console receives all messages with the specified routing codes. You
can specify single routing codes (rtcode) or ranges of routing codes
(retcode-rtcode) on the same ROUT operand.

UNKNIDS=
Whether the specified console can receive messages which are directed to
“unknown” console IDs. These IDs are one-byte IDs which the system cannot
resolve.

Y The specified console is to receive these messages.
VARY Command

N  The specified console is not to receive these messages. This is the default value.

Example 1

To assign master level authority to an active console named REMOTE, enter:
VARY CN(REMOTE),AUTH=MASTER

Example 2

To limit active console CON3 to receiving unsolicited messages from only systems SY3 and SY4, enter:
VARY CN(CON3),MSCOPE=(SY3,SY4)

Example 3

To add SY2 to the list of systems which will send unsolicited messages to active console CON3, enter:
VARY CN(CON3),AMSCOPE=SY2

Example 4

To activate consoles FRED and STAN, enter:
V CN(FRED,STAN),ONLINE

Example 5

To activate consoles ABLE and BAKER for use on system SYS1, enter:
V CN(ABLE,BAKER),ONLINE,SYSTEM=SYS1

Example 6

To activate console FRED, and at the same time to authorize FRED to enter informational, console control and system control commands, and receive messages for the primary operator, the tape pool, and the tape library, enter:
V CN(FRED),ONLINE,AUTH=(CONS,SYS),ROUT=(1,3,5)

VARY CONSOLE command

The VARY CONSOLE command is used to activate and set attributes for MCS consoles. This command is not used for extended MCS or SMCS consoles.

Note: VARY CN is the recommended command to activate and change attributes of a console, because it has more features and it has sysplex scope. The VARY CONSOLE command only has system scope.

The syntax of the VARY CONSOLE command is:

```
V {conspec2{conspec2[,conspec2]...}},CONSOLE
 [,AROUT=(rtcode[,rtcode]...)]
 [,AUTH={ALL|MASTER|INFO|([SYS][,IO],[,CONS])}]
 [,DROUT=(rtcode[,rtcode]...)]
 [,ROUT={ALL|NONE|(rtcode[,rtcode]...)}}
```
**Note:** If you specify one device number, one `AUTH=` operand, or one routing code, you can omit the parentheses.

```plaintext
conspec2
conspec2 is one of the following:

- \[[d]evnum
 The device number of the console device.

- O-\[[d]evnum
 The device number of the console device preceded by the literal ‘O-’ to designate a device with output-only capability.

- nnnnnnnnn
 The name of the console device as specified in the CONSOLxx Parmlib member CONSOLE statement (for example, ‘TAPECNTL’)

- O-nnnnnnnnnn
 The name of the console device as specified in the CONSOLxx Parmlib member CONSOLE statement preceded by the literal ‘O-’ and designates an output-only device (for example, ‘O-TAPEPRNT’).
```

The various types of `conspec` can be specified in any combination. If you specify only one `conspec`, you do not need to enter the parentheses.

A device number is 3 or 4 hexadecimal digits, optionally preceded by a slash (/). You can precede the device number with a slash to prevent ambiguity between the device number and a console name.

**CONSOLE**

The unit is to be an active console.

**AUTH=**

Specifies the system command groups that the console is authorized to enter. This command requires MASTER authority and might be protected with a security product OPERCMDS resource class with the MVS.VARYAUTH.CONSOLE profile, which requires CONTROL authority. In addition, the MVS.VARY.CONSOLE profile, which requires UPDATE authority, must also be specified. [Table 3-6 on page 3-25](#) lists the commands and their associated groups.

- **ALL**
  The specified console(s) are authorized to enter INFO, SYS, IO, and CONS commands.

- **MASTER**
  The specified console(s) are authorized to enter all system operator commands.

- **INFO**
  The specified console(s) are authorized to enter only INFO commands.

- **(SYS, IO, CONS)**
  The specified console(s) are authorized to enter INFO commands as well as SYS, IO, or CONS commands (depending on which commands you include). Enter them in any order.

**ROUT=**

The routing codes of messages the console(s) can receive. These codes replace those previously assigned.
**VARY Command**

**Note:** The system processes the ROUT, AROUT, and DROUT operands in the order that you specify them in the command.

**ALL**
- The console receives all system-to-operator messages.

**NONE**
- The console does not receive any system-to-operator messages.

**rtcode**
- The console receives all messages with the specified routing codes. You can specify single routing codes (rtcode) or ranges of routing codes (rtcode-rtcode) on the same ROUT operand.

**AROUT=rtcode**
- The system is to add the specified routing code(s) or the routing codes in the specified range(s) to the routing codes already defined for the console. You can specify single routing codes (rtcode) or ranges of routing codes (rtcode-rtcode) on the same AROUT operand.

**DROUT=rtcode**
- The system is to remove the specified routing code(s) or the routing codes in the specified range(s) from the routing codes already defined for the console. You can specify single routing codes (rtcode) or ranges of routing codes (rtcode-rtcode) on the same DROUT operand.

**Example 1**

To make consoles with device numbers 00C and 009 active, enter:

```
v (00c,009),console
```

**Example 2**

To make the console with device number 01FA an active console authorized to enter informational, system control, and console control commands and to receive messages for the primary operator, the tape pool, and the tape library, enter:

```
v /01fa,console,auth=(cons,sys),rout=(1,3,5)
```

**Example 3**

To remove routing codes 8, 31, 32, 33, 34, and 35 from the existing routing codes for the console with device number 2B0, enter:

```
v 2b0,console,drout=(8,31-35)
```

**Example 4**

To vary a console named TAPE online, add routing codes 7 through 12 to the current routing codes the console receives, enter:

```
VARY TAPE,CONSOLE,AROUT=(7-12)
```

**Example 5**

01F is to become an active console that is authorized to enter informational, system control, and console control commands and that receives messages for the primary operator, the tape pool, and the tape library.

```
V 01f,console,auth=(cons,sys),rout=(1,3,5)
```

**Example 6**
To remove routing codes 8, 31, 32, 33, 34, and 35 from the existing routing codes for console CON2, enter:

```
v con2,console,drout=(8,31-35)
```

**Example 7**

To vary a console named TAPE online, add routing codes 7 through 12 to the current routing codes the console receives, enter:

```
VARY TAPE,CONSOLE,AROUT=(7-12)
```

## Controlling Hardcopy Processing

Use the HARDCPY form of the VARY command to do the following:

- Change the set of messages included in the hardcopy message set
- Assign either SYSLOG or OPERLOG to be the hardcopy medium
- Stop the hardcopy medium.

The system establishes hardcopy processing during system initialization based on the HARDCOPY statement in the CONSOLxx member of Parmlib. The ROUTCODE and CMDLEVEL parameters define messages that are included in the hardcopy message set.

The syntax of the VARY HARDCPY command is:

```
V [OPERLOG],HARDCPY[,NOCMDS],STCMDS],[INCMDS] [SYSLOG][,AROUT=(rtcode[,rtcode][...])][,DROUT=(rtcode[,rtcode][...])][,ROUT={ALL|NONE}]
```

**OPERLOG**

The operations log is to be activated or deactivated.

When you omit the SYSLOG or OPERLOG operands, the system changes what goes into the hardcopy log, rather than the hardcopy log medium.

**SYSLOG**

The system log is to become the hardcopy medium.

**HARDCPY**

The system changes the hardcopy medium or the hardcopy message set, or both, depending on the options specified.

The following NOCMDS, INCMDs, STCMDS, and CMDs options correspond to the CMDLEVEL specifications of the HARDCOPY statement:

**NOCMDS**

The system is not to include operator commands or their responses in the hardcopy message set.

**Note:** If hardcopy support is required and you specify NOCMDS, the system will not allow NOCMDS and will choose CMDLEVEL=CMDS. (Hardcopy support is required when one or more display consoles are defined in a system.)
VARY Command

INCMDS
The system is to include operator commands and their responses, excluding any status displays, in the hardcopy message set.

STCMDS or CMDS
The system includes all operator and system commands, their responses, and status displays in the hardcopy message set. As of z/OS V1R8, STCMDS and CMDS are equivalent.

Note: The following descriptor codes are associated with the above options:

<table>
<thead>
<tr>
<th>Options</th>
<th>Descriptor Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOCMDS</td>
<td>None</td>
</tr>
<tr>
<td>INCMDS</td>
<td>5</td>
</tr>
<tr>
<td>STCMDS</td>
<td>5, 8, 9</td>
</tr>
<tr>
<td>CMDS</td>
<td>5, 8, 9</td>
</tr>
</tbody>
</table>

OFF
The system is to stop the hardcopy medium.

If you do not specify SYSLOG or OPERLOG, the system defaults to the hardcopy medium (SYSLOG) if it is active; otherwise, the system rejects the command. The system will not deactivate the operations log unless OPERLOG is specified. If you specify OPERLOG, the operations log must be active.

The system rejects this command if it would result in both the hardcopy log and the operations log becoming inactive.

When OFF is specified without UNCOND, it must be the last parameter.

UNCOND
Use UNCOND with OFF to specify that the system is to stop the hardcopy medium. The system saves messages depending on the hardcopy medium status:

<table>
<thead>
<tr>
<th>Hardcopy medium and state</th>
<th>Whether messages are saved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only SYSLOG is active and is varied off with UNCOND</td>
<td>Yes</td>
</tr>
<tr>
<td>Only OPERLOG is active and is varied off with UNCOND</td>
<td>No</td>
</tr>
<tr>
<td>Both SYSLOG and OPERLOG are active and SYSLOG is varied off with UNCOND</td>
<td>Yes</td>
</tr>
<tr>
<td>Both SYSLOG and OPERLOG are active and OPERLOG is varied off with UNCOND</td>
<td>No</td>
</tr>
</tbody>
</table>

Notes:
1. Messages are saved for SYSLOG until the LOGLIM value is reached, after which the messages will then be discarded.
2. If the hardcopy medium is SYSLOG, and SYSLOG has never been activated in the system, messages will not be saved.

The use of UNCOND should be a temporary measure, and should be done only as a last resort in order to repair hardcopy functions. The installation might lose
messages from hardcopy if too long a period elapses before the hardcopy medium is restored. The system issues message IEE012A when messages are no longer being saved.

When UNCOND is specified with OFF, UNCOND must be the last parameter.

**ROUT=**
The system is to include messages with the specified routing code or codes in the hardcopy message set. In addition to the routing codes you specify, the hardcopy message set also includes messages with the minimum set of routing codes (1,2,3,4,7,8,10, and 42) established at initialization by the HARDCOPY statement of CONSOLxx.

**ALL**
All routing codes (1-128) are used to select messages for the hardcopy message set.

**NONE**
No routing codes are used to select messages for the hardcopy message set.

```
rtcode
```

The specified routing code or codes are used to select messages for the hardcopy message set. *rtcode* is a decimal number from 1 to 128. You can specify a single routing code, a range of routing codes, or a combination of both.

**AROUT**
The system is to include messages with the specified routing code or codes in the hardcopy message set, in addition to any messages included because of prior routing code specifications.

```
rtcode
```

The specified routing code or codes, in addition to currently used routing codes, are used to select messages for the hardcopy message set. *rtcode* is a decimal number from 1 to 128. You can specify a single routing code, a range of routing codes, or a combination of both.

**DROUT**
The system is to stop including messages with the specified routing code or codes in the hardcopy message set.

```
rtcode
```

The specified routing code or codes are no longer used to select messages for the hardcopy message set. *rtcode* is a decimal number from 1 to 128. You can specify a single routing code, a range of routing codes, or a combination of both.

**Note:** At system initialization, processing of the HARDCOPY statement of the CONSOLxx member of Parmlib sets up a minimum set of routing codes (1,2,3,4,7,8,10, and 42) in addition to any other specified for the hardcopy message set.

The system processes the ROUT, AROUT, and DROUT operands in the order that you specify them.

**Example 1**
VARY Command

To include all operator commands, responses, and status displays (except dynamic status displays) in the hardcopy message set, enter:

V , HARDCPY, STCMDS

Example 2

To have the hardcopy message set recorded on the system log, enter:

V SYSLOG, HARDCPY

Example 3

To add routing codes 11, 12, 13, 17, and 44 to the routing codes already defined for the hardcopy message set, enter:

V , HARDCPY, AROUT=(11-13, 17, 44)

Example 4

To have the hardcopy message set recorded on the operations log, enter:

V OPERLOG, HARDCPY

Placing a Console Online or Offline

Use the following form of the VARY command to make a secondary console either online as an I/O device or offline. As a device, it will become inactive as a console. This command can be used to make an SMCS console offline, however, it cannot be used to make an SMCS console online.

Note: The VARY CN command is the recommended command to deactivate a console because it has sysplex scope. This VARY command only has system scope.

V (conspec[,conspec]...),{OFFLINE|ONLINE}

conspec

conspec is the console device to be moved online or offline and is specified as one of the following:

[/]devnum

The device number of the console device.

O-[/]devnum

The device number of the console device preceded by the literal ‘O-‘ to designate a device with output-only capability.

nnnnnnnn

The name of the console device as specified in the CONSOLxx Parmlib member CONSOLE statement (for example, ‘TAPECNTL’)

O-nnnnnnnn

The name of the console device as specified in the CONSOLxx Parmlib member CONSOLE statement preceded by the literal ‘O-‘ to designate an output-only device (for example, ‘O-TAPEPRNT’).

[/]lowdevnum-[/]highdevnum

The lowdevnum is the device number of an input/output device that is the
lower bound of a range of device numbers and \textit{highdevnum} is the device number of an input/output device that is the upper bound of the range.

The various types of \textit{conspec} can be specified in any combination. If you specify only one \textit{conspec}, you do not need to enter the parentheses.

A device number is 3 or 4 hexadecimal digits, optionally preceded by a slash (/). You can precede the device number with a slash to prevent ambiguity between the device number and a console name.

\textbf{ONLINE}

The system is to bring the specified device(s) online. If the specified device is a console, this command will de-activate it as a console.

\textbf{OFFLINE}

The system is to take the specified device(s) offline. If the specified device is a console, this command will de-activate it as a console.

\textbf{Example 1}

To take consoles 003 and 001 offline, enter:

\texttt{V (003,001),OFFLINE}

\textbf{Example 2}

To take consoles 3322,340A offline, enter:

\texttt{V (/3322,/340A),OFFLINE}

\textbf{Defining a Tape Device as Automatically Switchable}

Use the following form of the \texttt{VARY} command to change the automatically switchable characteristic (or the \texttt{AUTOSWITCH} attribute) of a tape device. The setting does not persist beyond the duration of the IPL.

\texttt{V \{\texttt{devspec[,devspec]...}\},\{\texttt{AUTOSWITCH|AS}\}[\texttt{,ON|OFF}]}

\textit{devspec}

\textit{devspec} is one of the following:

\texttt{[/}\textit{devnum}

The device is not assign capable.

\texttt{lowdevnum-highdevnum}

\textit{lowdevnum} is the lower bound of a range of device numbers. \textit{highdevnum} is the upper bound of the range.

A device number is 3 or 4 hexadecimal digits.

\textbf{AUTOSWITCH} or \textbf{AS}

The system is to turn on or off the \texttt{AUTOSWITCH} attribute of the tape device or range of tape devices you specified.
VARY Command

If you specify the VARY AUTOSWITCH command for a tape device that is online or managed by JES3, the system alerts you to the error.

- If you specify a list of devices (for example, VARY (281,282,283),AS,ON), the system returns a message for each device that is not valid.
- If you specify a range of devices (for example, VARY (281-283),AS,ON), you receive a DISPLAY command response that lists the status (including the AUTOSWITCH status) for devices in the specified range.

For more information about automatically switchable tape devices, see z/OS MVS Setting Up a Sysplex.

**ON**
The system is to turn on the AUTOSWITCH attribute for the device or devices you specified.

**OFF**
The system is to turn off the AUTOSWITCH attribute for the device or devices you specified.

**Example 1**

To turn on the AUTOSWITCH attribute for tape devices 282, 283, and 287, enter:

```
VARY (282,283,287),AS,ON
```

**Placing an I/O Device or a Range of I/O Devices Online or Offline**

Use the following form of the VARY command to place I/O devices online or offline.

```
V {({devspec[,devspec]...}),{ONLINE[,UNCOND][,FORCE]}}
{devspec}
{SHR}
{RESET}
{OFFLINE[,FORCE]}
```

In a JES2 environment, use this command to specify that a cartridge tape device (such as a 3490) is to be shared among more than one system.

Use this form of the VARY command with care in a JES3 environment. For devices managed by JES3, issue a "VARY command instead of the MVS VARY command to change online or offline status. See "Placing Devices Online or Offline to JES3" in z/OS JES3 Commands."

**devspec**

- **[/devnum**
  - The device number of an I/O device.

- **O[/devnum**
  - The device number of a console device preceded by the literal 'O-' to designate a device with output-only capability.

- **nnnnnnnn**
  - The name of a console device as specified in the CONSOLxx Parmlib member CONSOLE statement.
The name of a console device as specified in the CONSOLxx Parmlib member CONSOLE statement preceded by the literal ‘O-’ to designate an output-only device.

`[/lowdevnum[/highdevnum]`

`lowdevnum` is the device number of an I/O device that is the lower bound of a range of device numbers. `highdevnum` is the device number of an I/O device that is the upper bound of the range.

The various types of `devspec` can be specified in any combination, either a valid console name or a valid device number. The console name check will be made first and valid console names accepted. If you specify only one `devspec`, you do not need to enter the parentheses.

A device number is 3 or 4 hexadecimal digits, optionally preceded by a slash (/). You can precede the device number with a slash to prevent ambiguity between the device number and a console name.

RESET, UNCOND and SHR keywords are ignored for console-capable devices. VARY of a range of devices is supported for console-capable devices.

**ONLINE**

The system is to bring the specified devices or ranges of devices online, that is, make the devices or ranges of devices available for allocation to problem programs and system tasks, if there is an online path to the devices. In a system-managed tape library, if the file tape drives within the library were placed offline with both the VARY device and VARY SMS commands, then you must issue both commands to place those devices online. If you bring a device online and you want the system to recognize a volume mounted while the device was offline, enter a MOUNT command for the device.

**Notes:**

1. If you specify a device that is not physically attached to its control unit, the system might consider the device operational and online. If an attempt is later made to allocate the device to a job, the attempt might fail, in which case the job would have to be canceled.

2. Bringing a device online cannot bring online I/O paths that have been taken offline with a VARY PATH command.

3. Switch actions that restrict a channel’s access to devices or control units might cause the command to be unsuccessful. If this is the case, adjust your switch configuration to make sure there is an online path to the device.

4. If you issue a VARY device ONLINE command for a device whose last path has been taken offline with a VARY PATH OFFLINE command, the system issues the following message:

   
   ```
 IEE025I UNIT ddd HAS NO LOGICAL PATHS
   ```

5. If you specify a range of devices and any or all of them are not valid, you receive message IEE313I indicating the device numbers that are not valid.

6. For an automatically switchable tape device, the VARY ONLINE command brings the device online to the issuing system. This makes the device available to be allocated to that system. The device will be assigned when it is allocated.

**UNCOND**

The system is to bring the specified devices or range(s) of devices online, even if there are no paths to the devices or if the devices are pending offline and boxed. The system ignores this operand if you specify it for a tape or direct
access device that does not have a path. Use the UNCOND operand carefully because it causes inaccessible devices to appear accessible to some system components.

You can use the VARY bbbb,ONLINE,UNCOND command to correct problems when HyperPAV aliases are not properly used. Such an error condition occurs when non-FICON channels are configured online to a HyperPAV-capable control unit. Because MVS operates on base devices within that logical subsystem in base only mode, MVS cannot use alias devices for bases in the logical control unit. You can detect this condition by outstanding message IOS166E or by using the D M=DEV(bbbb) command, where bbbb is a base device in the logical control unit. MVS can use the HyperPAV aliases only after the non-FICON channels are removed from the HyperPAV configuration or these channels are configuring offline. However, it may be necessary under this or other conditions to force MVS to rediscover aliases that were not discovered previously. Use the VARY bbbb,ONLINE,UNCOND command where bbbb is an online base device in the logical control unit.

**SHR**

The system permits the sharable tape device you bring online to be shared among other processors. The system ignores the SHR keyword when specified for a device that is not assign capable. Share a tape device between processors only at the direction of the system programmer.

Do not use this keyword:

- For devices managed by JES3. JES3-managed devices are automatically sharable within the JES3 complex.
- For automatically switchable devices. If you use the SHR keyword, the system rejects the command because it is incompatible with automatic tape switching.

Do not confuse the sharing of tape devices (through the SHR keyword) with automatically switchable tape devices. The SHR keyword allows many systems sharing a key to access a single tape device at one time. Although automatically switchable devices are varied online to many systems at one time, only one system can actually access a device at one time.

**RESET**

The system is to bring online a device that is being kept offline because of a control-unit-initiated reconfiguration (C.U.I.R.).

**OFFLINE**

The system is to take the specified device(s) or range(s) of devices offline, that is, make the device(s) or range(s) of devices unavailable for allocation to application programs or system tasks. The system takes offline any device that is currently in use only after all the tasks to which it is allocated terminate.

**Notes:**

1. When you issue a VARY OFFLINE command, the system immediately places the specified device(s) in the “pending offline” state. A device in the pending offline state cannot be allocated — even if the job specifically requests the volume mounted on the device — unless the allocated/offline device installation exit is used to allow allocation or the operator selects the device in response to message IEF238D.

2. If a WTOR message IEF238D is outstanding, that is, has not yet been replied to, VARY OFFLINE activity cannot take place.

3. Also, while a message IEF238D remains outstanding, no other allocations can proceed for any devices in the same group as the device(s) waiting for
the IEF238D response. For example, if a job is in allocation recovery trying to allocate a 3490 device (UNIT=3490), no other D/T3490 allocation will take place until the message IEF238D is satisfied. Similarly, if a job is trying to allocate a device in a device group named, say, CARTNY (UNIT=CARTNY), then no devices in CARTNY will be allocated until message IEF238D is satisfied.

The VARY device OFFLINE command takes effect immediately if the resources are available and the device is not allocated or when a system task starts. When the specified device(s) is offline, you receive message IEF281I and, if you have not specified FORCE, the system rewinds and unloads all specified tape drives except for JES3-managed tape drives. All devices taken offline remain offline until you enter VARY device ONLINE commands for them or specify them in response to a system request for devices.

Note: When you specify VARY OFFLINE for a range of devices:
- If some or all of the devices are valid, you receive a status display of those devices in each range.
- If some or all of the devices are valid and are alternate path device numbers, or do not have device names assigned to their UCBs, you receive message IEE712I, stating that VARY processing has finished.
- If any of the devices are not syntactically valid, you receive message IEE313I indicating the device numbers that are invalid.

Make sure, when you specify a range of devices to be taken offline, that the range does not include any console device numbers.

CAUTION: Never take any device offline if that device holds SYS1.DUMPxx data sets unless you first remove the SYS1.DUMPxx data sets from the system’s list of SYS1.DUMPxx data sets with a DUMPDS DEL,DSN= command.

FORCE
You can specify FORCE with ONLINE or OFFLINE. The effect on the system is quite different, as described in the following.

FORCE specified with OFFLINE: When specified with the OFFLINE keyword, FORCE puts the specified device or devices immediately in pending offline status, even if they are currently active, allocated, reserved or assigned. The system stops I/O in progress on the devices and rejects future I/O requests to the devices as permanent I/O errors.

You can issue VARY device,OFFLINE,FORCE only from the master authority console.

If JES3 manages a device, VARY device,OFFLINE with FORCE still marks the device as pending offline to MVS. Any allocated device put into pending offline status with FORCE remains allocated to the user who owns it when you issue the VARY command. The system actually takes the device offline when all users have deallocated it. (The system does not allocate a device put into pending offline status with FORCE to any new job, regardless of how the job requests the device.)

You can also use VARY device,OFFLINE,FORCE to take any console.

When the system takes a device offline as a result of a VARY device,OFFLINE,FORCE command, you can usually bring the device online and make it available for I/O again by issuing a VARY device,ONLINE command. If,
VARY Command

however, there are no physical paths to the device or the device is non-operational, you can place the device online only with a VARY device,ONLINE,UNCOND command. (Note that the system ignores the UNCOND operand if you specify it for a tape or direct access device.) A device brought online with UNCOND remains unavailable for I/O until you either supply it with a physical I/O path or make it fully operational again.

Notes:
1. Use VARY device,OFFLINE,FORCE only with great care in situations where the system is in serious trouble. Even if a specified device is already offline, the command immediately terminates all I/O in progress on the device; future I/O requests to the device are rejected as permanent I/O errors. Thus, the command might cause the loss of data, as well as a data integrity problem if the command prematurely releases a reserved device or unassigns an assigned device.
2. If you issue VARY device,OFFLINE,FORCE for a CTC adapter used by global resource serialization, be sure that you issue the command from both of the systems attached to that CTC adapter.
3. When you issue VARY ctc,OFFLINE,FORCE for a CTC adapter used by global resource serialization, you will be prompted by message ISG186D. Reply KEEP to take the CTC offline normally, allowing GRS to use the CTC when it is brought back online. Reply FREE to take the CTC away from GRS permanently. This will allow the installation to allocate the CTC to XCF signalling. Use LookAt or use the MVS System Messages books to see more information about message ISG186D.

FORCE specified with ONLINE: When specified with the ONLINE keyword, FORCE places the specified device or devices online even if they are being kept offline by a configuration manager.

Example 1

To make devices 282, 283, and 287 available for system use, enter:

```console
 vary (282,283,287),online
```

Example 2

To take offline any devices in the range 283 through 287 and the range 130 through 135, enter:

```console
 V (283-287,130-135),OFFLINE
```

Example 3

To make device 282 available for system use even if there is no path to the device, enter:

```console
 V 282,ONLINE,UNCOND
```

Example 4

To terminate I/O to device 282, enter:

```console
 V 282,OFFLINE,FORCE
```

Message IEE800D asks you to confirm this command, which would cause the system to stop I/O in progress on device 282 and reject future I/O requests to the device as permanent I/O errors. Reply NO to message IEE800D to terminate the command and leave the status of the device unchanged. Reply YES to have the
system stop I/O on the device, reject future I/O requests to the device, and mark
the device pending offline (if device 282 is not already offline).

Allowing or Preventing Allocation from using an Offline Tape Device

Use the following form of the VARY command to allow or prevent offline tape
devices from being eligible for use by Allocation.

```
V {{(devspec[,devspec]...)},{{AVAILABLE|AVAIL }},{(devspec }} } {UNAVAILABLE|UNAVAIL)
```

devspec

devspec is one of the following:

[/devnum
The device number of an I/O device.

[/lowdevnum[/highdevnum
lowdevnum is the device number of an I/O device that is the lower bound of
a range of device numbers. highdevnum is the device number of an I/O
device that is the upper bound of the range.

The various types of devspec can be specified in any combination. If you
specify only one devspec, you do not need to enter the parentheses.

A device number is 3 or 4 hexadecimal digits, optionally preceded by a slash (/).

AVAILABLE or AVAIL
The specified device or devices are marked available for allocation.

UNAVAILABLE or UNAVAIL
The specified device or devices are marked unavailable and cannot be used by
MVS Allocation for device requests.

Notes:
1. Using VARY xxxx, UNAVAILABLE causes MVS Device Allocation and DDR
SWAP processing to ignore the offline device when selecting a device for use
by a program. Thus, operators see fewer devices in the IEF877E message.
More failed allocations for subsystems do not allow Recovery Allocation in
environments that are already device constrained.

2. To display the devices in the UNAVAILABLE state, use the D U, TAPE, UNAVAIL
command.

Controlling a Global Resource Serialization Complex

Use the VARY GRS command to:

• Temporarily remove a system from the global resource serialization ring complex.
• Restore a quiesced system to the global resource serialization ring complex.
• Remove a system from the global resource serialization ring complex.
• Rebuild a disrupted global resource serialization ring complex. (that is, a group of
inactive or quiesced systems)

Note: Because the VARY GRS command is not valid when all of the systems in a
global resource serialization complex are in the same sysplex, use the V
XCF,sysname,OFFLINE command.
VARY Command

For more information on GRS and the sysplex, refer to z/OS MVS Planning: Global Resource Serialization and z/OS MVS Setting Up a Sysplex.

The following table shows the support for the VARY GRS commands during that time when an installation is migrating to a cross-system coupling facility sysplex.

<table>
<thead>
<tr>
<th>Command</th>
<th>COMPLEX=SYSPLEX</th>
<th>Mixed Complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARY GRS,QUIESCE</td>
<td>Command rejected; message ISG153I issued</td>
<td>Command accepted</td>
</tr>
<tr>
<td>VARY GRS,RESTART</td>
<td>Command rejected; message ISG153I issued</td>
<td>Command accepted</td>
</tr>
<tr>
<td>VARY GRS,PURGE</td>
<td>Command rejected; message ISG153I issued</td>
<td>Command accepted:</td>
</tr>
</tbody>
</table>

**Note:** If the target system of a VARY GRS,PURGE command is a member of a sysplex with more than one system, it will be put into a non-restartable wait state.

Use the VARY GRS command mainly for recovery situations.

```
V GRS{({sysname|*|ALL}),{RESTART|R}}
 {({sysname|*}),{QUIESCE|Q} }
 {({sysname}),{PURGE|P} }
```

**sysname**
The name of the system (specified on the SYSNAME system parameter). This name can be up to eight characters long and can contain any characters except commas and blanks.

**Note:** The name of the current system (the system on which you enter the command). Specifying an asterisk means you want to change the current system’s status in the global resource serialization ring.

**ALL**
You want to change the status of all systems in the global resource serialization ring.

**RESTART or R**
You want to restore a quiesced (or inactive) system to the global resource serialization ring or rebuild a global resource serialization ring that has been disrupted. (When rebuilding a disrupted ring, you can specify ALL with RESTART.) Once this command takes effect, the system processes all previously-suspended requests for global resources. Restarting a system or restarting the ring requires an active system. An inactive system can make itself active and restart the ring. If, however, all systems are quiesced, issuing VARY GRS with RESTART invokes the reactivate function. Reactivating the ring avoids a complex wide re-IPL but can introduce data integrity exposures. Allow the re-Iactivate function to proceed only on instructions from your system programmer.

**QUIESCE or Q**
You want to temporarily remove a system from the global resource serialization ring. Requesters of global resources on the quiesced system hold on to all
global resources they own and hold their position in the queues for those resources they do not own. Global resource serialization suspends processing of all new requests for global resources.

**PURGE or P**

You want to remove a quiesced system from the global resource serialization complex.

If the system specified on the purge command is active, global resource serialization issues messages that describe the situation. Depending on your response, GRS will quiesce the system and then continue with the purge. All global resources owned by the system you purge are released and all outstanding requests for global resources made by the system you purge are deleted. Use this option when a system is no longer running and needs a re-IPL.

**Note:** Indiscriminate use of the VARY GRS,PURGE command can cause resource integrity problems and can put the system in a non-restartable wait state. Notify the system programmer if the system you are purging holds any resources.

**Placing an I/O Path or Paths Online or Offline**

Use the following form of the VARY command to place online or offline a path to a device or a range of devices. A path is the logical route between a processor and a device. A path can be offline if:

- One or more of the path components is offline
- A VARY PATH OFFLINE command has been entered

**Notes:**

1. Path(s) taken offline with a VARY PATH command can only be brought online again with another VARY PATH command.
2. In a JES3 environment, if a device is being used by JES3, or allocated to a job by JES3, the system will not take offline the last path to that device.
3. When MVS takes the last path to a device offline, the device is also taken offline. In a JES3 environment, it also takes the device offline to JES3.
4. When MVS brings the first path to a device online, the device is also brought online (if it is not in use). In a JES3 environment, the device is also brought online to JES3.
5. The VARY PATH command cannot be used on paths that are defined as managed. To manipulate managed paths, use the VARY SWITCH command. (See "Placing a Switch Port Online or Offline" on page 4-715.)
The system is to move the specified path(s) online or offline.

/***/devnum,chp... The device number of a device associated with the path the system is to move online or offline.
/***/lowdevnum-[/*]highdevnum The device numbers of a range of devices associated with the paths the system is to move online or offline. The lower device number of each range is lowdevnum and the higher device number of each range is highdevnum.

cfname The name of a single coupling facility associated with the path(s) the system is to logically move online or offline. cfname can be up to 8 alphanumeric characters long.

chp The channel path associated with the path(s) the system is to move online or offline. You can specify for chp any number from 00 to FF.

Device numbers and coupling facility names can be specified in any combination. If you specify only one device number or coupling facility name, you do not need to enter the parentheses.

A device number is 3 to 5 hexadecimal digits, optionally preceded by a slash (/). You can precede the device number with a slash to prevent ambiguity between the device number and a coupling facility name. Five-digit logical device numbers consist of a one-digit subchannel set ID plus a four-digit device number. If a 3-digit or 4-digit device number is entered in the command, then the device information representing subchannel set 0 is used for the display even if the actual subchannel connected to the device is in subchannel set 1. If a 5-digit device number is entered, the device information representing the specified subchannel set is displayed. If a range of device numbers is found and the first number is 5 digits, the second number in the range must be 5 digits and vice-versa.

ONLINE The system is to bring the path(s) online.

FORCE The system is to bring back online the path previously taken offline. If the path was taken offline by Enterprise System Connection Manager
(ESCM), then use ESCM to bring the path back online. Use the VARY PATH,ONLINE,FORCE command only if ESCM is not available and the path is physically available. If the path is quiesced by Control Unit Initiated Reconfiguration (C.U.I.R.), the VARY PATH,ONLINE,FORCE command can be used to bring the path back online.

**OFFLINE**
The system is to take the specified path(s) offline. The system rejects this command if the specified path is the last available path to a device that is any one of the following:
- Online (either allocated or unallocated)
- Allocated (either online or offline)
- In use by the system
- A console
- Assigned to JES3
- A coupling facility

**UNCOND**
The system is to take the path offline. The system rejects the VARY PATH,OFFLINE,UNCOND command if the specified path is the last available path to a device that is any one of the following:
- Allocated
- In use by the system
- A console
- Assigned to JES3
- A coupling facility, and one or more structures are in use by an active XES connection on the system offline

In other words, adding the UNCOND keyword to the VARY PATH,OFFLINE command requests that the system take offline those last paths to devices that are online but unallocated.

**FORCE**
The system is to take the specified path(s) offline. If Dynamic Pathing (DPS) Validation is invoked, the system will issue DISBAND/REGROUP Set Path Group ID (SPID) commands on the paths that are remaining online, instead of RESIGN SPIDs on the path that is coming offline. The system rejects this command if the specified path is the last available path to a device that is any one of the following:
- Allocated (either online or offline)
- In use by the system
- A console
- Assigned to JES3
- A coupling facility

**Example**
Enter the following command to take offline the paths through channel path 2 leading to devices 130, 133, 134, 135, and 140.

```
V PATH((130,133-135,140),2),OFFLINE
```

The system issues a message describing the path status for each device.

Assume that channel path 2 represents the last paths to device 134, which is online and allocated, and device 135, which is online and unallocated. A VARY PATH((134,135),2),OFFLINE,UNCOND command would remove the last path to device 135 but not 134. The jobs using device 134 must end or be terminated before the last path can be removed.
Changing the state of coupling facility cache structures and volumes

Use the VARY SMS command to control SMSVSAM processing. The scope of most of these commands is sysplex wide. Some, however, such as VARY SMS,SMSVSAM,ACTIVE is not sysplex wide. For more information, see z/OS DFSMSdfp Storage Administration.

The syntax of the VARY SMS command is:

```
V SMS,(CFCACHE(cachename),{ENABLE|E })
 { QUIESCE|Q}
 (CFLS(lockstructurename),{ENABLE|E })
 { QUIESCE|Q}
 (CFVOL(volid),{ENABLE|E })
 { QUIESCE|Q}
 (MONDS(dsname[,dsname...]),{ON|OFF}
 (SHCDS(shcdsname),{NEW })
 { NEWSPARE}
 { DELETE }
 (SMSVSAM,{ACTIVE }
 { SPHERE(spherename),{ENABLE|E})
 { FALLBACK}
 { TERMINATESERVER}
 { FORCEDELETELOCKSTRUCTURE(lockstructurename})
```

CFCACHE(cachename)
To change the state of a cache structure, specify the name of the cache structure (structurename).

If you specify ENABLE, VSAM RLS data can be stored in cache structure. This is the normal state of operations and the state the coupling facility cache structure is in after sysplex IPL.

If you specify QUIESCE, you cannot store any VSAM RLS data in the cache structure.

The QUIESCE operation is not complete until the state of the volume is quiesced. Use the D SMS,CFVOL to determine the state of the volume.

CFLS(lockstructurename)
To change the state of a secondary lock structure, specify the name of the lock structure (lockstructurename).

If you specify ENABLE, VSAM RLS secondary lock structures can be accessed. When the lock structure is enabled, SMSVSAM attempts to connect to the structure. This structure is marked available when a SMSVSAM sphere is opened. This structure might be selected to hold the sphere record locks if it is in the lock set that is specified in the storage class for the VSAM sphere.

If you specify QUIESCE, VSAM RLS secondary lock structures cannot be accessed. Any spheres that open for VSAM RLS access are not allowed to select the specified lock structure name. All existing usage of this secondary lock structure are not affected. When all spheres across all systems that are assigned to this secondary lock structure close, the secondary lock structure transitions from Quiescing to Quiesced.

All DFSMS lock structures are defined as persistent connections and persistent structures. When the secondary lock structure transitions to Quiesced state, SMSVSAM does not issue the MVS command to have the lock structure UNALLOCATED in the coupling facility. The secondary lock structure can only be unallocated using the operator command:
**V SMS, FORCEDELETELOCKSTRUCTURE(lockstructurename)**

V SMS, CFLS(IGWLOCK00), Enable|Quiesce is rejected. IGWLOCK00 cannot be quiesced.

**CFVOL(volid)**

To change the state of a volume as it relates to coupling facility cache structures, specify the volume (volid).

If you specify ENABLE, data contained on this volume can be stored in a coupling facility cache structure. This is the normal state of operations.

If you specify QUIESCE, you cannot store any data from the volume on the coupling facility cache structure.

**Note:** If you specify QUIESCE, SMS might still select the volume during data set allocation. To stop SMS from selecting this volume, see “Changing the SMS Status of a Storage Group or Volume” on page 4-703.

**MONDS(dsname{,dsname...}), ON|OFF**

To specify the data set name (dsname) or data set names (dsname{,dsname...}) you want to be eligible for coupling facility statistical monitoring, specify ON.

To indicate that the specified data set in no longer eligible for statistical monitoring, specify OFF.

Monitoring is tracked through SMF record 42 subtype 16.

You can specify a full or partial data set name with at least one high level qualifier. An asterisk cannot be followed by other qualifiers. You can specify up to 16 data set names with each command.

This command affects activity for the specified data sets across all systems in the sysplex.

**SHCDS**

To add or delete a sharing control data set (SHCDS), specify the name of the SHCDS.

If you specify NEW, a new active SHCDS named (shcdsname) will be added.

If you specify NEWSPARSE, a new spare SHCDS named (shcdsname) will be added.

If you specify DELETE, a SHCDS named (shcdsname) will be deleted. This SHCDS can be either an active or a spare SHCDS.

**Note:** The sharing control data set (SHCDS) is identified by the dsname SYS1.DFPSHCDS.qualifier.Vvolser. When specifying its name (shcdsname) in this command, do not use the fully-qualified name. Use only qualifier.Vvolser as the shcdsname, without the SYS1.DFPSHCDS prefix.

**SMSVSAM**

To manage SMSVSAM data sets or the SMSVSAM server, specify one of the following parameters:

**ACTIVE**

Restarts the SMSVSAM server and re-enables the automatic restart facility for the server. This command will not function if the SMSVSAM address space was terminated with a FALLBACK command.
SPHERE
Clears the VSAM-quiesced state for the specified sphere. Normally, this operation is done under application program control. This command is required only in rare circumstances.

FALLBACK
Is used as the last step in the disablement procedure to fall back from SMSVSAM processing. For the SMSVSAM fallback procedure, see z/OS DFSMSdfp Storage Administration.

TERMINATESERVER
Terminates an SMSVSAM server. The server will not automatically restart after the termination. After some recovery action is complete, you can restart the SMSVSAM server with the V SMS,SMSVSAM,ACTIVE command.

After you issue the V SMS,SMSVSAM,TERMINATESERVER command, SMSVSAM attempts to release all system-related locks in the lock structure IGWLOCK00 of the coupling facility. If active locks still exist when SMSVSAM disconnects from IGWLOCK00, the system issues the message IGW413I.

Use this command for specific recovery scenarios that require the SMSVSAM server to be down and not to restart automatically. This command must be entered before issuing the V XCF, sysname,OFFLINE command, in order to terminate the SMSVSAM address space before partitioning a system from the sysplex.

The TERMINATESERVER operation might be unable to terminate the SMSVSAM address space under some abnormal conditions. In such cases, you can use the FORCE SMSVSAM,ARM command to immediately terminate the SMSVSAM address space and automatically restart the server. If you do not want a restart, use the SET SMS=xx command or SETSMS RLSINIT(NO) command to activate the RLSINIT(NO) keyword in the IGDSMSxx parmlib member before you issue the FORCE SMSVSAM,ARM command.

FORCEDELETELOCKSTRUCTURE(lockstructurename)
Deletes the lock structure from the coupling facility and deletes any data in the lock structure at the time the command is issued.

You must reply to the confirmation message with the response FORCEDELETELOCKSTRUCTURESMSVSAMYES before the command takes effect.

V SMS,SMSVSAM,FORCEDELETESTRUCTURE(lockstructurename) deletes only the specified DFSMS CF lock structure. When the secondary lock structures have been quiesced, they can be deleted by using the V SMS,FORCEDELETELOCKSTRUCTURE(lockstructurename) command.

Use this command only in the event of a volume loss.

Example 1

The following command tells SMS not to allow allocation of new data sets from storage group SG1 on system MVS2:

VARY SMS,STORGRP(SG1,MVS2),DISABLE,N

Tip: This command works only if the specified system is defined explicitly to SMS. If the system is defined to SMS as part of a system group, the command fails.
Example 2

The following command tells SMS to allow allocation of both new and old data sets from storage group SG1 on all MVS systems:

VARY SMS,STORGRP(SG1,ALL),ENABLE

Tip: This command works only if the specified system is defined explicitly to SMS. If the system is defined to SMS as part of a system group, the command fails.

Example 3

The following command tells SMS to allow allocation of both new and old data sets from volume SMS001 on system MVS3, enter:

VARY SMS,VOLUME(SMS001,MVS3),ENABLE

Example 4

The following command tells a JES3 system to prevent scheduling a job that requires volume SMS001 on MVS3 and after a job is scheduled, tells SMS to select volume SMS001 on MVS3 for a new data set only if there are no other choices:

VARY SMS,VOLUME(SMS001,MVS3),QUIESCE

Tip: This command works only if the specified system is defined explicitly to SMS. If the system is defined to SMS as part of a system group, the command fails.

Placing an Optical Drive or Library Online or Offline

Use the VARY SMS command to vary optical drives and optical libraries online or offline.

For a detailed description of the VARY SMS,DRIVE command parameters, refer to the z/OS DFSMS OAM Planning, Installation, and Storage Administration Guide for Object Support.

Placing a System-Managed Tape Library Online or Offline

Use the VARY SMS,LIBRARY command to place a system-managed tape library online or offline.


Analyzing the State of the PDSE Subsystem

Use the VARY SMS,PDSE,ANALYSIS command to determine the state of the PDSE (partitioned data set extended) subsystem. You can run the analysis on all the PDSEs that are open, or you can specify a specific PDSE by dsname and optionally the volser.

Consult z/OS DFSMSdfp Diagnosis for specific information about how to use this command, including the command syntax.
VARY Command

Releasing PDSE Latches

Use the VARY SMS,PDSE,FREELATCH command to release a latch that the V SMS,PDSE,ANALYSIS command has determined is frozen.

Consult [z/OS DFSMSdfp Diagnosis](#) for specific information about how to use this command, including the command syntax.

Modifying processing of PDSE monitor

Use the following form of the VARY command to specify how the processing for the PDSE monitor should be modified:

```
V SMS,{PDSE|PDSE1},MONITOR{,ON[,interval[,duration]]}
{,DISPLAY[,interval[,duration]]}
{,DUMPNEXT[,interval[,duration]]}
{,OFF}
{,RESTART}
```

**PDSE|PDSE1,MONITOR**

Displays the status of the PDSE or PDSE1 monitor.

**PDSE**

Specifies that the command should be sent to the SMSPDSE address space.

**PDSE1**

Specifies that the should be sent to the SMSPDSE1 address space.

**ON[,interval[,duration]]**

Turns monitor processing on or off.

**interval**

The number of seconds between successive scans of the monitor.

**duration**

The number of seconds an possible error condition must exist before it is treated as an error.

**DISPLAY[,interval[,duration]]**

Turns monitor processing on. Displays all possible errors found in the IGW031I message.

**interval**

The number of seconds between successive scans of the monitor.

**duration**

The number of seconds an possible error condition must exist before it is treated as an error.

**DUMPNEXT[,interval[,duration]]**

Turns monitor processing on. Takes a dump for the next possible PDSE message.

**interval**

The number of seconds between successive scans of the monitor.

**duration**

The number of seconds an possible error condition must exist before it is treated as an error.

**OFF**

Turns monitor processing off.
**RESTART**

 Resets the state at which the monitor, due to an unexpected error in its processing, is shut down.

**Note:** The default values for interval and duration are not necessarily the optimum values for your system. Observation and adjustment will probably be necessary to attain the right values. Over time, even your chosen values might need to be re-adjusted.

**Display current state of the PDSE monitor**

 Use the VARY SMS,PDSE,MONITOR command to display the current status of the PDSE monitor. See message IGW043I for details on the information displayed.

**Changing the SMS Status of a Storage Group or Volume**

 Use the VARY SMS command to change the status of a storage group or volume that the storage management subsystem (SMS) controls. The command allows data sets in the storage group or volume to be allocated/accessed, or not allocated/accessed, to jobs. If the system you issue the command from is defined as part of a system group, but you did not specify the system or system group parameter, then the default is the current system and the command fails.

 The possible states of a volume or storage group are:

**ENABLE**

 Allows the system or system group to allocate and access data sets.

**DISABLE**

 Prevents the system or system group from allocating or accessing existing data sets.

**DISABLE,NEW**

 Prevents the system or system group from allocating new data sets; existing data sets can be accessed.

**Note:** For DISABLE and DISABLE,NEW, jobs needing the denied data sets can potentially fail during execution.

**QUIESCE**

 Prevents JES3 from scheduling a job that creates new data sets or accesses existing data sets.

 Once a job has been scheduled on either JES2 or JES3, SMS only selects the volume or storage group for a new data set if there are no other choices. There is no effect on the allocating or accessing of existing data sets.

**Note:** The QUIESCE state is not valid for object or object backup storage groups.

**QUIESCE,NEW**

 Prevents JES3 from scheduling jobs that create new data sets or modify (DISP=MOD) existing data sets.

 Once the job has been scheduled on either JES2 or JES3, SMS only selects the volume or storage group for a new data set if there are no other choices. There is no effect on the allocating or accessing of existing data sets.

**Note:** The QUIESCE state is not valid for object or object backup storage groups.
The syntax of the VARY SMS command is:

```
V SMS, {STORGRP|SG}(storgrp, [*|ALL|system[,system][,...]]), {QUIESCE|Q}[,[NEW|,N]
 { } {ENABLE|E }
 { {VOLUME|VOL}(volume, [*|ALL|system[,system][,...]]) } {DISABLE|D}[,[NEW|,N]
```

**STORGRP or SG(storgrp[,system,...])**

Identifies the storage group and, optionally, the system or system group that the SMS status change is to affect. If you omit system or specify an *, the command affects only the system on which you issue the command. If the system you issue the command from is defined to SMS as part of a system group, then the command fails.

If you specify ALL, the command affects all systems and system groups in the complex. With ALL, the command is effective directly on the issuing system, and the sharing systems in the SMSPLEX see the updates in the COMMDS at the regular interval processing. Rapid use of several commands might overlap in updates of the COMMDS, increasing delay in the propagation through the sharing systems active configuration due to serialization timing.

To specify a storage group named “ALL”, you must enclose the name in parentheses ((ALL)) to distinguish it from all storage groups.

**VOLUME or VOL(volume[,system,...])**

Identifies the volume and, optionally, the system or system group that the SMS status change is to affect. If you omit system or specify an *, the command affects only the system on which you issue the command. If the system you issue the command from is defined to SMS as part of a system group, then the command fails.

If you specify ALL, the command affects all systems and system groups in the complex. With ALL, the command is effective directly on the issuing system, and the sharing systems in the SMSPLEX see the update in the COMMDS at the regular interval processing. Rapid use of several commands might overlap in updates of the COMMDS, increasing delay in the propagation through the sharing systems active configuration due to serialization timing.

To specify a volume named “ALL”, you must enclose the name in parentheses ((ALL)) to distinguish it from all volumes.

**ENABLE or E**

SMS is to permit allocation of new and old data sets from the specified storage group or volume on the designated system(s) or system group(s).

**QUIESCE or Q,[NEW or ,N]**

For QUIESCE, a JES3 system prevents the scheduling of jobs that create new data sets or accessing existing data sets from the specified storage group or volume. For QUIESCE,NEW a JES3 system prevents the scheduling of jobs that create new data sets or modify (DISP=MOD) existing data sets from the specified storage group or volume.

Once the job has been scheduled on JES2 or JES3, SMS only selects the volume or storage group for a new data set if there are no other choices. There is no effect on the allocating or accessing of existing data sets.

**DISABLE or D,[NEW or ,N]**

For DISABLE, SMS is not to allow allocation or accessing of existing data sets in the specified storage group or volume.
For DISABLE,NEW, SMS is not to select the volume or storage group for a new data set.

**Note:** For DISABLE and DISABLE,NEW, jobs needing the denied data sets can potentially fail during execution. You should specify these parameters *only* under the direction of your storage administrator.

### Example 1

To tell SMS not to allow allocation of new data sets from storage group SG1 on system MVS2, enter:

```
VARY SMS,STORGRP(SG1,MVS2),DISABLE,N
```

**Note:** This command works only if the specified system is defined explicitly to SMS. If the system is defined to SMS as part of a system group, the command fails.

### Example 2

To tell SMS to allow allocation of both new and old data sets from storage group SG1 on all MVS systems, enter:

```
VARY SMS,STORGRP(SG1,ALL),ENABLE
```

**Note:** This command works only if the specified system is defined explicitly to SMS. If the system is defined to SMS as part of a system group, the command fails.

### Example 3

To tell SMS to allow allocation of both new and old data sets from volume SMS001 on system MVS3, enter:

```
VARY SMS,VOLUME(SMS001,MVS3),ENABLE
```

### Example 4

To (1) tell a JES3 system to prevent scheduling a job required volume SMS001 on MVS3, and (2) tell SMS, once a job is scheduled, to only select volume SMS001 on MVS3 for a new data set if there are no other choices, enter:

```
VARY SMS,VOLUME(SMS001,MVS3),QUIESCE
```

**Note:** This command works only if the specified system is defined explicitly to SMS. If the system is defined to SMS as part of a system group, the command fails.

## Controlling DFSMStvs processing

Use the VARY SMS command to control DFSMS Transactional VSAM Services (DFSMStvs) processing. For information about DFSMStvs, see *z/OS DFSMStvs Planning and Operating Guide* and *z/OS DFSMStvs Administration Guide*.

You can use the VARY SMS command to change the status for DFSMStvs in these ways:

- Change the state of a DFSMStvs instance or of all DFSMStvs instances in the sysplex
- Change the state of a log stream to which DFSMStvs has access
VARY Command

- Change the state of a data set for VSAM record-level sharing (RLS) and DFSMStvs access
- Start or stop peer recovery processing for a DFSMStvs instance

Restriction: You cannot use the VARY SMS command to change the state of a DFSMStvs instance while it is initializing. Any attempt to do so is suspended until the initialization completes.

The possible states of a DFSMStvs instance follow:

**ENABLE**
Enables DFSMStvs to begin accepting new units of recovery for processing.

**DISABLE**
Prevents DFSMStvs from processing new work requests. DFSMStvs does not process new work requests from units of recovery that are currently in progress.

**QUIESCE**
Prevents DFSMStvs from accepting any new units of recovery for processing. DFSMStvs completes the processing of any units of recovery in progress.

The possible states of a data set follow:

**ENABLE**
Unquiesces a data set for VSAM RLS and DFSMStvs access.

**QUIESCE**
Quiesces a data set for VSAM RLS and DFSMStvs access.

The syntax of the VARY SMS command for DFSMStvs follows.

```
V SMS,{TRANVSAM({tvsname|ALL}){{QUIESCE|Q}}
 {,{ENABLE|E}}
 {,{DISABLE|D}}
 {LOG(logstreamid){{QUIESCE|Q}}
 {,{ENABLE|E}}
 {,{DISABLE|D}}
 }
 {SMSVSAM,SPHERE(sphere){{QUIESCE|Q}}
 {,{ENABLE|E}}
 }
 {TRANVSAM(tvsname),PEERRECOVERY{{ACTIVE|A}}
 {,ACTIVEFORCE}
 {,INACTIVE|I}}
}
```

**TRANVSAM({ tvsname or ALL})**
Enables, quiesces, or disables the specified DFSMStvs instance or all DFSMStvs instances in the sysplex. The command is routed to all systems in the sysplex and affects either all DFSMStvs instances or the DFSMStvs instance with the specified name.

**QUIESCE or Q**
DFSMStvs completes processing of any units of recovery that are in progress but does not accept any new ones. DFSMStvs completes its quiesce processing when the last data set that is open for DFSMStvs access is closed. Then DFSMStvs is unavailable until a VARY SMS,TRANVSAM,ENABLE command is issued.
DISABLE or D
DFSMStvs immediately stops processing new work requests, including units of recovery that are currently in progress. When the last data set that is open for DFSMStvs access is closed, DFSMStvs retains locks, unregisters with RRS, and is unavailable until a VARY SMS,TRANVSAM,ENABLE command is issued. No further DFSMStvs requests can complete until DFSMStvs is enabled. However, commit and backout requests that were already in progress at the time the disable command was received could be successful.

ENABLE or E
DFSMStvs begins accepting new units of recovery for processing.

LOG(logstreamid)
Enables, quiesces, or disables DFSMStvs access to the specified log stream (logstreamid). Quiescing the DFSMStvs undo or shunt log stream is equivalent to quiescing DFSMStvs processing.

Disabling the DFSMStvs undo or shunt log stream is equivalent to disabling DFSMStvs. Although the two log streams are physically separate, they are treated as a single entity by DFSMStvs logging services.

Quiescing or disabling the log of logs has no effect on DFSMStvs processing because records are written to the log of logs only as an optimization for forward recovery products. However, disabling the log of logs can cause a mismatch of tie-up records written at data set OPEN with file-close records.

Quiescing a forward recovery log stream will cause a quiesce of processing for any data sets that use that log stream. Disabling a forward recovery log stream causes all processing that attempts to use that log stream to fail. DFSMStvs will be unable to commit or back out any units of recovery that were using the log stream because it will be unable to write the necessary records to the log stream.

QUIESCE or Q
DFSMStvs completes the processing of any in-progress units of recovery using the log stream but does not accept any new ones that would require the log stream, with the exception of the log of logs. If the log is a DFSMStvs system log (undo or shunt log), it becomes quiesced when all units of recovery that are using DFSMStvs complete and any open data sets are closed. If the log is a forward recovery log, it becomes quiesced when the last data set that is open for output in DFSMStvs mode is closed. If the log is a log of logs, it becomes quiesced when the last forward-recoverable data set that is open for output in DFSMStvs mode, for which a tie-up record was written to the log of logs, is closed. New work can start, but DFSMStvs does not write tie-up records or file-close records to the log of logs.

DISABLE or D
DFSMStvs immediately stops using the log stream. This can prevent completion of commit or backout for units of recovery. Those units of recovery are shunted, as long as shunting them does not require reading or writing the now disabled log.

Recommendation: Do not use this command without first quiescing the log stream unless the log stream is damaged or errors occur that cannot be corrected.

If the log is a DFSMStvs system log (undo or shunt log), DFSMStvs does not allow any further work to be done. All OPENs and VSAM record
management requests are failed. The log becomes disabled when all units of recovery that are using DFSMStvs complete. DFSMStvs then retains locks, unregisters with RRS and the lock manager, and is unavailable until the log is enabled. No further DFSMStvs requests can complete until the system log is made available, including commit and backout requests.

If the log is a forward recovery log, any new OPENs that require the use of the log are failed. The log will become disabled when the last data set that uses it, and is OPEN for output in DFSMStvs mode, is closed.

If the log is a log of logs, it will become disabled when the last forward recoverable data set that is open for output in DFSMStvs mode, for which a tie-up record is written to the log of logs, is closed. New work can start, but DFSMStvs does not write tie-up records or file-close records to the log of logs.

**ENABLE or E**
DFSMStvs begins accepting new units of recovery that use the log stream for processing. If DFSMStvs work was left incomplete when DFSMStvs processing was stopped, DFSMStvs completes that work as part of its restart processing.

**SMSVSAM.SPHERE(sphere)**
Quiesces or unquiesces the data set sphere for VSAM RLS and DFSMStvs access. Use this command to ensure that users do not access the data set while it is being recovered. A data set can be quiesced to allow it to be accessed in a mode other than VSAM RLS or DFSMStvs. Before attempting to quiesce a data set, ensure that all jobs that were accessing the data set using DFSMStvs are either finished or canceled.

When you specify data sets for a VARY SMS,SMSVSAM,SPHERE command, they are not necessarily quiesced in the order in which you specified them or in any other order. The same is true for asterisk notation (*); the data sets are not necessarily quiesced alphabetically or in any other order. So, when the last data set you specified is quiesced, you cannot assume that the other data sets you specified have been quiesced.

**TRANVSAM(tvsnname),PEERRECOVERY**
Starts or stops peer recovery processing for a failed instance of DFSMStvs. This command applies only to the system on which it is issued. That system is responsible for performing all peer recovery processing for the failed DFSMStvs instance.

**ACTIVE or A**
This system should begin peer recovery processing on behalf of the specified failed instance of DFSMStvs. If the failed instance of DFSMStvs was not disabling or disabled due to an operator command, the system will perform the necessary initialization and then start tasks to perform any work that was left incomplete by a system failure. Because a large amount of work could be outstanding, the system will start tasks in groups of ten and then begin more work as those tasks complete. Controlling the amount of work in progress at any given time allows a quiesce of peer recovery processing by varying it INACTIVE, in the event that the failed system comes back up.

**ACTIVEFORCE**
The system begins peer recovery processing on behalf of the specified failed instance of DFSMStvs, regardless of the failed instance's status.
INACTIVE or I
This system should stop processing peer recovery work on behalf of the specified instance of DFSMStvs. This command does not take affect immediately. Instead, peer recovery processing that is already in progress is allowed to complete before peer recovery processing stops.

Example 1
This example show how to vary a DFSMStvs instance and quiesce it. At the time this command was issued, no jobs were using DFSMStvs services, nor were there any active DFSMStvs opens. As a result, DFSMStvs was able to transition from quiescing to quiesced.

V SMS,TRANVSAM(001),Q

This will result in:

V SMS,TRANVSAM(001),Q
IGW471I DFSMS VSAM RLS REQUEST TO QUIESCE 834
TRANSACTIONAL VSAM INSTANCE IGWTVO01 IS ACCEPTED
QUIESCE REASON: VARY SMS TRANSACTIONAL VSAM OPERATOR COMMAND
IGW471I DFSMS VSAM RLS COMMAND PROCESSOR 835
ON SYSTEM: SYSTEM1
IS WAITING FOR A RESPONSE
FROM TRANSACTIONAL VSAM: IGWTVO01
COMMAND REQUESTED:

QUIESCE TRANSACTIONAL VSAM: IGWTVO01
IGW473I DFSMS VSAM RLS COMMAND PROCESSOR 836
ON SYSTEM: SYSTEM1
IS WAITING FOR A RESPONSE FROM TRANSACTIONAL VSAM: IGWTVO01
COMMAND REQUESTED: DISCONNECT FROM LOGSTREAM: IGWTVS1.LOG.OF.LOGS
IGW473I DFSMS VSAM RLS COMMAND PROCESSOR 837
ON SYSTEM: SYSTEM1
IS WAITING FOR A RESPONSE FROM TRANSACTIONAL VSAM: IGWTVO01
COMMAND REQUESTED: QUIESCE LOGSTREAM IGWTVO01.IGWLOG.SYSLOG
SYSTEM NAME: SYSTEM1
TRANSACTIONAL VSAM INSTANCE NAME: IGWTVO01
IGW474I DFSMS VSAM RLS IS DISCONNECTING FROM 838
TRANSACTIONAL VSAM LOGSTREAM IGWTVO01.IGWLOG.SYSLOG
SYSTEM NAME: SYSTEM1
TRANSACTIONAL VSAM INSTANCE NAME: IGWTVO01
IGW474I DFSMS VSAM RLS IS DISCONNECTING FROM 839
TRANSACTIONAL VSAM LOGSTREAM IGWTVO01.IGWSHUNT.SHUNTLOG
SYSTEM NAME: SYSTEM1
TRANSACTIONAL VSAM INSTANCE NAME: IGWTVO01
IGW474I DFSMS VSAM RLS IS DISCONNECTING FROM 840
TRANSACTIONAL VSAM LOGSTREAM IGWTVS1.LOG.OF.LOGS
SYSTEM NAME: SYSTEM1
TRANSACTIONAL VSAM INSTANCE NAME: IGWTVO01
IGW473I DFSMS VSAM RLS COMMAND PROCESSOR 841
ON SYSTEM: SYSTEM1
HAS BEEN POSTED BY TRANSACTIONAL VSAM: IGWTVO01
COMMAND REQUESTED: QUIESCE LOGSTREAM IGWTVO01.IGWLOG.SYSLOG
IGW473I DFSMS VSAM RLS COMMAND PROCESSOR 842
ON SYSTEM: SYSTEM1
HAS BEEN POSTED BY TRANSACTIONAL VSAM: IGWTVO01
COMMAND REQUESTED: QUIESCE LOGSTREAM IGWTVO01.IGWSHUNT.SHUNTLOG
IGW471I DFSMS VSAM RLS COMMAND PROCESSOR 843
ON SYSTEM: SYSTEM1
HAS BEEN POSTED BY TRANSACTIONAL VSAM: IGWTVO01
COMMAND REQUESTED:

QUIESCE TRANSACTIONAL VSAM: IGWTVO01
IGW471I DFSMS VSAM RLS COMMAND PROCESSOR 844
VARY Command

ON SYSTEM: SYSTEM1
HAS CALLED THE DFSMS COMMAND COMPLETE PROCESSOR
COMMAND REQUESTED:

QUIESCE TRANSACTIONAL VSAM: IGWTVO01
IGW473I DFSMS VSAM RLS COMMAND PROCESSOR 845
ON SYSTEM: SYSTEM1
IS WAITING FOR A RESPONSE FROM TRANSACTIONAL VSAM: IGWTVO01
COMMAND REQUESTED: QUIESCE LOGSTREAM: IGWTVO01.IGWSHUNT.SHUNTLOG
IGW471I DFSMS VSAM RLS REQUEST TO QUIESCE 846
TRANSACTIONAL VSAM INSTANCE IGWTVO01 COMPLETED.

TRANSACTIONAL VSAM INSTANCE IGWTVO01 IS NOW QUIESCED.

TRANSACTIONAL VSAM LOGSTREAM IGWTVO01.IGWLOG.SYSLOG IS NOW QUIESCED
HAS BEEN POSTED BY TRANSACTIONAL VSAM: IGWTVO01
COMMAND REQUESTED:

QUIESCE TRANSACTIONAL VSAM: IGWTVO01
IGW471I DFSMS VSAM RLS COMMAND PROCESSOR 844
ON SYSTEM: SYSTEM1
HAS CALLED THE DFSMS COMMAND COMPLETE PROCESSOR
COMMAND REQUESTED:

QUIESCE TRANSACTIONAL VSAM: IGWTVO01
IGW473I DFSMS VSAM RLS COMMAND PROCESSOR 845
ON SYSTEM: SYSTEM1
IS WAITING FOR A RESPONSE FROM TRANSACTIONAL VSAM: IGWTVO01
COMMAND REQUESTED: QUIESCE LOGSTREAM: IGWTVO01.IGWSHUNT.SHUNTLOG
IGW471I DFSMS VSAM RLS REQUEST TO QUIESCE 846
TRANSACTIONAL VSAM INSTANCE IGWTVO01 COMPLETED.

TRANSACTIONAL VSAM INSTANCE IGWTVO01 IS NOW QUIESCED.

TRANSACTIONAL VSAM LOGSTREAM IGWTVO01.IGWLOG.SYSLOG IS NOW QUIESCED

Example 2

This example shows how to vary a DFSMSStvs instance disabled. At the time this command was issued, no jobs were using DFSMSStvs services, nor were there any active DFSMSStvs opens. As a result, DFSMSStvs was able to transition from disabling to disabled.

This will result in:

V SMS,TRANVSAM(002),D
IGW471I DFSMS VSAM RLS REQUEST TO DISABLE 849
TRANSACTIONAL VSAM INSTANCE IGWTVO02 IS ACCEPTED.

DISABLE REASON: VARY SMS TRANSACTIONAL VSAM OPERATOR COMMAND
IGW471I DFSMS VSAM RLS REQUEST TO DISABLE 850
TRANSACTIONAL VSAM INSTANCE IGWTVO02 IS COMPLETED.

TRANSACTIONAL VSAM INSTANCE IGWTVO02 IS NOW DISABLED.

TRANSACTIONAL VSAM LOGSTREAM IGWTVO02.IGWLOG.SYSLOG IS NOW DISABLED
TRANSACTIONAL VSAM LOGSTREAM IGWTVO02.IGWSHUNT.SHUNTLOG IS NOW DISABLED

Example 3
This example shows how to vary all DFSMStvs instances and enable them. At the time this command was issued, the two DFSMStvs instances in the sysplex were quiesced and disabled, respectively.

This will result in:

```
V SMS,TRANVSAM(ALL),E
IGW472I DFSMS VSAM RLS REQUEST TO ENABLE 853
TRANSACTIONAL VSAM INSTANCE IGWTVO01 ACCEPTED.

ENABLE REASON: VARY SMS TRANSACTIONAL VSAM OPERATOR COMMAND
IGW472I DFSMS VSAM RLS REQUEST TO ENABLE 854
TRANSACTIONAL VSAM INSTANCE IGWTVO02 ACCEPTED.

ENABLE REASON: VARY SMS TRANSACTIONAL VSAM OPERATOR COMMAND
IGW471I DFSMS VSAM RLS COMMAND PROCESSOR 855
ON SYSTEM: SYSTEM1
IS WAITING FOR A RESPONSE
FROM TRANSACTIONAL VSAM: IGWTVO01
COMMAND REQUESTED:

 ENABLE TRANSACTIONAL VSAM: IGWTVO01

 COMMAND REQUESTED: ENABLE LOGSTREAM: IGWTVO01.IGWLOG.SYSLOG
 IGW473I DFSMS VSAM RLS COMMAND PROCESSOR 856
 ON SYSTEM: SYSTEM1
 IS WAITING FOR A RESPONSE FROM TRANSACTIONAL VSAM: IGWTVO01
 COMMAND REQUESTED: ENABLE TRANSACTIONAL VSAM: IGWTVO01
 COMMAND REQUESTED: ENABLE LOGSTREAM: IGWTVO01.IGWLOG.SYSLOG
 IGW473I DFSMS VSAM RLS COMMAND PROCESSOR 857
 ON SYSTEM: SYSTEM1
 IS WAITING FOR A RESPONSE FROM TRANSACTIONAL VSAM: IGWTVO01
 COMMAND REQUESTED: ENABLE TRANSACTIONAL VSAM: IGWTVO01
 COMMAND REQUESTED: ENABLE LOGSTREAM: IGWTVO01.IGWLOG.SYSLOG
 IGW860I TRANSACTIONAL VSAM HAS SUCCESSFULLY REGISTERED WITH RLS
 IGW848I 10312000 13.38.51 SYSTEM UNDO LOG IGWTVO01.IGWLOG.SYSLOG 859
 INITIALIZATION HAS STARTED
 IXL014I IXLCONN REQUEST FOR STRUCTURE TVS_LOG001 860
 WAS SUCCESSFUL. JOBNAME: IXLOGR ASID: 0015
 CONNECTOR NAME: IXLOGR_SYSTEM1 CFNAME: FACIL02
 IXL015I STRUCTURE ALLOCATION INFORMATION FOR 861
 STRUCTURE TVS_LOG001, CONNECTOR NAME IXLOGR_SYSTEM1
 CFNAME ALLOCATION STATUS/FAILURE REASON
 -------- ---------------------------------
 FACIL02 STRUCTURE ALLOCATED
 FACIL01 PREFERRED CF ALREADY SELECTED
 TRANSACTIONAL VSAM LOGSTREAM IGWTVO01.IGWLOG.SYSLOG
 SYSTEM NAME: SYSTEM1
 TRANSACTIONAL VSAM INSTANCE NAME: IGWTVO01
 IGW848I 10312000 13.39.21 SYSTEM UNDO LOG IGWTVO01.IGWLOG.SYSLOG 869
 INITIALIZATION HAS ENDED
 IGW848I 10312000 13.39.21 SYSTEM SHUNT LOG IGWTVO01.IGWSHUNT.SHUNTLOG
 INITIALIZATION HAS STARTED
 IGW474I DFSMS VSAM RLS IS CONNECTING TO 877
 TRANSACTIONAL VSAM LOGSTREAM IGWTVO01.IGWSHUNT.SHUNTLOG
 SYSTEM NAME: SYSTEM1
 TRANSACTIONAL VSAM INSTANCE NAME: IGWTVO01
 IGW848I 10312000 13.39.50 SYSTEM SHUNT LOG IGWTVO01.IGWSHUNT.SHUNTLOG
 INITIALIZATION HAS ENDED
 IGW848I 10312000 13.39.50 LOG OF LOGS IGWTVS1.LOG.OF.LOGS 879
 INITIALIZATION HAS STARTED
 IGW474I DFSMS VSAM RLS IS CONNECTING TO 886
 TRANSACTIONAL VSAM LOGSTREAM IGWTVS1.LOG.OF.LOGS
 SYSTEM NAME: SYSTEM1
 TRANSACTIONAL VSAM INSTANCE NAME: IGWTVO01
 IGW848I 10312000 13.40.18 LOG OF LOGS IGWTVS1.LOG.OF.LOGS 887
 INITIALIZATION HAS ENDED
 IGW865I TRANSACTIONAL VSAM INITIALIZATION IS COMPLETE.
```
VARY Command

IGW471I DFSMS VSAM RLS COMMAND PROCESSOR 897
ON SYSTEM: SYSTEM1
HAS BEEN POSTED BY TRANSACTIONAL VSAM: IGWTV001
COMMAND REQUESTED:

ENABLE TRANSACTIONAL VSAM: IGWTV001
IGW473I DFSMS VSAM RLS COMMAND PROCESSOR 898
ON SYSTEM: SYSTEM1
HAS BEEN POSTED BY TRANSACTIONAL VSAM: IGWTV001
COMMAND REQUESTED: ENABLE LOGSTREAM: IGWTV001.IGWLOG.SYSLOG
IGW473I DFSMS VSAM RLS COMMAND PROCESSOR 899
ON SYSTEM: SYSTEM1
HAS BEEN POSTED BY TRANSACTIONAL VSAM: IGWTV001
COMMAND REQUESTED: ENABLE LOGSTREAM: IGWTV001.IGWSHUNT.SHUNTLOG
IGW473I DFSMS VSAM RLS COMMAND PROCESSOR 900
ON SYSTEM: SYSTEM1
HAS CALLED THE DFSMS COMMAND COMPLETE PROCESSOR
COMMAND REQUESTED: ENABLE LOGSTREAM: IGWTV001.IGWSHUNT.SHUNTLOG
IGW866I 0 RESTART TASKS WILL BE PROCESSED DURING TRANSACTIONAL VSAM
RESTART PROCESSING
IGW472I DFSMS VSAM RLS REQUEST TO ENABLE 902
TRANSACTIONAL VSAM INSTANCE IGWTV001 IS COMPLETED.

TRANSACTIONAL VSAM INSTANCE IGWTV001 IS NOW ENABLED.

TRANSACTIONAL VSAM LOGSTREAM IGWTV001.IGWLOG.SYSLOG IS NOW ENABLED.

TRANSACTIONAL VSAM LOGSTREAM IGWTV001.IGWSHUNT.SHUNTLOG IS NOW ENABLED.

TRANSACTIONAL VSAM IGWTV001 WILL NOW ACCEPT NEW WORK
IGW866I TRANSACTIONAL VSAM RESTART PROCESSING IS COMPLETE.

IGW467I DFSMS TVSNAME PARMLIB VALUE SET DURING 904
SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: SYSTEM1
TVSNAME: IGWTV001
CURRENT VALUE: ENA-ED 1
IGW467I DFSMS TVS UNDO LOG PARMLIB VALUE SET DURING 905
SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: SYSTEM1
UNDO LOGSTREAM NAME: IGWTV001.IGWLOG.SYSLOG
CURRENT VALUE: ENA-ED 1
IGW467I DFSMS TVS SHUNT LOG PARMLIB VALUE SET DURING 906
SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: SYSTEM1
SHUNT LOGSTREAM NAME: IGWTV001.IGWSHUNT.SHUNTLOG
CURRENT VALUE: ENA-ED 1
IGW472I DFSMS VSAM RLS REQUEST TO ENABLE 907
TRANSACTIONAL VSAM INSTANCE IGWTV002 IS COMPLETED.

TRANSACTIONAL VSAM INSTANCE IGWTV002 IS NOW ENABLED.

TRANSACTIONAL VSAM LOGSTREAM IGWTV002.IGWLOG.SYSLOG IS NOW ENABLED.

TRANSACTIONAL VSAM LOGSTREAM IGWTV002.IGWSHUNT.SHUNTLOG IS NOW ENABLED.

TRANSACTIONAL VSAM IGWTV002 WILL NOW ACCEPT NEW WORK

Example 4

This example shows how to vary a log stream quiesced. At the time this command was issued, no jobs were using the log stream, nor were there any active DFSMStvs opens. As a result, DFSMStvs was able to transition the log stream from quiescing to quiesced.
This results in the following output:

```
V SMS,LOG(IGWTVS.FR.LOG001),Q
IGW4731 DFSMS VSAM RLS REQUEST TO QUIESCE 910
TRANSACTIONAL VSAM LOGSTREAM IGWTVS.FR.LOG001 IS ACCEPTED
QUIESCE REASON: VARY SMS TRANSACTIONAL VSAM OPERATOR COMMAND
IGW4731 DFSMS VSAM RLS REQUEST TO QUIESCE 911
TRANSACTIONAL VSAM LOGSTREAM IGWTVS.FR.LOG001 COMPLETED.
TRANSACTIONAL VSAM LOGSTREAM IGWTVS.FR.LOG001 IS NOW QUIESCED
```

If any data sets were open in DFSMStvs mode, transitioning the log stream from quiescing to quiesced could take much longer. DFSMStvs would need to wait until the data sets were closed.

**Example 5**

This example shows how to vary a log stream disabled. At the time this command was issued, no jobs were using the log stream, nor were there any active DFSMStvs opens. As a result, DFSMStvs was able to transition the log stream from disabling to disabled.

This will result in:

```
V SMS,LOG(IGWTVS1.LOG.OF.LOGS),D
IGW4731 DFSMS VSAM RLS REQUEST TO DISABLE 917
TRANSACTIONAL VSAM LOGSTREAM IGWTVS1.LOG.OF.LOGS IS ACCEPTED
IGW4731 DFSMS VSAM RLS COMMAND PROCESSOR 918
ON SYSTEM: SYSTEM1
IS WAITING FOR A RESPONSE FROM TRANSACTIONAL VSAM: IGWTV001
COMMAND REQUESTED: DISABLE LOGSTREAM: IGWTVS1.LOG.OF.LOGS
IGW4741 DFSMS VSAM RLS IS DISCONNECTING FROM 919
TRANSACTIONAL VSAM LOGSTREAM IGWTVS1.LOG.OF.LOGS
SYSTEM NAME: SYSTEM1
TRANSACTIONAL VSAM INSTANCE NAME: IGWTV001
IGW4731 DFSMS VSAM RLS COMMAND PROCESSOR 920
ON SYSTEM: SYSTEM1
HAS BEEN POSTED BY TRANSACTIONAL VSAM: IGWTV001
COMMAND REQUESTED: DISABLE LOGSTREAM: IGWTVS1.LOG.OF.LOGS
IGW4731 DFSMS VSAM RLS COMMAND PROCESSOR 921
ON SYSTEM: SYSTEM1
HAS CALLED THE DFSMS COMMAND COMPLETE PROCESSOR
COMMAND REQUESTED: DISABLE LOGSTREAM: IGWTVS1.LOG.OF.LOGS
IGW4731 DFSMS VSAM RLS REQUEST TO DISABLE 922
TRANSACTIONAL VSAM LOGSTREAM IGWTVS1.LOG.OF.LOGS IS COMPLETED.
TRANSACTIONAL VSAM LOGSTREAM IGWTVS1.LOG.OF.LOGS IS NOW DISABLED
```

**Example 6**

This example shows how to vary a log stream enabled.

```
V SMS,LOG(IGWTVS1.LOG.OF.LOGS),E
IGW4741 DFSMS VSAM RLS REQUEST TO ENABLE 929
TRANSACTIONAL VSAM LOGSTREAM IGWTVS1.LOG.OF.LOGS IS ACCEPTED
IGW4731 DFSMS VSAM RLS COMMAND PROCESSOR 930
ON SYSTEM: SYSTEM1
IS WAITING FOR A RESPONSE FROM TRANSACTIONAL VSAM: IGWTV001
COMMAND REQUESTED: ENABLE LOGSTREAM: IGWTVS1.LOG.OF.LOGS
IGW4841 10312000 13.44.20 LOG OF LOGS IGWTVS1.LOG.OF.LOGS 931
INITIALIZATION HAS STARTED
IGW4741 DFSMS VSAM RLS IS CONNECTING TO 938
TRANSACTIONAL VSAM LOGSTREAM IGWTVS1.LOG.OF.LOGS
```

Chapter 4. MVS System Commands Reference 4-713
VARY Command

Example 7

This example shows how to vary a VSAM sphere quiesced. At the time this command was issued, no jobs were using the data set, nor were there any active opens for the data set. As a result, DFSMStvs was able to transition the data set from quiescing to quiesced.

V SMS,SMSVSAM,SPHERE(SYSPLEX.SHCDS.UNDO1.KSDS01),Q
IGW522I SMSVSAM QUIESCE REQUEST FOR SPHERE 945
SYSPLEX.SHCDS.UNDO1.KSDS01 IS COMPLETED.

If any jobs were using the data set while it is open in DFSMStvs mode, transitioning the data set from quiescing to quiesced could take much longer. DFSMStvs would need to wait until the jobs were complete.

Example 8

This example shows how to vary a VSAM sphere enabled.

V SMS,SMSVSAM,SPHERE(SYSPLEX.SHCDS.UNDO1.KSDS01),E
IGW522I SMSVSAM ENABLE REQUEST FOR SPHERE 948
SYSPLEX.SHCDS.UNDO1.KSDS01 IS COMPLETED.

Controlling CICSVR processing

Use the VARY SMS command to control CICS VSAM Recovery services (CICSVR) processing. For information about CICSVR, see CICSVR V3R1 Implementation Guide and CICSVR V3R1 User's Guide and Reference.

You can use the VARY SMS command to:

- Control the CICSVR address space startup and shutdown.
- Add or delete a Recovery Control Data Set (RCDS) in the CICSVR address space.

The syntax of the VARY SMS command to control CICSVR startup and shutdown follows.

V SMS,CICSVR{,ACTIVE | ,TERMINATESERVER)

ACTIVE

The command creates or activates the CICSVR address space and allows work
to be started. This command only executes on the system where the command was entered or on the target system as a result of the MVS ROUTE command.

**TERMINATESERVER**

The command terminates the CICSVR address space on the system where the command was entered or on the target system as a result of the MVS ROUTE command.

The syntax of the VARY SMS command to add or delete the RCDS follows.

\[
\text{V_SMS,CICSVR,RCDS(rcds_name),\{ADD|DELETE\}}
\]

**rcds_name**
The name of the RCDS, which follows the DDNAME syntax rules.

**ADD**
The command adds the RCDS specified to the CICSVR address space.

**DELETE**
The command deletes the RCDS specified from the CICSVR address space.

**Placing a Switch Port Online or Offline**

Use the VARY SWITCH(ssss,pp[-pp],...),\{DCM=OFFLINE[,UNCOND]|ONLINE\} command to place a switch port online or offline to dynamic channel path management. Invoking this command for a switch port will also cause the specific managed device paths to be varied online or offline. An offline request will cause the managed channel paths to be removed from the control units connected to the managed CHPIDs at the specified ports. The VARY SWITCH command is routed to all systems in the logical partition cluster to ensure that all systems run with the same configuration of managed channel paths.

This command affects only managed device paths. Non-managed paths must be varied online or offline separately.

**Note:** If you specify DCM=OFFLINE or =ONLINE for a logical partition cluster spanning multiple logical channel subsystems, you must issue the command from a system at the z990 V1R4 exploitation support level or higher. For example, if systems A and B have z990 V1R4 compatibility support and are running in CSS 0, while systems C and D have exploitation support and are running in CSS 1, you must issue the DCM= command from system C or system D.

The format of the VARY SWITCH command is:

\[
\text{V\ SWITCH(ssss,pp[-pp],...),\{DCM=OFFLINE[,UNCOND]|ONLINE\}}
\]

**ssss**
specifies the switch device number.

**pp[-pp],...**
specifies the switch port address or address list.

**DCM=OFFLINE[,UNCOND]**
specifies that the switch port is to be varied offline to dynamic channel path management. If UNCOND is specified, then the UNCOND option will be passed
VARY Command

to the VARY PATH commands that are invoked as a result of this VARY SWITCH command. See "Placing an I/O Path or Paths Online or Offline" on page 4-695.

**DCM=ONLINE**
specifies that the switch port is to be varied online to dynamic channel path management.

**Example 1**

To vary port 60 of switch B000 offline on the two systems in a logical partition cluster, enter on system MVS1:

```
VARY SWITCH(b000,60),DCM=OFFLINE
```

The response from this command will show how it ran on both systems, MVS1 and MVS2:

```
MVS1 IEE633I SWITCH B000, PORT 60, DCM STATUS=OFFLINE
ATTACHED NODE = 003990.0CC.IBM.XG.000000000006
THE FOLLOWING DEVICE PATHS ARE ONLINE THROUGH THIS PORT:
(0220,58)

MVS2 IEE633I SWITCH B000, PORT 60, DCM STATUS=OFFLINE
ATTACHED NODE = 003990.0CC.IBM.XG.000000000006
THE FOLLOWING DEVICE PATHS ARE ONLINE THROUGH THIS PORT:
(0220,58)
```

These messages show that the command ran on both system MVS1 and MVS2. The fact that these messages are identical shows that these systems are configured identically — the preferred configuration when using dynamic channel path management.

**Controlling an Application Environment**

Use the VARY WLM,APPLENV=applenvname, or VARY WLM,DYNAPPL=applenvname command to control an application environment. You can perform the following:

- Request that the server address spaces for an application environment be terminated and start new ones in their place (REFRESH). This is useful if you have updated resources such as load modules which might have been cached by the servers.
- Request that the server address spaces for an application environment be terminated and that any additional work requests be queued but not selected (QUIESCE or Q).
- Restart the server address spaces for an application environment that was previously quiesced, or was stopped by workload management when it detected an error condition (RESUME).

You can use the DISPLAY WLM command to check the status of the VARY WLM command for the application environments that are affected. See the “Defining Application Environments” chapter in z/OS MVS Planning: Workload Management for more information on operational considerations for application environments and the role of the VARY WLM,APPLENV=applenvname, or VARY WLM,DYNAPPL=applenvname command.
Command Scope

The VARY WLM,APPLENV=applenvname command has a sysplex scope and so affects all servers of an application environment on all the systems in the sysplex. For subsystems that can have multiple instances, all the subsystem instances are affected.

If you need to stop application environment activity on just one system in a sysplex, use the subsystem-specific interface to stop the activity on that system.

The VARY WLM,APPLENV command is processed on the coordinator system, which is determined dynamically and may not be the local system where the command was issued. The command output is routed to the console from which the command has been issued, but the command hardcopy is logged on the system on which the command has been processed. Therefore, the message may not appear in the SYSLOG on the system where the command was entered.

The VARY WLM,DYNAPPL=applenvname has a single system scope and affects only servers of an application environment on the system where the command is issued or to where it is routed.

Workload Management Mode Considerations

Important
Beginning with z/OS V1R3, WLM compatibility mode is no longer available. Accordingly, the information below that pertains specifically to WLM compatibility mode is no longer valid. It has been left here for reference purposes, and for use on backlevel systems.

You can enter the VARY WLM,APPLENV=applenvname command on any system in the sysplex in either compatibility or goal mode. However, if a system is in compatibility mode then that system does not start or terminate servers. In this case, the installation is responsible for starting and terminating servers. For example, if VARY WLM,APPLENV=applenvname,QUIESCE is issued, the application environment enters the quiescing state on all systems in the sysplex. However, if any servers exist on a compatibility mode system, they must be terminated with the MVS CANCEL command or through a subsystem-specific interface before the QUIESCE is considered complete.

Note that workload management starts servers on goal mode systems only if a JCL procedure has been defined in the service definition for the application environment. This is known as “automatic” control for the application environment. If a JCL procedure is not defined, the application environment is under “manual” control, and the installation is responsible for starting the servers.

Table 4-47 on page 4-718 summarizes how the QUIESCE, RESUME, and REFRESH options of the VARY WLM,APPLENV command are acted on by systems:

- Under “Automatic” control, that is, goal mode when a JCL procedure is defined for the application environment
- Under “Manual” control, that is, goal mode when a JCL procedure is not defined for the application environment
- In Compatibility mode
Table 4-47. Goal Mode and Compatibility Mode Actions for VARY WLM,APPLENV

<table>
<thead>
<tr>
<th>Operation</th>
<th>Goal Mode Systems</th>
<th>Compatibility Mode Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Automatic Control: JCL Procedure Defined to WLM</td>
<td>Manual Control: No JCL Procedure Defined to WLM</td>
</tr>
<tr>
<td>QUIESCE</td>
<td>WLM stops the server address spaces.</td>
<td>WLM stops the server address spaces.</td>
</tr>
<tr>
<td>RESUME</td>
<td>WLM starts the server address spaces.</td>
<td>Operator must start the server address spaces.</td>
</tr>
<tr>
<td>REFRESH</td>
<td>WLM stops the server address spaces, and starts new ones.</td>
<td>WLM stops the server address spaces. The operator must start new ones.</td>
</tr>
</tbody>
</table>

Command Syntax
The syntax of the VARY WLM,APPLENV command is:

V WLM,APPLENV=applenvname,
       {REFRESH}                  
       {QUIESCE|Q}              
       {RESUME}                 
       ,DYNAPPL=applenvname,{SNODE=nodename},
       {SNAME=subsystemname},
       {STYPE=subsystemtype},

WLM,APPLENV=applenvname
   Specifies the 1 to 32 character name of the application environment for the command.

The VARY WLM command is rejected if the named application environment does not exist in the workload management service definition. To list all the application environment names, use the DISPLAY WLM,APPLENV=* command.

WLM,DYNAPPL=applenvname
   Specifies the name (length=1–32 characters) of the dynamic application environment for the command. The VARY WLM,DYNAPPL command is rejected if the named dynamic application environment was not defined to the system. To list all the dynamic application environment names, use the DISPLAY WLM,DYNAPPL=* command. The following keywords are valid:

SNODE=nodename
   When SNODE=nodename is used, the VARY WLM,DYNAPPL command specifically applies to the dynamic application environments with the specified node name.

SNAME=subsystemname
   When SNAME=subsystemname is used, the VARY WLM,DYNAPPL command specifically applies to the dynamic application environments with the specified subsystem name.

STYPE=subsystemtype
   When STYPE=subsystemtype is used, the VARY WLM,DYNAPPL command specifically applies to the dynamic application environments with the specified subsystem type.
REFRESH
Specifies that the application environment server address spaces be terminated after completion of the currently executing request and new ones started in their place.

QUIESCE | Q
Specifies that the application environment server address spaces be terminated after completion of the currently executing request. No new server address spaces can be started for the application environment by either WLM or an operator. Additional work requests for an application environment that supports queueing, are queued but not selected.

When an application environment is quiesced, changes can be made to libraries, procedures, and other items for the application environment.

To restart the application environment, use the VARY WLM,APPLENV=applenvname,RESUME command; any other VARY WLM,APPLENV action is rejected by the system.

To restart a dynamic application environment, use the VARY WLM,DYNAPPL=applenvname,RESUME command; any other VARY WLM,DYNAPPL action is rejected by the system.

RESUME
Specifies that the application environment be restarted. After this command is executed, server address spaces are allowed to start. Work requests that are queued are eligible for selection.

Example 1
To quiesce application environment db2pay, enter:
V WLM,APPLENV=db2pay,Q
The system responds with:
IWM032I VARY QUIESCE FOR DB2PAY COMPLETED

Example 2
To quiesce dynamic application environment websphere in node testnode, enter:
V WLM,APPLENV=websphere,snode=testnode,Q
The system responds with:
IWM032I VARY QUIESCE FOR WEBSPHERE COMMAND COMPLETED

Activating a Service Policy
Use the VARY WLM command to activate a named service policy for a sysplex. The service policy must be defined in the workload management service definition and must have been previously installed on the WLM couple data set. In addition, each system in the sysplex must have connectivity to the WLM couple data set in order to participate in the service policy activation.

To activate a new policy, issue a VARY WLM command with the name of the policy you want to make active. This in effect makes the previous policy inactive.

You can also activate a workload management service policy by using the online ISPF administrative application. Refer to z/OS MVS Planning: Workload Management for more information or see your service administrator.
Important
Beginning with z/OS V1R3, WLM compatibility mode is no longer available. Accordingly, the following information that pertains specifically to WLM compatibility mode is no longer valid. It has been left here for reference purposes, and for use on backlevel systems.

You can enter the VARY command on any system in the sysplex. This command activates the named service policy on all systems in the sysplex, regardless of the workload management mode in effect on a system. However, only systems operating in workload management goal mode will manage towards that service policy. If there is an active service policy on a system running in compatibility mode, and you issue the MODIFY command to switch that system into goal mode, workload management manages the system using the service policy you activated. The VARY command does not change the workload management mode in effect on any system. Use the MODIFY command to change workload management modes.

You can use the DISPLAY WLM command to check the service policy currently active for the sysplex. For example, before you activate a service policy, check which, if any, policy is active using the DISPLAY WLM command. After activating a service policy using the VARY command, you can confirm that the VARY command has taken effect by using the DISPLAY WLM command.

If you routinely activate service policies based on time-of-day or day-of-week, you can update automation packages with the commands.

Only one service policy can be in effect throughout all systems in a sysplex at any one time.

```
V WLM,POLICY=policyname[,REFRESH]
```

```
WLM,POLICY=policyname
 Specifies the 1 to 8 character name of the service policy to be activated.
```

```
REFRESH
 Specifies that WLM is to discard historical workload characterization data, reset to begin data collection anew, and activate the named policy.
```

**Note:** Use REFRESH only when directed to do so by IBM Level 2 personnel.

The VARY WLM command is rejected if the named service policy does not exist. Contact your service administrator to determine the name of the desired service policy.

**Example 1**

To activate a service policy named SHIFT1, enter:

```
V WLM,POLICY=shift1
```

The system responds with:

```
IWM001I WORKLOAD MANAGEMENT POLICY SHIFT1 NOW IN EFFECT
```
Example 2

If you activate a service policy that does not exist, the command is rejected. If service policy WEEKEND does not exist and you enter:

V WLM,POLICY=weekend

The system responds with:

IWM003I VARY WLM FAILED, POLICY NAME WEEKEND NOT DEFINED

Removing a System from the XCF Sysplex

Use the following form of the VARY command to remove a system from the XCF sysplex.

```
V XCF,systemname,{OFFLINE|OFF}[,RETAIN={YES|NO}][,FORCE][,REPL][,SADMP]
```

**XCF,systemname,OFFLINE or OFF**

Specifies the name of a system that XCF is to remove from the sysplex. The system that is removed is put into a wait state. The system to be brought offline should be shut down completely, including the issuance and completion of the HALT EOD command, before the VARY XCF,sysname,OFFLINE command is issued.

Note that the V SMS,SMSVSAM,TERMINATESERVER command must be issued to terminate the SMSVSAM address space prior to partitioning a system from the sysplex. If a VARY XCF,sysname,OFFLINE is issued while the SMSVSAM address space is active, miscellaneous abend code X'0F4's can be issued as a result.

**RETAIN=YES or NO**

Indicates whether or not XCF, on the remaining systems in the sysplex, is to retain the signalling path resources used to communicate with the system that's removed. If you specify YES, the XCF signalling paths used to communicate with the removed system remain allocated. They are reinitialized so that they are ready to reestablish communications with a new system if the removed system joins the sysplex or another system takes its place. If you specify NO, XCF stops the signalling path to stop the XCF paths that had communicated with the removed system.

If a replacement for the removed system later joins the sysplex, after RETAIN=NO, you must issue the SETXCF START path command on the remaining systems. This procedure guarantees that each signalling path can communicate with the replacement system.

**FORCE**

Indicates that XCF will immediately remove the specified system from the sysplex. The FORCE option is only accepted after XCF has failed to remove the system with the VARY command. The VARY command with the FORCE option must be issued on the same MVS image where the original VARY command was issued.

**Notes:**

1. Use FORCE only at the direction of the system programmer.
2. Before using FORCE: to avoid damage to sysplex resources ensure that the target system has been through a SYSTEM RESET.
VARY Command

REIPL
Indicates that when the target system image has been successfully partitioned out of the sysplex, it is to be re-IPLed using the MVS IPL parameters specified in the DIAGxx parmlib member that is in effect on the target system.

Note: the REIPL option cannot be specified on the same VARY XCF command that specifies the FORCE or RETAIN=NO options.

SADMP
Indicates that when the target system image has been successfully partitioned out of the sysplex, SADMP is to be IPLed using the SADMP IPL parameters specified in the DIAGxx parmlib member that is in effect on the target system.

Note: The SADMP option cannot be specified on the same VARY XCF command that specifies the FORCE option.

Note:
By default, when neither the REIPL nor the SADMP parameter is specified, the target system image that is partitioned out of the sysplex is not subject to any AutoIPL-related processing.

When both REIPL and SADMP are specified in combination, this indicates that a combination of both actions should take place; first, SADMP should be IPLed, followed by a re-IPL of the z/OS system, both using the respective options defined in the DIAGxx parmlib member for those specific actions.

Example 1
To vary the system named FRED out of the sysplex, enter:
VARY XCF,FRED,OFFLINE
At the conclusion of this processing, FRED is not subject to any AutoIPL-related processing.

Example 2
To vary the system named RALPH out of the sysplex, enter:
VARY XCF,RALPH,OFFLINE,REIPL
At the conclusion of this processing, RALPH is re-IPLed using the MVS IPL parameters specified in the DIAGxx member that is in effect on that system.

Example 3
To vary the system named BOB out of the sysplex, enter:
VARY XCF,BOB,OFFLINE,SADMP
At the conclusion of this processing, SADMP is IPLed using the SADMP IPL parameters specified in the DIAGxx member that is in effect on that system.

Example 4
To vary the system named RINGO out of the sysplex, enter:
VARY XCF,RINGO,OFFLINE,SADMP,REIPL
At the conclusion of this processing, SADMP is IPLed using the SADMP IPL parameters specified in the DIAGxx member that is in effect on that system. After the SADMP completes, RINGO is re-IPLed using the MVS IPL parameters specified in the DIAGxx member that is in effect on that system.
WRITELOG Command

WRITELOG Command

Use the WRITELOG command to control the system log. Using WRITELOG, you can start, stop, or print the system log, or modify the output class of the system log.

Syntax

The complete syntax for the WRITELOG command is:

W [class|CLOSE|START]

Note: Specifying WRITELOG without any operands schedules the system log to be printed with the default output class specified at system installation. If no default output class was specified at system installation, specifying WRITELOG without any operands schedules the system log to be printed with output class A.

Parameters

class
The one-character output class (A-Z, 0-9) to be used when printing the contents of the system log. This command is in effect only for the current scheduling of the system log output. All subsequent scheduling is to the default output class unless the class parameter is again entered.

CLOSE
The system log is closed and the log function is discontinued. This command is rejected if the system log is the hardcopy medium.

START
The system log is to be restarted.

Example

To schedule the system log to the class D output queue, enter:

WRITELOG d
Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision, to use software products successfully. The major accessibility features in z/OS enable users to:

- Use assistive technologies such as screen readers and screen magnifier software
- Operate specific or equivalent features using only the keyboard
- Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user interfaces found in z/OS. Consult the assistive technology documentation for specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for information about accessing TSO/E and ISPF interfaces. These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library Server versions of z/OS books in the Internet library at:

http://www.ibm.com/systems/z/os/zos/bkserv/
Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation  
Mail Station P300  
2455 South Road  
Poughkeepsie, NY 12601-5400  
USA  

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.
Policy for unsupported hardware

Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code that supports specific hardware servers or devices. In some cases, this device-related element support remains in the product even after the hardware devices pass their announced End of Service date. z/OS may continue to service element code; however, it will not provide service related to unsupported hardware devices. Software problems related to these devices will not be accepted for service, and current service activity will cease if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be issued.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
Index

Special characters
* (asterisk)
  specified on identifier of system command 4-331
  specified on jobname.identifier of system command 4-23, 4-648
  specified on parameter of system command 1-17, 4-171, 4-334, 4-335, 4-336, 4-367, 4-368, 4-369, 4-370

Numerics
3277-2 display station
  in message stream mode 3-35
  illustration 3-35
PFK
  displaying number 4-62
  selector pen 3-12
3380 Direct Access Storage Model AA4
  recovery 1-68
3490 tape device 4-688
3880 Storage Control
  controlling 3380 1-68
3990-3
  SETSMS command
    DINTERVAL parameter 4-514

A
A (RELEASE command) 4-2
ACBNAME parameter in APPCPMxx 4-434
accessibility A-1
ACDS parameter
  SETSMS command 4-508
ACR (alternate CPU recovery) 1-55
  machine check 4-326
action
  action for a SLIP trap 4-569
action message
  backup 3-35
deleting
  eventual action 4-60
  immediate action 4-60
  retained immediate 4-60
  displaying information 3-41
  retained
    deleting 4-60
  retained by action message retention facility 3-37, 3-41
retention facility 4-60
  activating 4-64
  cancelling 4-64
  changing 4-64
  deactivating 4-64
  deleting 4-61
  displaying status 4-64
  action message retention facility
    cancelling 3-41
    deactivating 3-41
    description 3-41
    displaying action messages not retained 3-43
    retrieving an action message 3-41
ACTION parameter
  SLIP command 4-583
ACTIVATE command 4-17
  example 4-20
  specifying FORCE 4-19
  summary table 4-2
  syntax 4-17
ACTIVATE parameter
  SETSSI command 4-523
ACTIVATE=SERVICE on DISPLAY command 4-195
activating a workload management service policy
  controlling 1-20
activation
  action message retention facility 3-41
  general WTO installation exit IEAVMXIT 3-42
ACTIVE parameter
  DISPLAY SMS command 4-237
ADD dump mode 4-27
ADD parameter
  SETSSI command 4-522
  address
    direct 4-563
    indirect 4-563
    wraparound 4-610
  address compare in SLIP
    definition 4-595
  address space
    qualifying direct or indirect address 4-566
Advanced Program-to-Program Communication/MVS (APPC/MVS)
  address space information
    changing 4-410
AFTER parameter
  in PROGxx parmlib member 4-495
AKP parameter
  SETSMS command 4-508
ALLC_OFFLN statement in SETALLOC 4-428
alternate nucleus
  load 1-5
  alternate path 4-53, 4-691
  recovery 1-67
ALTLU parameter in APPCPMxx 4-436
APF (authorized program facility)
  listing authorized libraries 4-417
APF list
  updating 4-487
apostrophe
  use 4-1
ARM (automatic resource management)
  switching couple data containing ARM information 4-539
ASIDIA on DISPLAY command 4-193
assign
command group 4-676, 4-681
MCS (multiple support console) console 4-674
routing code 4-676, 4-681
assignment
  message level 3-39
  routing code 3-38
ATBOTTOM parameter
  in PROGxx parmlib member 4-495
ATTOP parameter
  in PROGxx parmlib member 4-495
authorization
  changing console 3-34
authorization to system commands 3-24
AUTOACT 4-674
automatic
  AVR (automatic volume recognition) 1-31
automatic message deletion
  assigning 4-74
automatic restart 1-23
automatic restart management
  DISPLAY XCF command 4-277
automatically switchable tape devices
  change the AUTOSWITCH attribute 4-687
  definition 1-27
  obtain the status of 1-28, 4-262
  operational considerations 1-27
auxiliary storage
  adding 4-376
  deleting 4-378
  draining 4-378
  replacing 4-378
AVR (automatic volume recognition) 1-31

B
base address 4-564
BASE parameter in APPCPMxx 4-435
base/displacement shorthand in SLIP command 4-564
BCPII
  starting 4-639
  stopping 4-651
binary compare in SLIP
  definition 4-595
blank screen
  error response 3-15
  response 3-16
BLKLENTH parameter in SETALLOC 4-424
BMFTIME parameter
  SETSMS command 4-514
box a device 1-32
BPXPRMxx parmlib member
  changing, with SETOMVS 4-473
branch
  SLIP trap 4-575
BRL on DISPLAY command 4-194
broadcast
  message
    level 4-78
    routing 4-78
  broadcast data set 1-21
broadcast message
  description 3-39
  buffer shortage 3-17, 3-19

C
C command
  See CANCEL command
cache
  subsystem 4-376
CACHE parameter
  DISPLAY SMS command 4-237
CACHETIME parameter
  SETSMS command 4-514
cancel
  job 4-21
  status display for an inactive console 3-15
CANCEL action
  how to perform 3-8
  perform 3-7, 3-11, 3-13, 3-15
CANCEL command 4-22
  example 4-24
  summary table 4-2
  syntax 4-22
CAPSIC on DISPLAY command 4-194
catalog address space 4-330
  information
    displaying 4-345
    service
    requesting 4-345
CATLG_ERR statement in SETALLOC 4-430
CD command
  See CHNGDUMP command
central storage
  job 1-23
  moving online or offline 4-50
  physical view 2-5
  reconfiguring 2-8
  specifying configuration 1-2
  specifying RSU parameter
    example 2-6
CF command
  See CONFIG command
CFCACHE parameter
  DISPLAY SMS command 4-237
CFRM (coupling facility resource management)
  switching couple data containing CFRM
  information 4-539
change
  dump mode and option 4-28
  status
    of secondary console 4-686
    system commands a console can receive 4-674
  change information in the entry area 3-13
  changing authorization
    console 3-34
  changing resource states
    MODIFY command 4-366
channel path
  alert condition 1-60
  initialized condition 1-60
  X-2 z/OS V1R11.0 MVS System Commands
channel path (continued)
  outstanding reserve 1-58
  permanent error 1-60
  placing online or offline 4-51
  reconfiguring 2-8, 4-51
  recovery 1-58
  terminating error 1-58
channel subsystem
  error 1-58, 1-63
  missing interrupt 1-62
  monitoring facility
    recovery 1-61
characters
  valid command 4-1
checkpoint/restart 1-22, 1-24
  effect on SLIP PER trap 4-573
CHNGDUMP command 4-27
  DEL operand
    syntax 4-28
  RESET operand
    syntax 4-34
  scope in a sysplex 4-28
  SET operand
    syntax 4-37
  summary table 4-2
CICSVR
  VARY SMS command 4-714
CICSVR,RCDS
  VARY SMS command 4-715
class C1 commands 1-38
class C2 commands 1-38
class M1 commands 1-35
class M2 commands 1-36
clock
  setting 4-384
CLOCKxx member of SYS1.PARMLIB
  OPERATOR PROMPT parameter 1-8
CLOCKxx parmlib member
  OPERATOR PROMPT parameter 4-385
CLPA (create link pack area)
  option 4-376
CNS example
  SETGRS 4-448
COFDFLxx member
  keyword
    MAXEXPB 4-351
    PCTRETB 4-351
color
  description 3-3
color options
  displayed 3-43
command
  check PFK command 3-10
  enter
    using PFK (program function key) 3-9
    using selector pen 3-12
  enter with selector pen 3-13
  entry error correction 3-8
  formats 4-15
  how to enter
    using keyboard 3-7
  command (continued)
    MODIFY
      example 4-69
      routing 4-395
      select for hardcopy message set 3-47
      syntax conventions 4-13
  command authority 3-24
  command characters
    valid 4-1
  command delimiter 3-8
  command entry 3-8
  command entry error correction 3-8
  command example
    CONTROL A 4-60
    CONTROL C,A 4-61
    CONTROL C,E 4-61
    CONTROL C,I 4-61
    CONTROL D 4-63
    CONTROL M,AMRF 3-42, 4-65
    CONTROL M,LOGLIM 4-66
    CONTROL M,MLIM 4-66
    CONTROL M,RLIM 4-66
    CONTROL M,UEXIT 3-43, 4-68
    CONTROL N,PFK 3-44, 3-45
    CONTROL Q 4-73
    CONTROL S 3-40, 4-76
    CONTROL V,LEVEL 3-40
    CONTROL V,USE 3-36
    DEVSERV P 4-94
    DEVSERV SMS 4-94
    DISPLAY 4-165, 4-211, 4-212, 4-265, 4-269, 4-270
    DISPLAY PFK 3-44
    DUMP 4-295
    FORCE 1-26, 4-314
    IEE094D 4-296
    LOG 4-320
    LOGOFF 4-321
    MODE 4-327, 4-329
    MODIFY 4-334, 4-335, 4-343, 4-361, 4-366, 4-370
    MONITOR 4-372
    MOUNT 4-374
    PAGEADD 4-377
    PAGEDEL 4-379
    REPLY 4-383
    RESET 4-392
    ROUTE 4-399
    SEND 4-404, 4-407, 4-409
    SET 3-44, 4-419, 4-421
    SETCEE 4-439
    SETDMN 4-444
    SETETR 4-445
    SETGRS 4-448
    SETIOS 4-459
    SETLOAD 4-461
    SETLOGR 4-466
    SETPROG EXIT 4-489, 4-492
    SETPROG LNKLST 4-497
    SETSMF 4-505
    START 4-635, 4-638, 4-646
    STOP 4-649
    STOPMN 4-654

Index  X-3
SWAP 4-656
TRACE 4-664
VARY 3-38, 3-47, 3-49, 4-682, 4-687, 4-697, 4-719, 4-720, 4-721
VARY HARDCOPY 3-48, 4-685
WRITELOG 4-724
command flooding 1-35
command group 3-24
assigning 4-676, 4-681
figure showing 3-27
summary 3-25
COMMNDxx parmlib member 4-562
common storage tracking
SET command 4-414
communication
operator-to-operator 4-403
terminal user 4-405
time-sharing user 4-404
component trace 1-27, 4-660
option
replying 4-386
specifying 4-386
CONFIG command 4-48
example 4-53, 4-56, 4-57
reconfiguration 2-1
summary table 4-2
configuration
changing 1-23
CONFIGx member
SYS1.PARMLIB
reconfiguration 2-1
CONS command authority 3-25
console
activity
lack 3-15
activity, lack 3-15
changing authorization 3-34
console use 3-34
control command 3-27
description 3-2
device 3-1
error condition 3-15
hardware at IPL 1-2
hardware error 3-15
inactivity
cause 3-15
response 3-15
MCS (multiple console support)
definition 3-2
use 3-2
MCS at IPL 1-2
NIP at IPL 1-2
operation 3-1
recovery 3-15
response to an inactive 3-15
varying offline 3-19
console area
L= operand 3-5
console assignment
making 3-24
console characteristics
changing 3-20
defining 3-20
displaying 3-23
console in error condition 3-15
console inactivity
cause 3-15
console message backup
response 3-16
console operating mode
definition 3-34
setting up message stream console 3-35
setting up status display console 3-34
console operation
full-capability mode
changing 4-77
displaying 4-77
output-only mode
changing 4-77
displaying 4-77
console operation mode
effect on display screen 3-3
console screen
information
removing 4-63
console specification
altering 4-74
changing 4-74
current 4-74
displaying 4-74
CONSOLxx member of Parmlib
CMDLEVEL parameter 4-683
ROUTCODE parameter 4-683
CONSOLxx member of SYS1.PARMLIB
AMRF parameter 3-21
example 3-42
AREA parameter 3-20
AUTH parameter 3-20
CMDELIM parameter 3-21
CMDLEVEL parameter 3-22
CON parameter 3-20
DEL parameter 3-20
DEVNUM parameter 3-22
general description 3-2
HARDCOPY statement 3-22
INIT statement 3-21
LEVEL parameter 3-20
example 3-39
MFORM parameter 3-20
MLIM parameter 3-16, 3-21
MONITOR parameter on the CONSOLE
statement 3-20
MONITOR parameter on the INIT statement 3-21
MPF parameter 3-21
PFK (program function key) parameter 3-21
PFKTB parameter 3-20, 3-46
relationship with CONTROL command 3-20
RLIM parameter 3-16, 3-21
RNUM parameter 3-20
ROUTCODE parameter 3-20, 3-22
RTME parameter 3-20
CONSOLxx member of SYS1.PARMLIB (continued)
SEG parameter 3-20
UEXIT parameter 3-21
USE parameter 3-20
UTME parameter 3-20
CONSOLxx parmlib member
MLIM parameter 3-19
RLIM parameter 3-19
contents compare in SLIP definition 4-595
control
message format 3-6, 3-40
message processed by message processing facility (MPF) 3-40
status displays on a status display console 3-35
system message 3-37
CONTROL command 4-58
A
example 4-60
syntax 4-59
C,A
example 4-61
syntax 4-60
C,CE
syntax 4-60
C,D
syntax 4-61
C,E
example 4-61
C,I
example 4-61
syntax 4-60
D
example 4-63
syntax 4-62
duplicate line
K Q 4-73
E
example 4-64
syntax 4-63
example 3-12
extended MCS console limitation 4-58
M,AMRF
example 3-42, 4-65
syntax 4-64
M,LOGLIM
example 4-66
syntax 4-65
M,MLIM
example 4-66
syntax 4-66
M,RLIM
example 4-66
M,UEXIT
example 3-43, 4-68
syntax 4-68
N,PFK
example 3-44, 3-45, 4-72
syntax 4-71, 4-72
CONTROL command (continued)
Q
example 4-73
syntax 4-73
relationship to CONSOLE statement in CONSOLxx 3-20
S
example 3-40, 4-76
syntax 4-74
scope in a sysplex 4-59
SMCS APPLID
SMCS 4-69
status display framing 4-62
summary table 4-2
V,LEVEL
example 3-40, 4-79
syntax 4-78, 4-79
V,USE
example 3-36, 3-37
syntax 4-77
controlling system 1-9
conversational mode enter command assigned to PFK 3-11
enter command with selector pen 3-13
message deletion 4-74
cancelling 4-74
PFK 4-71
PFK (program function key) 3-44, 3-45
COPYFROM parameter in PROGxx parmlib member 4-494
coupling facility reconfiguration 2-10
coupling facility resource management DISPLAY XCF command 4-277
CPU
error 1-52
hard 1-53
soft 1-53
terminating 1-54
hard error 1-53
recovery hard error 1-53
restart 1-70
soft error 1-53
terminating error 1-54
restart 1-70
soft error 1-53
terminating error 1-54
critical action message level 4-78
routing 4-78
critical eventual action message level 4-78
routing 4-78
critical eventual action message description 3-39
cross system coupling facility (XCF)  
  displaying information 4-272  
cross-system coupling facility (XCF) 4-536  
  active configuration  
    saving 4-536  
  alternate data set couple  
    defining 4-536  
data set couple  
  controlling 4-536  
SETXCF command 4-545  
  signal path  
    modifying 4-536  
    starting 4-536  
    stopping 4-536  
transport class  
  defining 4-536  
  deleting 4-536  
  modifying 4-536  
XCF PR/SM policy 4-545  
CRW (channel report word)  
  describing error 1-58  
cursor  
  description 3-3  
  move 3-7  
cursor detect action  
  perform 3-7  
CVIO (clear virtual I/O)  
  option 4-376

D
D command
  See DISPLAY command
DAE (dump analysis and elimination)  
  parameter 4-410, 4-413  
  suppression of the dump 4-585  
DASD (direct access storage device)  
  maintenance 1-69  
  recovery 1-69  
data lookaside facility (DLF)  
  starting data lookaside facility (DLF) 4-644  
data removal  
  data from entry area 3-14  
data set  
  clearing 4-306  
dump  
  adding 4-301, 4-302  
  allocation of, automatic 4-301  
  clearing 4-301  
  deleting 4-306  
  disable automatic allocation 4-305  
  enable automatic allocation 4-305  
  name-pattern 4-308  
DATASET parameter in APPCPMxx 4-438  
data  
  setting 4-384, 4-414  
DD (data definition) statement 1-29  
DDR (dynamic device reconfiguration) 1-50, 4-655  
  failing device  
    recovery 1-65  
  operator-requested DDR 4-655

DEACTIVATE parameter  
  SETSSI command 4-523  
dedicated tape device  
  definition 1-27  
DEFAULT statement 3-23  
defered restart 1-23  
define  
  routing codes for console 4-679, 4-681  
  definition  
    command for PFK (program function key) 3-44, 3-45  
    routing codes for a console 3-38  
    status display console 3-34  
degradation interruption  
  machine check  
    controlling recording 4-324  
    recording 4-324  
delete  
  SLIP trap 4-628  
DELETE parameter in CUNUNIxx 4-534  
deletion  
  message  
  from message stream console 3-35  
  delimiter of command 3-8  
device  
  allocation 1-29  
  assignment 1-30  
  boxing 1-32  
  failing  
    recovery 1-65  
  hung  
    recovery 1-65  
  I/O device online or offline 4-688  
  place online or offline 4-688  
  supported and not supported by DDR 1-50  
device status  
  displaying 1-10  
Device Support Facilities  
  See ICKDSF  
DEVSERV command 4-81  
  channel path status  
    displaying 4-81  
    complete syntax 4-81  
  device status  
    displaying 4-81  
    example 4-94  
    SMS-managed device status  
      displaying 4-81  
      summary table 4-2  
      use 1-10  
DFSMStvs  
  VARY SMS command 4-705, 4-706  
DINTERVAL parameter  
  SETSMS command 4-514  
  direct address in indirect addressing 4-563  
DIRECTORY parameter in SETALLOCC 4-423  
disability A-1  
disable status  
  meaning 4-703  
  DFSMStvs instance 4-706  
  disabled loop 1-18
Index | X-7

displacement in indirect addressing 4-563

DISPLAY command (continued)

PFK (program function key)
example 3-10

PID operand 4-194

R
example 4-61

RESET operand 4-195
scope in a sysplex 4-103

SER operand 4-195

SUMMARY/S operand 4-193

TYPE operand 4-194

U
use 1-10

U operand 4-194

use 1-10

VSERVER/IV operand 4-194

DISPLAY Command

MIDAW facility status 4-160
display console features 3-2

DISPLAY CONSOLES command

example 3-18

sample 3-18

sample output 3-18

DISPLAY IPLINFO command

example 4-165

DISPLAY PARMLIB command

example 4-211, 4-212
display screen area
on console 3-3

DISPLAY SMS command

ACTIVE parameter 4-237

CACHE parameter 4-237

CFCACHE parameter 4-237
description 4-234

SHCDS parameter 4-242

SMS parameter 4-237

STATUS parameter 4-242

DISPLAY SSI command

ALL parameter 4-254

DYNAMIC parameter 4-254

FUNC parameter 4-254

LIST parameter 4-254

SSI parameter 4-254

STATUS parameter 4-255

SUBSYS parameter 4-255

text 4-253

DISPLAY WLM command
text 4-266

DISPLAY XCF command
text 4-272
displaying device status and allocation
the IPL volume 4-262

Displaying SMS information 4-234

DISSTIMEOUT parameter

SETSMS command 4-514

DLF (data lookaside facility)
changing 4-351
defined 4-644
displaying 4-352
DLF (data lookaside facility) (continued)
modifying 4-351
stopping address space 4-650
DLF (data lookaside facility) address space stopping 4-650
DLF (data lookaside facility) data object starting 4-644
DLOG (JES3 system log) 3-48
domain description table changing 4-433, 4-441, 4-443
DS command See DEVSERV command
DSNAME parameter in PROGxx parmlib member 4-494
SETSMS command 4-518
dump clearing 4-306
data set adding 4-301, 4-302
clearing 4-301
deleting 4-306, 4-308
disable automatic allocation 4-305
enable automatic allocation 4-305
name-pattern 4-308
mode and option 4-27
option specifying 4-284
resources adding 4-302
deleting 4-306, 4-307
DUMP command example 4-295
option replying 4-386
specifying 4-386
summary table 4-2
syntax complete 4-283
dump options list for SYSABEND dump type 4-27
for SYSMDUMP dump type 4-27
for SYSUDUMP dump type 4-27
DUMPDS command summary table 4-2
dynamic device allocation 1-29
dynamic exits display 4-217
update 4-489, 4-493
dynamic I/O configuration 2-1
dynamic LPA managing 4-497
Dynamic LPA module information display 4-220
dynamic parmlib concatenation
dynamic Changing
dynamic changing 4-461
dynamic pathing support array out-of-sync
recovery 1-69
dynamically activating maintenance
z/OS Unix System Services 4-362
external writer
  data set selection
    specifying criteria 4-367
  MODIFY command
    data set selection 4-367
    starting 4-645

F
  F command
    See MODIFY command
    FAILJOB parameter in SETALLOC 4-430
    fetch
      SLIP trap 4-575
    FILEIF on DISPLAY command 4-194
    flagged
      message
        deleting 4-64
    FORCE command 1-22
      caution 4-311
      example 1-26, 4-314
      summary table 4-2
      syntax
        complete 4-312
        using 4-311
    FORCE operand of CONFIG command
      cautions about using 1-32, 4-52
    FORCE operand of VARY command
      cautions about using 1-32
      cautions about using FORCE with OFFLINE 4-692
  full-capability console
    console 3-35
    defined 3-35
  full-capability mode
    cursor on console 3-3
    display screen for, illustration 3-4
    keyboard on console 3-3
    operation on display console 3-7

G
  G command
    See SWAP command
  general trace service 1-27
  GETMAIN/FREEMAIN/STORAGE tracing
    SET command 4-414
  global resource serialization
    removing a system from complex 4-693
    VARY GRS command 4-693
  global resource serialization (GRS)
    resource name list
      changing 4-410
    GMT (Greenwich mean time) 4-384
    GRNAME parameter in APPCPMxx 4-437
  GRS (global resource serialization)
    resource name list
      selecting 4-414
    GRSQ example
      SETGRS 4-449
    GTF (generalized trace facility) 1-26
      starting 4-637

H
  HALT command 1-51, 4-316
    complete syntax 4-316
    summary table 4-2
  hard error
    CPU 1-53
    storage 1-57
  hard interruption
    machine check
      controlling recording 4-324
      monitoring 4-324
  hardcopy medium
    changing status 4-683
    controlling in CONSOLxx 3-22
    device, bypassing 3-19
    displaying information 3-49
    message 4-78
  hardcopy message set
    minimum routing codes for 4-685
    selecting a command 3-47
    selecting messages 3-47
  hardcopy processing
    controlling 4-683
    defaults used for 3-23
    varying 4-683
  hardware
    CPU error 1-52
    problem
      recovery 1-51
      recovery 1-52
  hardware configuration definition
    See HCD (hardware configuration definition)
  hardware configuration definition (HCD)
    defining a device 3-20
  hardware console
    definition 1-2
    to process MVS message traffic 3-19
  hardware event data collection
    start, configure, and stop 4-352
  Hardware Instrumentation Services (HIS)
    start, configure, and stop 4-352
  hardware malfunction 1-31
  hardware unit
    deselecting 2-1
    logical reconfiguration 2-2
  HCD (hardware configuration definition)
    device definition 3-1
    high speed buffer
      error 1-57
    highlighting of message 4-191
    displaying options in effect 3-43
  hot I/O
    recovery 1-63
    hot I/O detection 1-31

I
  I command
    See SWITCH command
I/O configuration
loading 1-6
I/O control command 3-27
I/O device
  error 1-61
  hung
  recovery 1-65
  place online or offline 4-688
I/O interrupt
  hot I/O 1-63
  missing 1-62
IBM Health Checker for z/OS 4-330
ICKDSF (Device Support Facilities) 1-69
ICRF (Integrated Cryptographic Feature)
  CPU with ICRF
    bringing online 2-4
    reconfiguring 2-3
    taking offline 2-4
    removing last ICRF 2-4
IEA101A message 1-8
IEA116A message 4-388
IEA347A message 1-7
IEA886A message 4-384
IEA888A message 4-385
IEA903A message 4-385
IEACMDxx parmlib member 4-562
IEASLPxx parmlib member 4-562
IEASYSxx member of SYS1.PARMLIB 1-8
IEAVMIXIT installation exit
  description 3-42, 3-43
  displaying status 3-43
  status
    activating 4-68, 4-74
    changing 4-68, 4-74
    displaying 4-68, 4-74
IECIOStxx member
  Parmlib
    I/O device time interval 1-62
IEE094D message 4-386
IEE100E message 4-52
IEE131D message 4-52, 4-53
IEE3601 message 1-26
IEE507D message 4-52, 4-53
IEE508E message 4-53
IEE828E message 3-40
IEE980I message 1-26
IEF225D message 1-23
IEF238D message 1-32
IEFAUTOS structure
  on coupling facility 1-28
IEFBR14_DELMIGDS parameter in SETALLOC 4-431
IFASMFDP dump program 1-25
  immediate action
    message
      deleting 4-60
      level 4-78
      routing 4-78
  immediate action message
    deleting 4-61
IMSI 1-4
infinite console
  characteristic 3-15
  response 3-15
indirect address 4-563
indirect addressing
  DATA parameter 4-565
  LIST parameter 4-566
  RANGE parameter 4-566
  REFAFTER parameter 4-565
  REFBEFORE parameter 4-565
  SUMLIST parameter 4-566
  TRDATA parameter 4-566
indirection indicator in indirect addressing 4-563
INFO command authority 3-25
informational
  message
    level 4-78
    routing 4-78
informational command 3-27
informational message
  description 3-39
  initialization message suppression indicator (IMSI) 1-4
  initialization of system software 1-7
  inline commands 1-38
  installation exit routine
    description of use in processing a message 3-42
instruction fetch
  SLIP trap 4-575
instruction line
  description 3-4
  Integrated Cryptographic Feature (ICRF)
    bringing online 4-49
    taking offline 4-49
intensity
  description 3-3
interception
  of system event 4-561
interruption
  machine check
    controlling recording 4-324
    monitoring 4-324
INTERVAL parameter
  SETSMS command 4-514
IO command authority 3-25
IOACTION command
  summary table 4-2
IOS, MIH command options and functions
  ASM 4-164
IPL (initial program loader) 1-6
  procedure 1-6
  program 1-6
IPS (installation performance specification)
  changing 1-18
IRA2000 message 4-376
IRA2011 message 4-376
ISG334I 4-448
IXL126I message 4-53
IXL127I message 4-53
load (continued)
  I/O configuration 1-6
  IML (initial microprogram) 1-2
  parameter field 1-5
  process 1-6
  load function 1-6
  LOAD parameter 1-7, 1-8
  locked keyboard
    response 3-16
  LOG command 3-48, 4-320
    complete syntax 4-320
    example 4-320
    summary table 4-2
  LOG parameter
    VARY SMS command 4-707
  logger
    See system logger
  logical reconfiguration
    hardware unit 2-2
  LOGOFF command
    complete syntax 4-321
    example 4-321
    summary table 4-2
  LOGON command 1-6
    complete syntax 4-322
    LOGON panel 4-322
    summary table 4-2
  logrec
    action for a SLIP trap 4-569
    recording by SLIP trap 4-585
  loop
    disabled 1-18
  lowercase character
    use 4-1
  LU (logical unit)
    base LU 4-435
    NOSCHED LU 4-111
    system base LU 4-435
  LUADD statement in APPCPMxx 4-433
  LUDEL command in APPCPMxx 4-437

M
M command
  See MOUNT command

machine check
  accompanying data 1-52
  controlling status
    monitoring 4-328
    recording 4-328
  CPU
    hard error 1-53
    soft error 1-53
  terminating error 1-54
  degradation interruption
    controlling recording 4-324
  displaying status
    monitoring 4-329
    recording 4-329
  ETR (External Time Reference) 1-54
machine check (continued)
  hard interruption
    controlling recording 4-324, 4-326
    monitoring 4-324, 4-326
  interruption
    controlling recording 4-324, 4-328
    monitoring 4-324, 4-328
  monitoring status
    controlling recording 4-327
  system recovery
    controlling recording 4-324

mainframe
  education xviii
master catalog
  specifying an alternate 1-7
MASTER command authority 3-25
master trace 1-26, 4-660
match
  for SLIP trap 4-569
MAXCFFEATURELEVEL parameter
  SETSMS command 4-512
MAXNWAIT parameter in SETALLOC 4-428, 4-429
MCS (multiple console support)
  consoles at IPL 1-2
MCS (multiple console support) console
  assigning 3-24
  use 3-2
MCS console
  at IPL 1-2
    attribute definition 3-2
    defining in CONSOLxx member of SYS1.PARMLIB 3-2
    subsystems’ use 3-1
MEASURE parameter in SETALLOC 4-423
MEMLIMIT on SETOMVS command 4-481
message
  automatic deletion
    assigning 4-74
  controlling format 3-40
  deleting 4-60
    SYS1.BRODCAST notice section 4-409
  error response 3-15, 3-16
  eventual action
    deleting 4-61
  flagged
    deleting 4-64
  format 3-6
MPF-processed
  controlling 4-410
  MPF-suppressed 4-410
  number
    controlling 4-62
    deleting 4-63
  operator-to-operator 4-403
  processed by an installation exit 3-42
  processed by IEAVMIXIT 3-42, 4-68
  processed by message processing facility (MPF) 3-40
  queue
    deleting 4-73
message (continued)
  roll rate
    setting 4-74
  routing
    broadcast 4-78
    critical action 4-78
    critical eventual action 4-78
    descriptor code 4-78
    immediate action 4-78
    informational 4-78
    message level 4-78
    system failure 4-78
    write to operator 4-78
    SYS1.BRODCAST
      saving 4-407
      terminal user 4-405
      time-sharing user 4-404
message area
  description 3-3
message buffer shortage 3-18
message deletion
  automatic mode
    assigning 4-74
    defining 4-74
  conversational mode 4-74
  nonconversational mode 4-74
  roll mode
    assigning 4-74
    defining 4-74
  roll-deletable mode
    assigning 4-74
    defining 4-74
  specification
    defining 4-74
    displaying 4-74
    verifying 4-74
message display
  changing
    color 4-416
    highlighting 4-416
    intensity 4-416
  color
    changing 4-416
  control
    MPFLSTxx member 4-416
  foreign messages
    handling 4-416
    handled
  highlighting
    foreign messages 4-416
    changing 4-416
message flood automation
  changing 4-416
message format
  changing 3-40
  controlling 3-6, 3-40
message identifier 3-6
message level
  assigning 4-79
  assigning to a console 3-39
message level (continued)
  console
    assigning 4-78
    displaying message levels not assigned to any console 3-39
message number
  deleting 4-63
message presentation
  controlled by MPFLSTxx member 3-41
  displaying options in effect 3-43
message processing facility (MPF) 4-191
  changing 4-416
  controlling message presentation 3-41
  description 3-40
  displaying status 3-43
  ending message suppression 4-416
message queue
  deleting 4-73
message roll rate
  setting 4-74
message routing code  3-38
message stream console
  defined 3-35
message stream mode
  deleting messages from a console 3-35
  display screen for, illustration 3-4
message traffic
  lack 3-15
MIH
  MIH time options and functions 4-160
MIH (missing interruption handler)
  time interval
    dynamic changing 4-452
missing I/O interrupt
  recovery 1-62
missing interruption handler (MIH)
  time interval
    changing 4-410
MMS (MVS message service)
  allocated resource
    freeing 4-415
  processing
    ending 4-415
MN command
  See MONITOR command
MODE command
  example 4-327, 4-329
  machine check
    interruption 4-324
  machine check interruption
    controlling recording 4-328
  summary table 4-2
modify
  SLIP trap 4-627
MODIFY command (continued)
  CEA mode of operation 4-348
  changing resource states 4-366
  Communicating with System REXX 4-336
  complete syntax 4-336
  DLF
    changing 4-351
    DLF parmlib member
      replacing 4-351
    DLF status
      displaying 4-352
      example 4-69, 4-334, 4-366, 4-370
    external writer
      causing pause 4-369
      specifying data set selection 4-367
    for hardware event data collection 4-352
    fork() service
      restart 4-338, 4-361
      shut down 4-338, 4-361
    jobname,APPL 4-335
    LLA directory
      replacing 4-359
    OAM
      managing 4-360
    OMVS 4-361
    pass information
      z/OS UNIX System Services application 4-335
      passing information to a job 1-22
      passing information to a job or started task 4-330
      replacing the current sysplex root file system 4-363
      stopping a PFS through an LFS interface 4-363
      stopping a TFS (temporary file system) running in a
colony address space 4-365
      summary table 4-2
TSO/VTAM time sharing
  modifying 4-335
z/OS UNIX initiators
  shut down 4-338, 4-361
z/OS UNIX System Services 4-362
z/OS UNIX Threads
  terminate 4-338, 4-361
MONITOR command
  complete syntax 4-371
  example 4-372
  scope in a sysplex 4-371
  summary table 4-2
  to track terminal user 1-21
  tracking a job 1-10
MONITOR command>
  monitoring facility
    recovery
      channel subsystem 1-61
MOUNT attribute 1-30
MOUNT command
  complete syntax 4-373
  example 4-374
  scope in a sysplex 4-373
  summary table 4-2
MOUNT command>
  4-373
mount tape drive
  with a partitionable processor 4-51

Index X-13
move
  online or offline
    central storage sections  4-48
    channel path  4-48, 4-52
    processor  4-48
MPFLSTxx member of SYS1.PARMLIB  3-43
multiple-console
  configuration  3-2
  support
    for MCS console  3-2
multiprocessor
  non-partitionable
    RSU parameter  2-7
    RSU parameter
      recommended value  2-7
    terminating error
      CPU  1-55
MVS message service (MMS)
  changing  4-415
  parameter
    changing  4-410
    SET command  4-415
  starting  4-415
  stopping  4-415

N
NAME parameter
  in PROGxx parmlib member  4-493
NAME parameter in SETALLOC  4-425
NAMEIN on DISPLAY command  4-194
NIP (nucleus initialization program) completion  3-19
NIP console  1-7
  definition  1-2
no-match
  for SLIP trap  4-569
NODUMP dump mode  4-27
nonconversational mode
  enter command with selector pen  3-13
  entering command assigned to PFK  3-11
  message deletion  4-74
    cancelling  4-74
    PFK  4-71
    PFK (program function key)  3-44, 3-45
NOSCHED parameter in APPCPMxx  4-434
NQN/NONQN parameter in APPCPMxx  4-437
nucleus
  alternate
    loading  1-5
    identifier  1-5
  primary  1-6
  standard  1-6

O
OAM (Object Access Method)
  managing  4-360
  starting  4-641
  starting OAM  4-641
  starting OAM address space  4-641

X-14  z/OS V1R11.0 MVS System Commands
parameter
  job entry subsystem 1-2
  on SLIP command 4-570
parmlib
  ADYSETxx member 4-413
  APPC/MVS member
    changing 4-410
  ASCH member
    changing 4-410
  CEAPRM member
    changing 4-410
  CEEPROM member
    changing 4-410
  CNGRP member
    changing 4-410
  CONSOLxx member
    AMRF parameter 4-64
    AREA parameter 4-59
    CON parameter 4-74
    CONSOLE statement MONITOR
      parameter 4-371
    DEL parameter 4-74
    INIT statement MONITOR parameter 4-371
    LEVEL parameter 4-78
    LOGLIM parameter 4-65
    MFORM parameter 4-74
    MLIM parameter 4-66
    PFK parameter 4-416
    RLIM parameter 4-66
    RNUM parameter 4-74
    RTME parameter 4-74
    SEG parameter 4-74
    UEXIT parameter 4-68
    USE parameter 4-77
  DIAGxx member
    selecting through DIAG=xx 4-414
  GRSRNLxx member
    selecting GRS resource name list 4-414
  IEAOPTxx member 4-416
  IEClOxx member 4-451
  IGDSMSxx member
    selecting through SMS=xx 4-418
  MMSLSTxx member
    selecting through MMS=xx 4-415
  MSGFLDxx member 4-416
  PFKTABxx member
    changing 4-416
  PROGxx member
    changing 4-487
    selecting through PROG=xx 4-417
  SMFPRMxx member 4-418, 4-505
Parmlib IECIOSxx member
  I/O device time interval 1-62
  path
    varying online or offline 4-695
PD command
  See PAGEDEL command
PER (program event recording) event
  trap 4-569
PER trap
  dynamic PER traps 4-573
  monitor with checkpoint/restart 4-573
PER trap (continued)
  set 4-570
performance group 4-389
PFK (program function key)
  assigning 4-72
  command
    changing 4-71, 4-72
    defining 4-71, 4-72
    conversational mode 4-71
    defining a command 3-44, 3-45
    definition error 3-9
    display command defined for 3-10
    display line on console 3-4
    display on 3277-2 display station 3-12
    displaying number
      3277-2 display station 4-62
      in conversational mode 3-44, 3-45
      initial definition 3-9
      keyboard 3-3
      nonconversational mode 4-71
      system installation definition 3-9
      table
        assigning 4-72
        defining 4-71
        use to enter command 3-9
  PFK (program function key) parameter 3-46
  PFK (program function key) table
    defining 3-46
    definition 3-44, 3-46
    description 3-46
    PFK (program function key) table 3-46
  PFK display line
    example 3-4
  PFK table
    display definition 3-10
  PFKTABxx member of SYS1.PARMLIB
    changing 3-46
    description 3-46
    example 3-10
    PFK (program function key) parameter 3-46
  PFS (physical file system)
    stopping a PFS through an LFS interface 4-363
    physical reconfiguration
      hardware unit 2-2
    physically partitioned mode
      RSU parameter
        recommended value 2-7
  PID on DISPLAY command 4-194
  place
    channel path online or offline 4-51
    processor online or offline 4-49
    storage online or offline 4-49, 4-50
    pointer in indirect addressing 4-563
  POLICY parameter in SETALLOC 4-426, 4-427, 4-428, 4-431
  POLICYNW parameter in SETALLOC 4-428, 4-429
  PPT (program properties table)
    effects of the SET SCH command 4-418
    modifying 4-418
    previous command
      retrieve 3-7
PRIM_ORG parameter in SETALLOC 4-424
primary nucleus 1-6
PRIMARY parameter in SETALLOC 4-423
primary SMF data set 1-25
print the system log 3-48
procedure
   started task 1-24
process resource / system manager (PR/SM)
   SETXCF command 4-545
   XCF PR/SM policy 4-545
processor
   placing online or offline 4-49
   reconfiguring 4-49
product enablement policy
   changing 4-410, 4-416
   display 4-214
program function keyboard
   description 3-3
PRSMPOLICY option
   SETXCF command 4-545
PSTIMER parameter in APPCPMxx 4-435
PSW (program status word) 1-6, 1-18

Q
quiesce
   global resource serialization system 4-694
   system 1-51
QUIESCE command 1-18, 1-51
   complete syntax 4-381
   summary table 4-2
quiesce status
   meaning 4-703
   data set 4-706
   DFSMStvs instance 4-706

R
R command
   See REPLY command
RACF (Resource Access Control Facility)
   summary of the MVS command profile 3-27
REALSTORAGE parameter in CUNUNIxx 4-534
reconfiguration
   central processor 2-3
   central storage 2-4, 2-8
   channel path 2-8
   coupling facility 2-10
   failing device
      recovery 1-65
   hardware unit
      adding 2-1
      logical 2-2
      physical 2-2
      removing 2-1
   I/O device 2-9
ICRF (Integrated Cryptographic Feature) 2-3
   processor type 2-2
reconfigure
   channel path 4-51
   DDR (dynamic device reconfiguration) 1-50
reconfigure (continued)
   I/O device 4-688
   I/O path 4-695
   processor 4-49
   storage 4-49, 4-50
record
   system event 1-26
recovery
   action 1-70
   error 1-29
   from inactive console condition 3-15
   hardware 1-52
   hot I/O 1-31
   operating system 1-52
Recovery
   I/O
      hung 1-65
   REDIRECTED_TAPE parameter in SETALLOC 4-425
REFRPORT option
   display 4-221
registered product
   display 4-214
remove
   channel path 4-52
   last path to allocated, TP, in-use, or reserved
device 4-52
   last path to allocated, TP, in-use, reserved device, or
coupling facility 4-52
   last path to coupling facility 4-52
tape or DASD volume 4-669
replacing the current sysplex root file system
   z/OS Unix System Services 4-363
REPLY command 4-382
   complete syntax 4-383
dump option
   specifying 4-284
   example 4-383
   scope in a sysplex 4-383
   SET command 4-384
   short form 4-383
   specifying system symbols 4-382
   summary table 4-2
to invoke automatic restart 1-23
reserve a volume 1-30
reset
   dump options to initial value 4-34
   dump type to ADD 4-34
   system dump options list 4-28
RESET command 4-389
   changing performance group 4-390
   changing service class 4-390
   example 4-392
   forcing hung MCS console offline 4-389
   quiesce problem job or address space 4-390
   resume quiesced job or address space 4-390
   scope in a sysplex 4-389
   summary table 4-2
RESET on DISPLAY command 4-195
RESET parameter
   SET command 4-417
   resource allocation 1-29

X-16  z/OS V1R11.0 MVS System Commands
resource states
  changing with MODIFY command 4-366
resources
dump
  adding 4-302
  deleting 4-306, 4-307
response
  blank screen 3-16
  console message backup 3-16
  error message 3-16
  hardware error 3-15
  inactive console condition 3-15
  locked keyboard 3-16
  WTO buffer shortage 3-17
  WTOR buffer shortage 3-19
restart
  automatic 1-23
  deck 1-23
  deferred 1-23
  global resource serialization ring 4-694
  job 1-22
  SMF (system management facilities) 1-26
  system 1-19
  using 1-18
  RESTART key 1-19
restore
  screen after hardware error 3-16
restrictions
  Define PC command 4-395
  DFSMSStvs, VARY SMS command 4-706
  DISPLAY SMS command
    LISTDRI keyword 4-239
  GRSRNL= parameter 4-415
retained action
  message
    deleting 4-60
  retained immediate
  message
    deleting 4-60
retention facility
  action message
    activating 4-64
    cancelling 4-64
    changing 4-64
    deactivating 4-64
    deleting 4-61
    displaying status 4-64
retrieve previous command 3-7
RLSABOVETHEBARMAXPOOLSIZE parameter
  SETSMS command 4-514
RLSE parameter in SETALLOC 4-425
RLSFIXEDPOOLSIZE parameter
  SETSMS command 4-514
RLSINIT parameter
  SETSMS command 4-513
RMAX value
  effect on short form of REPLY command 4-383
roll mode
  message deletion
    assigning 4-74
    defining 4-74
roll-deletable mode
  message deletion
    assigning 4-74
    defining 4-74
roll-deletable mode of message deletion
  on message stream console 3-35
ROUND parameter in SETALLOC 4-424
ROUTE command
  complete syntax 4-395, 4-398
  example 4-399
  specifying system symbols 4-397
  summary table 4-2
  system-to-system
    directing 4-395
routing
  message 3-38
    by routing code 3-38, 4-674
routing code
  assigning to a console 3-38, 4-674
  description 3-38
  displaying routing codes not assigned to any
  console 3-39
  for hardcopy message set 4-685
routing codes 4-123
  listing 3-38
rRequirements
  SETSMS parameter 4-507
RRS (resource recovery services)
  starting 4-641
RSU parameter
  example 2-5
  recommended value 2-6

S
S command
  See START command
SCDS parameter
  SETSMS command 4-509
SCHED parameter in APPCPMxx 4-434
SCHEDxx parmlib member 4-660
scratch volume 1-30, 1-31
screen
  erasing 4-63
  screen area
    L= operand 3-5
    on console of different operating mode 3-3
screen character
  description 3-6
SD command
  See SETDMN command
SDSN_WAIT statement in SETALLOC 4-426
SDUMP dump type 4-27
SE command
  See SEND command
secondary console
  placing online or offline 4-686
SECONDARY parameter in SETALLOC 4-423
secondary SMF data set 1-25
selector pen
  defining a command 3-44
selector pen (continued)
description 3-3
center command 3-12
center command in conversational mode 3-13
center command in nonconversational mode 3-13
use 3-7
send
message to console 4-674
SEND command
example 4-1, 4-404, 4-407, 4-409
for time-sharing communication 1-21
operator-to-operator
communication 4-403
message 4-403
scope in a sysplex 4-403
summary table 4-2
terminal user
communication 4-405
message 4-405
time-sharing user
communication 4-404
message 4-404
SEND command> 4-403
SER on DISPLAY command 4-195
service class 4-389
service processor
damage
recovery 1-55, 1-56
permanent failure 1-55
temporary failure 1-56
set
dump mode and option 4-37
SET command 4-410
complete syntax 4-412
DIAG parameter 4-414
example 3-41, 3-45, 4-419
GRSRNL parameter 4-414
MEMLIMIT operand 4-481
MMS parameter 4-415
PROG parameter 4-417
relationship to CONSOLE statement in
CONSOlx 3-21
REPLY command 4-384
RESET parameter 4-417
scope in a sysplex 4-411
SMF parameter 4-418
summary table 4-2
set time and date 1-18
SETALLOC command
complete syntax 4-422
SETAPPC command 4-433
See also SETCON command
complete syntax 4-433
SETCEE command
complete syntax 4-439
example 4-439
SETCON command 4-441
See also SETCON command
complete syntax 4-441
summary table 4-2
SETDMN command 4-443
SETDMN command (continued)
complete syntax 4-443
example 4-444
summary table 4-2
SETETR command
complete syntax 4-445
enabling 4-445
example 4-445
PORT=n 4-445
summary table 4-2
SETGRS
ENQMAXA 4-449
ENQMAXU 4-448
GRSQ 4-449
SETGRS command
CNS example 4-448
complete syntax 4-446
example 4-448
MODE=STAR 4-446
summary table 4-2
SETHS command 4-450
See also SETHS command
summary table 4-2
SETIOS command
complete syntax 4-451
example 4-459
summary table 4-2
SETLOAD command
complete syntax 4-461
example 4-461
summary table 4-2
SETLOGR command
complete syntax 4-463
example 4-466
summary table 4-2
SETLOGRC command
changing the recording medium 4-468
summary table 4-2
SETMF command
complete syntax 4-470
summary table 4-2
SETO MVSc command 4-473
syntax 4-473
SETPROG command
summary table 4-2
syntax 4-487
SETPROG EXIT command
example 4-489, 4-492
SETPROG LNKLST command
example 4-497
SETRRS ARCHIVE LOGGING command
complete syntax 4-501
SETRRS CANCEL command
complete syntax 4-502
example 4-503
SETRRS command
summary table 4-2
SETRRS SHUTDOWN command
complete syntax 4-503
example 4-504
SETRSS command
syntax 4-501

SETSMF command
complete syntax 4-505
example 4-505
summary table 4-2

SETSMS command
ACDS parameter 4-508
AKP parameter 4-508
BMFTIME parameter 4-514
CACHETIME parameter 4-514
comparison with SET SMS= 4-507
complete syntax 4-506
DINTERVAL parameter 4-514
DSSTIMEOUT parameter 4-514
INTERVAL parameter 4-514
MAXCFFEATURELEVEL parameter 4-512
parameter
incorrect combination 4-507
SCDS parameter 4-509
scope in a sysplex 4-508
summary table 4-2

SETSSI command
ACTIVATE parameter 4-523
ADD parameter 4-522
CONSNAMESPACE parameter 4-524
DEACTIVATE parameter 4-523
INITPARM parameter 4-524
INITRTN parameter 4-524
SUBNAME parameter 4-523
summary table 4-2
syntax 4-522

SETUNI command
summary table 4-2
syntax 4-525

SETXCF command
controlling XCF 4-536
PRSMPOLICY option 4-545
scope in a sysplex 4-536
summary table 4-2
syntax 4-536
XCF PR/SM policy 4-545
shared device
operator action 1-66
recovery 1-66

SHCDS parameter
DISPLAY SMS command 4-242
shortcut keys  A-1
shorthand for base/displacement in SLIP
command 4-564

SIDEINFO statement in APPCPMxx  4-438
single-image mode
RSU parameter
recommended value  2-7

SIZE parameter in SETALLOC  4-426

SL command
See SLIP command

SLIP command  4-561
complete syntax  4-561
error event SLIP trap  4-574
IF SBT PER trap  4-575

SLIP command (continued)
indirect addressing 4-563
non-PER trap  4-574
parameter relationship  4-570
SA PER trap  4-576
SAS PER trap  4-576
set effective PER trap  4-570
SET example  4-624
summary table  4-2
syntax for a PER trap  4-575

SLIP trap
instruction fetch  4-575
SAS PER  4-576
storage alteration  4-576
storage alteration by STURA  4-576
successful branch  4-575

SMF (system management facilities)  4-233

SMF (system management facility)
option
changing 4-387
replying 4-387

SMS (storage management subsystem)
ACDS
replacing 4-506
active configuration
saving 4-506
BMF record  4-514
cache control unit  4-514
CF processing  4-698
changing status of storage group or volume  4-698, 4-703
Display PDSE monitor state  4-703
Modifying processing of PDSE monitor  4-702
new configuration
activating 4-506
PDSE subsystem  4-701
placing a system-managed tape library online or offline  4-701
Releasing PDSE latches  4-702
restarting 4-418
starting 4-418
synchronization interval
changing 4-506
trace option 4-516
varying an optical drive online or offline  4-701
varying an optical library online or offline  4-701

SMS (Storage Management Subsystem)
changing status of DFSMStvs  4-705

SMS parameter
DISPLAY SMS command  4-237
SMVSAM SPHERE parameter
VARY SMS command  4-708

soft error
CPU  1-53
storage  1-56

SOM
START  4-643

SPACE statement in SETALLOC  4-423
SPEC_MNT statement in SETALLOC  4-427

special screen character
description  3-6
SRM (system resource manager)
  parameter
    changing 4-410
SSI parameter
  DISPLAY SSI command 4-254
standard nucleus 1-6
start
  Advanced Program-to-Program Communication/MVS
    (APPC/MVS) 4-635
  ASCH (APPC/MVS transaction scheduler) 4-636
  BCPII 4-639
  DLF (data lookaside facility) 4-644
  external writer 4-645
  GTF (generalized trace facility) 4-637
  job 4-631
  LLA address space 4-640
  OAM (object access method) 4-641
  RRS 4-641
  starting 4-635, 4-636
  starting APPC/MVS address space 4-635
  starting APPC/MVS transaction scheduler 4-636
  terminal control address space (TCAS) 4-643
  TSO/Virtual Telecommunications Access Method
    (TSO/VTAM) 4-643
  VLF (virtual lookaside facility) 4-644
START CEA
  START command 1-21, 1-22, 1-26, 4-631
  example 4-639, 4-651
START RRS command
  complete syntax 4-641
  example 4-642
started task
  coding 1-24
  controlling 1-24
  modifying 1-24
  passing information 1-22, 4-330
  starting 1-24
  starting from console 4-631
started tasks
  displaying status 4-175, 4-176
STARThisproc
  example 4-639, 4-651
status display
  controlled by CONFIG command 4-48
  controlled by DISPLAY command 1-10
  controlling 3-35
  halting 4-61
  printing
    halting 4-61
  updating 4-62
status display console
  defined 3-34
status display mode
  display screen for, illustration 3-4
  setting up a console 3-34
STATUS parameter
  DISPLAY SMS command 4-242
STEPNAME parameter
  SETSMS command 4-518
stop
  BCPII 4-651
  I/O on a channel path quickly with FORCE operand
    of CONFIG 4-52
  monitoring of terminal use 1-21
  OAM address space 4-652
  system 1-51
  TFS (temporary file system) running in colony
    address space 4-653
  VLF (virtual lookaside facility) 4-653
STOP command 1-21, 1-22, 1-26, 4-647
  complete syntax 4-650
  example 4-649
  summary table 4-2
stop routine 1-22
STOPMN command
  complete syntax 4-654
  example 4-654
  stopping monitoring of terminal use 1-21
  summary table 4-2
STOPTR command
  summary table 4-2
storage
  central
    reconfiguration 2-4
  error 1-56
  hard 1-57
  soft 1-56
  placing online or offline 4-49, 4-50
  reconfiguring 4-49, 4-50
storage group
  varying status 4-704
Storage Management Subsystem (SMS)
  displaying information 4-234
subchannel
  recovery 1-61
  subsystem cache 4-376
successful branch
  SLIP trap 4-575
summary of system command 4-2
SUMMARY|S on DISPLAY command 4-193
SWAP command 1-50, 4-655
  example 4-656
  summary table 4-2
SWAP operator command
  failing device
    recovery 1-65
  swapping device of unlike density 1-50
SWITCH
  varying online or offline 4-715
SWITCH command 1-26, 4-657
  complete syntax 4-657
  scope in a sysplex 4-657
  summary table 4-2
switching workload management modes
  controlling 1-21
symbolic group name 1-31
symbolic links
  in a sysplex 4-486
symbols
  in commands  1-14
syntax conventions
  how to read  4-13
SYS command authority  3-25
SYS1.BROADCAST  4-403
  contents  1-21
  message
    saving  4-407
  notice section
    deleting message  4-409
    listing  4-408
SYS1.BROADCAST data set
  managing with the SEND operator command  4-403
SYS1.DUMPxx  4-301
SYS1.NUCLEUS  1-7
SYSABEND dump type  4-27
SYSLOG (system log)  3-19, 3-48
SYSMDUMP dump type  4-27
sysplex
  BPXPRMxx VERSION statement  4-486
  scope
    CHNGDUMP command  4-28
    CONTROL command  4-59
    definition  1-11
    DISPLAY command  4-103
    MONITOR command  4-371
    MOUNT command  4-373
    REPLY command  4-383
    RESET command  4-389
    SEND command  4-403
    SET command  4-411
    SETSMS command  4-508
    SETXCFC command  4-536
    summary of commands  1-12
    SWITCH command  4-657
    UNLOAD command  4-669
    VARY command  4-671
SETOMVS AUTOMOVE parameter  4-476
SETOMVS FILESYS parameter  4-476
SETOMVS FILESYSTEM parameter  4-476
SETOMVS FROMSYS parameter  4-476
SETOMVS MOUNTPOINT parameter  4-476
SETOMVS SYSNAME parameter  4-485
sysplex failure management
  DISPLAY XCF command  4-277
  switching couple data containing sysplex failure
    management information  4-539
sysplex scope
  (continued)
    summary of commands  1-12
    SWITCH command  4-657
    UNLOAD command  4-669
    VARY command  4-671
system
  control command  3-27
  controlling  1-9
  dump options list  4-27
  error condition  3-15
  information recording
    controlling  1-25
  IODF (/O definition file)  1-4
  IPL volume  1-3
  monitoring  1-29
  operator frame  1-19
  record activity  3-46
  recovery
    controlling recording  4-328
    machine check interruption  4-328
    recovery processing  3-19
    residence volume  1-3, 1-6, 1-51
    response, lack  3-15
    restart  1-19
    stop  1-51
    trace  1-26
  system command group  3-27
    See also command group
      assigning  4-676, 4-681
  system console
    definition  1-2
  system control frame  1-3
  system failure
    message
      level  4-78
      routing  4-78
  system information request
    replying  4-383
    responding  4-383
  system log
    control  3-46
    displaying information  3-39
    message appearing  3-40
    printing  4-724
    purpose  3-48
    queuing  4-724
    starting  4-724
    stopping  4-724
  system logger
    DISPLAY XCF command  4-277
    displaying information  4-178
    must be active for START RRS command  4-641
    switching couple data containing system logger
      information  4-539
  system management facilities (SMF)
    description  1-25
  system message
    controlling  3-37
  system parameter  1-18
    entering  4-387
    replying  4-387
system parameter (continued)
    specifying 4-387
system parameter change 1-18
system parameters 1-8
system recovery
    WTOR message
        replying 4-384
system request
    WTOR message
        replying 4-384
System Security WTORs
        replying 4-384
SYSTEM statement in SETALLOC 4-431
system symbols
    in commands 1-14
system task
    starting from console 4-631
system trace 4-659
system-initiated DDR 4-656
    switching a data set 4-657
system-to-system
    ROUTE command
        directing 4-395
SYSUDUMP dump type 4-27

T
T command
    See SET command
tape
    blank 1-30
    label 1-30
    label verification 4-374
    unlabeled 1-30
tape device
    define automatically switchable 4-687
    in a sysplex 1-27
tape drive
    mounting with a partitionable processor 4-51
TAPELIB_PREF parameter in SETALLOC 4-431
tapemark 1-30
TCAS (terminal control address space) 4-335
terminal control address space (TCAS)
    start 4-643
terminal user
    communication 4-405
    message 4-405
terminate
    job 4-21
    MOUNT command 4-21
    time-sharing user 4-21
    z/OS UNIX process 4-21
terminating error
    CPU 1-54
    multiprocessor 1-55
TFS (temporary file system)
    stopping TFS running in colony address
    space 4-365, 4-653
time
    setting 4-384
time interval
    IBM-supplied default value
        changing 1-62
time zone constant 4-417
time-sharing user
    communication 4-404
    message 4-404
TIO T statement in SETALLOC 4-426
TOD (time-of-day) clock
    setting 1-8, 4-384
TPDATA parameter in APPCPMxx 4-436
TLEVEL parameter in APPCPMxx 4-436
trace
    action for a SLIP trap 4-569
    component 1-27
    master 1-26
    SMS trace option 4-516
    system 1-26
    TRACE command 1-27
    complete syntax 4-658
    example 4-664
    summary table 4-2
trace table 1-26
TRANVSAM parameter
    VARY SMS command 4-706
TRANVSAM PEERRECOVERY parameter
    VARY SMS command 4-708
trap
    of system event 4-561
TSO/E (Time Sharing Option/Extension) 1-21
    controlling 1-21
TSO/VTAM (Time Sharing Option/Virtual Telecommunications Access Method)
    start 4-643
TSO/VTAM
    time sharing
        modifying 4-335
TSO/VTAM (Time Sharing Option/Virtual Telecommunications Access Method)
    modifying 1-21
TYPEIT on DISPLAY command 4-194

U
U command
    See UNLOAD command
U on DISPLAY command 4-194
unconditional reserve
    recovery 1-67
uniprocessor
    RSU parameter
        recommended value 2-7
UNIT statement in SETALLOC 4-425
UNITAFF parameter in SETALLOC 4-425
UNIX System Services
    switching couple data containing UNIX System
    Services information 4-539
unlabeled tape 1-30
unload
    tape or DASD volume 4-669
UNLOAD command 1-30, 4-669
UNLOAD command (continued)
  complete syntax  4-669
  scope in a sysplex  4-669
  summary table  4-2
uppercase character
  use  4-1
USE attribute  1-30
USERVAR parameter in APPCPMxx  4-437
UTC (Coordinated Universal Time)  4-384

V

V command
  See VARY command
value compare in SLIP
  definition  4-595
vary
  console  4-674
  console offline  3-19
devices defined as 3270 model X  3-20
global resource serialization system  4-693
I/O device  4-688
I/O path online or offline  4-695
secondary console  4-686
SMS (DFSMStvs)  4-705
SMS (storage group or volume)  4-698, 4-703
tape device as automatically switchable  4-687
VARY CN command
  description  4-675
VARY command  1-32, 4-670
  complete syntax  4-724
  CONSOLE
      example  3-39
      example  4-682, 4-685, 4-687, 4-697, 4-719, 4-720, 4-721
HARDCPY
      example  3-47, 3-48, 3-49
  limitations with extended MCS console  4-671
  reconfiguration  2-1
  relationship to HARDCOPY statement in
      CONSOLOxx  3-22
  scope in a sysplex  4-671
SMS (storage management subsystem)  4-698, 4-703
SMS (storage management subsystem) Display
      PDSE monitor state  4-703
SMS (storage management subsystem) Modifying
      processing of PDSE monitor  4-702
SMS (storage management subsystem) PDSE
      subsystem  4-701
SMS (storage management subsystem) Releasing
      PDSE latches  4-702
SMS (storage management subsystem) storage
      group or volume  4-701
SMS placing a system-managed tape library online
      or offline  4-701
  summary table  4-2
SWITCH  4-715
VARY CN,AUTOACT=  4-674
VARY CONSOLE command
  description  4-680
VARY SMS command
  CICSVR  4-714
  CICSVR,RCDS  4-715
  DFSMStvs  4-705, 4-706
  LOG parameter  4-707
  SMVSAM SPHERE parameter  4-708
  TRANVSAM parameter  4-706
  TRANVSAM PEERRECOVERY parameter  4-708
VATLSTxx parmlib member  1-30
VERIFY_VOL statement in SETALLOCC  4-437
  virtual lookaside facility (VLF)
      starting virtual lookaside facility (VLF)  4-644
Virtual Telecommunications Access Method
      (VTAM)  4-330
      TCAS
          modifying  4-335
VIRTUAL=REAL (V=R)  1-23
VLF (virtual lookaside facility)
  defined  4-644
  starting  4-644
  stopping  4-653
  stopping VLF (virtual lookaside facility)  4-653
VOLSELMKG parameter
  SETSMS command  4-517
  volume
      mounting  1-30, 4-373
      varying volume status  4-704
VOLUME_ENQ statement in SETALLOCC  4-426
VOLUME_MNT statement in SETALLOCC  4-427
VSERVERIV on DISPLAY command  4-194

W

W command
  See WRITELOG command
wait state
  not valid  1-18
  restartable  1-18, 1-19, 1-31
WAITALLOC parameter in SETALLOCC  4-426
  warning line
      description  3-4
  wildcard
      * (asterisk)
          specified on identifier of system command  4-331
          using in operator commands  1-17
WLM (workload management)
  DISPLAY XCF command  4-277
  switching couple data containing WLM
      information  4-539
WRITELOG command  3-48, 4-724
  complete syntax  4-724
  example  4-724
  summary table  4-2
  to force printing of SYSLOG  3-48
WTL (write to log)
  buffer  4-65
  SYSLOG buffer  4-65
WTL buffer
  number allowed
      changing  4-65
WTL macro  3-48
WTL SYSLOG buffer
  number allowed
    changing  4-65
    displaying  4-65
WTO (write to operator)
  buffer
    shortage  4-73
  message
    level  4-78
    routing  4-78
  message buffer  4-66
WTO (write to operator) buffer  3-17
WTO (write-to-operator) buffer
  shortage  3-17
WTO installation exit
  IEAVMXIT
    changing  4-68
    displaying status  4-68
WTO message
  buffer limit  3-16
  controlled by installation exit IEAVMXIT  3-43
WTO message buffer
  number allowed
    changing  4-66
    displaying  4-66
WTOR (write to operator with reply)
  buffer  4-66
WTOR (write to operator with reply) buffer
  shortage  3-17
WTOR message
  buffer limit  3-16
WTOR message buffer
  number allowed
    changing  4-66
    displaying  4-66

X

XCF (cross-system coupling facility)
  switching couple data set containing XCF
  information  4-539
XCF PR/SM policy
  SETXCF command  4-545

Z

Z command
  See HALT command
z/OS Basic Skills information center xviii
z/OS UNIX System Services
  dynamically activating maintenance  4-362
Readers’ Comments — We’d Like to Hear from You

z/OS
MVS System Commands

Publication No. SA22-7627-21

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy, organization, subject matter, or completeness of this book. The comments you send should pertain to only the information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.
Submit your comments using one of these channels:
• Send your comments to the address on the reverse side of this form.
• Send your comments via e-mail to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No.

E-mail address