Contents

Figures v
Tables vii

About this document ix
Purpose of this document ix
Who should use this document ... ix
How to use this document ... ix
Where to find more information ... ix

RACF courses ix
Other sources of information ... x

Internet sources x

To request copies of IBM publications ... xi

How to send your comments to IBM xiii
If you have a technical problem ... xiii

z/OS Version 2 Release 1 summary of changes xv

Chapter 1. Introduction 1
Summary of commands and their functions ... 2

Chapter 2. Basic information for issuing RACF commands ... 7
How to enter RACF commands ... 7
 RACF TSO commands ... 7
 RACF operator commands ... 7
Command direction and automatic command direction ... 7
 RACF parameter library ... 8
 R_admin callable service ... 8
Summary of issuing options ... 8
Syntax of RACF commands and operands ... 9
Return codes from RACF commands ... 11
RACF command limits for non-base segments in RACF profiles ... 11
Installation exit routines from RACF commands ... 12
Attribute and authority summary ... 12
 Group authorities ... 13
 Access authority for data sets ... 13

Chapter 3. RACF TSO commands ... 15
How to enter RACF TSO commands ... 16
 Choosing between using RACF TSO commands and ISPF panels ... 16
 Entering RACF TSO commands in the foreground ... 17
 Entering RACF TSO commands in the background ... 18

Chapter 4. RACF operator commands 21
Rules for entering RACF operator commands ... 22

Chapter 5. RACF command syntax ... 23
 ADDGROUP (Add group profile) ... 24
 ADDSD (Add data set profile) ... 33
 ADDUSER (Add user profile) ... 48
 ALTGROUP (Alter group profile) ... 93
 ALTUSER (Alter user profile) ... 108
 CONNECT (Connect user to group) ... 187
 DELDSD (Delete data set profile) ... 195
 DELGROUP (Delete group profile) ... 199
 DELUSER (Delete user profile) ... 202
 DISPLAY (Display signed-on-from list) ... 206
 HELP (Obtain RACF help) ... 211
 LISTDSD (List data set profile) ... 213
 LISTGRP (List group profile) ... 226
 LISTUSER (List user profile) ... 235
 PASSWORD or PHRASE (Specify user password or password phrase) ... 255
 PERMIT (Maintain resource access lists) ... 261
 RACDCERT (Manage RACF digital certificates) ... 273
 RACDCERT ADD (Add certificate) ... 281
 RACDCERT ADDRING (Add key ring) ... 292
 RACDCERT ADDTOKEN (Add token) ... 294
 RACDCERT ALTER (Alter certificate) ... 296
 RACDCERT ALTMAP (Alter mapping) ... 299
 RACDCERT BIND (Bind certificate to token) ... 302
 RACDCERT CHECKCERT (Check certificate or certificate chain) ... 306
 RACDCERT CONNECT (Connect a certificate to key ring) ... 314
 RACDCERT DELETE (Delete certificate) ... 318
 RACDCERT DELMAP (Delete mapping) ... 321
 RACDCERT DELRING (Delete key ring) ... 324
 RACDCERT DELTOKEN (Delete token) ... 326
 RACDCERT EXPORT (Export certificate package) ... 328
 RACDCERT GENCERT (Generate certificate) ... 332
 RACDCERT GENREQ (Generate request) ... 348
 RACDCERT IMPORT (Import certificate) ... 351
 RACDCERT LIST (List certificate) ... 356
 RACDCERT LISTCHAIN (List certificate chain) ... 363
 RACDCERT LISTMAP (List mapping) ... 368
 RACDCERT LISTRING (List key ring) ... 371
 RACDCERT LISTTOKEN (List token) ... 374
 RACDCERT MAP (Create mapping) ... 377
 RACDCERT REKEY (Rekey certificate) ... 384
 RACDCERT REMOVE (Remove certificate from key ring) ... 392
 RACDCERT ROLLOVER (Rollover certificate) ... 394
 RACDCERT UNBIND (Unbind certificate from token) ... 398
 RACLINK (Administer user ID associations) ... 401
 RACMAP (Create, delete, list, or query a distributed identity filter) ... 408
 RACPRIV (Set write-down privileges) ... 419
 RALTER (Alter general resource profile) ... 421
 RDEFINE (Define general resource profile) ... 481

© Copyright IBM Corp. 1994, 2013
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Key to symbols in command syntax diagrams</td>
</tr>
<tr>
<td>2.</td>
<td>Sample ISPF panel for RACF</td>
</tr>
<tr>
<td>3.</td>
<td>Output for ALTUSER command for OMVS Segment</td>
</tr>
<tr>
<td>4.</td>
<td>Example 1: Output for the DISPLAY command</td>
</tr>
<tr>
<td>5.</td>
<td>Example 2: Output for the DISPLAY command</td>
</tr>
<tr>
<td>6.</td>
<td>Example 3: Output for the DISPLAY command</td>
</tr>
<tr>
<td>7.</td>
<td>Example 4: Output for the DISPLAY command</td>
</tr>
<tr>
<td>8.</td>
<td>Example 5: Output for the DISPLAY command</td>
</tr>
<tr>
<td>9.</td>
<td>Example 1: Output for the LISTDSD command</td>
</tr>
<tr>
<td>10.</td>
<td>Example 2: Output for the LISTDSD command</td>
</tr>
<tr>
<td>11.</td>
<td>Example 3: Output for the LISTDSD command</td>
</tr>
<tr>
<td>12.</td>
<td>Example 4: Output for the LISTDSD command</td>
</tr>
<tr>
<td>13.</td>
<td>Example 1: Output for LISTGRP RESEARCH</td>
</tr>
<tr>
<td>14.</td>
<td>Example 2: Output for LISTGRP *</td>
</tr>
<tr>
<td>15.</td>
<td>Example 3: Output for LISTGRP DFPADMIN DFP</td>
</tr>
<tr>
<td>16.</td>
<td>Example 4: Output for LISTGRP DFPADMIN DFP NORACF</td>
</tr>
<tr>
<td>17.</td>
<td>Example 5: Output for LISTGRP OMVSg1 OMVS NORACF</td>
</tr>
<tr>
<td>18.</td>
<td>Example 6: Output for LISTGRP NETGROUP</td>
</tr>
<tr>
<td>19.</td>
<td>Example 1: Output for LISTUSER</td>
</tr>
<tr>
<td>20.</td>
<td>Example 2: Output for LISTUSER (IBMUSER CALTMAN DAF0)</td>
</tr>
<tr>
<td>21.</td>
<td>Example 3: Output for LISTUSER DAF0 TSO</td>
</tr>
<tr>
<td>22.</td>
<td>Example 4: Output for LISTUSER NORACF TSO</td>
</tr>
<tr>
<td>23.</td>
<td>Example 5: Output for LISTUSER DAF0 TSO</td>
</tr>
<tr>
<td>24.</td>
<td>Example 6: Output for LISTUSER DAF0 DFP</td>
</tr>
<tr>
<td>25.</td>
<td>Example 7: Output for LISTUSER DAF0 NORACF CICS</td>
</tr>
<tr>
<td>26.</td>
<td>Example 8: Output for LISTUSER DAF0 NORACF LANGUAGE</td>
</tr>
<tr>
<td>27.</td>
<td>Example 9: Output for LISTUSER DAF0 NORACF OPERPARM</td>
</tr>
<tr>
<td>28.</td>
<td>Example 10: Output for listing OMVS user information</td>
</tr>
<tr>
<td>29.</td>
<td>Example 11: Output for LISTUSER CSMITH OMVS NORACF (Using Defaults)</td>
</tr>
<tr>
<td>30.</td>
<td>Example 12: Output for LISTUSER CSMITH NORACF DCE</td>
</tr>
<tr>
<td>31.</td>
<td>Example 13: Output for LISTUSER RONTOMS NORACF KERB</td>
</tr>
<tr>
<td>32.</td>
<td>Example 14: Output for LISTUSER MRSERVER PROXY NORACF</td>
</tr>
<tr>
<td>33.</td>
<td>Example 15: Output for LISTUSER Kcrove EIM NORACF</td>
</tr>
<tr>
<td>34.</td>
<td>Example 16: Output for LISTUSER indicating that the user's password and password phrase are each enveloped</td>
</tr>
<tr>
<td>35.</td>
<td>Example 17: Output for listing CSData user information</td>
</tr>
<tr>
<td>36.</td>
<td>Controlling access to RACDcert functions</td>
</tr>
<tr>
<td>37.</td>
<td>Output for the RACDcert CHECKCERT command where none of the user's certificates are in RACF</td>
</tr>
<tr>
<td>38.</td>
<td>Output for the RACDcert CHECKCERT command from an authorized issuer, only the end-entity certificate is in RACF, and it expired</td>
</tr>
<tr>
<td>39.</td>
<td>Output for the RACDcert CHECKCERT command from an authorized issuer, all the certificates are not in RACF, signature on certificate 2 is not good</td>
</tr>
<tr>
<td>40.</td>
<td>Output for the RACDcert CHECKCERT command from an authorized issuer, all the certificates are not in RACF, subject name on certificate 2 has invalid character (certificate 2 is not displayed)</td>
</tr>
<tr>
<td>41.</td>
<td>Output for the RACDcert LIST command showing an assigned PKDS label (based on RACDcert GENCERT: Example 2)</td>
</tr>
<tr>
<td>42.</td>
<td>Output for the RACDcert LIST command showing a PKDS label that is derived from a specified certificate label (based on RACDcert ADD: Example 2)</td>
</tr>
<tr>
<td>43.</td>
<td>Output for the RACDcert LIST command specifying the certificate by label</td>
</tr>
<tr>
<td>44.</td>
<td>Output for the RACDcert LIST command listing all certificates owned by the command issuer</td>
</tr>
<tr>
<td>45.</td>
<td>Output for the RACDcert LIST command showing a CERTAUTH certificate</td>
</tr>
<tr>
<td>46.</td>
<td>Output for the RACDcert LIST command showing a UTF-8 or BMP character that does not map to the IBM-1047 code page</td>
</tr>
<tr>
<td>47.</td>
<td>Output for the RACDcert LIST command for a certificate with an NIST ECC private key</td>
</tr>
<tr>
<td>48.</td>
<td>Output for the RACDcert LIST command for a certificate with a Brainpool ECC private key that is stored in the PKDS</td>
</tr>
<tr>
<td>49.</td>
<td>Output for the RACDcert LISTCHAIN command showing all the certificates (based on RACDcert LISTCHAIN: Example 1)</td>
</tr>
<tr>
<td>50.</td>
<td>Output for the RACDcert LISTCHAIN command showing all the certificates, there are expired and NOTRUST certificates (based on RACDcert LISTCHAIN command: Example 2)</td>
</tr>
<tr>
<td>51.</td>
<td>Output for the LISTMAP command</td>
</tr>
</tbody>
</table>
Tables

1. Functions of RACF commands 2
2. How the RACF commands can be issued 8
3. Suggested generic profiles (resources in the CSFKEYS class) that authorize access to ICSF keys based on RACDCERT function and key attributes ... 276
4. Suggested generic profiles (resources in the CSFKEYS class) that authorize access to ICSF keys based on CONNECT attributes 277
5. Authority required for the RACDCERT ADD function 286
6. Authority required for the RACDCERT ADDRING function 292
7. Authority required for the RACDCERT ALTER function 296
8. Authority required for the RACDCERT ALTMAP function 299
9. Authority required for the RACDCERT BIND function 303
10. Authority required for the RACDCERT CHECKCERT function 307
11. Authority required for the RACDCERT CONNECT function—Connecting to your own key ring 314
12. Authority required for the RACDCERT CONNECT function—Connecting to another user's key ring 315
13. Authority required for the RACDCERT DELETE function 319
14. Authority required for the RACDCERT DELMAP function 321
15. Authority required for the RACDCERT DELRING function 324
16. Authority required for the RACDCERT EXPORT function 329
17. Logic for the subjectKeyIdentifier extension for GENCERT 332
18. Logic for the authorityKeyIdentifier extension for GENCERT 332
19. Logic for the keyUsage extension for GENCERT 332
20. Logic for the basicConstraints extension for GENCERT 333
21. Logic for the subjectAltName extension for GENCERT 333
22. Logic for the issuerAltName extension for GENCERT 333
23. Authority required for the RACDCERT GENCERT function 335
24. Authority required for the RACDCERT GENREQ function 349
25. Authority required for the RACDCERT IMPORT function 352
26. Authority required for the RACDCERT LIST function 357
27. Authority required for the RACDCERT LISTMAP function 368
28. Authority required for the RACDCERT LISTRING function 371
29. Authority required for the RACDCERT LISTTOKEN function 374
30. Authority required for the RACDCERT MAP function 377
31. Authority required for the RACDCERT REKEY function 385
32. Authority required for the RACDCERT REMOVE function 392
33. Authority required for the RACDCERT ROLLOVER function 395
34. Authority required for the RACMAP command 409
35. Valid values or value range for the MAXLENGTH keyword, based on data type 447
36. Valid values or value range and default values for the MAXLENGTH attribute, based on data type 510
37. Callable services and associated function numbers 603
38. Type of output displayed when you specify LIST with the following TARGET options 668
39. Generic naming for data sets 683
40. Generic naming for data sets with enhanced generic naming inactive—Asterisk at the end 684
41. Generic naming for data sets with enhanced generic naming inactive—Asterisk or percent sign in the middle 684
42. Generic data set profile names created with enhanced generic naming active—Asterisk and double asterisk at the end 685
43. Generic data set profile names created with enhanced generic naming active—Asterisk, double asterisk, or percent sign in the middle 685
44. After deactivating EGN—Asterisk and double asterisk at the end 686
45. After deactivating EGN—Asterisk and percent sign in the middle 686
46. After deactivating EGN—Asterisk and double asterisk at the end 686
47. Generic naming for general resources 688
48. Generic naming for general resources—Percent sign, asterisk, or double asterisk at the beginning 688
49. Generic naming for general resources—Asterisk or double asterisk at the end 689
50. Generic naming for general resources—Asterisk, double asterisk, or percent sign in the middle 690
51. Permitting profile names containing asterisks (*) 690
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>52.</td>
<td>Permitting profile names containing percent signs (%)</td>
</tr>
<tr>
<td>53.</td>
<td>Commands to administer shared file system (SFS) profiles</td>
</tr>
<tr>
<td>54.</td>
<td>Resource classes for z/OS systems</td>
</tr>
<tr>
<td>55.</td>
<td>Resource classes for z/VM systems</td>
</tr>
</tbody>
</table>
About this document

This document supports z/OS (5650-ZOS) and contains information about Resource Access Control Facility (RACF), which is part of z/OS Security Server.

Purpose of this document

This document describes the syntax and the functions of the commands for RACF®. The commands are presented in alphabetical order, and the operands within each command description are presented alphabetically. Exceptions occur where operands are positional, where alternative operands are grouped together or wherever alternative operand grouping is more practical for easier understanding.

The appendixes of this document contain information on generic and discrete profiles for data sets and general resources, as well as a list of the RACF classes.

Who should use this document

This document is intended for RACF-defined users who are responsible for creating, updating, or maintaining the profiles for users, groups, data sets, and general resources in the RACF database.

Readers must be familiar with the RACF concepts and terminology. Many RACF functions also require you to understand the more detailed descriptions in z/OS Security Server RACF Security Administrator’s Guide.

How to use this document

• If you want a concise list of all the RACF commands, see Chapter 1, “Introduction,” on page 1.
• If you need a general discussion on entering RACF commands, see Chapter 2, “Basic information for issuing RACF commands,” on page 7.
• If you need information on how to read syntax diagrams, see “Syntax of RACF commands and operands” on page 9.
• If you want information about entering a RACF command as a RACF TSO command, see Chapter 3, “RACF TSO commands,” on page 15.
• If you want information about entering a RACF command as a RACF operator command, see Chapter 4, “RACF operator commands,” on page 21.
• If you know the command you want to enter, but are unsure of the syntax, see the chapter that documents the appropriate command.

Where to find more information

Where necessary, this document references information in other documents. For complete titles and order numbers for all elements of z/OS®, see z/OS Information Roadmap.

RACF courses

The following RACF classroom courses are available in the United States:

ES191 Basics of z/OS RACF Administration
IBM® provides various educational offerings for RACF. For more information about classroom courses and other offerings, do any of the following:

- See your IBM representative
- Call 1-800-IBM-TEACH (1-800-426-8322)

Other sources of information

IBM provides customer-accessible discussion areas where RACF may be discussed by customer and IBM participants. Other information is also available through the Internet.

Internet sources

The following resources are available through the Internet to provide additional information about the RACF library and other security-related topics:

- **Online library**
 To view and print online versions of the z/OS publications, use this address: http://www.ibm.com/systems/z/os/zos/bkserv/

- **Redbooks®**
 The documents known as IBM Redbooks that are produced by the International Technical Support Organization (ITSO) are available at the following address: http://www.redbooks.ibm.com

- **Enterprise systems security**
 For more information about security on the S/390® platform, OS/390®, and z/OS, including the elements that comprise the Security Server, use this address: http://www.ibm.com/systems/z/advantages/security/

- **RACF home page**
 You can visit the RACF home page on the World Wide Web using this address: http://www.ibm.com/systems/z/os/zos/features/racf/

- **RACF-L discussion list**
 Customers and IBM participants may also discuss RACF on the RACF-L discussion list. RACF-L is not operated or sponsored by IBM; it is run by the University of Georgia.
 To subscribe to the RACF-L discussion and receive postings, send a note to:

 listserv@listserv.uga.edu

 Include the following line in the body of the note, substituting your first name and last name as indicated:

 subscribe racf-l first_name last_name

 To post a question or response to RACF-L, send a note, including an appropriate Subject: line, to:

 racf-l@listserv.uga.edu

- **Sample code**
 You can get sample code, internally-developed tools, and exits to help you use RACF. This code works in our environment, at the time we make it available, but is not officially supported. Each tool or sample has a README file that describes the tool or sample and any restrictions on its use.
To access this code from a Web browser, go to the RACF home page and select the “Resources” file tab, then select “Downloads” from the list, or go to http://www-03.ibm.com/systems/z/os/zos/features/racf/goodies.html.

The code is also available from ftp.software.ibm.com through anonymous FTP. To get access:

1. Log in as user anonymous.
2. Change the directory, as follows, to find the subdirectories that contain the sample code or tool you want to download:

 cd eserver/zseries/zos/racf/

An announcement will be posted on the RACF-L discussion list whenever something is added.

Note: Some Web browsers and some FTP clients (especially those using a graphical interface) might have problems using ftp.software.ibm.com because of inconsistencies in the way they implement the FTP protocols. If you have problems, you can try the following:

- Try to get access by using a Web browser and the links from the RACF home page.
- Use a different FTP client. If necessary, use a client that is based on command line interfaces instead of graphical interfaces.
- If your FTP client has configuration parameters for the type of remote system, configure it as UNIX instead of MVS™.

Restrictions

Because the sample code and tools are not officially supported,

- There are no guaranteed enhancements.
- No APARs can be accepted.

To request copies of IBM publications

Direct your request for copies of any IBM publication to your IBM representative or to the IBM branch office serving your locality.

There is also a toll-free customer support number (1-800-879-2755) available Monday through Friday from 8:30 a.m. through 5:00 p.m. Eastern Time. You can use this number to:

- Order or inquire about IBM publications
- Resolve any software manufacturing or delivery concerns
- Activate the program reorder form to provide faster and more convenient ordering of software updates
How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and completeness of the information or provide any other feedback that you have.

Use one of the following methods to send your comments:

1. Send an email to mhvrcks@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:
 IBM Corporation
 Attention: MHVRCFS Reader Comments
 Department H6MA, Building 707
 2455 South Road
 Poughkeepsie, NY 12601-5400
 US
4. Fax the comments to us, as follows:
 From the United States and Canada: 1+845+432-9405
 From all other countries: Your international access code +1+845+432-9405

Include the following information:
• Your name and address.
• Your email address.
• Your telephone or fax number.
• The publication title and order number:
 z/OS V2R1.0 Security Server RACF Command Language Reference
 SA23-2292-00
• The topic and page number that is related to your comment.
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute the comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the issues that you submit.

If you have a technical problem

Do not use the feedback methods that are listed for sending comments. Instead, take one of the following actions:
• Contact your IBM service representative.
• Call IBM technical support.
• Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/systems/z/support/).
z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1 (V2R1):

- z/OS Migration
- z/OS Planning for Installation
- z/OS Summary of Message and Interface Changes
- z/OS Introduction and Release Guide
Chapter 1. Introduction

The profiles in the RACF database contain the information RACF needs to control access to resources. The RACF commands allow you to add, change, delete, and list the profiles for:

- Users
- Groups
- Data sets
- General resources, which include terminals, DASD volumes, and all other resource classes defined in the RACF class descriptor table (CDT).

Table 1 on page 2 shows, in alphabetic order, each command, and its function.

Most RACF functions do not require special versions or releases of the operating system or operating system components. However, some do require that your system be at a certain level. If you are unsure about whether a particular RACF function is available with your system, see your security administrator.

Some commands require that the RACF subsystem be active or that you have authorization to issue the commands. Refer to the “Authorization Required” section with each command for details on the authorization required.

The following RACF commands are available only on RACF for VM:

- ADDFILE
- ADDDIR
- ALTFILE
- ALTDIR
- DELFILE
- DELDIR
- LFILE
- LDIRECT
- PERMFILE
- PERMDIR
- SFILE
- SRDIR

See the appropriate RACF Command Language Reference for your VM system for more information.

Note: In data sharing mode or read-only mode, RACF employs global ENQs to serialize access to the RACF database before adding or removing protection from a resource. Otherwise—unless the installation has explicitly converted to GRS—RACF uses hardware RESERVE/RELEASE.
Introduction

Summary of commands and their functions

RACF commands allow you to list, modify, add, and delete profiles for users, groups, connect entries, and resources. Table 1 shows, in alphabetic order, each of the commands and its functions.

Table 1. Functions of RACF commands

<table>
<thead>
<tr>
<th>RACF command</th>
<th>Command functions</th>
</tr>
</thead>
</table>
| ADDGROUP | • Define one or more new groups as a subgroup of an existing group.
 • Specify a model data set profile for a group.
 • Add a custom field for a group.
 • Define default DFP information for a group.
 • Define the z/OS UNIX information for a group.
 • Define a group as a universal group. |
| ADDSD | • RACF-protect one or more existing data sets.
 • RACF-define one or more data sets brought from another system where they were RACF-protected.
 • RACF-define generic data set profiles.
 • Create a new data set model profile. |
| ADDUSER | • Define one or more new users and connect the users to their default connect group.
 • Define a password, or a password and password phrase, for one or more users.
 • Specify a model data set profile for a user.
 • Add a custom field for a user.
 • Specify information related to one or more segments, such as the TSO and OMVS segments, of the user profile. |
| ALTDSD | • Change one or more discrete or generic data set profiles.
 • Protect a single volume of a multivolume, non-VSAM DASD data set.
 • Remove protection from a single volume of a multivolume, non-VSAM DASD data set. |
| ALTGROUP | • Change information in one or more group profiles (such as the superior group, owner, or model profile name).
 • Change or delete a custom field for a group.
 • Change or delete the default DFP information for a group.
 • Add, change, or delete information for the z/OS UNIX group. |
| ALTUSER | • Change information in one or more user profiles (such as the owner, universal access authority, or security level).
 • Revoke or reestablish one or more users’ privileges to access the system.
 • Specify logging of information about the user, such as the commands the user issues.
 • Change the password or password phrase for one or more users.
 • Add, change, or delete information related to one or more segments, such as the TSO and OMVS segments, of the user profile. |
| CONNECT | • Connect one or more users to a group.
 • Modify one or more users' connection to a group.
 • Revoke or reestablish one or more users’ privileges to access the system. |
| DELDSD | • Delete one or more discrete or generic data set profiles.
 • Delete a discrete data set profile for a tape data set, while retaining the data set name in the TVTOC.
 • Remove a data set profile, but leave the data set RACF-indicated, when moving a RACF-protected data set to another system that has RACF. |
| DELGROUP | • Delete one or more groups and their relationship to the superior group. |
| DELUSER | • Delete one or more users and remove all of their connections to RACF groups. |
| DISPLAY | • Display users signed on to a RACF subsystem. |
| HELP | • Display the function and proper syntax of RACF commands. |
Introduction

Table 1. Functions of RACF commands (continued)

<table>
<thead>
<tr>
<th>RACF command</th>
<th>Command functions</th>
</tr>
</thead>
</table>
| LISTDSD | • List the details of one or more discrete or generic data set profiles, including the users and groups authorized to access the data sets.
• Determine the most specific matching generic profile for a data set.
• Perform a local refresh of generic DATASET profiles. |
| LISTGRP | • List the details of one or more group profiles, including the users connected to the group.
• List only the information contained in a specific segment (for example, OMVS or CSDATA) of the group profile.
• Display limited information if the group is a UNIVERSAL group. |
| LISTUSER | • List the details of one or more user profiles, including all of the groups to which each user is connected.
• List only the information contained in a specific segment (for example, OMVS or CSDATA) of the user profile. |
| PASSWORD or PHRASE | • Change your own user password or password phrase.
• Change one or more users’ change interval for passwords and password phrases.
• Reset one or more user passwords to their default values. |
| PERMIT | • Give or remove authority to access a resource to specific users or groups.
• Change the level of access authority to a resource for specific users or groups.
• Copy the list of authorized users from one resource profile to another.
• Delete an existing access list. |
| RACDCERT | • List information about the certificates for a specified RACF-defined user ID, or your own user ID.
• Add a certificate and associate it with a specified RACF-defined user ID, or your own user ID, and set the TRUST status.
• Check to see if a certificate has been defined to RACF.
• Alter the TRUST status or label for a certificate.
• Delete a certificate.
• List a certificate or a chain of certificates contained in a data set and determine if it is associated with a RACF-defined user ID.
• Add or remove a certificate from a key ring.
• Create, delete, or list a key ring.
• Generate a public/private key pair and certificate, replicate a digital certificate with a new public/private key pair, or retire the use of an existing private key.
• Write (export) a certificate or certificate package to a data set.
• Create a certificate request.
• Create, alter, delete, or list a certificate name filter (user ID mapping).
• Add, delete, or list a z/OS PKCS #11 token.
• Bind a certificate to a z/OS PKCS #11 token.
• Remove (unbind) a certificate from a z/OS PKCS #11 token.
• Import a certificate (with its private key, if present) from a z/OS PKCS #11 token and add it to RACF. |
| RACLINK | • Define, approve, and delete (undefine) a user ID association.
• List information related to a user ID association.
• Establish password synchronization between user IDs. |
| RACMAP | • Create an association between a distributed user identity and a RACF user ID.
• Define, delete, list, and query a distributed identity filter. |
| RACPRIV | • List, activate, and inactivate the user’s write-down setting.
• Reset the user’s write-down setting to the installation-defined default. |
| RALTER | • Change the discrete or generic profiles for one or more resources whose class is defined in the class descriptor table.
• Define, change, or delete attributes for classes in the dynamic class descriptor table.
• Maintain the global access checking table.
• Maintain security categories and security levels.
• Define, change, or delete information related to one or more segments of a general resource profile. |
Table 1. Functions of RACF commands (continued)

<table>
<thead>
<tr>
<th>RACF command</th>
<th>Command functions</th>
</tr>
</thead>
</table>
| RDEFINE | • RACF-protect by a discrete or generic profile any resource whose class is defined in the class descriptor table.
• Define attributes for classes in the dynamic class descriptor table.
• Define entries in the global access checking table.
• Define security categories and security levels.
• Define information related to one or more segments of a general resource profile. |
| RDELETE | • Remove RACF-protection from one or more resources whose class is defined in the class descriptor table.
• Delete the global access checking tables.
• Delete the security category and security level tables.
• Delete a class from the list of classes for which RACF saves RACLISTed results on the RACF database. |
| REMOVE | • Remove one or more users from a group and assign a new owner for any group data sets owned by the users. |
| RESTART | • Restart a function in the RACF subsystem address space.
• Restart the connection to a specific member system on a multisystem node. |
| RLIST | • List the details of discrete or generic profiles for one or more resources whose class is defined in the class descriptor table.
• List the contents of one or more segments of a general resource profile.
• Perform a local refresh of generic general resource profiles. |
| RVARY | • Dynamically deactivate and reactivate the RACF function.
• Dynamically deactivate and reactivate the RACF primary and backup database.
• Switch the primary and backup RACF databases.
• Deactivate resource protection, for any resource whose class is defined in the class descriptor table, while RACF is deactivated.
• Select operational mode when RACF is enabled for sysplex communication. |
| SEARCH | • Obtain a list of RACF profile names that meet the search criteria for a class of resources, users, or groups. These profile names can then be displayed on your terminal.
– Profile names that contain a specific character string
– Profiles for resources that have not been referenced for more than a specific number of days
– Profiles that RACF recognizes as model profiles
– Data set and general resource profiles that contain a level equal to or greater than the level you specify
– User and resource profiles that contain a security label that matches the security label you specify.
– User and resource profiles that contain a security level that matches the security level that you specify.
– User and resource profiles that contain an access category that matches the access category that you specify.
– User profiles that contain an OMVS UID equal to the UID you specify.
– Group profiles that contain an OMVS GID equal to the GID you specify.
– Profiles for tape volumes that contain only data sets with an expiration date that matches the criteria you specify.
– Profiles for data sets that reside on specific volumes (or VSAM data sets that are cataloged in catalogs on specific volumes).
– Profiles for tape data sets, non-VSAM DASD data sets, or VSAM data sets.
• Format the selected profile names with specific character strings into a series of commands or messages and retain them in a CLIST data set.
• Create a CLIST of the RACF profile names that meet a search criteria for a class of resources.
<table>
<thead>
<tr>
<th>RACF command</th>
<th>Command functions</th>
</tr>
</thead>
</table>
| **SET** | List information related to RACF remote sharing facility (RRSF) on the local node.
 | List the value for the template version following the FMID/APAR value.
 | Specify the name of a member of the RACF parameter library to be processed by RACF.
 | Enable and disable tracing for specified events.
 | Specify options for automatic command direction.
 | Improve performance of generic profiles by specifying GENERICANCHOR options.
| **SETROPTS** | Dynamically set system-wide options relating to resource protection, specifically:
 | Choose the resource classes that RACF is to protect.
 | Gather and display RACF statistics.
 | Set the universal access authority (UACC) for terminals.
 | Specify logging of certain RACF commands and events.
 | Permit list-of-groups access checking.
 | Display options currently in effect.
 | Enable or disable generic profile checking on a class-by-class basis.
 | Control user password syntax rules.
 | Activate checking for previous passwords and password phrases.
 | Limit unsuccessful attempts to access the system using incorrect passwords and password phrases.
 | Control maximum and minimum change intervals for passwords and password phrases.
 | Control mixed-case passwords.
 | Warn of password expiration.
 | Control global access checking for selected individual resources or generic names with selected generalized access rules.
 | Set the passwords for authorizing use of the RVARY command.
 | Initiate refreshing of in-storage generic profile lists and global access checking tables.
 | Enable or disable shared generic profiles for general resources in common storage.
 | Enable or disable shared profiles through RACLIST processing for general resources.
 | Activate or deactivate auditing of access attempts to RACF-protected resources based on installation-defined security levels.
 | Activate enhanced generic naming.
 | Control the use of automatic data set protection (ADSP).
 | Activate profile modeling for GDG, group, and user data sets.
 | Activate protection for data sets with single-level names.
 | Control logging of real data set names.
 | Control the job entry subsystem (JES) options.
 | Activate tape data set protection.
 | Control whether or not data sets must be RACF-protected.
 | Control the erasure of scratched DASD data sets.
 | Activate program control.
 | Control whether a profile creator's user ID is automatically added to the profile's access list.
 | Make the name of the local RACF registry available to EIM services.
 | Control use of the dynamic class descriptor table.
 | Control multilevel security options.
| **SIGNOFF** | Sign off users from a RACF subsystem.
| **STOP** | Stop the RACF subsystem address space.

Table 1. Functions of RACF commands (continued)

<table>
<thead>
<tr>
<th>RACF command</th>
<th>Command functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TARGET</td>
<td>• List the operational and network protocol attributes of one or more RRSF nodes.</td>
</tr>
<tr>
<td></td>
<td>• Add or modify an RRSF node.</td>
</tr>
<tr>
<td></td>
<td>• Convert a remote RRSF node from one network protocol to another.</td>
</tr>
<tr>
<td></td>
<td>• Add a network protocol or modify protocol attributes for an RRSF node.</td>
</tr>
<tr>
<td></td>
<td>• Activate or inactivate an RRSF node or a protocol instance for an RRSF node.</td>
</tr>
<tr>
<td></td>
<td>• Specify a prefix and other attributes for the workspace data sets allocated and used by each RRSF node.</td>
</tr>
<tr>
<td></td>
<td>• Purge a workspace data set for an RRSF node.</td>
</tr>
<tr>
<td></td>
<td>• Delete an RRSF node or a protocol instance for an RRSF node.</td>
</tr>
</tbody>
</table>
Chapter 2. Basic information for issuing RACF commands

You can use the RACF commands to add, modify, or delete RACF profiles and to define system-wide options. Before you can issue a RACF command, you must be defined to RACF with a sufficient level of authority.

How to enter RACF commands

There are several ways to enter RACF commands.

RACF TSO commands

Some RACF commands can be entered as RACF TSO commands. For information on entering RACF commands as RACF TSO commands, see Chapter 3, “RACF TSO commands,” on page 15. For a complete list of which RACF commands can be entered as RACF TSO commands, see Table 2 on page 8.

RACF operator commands

Some RACF commands can be entered as RACF operator commands. For information on entering RACF commands as RACF operator commands, see Chapter 4, “RACF operator commands,” on page 21. For a complete list of which RACF commands can be entered as RACF operator commands, see Table 2 on page 8.

Command direction and automatic command direction

With command direction, some RACF commands can be directed to run under the authority of a user ID on a remote node, or the same node. Use the AT keyword on your command for command direction. For information on command direction, see z/OS Security Server RACF Security Administrator’s Guide. For information on the AT keywords, see the eligible command descriptions. For a complete list of RACF commands that are eligible for command direction, see Table 2 on page 8.

A failure might occur while attempting to execute a command issued on one (uplevel) system and manually or automatically directed to another (downlevel) system through RACF remote sharing facility (RRSF) for any of the following reasons:

• The command references a class unknown to the target system (for example, if the class descriptor tables are different).
• The command references a segment or field unknown to the target system (for example, if the templates or dynamic parse definition are different)
• The command uses a command keyword unknown to the target (for example, if the dynamic parse definitions or command processor code is different), or if it specifies a profile or member name that is unacceptable to the target system (for example, if the class descriptor tables have different syntax requirements for profile name length or syntax).

If an out-of-synchronization condition occurs while using automatic command direction, a RACF TSO command can be directed with the ONLYAT keyword to fix the condition. The command runs on the node specified on the ONLYAT keyword and are propagated to any other node. (Note that if the AT keyword is used, the command can be propagated by automatic command direction to other nodes.) For
Basic information

information on the ONLYAT keyword, see the eligible command descriptions. For a complete list of RACF commands that are eligible for automatic command direction, see Table 2.

Some RACF TSO commands can be automatically directed to remote nodes in order to keep profiles synchronized between the nodes. For information on automatic command direction, see z/OS Security Server RACF Security Administrator’s Guide.

RACF parameter library

Some RACF commands can be processed from the RACF parameter library. For information on using the RACF parameter library, see z/OS Security Server RACF System Programmer’s Guide. For a complete list of commands that can be processed from within the RACF parameter library, see Table 2.

R_admin callable service

You can also issue commands by calling the R_admin callable service (IRRSEQ00). For more information on using this callable service, and for a complete list of commands that can be issued in this manner, see z/OS Security Server RACF Callable Services.

Summary of issuing options

Table 2 lists the ways you can enter each RACF command.

Table 2. How the RACF commands can be issued

<table>
<thead>
<tr>
<th>RACF command</th>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDGROUP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ADDSD</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ADDUSER</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ALTDSD</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ALTGROUP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ALTUSER</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>BLKUPD</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CONNECT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DELDSD</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DELGROUP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DELUSER</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>HELP</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>LISTDSD</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>LISTGRP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>LISTUSER</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>PASSWORD</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PERMIT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RACDCERT</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 2. How the RACF commands can be issued (continued)

<table>
<thead>
<tr>
<th>RACF command</th>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>RACLINK</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>RACMAP</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>RACPRIV</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>RALTER</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RDELETE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>REMOVE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RESTART</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>RLIST</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>RVARY</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>SEARCH</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>SET</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>SETROPTS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SIGNOFF</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>STOP</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>TARGET</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note:

1. Information about the block update (BLKUPD) command appears in the [z/OS Security Server RACF Diagnosis Guide](https://www.ibm.com/support/knowledgecenter/), not this document.

2. This command cannot be directed to a remote system using the AT or ONLYAT keyword.

3. Updates made to the RACF database by this command are eligible for propagation with automatic direction of application updates based on certain RRSFDATA profiles. For details, see “Issuing options” in the command syntax topic for this command.

4. The SEARCH command is not eligible for command direction when the CLIST keyword is specified.

5. The SETROPTS LIST command without other keywords is not eligible for automatic command direction.

Syntax of RACF commands and operands

This publication describes the syntax and function of the RACF commands. The commands are presented in alphabetical order. Each command description contains several examples.

For the key to the symbols used in the command syntax diagrams, see [Figure 1 on page 10](#).
1. **UPPERCASE LETTERS** or **WORDS** must be coded as they appear in the syntax diagrams but do not have to be uppercase.
2. Lowercase letters or words represent variables for which you must supply a value.
3. Parentheses () must be entered exactly as they appear in the syntax diagram.
4. An ellipsis . . . (three consecutive periods) indicates that you can enter the preceding item more than once.
5. A single item in brackets [] indicates that the enclosed item is optional. Do not specify the brackets in your command.
6. Stacked items in brackets [] indicate that the enclosed items are optional. You can choose one or none. Do not specify the brackets in your command.
7. Stacked items in braces { } indicate that the enclosed items are alternatives. You must specify one of the items. Do not specify the braces in your command.

Note: When you select a bracket that contains braces, you must specify one of the alternatives enclosed within the braces.
8. Items separated by a vertical bar | indicate that you can specify only one of the items. Do not specify the vertical bar in your command.
9. An underlined operand indicates the default value when no alternate value is specified.
10. **BOLDFACE** or **boldface** indicates information that must be given for a command.
11. Single quotation marks ‘’ indicate that information must be enclosed in single quotation marks.

Figure 1. Key to symbols in command syntax diagrams

The syntax for all occurrences of the `userid`, `group-name`, `password`, `class-name`, `profile-name`, `volume-serial`, `terminal-id`, and `date` operands in this book is as follows:

userid
1 - 8 alphanumeric characters. The user ID can consist entirely of numbers and need not begin with any particular character.

For TSO users who are defined to RACF, the user ID cannot exceed seven characters and must begin with an alphabetic, # (X'7B'), $ (X'5B'), or @ (X'7C') character.

group-name
1 - 8 alphanumeric characters beginning with an alphabetic, # (X'7B'), $ (X'5B'), or @ (X'7C') character. (You can set the default prefix to a group name only if the group name contains 1 - 7 characters. If the group name has 8 characters, you must always enter fully-qualified group data set names on the commands.

password
1 - 8 alphanumeric characters. Each installation can define its own password syntax rules. Lowercase alphanumeric characters are valid and maintained in the case entered if SETR PASSWORD(MIXEDCASE) is in effect.

class-name
Valid class names are USER, GROUP, DATASET, and those classes defined in the class descriptor table.

The entries supplied by IBM in the class descriptor table are listed in Appendix B, “Supplied RACF resource classes,” on page 693.
profile-name

Either a discrete name or a generic name, as described in Appendix A, "Naming considerations for resource profiles,” on page 681.

terminal-id

1 - 8 alphanumeric characters.

volume-serial

1 - 6 alphanumeric characters.

date

RACF interprets dates as 20yy when the year is less than 71, and 19yy when the year is 71 or higher.

Return codes from RACF commands

All of the RACF commands (except RVARY) issue the following return codes. RVARY issues return codes of 0, 8, and 12.

Decimal code

Meaning

0

Normal completion.

4

The command encountered a user error or an authorization failure and attempted to continue processing. Refer to documentation of the error message that RACF issues to determine what part of the current entity (if any) was completed. If additional entities were specified on the command, RACF attempts to process them.

8

The command encountered a user error or an authorization failure and terminated processing.

12

The command encountered a system error and terminated processing.

Except for commands entered using the AT keyword or the RACLINK command, you can use CLIST processing or REXX exec processing to check for these return codes. Commands entered using the AT keyword or the RACLINK command run in two phases:

• The first phase validates the issuer's authority to use the function and determines whether the RACF subsystem address space is available to handle the second phase. A return code of 0 from the first phase means the request was successfully passed to the RACF subsystem address space. A return code of 8 means the command was rejected.

• The second phase runs in the RACF subsystem address space. Return codes within the address space cannot be interrogated by the issuer's CLIST or REXX exec. The success of the command processing within the second phase must be determined from the returned output messages, if any.

RACF command limits for non-base segments in RACF profiles

In general, you can specify up to 255 operands with a single command to create or alter a non-base profile segment. Exception: For the CSDATA segment in user and group profiles, you can specify up to 85 operands with a single command.

Examples of non-base segments in user profiles include the OMVS, TSO and CSDATA segments. Examples of non-base segments in general resource profiles include the CDTINFO, EIM, and STDATA segments.
The following RACF commands create or alter non-base segments in profiles, and operate within these limits:

- ADDGROUP
- ADDSD
- ADDUSER
- ALTDSD
- ALTGROUP
- ALTUSER
- RALTER
- RDEFINE.

If you issue a single command specifying more than 255 operands for a non-base profile segment (other than the CSDATA segment), the command will not execute correctly although it will appear successful. Only the remainder of \(n \times 255 \) operands will be applied to the database, where \(n \) is the number of operands you specified for the segment. For example, if you issue the ALTUSER command specifying 259 operands for a non-base segment, RACF applies only the last 4 operands to the database.

If you issue a single command specifying more than 85 operands for the CSDATA segment, the command will not execute correctly although it will appear successful. Only the first 85 operands will be applied to the database, and the rest will be ignored. For example, if you issue the ALTUSER command specifying 93 operands for the CDTINFO segment, RACF applies only the first 85 CSDATA operands and ignores the last 8 CSDATA operands.

Installation exit routines from RACF commands

RACF provides a general purpose exit, IRREVX01, that can be modified by installations to receive control when the following RACF TSO commands are issued.

<table>
<thead>
<tr>
<th>Command</th>
<th>Exit Routine</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDGROUP</td>
<td>ALTUSER</td>
</tr>
<tr>
<td>ADDSD</td>
<td>LISTSD</td>
</tr>
<tr>
<td>ADDUSER</td>
<td>RALTER</td>
</tr>
<tr>
<td>ALTDSD</td>
<td>SEARCH</td>
</tr>
<tr>
<td>ALTGROUP</td>
<td>LISTGROUP</td>
</tr>
<tr>
<td></td>
<td>RALTER</td>
</tr>
<tr>
<td></td>
<td>RDEFINE</td>
</tr>
<tr>
<td></td>
<td>SETROPTS</td>
</tr>
<tr>
<td></td>
<td>DELDSD</td>
</tr>
<tr>
<td></td>
<td>DELGROUP</td>
</tr>
<tr>
<td></td>
<td>DELUSER</td>
</tr>
<tr>
<td></td>
<td>PASSWORD</td>
</tr>
<tr>
<td></td>
<td>REMOVE</td>
</tr>
<tr>
<td></td>
<td>RLST</td>
</tr>
<tr>
<td></td>
<td>CONNeCT</td>
</tr>
<tr>
<td></td>
<td>LISTUSER</td>
</tr>
<tr>
<td></td>
<td>RDELETE</td>
</tr>
<tr>
<td></td>
<td>PERMIT</td>
</tr>
</tbody>
</table>

RACF does not invoke the IRREVX01 exit for the BLKUPD, RVARY, RACDCERT, RACMAP, RACTION and RACPRI commands or for true RACF operator commands such as RESTART, TARGET, and SIGNOFF.

Your location might use installation-written exit routines to take additional security actions during RACF command processing, and these actions can affect the results you get when you issue a RACF command. For example, your location could use the ICHPWX01 preprocessing exit to install its own routine to examine a new password and new change interval.

For a complete description of RACF installation exits, see the RACF System Programmer’s Guide.

Attribute and authority summary

Each command description in this book includes a section called “Authorization Required”, which describes how attributes and authorities affect your use of that command.
Group authorities

The group authorities, which define user responsibilities within the group, are shown below in order of least to most authority. Each level includes the privileges of the levels above it.

USE Allows you to access resources to which the group is authorized

CREATE Allows you to create RACF data set profiles for the group

CONNECT Allows you to connect other users to the group

JOIN Allows you to add new subgroups or users to the group, as well as assign group authorities to the new members

For more information on group authority, refer to z/OS Security Server RACF Security Administrator’s Guide.

Access authority for data sets

Data sets can have one of the following access authorities:

NONE

Does not allow users to access the data set.

EXECUTE

For a private load library, EXECUTE allows users to load and execute, but not to read or copy, programs (load modules) in the library.

In order to specify EXECUTE for a private load library, you must ask for assistance from your RACF security administrator.

Important: Anyone who has READ, UPDATE, CONTROL, or ALTER authority to a protected data set can create a copy of it. As owner of the copied data set, that user has control of the security characteristics of the copied data set, and can change them. For this reason, you should assign a UACC of NONE, and then selectively permit a small number of users to access your data set, as their needs become known.

READ Allows users to access the data set for reading only. (Note that users who can read the data set can copy or print it.)

UPDATE Allows users to read from, copy from, or write to the data set. UPDATE does *not* authorize a user to delete, rename, move, or scratch the data set.

Allows users to perform normal VSAM I/O (not improved control interval processing) to VSAM data sets.

CONTROL

For VSAM data sets, CONTROL is equivalent to the VSAM CONTROL password; that is, it allows users to perform improved control interval processing—CONTROL is control-interval access (access to individual VSAM data blocks), and the ability to retrieve, update, insert, or delete records in the specified data set.

For non-VSAM data sets, CONTROL is equivalent to UPDATE.

ALTER

ALTER allows users to read, update, delete, rename, move, or scratch the data set.
When specified in a discrete profile, ALTER allows users to read, alter, and delete the profile itself including the access list.

ALTER does not allow users to change the owner of the profile using the ALTDS command. However, if a user with ALTER access authority to a discrete data set profile renames the data set, changing the high-level qualifier to his or her own user ID, both the data set and the profile are renamed, and the OWNER of the profile is changed to the new user ID.

ALTER authority to a generic profile allows users to create new data sets that are covered by that profile, it does not give users authority over the profile itself.
Chapter 3. RACF TSO commands

Most RACF commands can be entered as RACF TSO commands. For a complete list of the RACF commands that can be entered as RACF TSO commands, see Table 2 on page 8.

RACF list commands, such as LISTUSER * or LISTGRP *, can generate many thousands of lines of output. This quantity of output is not very usable except as input to a processing program and can exhaust address space resources below the 16M line.

Restriction: RACF commands that provide output listings (LISTDSD, LISTGRP, LISTUSER, RACDCERT, RACLINK, RLIST and SETROPTS) are designed to be issued by users, not by programs. IBM does not support the processing of these commands by programs. The output format of these commands is not an intended interface and may change with any z/OS release or as the result of service (PTFs) applied within a release. Programs should not examine the output of these commands. Instead, programs should use documented programming interfaces, such as the following:

- The output file from the IRRDBU00 (database unload) utility, which was designed specifically for this use.
- The results returned by the RACROUTE REQUEST=EXTRACT request.
- The results returned by the ICHEINTY macro.
- The results returned by the R_admin (IRRSEQ00) callable service when using one of the profile extract function codes, or one of the SETROPTS retrieval function codes.

The syntax of RACF TSO commands is the same as the syntax of TSO commands. For example, a comma or one or more blanks are valid delimiters for use between operands.

Note:
1. "Syntax of RACF commands and operands" on page 9 contains the key to symbols used in the command syntax diagrams.
2. The TSO parse routines allow you to abbreviate an operand on a TSO command to the least number of characters that uniquely identify the operand. To avoid conflicts in abbreviations, it is a good practice to fully spell out all operands on commands that are hardcoded (as in programs and CLISTS, for example).
3. If you specify a keyword in the RACF segment multiple times on the same command, RACF uses only the last occurrence. If a keyword in a non-RACF segment (such as TSO, CICS®, SESSION) is specified multiple times on the same command, the last occurrence is also used except for keywords where a list of values is valid (such as ADDUSER USER1 NETVIEW(OPCLASS(value1 value2 value3 ...))). For these keywords, all values on all specifications are accepted.
4. If you are sharing your RACF database with a VM system, you can administer VM classes from the MVS system. For RACF-provided VM classes see "Supplied resource classes for z/VM systems" on page 701. Detailed information about working with VM classes can be found in the for RACF 1.10 information.
5. Make sure your job or logon specifies a region size large enough to run the commands, or they might ABEND unpredictably.

How to enter RACF TSO commands

The following sections describe how to enter RACF TSO commands. You can enter RACF TSO commands directly in the foreground during a TSO terminal session or by using the RACF ISPF panels.

You can enter commands in the background by using a batch job. You cannot use alias data set names in the RACF commands or panels. Alias names are alternative names for a data set that are defined in the catalog. RACF does not allow alias names because RACF uses the RACF database, not the catalog, for its processing.

Additional authorization for using the ISPF panels: You must authorize general users to use ISPF panels to add data to custom fields in user and group profiles. For details, see Authorizing users to update data in custom fields in z/OS Security Server RACF Security Administrator’s Guide.

Choosing between using RACF TSO commands and ISPF panels

In general, you can perform the same RACF functions using RACF TSO commands and ISPF panels.

The RACF TSO commands provide the following advantages:

• Entering commands can be faster than displaying many panels in sequence.
• Using commands from the documented examples is more straightforward. (The examples in the RACF documents are generally command examples.)
• Getting online help for RACF TSO commands

You can get online help for the RACF TSO commands documented in z/OS Security Server RACF Command Language Reference.

 - To see online help for the PERMIT command, for example, enter:
 HELP PERMIT
 - To limit the information displayed, specify operands on the HELP command. For example, to see only the syntax of the PERMIT command, enter:
 HELP PERMIT SYNTAX

Restriction: TSO online help is not available when RACF commands are entered as RACF operator commands.

• Getting message ID information

If a RACF TSO command fails, you will receive a message. If you do not get a message ID, enter:

PROFILE MSGID

Reenter the RACF TSO command that failed. The message appears with the message ID. See z/OS Security Server RACF Messages and Codes for help if the message ID starts with ICH or IRR.

Restriction: PROFILE MSGID cannot be entered as a RACF operator command.

The ISPF panels provide the following advantages:

• When you use the panels, you avoid having to memorize a command and type it correctly. Panels can be especially useful if the command is complex or you perform a task infrequently.
TSO commands

- ISPF creates in the ISPF log a summary record of the work that you do. Unless you use the TSO session manager, the RACF commands do not create such a record.
- From the panels, you can press the HELP key to display brief descriptions of the fields on the panels.
- The options chosen when installing the RACF panels determine whether output (for example, profile listings, search results, and RACF options) is displayed in a scrollable form.
- The ISPF panels for working with password rules allow you to enter all of the password rules on one panel. Figure 2 shows one of these panels.
- When you use the ISPF panels to update a custom field definition in the CFDEF segment, the current values are displayed. You can then overtype the values to make changes.
- When you use the ISPF panels to add, update, or delete custom field information (CSDATA segment fields) in a user or group profile, the panels are primed with the custom field names and values. You can then make additions, changes, and deletions.

Limitations: The following limitations apply to the use of the ISPF panels:

- The ISPF panels do not support all options of all commands. For example, the SETROPTS PASSWORD option to activate and deactivate mixed-case password support is not available through the RACF panels.
- The ISPF RACF panels are limited to 32000 lines of command output. If the output listing for a command (most commonly, the RLIST command) exceeds 32000 lines, the output is truncated at the 32000 line limit and an error is likely to occur. To avoid this limitation, use one of the following alternate methods:
 - Issue the command using a batch execution of the terminal monitor program (TMP) and use the SDSF XD command to store the output in a data set.
 - Create a report using output from the RACF database unload (IRRDBU00) utility.

Entering RACF TSO commands in the foreground

To enter RACF TSO commands in the foreground, you must be able to:
- Conduct a TSO terminal session

\begin{figure}
\centering
\includegraphics[width=\textwidth]{sample_ispf_panel}
\caption{Sample ISPF panel for RACF}
\end{figure}
TSO commands

- Use the TSO commands
- Use system-provided aids (HELP command, attention interrupt, conversational messages)
- Respond to TSO prompts

See [z/OS TSO/E Primer](#) and [z/OS TSO/E Command Reference](#) for any information you need.

In addition, to enter RACF TSO commands from the foreground, you must be defined to the system.

The TSO LOGON command is used to define you to the system as a RACF user through the *user identity* (user ID), *password*, GROUP, and OIDCARD operands. To change your RACF password, use the *new password* option on the LOGON command. If you have more than one account number defined in your TSO profile, you must supply an account number on the LOGON command.

The default data set name prefix in your TSO profile is used as the high-level qualifier of a DASD or tape data set name if you do not enter the fully qualified name in a TSO or RACF command. RACF also uses the TSO default prefix as the high-level qualifier for the name of a CLIST created as a result of the RACF SEARCH command. If you do not have a prefix specified in your TSO profile, (PROFILE NOPREFIX), the user ID from the SEARCH command issuer’s ACEE is used as the qualifying prefix.

If you frequently use RACF TSO commands on RACF-protected data sets, you can set your TSO default prefix as follows:

- Set the default prefix to your user ID if you do a good deal of work with your own data sets.
- Set the default prefix to a specific RACF group name if you are working mostly with data sets from that group.

Although, the command examples in this document generally use uppercase characters, you can enter commands using either uppercase or lowercase characters.

Entering RACF TSO commands in the background

You can enter RACF TSO commands in the background by submitting a batch job as follows:

- Using the batch internal or remote reader facility of the job entry subsystem (JES)
- Using the TSO SUBMIT command from a terminal

The RACF data you need to enter on your JCL depends on whether the job entry subsystem (JES) at your installation includes the JES RACF user identification feature. If your level of JES includes the RACF user identification propagation feature, any jobs you submit to the background while logged onto TSO are automatically identified to RACF with the same user identifier. When the job runs, RACF uses your default group as your current connect group. (User, password, and group information is not required on the JOB statement, but if you do specify this information, it overrides the propagated specifications.)
If your level of JES does not include the RACF user identification propagation feature, you must include the USER, PASSWORD, and, optionally, GROUP parameters on the JCL JOB statement.

The USER, PASSWORD, and GROUP parameters on the JCL JOB statement identify you to the system as a RACF user. To change your RACF password, you can use the new-password operand of the PASSWORD command. For information on how to code these parameters, see z/OS MVS JCL Reference.

As an alternative to coding PASSWORD on JCL statements, you can use the TSO SUBMIT command (for systems that do not have the JES RACF user identification propagation feature) to automatically include this information during job submission. To use SUBMIT, you should code the USER (userid) and PASSWORD operands on the SUBMIT command. These operands are then put on the JCL JOB statement that the command generates. When the job runs, RACF uses the name of the user's default group as the current connect group.

Example of RACF TSO commands in the background
The following example shows how to submit RACF TSO commands in the background as a batch job:

```
//jobname JOB ...
//STEP1 EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSIN DD SYSOUT=A
ADDGROUP PROJECTA
ADDUSER (PAJ5 ESH25)
ADDSD 'PROJECTA.XYZ.DATA'
PERMIT 'PROJECTA.XYZ.DATA' ID(PAJ5) ACCESS(UPDATE)
/*

When a fully-qualified data set name is not given in a command entered in the background, the effect is the same as for a command entered in the foreground; the user's TSO default data set name prefix is used as the high-level qualifier of a DASD or tape data set name. The prefix is also used as the high-level qualifier for the name of a command procedure (CLIST) created as a result of the RACF SEARCH command. If the user is defined to TSO, the default prefix is in the TSO profile for the user specified in the USER parameter on the JCL JOB statement or the USER operand in the TSO SUBMIT command. If the user is not defined to TSO, there is no default prefix unless the TSO PROFILE command is used.
Chapter 4. RACF operator commands

The RACF operator commands allow you to perform RACF functions from an operator console. For a complete list of the RACF commands that can be entered as RACF operator commands, see Table 2 on page 8.

Note: Use of these commands requires that the RACF subsystem has been started. If the RACF subsystem has not been started at your installation, contact your system programmer.

These commands allow an MVS operator to perform certain RACF operations in the RACF subsystem. The RACF subsystem prefix in front of the command identifies the RACF subsystem as the processing environment. Some things to remember:

• RACF operator commands require an MVS environment with the RACF subsystem active.
• The DISPLAY and SIGOFF commands require APPC/MVS and persistent verification.
• If a command can be issued as both a RACF TSO command or a RACF operator command:
  – RACF first checks that the issuer is defined to RACF and if not, an error message is issued.
  – If you are defined to RACF, RACF verifies that you have sufficient authority to the proper resource in the OPERCMDS class to determine if you have authority to issue the command as an operator command. See z/OS Security Server RACF Security Administrator’s Guide for further information.
  – If the OPERCMDS class is not active, or if no OPERCMDS profile exists, then the user is allowed to issue the command as a RACF operator command.
  – You must to be logged on to the console to issue the command as a RACF operator command.

Note: The RVARY command is the exception, because it can be issued as both a RACF TSO command and an RACF operator command but does not have to fit these circumstances.

• If a command can be issued as a RACF operator command, but not as a RACF TSO command:
  – RACF first checks to see if you have OPERCMDS authority. If the user is logged on to the console, the OPERCMDS class is active, and a OPERCMDS profile exists, you have OPERCMDS authority.
  – If you are not logged on to the console, the OPERCMDS class is inactive, or no OPERCMDS profile exists, you can only issue the command from the master console or a console with system authority.

Note: The DISPLAY command is the exception, because it can be issued under these circumstances without any particular console authority.
Rules for entering RACF operator commands

1. A RACF operator command must contain the RACF subsystem prefix. A command such as the DISPLAY command could be entered on the command line as follows:

```#
DISPLAY xxxx
```

Where:

# specifies the subsystem prefix. The subsystem prefix specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your system programmer.

If no subsystem prefix has been defined, and the subsystem name is rac1, the same command would be entered as follows:

```rac1 DISPLAY xxxx```

Note: If you need to find out what the subsystem prefix is, contact your system programmer.

`xxxx` specifies DISPLAY operands.

2. Separate operands with commas. Do not specify commas before the first operand or after the last operand.

For example, enter a DISPLAY command with two operands as follows:

```#
DISPLAY xxxx,yyyy
```

3. You can also separate operands with blanks. This practice is not encouraged, however, because future releases might not allow this.

4. The order in which you specify the operands on the command line does not affect the command. For example: the commands `#DISPLAY xxxx,yyyy` and `#DISPLAY yyyy,xxxx` give the same result.

5. RACF commands entered as RACF operator commands must meet the MVS restrictions on command length and operand content. A command with intended mixed-case input cannot be entered as an operator command because it is automatically translated to uppercase before it is sent to RACF. In addition, command messages and output from RACF to the console are also translated to uppercase. When dealing with profile names or fields requiring mixed-case characters, enter the command as a TSO command, not as an operator command.
Chapter 5. RACF command syntax

This topic describes the syntax and function of the RACF commands. The commands are presented in alphabetic order. Each command description contains several examples.
ADDGROUP (Add group profile)

Purpose

Use the ADDGROUP command to define a new group to RACF.

The command adds a profile for the new group to the RACF database. It also establishes the relationship of the new group to the superior group you specify.

Group profiles consist of a RACF segment and, optionally, other segments such as DFP and OMVS. You can use this command to specify information in any segment of the profile.

Issuing options

The following table identifies the eligible options for issuing the ADDGROUP command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.

Related commands

- To delete a group profile, see “DELGROUP (Delete group profile)” on page 199.
- To change a group profile, see “ALTGROUP (Alter group profile)” on page 108.
- To connect a user to a group, see “CONNECT (Connect user to group)” on page 187.
- To remove a user from a group, see “REMOVE (Remove user from group)” on page 544.
- To obtain a list of group profiles, see “SEARCH (Search RACF database)” on page 580.
- To list a group profile, see “LISTGRP (List group profile)” on page 226.

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.

To use the ADDGROUP command, you must have at least one of the following authorizations:
- Have the SPECIAL attribute,
- Have the group-SPECIAL attribute and the superior group is within your group-SPECIAL scope,
ADDGROUP

- Be the owner of the superior group, or
- Have JOIN authority in the superior group.

To add segments, such as DFP or OMVS, to a group’s profile, you must have at least one of the following authorizations:
- You must have the SPECIAL attribute.
- Your installation must permit you to do so through field-level access checking.

For information on field-level access checking, see z/OS Security Server RACF Security Administrator’s Guide.

To specify the AT keyword, you must have READ authority to the DIRECT.node resource in the RRSFDATA class and a user ID association must be established between the specified node.userid pair(s).

To specify the ONLYAT keyword you must have the SPECIAL attribute, the userid specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified node.userid pair(s) if the user IDs are not identical.

To specify the SHARED keyword, you must have the SPECIAL attribute or at least READ authority to the SHARED.IDS resource in the UNIXPRIV class.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the ADDGROUP command is:

```
[subsystem-prefix]ADDGROUP | AG
    (group-name ...)
    [ AT([node].userid ...) | ONLYAT([node].userid ...) ]
    [ CSDATA(
        [ custom-field-name(custom-field-value) ] ... ) ]
    [ DATA('installation-defined-data') ]
    [ DFP(
        [ DATAAPPL(application-name) ]
        [ DATACLAS(data-class-name) ]
        [ MGMTCLAS(management-class-name) ]
        [ STORCLAS(storage-class-name) ]
    ) ]
    [ MODEL(dsname) ]
    [ OMVS
        [( AUTOGID | GID(group-identifier) [ SHARED ] ) ] ]
    [ OVM
        [( GID(group-identifier) ) ] ]
    [ OWNER(userid or group-name) ]
    [ SUPGROUP(group-name) ]
    [ TERMUACC | NOTERMUACC ]
```
ADDGROUP

[TME(
 [ROLES(profile-name ...)]
 [UNIVERSAL]
)

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

Parameters

subsystem-prefix

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

group-name

Specifies the name of the group whose profile is to be added to the RACF database. If you are defining more than one group, the list of group names must be enclosed in parentheses.

This operand is required and must be the first operand following ADDGROUP. Each group-name must be unique and must not currently exist in the RACF database as a group name or a user ID.

AT | ONLYAT

The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.

AT([node].userid ...)

Specifies that the command is to be directed to the node specified by node, where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed to the local node.

ONLYAT([node].userid ...)

Specifies that the command is to be directed only to the node specified by node where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed only to the local node.

CSDATA

Specifies information to add a custom field for this group.

Usage for each custom field is defined using the CFDEF operand of the RDEFINE command for resource profiles in the CFIELD class. Contact your security administrator to see how custom fields are used at your installation. For more information about custom fields, see z/OS Security Server RACF Security Administrator’s Guide.
ADDGROUP

custom-field-name(custom-field-value) ...

Specifies the name and value of a custom field for this group. You can add values for multiple custom field values with a single ADDGROUP command.

Rules:

- You must use the same custom-field-name as defined by the CFIELD profile named GROUP.CSDATA.custom-field-name. (The CFIELD profile is defined using the CFDEF operand of the RDEFINE command.)
- You must specify a custom-field-value that is valid for the attributes of this custom field. (The attributes, such as data type, are defined in the CFDEF segment of the CFIELD profile.)

DATA('installation-defined-data')

Specifies up to 255 characters of installation-defined data to be stored in the group profile and must be enclosed in single quotation marks. It might also contain double-byte character set (DBCS) data.

Use the LISTGRP command to list this information.

DFP

Specifies that when you define a group to RACF, you can enter any of the following suboperands to specify default values for the DFP data, management, and storage classes. DFP uses this information to determine data management and DASD storage characteristics when a user creates a new group data set.

DATAAPPL(application-name)

Specifies DFP data application identifier. The maximum length of a data class name is 8 characters.

DATACLAS(data-class-name)

Specifies the default data class. The maximum length of a data class name is 8 characters.

A data class can specify some or all of the physical data set attributes associated with a new data set. During new data set allocation, data management uses the value you specify as a default unless it is preempted by a higher priority default, or overridden in some other way (for example, by JCL).

Note: The value you specify must be a valid data class name defined for use on your system. For more information, see z/OS Security Server RACF Security Administrator’s Guide.

For information on defining DFP data classes, see z/OS DFSMSdfp Storage Administration.

MGMTCLAS(management-class-name)

Specifies the default management class. The maximum length of a management class name is 8 characters.

A management class contains a collection of management policies that apply to data sets. Data management uses the value you specify as a default unless it is preempted by a higher priority default, or overridden in some other way (for example, by JCL).

Note: The value you specify must be defined as a profile in the MGMTCLAS general resource class, and the group must be granted at least READ access to the profile. Otherwise, RACF does not allow the
ADDGROUP

group access to the specified MGMTCLAS. For more information, see [z/OS Security Server RACF Security Administrator’s Guide](#).

For information on defining DFP management classes, see [z/OS DFSMSdfp Storage Administration](#).

STORCLAS(storage-class-name)

Specifies the default storage class. The maximum length of a `storage-class-name` is 8 characters.

A storage class specifies the service level (performance and availability) for data sets managed by the Storage Management Subsystem (SMS). During new data set allocation, data management uses the value you specify as a default unless it is preempted by a higher priority default, or overridden in some other way (for example, by JCL).

Note: The value you specify must be defined as a profile in the STORCLAS general resource class, and the group must be granted at least READ access to the profile. Otherwise, RACF does not allow the group access to the specified STORCLAS. For more information, see [z/OS Security Server RACF Security Administrator’s Guide](#).

For information on defining DFP storage classes, see [z/OS DFSMSdfp Storage Administration](#).

MODEL(dsname)

Specifies the name of a discrete MVS data set profile to be used as a model for new `group-name` data sets. For this operand to be effective, the MODEL(GROUP) option (specified on the SETROPTS command) must be active.

RACF always prefixes the data set name with `group-name` when it accesses the model.

For information about automatic profile modeling, refer to [z/OS Security Server RACF Security Administrator’s Guide](#).

OMVS

Specifies z/OS UNIX System Services information for the group being defined to RACF.

AUTOGID | GID

Specifies whether RACF is to automatically assign an unused GID value to the group or if a specific GID value is to be assigned.

AUTOGID

Specifies that RACF is to automatically assign an unused GID value to the group. The GID value is derived from information obtained from the BPX.NEXT.USER profile in the FACILITY class. For more information on setting up BPX.NEXT.USER, see [z/OS Security Server RACF Security Administrator’s Guide](#).

If you are using RRSF automatic command direction for the GROUP class, the command sent to other nodes will contain an explicit assignment of the GID value which was derived by RACF on the local node.

Rules:

- AUTOGID cannot be specified if more than one group is entered.
- The AUTOGID keyword is mutually exclusive with the SHARED keyword.
ADDGROUP

• If both GID and AUTOGID are specified, AUTOGID is ignored.
• Field-level access checking for the GID field applies when using AUTOGID.

GID(group-identifier) [SHARED]

GID(group-identifier)

Specifies the group identifier. The GID is a numeric value from 0 - 2,147,483,647.

When a GID is assigned to a group, all users connected to that group who have a user identifier (UID) in their user profile can use functions such as the TSO/E command, OMVS, and can access z/OS UNIX files based on the GID and UID values assigned.

Rules:

• If the security administrator has defined the SHARED.IDS profile in the UNIXPRIV class, the GID must be unique. Use the SHARED keyword in addition to GID to assign a value that is already in use.
• If SHARED.IDS is not defined, RACF does not require the GID to be unique. The same value can be assigned to multiple groups, but this is not recommended because individual group control would be lost. However, if you want a set of groups to have exactly the same access to z/OS UNIX resources, you might decide to assign the same GID to more than one group.
• RACF allows you to define and connect a user to more than 300 (which is the same as the NGROUPS_MAX variable defined in the POSIX standard) groups, but when a process is created or z/OS UNIX group information is requested, only up to the first 300 z/OS UNIX groups are associated with the process or user. The first 300 z/OS UNIX groups, that have GIDs, to which a user is connected are used by z/OS UNIX. LISTUSER displays the groups in the order that RACF examines them when determining which of the user’s groups are z/OS UNIX groups. See z/OS UNIX System Services Planning for information on NGROUPS_MAX.

SHARED

If the security administrator has chosen to control the use of shared GIDs, this keyword must be used in addition to the GID keyword to specify the group identifier if it is already in use by at least one other group. The administrator controls shared GIDs by defining the SHARED.IDS profile in the UNIXPRIV class.

Rules:

• If the SHARED.IDS profile is not defined, SHARED is ignored.
• If SHARED is specified in the absence of GID, it is ignored.
• If the SHARED.IDS profile is defined and SHARED is specified, but the value specified with GID is not currently in use, SHARED is ignored and UNIXPRIV authority is not required.
• Field-level access checking for the GID field applies when using SHARED.
ADDGROUP

- The SHARED keyword is mutually exclusive with the AUTOGID keyword.

OVM

Specifies OpenExtensions VM information for the group being defined to RACF.

GID(group-identifier)

Specifies the OpenExtensions VM group identifier. The GID is a numeric value from 0 - 2,147,483,647.

If you do not specify GID, the group is assigned the default GID of 4,294,967,295 (X'FFFFFFFF') and a LISTGRP shows NONE for the GID.

Note:

1. RACF does not require the GID to be unique. The same value can be assigned to multiple groups, but this is not recommended because individual group control would be lost. However, if you want a set of groups to have exactly the same access to the OpenExtensions VM resources, you might decide to assign the same GID to more than one group.

2. The value defined for the NGROUPS_MAX variable in the ICHNGMAX macro on VM defines the maximum number of OpenExtensions VM groups to be associated with an OpenExtensions VM process or user. The NGROUPS_MAX variable on VM is a number from 32 - 125, inclusive. However, RACF allows you to define and connect a user to more than the number of groups defined in this variable. If the NGROUPS_MAX variable is n and a process is created or OpenExtensions VM group information is requested, only up to the first n OpenExtensions VM groups are associated with the process or user. The first n OpenExtensions VM groups to which a user is connected are used by OpenExtensions VM. LISTUSER displays the groups in the order that RACF examines them when determining which of the user’s groups are OpenExtensions VM groups.

See [z/OS Security Server RACF Macros and Interfaces](https://www.ibm.com/support/knowledgecenter/en/SSLV57_2.3.0/com.ibm.security.zos.racf/refresher/section_zs00006.html) for information on NGROUPS_MAX.

OWNER(userid or group-name)

Specifies a RACF-defined user or group to be assigned as the owner of the new group. If you do not specify an owner, you are defined as the owner of the group. If you specify a group name, it must be the name of the superior group for the group you are adding.

SUPGROUP(group-name)

Specifies the name of an existing RACF-defined group. This group becomes the superior group of the group profile you are defining.

If you omit SUPGROUP, RACF uses your current connect group as the superior group.

If you specify a group name and also specify OWNER with a group name, you must use the same group name on both SUPGROUP and OWNER.

If your authority to issue ADDGROUP comes from the group-SPECIAL attribute, any group you specify must be within the scope of the group in which you are a group-SPECIAL user.

TERMUACC | NOTERMUACC
ADDGROUP

TERMUACC
Specifies that during terminal authorization checking, RACF allows any user in the group access to a terminal based on the universal access authority for that terminal. TERMUACC is the default value if you omit both TERMUACC and NOTERMUACC.

NOTERMUACC
Specifies that the group or a user connected to the group must be explicitly authorized (through the PERMIT command with at least READ authority) to access a terminal.

TME
Specifies that information for the Tivoli® Security Management Application is to be added.

Note: The TME segment fields are intended to be updated only by the Tivoli Security Management Application, which manages updates, permissions, and cross references. A security administrator should only directly update Tivoli Security Management fields on an exception basis.

ROLES(profile-name ...)
Specifies a list of roles that reference this group.

The profile-name value should be the name of a defined role, which is a discrete general resource profile in the ROLE class.

UNIVERSAL
Specifies that this is a universal group that allows an effectively unlimited number of users to be connected to it for the purpose of resource access. The number of users in a universal group with authority higher than USE, or with the attributes SPECIAL, OPERATIONS or AUDITOR at the group level, is still limited to 5957.

When displayed with the LISTGRP command, not all group members will be listed. Only users with authority higher than USE or with the attributes SPECIAL, OPERATIONS or AUDITOR at the group level will be shown in the member list.

Examples

Example 1
Operation User IA0 wants to add the group PROJECTA as a subgroup of RESEARCH. User IA0 will be the owner of group PROJECTA. Users in group PROJECTA will be allowed to access a terminal based on the universal access authority assigned to that terminal.

Known User IA0 has JOIN authority to group RESEARCH. User IA0 is currently connected to group RESEARCH. User IA0 wants to issue the command as a RACF operator command, and the RACF subsystem prefix is @.

Command @ADDGROUP PROJECTA
Defaults SUPGROUP(RESEARCH) OWNER(IA0) TERMUACC

Example 2
Operation User ADM1 wants to add the group PROJECTB as a subgroup of RESEARCH. Group RESEARCH will be the owner of group PROJECTB. Group PROJECTB must be authorized to use terminals through the PERMIT command.

Known User ADM1 has JOIN authority to group RESEARCH. User ADM1 is currently connected to group SYS1. User ADM1 wants to issue the command as a RACF TSO command.

Command ADDGROUP PROJECTB SUPGROUP(RESEARCH) OWNER(RESEARCH) NOTERMUACC
Defaults None.
ADDGROUP

Example 3

Operation User ADM1 wants to add the group SYSINV as a subgroup of RESEARCH. This group will be used as the administrative group for RACF and will use a model name of SYSINV.RACF.MODEL.PROFILE. User ADM1 wants to direct the command to run under the authority of user APW02.

Known User APW02 has JOIN authority to group RESEARCH and ADM1 wants to issue the command as a RACF TSO command. ADM1 and APW02 have an established user ID association.

Command ADDGROUP SYSINV SUPGROUP(RESEARCH) MODEL(RACF.MODEL.PROFILE) DATA('RACF ADMINISTRATION GROUP') AT(.APW02)

Defaults OWNER(ADM1) TERMUACC

Example 4

Operation User ADM1 wants to add the group DFPADMN as a subgroup of SYSADMN. Group SYSADMN will be the owner of group DFPADMN. Users in group DFPADMN will be allowed to access a terminal based on the universal access authority assigned to that terminal. Group DFPADMN will be assigned the following default information to be used for new DFP-managed data sets created for the group:

- Data class DFP2DATA
- Management class DFP2MGMT
- Storage class DFP2STOR
- Data application identifier DFP2APPL.

Known
- User ADM1 has JOIN authority to group SYSADMN.
- User ADM1 is currently connected to group SYS1.
- User ADM1 has field-level access of ALTER to the fields in the DFP segment.
- DFP2MGMT has been defined to RACF as a profile in the MGMTCLAS general resource class, and group DFPADMN has been given READ access to this profile.
- DFP2STOR has been defined to RACF as a profile in the STORCLAS general resource class, and group DFPADMN has been given READ access to this profile.
- User ADM1 wants to issue the command as a RACF TSO command.

Command ADDGROUP DFPADMN SUPGROUP(SYSADMN) OWNER(SYSADMN) DFP(DATACLAS(DFP2DATA) MGMTCLAS(DFP2MGMT) STORCLAS(DFP2STOR) DATAAPPL(DFP2APPL))

Defaults TERMUACC

Example 5

Operation User ADM1 wants to add the UNIVERSAL group NETGROUP as a subgroup of SYS1. User IBMUSER will be the owner of group NETGROUP. Universal group NETGROUP can have an unlimited number of members (that have USE authority and are not SPECIAL, OPERATIONS, or AUDITOR).

Known
- User ADM1 has group-SPECIAL authority to group SYS1.
- User ADM1 is currently connected to group SYS1.

Command ADDGROUP NETGROUP DATA('INTERNET CUSTOMER GROUP') SUPGROUP(SYS1) OWNER(IBMUSER) UNIVERSAL

Defaults None apply.

Example 6

Operation User RACFADM with SPECIAL or UPDATE authority requests the addition of a new z/OS UNIX group. The user specifies AUTOGID so that RACF will automatically assign an unused GID to the new user.

Known The group profile is owned by RACFADM and belongs to RACFADM's current connect group SYSOM. The BUX.NEXT.USER profile in the FACILITY class has been set up to allow automatic GID assignment.

Command ADDGROUP UNIXGRP OMVS(AUTOGID HOME('/u/unixgrp') CPUTIMEMAX(5000) ASSIZEMAX(40000000))

Defaults DFLTGRP(SYSOM) OWNER(RACFADM)
ADDSD (Add data set profile)

Purpose

Use the ADDSD command to add RACF protection to data sets with either discrete or generic profiles.

Changes made to discrete profiles take effect after the ADDSD command is processed. Changes made to generic profiles do not take effect until one or more of the following steps is taken:

- The user of the data set issues the LISTDSD command:

 \[\text{LISTDSD DA(data-set-protected-by-the-profile) GENERIC} \]

 \[\text{Note: Use the data set name, not the profile name.} \]

- The security administrator issues the SETROPTS command:

 \[\text{SETROPTS GENERIC(DATASET) REFRESH} \]

 See SETROPTS command for authorization requirements.

- The user of the data set logs off and logs on again.

For more information, refer to [z/OS Security Server RACF Security Administrator's Guide](#).

Issuing options

The following table identifies the eligible options for issuing the ADDSD command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to [Chapter 3, “RACF TSO commands,” on page 15](#).

For information on issuing this command as a RACF operator command, refer to [Chapter 4, “RACF operator commands,” on page 21](#).

You must be logged on to the console to issue this command as a RACF operator command.

Related commands

- To change a data set profile, see [“ALTDSD (Alter data set profile)” on page 93](#).
- To delete a data set profile, see [“DELDSD (Delete data set profile)” on page 195](#).
- To permit or deny access to a data set profile, see [“PERMIT (Maintain resource access lists)” on page 261](#).
- To obtain a list of data set profiles, see [“SEARCH (Search RACF database)” on page 580](#).
- To list a data set profile, see [“LISTDSD (List data set profile)” on page 213](#).

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details...
about OPERCMDS resources, see “Controlling the use of operator commands” in

Note:
1. You need not have the SPECIAL attribute to specify the OWNER operand.
2. To specify the AT keyword, you must have READ authority to the DIRECT.node
 resource in the RRSFDATA class and a user ID association must be established
 between the specified node.userid pair(s).
3. To specify the ONLYAT keyword you must have the SPECIAL attribute, the
 userid specified on the ONLYAT keyword must have the SPECIAL attribute,
 and a user ID association must be established between the specified node.userid
 pair(s) if the user IDs are not identical.

The level of authority you need to use the ADDSD command and the types of
profiles you can define are:

- To protect a user data set with RACF, one of the following must be true:
 - The high-level qualifier of the data set name (or the qualifier supplied by the
 RACF naming conventions table or by a command installation exit) must
 match your user ID.
 - You must have the SPECIAL attribute.
 - The user ID for the data set profile must be within the scope of a group in
 which you have the group-SPECIAL attribute.

- To protect a group data set with RACF, one of the following must be true:
 - You must have at least CREATE authority in the group.
 - You must have the SPECIAL attribute.
 - You must have the OPERATIONS attribute and not be connected to the
 group.
 - The data set profile must be within the scope of the group in which you have
 the group-SPECIAL attribute.
 - The data set profile must be within the scope of the group in which you have
 the group-OPERATIONS attribute, and you must not be connected to the
 group.
 - If you have the OPERATIONS or group-OPERATIONS attribute and are
 connected to a group, you must have at least CREATE authority in that
 group to protect a group data set.
 - When creating a group data set profile, the profile creator’s user ID is
 placed on the access list with ALTER authority unless the creation was
 allowed due to OPERATIONS or group-OPERATIONS authority or unless
 the SETROPTS NOADDCREATOR option is in effect.

- To define to RACF a data set that was brought from another system where it
 was RACF-indicated and RACF-protected with a discrete profile, one of the
 following must be true:
 - You must either have the SPECIAL attribute, or the data set’s profile is within
 the scope of a group in which you have the group-SPECIAL attribute
 - Your user ID must be the high-level qualifier of the data set name (or the
 qualifier supplied by the naming conventions routine or a command
 installation exit).

- To assign a security category to a profile, you must have the SPECIAL attribute
 or have the category in your user profile.
To assign a security level to a profile, you must have the SPECIAL attribute or, in your own profile, a security level that is equal to or greater than the security level you are defining.

To assign a security label to a profile, you must have the SPECIAL attribute or READ authority to the security label profile. However, the security administrator can limit the ability to assign security labels to only users with the SPECIAL attribute.

To access the DFP or TME segment, field-level access checking is required.

When either a user or group uses modeling to protect a data set with a discrete profile, RACF copies the following fields from the model profile: the level number, audit flags, global audit flags, the universal access authority (UACC), the owner, the warning, the access list, installation data, security category names, the security level name, the user to be notified, the retention period for a tape data set, and the erase indicator.

To add a discrete profile for a VSAM data set already RACF-protected by a generic profile, you must have ALTER access authority to the catalog or to the data set through the generic profile.

Model profiles: To specify a model data set profile (using, as required, FROM, FCLASS, FGENERIC, and FVOLUME), you must have sufficient authority over the model profile (the from profile). RACF makes the following checks until one of the conditions is met:

- You have the SPECIAL attribute.
- The from profile is within the scope of a group in which you have the group-SPECIAL attribute.
- You are the owner of the from profile.
- The high-level qualifier of the profile name (or the qualifier supplied by the naming conventions routine or a command installation exit routine) is your user ID.
- For a discrete profile, you are on the access list in the from profile with ALTER authority. (If you have any lower level of authority, you cannot use the profile as a model.)
- For a discrete profile, your current connect group (or, if list-of-groups checking is active, any group to which you are connected) is on the access list in the from profile with ALTER authority.
- For a discrete profile, the UACC is ALTER.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the ADDSD command is:

```
[subsystem-prefix][ADDSD | AD]
  (profile-name-1 [/[password] ... ]
   [ ADDCATEGORY(category-name ... ) ]
   [ AT[[node].userid ... ] | ONLYAT[[node].userid ... ] ]
   [ AUDIT(access-attempt[(audit-access-level) ... ] ) ]
   [ DATA('installation-defined-data') ]
   [ DFP(RESOWNER(userid or group-name) | NRESOWNER) ]
   [ ERASE ]
   [ FCLASS(profile-name-2-class) ]
   [ FGENERIC ]
```

Chapter 5. RACF command syntax 35
ADDSD

[FILESEQ(number)]
[FROM(profile-name-2)]
[FVOLUME(profile-name-2-serial)]
[GENERIC | MODEL | TAPE]]
[LEVEL(nn)]
[SET | SETONLY | NOSET]]
[NOTIFY(userid)]
[OWNER(userid or group-name)]
[RETPD(mmmnn)]
[SECLABEL(security-label)]
[SECLEVEL(security-level)]
[TME([ROLES(role-access-specification ...)])]
[UACC(access-authority)]
[UNIT(type)]
[VOLUME(volume-serial ...)]
[WARNING]

For information on issuing this command as a RACF TSO command, refer to

For information on issuing this command as a RACF operator command, refer to
Chapter 4, “RACF operator commands,” on page 21.

Parameters

subsystem-prefix
Specifies that the RACF subsystem is the processing environment of the
command. The subsystem prefix can be either the installation-defined prefix
for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF
subsystem name followed by a blank. If the command prefix was registered
with CPF, you can use the MVS command D OPDATA to display it or you can
contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF
operator command. The subsystem prefix is required when issuing RACF
operator commands.

profile-name-1
Specifies the name of the discrete or generic profile to be added to the RACF
database. If you specify more than one name, the list of names must be
enclosed in parentheses.

The format of the profile name should follow the TSO/E data set naming
conventions, except that the high-level qualifier of the profile name (or the
qualifier determined by the naming conventions table or by a command
installation exit) must be a user ID or a group name. See z/OS Security Server
RACF Security Administrator’s Guide for more information about the TSO/E
data set naming conventions.

To specify a user ID other than your own, you must have the SPECIAL
attribute, or the data set profile must be within the scope of a group in which
you have the group-SPECIAL attribute. To define a group data set, you must
have at least CREATE authority in the specified group, or the SPECIAL
attribute, or the data set must be within the scope of a group in which you
have the group-SPECIAL attribute.
ADDSD

This operand is required and must be the first operand following ADDSD. Note that, because RACF uses the RACF database and not the system catalog, you cannot use alias data set names.

For additional information, see “Profile names for data sets” on page 683 and the section describing rules for defining data set profiles in z/OS Security Server RACF Security Administrator’s Guide.

Tape data set: If you are defining a discrete profile that protects a tape data set, you must specify TAPE. If you are defining more than one tape data set profile, the data sets must all reside on the same volume, and you must specify the profile names in an order that corresponds to the file sequence numbers of the data sets on the volume.

VSAM data set: All of the components of a VSAM data set are protected by the profile that protects the cluster name. It is not necessary to create profiles that protect the index and the data components of the cluster.

Data sets cataloged by an indirect VOLSER: When you catalog a data set using an indirect VOLSER—using asterisks (******) or a symbolic such as &SYSR5 in place of the VOLSER—you can protect the data set with a generic profile (preferred method) or else with one or more discrete data set profiles that contain the real unit and volume for each data set covered by the catalog entry. The latter must be done while the data set is online.

/password
Specifies the data set password if you are protecting an existing password-protected data set. If you specify a generic or model profile, RACF ignores this operand.

For a non-VSAM password-protected data set, the WRITE level password must be specified.

For a VSAM data set that is not password-protected, you do not need the password or RACF access authority for the catalog.

A password is not required when you specify NOSET.

If the command is executing in the foreground and you omit the password for a password-protected data set, the logon password is used. You are prompted if the password you enter or the logon password is incorrect. (If it is a non-VSAM multivolume data set, you are prompted once for each volume on which the data set resides.)

If the command is executing in a batch job and you either omit the password for a password-protected data set or supply an incorrect password, the operator is prompted. (If it is a non-VSAM multivolume data set, the operator is prompted once for each volume on which the data set resides.)

ADDCATEGORY(\category-name \ldots\)\)

Specifies one or more names of installation-defined security categories. The names you specify must be defined as members of the CATEGORY profile in SECDATA class. (For information on defining security categories, see z/OS Security Server RACF Security Administrator’s Guide.)

When the SECDATA class is active and you specify ADDCATEGORY, RACF performs security category checking in addition to its other authorization checking. If a user requests access to a data set, RACF compares the list of security categories in the user’s profile with the list of security categories in the data set profile. If RACF finds any security category in the data set profile that
is not in the user's profile, RACF denies access to the data set. If the user's profile contains all the required security categories, RACF continues with other authorization checking.

Note: RACF does not perform security category checking for a started task or user that has the RACF privileged or trusted attribute. The RACF privileged or trusted attribute can be assigned to a started task through the RACF started procedures table or STARTED class, or to other users by installation-supplied RACF exits.

AT | ONLYAT

The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.

AT([node].userid ...)

Specifies that the command is to be directed to the node specified by *node*, where it runs under the authority of the user specified by *userid* in the RACF subsystem address space.

If *node* is not specified, the command is directed to the local node.

ONLYAT([node].userid ...)

Specifies that the command is to be directed only to the node specified by *node* where it runs under the authority of the user specified by *userid* in the RACF subsystem address space.

If *node* is not specified, the command is directed only to the local node.

AUDIT(access-attempt[audit-access-level]...)

Specifies which access attempts and access levels you want logged to the SMF data set.

access-attempt

Specifies which access attempts you want logged to the SMF data set. The following options are available:

- **ALL**
 Specifies that you want to log both authorized accesses and detected unauthorized access attempts.

- **FAILURES**
 Specifies that you want to log detected unauthorized attempts. FAILURES is the default value if you omit access-attempt.

- **NONE**
 Specifies that you do not want any logging to be done.

- **SUCCESS**
 Specifies that you want to log authorized accesses.

audit-access-level

Specifies which access levels you want logged to the SMF data set. The levels you can specify are:

- **ALTER**
 Logs ALTER access-level attempts only.

- **CONTROL**
 Logs access attempts at the CONTROL and ALTER levels.

- **READ**
 Logs access attempts at any level. READ is the default value if you omit audit-access-level.
ADDSD

UPDATE
Logs access attempts at the UPDATE, CONTROL, and ALTER levels.

FAILURES(READ) is the default value if you omit the AUDIT operand. You cannot audit access attempts at the EXECUTE level.

DATA('installation-defined-data')
Specifies up to 255 characters of installation-defined data to be stored in the data set profile and must be enclosed in single quotation marks. It might also contain double-byte character set (DBCS) data.

Use the LISTDSD command to list this information.

DFP
Specifies that for an SMS-managed data set, you can enter the following information:

RESOWNER(userid or group-name) | NORESOWNER
Specifies the user ID or group of the actual owner of the data sets protected by the profile specified in profile-name-1. This name must be that of a RACF-defined user or group. (The data set resource owner, specified with RESOWNER, is distinguished from the owner specified with OWNER, which represents the user or group that owns the data set profile).

If NORESOWNER is specified, the user or group represented by the high level qualifier of the data set profile is assigned as the owner of data sets protected by the profile when SMS needs to determine the RESOWNER.

ERASE
Specifies that when SETROPTS ERASE is active, data management is to physically erase the contents of deleted data sets and scratched or released DASD extents. Erasing the data set means overwriting its contents with binary zeroes so that it cannot be read.

Restrictions: The ERASE operand is ignored when any of the following conditions exist:
- When the data set is a tape data set and your installation did not activate the TAPEAUTHDSN option in the DEVSUPxx member of SYS1.PARMLIB. See "Erasing Scratched or Release Data (ERASE Option)" in [z/OS Security Server RACF Security Administrator's Guide](https://www.ibm.com/support/docview.wss?uid=swg21385266) for more information.
- When SETROPTS NOERASE is active for your installation. (User and data set profile definitions are overridden.)

FCLASS(profile-name-2-class)
Specifies the name of the class to which profile-name-2 belongs. The valid class names are DATASET and those classes defined in the class descriptor table. If you omit this operand, RACF assumes the DATASET class. This operand is valid only when you also specify the FROM operand; otherwise, RACF ignores it.

FGENERIC
Specifies that RACF is to treat profile-name-2 as a generic name, even if it is fully qualified (meaning that it does not contain any generic characters). This operand is only needed when profile-name-2 is a DATASET profile.

FILESEQ(number)
Specifies the file sequence number for a tape data set. The number can range from 1 through 65535.
If you specify more than one profile name, RACF assigns the file sequence number that you specify to the first profile name, then increments the number by one for each additional name. Thus, be sure to specify profile names in the order of their file sequence numbers.

If you omit FILESEQ, the default is FILESEQ(1). If you omit VOLUME, RACF retrieves the volume serial number from the catalog.

If you omit TAPE, RACF ignores FILESEQ.

FROM(profile-name-2)
Specifies the name of an existing discrete or generic profile that RACF is to use as a model for the new profile. The model profile name you specify on the FROM operand overrides any model name specified in your user or group profile. If you specify FROM and omit FCLASS, RACF assumes that profile-name-2 is the name of a profile in the DATASET class.

To specify FROM, you must have sufficient authority to both profile-name-1 and profile-name-2, as described in "Authorization required" on page 33.

Naming conventions processing affects profile-name-2 in the same way that it affects profile-name-1.

Mixed-case profile names are accepted and preserved when FCLASS refers to a class defined in the static class descriptor table with CASE=ASIS or in the dynamic class descriptor table with CASE(ASIS).

If the profile being added is for a group data set and the user has the GRPACC attribute for that group, RACF places the group on the access list with UPDATE access authority. Otherwise, if the group is already on the access list, RACF changes the group's access authority to UPDATE.

Possible Changes to Copied Profiles When Modeling Occurs: When a profile is copied during profile modeling, the new profile could differ from the model in the following ways:

- Certain conditional access list conditions are valid only for specific classes. For example, WHEN(SYSID) is valid only for the PROGRAM class and WHEN(CRITERIA) is valid only for general resource classes (not data sets). When copying the conditional access list from profile-name-2 to profile-name-1, the profile might differ if the condition is not valid for the data set class. For example, if profile-name-2 is a PROGRAM profile with SYSID or CRITERIA entries in the conditional access list, those entries are not copied to the new data set profile (profile-name-1).
- RACF places the user on the access list with ALTER access authority or, if the user is already on the access list, changes the user's access authority to ALTER. This does not occur if the NOADDCREATOR option is in effect. If the profile being added is for a group data set and the user has the GRPACC attribute for that group, RACF places the group on the access list with UPDATE access authority. If the group is already on the access list, RACF changes the group's access authority to UPDATE. These access list changes do not occur if the data set profile is created only because the user has the OPERATIONS attribute.
- The security label, if specified in the model profile, is not copied. Instead, the user's current security label is used.
- Information in the non-RACF segments (for example, the DFP segment) is not copied.

FVOLUME(profile-name-2-serial)
Specifies the volume RACF is to use to locate the model profile (profile-name-2).
ADDSD

If you specify FVOLUME and RACF does not find profile-name-2 associated with that volume, the command fails. If you omit this operand and the data set name appears more than once in the RACF database, the command fails.

FVOLUME is valid only when FCLASS either specifies or defaults to DATASET and when profile-name-2 specifies a discrete profile. Otherwise, RACF ignores FVOLUME.

GENERIC | MODEL | TAPE

GENERIC

Specifies that RACF is to treat profile-name-1 as a fully qualified generic name, even if it does not contain any generic characters.

MODEL

Specifies that you are defining a model profile to be used when new data sets are created. The SETROPTS command (specifying MODEL operand with either GROUP or USER) controls whether this profile is used for data sets with group names or user ID names.

When you specify MODEL, you can omit UNIT and VOLUME.

When you specify MODEL, the SET, GENERIC, and TAPE operands are ignored, and NOSET is used as the default.

MODEL and GENERIC operands are mutually exclusive. You cannot specify a generic profile for automatic profile modelling through the MODEL operand of ADDUSER, ALTUSER, ADDGROUP, or ALTGROUP. However, you can explicitly use a generic profile as a model with the FROM operand, and if needed, the FGENERIC operand of the ADDSD command.

For information about automatic profile modeling, refer to z/OS Security Server RACF Security Administrator’s Guide.

TAPE

Specifies that the data set profile is to protect a tape data set. If tape data set protection is not active, RACF treats TAPE as an invalid operand and issues an appropriate error message. If profile-name-1 is a generic profile name, RACF ignores this operand. (RACF processes a tape data set protected by a generic profile in the same way as it processes a DASD data set protected by a generic profile.)

LEVEL(nn)

Specifies a level indicator, where nn is an integer from 0 and 99. The default is 0.

Your installation assigns the meaning of the value.

RACF includes it in all records that log data set accesses and in the LISTDSD command display.

SET | SETONLY | NOSET

If you do not specify SET, SETONLY, or NOSET, the default value is SET.

SET

Specifies that the data set is to be RACF-indicated. SET is the default value when you are RACF-protecting a data set. If the indicator is already on, the command fails. If you specify a generic profile name or the GENERIC operand, RACF ignores this operand.

SETONLY

Specifies that for a tape data set, RACF is to create only an entry in the
ADDSD

TVTOC; it is not to create a discrete data set profile. Specifying SETONLY allows you to protect a tape data set with a TVTOC and a generic profile.

Thus, you would normally specify SETONLY with TAPE, and, when you do, RACF ignores the OWNER, UACC, AUDIT, DATA, WARNING, LEVEL, and RETPD operands. If you specify SETONLY without TAPE, RACF treats SETONLY as SET.

NOSET
Specifies that the data set is not to be RACF-indicated.

For a DASD data set, use NOSET when you are defining a data set to RACF that has been brought from another system where it was RACF-protected. (The data set is already RACF-indicated.)

For a tape data set, use NOSET when, because of a previous error, the TVTOC indicates that the data set is RACF-indicated, but the discrete profile is missing.

If you specify NOSET, for a discrete profile, when the data set is not already RACF-indicated, RACF access control to that data set is not enforced.

If you specify NOSET, the volumes on which the data set or catalog resides need not be online, and the password in the first operand of this command is not required.

To use NOSET, one of the following must be true:
• You must have the SPECIAL attribute
• The profile must fall within the scope of a group in which you have the group-SPECIAL attribute
• The high-level qualifier of the data set name (or the qualifier supplied by a command installation exit routine) must be your user ID.

If you specify a generic profile name, RACF ignores this operand.

Note: If you specify a profile name that exists as a generation data group (GDG) data set base name with NOSET—but do not specify a unit and volume, RACF creates a model profile for the data set instead of a discrete profile. In this situation, the model profile provides the same protection as a discrete profile.

NOTIFY[(userid)]
Specifies the user ID of a RACF-defined user to be notified whenever RACF uses this profile to deny access to a data set. If you specify NOTIFY without userid, RACF takes your user ID as the default; you are notified whenever the profile denies access to a data set.

A user who is to receive NOTIFY messages should log on frequently, both to take action in response to the unauthorized access attempts the messages describe and to clear the messages from the SYS1.BROADCAST data set. (When the profile also includes WARNING, RACF might have granted access to the data set to the user identified in the message.)

Note: The user ID specified on the NOTIFY operand is not notified when the profile disallows creation or deletion of a data set. NOTIFY is used only for resource access checking, not for resource creation or deletion.

OWNER(userid or group-name)
Specifies a RACF-defined user or group to be assigned as the owner of the data set profile. When you define a group data set, the user you designate as
owner must have at least USE authority in the group specified by the
high-level qualifier of the data set name (or the qualifier determined by the
naming conventions routine or by a command installation exit routine).

If you omit this operand, you are defined as the owner of the data set profile.
However, if the high-level qualifier is a user ID that is different from your user ID, the OWNER of the profile is the user ID specified in the high-level qualifier. In addition, if you are using naming convention processing, either through the naming convention table or an exit, the owner of the profile is determined by the naming convention processing. If you have the SPECIAL attribute and define a profile for a group data set while SETROPTS ADDCREATOR is in effect, your user ID is added to the access list for the data set with ALTER access authority, whether or not you specify the OWNER operand. If you have the SPECIAL attribute and define a profile for a user data set, your user ID is not added to the access list for the data set.

If you specify OWNER(userid), the user you specify as the owner does not automatically have access to the data set. Use the PERMIT command to add the owner to the access list as desired. If you specify OWNER(group-name), RACF treats any users who have the group-SPECIAL attribute in the group as owners of the data set profile.

RETPD(nn.nn)

Specifies the RACF security retention period for a tape data set. The security retention period is the number of days that must elapse before a tape data set profile expires. (Note that, even though the data set profile expires, RACF-protection for data sets protected by the profile is still in effect. For more information, see z/OS Security Server RACF Security Administrator’s Guide.)

The number you specify, nn.nn must be one to five digits in the range of 0 through 65533. To indicate a data set that never expires, specify nn.nn as 99999. When 99999 is used, the SETROPTS command stores it internally as 65534.

The RACF security retention period is the same as the data set retention period specified by the EXPDT/RETPD parameters on the JCL DD statement only when the data set profile is discrete and you do not modify the RACF security retention period.

When the TAPEVOL class is active, RACF checks the RACF security retention period before it allows a data set to be overwritten. RACF adds the number of days in the retention period to the creation date for the data set. If the result is less than the current date, RACF continues to protect the data set.

When the TAPEVOL class is not active, RACF ignores the RETPD operand.

If you omit RETPD and your installation has established a default security retention period (through the RETPD operand on the SETROPTS command), RACF uses the default. If you omit RETPD and your installation has not established a default, RACF uses 0 as a default.

Specifying this operand for a DASD data set does not cause an error, but it has no meaning because RACF ignores the operand during authorization checking.

SECLABEL(security-label)

Specifies the name of an installation-defined security label representing an association between a particular security level and a set of zero or more categories.
A security label corresponds to a particular security level (such as CONFIDENTIAL) with a set of zero or more security categories (such as PAYROLL or PERSONNEL).

RACF stores the name of the security label you specify in the data set profile if you are authorized to use that label.

If you are not authorized to use the security label or if the name you had specified is not defined as a SECLABEL profile in the SECLABEL class, the data set profile is not created.

SECLEVEL(security-level)
Specifies the name of an installation-defined security level. This name corresponds to the number that is the minimum security level a user must have to access the data set. security-level must be a member of the SECLEVEL profile in the SECDATA class.

When you specify SECLEVEL and the SECDATA class is active, RACF adds security level access checking to its other authorization checking. If global access checking does not grant access, RACF compares the security level allowed in the user profile with the security level required in the data set profile. If the security level in the user profile is less than the security level in the data set profile, RACF denies the access. If the security level in the user profile is equal to or greater than the security level in the data set profile, RACF continues with other authorization checking.

Note: RACF does not perform security level checking for a started task or user that has the RACF privileged or trusted attribute. The RACF privileged or trusted attribute can be assigned to a started task through the RACF started procedures table or STARTED class, or to other users by installation-supplied RACF exits.

If the SECDATA class is not active, RACF still stores the security-level you specified in the data set profile, but cannot perform security level checking until you have activated the SECDATA class. If the name you specify is not defined as a SECLEVEL profile and the SECDATA class is active, you are prompted to provide a valid name for security-level.

TME
Specifies that information for the Tivoli Security Management Application is to be added.

Note: The TME segment fields are intended to be updated only by the Tivoli Security Management application, which manages updates, permissions, and cross references. A security administrator should only directly update TME fields on an exception basis.

ROLES(role-access-specification ...)
Specifies a list of roles and associated access levels related to this profile.

One or more role-access-specification values can be specified, each separated by blanks. Each value should contain no imbedded blanks and should have the following format:

role-name:authority[:conditional-class:conditional-profile]

where role-name is a discrete general resource profile defined in the ROLE class. The authority is the access authority (NONE, EXECUTE, READ, UPDATE, CONTROL, or ALTER) with which groups in the role definition should be permitted to the resource.
ADDSD

The conditional-class is a class name (APPCPORT, CONSOLE, JESINPUT, PROGRAM, TERMINAL, or SYSID) for conditional access permission, and is followed by the conditional-profile value, a resource profile defined in the conditional class.

UACC(access-authority)

Specifies the universal access authority to be associated with the data sets. The universal access authorities are ALTER, CONTROL, UPDATE, READ, EXECUTE, and NONE. If you omit UACC or specify UACC with no access authority, RACF uses the default value in your current connect group. If you specify CONTROL for a tape data set or a non-VSAM DASD data set, RACF treats the access authority as UPDATE. If you specify EXECUTE for a tape data set, or a DASD data set not used as a program library, RACF treats the access authority as NONE.

If a user accessing a data set has the RESTRICTED attribute, RACF treats the universal access authority (UACC) as NONE for that access attempt.

UNIT(type)

Specifies the unit type on which a tape data set or a non-VSAM DASD data set resides. You can specify an installation-defined unit name, a generic device type, or a specific device address. If you specify UNIT and VOLUME for a DASD data set, RACF assumes that the data set is a non-VSAM data set; therefore, do not use UNIT and VOLUME for a VSAM data set.

If the data set is not cataloged, UNIT and VOLUME are required. You must specify UNIT and VOLUME for data sets cataloged with an esoteric name (such as an installation-defined unit name).

If you specify a generic or model profile name, RACF ignores this operand.

VOLUME(volume-serial ...)

Specifies the volumes on which a tape data set or a non-VSAM DASD data set resides. If you specify UNIT and VOLUME for a DASD data set, RACF assumes that the data set is a non-VSAM data set; therefore, do not use UNIT and VOLUME for a VSAM data set.

If the data set is not cataloged, UNIT and VOLUME are required. You must specify UNIT and VOLUME for data sets cataloged with an esoteric name (such as an installation-defined unit name).

If you specify a tape data set profile name, you can specify only one volume.

If you specify a generic or model profile name, RACF ignores this operand.

WARNING

Specifies that even if access authority is insufficient, RACF is to issue a warning message and allow access to the resource. RACF also records the access attempt in the SMF record if logging is specified in the profile.

When **SETROPTS MLACTIVE(FAILURES)** is in effect: A user or task can access a data set that is in WARNING mode and has no security label even when MLACTIVE(FAILURES) is in effect and the class requires security labels. The user or task receives a warning message and gains access.
ADDSD

Examples

Example 1

Operation User ADM1 wants to create a generic profile to protect all data sets having the high-level qualifier SALES. Only users with a security level of CONFIDENTIAL or higher are to be able to access the data sets.

Known User ADM1 has the SPECIAL attribute and the installation has defined CONFIDENTIAL as a valid security level name. User ADM1 wants to issue the command as a RACF TSO command.

Command ADDSD 'SALES.*' UACC(READ) AUDIT(ALL(READ)) SECLEVEL(CONFIDENTIAL)

Defaults OWNER(ADM1) LEVEL(0)

Example 2

Operation User AEH0 wants to protect the data set AEH0.DEPT1.DATA with a discrete RACF profile.

Known User AEH0 is RACF-defined. AEH0.DEPT1.DATA is not cataloged. It resides on volume USER03 which is a 3330 volume. User AEH0 wants to issue the command as a RACF TSO command.

Command ADDSD 'AEH0.DEPT1.DATA' UNIT(3330) VOLUME(USER03)

Defaults OWNER(AEH0) UACC(UACC of user AEH0 in current connect group) AUDIT(FAILURES(READ)) LEVEL(0) SET

Example 3

Operation User ADM1 wants to RACF-define the DASD data set SYS1.ICH02.DATA which was brought from another system where it was protected by a discrete RACF profile and was RACF-indicated. On the new system, only users with a security category of DEPT1 are to be allowed to access the data set.

Known User ADM1 has the SPECIAL attribute. SYS1.ICH02.DATA is cataloged. User ADM1 has create authority in group SYS1 and is connected to group SYS1 with the group-SPECIAL attribute. The installation has defined DEPT1 as a valid security category. User ADM1 wants to issue the command as a RACF TSO command.

Command ADDSD 'SYS1.ICH02.DATA' OWNER(SYS1) UACC(NONE) AUDIT(ALL) NOSET CATEGORY(DEPT1)

Defaults LEVEL(0)

Example 4

Operation User AEHO wants to create a model profile for group RSC and place an installation-defined description in the profile.

Known User AEHO has at least CREATE authority in group RSC. User AEHO wants to issue the command as a RACF TSO command.

Command ADDSD 'RSC.ACCESS.PROFILE' MODEL DATA('PROFILE THAT CONTAINS MODELING INFORMATION')

Defaults OWNER(AEHO), UACC(the UACC of user AEHO in current group) AUDIT(FAILURES(READ)) LEVEL(0)

Example 5

Operation User AEH1 wants to protect the tape data set named AEH1.TAPE.RESULTS with a discrete RACF profile.

Known User AEH1 is a RACF-defined user. Data set AEH1.TAPE.RESULTS is cataloged, and tape data set protection is active. User AEH1 wants to issue the command as a RACF TSO command.

Command ADDSD 'AEH1.TAPE.RESULTS' UACC(NONE) AUDIT(ALL(READ)) TAPE NOTIFY FILESEQ(1) RETPD(100)

Defaults LEVEL(0)

Example 6

Operation User AEH1 wants to protect the tape data set named AEH1.TAPE.FUTURES with a discrete RACF profile, which is so much like the profile created for AEH1.TAPE.RESULTS (Example 5) that AEH1 can use the existing profile as a model for the new profile.

Known User AEH1 is a RACF-defined user. Data set AEH1.TAPE.FUTURES is cataloged, and tape data set protection is active. User AEH1 wants to issue the command as a RACF TSO command.

Command ADDSD 'AEH1.TAPE.FUTURES' FROM('AEH1.TAPE.RESULTS') FILESEQ(2)

Defaults LEVEL(0)
Example 7

Operation User ADM1 wants to create a generic profile to protect all data sets having the high-level qualifier PROJECTA. The data sets protected by the profile will be managed by DFP. Group TEST4 will be assigned as the actual owner of the data sets protected by the profile. The profile will have a universal access authority of READ.

User ADM1 wants to direct the command to run at the local node under the authority of user DAP02 and prohibit the command from being automatically directed to other nodes.

Known Users ADM1 and DAP02 have the SPECIAL attribute. TEST4 is a RACF-defined group. Users ADM1 and DAP02 have an already established user ID association. User ADM1 wants to issue the command as a RACF TSO command.

Command `ADDSD 'PROJECTA.*' UACC(READ) DFP(RESOWNER(TEST4)) ONLYAT(.DAP02)`

Defaults OWNER(ADM1) LEVEL(0) AUDIT(FAILURES(READ))

Results The command is only processed on the local node and not automatically directed to any other nodes in the RRSF configuration.

Example 8

Operation User TSO7 wants to create a generic profile to protect all data sets having the high-level qualifier PROJECTB with a security label of CONF. User TSO7 is authorized to the security label. User TSO7 wants to issue the command as a RACF operator command, and the RACF subsystem prefix is @.

Known User TSO7 is a RACF-defined user.

Command `@ADDSD 'PROJECTB.*' SECLABEL(CONF)`

Defaults None.
ADDUSER

ADDUSER (Add user profile)

Purpose

Use the ADDUSER command to define a new user to RACF and establish the user’s relationship to an existing RACF-defined group.

The command adds a profile for the new user to the RACF database and creates a connect profile that connects the user to whichever default group you specify.

The user profile consists of a RACF segment and, optionally, other segments such as a TSO segment, a DFP segment, or an OMVS segment. You can use this command to define information in any segment of the user’s profile.

Although user ID association information is in the user’s profile, you must use the RACLINK command to define a user ID association.

Attention:

- When the ADDUSER command is issued from ISPF, the TSO command buffer (including password and password phrase data) is written to the ISPLOG data set. As a result, you should not issue this command from ISPF or you must control the ISPLOG data set carefully.
- If the ADDUSER command is issued as a RACF operator command, the command and all data (including password and password phrase data) is written to the system log. You should not issue the ADDUSER command as an operator command unless specifying NOPASSWORD. For all other cases you should execute it as a TSO command.

This command is not intended to be used for profiles in the DIGTCERT or DIGTNMAP classes.

Issuing options

The following table identifies the eligible options for issuing the ADDUSER command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.

Related commands

- To change a user profile, see “ALTUSER (Alter user profile)” on page 120.
- To delete a user profile, see “DELUSER (Delete user profile)” on page 202.
- To list a user profile, see “LISTUSER (List user profile)” on page 235.
ADDUSER

- To administer user ID associations, see "RACLINK (Administer user ID associations)" on page 401.
- To obtain a list of user profiles, see "SEARCH (Search RACF database)" on page 580.

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see "Controlling the use of operator commands" in z/OS Security Server RACF Security Administrator’s Guide.

To use the ADDUSER command, you must have one of the following:

- The SPECIAL attribute
- The CLAUTH attribute for the USER class while one of the following is true:
 - You are the owner of the default group specified in this command.
 - You have JOIN authority in the default group specified in this command.
 - The default group is within the scope of a group in which you have the group-SPECIAL attribute.

You must have the SPECIAL attribute to give the new user the OPERATIONS, SPECIAL, or AUDITOR attribute. You need not have the SPECIAL attribute to specify the OWNER operand.

You cannot assign a user an attribute or authority higher than your own.

To assign a security category to a profile, you must have the SPECIAL attribute, or the category must be in your user profile.

To assign a security level to a profile, you must have the SPECIAL attribute or, in your own profile, a security level that is equal to or greater than the security level you are assigning.

To define information within a segment other than the base segment, you must have one of the following:

- The SPECIAL attribute
- At least UPDATE authority to the desired field within the segment through field-level access control.

For information on field-level access checking, see z/OS Security Server RACF Security Administrator’s Guide.

To specify the AT keyword, you must have READ authority to the DIRECT.node resource in the RRSFDATA class and a user ID association must be established between the specified node.userid pair(s).

To specify the ONLYAT keyword you must have the SPECIAL attribute, the userid specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified node.userid pair(s) if the user IDs are not identical.

To specify the SHARED keyword, you must have the SPECIAL attribute or at least READ authority to the SHARED.IDS resource in the UNIXPRIV class.
ADDUSER

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the ADDUSER command is:

```
[subsystem-prefix][ADDUSER | AU]
  (userid ...)
  [ ADDCATEGORIES(category-name ...) ]
  [ ADSP | NOADSP ]
  [ AT([node],userid ...) | ONLYAT([node],userid ...) ]
  [ AUDITOR | NOAUDITOR ]
  [ AUTHORITY(group-authority) ]
  [ CICS(]
    [ OPCLASS(operator-class ... ) ]
    [ OPIDENT(operator-id) ]
    [ OPPRTY(operator-priority) ]
    [ RSLKEY(rslkey ... | 0 | 99 ) ]
    [ TIMEOUT(timeout-value) ]
    [ TSLKEY(tslkey ... | 0 | 1 | 99 ) ]
    [ XFRSOF(FORCE | NOFORCE ) ]
  ) ]
  [ CLAUTH(class-name ...) | NOCLAUTH ]
  [ CSDATA(]
    [ custom-field-name(custom-field-value) ] ...
  ) ]
  [ DATA('installation-defined-data') ]
  [ DCE(]
    [ AUTOLOGIN(YES | NO) ]
    [ DCENAME(user-principal-name) ]
    [ HOMECCELL(dce-cell-name) ]
    [ HOMEEUUUID(home-cell-UUID) ]
    [ UUID(universal-unique-identifier) ]
  ) ]
  [ DFLTGRP(group-name) ]
  [ DFP(]
    [ DATAAPPL(application-name) ]
    [ DATACLAS(data-class-name) ]
    [ MGMTCLAS(management-class-name) ]
    [ STORCLAS(storage-class-name) ]
  ) ]
  [ EIM(]
    [ LDAPPROF(ldapbind_profile) ]
  ) ]
  [ GRPACC | NOGRPACC ]
```
ADDUSER

[KERB(
 [ENCRYPT(
 [DES | NODES]
 [DES3 | NODES3]
 [DESD | NODES3D]
 [AES128 | NOAES128]
 [AES256 | NOAES256]
)]
 [KERBNAME(kerberos-principal-name)]
 [MAXTTLFE (max-ticket-life)]
)
]

[LANGUAGE(
 [PRIMARY(language)]
 [SECONDARY(language)]
)
]

[LNOTES(
 [SNAME(short-name)]
)
]

[MODEL(dsname)]

[NAME(user-name)]

[NDS(
 [UNAME(user-name)]
)
]

[NETVIEW(
 [CONSNAME(console-name)]
 [CTL(GENERAL | GLOBAL | SPECIFIC)]
 [DOMAINS(domain-name ...)]
 [IC('command' | 'command-list')]
 [MSGRECVR(NO | YES)]
 [NGMFADMN(NO | YES)]
 [NGMFVSPN(view-span)]
 [OPCLASS(class ...)]
)
]

[OIDCARD | NOOIDCARD]

[OMVS(
 [ASSIZEMAX(address-space-size)]
 [AUTOUID | UID(user-identifier) [SHARED]]
 [CPUMEMAX(cpu-time)]
 [FILEPROCMAX(files-per-process)]
 [HOME(initial-directory-name)]
 [MEMLIMIT(nonshared-memory-size) | NOMEMLIMIT]
 [MMAPAREAMAX(memory-map-size)]
 [PROCUSERMAX(processes-per-UID)]
 [PROGRAM(program-name)]
 [SHMEMMAX(shared-memory-size) | NOSHMEMMAX]
 [THREADSMAX(threads-per-process)]
)
]

[OPERATIONS | NOOPERATIONS]
ADDUSER

[OPERPARM(
 [ALTGRP(alternate-console-group)]
 [AUTH(operator-authority)]
 [AUTO(YES | NO)]
 [CMDSYS(system-name)]
 [DOM(NORMAL | ALL | NONE)]
 [HC(YES | NO)]
 [INTIDS(YES | NO)]
 [KEY(searching-key)]
 [LEVEL(message-level)]
 [LOGCMDRESP(SYSTEM | NO)]
 [MFORM(message-format)]
 [MIGID(YES | NO)]
 [MONITOR(event)]
 [MSCOPe(system-names | * | *ALL)]
 [ROUTCODE(ALL | NONE | routing-codes)]
 [STORAGE(amount)]
 [UD(YES | NO)]
 [UNKNIDS(YES | NO)]
)]

[OVM(
 [FSROOT(file-system-root)]
 [HOME(initial-directory-name)]
 [PROGRAM(program-name)]
 [UID(user-identifier)]
)]

[OWNER(userid or group-name)]
[PASSWORD(password) | NOPASSWORD]
[PHRASE(‘password-phrase’)]

[PROXY[
 [LDAPHOST(ldap_url)]
 [BINDDN(bind_distinguished_name)]
 [BINDPW(bind_password)]
)]

[RESTRICTED | NORESTRICTED]
[SECLABEL(seclabel-name)]
[SECLEVEL(seclevel-name)]
[SPECIAL | NOSPECIAL]

[TSO(
 [ACCTNUM(account-number)]
 [COMMAND(command-issued-at-logon)]
 [DEST(destination-id)]
 [HOLDCLASS(hold-class)]
 [JOBCLASS(job-class)]
 [MAXSIZE(maximum-region-size)]
 [MSGCLASS(message-class)]
 [PROC(logon-procedure-name)]
 [SECLABEL(security-label)]
 [SIZE(default-region-size)]
 [SYS(systout-class)]
 [UNIT(unit-name)]
 [USERDATA(user-data)]
)]

[UACC(access-authority)]
For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

Parameters

subsystem-prefix

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

userid

Specifies the user to be defined to RACF. If you are defining more than one user, the list of user IDs must be enclosed in parentheses.

This operand is required and must be the first operand following ADDUSER.

Each user ID must be unique and must not currently exist on the RACF database as a user ID or a group name.

ADDCATEGORY(category-name ...)

Specifies one or more names of installation-defined security categories. The names you specify must be defined as members of the CATEGORY profile in a SECDATA class. (For information on defining security categories, see [z/OS Security Server RACF Security Administrator’s Guide](#).)

When the SECDATA class is active and you specify ADDCATEGORY, RACF performs security category checking in addition to its other authorization checking. If a user requests access to a resource, RACF compares the list of security categories in the user's profile with the list of security categories in the resource profile. If RACF finds any security category in the resource profile...
that is not in the user's profile, RACF denies access to the resource. If the user's profile contains all the required security categories, RACF continues with other authorization checking.

Note: RACF does not perform security category checking for a started task or user with the RACF privileged or trusted attribute. The RACF privileged or trusted attribute can be assigned to a started task through the RACF started procedures table or STARTED class, or to other users by installation-supplied RACF exits.

ADSP | NOADSP

ADSP
- Specifies that all permanent tape and DASD data sets created by the new user are to be automatically RACF-protected by discrete profiles. ADSP specified on the ADDUSER command overrides NOADSP specified on the CONNECT command.

If SETROPTS NOADSP is in effect, RACF ignores the ADSP attribute at logon or job initiation.

NOADSP
- Specifies that the new user is not to have the ADSP attribute. NOADSP is the default value if you omit both ADSP and NOADSP.

AT | ONLYAT

The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.

AT([node].userid ...)
- Specifies that the command is to be directed to the node specified by `node`, where it runs under the authority of the user specified by `userid` in the RACF subsystem address space.

If `node` is not specified, the command is directed to the local node.

ONLYAT([node].userid ...)
- Specifies that the command is to be directed only to the node specified by `node` where it runs under the authority of the user specified by `userid` in the RACF subsystem address space.

If `node` is not specified, the command is directed only to the local node.

AUDITOR | NOAUDITOR

AUDITOR
- Specifies that the new user has full responsibility for auditing the use of system resources, and is able to control the logging of detected accesses to any RACF-protected resources during RACF authorization checking and accesses to the RACF database.

You must have the SPECIAL attribute to enter the AUDITOR operand.

NOAUDITOR
- Specifies that the new user does not have the AUDITOR attribute. NOAUDITOR is the default value if you omit both AUDITOR and NOAUDITOR.

AUTHORITY(group-authority)
- Specifies the level of group authority for the new user in the default group.

The valid group authority values are USE, CREATE, CONNECT, and JOIN, as described in “Group authorities” on page 13. If you omit this operand or specify AUTHORITY without `group-authority`, the default value is USE.
This operand is group-related. If a user is connected to other groups (with the CONNECT command), the user can have a different group authority in each group.

CICS

Defines CICS operator information for a new CICS terminal user. You can control access to an entire CICS segment or to individual fields within the CICS segment by using field-level access checking. For more information, see the [z/OS Security Server RACF Security Administrator's Guide](#).

OPCLASS(operator-class ...)

Specifies numbers 1 - 24, defined as two digits, representing classes assigned to this operator to which BMS (basic mapping support) messages are to be routed.

OPIDENT(operator-id)

Specifies a 1 - 3 character identification of the operator for use by BMS.

Operator identifiers can consist of any characters, and can be entered with or without single quotation marks. The following rules apply:

- If parentheses, commas, blanks, or semicolons are to be entered as part of the operator identifier, the character string must be enclosed in single quotation marks. For example, if the operator identifier is (1), you must enter `OPIDENT('1')`.
- If a single quotation mark is intended to be part of the character string, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

If OPIDENT is not specified, the field defaults to blanks in the RACF user profile, and blanks appear in the field in the LISTUSER command output.

OPPRTY(operator-priority)

Specifies the number from 0 - 255 that represents the priority of the operator.

If OPPRTY is not specified, the field defaults to zeros in the RACF user profile, and zeros appear in the field in the LISTUSER command output.

RSLKEY(rslkey ... | 0 | 99)

Specifies the resource security level (RSL) keys assigned to the user. The RSL keys are used by CICS on distributed platforms. Each CICS resource has one RSL key assigned to it; in order for a user to access a resource, the user must have the same RSL key as the RSL key assigned to the resource.

- RSLKEY(rslkey ...) specifies a list of one or more numbers in the range of 1 through 24 which represent the resource security level (RSL) keys assigned to the user.
- If RSLKEY(0) is specified, no RSL keys are assigned to the user.
- If RSLKEY(99) is specified, all RSL keys are assigned to the user (1 - 24, inclusive).
- Keys 0 and 99 are mutually exclusive and cannot be specified with any other keys.
- If RSLKEY is specified with no key numbers, RSLKEY(0) is defaulted.
- If RSLKEY is not specified, CICS will treat it as RSLKEY(0).

TIMEOUT(timeout-value)

Specifies the time, in hours and minutes, that the operator is allowed to be idle before being signed off. The value for TIMEOUT can be entered in the
form m, mm, hmm, hhmm, where the value for m or mm must be 00 - 59, or 00 - 60 when h or hh is not specified or is specified as 0 or 00. The value for h or hh must be 00 - 99.

TIMEOUT defaults to 0 if omitted, meaning no timeout.

TSLKEY(tslkey ... | 0 | 1 | 99)

Specifies the transaction security level (TSL) keys assigned to the user. The TSL keys are used by CICS on distributed platforms. Each CICS transaction has one TSL key assigned to it; in order for a user to run a transaction, the user must have the same TSL key as the TSL key assigned to the transaction.

- TSLKEY(tslkey ...) specifies a list of one or more numbers in the range of 1 through 64 which represent the transaction security level (TSL) keys assigned to the user.
- If TSLKEY(0) is specified, no TSL keys are assigned to the user.
- If TSLKEY(99) is specified, all TSL keys are assigned to the user (1 - 64, inclusive).
- Keys 0 and 99 are mutually exclusive and cannot be specified with any other keys.
- If TSLKEY is specified with no key numbers, TSLKEY(1) is defaulted.
- If TSLKEY is not specified, CICS will treat it as TSLKEY(1).

XRFSOFF(FORCE | NOFORCE)

FORCE means that the user is signed off by CICS when an XRF takeover occurs.

CLAUTH | NOCLAUTH

CLAUTH(class-name ...)

Specifies the classes in which the new user is allowed to define profiles to RACF for protection. Classes you can specify are USER, and any resource classes defined in the class descriptor table.

To enter the CLAUTH operand, you must have the SPECIAL attribute or have the CLAUTH attribute for the classes specified. If you do not have sufficient authority for a specified class, RACF ignores the CLAUTH specification for that class and continues processing with the next class name specified.

Note: The CLAUTH attribute has no meaning for the FILE and DIRECTORY classes.

NOCCLAUTHER

Specifies that the new user is not to have the CLAUTH attribute.

NOCCLAUTHER is the default if you omit both CLAUTH and NOCLAUTH.

CSDATA

Specifies information to add a custom field for this user.

Usage for each custom field is defined using the CFDEF operand of the RDEFINE command for resource profiles in the CFIELD class. Contact your security administrator to see how custom fields are used at your installation. For more information about custom fields, see [z/OS Security Server RACF Security Administrator’s Guide](https://www.ibm.com/docs/en/zos/2.2.0)

custom-field-name(custom-field-value) ...

Specifies the name and value of a custom field for this user. You can add values for multiple custom fields with a single ADDUSER command.
Rules:

- You must use the same custom-field-name as defined by the CFIELD profile named USER.CSDATA.custom-field-name. (The CFIELD profile is defined using the CFDEF operand of the RDEFINE command.)
- You must specify a custom-field-value that is valid for the attributes of this custom field. (The attributes, such as data type, are defined in the CFDEF segment of the CFIELD profile.)

DATA('installation-defined-data')

Specifies up to 255 characters of installation-defined data to be stored in the user's profile and must be enclosed in single quotation marks. It can also contain double-byte character set (DBCS) data. Note that only 254 characters are chained off the ACEE.

Use the LISTUSER command to list this information.

DCE

Adds a DCE segment to the user profile of the specified z/OS DCE user or Distributed File Service (DFS) Server Message Block (SMB) user. You can enter any of the following suboperands to specify information for that user. Each suboperand defines information that RACF stores in a field within the DCE segment of the user's profile.

You can control access to an entire DCE segment or to individual fields within the DCE segment by using field level access checking.

To define information within the DCE segment, you must have one of the following:

- The SPECIAL attribute
- At least UPDATE authority to the desired field within the segment through field-level access control.

For information on field-level access checking, see [z/OS Security Server RACF Security Administrator's Guide](#).

Note: The ability to associate a RACF and DCE identity depends on replicated information between DCE and RACF. Do not change the user's UUID, principal name, or cell name in either RACF or the DCE registry without a corresponding update in the other registry.

AUTOLOGIN(NO | YES)

Specifies whether z/OS UNIX DCE is to log this user into z/OS UNIX DCE automatically. If AUTOLOGIN(NO) is specified, z/OS UNIX DCE does not attempt to login this user to z/OS UNIX DCE automatically. If AUTOLOGIN is not specified, AUTOLOGIN(NO) is the default.

DCENAME(user-principal-name)

Specifies the DCE principal name defined for this RACF user in the DCE registry.

The DCENAME you define to RACF can contain 1 - 1023 characters and can consist of any character. You can enter the name with or without single quotation marks, depending on the following:

- If parentheses, commas, blanks, or semicolons are entered as part of the name, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the name, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.
Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. RACF does not ensure that a valid DCENAME has been specified.

The DCENAME assigned to a user must be the same as the DCE principal name defined to the DCE registry.

If DCENAME is not specified, the user cannot login as a z/OS UNIX DCE user automatically, even when AUTOLOGIN(YES) is specified.

Note: RACF does not enforce the uniqueness of each DCENAME. The DCENAME specified must match the user's DCE principal name that is defined to the DCE registry. If the DCENAME entered does not correspond to the DCE principal name entered in the DCE registry for this user, z/OS UNIX DCE cannot correctly associate the identity of the DCE principal with the correct RACF user ID.

HOMECELL(dce-cell-name)

Specifies the DCE cell name defined for this RACF user.

The HOMECELL you define to RACF can contain 1 - 1023 characters and can consist of any character. You can enter the name with or without single quotation marks, depending on the following:

- If parentheses, commas, blanks, or semicolons are entered as part of the cell name, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the cell name, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. The fully qualified pathname should be specified. RACF does not ensure that a valid DCE cell name has been specified.

The HOMECELL assigned to a user must be the same as the DCE cell name that this user has been defined to.

If the HOMECELL is not specified, z/OS UNIX DCE single signon to DCE support assumes that the HOMECELL for this user is the same cell that this MVS system is defined to.

RACF checks that the prefix of the HOMECELL name entered has a prefix of either /.../ or /..:/.

The notation /.../ indicates that the HOMECELL name is a global domain name service (DNS) cell name or X.500 global name.

The notation /..:/ indicates that the HOMECELL name is a cell relative CDS (cell directory service) name. When determining the naming conventions used within your DCE cell, you should contact your DCE cell administrator.

HOMEUUID(home-cell-UUID)

Specifies the DCE universal unique identifier (UUID) for the cell that this user is defined to. The UUID is a 36-character string that consists of numeric and hexadecimal characters. This string must have the delimiter character (-) in positions 9, 14, 19, and 24. The general format for the UUID string is xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, in which x represents a valid numeric or hexadecimal character.
Be careful when assigning UUIDs. The UUID cannot be randomly assigned. The HOMEUUID is the DCE UUID of the cell that this RACF user is defined to. If HOMEUUID is not specified, the LISTUSER command displays NONE for the HOMEUUID field.

Note: The HOMEUUID specified must match the UUID of the DCE cell to which this principal (specified by the DCENAME operand) is defined.

UUID(universal-unique-identifier)
Specifies the DCE universal unique identifier (UUID) of the DCE principal defined in DCENAME. The UUID is a 36-character string that consists of numeric and hexadecimal characters. This string must have the delimiter character (-) in positions 9, 14, 19, and 24. The general format for the UUID string is `xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx`, in which `x` represents a valid numeric or hexadecimal character.

Be careful when assigning UUIDs. The UUID cannot be randomly assigned. Note that RACF does not enforce the uniqueness of each UUID entered. The DCE UUID assigned to a user must be the same as the DCE UUID assigned when defining this RACF user to the DCE registry as a DCE principal that is being cross-linked with this RACF user ID. This DCE principal is specified using the DCENAME operand.

DFLTGRP(group-name)
Specifies the name of a RACF-defined group to be used as the default group for the user. If you do not specify a group, RACF uses your current connect group as the default.

Note: You do not have to issue the CONNECT command to connect new users to their default groups.

DFP
Specifies that when you define a user to RACF, you can enter any of the following suboperands to specify default values for DFP data application identifier, data class, management class, and storage class. DFP uses this information to determine data management and DASD storage characteristics when a user creates a new data set.

You can control access to an entire DFP segment or to individual fields within the DFP segment by using field-level access checking. For more information, see the [z/OS Security Server RACF Security Administrator’s Guide](https://www.ibm.com/systems/z/os/zos/docinfo/ibmz-series1/zos/).

DATAAPPL(application-name)
Specifies an 8-character DFP data application identifier.

DATACLAS(data-class-name)
Specifies the default data class. The maximum length of `data-class-name` is 8 characters.

A data class can specify some or all of the physical data set attributes associated with a new data set. During new data set allocation, data management uses the value you specify as a default unless it is preempted by a higher priority default, or overridden in some other way, for example by JCL.

Note: The value you specify must be a valid data class name defined for use on your system. For more information, see the [z/OS Security Server RACF Security Administrator’s Guide](https://www.ibm.com/systems/z/os/zos/docinfo/ibmz-series1/zos/).
For information on defining DFP data classes, see z/OS DFSMSdfp Storage Administration.

MGMTCLAS(management-class-name)

Specifies the default management class. The maximum length of management-class-name is 8 characters.

A management class contains a collection of management policies that apply to data sets. Data management uses the value you specify as a default unless it is preempted by a higher priority default, or overridden in some other way, for example by JCL.

Note: The value you specify must be protected by a profile in the MGMTCLAS general resource class, and the user must be granted at least READ access to the profile. Otherwise, RACF does not allow the user access to the specified MGMTCLAS. For more information, see z/OS Security Server RACF Security Administrator's Guide.

For information on defining DFP management classes, see z/OS DFSMSdfp Storage Administration.

STORCLAS(storage-class-name)

Specifies the default storage class. The maximum length of storage-class-name is 8 characters.

A storage class specifies the service level (performance and availability) for data sets managed by the storage management subsystem (SMS). During new data set allocation, data management uses the value you specify as a default unless it is preempted by a higher priority default, or overridden in some other way (for example, by JCL).

Note: The value you specify must be protected by a profile in the STORCLAS general resource class, and the user must be granted at least READ access to the profile. Otherwise, RACF does not allow the user access to the specified STORCLAS. For more information, see z/OS Security Server RACF Security Administrator's Guide.

For information on defining DFP storage classes, see z/OS DFSMSdfp Storage Administration.

EIM

Specifies the bind information required to establish a connection with the EIM domain.

LDAPPROF(ldapbind_profile)

Specifies the name of a profile in the LDAPBIND class. The profile in the LDAPBIND class contains the name of an EIM domain and the bind information required to establish a connection with the EIM domain. The EIM services attempt to retrieve this information when it is not explicitly supplied through invocation parameters. Applications or other services that use the EIM services might instruct their callers to define a profile in the LDAPBIND class or the IRR.PROXY.DEFAULTS profile in the FACILITY class.

The ldapbind_profile specifies the name of a profile in the LDAPBIND class containing the EIM domain and the LDAP bind information. The ldapbind_profile name may be 1 - 246 characters long. It is not a case-sensitive name.
ADDUSER

GRPACC
Specifies that any group data sets protected by DATASET profiles defined by the new user are automatically accessible to other users in the group. The group whose name is used as the high-level qualifier of the data set name (or the qualifier supplied by a command installation exit) has UPDATE access authority in the new profile. GRPACC specified on the ADDUSER command overrides NOGRPACC specified on the CONNECT command.

NOGRPACC
Specifies that the new user does not have the GRPACC attribute. NOGRPACC is the default value if you omit both GRPACC and NOGRPACC.

KERB
Specifies z/OS Integrated Security Services Network Authentication Service information for a user you are defining to RACF. Each subkeyword defines information that RACF stores in a field within the KERB segment of the user's profile.

Note: The RACF user password must be changed to be non-expired in order to complete the definition of the z/OS Network Authentication Service principal. The user cannot use any z/OS Network Authentication Service function until the definition is complete.

ENCRYPT
Specifies which keys the user (the z/OS Network Authentication Service principal) is allowed to use.

ENCRYPT is the default value when you specify KERB. The default values for ENCRYPT are DES, DES3, DESD, AES128, and AES256.

- **DES | NODES**
 Whether DES encrypted keys can be used.

- **DES3 | NODES3**
 Whether DES3 encrypted keys can be used.

- **DESD | NODESD**
 Whether DESD encrypted keys can be used.

- **AES128 | NOAES128**
 Whether AES128 encrypted keys can be used.

- **AES256 | NOAES256**
 Whether AES256 encrypted keys can be used.

When a principal's password changes, a key of each type is generated and stored in the principal's user profile. The use of each key is based on the z/OS Network Authentication Service configuration.

Important: The principal’s password must be changed to ensure that a key of each type is generated and stored in the principal’s user profile.

See [z/OS Integrated Security Services Network Authentication Service Administration](link) for information about how z/OS Network Authentication Service uses keys and how to customize environment variables related to keys.

KERBNAME(kerberos-principal-name)
Specifies the z/OS user ID’s local kerberos-principal-name.
The value specified for the local kerberos-principal-name must be unique. Consequently, a list of users cannot be specified on an ADDUSER command with the KERBNAME keyword.

The kerberos-principal-name you define to RACF can consist of any character except the @ (X'7C') character. You can enter the name with or without single quotation marks, depending on the following:

- If parentheses, commas, blanks, or semicolons are entered as part of the name, the name must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the name and the entire character string is enclosed in single quotation marks, you must use two single quotation marks together to represent each single quotation mark within the string.
- If the first character of the name is a single quotation mark, you must enter the string within single quotation marks, with two single quotation marks entered for that single quotation mark.

Guideline: Avoid using EBCDIC variant characters to prevent problems with different code pages.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. However, RACF does not ensure that a valid kerberos-principal-name has been specified.

A local kerberos-principal-name must not be qualified with a realm name when specified with the KERBNAME keyword. However, RACF verifies that the local principal name, when fully qualified with the name of the local realm:

```
/.../local_realm_name/principal_name
```

does not exceed 240 characters. For example,

- If the local realm name is

 X

 fully qualified local principal names are prefixed with

 `/.../X/
```

  and are limited to a maximum of 233 characters.

- If the local realm name is
  
  KERB390.ENDICOTT.IBM.COM

  fully qualified local principal names will be prefixed with
  
  `/.../KERB390.ENDICOTT.IBM.COM/
```

 and be limited to a maximum of 210 characters.

This length verification requires that the REALM profile for the local realm KERBDFLT be defined and contain the name of the local realm, prior to the specification of local z/OS Network Authentication Service principals. Otherwise, z/OS Network Authentication Service users might not be properly defined.

Note: Because of the relationship between local realm names and local kerberos-principal-names, in which the length of a fully qualified name cannot exceed 240 characters, caution and planning must go into renaming...
the local realm because the combined length is only checked by RACF when a local _kerberos-principal-name_ is added or altered. Renaming the realm should be avoided as a result.

MAXTTLFE(_max-ticket-life_)
Specifies the _max-ticket-life_ in seconds, and is represented by a numeric value from 1 - 2 147 483 647. Note that 0 is not a valid value.

If MAXTTLFE is specified on the definition of a local z/OS Network Authentication Service principal, the z/OS Integrated Security Services Network Authentication Service takes the most restrictive of the value defined for the local principal and the value specified on the definition of the local realm (the KERBDFLT profile in the REALM class). Consequently, if the realm _max-ticket-life_ is 24 hours, a principal cannot get a ticket with a longer lifetime even if the _max-ticket-life_ is set to 48 hours in the user profile. If this field is not specified for a local principal, or if NOMAXTTLFE has been specified, the maximum lifetime for tickets created for this principal is determined from the definition of the local z/OS Network Authentication Service realm.

LANGUAGE
Specifies the user's preferred national languages. Specify this operand if the user is to have languages other than the system-wide defaults (established by the LANGUAGE operand on the SETROPTS command).

- If this profile is for a TSO/E user who is to establish an extended MCS console session, the languages you specify should be one of the languages specified on the LANGUAGE LANGCODE statements in the MMSLSTxx PARMLIB member. See your MVS system programmer for this information.

 For more information on TSO/E national language support, see [z/OS TSO/E Customization](http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp).

- If this profile is for a CICS user, see your CICS administrator for the languages supported by CICS on your system.

 For more information, visit [CICS Transaction Server for z/OS Information Center](http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp).

PRIMARY(_language_)
Specifies the user's primary language.

SECONDARY(_language_)
Specifies the user's secondary language.

Note:

1. For the primary and secondary languages, specify either the installation-defined name of a currently active language (a maximum of 24 characters) or one of the language codes (three characters in length) for a language installed on your system.

2. The language name can be a quoted or unquoted string.

3. The same language can be specified with both PRIMARY and SECONDARY parameters.

4. If the MVS message service is not active, the PRIMARY and SECONDARY values must be a 3-character language code.

LNOTES
Specifies the Lotus Notes for z/OS information for the user profile being added.
ADDUSER

SNAME(short-name)

Specifies the Lotus Notes for z/OS short-name of the user being defined. This value should match the name stored in the Lotus® Notes® for z/OS address book for this user, but this is not verified by the command.

The short-name you define to RACF can contain 1 - 64 characters. The short-name can contain the following characters: uppercase and lowercase alphabetic characters (A - Z, a - z), 0 - 9, & (X'50'), - (X'60'), . (X'4B'), _ (X'6D'), and blanks (X'40').

If the short-name you specify contains any blanks, it must be enclosed in single quotation marks. The short-name is stripped of leading and trailing blanks.

The value specified for the short-name must be unique. Consequently, a list of users cannot be specified on an ADDUSER command with the SNAME keyword.

MODEL(dsname)

Specifies the name of a discrete data set profile that is used as a model when new data set profiles are created that have userid as the high-level qualifier. For this operand to be effective, the MODEL(USER) option (specified on the SETROPTS command) must be active.

RACF always prefixes the data set name with userid when it accesses the model. For information about automatic profile modeling, refer to z/OS Security Server RACF Security Administrator’s Guide.

NAME(user-name)

Specifies the user name to be associated with the new user ID. You can use a maximum of 20 alphanumeric or non-alphanumeric characters. If the name you specify contains any blanks, it must be enclosed in single quotation marks.

Names longer than 20 characters are truncated to 20 characters when you enclose the name in quotation marks. However, when you specify a name longer than 20 characters without enclosing the name in quotation marks, you receive an error from the TSO parse routine.

If you omit the NAME operand, RACF uses a default of twenty # (X'7B') characters (###...). Note, however, that the corresponding entry in a LISTUSER output is the word UNKNOWN.

NDS

Specifies the Novell Directory Services for OS/390 information for the user profile being added.

UNAME(user-name)

Specifies the Novell Directory Services for OS/390 user-name of the user being defined. The user-name value should match the name stored in the Novell Directory Services for OS/390 directory for this user, but this is not verified by the command.

The user-name you define to RACF can contain 1 - 246 characters. However, the user-name cannot contain the following characters: * (X'5C'), + (X'4E'), | (X'4F'), = (X'7E'), , (X'6B'), " (X'7F'), ` (X'79'), / (X'61'), : (X'7A'), ; (X'5E'), $ (X'4A'), and brackets [and] (X'AD' and X'BD').

If the user-name you specify contains any parentheses or blanks, it must be enclosed in single quotation marks. The user-name is stripped of leading and trailing blanks. If a single quotation mark is intended to be part of the
ADDUSER

user-name, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

The value specified for the *user-name* must be unique. Consequently, a list of users cannot be specified on an ADDUSER command with the UNAME keyword.

NETVIEW

CONSNAME(console-name)

Specifies the default master console station (MCS) console name used for this operator. This default console name is used when the operator does not specify a console name on the NetView® GETCONID command.

The console-name value is an identifier 1 - 8 characters in length whose validity is checked by MVS processing when the operator tries to use it. See [z/OS MVS Planning: Operations](#) for information on valid values for a particular release.

CTL

Specifies whether a security check is performed for this NetView operator when they try to use a span or try to do a cross-domain logon.

GENERAL

Specifies that checking is done as described for SPECIFIC, and, in addition, that the operator is allowed to access devices that are not part of any span.

GLOBAL

Specifies that no checking is done.

SPECIFIC

Specifies that the operator is allowed to control only devices that are in spans the operator started, and that a security check is to be performed through RACROUTE REQUEST=AUTH whenever this operator attempts to use a span. Also, any cross-domain logon must be to a domain listed in the operator’s NETVIEW segment with the DOMAINS keyword.

SPECIFIC is the default.

DOMAINS(domain-name ...)

Specifies the identifiers of NetView programs in another NetView domain where this operator can start a cross-domain session. The NetView program identifiers are coded on the NCCFID definition statement for the other domains, and represent the name given to that NetView program on the APPL statement.

Domain-name is a 1 - 5 character identifier. The characters can be alphabetic, numeric, or national.

IC('command | command-list')

Specifies the command or command list (up to 255 characters) to be processed by NetView for this operator when this operator logs on to NetView.

If the command or command list you specify contains any commas, blanks, or other special characters that TSO/E requires to be quoted, it must be enclosed in single quotation marks.
ADDUSER

MSGRECVR(NO | YES)
Specifies whether this operator is to receive unsolicited messages that are not routed to a specific NetView operator.

NO Specifies that the operator is not to receive the messages.

NO is the default.

YES Specifies that the operator is to receive the messages.

NGMFADMN(NO | YES)
Specifies whether a NetView operator has administrator authority to the NetView Graphic Monitor Facility (NGMF).

NO Specifies that the operator does not have authority.

NO is the default.

YES Specifies that the operator has the authority.

NGMFVSPN (view-span)
Reserved for future use by the NetView Graphic Monitor Facility.

OPCLASS(class ...)
NetView scope classes for which the operator has authority. The OPCLASS values are only used if NetView is doing the checking itself, rather than using SAF and the NETCMDS class that RACF provides. If the OPCLASS operand is not specified, the operator is considered to have authority in scope classes.

The `class` value is a number from 1 to 2040 that specifies a NetView scope class.

OIDCARD | NOOIDCARD

OIDCARD
Specifies that the new user must supply an operator identification card when logging onto the system. If you specify the OIDCARD operand, the system prompts you to enter the new user's operator identification card as part of the processing of the ADDUSER command. If you specify the OIDCARD operand in a job executing in the background or when you cannot be prompted in the foreground, the ADDUSER command fails.

NOOIDCARD
Specifies that the new user is not required to supply an operator identification card. NOOIDCARD is the default value if you omit both OIDCARD and NOOIDCARD.

OMVS
Specifies z/OS UNIX System Services information for the user being defined to RACF. Information is stored in the OMVS segment of the user's profile.

You can control access to an entire OMVS segment or to individual fields in the OMVS segment by using field-level access checking.

ASSIZEMAX(address-space-size)
Specifies the RLIMIT_AS hard limit (maximum) resource value that processes receive when they are dubbed a process. The `address-space-size` you define to RACF is a numeric value from 10485760 - 2 147 483 647. ASSIZEMAX indicates the address space region size in bytes. The soft limit (current) resource value is obtained from MVS. If the soft limit value from MVS is greater than the `address-space-size`, the soft limit is used.
The value specified for ASSIZEMAX is also used when processes are initiated by a daemon process using an exec after setuid(). In this case, both the RLIMIT_AS hard and soft limits are set to the address-space-size value.

The value specified for ASSIZEMAX overrides any value provided by the MAXASSIZE parameter of BPXPRMxx. For more information, see z/OS UNIX System Services Planning.

AUTOUID | UID

Specifies whether RACF is to automatically assign an unused UID value to the user or if a specific UID value is to be assigned.

AUTOUID

Specifies that RACF is to automatically assign an unused UID value to the user. The UID value is derived from information obtained from the BPX.NEXT.USER profile in the FACILITY class. For more information on setting up BPX.NEXT.USER, see z/OS Security Server RACF Security Administrator’s Guide.

If you are using RRSF automatic command direction for the USER class, the command sent to other nodes will contain an explicit assignment of the UID value which was derived by RACF on the local node.

Rules:

- AUTOUID cannot be specified if more than one user ID is entered.
- The AUTOUID keyword is mutually exclusive with the SHARED keyword.
- If both UID and AUTOUID are specified, AUTOUID is ignored.
- Field-level access checking for the UID field applies when using AUTOUID.

UID(user-identifier) [SHARED]

UID(user-identifier)

Specifies the user identifier. The UID is a numeric value from 0 - 2 147 483 647.

When assigning a UID to a user, you should make sure that the user’s default group has a GID. A user who has a UID and a current connect group that has a GID can use functions such as the TSO/E OMVS command and can access z/OS UNIX files based on the UID and GID values assigned.

Care should be taken in assigning 0 as the user identifier. UID 0 is considered a superuser. The superuser passes all z/OS UNIX security checks. Assigning a UID to a user ID that appears in the RACF started procedures table (ICHRIN03) should also be done with care. RACF defined started tasks that have the trusted or privileged attribute are considered superusers even if their UID is a value other than 0.

Rules:

- If the security administrator has defined the SHARED.IDS profile in the UNIXPRIV class, the UID value must be unique. Use the SHARED keyword in addition to UID to assign a value that is already in use.
• If SHARED.IDS is not defined, RACF does not require the UID to be unique. The same value can be assigned to multiple users but this is not recommended because individual user control would be lost. However, if you want a set of users to have exactly the same access to z/OS UNIX resources, you might decide to assign the same UID to more than one user.

• The maximum number of user IDs that can share a UID or groups that can share a GID is 132 when each consists of 8 characters. More user IDs or groups are available using less than 8 characters. If the limit is met, you can combine user ID functions (for started tasks or daemons) to use physically less user IDs sharing the same UID. You may also use SUPERUSER granularity functionality to reduce the need to assign and share SUPERUSER authority using UID 0.

• If the UID is not specified, the user is unable to become a z/OS UNIX user and a LISTUSER for that user ID shows NONE for the UID.

SHARED

If the security administrator has chosen to control the use of shared UIDs, this keyword must be used in addition to the UID keyword to specify the user identifier if it is already in use by at least one other user. The administrator controls shared UIDs by defining the SHARED.IDS profile in the UNIXPRIV class.

Rules:

- If the SHARED.IDS profile is not defined, SHARED is ignored.
- If SHARED is specified in the absence of UID, it is ignored.
- If the SHARED.IDS profile is defined and SHARED is specified, but the value specified with UID is not currently in use, SHARED is ignored and UNIXPRIV authority is not required.
- Field-level access checking for the UID field applies when using SHARED.
- The SHARED keyword is mutually exclusive with the AUTOUID keyword.

CPUTIMEMAX(cpu-time)

Specifies the RLIMIT_CPU hard limit (maximum) resource value that the user’s z/OS UNIX processes receive when they are dubbed a process. The cpu-time you define to RACF is a numeric value from 7 - 2 147 483 647. RLIMIT_CPU indicates the cpu-time in seconds that a process is allowed to use. The soft limit (current) resource value is obtained from MVS. If the soft limit value from MVS is greater than the cpu-time value, the soft limit is used.

The value specified for CPUTIMEMAX is also used when processes are initiated by a daemon process using an exec after setuid(). In this case, both the RLIMIT_CPU hard limit and the soft limit are set to the cpu-time value.

For processes running in, or forked from TSO or BATCH, the cpu-time value has no effect. For processes created by the rlogin command or other daemons, the cpu-time is the time limit for the address space.
The value specified for CPUTIMEMAX overrides any value provided by the MAXCPUTIME parameter of BPXPRMxx. For more information, see z/OS UNIX System Services Planning.

FILEPROCMAX(files-per-process)

Specifies the maximum number of files this user is allowed to have concurrently active or open. The *files-per-process* you define to RACF is a numeric value from 3 and 524287. FILEPROCMAX is the same as the OPEN_MAX variable defined in the POSIX standard.

FILEPROCMAX lets you limit the amount of system resources available to a user process. Select FILEPROCMAX by considering:

- For conformance to standards, set FILEPROCMAX to:
 - At least 16 to conform to the POSIX standard, and
 - At least 25 to conform to the FIPS standard.
- 256 is a commonly recommended value.
- A process can change its own value for the number of files it has active or open using the setrlimit() function. Only processes with appropriate privileges can increase their limits.
- The minimum value of 3 supports the standard files for a process: standard input, standard output, and standard error.
- The value needs to be larger than 3 to support z/OS UNIX shell users. If the value is too small, the shell might issue the message, File descriptor not available.

The value specified for FILEPROCMAX overrides any value provided by the MAXFILEPROC parameter of BPXPRMxx. For more information, see z/OS UNIX System Services Planning.

HOME(initial-directory-name)

Specifies the user's z/OS UNIX initial directory pathname. This is the current working directory for the user's process when the user enters the TSO/E.

When you define a HOME directory name to RACF, it can contain 1 - 1023 characters. The HOME pathname can consist of any characters and can be entered with or without single quotation marks. The following rules apply:

- If parentheses, commas, blanks, or semicolons are to be entered as part of the pathname, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the pathname, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. The fully qualified pathname should be specified. RACF does not ensure that a valid pathname has been specified. If you issue the ADDUSER command as a RACF operator command and you specify the pathname in lowercase, you must include the pathname within single quotations.

If HOME is not specified, MVS sets the working directory for the user to / (the root directory). However, the default value is not placed in the user's profile, and is not displayed when a LISTUSER command is entered.
MEMLIMIT(nonshared-memory-size)

Specifies the maximum number of bytes of nonshared memory that can be allocated by the user. The nonshared-memory-size value must be numeric 0 - 16777215, followed by the letter M, G, T, or P. The M, G, T or P letter indicates the multiplier to be used. The maximum value is 16383P.

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Binary</th>
<th>Hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>M—megabyte</td>
<td>1048576</td>
<td>210</td>
<td>00000000 00100000</td>
</tr>
<tr>
<td>G—gigabyte</td>
<td>1073741824</td>
<td>230</td>
<td>00000000 40000000</td>
</tr>
<tr>
<td>T—terabyte</td>
<td>1099511627776</td>
<td>240</td>
<td>00000100 00000000</td>
</tr>
<tr>
<td>P—petabyte</td>
<td>1125899906842624</td>
<td>250</td>
<td>00040000 00000000</td>
</tr>
</tbody>
</table>

The following are different MEMLIMIT(nonshared-memory-size) examples:

- **MEMLIMIT(1M)** indicates a nonshared-memory-size of 1048576 bytes.
- **MEMLIMIT(1500M)** indicates a nonshared-memory-size of 1572864000 bytes.
- **MEMLIMIT(10G)** indicates a nonshared-memory-size of 10737418240 bytes.

For more extensive information, see [z/OS UNIX System Services Planning](#).

NOMEMLIMIT

Specifies that you want to delete the nonshared memory size from the OMVS segment of the user's profile.

MMAPAREAMAX(memory-map-size)

Specifies the maximum amount of data space storage, in pages, that can be allocated by the user for memory mappings of z/OS UNIX files. Storage is not allocated until memory mappings are active. The memory-map-size you define to RACF is a numeric value from 1 - 16777216.

Use of memory map services consumes a significant amount of system memory. For each page (4KB) that is memory mapped, 96 bytes of ESQA are consumed when a file is not shared with any other users. When a file is shared by multiple users, each subsequent user after the initial user causes 32 bytes of ESQA to be consumed for each shared page. The ESQA storage is consumed when the mmap() function is invoked by the application program.

The value specified for MMAPAREAMAX overrides any value provided by the MAXMMAPAREA parameter of BPXPRMxx. For more information, see [z/OS UNIX System Services Planning](#).

PROCUSERMAX(processes-per-UID)

Specifies the maximum number of processes this user is allowed to have active at the same time, regardless of how the process became a z/OS UNIX process. The processes-per-UID you define to RACF is a numeric value from 3 - 32767. PROCUSERMAX is the same as the CHILD_MAX variable defined in the POSIX standard.

PROCUSERMAX allows you to limit user activity to optimize performance. Select PROCUSERMAX by considering:

- For conformance to standards, set PROCUSERMAX to:
 - At least 16 to conform to the POSIX standard, and
At least 25 to conform to the FIPS standard.

- A user with a UID of 0 is not limited by the PROCUSERMAX value because a superuser might need to be capable of logging on and using z/OS UNIX services to solve a problem.
- A low PROCUSERMAX value limits the number of concurrent processes that the user can run. A low value also limits the user's consumption of processing time, virtual storage, and other system resources.
- Some daemons run without UID 0, and might create many address spaces. In these cases, it is necessary to set the limit high enough for the daemon associated with this user ID to run all of its processes.

Though not recommended, the same OMVS UID can be given to more than one user ID. If users share a UID, you need to define a greater number for PROCUSERMAX.

The value specified for PROCUSERMAX overrides any value provided by the MAXPROCUSER parameter of BPXPRMxx. For more information, see z/OS UNIX System Services Planning.

PROGRAM(program-name)

Specifies the PROGRAM pathname (z/OS UNIX shell program). This is the first program started when the TSO/E command OMVS is entered or when a batch job is started using the BPXBATCH program.

When you define a PROGRAM pathname to RACF, it can contain 1 - 1023 characters. The PROGRAM pathname can consist of any characters and can be entered with or without single quotation marks. The following rules apply:

- If parentheses, commas, blanks, or semicolons are to be entered as part of the pathname, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the pathname, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. The fully qualified pathname should be specified. RACF does not ensure that a valid pathname has been specified. If you issue the ADDUSER command as a RACF operator command and you specify the pathname in lowercase, you must include the pathname within single quotations.

If PROGRAM is not specified or if PROGRAM is specified as blanks, MVS gives control to the default z/OS UNIX shell program. However, the default value is not placed in the user's profile, and is not displayed when a LISTUSER command is entered.

For more information about the default z/OS UNIX shell program supplied with z/OS UNIX, see z/OS UNIX System Services Planning and z/OS UNIX System Services User's Guide.

SHMEMMAX | NOSHMEMMAX

SHMEMMAX(shared-memory-size)

Specifies the maximum number of bytes of shared memory that can be allocated by the user. The shared-memory-size value must be numeric 1 - 16777215, followed by the letter M, G, T, or P. The M, G, T or P letter indicates the multiplier to be used. The maximum value is 16383P.
The following are different SHMEMMAX(shared-memory-size) examples:

- **SHMEMMAX(1M)** indicates a shared-memory-size of 1048576 bytes.
- **SHMEMMAX(1500M)** indicates a shared-memory-size of 1572864000 bytes.
- **SHMEMMAX(10G)** indicates a shared-memory-size of 10737418240 bytes.

The value specified for SHMEMMAX overrides any value provided by the IPCSHMMPAGES parameter of BPXPRMxx. For more information, see [z/OS UNIX System Services Planning](https://www.ibm.com/support/knowledgecenter/SSEPGG_1.11.0/com.ibm.zos.r1.11.Z/psg/psg.html).

NOSHMEMMAX

Specifies that you want to delete the shared memory size from the OMVS segment of the user's profile. The value specified for IPCSHMMPAGES in BPXPRMxx now applies to the user.

THREADSMAX(threads-per-process)

Specifies the maximum number of pthread_create threads, including those running, queued, and exited but not detached, that this user can have concurrently active. The threads-per-process you define to RACF is a numeric value from 0 - 100000. Specifying a value of 0 prevents applications run by this user from using the pthread_create service.

The value specified for THREADSMAX overrides any value provided by the MAXTHREADS parameter of BPXPRMxx. For more information, see [z/OS UNIX System Services Planning](https://www.ibm.com/support/knowledgecenter/SSEPGG_1.11.0/com.ibm.zos.r1.11.Z/psg/psg.html).

OPERATIONS | NOOPERATIONS

OPERATIONS

Specifies that the new user has authorization to do maintenance operations on all RACF-protected data sets, tape volumes, and DASD volumes except those where the access list specifically limits the OPERATIONS user to a lower access authority than the operation requires.

The OPERATIONS attribute allows the user to access VM resources except those where the resource's access list specifically limits the OPERATIONS user to a lower access authority.

You establish the lower access authority for the OPERATIONS user through the PERMIT command. OPERATIONS specified on ADDUSER overrides NOOPERATIONS specified on the CONNECT command.

You must have the SPECIAL attribute to enter the OPERATIONS operand.

NOOPERATIONS

Specifies that the new user is not to have the OPERATIONS attribute. NOOPERATIONS is the default if you omit both OPERATIONS and NOOPERATIONS.

OPERPARM

Specifies default information used when this user establishes an extended MCS console session.
ADDUSER

You can control access to the entire OPERPARM segment or to individual fields within the OPERPARM segment by using field-level access checking. For more information, see z/OS Security Server RACF Security Administrator's Guide.

For information on planning how to use OPERPARM segments, see z/OS MVS Planning: Operations.

Note:

1. You need not specify every suboperand in an OPERPARM segment. In general, if you omit a suboperand, the default is the same as the default in the CONSOLxx PARMLIB member, which can also be used to define consoles.

2. If you specify MSCOPE or ROUTCODE but do not specify a value for them, RACF uses MSCOPE(*ALL) and ROUTCODE(NONE) to update the corresponding fields in the user profile, and these values appear in listings of the OPERPARM segment of the user profile.

3. If you omit the other suboperands, RACF does not update the corresponding fields in the user's profile, and no value appears in listings of the OPERPARM segment of the profile.

ALTGRP

Specifies the console group used in recovery. It can contain 1 - 8 characters. Valid characters are 0 - 9, A - Z, # (X'7B'), $ (X'5B'), or @ (X'7C').

Restriction: Starting with z/OS Version 1 Release 8, console services ignores ALTGRP(alternate-console-group) when a session is established and it need not be specified.

AUTH

Specifies the authority this console has to issue operator commands.

If you omit this operand, RACF does not add this field to the user's profile. However, an extended MCS console uses AUTH(INFO) when a session is established.

MASTER

Allows this console to act as a master console, which can issue all MVS operator commands.

ALL

Allows this console to issue system control commands, input/output commands, console control commands, and informational commands.

INFO

Allows this console to issue informational commands.

CONS

Allows this console to issue console control and informational commands.

IO

Allows this console to issue input/output and informational commands.

SYS

Allows this console to issue system control commands and informational commands.

AUTO(YES | NO)

Specifies whether the extended console can receive messages that have been automated by the Message Processing Facility (MPF) in the sysplex.
ADDUSER

If you omit this operand, RACF does not add this field to the user's profile. However, an extended MCS console uses AUTO(NO) when a session is established.

CMDSYS(system-name | *)

Specifies the system to which commands issued from this console are to be sent. The `system-name` value must be 1 - 8 characters. Valid characters are A - Z, 0 - 9, 0 (X'7C'), # (X'7B'), and $ (X'5B'). If * is specified, commands are processed on the local system where the console is attached.

If you omit this operand, RACF does not add this field to the user's profile. However, an extended MCS console uses CMDSYS(*) when a session is established.

DOM

Specifies whether this console receives delete operator message (DOM) requests.

If you omit this operand, RACF does not add this field to the user's profile. However, an extended MCS console uses DOM(NORMAL) when a session is established.

NORMAL

Specifies that the system queues all appropriate DOM requests to this console.

ALL

Specifies that all systems in the sysplex queue DOM requests to this console.

NONE

Specifies that no DOM requests are queued to this console.

HC(YES | NO)

Specifies whether this console is to receive all messages that are directed to hardcopy. Any route codes specified for a console do not apply to hardcopy messages, so this console will receive all hardcopy messages regardless of their specific route code.

If you omit this operand, RACF does not add this field to the user's profile. However, z/OS console services uses HC(NO) when a session is established.

INTIDS(YES | NO)

Specifies whether this console is to receive messages directed to console ID zero (the internal console). Such messages are usually responses to internally issued commands.

If you omit this operand, RACF does not add this field to the user's profile. However, z/OS console services will use INTIDS(NO) when a session is established.

KEY(searching-key)

Specifies a 1 - 8 byte character name that can be used to display information for all consoles with the specified key by using the MVS command DISPLAY CONSOLES,KEY. If specified, KEY can include A - Z, 0 - 9, # (X'7B'), $ (X'5B'), or 0 (X'7C').

If you omit this operand, RACF does not add this field to the user's profile. However, an extended MCS console uses a KEY value of NONE when a session is established.
LEVEL
Specifies the messages that this console is to receive. The *message-level* variable can be a list of R, I, CE, E, IN, NB or ALL. If you specify ALL, you cannot specify R, I, CE, E, or IN.

If you omit this operand, RACF does not add this field to the user's profile. However, an extended MCS console uses LEVEL(ALL) when a session is established.

NB The console receives _no_ broadcast messages.

ALL The console receives these messages: R, I, CE, E, IN.

R The console receives messages requiring an operator reply.

I The console receives immediate action messages.

CE The console receives critical eventual action messages.

E The console receives eventual action messages.

IN The console receives informational messages.

LOGCMDRESP
Specifies if command responses are to be logged.

If you omit this operand, RACF does not add this field to the user's profile. However, an extended MCS console uses LOGCMDRESP(SYSTEM) when a session is established.

SYSTEM Specifies that command responses are logged in the hardcopy log.

NO Specifies that command responses are not logged.

MFORM(*message-format*)
Specifies the format in which messages are displayed at the console. Can be a combination of J, M, S, T, and X:

J Messages are displayed with a job ID or name.

M Message text is displayed.

S Messages are displayed with the name of the originating system.

T Messages are displayed with a time stamp.

X Messages that are flagged as exempt from job name and system name formatting are ignored.

If you omit this operand, RACF does not add this field to the user's profile. However, an extended MCS console uses MFORM(M) when a session is established.

MIGID(YES | NO)
Specifies that a 1-byte migration ID is to be assigned to this console. The migration ID allows command processors that use a 1-byte console ID to direct command responses to this console.

Restriction: Starting with z/OS Version 1 Release 7, console services ignores MIGID(YES | NO) when a session is established and it need not be specified.

MONITOR(*events*)
Specifies which information should be displayed when jobs, TSO sessions, or data set status are being monitored.
If you omit this operand, RACF does not add this field to the user's profile. However, an extended MCS console uses MONITOR(JOBNAMES SESS) when a session is established. The events value can be a list of the following:

JOBNAMES | JOBNAMEST
Displays information about the start and end of each job. JOBNAMES omits the times of job start and job end. JOBNAMEST displays the times of job start and job end.

SESS | SESST
Displays information about the start and end of each TSO session. SESS omits the times of session start and session end. SESST displays them.

STATUS
Specifies that the information displayed when a data set is freed or unallocated should include the data set status.

MSCOPE
Specifies the systems from which this console can receive messages that are not directed to a specific console.

If you omit this operand, RACF does not add this field to the user's profile. However, an extended MCS console uses MSCOPE(*ALL) when a session is established.

If you specify MSCOPE but omit a value, RACF uses MSCOPE(*ALL) to update this field in the user's profile. *ALL appears in listings of the OPERPARM segment of the user's profile.

system-name
Is a list of one or more system names, where system-name can be any combination of A - Z, 0 - 9, # (X'7B'), $ (X'5B'), or @ (X'7C').

* Is the system on which the console is currently active.

*ALL
All systems.

ROUTCODE(ALL | NONE | routing-codes)
Specifies the routing codes of messages this console is to receive.

If you omit this operand, RACF does not add this field to the user's profile. However, an extended MCS console uses ROUTCODE(NONE) when a session is established.

If you specify ROUTCODE but omit a value, RACF uses ROUTCODE(NONE) to update this field in the user's profile. NONE appears in listings of the OPERPARM segment of the user's profile. The value for ROUTCODE can be one of the following:

ALL
All routing codes.

NONE
No routing codes.

routing-codes
One or more routing codes or sequences of routing codes. The routing codes can be list of n and n1:n2, where n, n1, and n2 are integers 1 - 128, and n2 is greater than n1.
STORAGE\((\text{amount})\)

Specifies the amount of storage in megabytes in the TSO/E user's address space that can be used for message queuing to this console. If specified, STORAGE must be a number from 1 - 2000.

If you omit this operand, RACF does not add this field to the user's profile. However, an extended MCS console uses STORAGE(1) when a session is established and a value of 0 is listed in the OPERPARM segment of the user's profile to indicate that no storage value was specified.

UD\((\text{YES} \mid \text{NO})\)

Specifies whether this console is to receive undelivered messages. If you omit this operand, RACF does not add this field to the user's profile.

Restriction: Starting with z/OS Version 1 Release 8, console services ignores UD(\text{YES} \mid \text{NO}) when a session is established and it need not be specified.

UNKNIDS\((\text{YES} \mid \text{NO})\)

Specifies whether this console is to receive messages directed to \textit{unknown} console IDs. Unknown consoles are typically one-byte console IDs that the system cannot unambiguously resolve.

If you omit this operand, RACF does not add this field to the user's profile. However, z/OS console services will use UNKNIDS(NO) when a session is established.

OVM

Specifies OpenExtensions VM information for the user being defined. Information is stored in the OVM segment of the user's profile.

You can control access to an entire OVM segment or to individual fields within the OVM segment by using field level access checking.

FSROOT\((\text{file-system-root})\)

Specifies the pathname for the file system root.

When you define the FSROOT pathname to RACF, it can contain 1 - 1023 characters, consist of any character, and be entered with or without single quotation marks. The following rules apply:

- If parentheses, commas, blanks, or semicolons are entered as part of the pathname, the character string must be enclosed in single quotation marks. For example if the pathname is \((123)\), you must enter FSROOT('\((123)\)')

- If a single quotation mark is intended to be part of the pathname, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

When entering the ADDUSER command, both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

If you do not specify a value for FSROOT in the OVM segment, VM uses the value specified in the CP directory. If no value is specified in the CP directory, issue the OPENVM MOUNT command to mount the appropriate file system.

HOME\((\text{initial-directory-name})\)

Specifies the initial directory pathname. The initial directory is part of the file system and is the current working directory for the user's process.
ADDUSER

when the user enters the OPENVM SHELL can contain 1 - 1023 characters, consist of any character, and be entered with or without single quotation marks. The following rules apply:

- If parentheses, commas, blanks, or semicolons are entered as part of the pathname, the character string must be enclosed in single quotation marks. For example if the pathname is `(123)`, you must enter HOME('`(123)`').
- If a single quotation mark is intended to be part of the pathname, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

When entering the ADDUSER command, both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

If no value is specified for HOME in the OVM segment, VM uses the value specified in the CP directory. If no value is specified in the CP directory, VM sets the working directory for the user to `/`, the root directory.

PROGRAM(*program-name*)

Specifies the PROGRAM pathname (z/OS UNIX shell program). This is the first program started when the OPENVM SHELL command is entered. When you define a PROGRAM pathname to RACF, it can contain 1 - 1023 characters, consist of any character and be entered with or without single quotation marks. The following rules apply:

- If parentheses, commas, blanks, or semicolons are entered as part of the pathname, the character string must be enclosed in single quotation marks. For example if the pathname is `(123)`, you must enter PROGRAM('`(123)`').
- If a single quotation mark is intended to be part of the pathname, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

When entering the ADDUSER command for OVM segment information, both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. Specify the fully qualified pathname, because RACF does not ensure that a valid pathname has been specified.

If no value is specified for PROGRAM in the OVM segment, VM uses the value specified in the CP directory. If no value is specified in the CP directory, VM gives control to the default z/OS UNIX shell program (`/bin/sh`) when a user issues the OPENVM SHELL command.

UID(*user-identifier*)

Specifies the user identifier. The UID is a numeric value from 0 - 2,147,483,647.

Care should be taken in assigning 0 as the user identifier. UID 0 is considered a superuser.

If UID is not specified, the user is assigned the default UID of 4294967295 (X'FFFFFFFF') and the LISTUSER command for that user ID shows NONE for the UID.

Note: RACF does not require the UID to be unique. You can assign the same value to multiple users, but this is not recommended because individual user control is lost. However, if you want a set of users to have...
ADDUSER

exactly the same access to the OpenExtensions VM resources, you can assign the same UID to more than one user.

OWNER(userid or group-name)

Specifies a RACF-defined user or group to be assigned as the owner of the RACF profile for the user being added. If you omit this operand, you are defined as the owner.

PASSWORD | NOPASSWORD

PASSWORD(password)

Specifies the user's initial logon password. This password is always set expired, thus requiring the user to change the password at initial logon. Note that the password syntax rules your installation defines using SETROPTS PASSWORD do not apply to this password.

If you omit both PASSWORD and NOPASSWORD, or enter PASSWORD with no value, RACF takes the group name from the DFLTGRP operand as the default password.

NOPASSWORD

Specifies that the new user does not need to supply an initial logon password when first entering the system if OIDCARD is also specified. If you specify NOOIDCARD (or you allow this option to default) and you specify NOPASSWORD, you define a protected user ID that cannot be used to enter the system by any means that requires a password to be specified, such as a TSO logon, CICS signon, or batch job that specifies a password on the JOB statement. Therefore, user IDs that you assign to z/OS UNIX, UNIX daemons, started procedures, applications, servers or subsystems can be protected from being revoked when an incorrect password is entered. If the user attempts to enter the system with a password, the attempt fails. Note that the protected user ID is not revoked due to the failed password attempts even if the SETROPTS PASSWORD(REVOKE) option is in effect.

Determine which user IDs you want to protect, ensuring that these user IDs will not be used in any circumstance where a password must be supplied. A protected user will have the PROTECTED attribute displayed in the output of the LISTUSER command. Protected users can be associated with started procedures defined in the STARTED class (preferred method) or in the started procedures table (ICHRIN03).

Note: Kerberos information, such as a local principal name, must not be defined for protected user IDs and these user IDs must not be used for Kerberos authentication, because Kerberos authentication failures can result in user revocation.

PHRASE(’password-phrase’)

Specifies the user's initial password phrase. The password phrase you define is a text string of up to 100 characters and must be enclosed in single quotation marks. The password phrase is always set expired, thus requiring the user to change it on initial use.

When the new-password-phrase exit (ICHPWX11) is present and allows it, the password phrase can be 9 - 100 characters. When ICHPWX11 is not present, the password phrase must be 14 - 100 characters. Contact your system programmer to find out if your installation uses the new-password-phrase exit (ICHPWX11) or see **z/OS Security Server RACF System Programmer’s Guide** for programming details.
Every user that you assign a password phrase must have a password. When you specify PHRASE for a user without specifying PASSWORD, the user is assigned the default password. When you specify PHRASE with NOPASSWORD, an error message is issued indicating that the NOPASSWORD operand is ignored and the user is assigned the default password.

The following syntax rules apply to all password phrases. You cannot alter these syntax rules but you can specify additional syntax rules if your installation tailors the new-password-phrase exit (ICHPWX11).

Syntax rules for password phrases:
- Maximum length: 100 characters
- Minimum length:
 - 9 characters, when ICHPWX11 is present and allows the new value
 - 14 characters, when ICHPWX11 is not present
- Must not contain the user ID (as sequential uppercase or sequential lowercase characters)
- Must contain at least 2 alphabetic characters (A - Z, a - z)
- Must contain at least 2 non-alphabetic characters (numerics, punctuation, or special characters)
- Must not contain more than 2 consecutive characters that are identical
- If a single quotation mark is intended to be part of the password phrase, you must use two single quotation marks together for each single quotation mark.

If the new-password-phrase exit (ICHPWX11) is present, it can reject the specified password phrase. RACF rejects password phrases shorter than 14 characters unless ICHPWX11 is present and allows the new value.

If the specified password phrase is accepted, it is made the user's current password phrase and, when SETROPTS PASSWORD(HISTORY) is in effect, it is added to the user's password phrase history.

If you omit PHRASE, no password phrase is assigned. If you enter PHRASE without a password-phrase value, you are prompted for a value unless your TSO session is in NOPROMPT mode.

PROXY
Specifies information which the z/OS LDAP server will use when acting as a proxy on behalf of a requester. The R_proxyserv (IRRSPY00) SAF callable service will attempt to retrieve this information when it is not explicitly supplied with the invocation parameters. Applications or other services which use the R_proxyserv callable service, such as IBM Policy Director Authorization Services for z/OS and OS/390, may instruct their invokers to define PROXY segment information.

LDAPHOST(ldap_url)
Specifies the URL of the LDAP server which the z/OS LDAP server will contact when acting as a proxy on behalf of a requester. An LDAP URL has a format such as ldaps://123.45.6:389 or ldaps://123.45.6:636, where ldaps indicates that an SSL connection is desired for a higher level of security. LDAP will also allow you to specify the host name portion of the URL using either the text form (BIGHOST.POK.IBM.COM) or the dotted decimal address (123.45.6). The port number is appended to the host name, separated by a colon : (X'7A').
For more information about LDAP URLs and how to enable LDAP servers for SSL connections, see z/OS IBM Tivoli Directory Server Administration and Use for z/OS.

The LDAP URL that you define to RACF can consist of 10 - 1023 characters. A valid URL must start with either ldap:// or ldaps://. RACF will allow any characters to be entered for the remaining portion of the URL, but you should ensure that the URL conforms to TCP/IP conventions. For example, parentheses, commas, blanks, semicolons, and single quotation marks are not typically allowed in a host name. The LDAP URL can be entered with or without single quotation marks, however, in both cases, it will be translated to uppercase.

RACF does not ensure that a valid LDAP URL has been specified.

BINDDN(bind_distinguished_name)

Specifies the distinguished name (DN) which the z/OS LDAP server will use when acting as a proxy on behalf of a requester. This DN will be used in conjunction with the BIND password if the z/OS LDAP server needs to supply an administrator or user identity to BIND with another LDAP server. A DN is made up of attribute value pairs, separated by commas. For example:

```
cn=Ben Gray,ou=editing,o=New York Times,c=US
cn=Lucille White,ou=editing,o=New York Times,c=US
cn=Tom Brown,ou=reporting,o=New York Times,c=US
```

When you define a BIND DN to RACF, it can contain 1 - 1023 characters. The BIND DN can consist of any characters and can be entered with or without single quotation marks. The following rules apply:

- If parentheses, commas, blanks, or semicolons are to be entered as part of the BIND DN, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the BIND DN, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. For more information about LDAP distinguished names, see z/OS IBM Tivoli Directory Server Administration and Use for z/OS.

If you issue the ADDUSER command as a RACF operator command and you specify the BIND DN in lowercase, you must include the BIND DN within single quotations.

RACF does not ensure that a valid BIND DN has been specified.

BINDPW

Specifies the password which the z/OS LDAP server will use when acting as a proxy on behalf of a requester.

When you define a BIND password to RACF, it can contain 1 - 128 characters. The BIND password can consist of any characters (see exception below) and can be entered with or without single quotation marks.

Rules:

- The BIND password cannot start with the left brace { character (X'8B').
ADDUSER

- If parentheses, commas, blanks, or semicolons are to be entered as part of the BIND password, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the BIND password, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. For more information about LDAP passwords, see [z/OS IBM Tivoli Directory Server Administration and Use for z/OS](#).

If you issue the ADDUSER command as a RACF operator command and you specify the BIND password in lowercase, you must include the BIND password within single quotations.

RACF does not ensure that a valid BIND password has been specified.

Attention:
- When the command is issued from ISPF, the TSO command buffer (including possible BINDPW password data) is written to the ISPLOG data set. As a result, you should not issue this command from ISPF or you must control the ISPLOG data set carefully.
- When the command is issued as a RACF operator command, the command and the possible BINDPW password data is written to the system log. Therefore, use of ADDUSER as a RACF operator command should either be controlled or you should issue the command as a TSO command.

RESTRIC TED | NORESTRICTED

RESTRIC TED

Specifies that global access checking is bypassed when resource access checking is performed for the new user, and neither ID(*) on the access list nor the UACC will allow access. The RESTRIC TED.FILESYS.ACCESS profile in the UNIXPRIV class can also be used to bypass the z/OS UNIX 'other' permission bits during file access checking for RESTRIC TED users.

Note: If your installation has profiles defined in the PROGRAM class and the user ID with the RESTRIC TED attribute needs to load programs covered by one or more of these profiles, the user ID or a group to which the user is connected must be put on the access list with EXECUTE or READ authority.

NORESTRICTED

Specifies that the new user does not have the RESTRIC TED attribute and access checking is performed the standard way including global access checking, ID(*), the UACC, and the z/OS UNIX 'other' permission bits as appropriate. NORESTRICTED is the default value if you omit both the RESTRIC TED and NORESTRICTED keywords.

SECLABEL(security-label)

Specifies the user's default security label, where security-label is an installation-defined security label name that represents an association between a particular security level and zero or more security categories.
If the user does not enter a security label when entering the system, and none is assigned based on the user's port of entry, this value becomes the user's current security label.

A security label corresponds to a particular security level (such as CONFIDENTIAL) with a set of zero or more security categories (such as PAYROLL or PERSONNEL).

When no profile exists in the SECLABEL class for security-label, the ADDUSER command fails and the user is not added.

SECLEVEL(security-level)

Specifies the user's security level, where security-level is an installation-defined security level name that must be a member of the SECLEVEL profile in the SECDATA class. The security-level that you specify corresponds to the number of the minimum security level that a user must have to access the resource.

When you specify SECLEVEL and the SECDATA class is active, RACF adds security level access checking to its other authorization checking. If global access checking does not grant access, RACF compares the security level allowed in the user profile with the security level required in the resource profile. If the security level in the user profile is less than the security level in the resource profile, RACF denies the access. If the security level in the user profile is equal to or greater than the security level in the resource profile, RACF continues with other authorization checking.

Note: RACF does not perform security level checking for a started task or user that has the RACF privileged or trusted attribute. The RACF privileged or trusted attribute can be assigned to a started task through the RACF started procedures table or STARTED class, or to other users by installation-supplied RACF exits.

When the SECDATA class is not active, RACF ignores this operand. When no member of the SECLEVEL profile exists for security-label, you are prompted to provide a valid security-level.

SPECIAL | NOSPECIAL

SPECIAL

Specifies that the new user is allowed to issue all RACF commands with all operands except the operands that require the AUDITOR attribute. SPECIAL specified on the ADDUSER command overrides NOSPECIAL specified on the CONNECT command.

You must have the SPECIAL attribute to enter the SPECIAL operand.

NOSPECIAL

Specifies that the new user is not to have the SPECIAL attribute. NOSPECIAL is the default if you omit both SPECIAL and NOSPECIAL.

TSO

Specifies that when you define a TSO user to RACF, you can enter any of the following suboperands to specify default TSO logon information for that user. Each suboperand defines information that RACF stores in a field within the TSO segment of the user’s profile.

You can control access to an entire TSO segment or to individual fields within the TSO segment by using field-level access checking. For more information, see [z/OS Security Server RACF Security Administrator’s Guide](#).

ACCTNUM(account-number)

Specifies the user's default TSO account number when logging on through
the TSO/E logon panel. The account number you specify must be protected by a profile in the ACCTNUM general resource class, and the user must be granted READ access to the profile. Otherwise, the user cannot log on to TSO using the specified account number.

Account numbers can consist of any characters, and can be entered with or without single quotation marks. The following rules apply:

- If parentheses, commas, blanks, or semicolons are to be entered as part of the account number, the character string must be enclosed in single quotation marks. For example, if the account number is (123), you must enter ACCTNUM('123').

- If a single quotation mark is intended to be part of the account number, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

A user can change an account number, or specify an account number if one has not been specified, using the TSO/E logon panel. RACF checks the user's authorization to the specified account number. If the user is authorized to use the account number, RACF stores the account number in the TSO segment of the user's profile, and TSO/E uses it as a default value the next time the user logs on to TSO/E. Otherwise, RACF denies the use of the account number.

Note: When you define an account number on TSO, you can specify 1 - 40 characters. When you define a TSO account number to RACF, you can specify only 1 - 39 characters.

COMMAND(command-issued-at-logon)

Specifies the command to be run during TSO/E logon. TSO/E uses this field to prime the COMMAND field of the logon panel. The command value can contain 1 - 80 characters and consist of any characters. You can enter the value with or without single quotation marks depending on the following rules:

- If the command value contains parentheses, commas, blanks, or semicolons, enclose the character string in single quotation marks.

- If a single quotation mark is intended to be part of the command value, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. A user can change the command value, or specify a command if one has not been specified, using the TSO/E logon panel.

DEST(destination-id)

Specifies the default destination to which the system routes dynamically-allocated SYSOUT data sets. The destination-id must be 1 - 7 alphanumeric characters, beginning with an alphabetic or national character.

HOLDCLASS(hold-class)

Specifies the user's default hold class. The specified value must be 1 alphanumeric character, excluding national characters.
ADDUSER

If you specify the TSO operand on the ADDUSER command but do not specify a value for HOLDCLASS, RACF uses a default value consistent with current TSO defaults.

JOBCLASS(job-class)

Specifies the user's default job class. The specified value must be 1 alphanumeric character, excluding national characters.

If you specify the TSO operand on the ADDUSER command but do not specify a value for JOBCLASS, RACF uses a default value consistent with current TSO defaults.

MAXSIZE(maximum-region-size)

Specifies the maximum region size the user can request at logon. The maximum-region-size is the number of 1024-byte units of virtual storage that TSO can create for the user's private address space. The specified value must be an integer 0 - 2096128.

If you specify the TSO operand on the ADDUSER command but do not specify a value for MAXSIZE, or specify MAXSIZE(0), RACF uses a default value consistent with current TSO defaults.

If values are specified for both MAXSIZE and SIZE and SIZE is greater than MAXSIZE, RACF sets SIZE equal to MAXSIZE. If a value is specified for only SIZE or MAXSIZE and SIZE is greater than MAXSIZE, the operand is ignored.

MSGCLASS(message-class)

Specifies the user's default message class. The specified value must be 1 alphanumeric character, excluding national characters.

If you specify the TSO operand on the ADDUSER command but do not specify a value for MSGCLASS, RACF uses a default value consistent with current TSO defaults.

PROC(logon-procedure-name)

Specifies the name of the user's default logon procedure when logging on through the TSO/E logon panel. The name you specify must be 1 - 8 alphanumeric characters and begin with an alphabetic character. The name must also be defined as a profile in the TSOPROC general resource class, and the user must be granted READ access to the profile. Otherwise, the user cannot log on to TSO using the specified logon procedure.

A user can change a logon procedure, or specify a logon procedure if one has not been specified, using the TSO/E logon panel. TSO/E checks the user's authorization to the specified logon procedure. If the user is authorized to use the logon procedure, TSO/E uses it for this session and stores the name of the procedure in the TSO segment of the user's profile for use as the default value the next time the user logs on to TSO/E. Otherwise, TSO/E denies use of the logon procedure.

SECLABEL(security-label)

Specifies the user's security label if one was entered on the TSO LOGON panel. On subsequent LOGONs, it appears automatically on the panel.

SIZE(default-region-size)

Specifies the minimum region size if the user does not request a region.

Note: For more information on the relationship between the TSO security label and the user's security label, see [z/OS Security Server RACF Security Administrator's Guide](https://www.ibm.com/support/docview.wss?uid=swg27052622).
ADDUSER

size at logon. The default region size is the number of 1024-byte units of virtual storage available in the user's private address space at logon. The specified value must be an integer 0 - 2096128.

A user can change the minimum region size, or specify the minimum region size if one has not been specified, using the TSO/E logon panel. RACF stores this value in the TSO segment of the user's profile and TSO/E uses it as a default value the next time the user logs on to TSO/E.

If values are specified for both MAXSIZE and SIZE and SIZE is greater than MAXSIZE, RACF sets SIZE equal to MAXSIZE. If a value is specified for only SIZE or MAXSIZE and SIZE is greater than MAXSIZE, the operand is ignored.

SYS(sysout-class)
 Specifies the user's default SYSOUT class. The specified value must be 1 alphanumeric character, excluding national characters.

 If you specify the TSO operand on the ADDUSER command but do not specify a value for SYS, RACF uses a default value consistent with current TSO defaults.

UNIT(unit-name)
 Specifies the default name of a device or group of devices that a procedure uses for allocations. The specified value must be 1 - 8 alphanumeric characters.

USERDATA(user-data)
 Specifies optional installation data defined for the user. The specified value must be 4 EBCDIC characters. Valid characters are 0 - 9 and A - F.

UACC(access-authority)
 Specifies the default value for the universal access authority for all new resource profiles the user defines while the user's default group is the user's current connect group. The universal access authorities are ALTER, CONTROL, UPDATE, READ, and NONE. (RACF does not accept EXECUTE access authority with the ADDUSER command.) If you omit this operand or specify UACC without an access authority, the default is NONE.

 This operand is group-related. If a user is subsequently connected to other groups (with the CONNECT command), the user can have a different default universal access authority in each group. Therefore, if the user specifies a different group at logon time or at batch job execution, the user's default UACC is the UACC of the specified group, not the UACC of the user's default group.

WHEN
 Specifies the days of the week and the hours in the day when the user is allowed to access the system from a terminal. The day-of-week and time restrictions apply only when a user logs on to the system; that is, RACF does not force the user off the system if the end-time occurs while the user is logged on. Also, the day and time restrictions do not apply to batch jobs; the user can submit a batch job on any day and at any time.

 If you omit the WHEN operand, the user can access the system at any time. If you specify the WHEN operand, you can restrict the user's access to the system to certain days of the week or to a certain time period within each day. Otherwise, you can restrict access to both certain days of the week and to a certain time period within each day.
ADDUSER

DAYS (*day-info*)
Specifies the days of the week when a user may access the system. The *day-info* value can be any one of the following:

ANYDAY
The user can access the system on any day. If you omit DAYS, ANYDAY is the default.

WEEKDAYS
The user can access the system only on weekdays (Monday through Friday).

day ...
The user can access the system only on the days specified, where *day* can be MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, or SUNDAY, and you can specify the days in any order.

TIME (*time-info*)
Specifies the time period each day when the user can access the system. The *time-info* value can be any one of the following:

ANYTIME
Specifies that the user can access the system at any time. If you omit TIME, ANYTIME is the default.

start-time *end-time**
Specifies that the user can access the system only during the specified time period. The format of both start-time and end-time is *hhmm*, where *hh* is the hour in 24-hour notation (00 - 23) and *mm* is the minutes (00 - 59). Note that 0000 is not a valid time value.

If start-time is greater than end-time, the interval spans midnight and extends into the following day.

If you omit DAYS and specify TIME, the time restriction applies to all seven days of the week. If you specify both DAYS and TIME, the user can access the system only during the specified time period and only on the specified days.

WORKATTR
Specifies the user-specific attributes of a unit of work. z/OS elements or features such as APPC, WLM, and z/OS UNIX might use the WORKATTR segment.

WAACCNT (*account-number*)
Specifies an account number for APPC/MVS processing.

You can specify a maximum of 255 EBCDIC characters.

Use the following rules when entering a value for this field:

- If the account number contains parentheses, commas, blanks, or semicolons, enclose the character string in single quotation marks. For example, if the account number is (123), you must enter WAACCNT('(123)').
- If a single quotation mark is intended to be part of the account number, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

WAADDR (*address-line*)
Specifies up to four additional address lines for SYSOUT delivery. *n* can be any number 1 - 4.
For each address-line, you can specify a maximum of 60 EBCDIC characters. Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

Use the following rules when entering a value for this field:

- If the data contains parentheses, commas, blanks, or semicolons, enclose the character string in single quotation marks. For example, if the data is (123), you must enter WAADDR('123').
- If a single quotation mark is intended to be part of the data, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

WABLDG(building)

Specifies the building that SYSOUT information is to be delivered to.

You can specify a maximum of 60 EBCDIC characters. Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

Use the following rules when entering a value for this field:

- If the data contains parentheses, commas, blanks, or semicolons, enclose the character string in single quotation marks. For example, if the data is (123), you must enter WABLDG('123').
- If a single quotation mark is intended to be part of the data, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

WADEPT(department)

Specifies the department that SYSOUT information is to be delivered to.

You can specify a maximum of 60 EBCDIC characters. Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

Use the following rules when entering a value for this field:

- If the data contains parentheses, commas, blanks, or semicolons, enclose the character string in single quotation marks. For example, if the data is (123), you must enter WADEPT('123').
- If a single quotation mark is intended to be part of the data, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

WANAME(name)

Specifies the name of the user that SYSOUT information is to be delivered to.

You can specify a maximum of 60 EBCDIC characters. Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

Use the following rules when entering a value for this field:

- If the data contains parentheses, commas, blanks, or semicolons, enclose the character string in single quotation marks. For example, if the data is (123), you must enter WANAME('123').
- If a single quotation mark is intended to be part of the data, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.
WAROOM\(\text{\textquotesingle} room \text{\textquotesingle}\)

Specifies the room that SYSOUT information is to be delivered to.

You can specify a maximum of 60 EBCDIC characters. Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

Use the following rules when entering a value for this field:

- If the data contains parentheses, commas, blanks, or semicolons, enclose the character string in single quotation marks. For example, if the data is \((123)\), you must enter \texttt{WAROOM\(\text{\textquotesingle} (123) \text{\textquotesingle}\)}.

- If a single quotation mark is intended to be part of the data, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

Examples

Example 1

Operation

User IA0 wants to define users PAJ5 and ESH25 to RACF and assign RESEARCH as their default group.

Known

User IA0 has JOIN authority to group RESEARCH and the CLAUTH attribute for the USER class.

User PAJ5 and ESH25 are not defined to RACF. User IA0 is currently connected to group RESEARCH. User IA0 wants to issue the command as a RACF TSO command.

Command

\texttt{ADDUSER (PAJ5 ESH25)}

Defaults

\texttt{NAME(########################) PASSWORD(RESEARCH) OWNER(IA0) DFLTGRP(RESEARCH) AUTHORITY(USE) UACC(NONE) NOGRPACC NOADSP NOSPECIAL NOOPERATIONS NOCLAUTH NOAUDITOR NOOIDCARD}

Example 2

Operation

User WJE10 wants to define user RGH01 to RACF and assign PAYROLL as the default and owning group. The password is PASS, group authority is CREATE, and universal access authority is READ. User WJE10 wants to direct the command to run under the authority of user EPC at ARMNK.

Known

User EPC at ARMNK has JOIN authority to group PAYROLL and the CLAUTH attribute for the USER class.

PAYROLL is not the default group of user EPC at ARMNK.

User RGH01 is not defined to RACF on node ARMNK.

The name of user RGH01 is RG Harris.

User WJE10 wants to issue the command as a RACF TSO command.

Command

\texttt{ADDUSER RGH01 DFLTGRP(PAYROLL) OWNER(PAYROLL) PASSWORD(PASS) NAME(\textquotesingle R. G. HARRIS\textquotesingle) AUTHORITY(CREATE) UACC(READ) AT(ARMNK.EPC)}

Defaults

\texttt{NOSPECIAL NOOPERATIONS NOCLAUTH NOOIDCARD NOAUDITOR}
Example 3
Operation User RACFMIN wants to define user PIZ30 to RACF with a security category of NEWEMPLOYEE and a security level of NOSECRETS. User PIZ30 is to be allowed to use the system only on weekdays between the hours of 8:00 A.M. and 6:00 P.M.
Known User RACFMIN has the SPECIAL attribute. NEWEMPLOYEE has been defined to RACF as a valid category, and NOSECRETS has been defined as a valid security level. The new user's name is John Doe. User RACFMIN wants to issue the command as a RACF TSO command.
Command
```
ADDUSER PIZ30 NAME('JOHN DOE') ADDCATEGORY(NEWEMPLOYEE) SECLEVEL(NOSECRETS) WHEN(DAYS(WEEKDAYS) TIME(0800:1800))
```
Defaults
OWNER(RACFMIN) NOGRPACC NOSPECIAL NOOPERATIONS NOAUDITOR NOADSP AUTHORITY(USE)

Example 4
Operation User TTU01 wants to define user PIZ33 to RACF. User PIZ33 will be the AUDITOR for the installation, and will have class authority to terminals and tape volumes. User PIZ33 will not be required to enter a password, but will be identified through an OIDCARD.
Known User TTU01 has the SPECIAL attribute.
User TTU01 is connected to group RESEARCH.
User PIZ33 is not defined to RACF.
User TTU01 wants to issue the command as a RACF TSO command.
Command Entered in the TSO foreground:
```
ADDUSER PIZ33 NOPASSWORD OIDCARD CLAUTH(TAPEVOL TERMINAL) AUDITOR
```
User TTU01 is prompted to enter the OIDCARD for PIZ33.
Defaults
NAME(###################) OWNER(TTU01) DFLTGRP(RESEARCH) AUTHORITY(USE) NOGRPACC NOADSP NOSPECIAL NOOPERATIONS

Example 5
Operation User TTU5 wants to define user RADMIN to RACF. User RADMIN will be a member of, and be owned by, the SYSINV group and have a model name of RADMIN.RACF.ACCESS.
Known User TTU5 has at least JOIN authority to group SYSINV and the CLAUTH attribute for the USER class. User TTU5 wants to issue the command as a RACF TSO command.
Command
```
ADDUSER RADMIN DFLTGRP(SYSINV) MODEL(RACF.ACCESS) NAME('RACF ADMINISTRATOR') AUTHORITY(JOIN) ADSP UACC(NONE) OWNER(SYSINV)
```
Defaults
NOGRPACC, NOSPECIAL, NOOPERATIONS, NOAUDITOR
Example 6

Operation
User KLEWIS wants to define user TBURNS to RACF and assign TSOTEST as the default group and TSOADMN as the owner of the user profile for TBURNS. The user will be allowed to use TSO and will be assigned the following TSO logon information:

- Account number 98765T
- Logon procedure TSPROC3
- Default job class Z
- Default message class Q
- Default hold class X
- SYSOUT class W
- Default region size of 2500
- Maximum region size of 15000.

Known
- User KLEWIS has the SPECIAL attribute.
- 98765T has been defined to RACF as a profile in the ACCTNUM general resource class, and user TBURNS has been given READ access to this profile.
- TSPROC3 has been defined to RACF as a profile in the TSOPROC general resource class, and user TBURNS has been given READ access to this profile.
- User TBURNS is not defined to RACF.
- User TBURNS's name is T. F. Burns.
- User KLEWIS wants to issue the command as a RACF TSO command.

Command
ADDUSER TBURNS DFLTGRP(TSOTEST) OWNER(TSOADMN) NAME('T.F. BURNS') TSO(ACCTNUM(98765T) PROC(TSPROC3) JOBCLASS(Z) MSGCLASS(Q) HOLDCLASS(X) SYS(W) SIZE(2500) MAXSIZE(15000))

Defaults
TSO(NODEST) AUTHORITY(USE) UACC(NONE) NOGRPACC NOADSP NOSPECIAL NOOPERATIONS NOCLAUTH NOAUDITOR NOOIDCARD

Example 7

Operation
User JSMITH wants to define user WJONES to RACF and assign SYS05 as the default group and DFPADMN as the owner of the user profile for WJONES. User WJONES is assigned the following default information to be used by DFP when the user creates a new DFP-managed data set:

- Data class DFP4DATA
- Management class DFP4MGMT
- Storage class DFP4STOR
- Data application identifier DFP4APPL.

Known
- User JSMITH has the SPECIAL attribute.
- DFP4MGMT has been defined to RACF as a profile in the MGMTCLAS general resource class, and user WJONES has been given READ access to this profile.
- DFP4STOR has been defined to RACF as a profile in the STORCLAS general resource class, and user WJONES has been given READ access to this profile.
- User WJONES is not defined to RACF.
- User WJONES's name is W. E. Jones.
- User JSMITH wants to issue the command as a RACF TSO command.

Command
ADDUSER WJONES DFLTGRP(SYS05) OWNER(DFPADMN) NAME('W.E. JONES') DFP(DATACLAS(DFP4DATA) MGMTCLAS(DFP4MGMT) STORCLAS(DFP4STOR) DATAAPPL(DFP4APPL))

Defaults
AUTHORITY(USE) UACC(NONE) NOGRPACC NOADSP NOSPECIAL NOOPERATIONS NOCLAUTH NOAUDITOR NOOIDCARD
Example 8

Operation
The system administrator wants to define user DAF0 to RACF with her
default group set to RESEARCH, her primary language set to American
English (ENU) and her secondary language set to German (DEU).

Known
The user’s name is D. M. Brown. The profile owner is IBMUSER. The system
administrator has the SPECIAL attribute. User DAF0 will have JOIN authority
to group RESEARCH. The system administrator wants to issue the command
as a RACF TSO command.

Command
ADDUSER DAF0 DFLTGRP(RESEARCH) NAME('D. M. BROWN') LANGUAGE(PRIMARY(ENU) SECONDARY(DEU)) OWNER(IBMUSER) AUTHORITY(JOIN)

Defaults
UACC(NONE) NOGRPCACC NOADSP NOSPECIAL NOOPERATIONS
NOCLAUTH NOAUDITOR NOOIDCARD

Example 9

Operation
A user with SPECIAL authority requests the addition of a new z/OS UNIX
user.

Known
The user profile will be owned by the z/OS UNIX administrator's user ID,
SYSADM, and will be a member of the existing group SYSOM which is
associated with a GID. The user wants to issue the command as a RACF TSO
command.

Command
ADDUSER CSMITH DFLTGRP(SYSOM) OWNER(SYSADM) NAME('C.J. SMITH')
OMVS(UID(147483647) HOME(/u/CSMITH) PROGRAM(/bin/sh))

Example 10

Operation
A user with SPECIAL authority requests the addition of a new DCE user.

Known
The user profile is owned by the system administrator's user ID, SYSADM,
and is a member of the existing group SYSOM which is associated with a
GID. This DCE user has been assigned a DCE UUID of 004386ea-ebbb-1ec3-
bca3-10005ac90feb and a DCE principal name of charlie. This z/OS UNIX
DCE user is a principal of the .../elvis.memphis.ibm.com DCE cell. The
UUID for the .../elvis.memphis.ibm.com DCE cell is 003456ab-ecb7-7de3-
Ebd9-95531ed63dae.

Command
ADDUSER CSMITH DFLTGRP(SYSOM) OWNER(SYSADM) NAME('C.J. SMITH')
OMVS(UID(27) HOME(/u/csmith) PROGRAM(/bin/sh))
DCE(UUID(004386ea-ebbb-1ec3-bca3-10005ac90feb) +
DCENAME(charlie) HOMECELL(/.../elvis.memphis.ibm.com) +
HOMEUUID(003456ab-ecb7-7de3-ebda-95531ed63dae))

Defaults
DCE(AUTOLOGIN(NO))

Example 11

Operation
Lotus Notes user RACFADM with SPECIAL or UPDATE authority requests
the addition of a new user with Lotus Notes and NDS information.

Known
The user profile is owned by RACFADM and belongs to RACFADM's current
connect group SYSOM.

Command
ADDUSER PCUSER1 LNOTES(SNAME('NEW-GUY 1')) NDS(UNAME(DIRADMIN))

Defaults
DFLTGRP(SYSOM) OWNER(RACFADM)

Example 12

Operation
User RACFADM with SPECIAL or UPDATE authority requests the addition of
a new z/OS UNIX user. The user specifies AUTOUID so that RACF will
automatically assign an unused UID to the new user.

Known
The user profile is owned by RACFADM and belongs to RACFADM's current
connect group SYSOM. The BPX.NEXT.USER profile in the FACILITY class
has been set up to allow automatic UID assignment.

Command
ADDUSER UNIXUSR OMVS(AUTOUID HOME('/u/unixusr') CPUTIMEMAX(5000)
ASSIZEMAX(40000000))

Defaults
DFLTGRP(SYSOM) OWNER(RACFADM)

Example 13

Operation
User RACFADM with SPECIAL or UPDATE authority requests the addition of
a new z/OS UNIX superuser.

Known
The user profile is owned by RACFADM and belongs to RACFADM's current
connect group SYSOM. Shared UIDs are being controlled, and at least one
superuser already exists, so SHARED must be specified.

Command
ADDUSER SUPERGUY OMVS(UID(0) SHARED HOME('/') PROGRAM('/bin/sh))
NOPASSWORD

Defaults
DFLTGRP(SYSOM) OWNER(RACFADM)
ADDUSER

Example 14

Operation: User RACFADM with SPECIAL authority adds the user ID PUBLIC and assigns it restricted access. User IDs RACFU00 and USER004 are added, but are not assigned any restrictions. In this example, the PUBLIC user ID does not have access to RACFU00’s data sets because it has RESTRICTED access.

Known: User RACFADM has SPECIAL authority.

Command:
ADDUSER PUBLIC RESTRICTED
ADDUSER RACFU00 NORESTRICTED
ADDUSER USER004
ADDSD 'RACFU00.*' UACC(READ)

Defaults: USER004 has NORESTRICTED access by default.

Example 15

Operation: A user with SPECIAL authority requests the addition of a z/OS Integrated Security Services Network Authentication Service account within the local realm for a user whose RACF user profile is RONTOMS. MAXTKTLFE is not specified, so the value specified on the definition of the local realm KERBDFLT in the REALM class is used. Note that the user’s RACF password must be changed before the definition of the z/OS Network Authentication Service account is complete.

Known: User RONTOMS wants to define his z/OS Integrated Security Services Network Authentication Service information.

Command:
ADDUSER RONTOMS KERB(KERBNAME('KerberizedUser'))

Example 16

Operation: User RACFADM issues a command to add a new user MRSERVER with an EIM segment and LDAP profile that is related to an LDAPBIND class for the specified user to use with EIM.

Known: eimdomainALookup is a profile in the LDAPBIND class that defines the EIM LDAP values required for EIM processing.

Command:
ADDUSER MRSERVER EIM(LDAPPROF(eimdomainALookup))

Example 17

Operation: User SECADM wants to define a new user ANDREW and add custom field data for multiple fields.

Known: User SECADM has the SPECIAL attribute. Custom fields called Empser, Address, Phone, Code, and Active are already defined with attributes that allow the custom data values specified in the command example. The systems programmer has already rebuilt the dynamic parse table using the IRRDPI00 UPDATE command.

Command:
ADDUSER ANDREW CSDATA(EMPSER(256400)
ADDRESS('14 Main Street, Anywhere, IL 01234')
PHONE(555-555-5555)
CODE(FC01820B)
ACTIVE(NO))

ALTDSD (Alter data set profile)

Purpose

Use the ALTDSD command to:

- Modify an existing discrete or generic data set profile.
- Protect a single volume of either a multivolume tape data set or a multivolume, non-VSAM DASD data set. (At least one volume must already be RACF-protected.)
- Remove RACF-protection from either a single volume of a multivolume tape data set or a single volume of a multivolume, non-VSAM DASD data set. (You cannot delete the last volume from the profile.)

Changes made to discrete profiles take effect after the ALTDSD command is processed. Changes made to generic profiles do not take effect until one or more of the following steps is taken:

- The user of the data set issues the LISTDSD command.
Note: Use the data set name, not the profile name.

- The security administrator issues the SETROPTS command:

  ```
  SETROPTS GENERIC(DATASET) REFRESH
  ```

 See SETROPTS command for authorization requirements.

- The user of the data set logs off and logs on again.

Note: For more information, refer to [z/OS Security Server RACF Security Administrator’s Guide](#).

Issuing options

The following table identifies the eligible options for issuing the ALTDSD command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.

Related commands

- To create a data set profile, see “ADDSD (Add data set profile)” on page 33.
- To delete a data set profile, see “DELDSD (Delete data set profile)” on page 195.
- To list a data set profile, see “LISTDSD (List data set profile)” on page 213.
- To permit or deny access to a data set profile, see “PERMIT (Maintain resource access lists)” on page 261.
- To obtain a list of data set profiles, see “SEARCH (Search RACF database)” on page 580.

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in [z/OS Security Server RACF Security Administrator’s Guide](#).

To use the ALTDSD command, you must have sufficient authority over the profile. RACF makes the following checks until one of these conditions is met:

- You have the SPECIAL attribute.
- The data set profile is within the scope of a group in which you have the group-SPECIAL attribute.
- You are the owner of the profile.
ALTDSD

- The high-level qualifier of the profile name (or the qualifier supplied by the
 RACF naming conventions table or by a command installation exit) is your user
 ID.
- To assign a security label, you must have the SPECIAL attribute or have READ
 access to the security label profile. However, the security administrator can limit
 the ability to assign security labels only to users with the SPECIAL attribute.
- To access the DFP or TME segment, field-level access checking is required.
- For a discrete profile, you are in the access list for the discrete profile and you
 have ALTER authority. (If you have any other level of authority, you cannot alter
 this profile.)
- For a discrete profile, your current connect group (or, if list-of-groups checking is
 active, any group to which you are connected) is in the access list and has
 ALTER authority.
- For a discrete profile, the universal access authority is ALTER.

To use the GLOBALAUDIT operand, you must have the AUDITOR attribute, or
the data set profile must be within the scope of a group in which you have the
group-AUDITOR attribute.

If you have the AUDITOR attribute or the data set profile is within the scope of a
group in which you have the group-AUDITOR attribute, but you do not satisfy
one of the above checks, you can specify only the GLOBALAUDIT operand.

To specify the AT keyword, you must have READ authority to the DIRECT.node
resource in the RRSFCDATA class and a user ID association must be established
between the specified node.userid pair(s).

To specify the ONLYAT keyword you must have the SPECIAL attribute, the userid
specified on the ONLYAT keyword must have the SPECIAL attribute, and a user
ID association must be established between the specified node.userid pair(s) if the
user IDs are not identical.

To assign a security category to a profile, or to delete a category from a profile,
you must have the SPECIAL attribute, or the category must be in your user profile.

To assign a security level to a profile, you must have the SPECIAL attribute, or, in
your own profile, a security level that is equal to, or greater than, the security level
you are assigning.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of
RACF commands and operands" on page 9. The complete syntax of the ALTDSD
command is:

```
[ subsystem-prefix ] ALTDSD | ALD
  ( profile-name [ /password ] ... )
  [ ADDCATEGORY( category-name ... )
    | DELCATEGORY ( [ (category-name ...
      | * ) ] ) ]
  [ ADDVOL( volume-serial )
    | DELVOL( volume-serial )
    | ALTVOL( old-volume-serial new-volume-serial ) ]
  [ AT( node.userid ... ) | ONLYAT( node.userid ... ) ]
  [ AUDIT( access-attempt[ audit-access-level ] ... ) ]
```
ALTDSD

```plaintext
[ DATA('installation-defined-data') ]
[ DFP(RESOWNER(userid or group-name) ]
[ GLOBALAUDIT(access-attempt[audit-access-level] ... ]
[ LEVEL(nn) ]
[ NOTIFY(userid) ]
[ OWNER(userid or group-name) ]
[ RETPD(nn) ]
[ SECLABEL(seclabel-name) ]
[ SECLEVEL(seclevel-name) ]
[ TME( ]
[ UACC(access-authority) ]
[ UNIT(type) ]
[ WARNING ]

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

**Parameters**

**subsystem-prefix**

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

**profile-name**

Specifies the name of a discrete or generic data set profile. If you specify more than one profile name, the list of names must be enclosed in parentheses.

This operand is required and must be the first operand following ALTDSD.

**Note:**

1. Because RACF uses the RACF database and not the system catalog, you cannot use alias data set names.

2. If you specify a generic profile name, RACF ignores these operands:
   - ADDVOL | DELVOL | ALTVol
   - SET | NOSET
   - UNIT
```
ALTDSD

- VOLUME

/Password

Specifies the data set password if you are altering the profile for a password-protected data set. This operand applies only if you are using the ADDVOL and SET operands for a volume of a multivolume password-protected data set. The WRITE level password must then be specified.

If the command is executing in the foreground and you omit the password for a password-protected data set, RACF uses the logon password. You are prompted if the password you enter or the logon password is incorrect.

If the command is executing in a batch job and you either omit the password for a password-protected data set or supply an incorrect password, the operator is prompted.

You can use this operand only for tape data sets and non-VSAM DASD data sets. If you specify a generic profile, RACF ignores this operand.

ADDCATEGORY | DELCATEGORY

ADDCATEGORY(category-name ...)

Specifies one or more names of installation-defined security categories. category-name must be defined as a member of the CATEGORY profile in the SECDATA class. (For information on defining security categories, see z/OS Security Server RACF Security Administrator’s Guide.)

Specifying ADDCATEGORY on the ALTDSD command causes RACF to add any category names you specify to any list of required categories that already exists in the data set profile. All users previously allowed to access the data set can continue to do so only if their profiles also include the additional category names.

When the SECDATA class is active and you specify ADDCATEGORY, RACF performs security category checking in addition to its other authorization checking. If a user requests access to a data set, RACF compares the list of security categories in the user profile with the list of security categories in the data set profile. If RACF finds any security category in the data set profile that is not in the user’s profile, RACF denies access to the data set. If the user’s profile contains all the required security categories, RACF continues with other authorization checking.

Note: RACF does not perform security category checking for a started task or user that has the RACF trusted or privileged attribute. The RACF trusted or privileged attribute can be assigned to a started task through the RACF started procedures table or STARTED class, or to other users by installation-supplied RACF exits.

DELCATEGORY[(category-name ... | *)]

Specifies one or more names of installation-defined security categories you want to delete from the data set profile. Specifying an asterisk (*) deletes all categories; RACF no longer performs security category checking for the data set profile.

Specifying DELCATEGORY by itself causes RACF to delete from the profile only undefined category names (those category names that were once known to RACF but that the installation has since deleted from the CATEGORY profile.)

ADDVOL | DELVOL | ALTVOL
ADDVOL(volume-serial)
 Specifies that you want to RACF-protect the portion of the data set residing on this volume. At least one other portion of the data set on a different volume must already have been RACF-protected. You can use this operand only for tape data sets and non-VSAM data sets.

The DASD volume must be online unless you also specify NOSET. If it is not online and you omit NOSET, the ALTDSD command processor will, if you have TSO MOUNT authority, request that the volume be mounted.

RACF ignores this operand if you specify a generic profile name.

Note: The maximum number of volume serials for a tape data set with an entry in the TVTOC is 42.

DELVOL(volume-serial)
 Specifies that you want to remove RACF-protection from the portion of the data set residing on this volume. If no other portions of this data set on another volume are RACF-protected, the command terminates. (Use the DELDSD command to delete the profile from RACF.) You can use this operand only for tape data sets and non-VSAM DASD data sets.

The DASD volume must be online unless you also specify NOSET. If it is not online and you omit NOSET, the ALTDSD command processor requests that the volume be mounted.

RACF ignores this operand if you specify a generic profile name.

ALTVOL(old-volume-serial new-volume-serial)
 Specifies that you want to change the volume serial number in the data set profile. You can specify this operand for both VSAM and non-VSAM DASD data sets, but you cannot specify it for tape data sets. If you specify ALTVOL for a tape data set, the command fails.

When you specify ALTVOL, RACF ignores the SET and NOSET operands and modifies the data set profile, but it does not process the RACF indicator.

RACF ignores this operand if you specify a generic profile name.

To specify ALTVOL, you must have the SPECIAL attribute, or the data set profile must be within the scope of a group in which you have the group-SPECIAL attribute, or the high-level qualifier of the data set name (or the qualifier supplied by a command installation exit routine) must be your user ID.

AT | ONLYAT
The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.

AT([node].userid ...)
 Specifies that the command is to be directed to the node specified by node, where it runs under the authority of the user specified by userid in the RACF subsystem address space.

 If node is not specified, the command is directed to the local node.

ONLYAT([node].userid ...)
 Specifies that the command is to be directed only to the node specified by node where it runs under the authority of the user specified by userid in the RACF subsystem address space.

 If node is not specified, the command is directed only to the local node.
AUDIT\((access\,-\,attempt\,[\,audit\,-\,access\,-\,level]\,]\,\,...\,\)\)

Specifies which access attempts and access levels the user who has the AUDITOR attribute wants logged to the SMF data set.

access\,-\,attempt

Specifies which new access attempts you want logged to the SMF data set. The following options are available:

- **ALL**
 Specifies that you want to log both authorized accesses and detected unauthorized access attempts.

- **FAILURES**
 Specifies that you want to log detected unauthorized access attempts.

- **NONE**
 Specifies that you do not want any logging to be done.

- **SUCCESS**
 Specifies that you want to log authorized accesses.

If you specify AUDIT without a value, RACF ignores it.

audit\,-\,access\,-\,level

Specifies which access levels you want logged to the SMF data set. The levels you can specify are:

- **ALTER**
 Logs ALTER access-level attempts only.

- **CONTROL**
 Logs access attempts at the CONTROL and ALTER levels.

- **READ**
 Logs access attempts at any level. READ is the default value if you omit audit\,-\,access\,-\,level.

- **UPDATE**
 Logs access attempts at the UPDATE, CONTROL, and ALTER levels.

You cannot audit access attempts at the EXECUTE level.

DATA | NODATA

DATA('installation\,-\,defined\,-\,data')

Specifies up to 255 characters of installation-defined data to be stored in the data set profile and must be enclosed in single quotation marks. It can also contain double-byte character set (DBCS) data.

Use the LISTDSD command to list this information.

NODATA

Specifies that the ALTDSD command is to delete any installation-defined data in the data set profile.

DFP | NODFP

DFP

Specifies that for an SMS-managed data set, you can change the following information:

RESOWNER(userid or group\,-\,name) | NORESOWNER

Specifies the user ID or group name of the actual owner of the data sets protected by the profile specified in profile\,-\,name\,-\,1. The name specified for RESOWNER must be a RACF-defined user or group. (The
A data set resource owner, or RESOWNER, is distinguished from the OWNER, which represents the user or group that owns the data set profile.

If NORESOWNER is specified, the user or group represented by the high level qualifier of the data set profile is assigned as the owner of data sets protected by the profile when SMS needs to determine the RESOWNER.

You can control access to the entire DFP segment or to individual fields within the DFP segment by using field-level access checking. For more information, see the z/OS Security Server RACF Security Administrator's Guide.

NODFP
Specifies that RACF should delete the DFP segment from the data set profile.

ERASE | NOERASE

ERASE
Specifies that when SETROPTS ERASE is active, data management is to physically erase the contents of deleted data sets and scratched or released DASD extents. Erasing the data set means overwriting its contents with binary zeroes so that it cannot be read.

Restrictions: The ERASE operand is ignored when any of the following conditions exist:
- When the data set is a tape data set and your installation did not activate the TAPEAUTHDSN option in the DEVSUPxx member of SYS1.PARMLIB. See Erasing Scratched or Release Data (ERASE Option) in the z/OS Security Server RACF Security Administrator's Guide for more information.
- When SETROPTS NOERASE is active for your installation. (User and data set profile definitions are overridden.)

NOERASE
Specifies that data management is not to physically erase the contents of deleted data sets and scratched or released DASD extents.

Restrictions: Setting NOERASE has no effect and does not prevent a scratched data set from being erased for either one of the following conditions:
- SETROPTS ERASE(ALL) is in effect.
- SETROPTS ERASE(SECLEVEL(security-level)) is in effect and the scratched data set has security level that is equal or higher than the security-level specified with SETROPTS.

GENERIC | SET | NOSET
If you do not specify GENERIC, SET, or NOSET, the default value is SET.

GENERIC
Specifies that RACF is to treat the profile name as a generic name, even if it does not contain any generic characters.

SET | NOSET
Specifies whether the data set is to be RACF-indicated. RACF ignores SET and NOSET if you do not use the ADDVOL or DELVOL operand or specify a generic profile name.
SET
Specifies that:

- The data set on this volume is to be RACF-indicated if you also specify the ADDVOL operand. If the indicator is already on, the command fails.
- The RACF-indicator for the data set on this volume is to be set off if you also specify the DELVOL operand. If the indicator is already off, the command fails.

For a DASD data set, the volume indicated in the ADDVOL or DELVOL operand must be online.

NOSET
Specifies that RACF is not to change the RACF indicator for the data set.

The volume indicated in the ADDVOL or DELVOL operand does not have to be online.

To use NOSET, you must have the SPECIAL attribute, or the data set profile must be within the scope of a group in which you have the group-SPECIAL attribute, or the high-level qualifier of the data set name (or the qualifier supplied by a command installation exit) must be your user ID. If you are not authorized, RACF ignores the NOSET and ADDVOL or DELVOL operands.

GLOBALAUDIT(access-attempt)((audit-access-level)) ...
Specifies which access attempts and access levels the user who has the AUDITOR attribute wants logged to the SMF data set.

access-attempt
Specifies which access attempts the user who has the AUDITOR attribute wants logged to the SMF data set. The following options are available:

ALL
Specifies that you want to log both authorized accesses and detected unauthorized access attempts.

FAILURES
Specifies that you want to log detected unauthorized access attempts.

NONE
Specifies that you do not want any logging to be done.

SUCCESS
Specifies that you want to log authorized accesses.

If you specify AUDIT without a value, RACF ignores it.

audit-access-level
Specifies which access levels the user who has the AUDITOR attribute wants logged to the SMF data set. The levels you can specify are:

ALTER
Logs ALTER access-level attempts only.

CONTROL
Logs access attempts at the CONTROL and ALTER levels.

READ
Logs access attempts at any level. READ is the default value if you omit audit-access-level.
UPDATE

Logs access attempts at the UPDATE, CONTROL, and ALTER levels.

You cannot audit access attempts at the EXECUTE level.

To use the GLOBALAUDIT operand, you must have the AUDITOR attribute, or the profile must be within the scope of a group in which you have the group-AUDITOR attribute.

Note: Regardless of the value specified in GLOBALAUDIT, RACF always logs all access attempts specified on the AUDIT operand.

LEVEL(nn)

Specifies a new level indicator, where nn is an integer 0 - 99.

Your installation assigns the meaning of the value.

RACF includes it in all records that log data set accesses and in the LISTDSD command display.

NOTIFY | NONOTIFY

NOTIFY[(userid)]

Specifies the user ID of a user to be notified whenever RACF uses this profile to deny access to a data set. If you specify NOTIFY without specifying a user ID, RACF takes your user ID as the default; you are notified whenever the profile denies access to a data set.

A user who is to receive NOTIFY messages should log on frequently, both to take action in response to the unauthorized access attempts the messages describe and to clear the messages from the SYS1.BROADCAST data set. (When the profile also includes WARNING, RACF might have granted access to the data set to the user identified in the message.)

Note: The user ID specified on the NOTIFY operand is not notified when the profile disallows creation or deletion of a data set. NOTIFY is only used for resource access checking, not for resource creation or deletion.

NONOTIFY

Specifies that no user is to be notified when RACF uses this profile to deny access to a data set.

OWNER(userid or group-name)

Specifies a RACF-defined user or group to be the new owner of the data set profile. If you specify a user ID as the owner of a group data set profile, the specified user must have at least USE authority in the group to which the data set profile belongs.

To change the owner of a profile, you must be the current owner of the profile or have the SPECIAL attribute, or the profile must be within the scope of a group in which you have the group-SPECIAL attribute.

Note: The user specified as the owner does not automatically have access to the data set. Use the PERMIT command to add the owner to the access list as desired.

RETPD(nnnnn)

Specifies the RACF security retention period for a tape data set. The security retention period is the number of days that must elapse before a tape data set profile expires. (Note that, even though the data set profile expires,
RACF-protection for data sets protected by the profile is still in effect. For more information, see z/OS Security Server RACF Security Administrator’s Guide.

The number you specify must be 1 to 5 digits in the range of 0 through 65533 or, to indicate a data set that never expires, 99999.

Using RETPD to change the RACF security retention period for a data set means that the RACF security retention period and the data set retention period specified by the EXPDT/RETPD parameters on the JCL DD statement are longer be the same.

When the TAPEVOL class is active, RACF checks the RACF security retention period before it allows a data set to be overwritten. RACF adds the number of days in the retention period to the creation date for the data set. If the result is less than the current date, RACF continues to protect the data set.

When the TAPEVOL class is not active, RACF ignores the RETPD operand.

Specifying this operand for a DASD data set does not cause an error, but it has no meaning because RACF ignores the operand during authorization checking.

SECLABEL | NOSECLABEL

SECLABEL(seclabel-name)

Specifies an installation-defined security label for this profile. A security label corresponds to a particular security level (such as CONFIDENTIAL) with a set of zero or more security categories (such as PAYROLL or PERSONNEL).

RACF stores the name of the security label you specify in the data set profile if you are authorized to use that SECLABEL.

If you are not authorized to the SECLABEL or if the name you had specified is not defined as a SECLABEL profile in the SECLABEL class, the data set profile is not updated.

Note: If the SECLABEL class is active and the security label is specified in this profile, any security levels and categories in the profile are ignored.

NOSECLABEL

removes the security label, if one had been specified, from the profile.

SECLEVEL | NOSECLEVEL

SECLEVEL(seclevel-name)

Specifies the name of an installation-defined security level. This name corresponds to the number that is the minimum security level that a user must have to access the data set. The seclevel-name must be a member of the SECLEVEL profile in the SECDATA class.

When you specify SECLEVEL and the SECDATA class is active, RACF adds security level access checking to its other authorization checking. If global access checking does not grant access, RACF compares the security level allowed in the user profile with the security level required in the data set profile. If the security level in the user profile is less than the security level in the data set profile, RACF denies the access. If the security level in the user profile is equal to or greater than the security level in the data set profile, RACF continues with other authorization checking.

Note: RACF does not perform security level checking for a started task or user that has the RACF privileged or trusted attribute. The RACF
privileged or trusted attribute can be assigned to a started task through the RACF started procedures table or STARTED class, or to other users by installation-supplied RACF exits.

If the SECDATA class is not active, RACF stores the name you specify in the data set profile. When the SECDATA class is activated and the name you specified is defined as a SECLEVEL profile, RACF can perform security level access checking for the data set profile. If the name you specify is not defined as a SECLEVEL profile and the SECDATA class is active, you are prompted to provide a valid security level name.

NOSECLEVEL
 Specifies that the ALTDSD command is to delete the security level name from the profile. RACF no longer performs security level access checking for the data set.

TME | NOTME
 TME
 Specifies that information for the Tivoli Security Management Application is to be added, changed, or deleted.

 Note: The TME segment fields are intended to be updated only by the Tivoli Security Management Application, which manages updates, permissions, and cross references. A security administrator should only directly update Tivoli Security Management fields on an exception basis.

ROLES(role-access-specification ...)
 Specifies a list of roles and associated access levels related to this profile.

 One or more role-access-specification values can be specified, each separated by blanks. Each value should contain no imbedded blanks and should have the following format:
 \[role-name:authority[:conditional-class:conditional-profile]\]

 where role-name is a discrete general resource profile defined in the ROLE class. The authority is the access authority (NONE, EXECUTE, READ, UPDATE, CONTROL, or ALTER) with which groups in the role definition should be permitted to the resource.

 The conditional-class is a class name (APPCPORT, CONSOLE, JESINPUT, PROGRAM, TERMINAL, or SYSID) for conditional access permission, and is followed by the conditional-profile value, a resource profile defined in the conditional class.

ADDROLES(role-access-specification ...)
 Specifies that specific roles and access levels are to be added to the current list.

DELROLES(role-access-specification ...)
 Specifies that specific roles from the current list of roles are to be removed.

NOROLES
 Specifies that the entire list of roles be removed.

NOTME
 Specifies that RACF delete the TME segment from the profile.

UACC(access-authority)
 Specifies the universal access authority to be associated with the data sets. The
universal access authorities are ALTER, CONTROL, READ, UPDATE, EXECUTE, and NONE. If you specify CONTROL for a tape data set or a non-VSAM DASD data set, RACF treats the access authority as UPDATE. If you specify EXECUTE for a tape data set or a DASD data set not used as a program library, RACF treats the access authority as NONE.

If a user accessing a data set has the RESTRICTED attribute, RACF treats the universal access authority (UACC) as NONE for that access attempt.

If you enter UACC without a value, RACF retains the old universal access authority for the data sets.

UNIT(type)
Specifies the unit type to be added to the data set profile on which a non-VSAM data set resides. You can specify an installation-defined unit name, a generic device type, or a specific device address. RACF ignores this operand if you specify a generic profile name.

VOLUME(volume-serial)
Specifies the volume on which the tape data set, the non-VSAM DASD data set, or the catalog for the VSAM data set resides.

If you specify VOLUME and volume-serial does not appear in the profile for the data set, the command fails. If you omit VOLUME and the data set name appears more than once in the RACF database, the command fails. If you omit VOLUME and the data set name appears only once in the RACF database, no volume serial checking is performed and processing continues.

RACF ignores this operand if you specify a generic profile name.

WARNING | NOWARNING

WARNING
Specifies that even if access authority is insufficient, RACF is to issue a warning message and allow access to the resource. RACF also records the access attempt in the SMF record if logging is specified in the profile.

When SETROPTS MLACTIVE(FAILURES) is in effect: A user or task can access a data set that is in WARNING mode and has no security label even when MLACTIVE(FAILURES) is in effect and the class requires security labels. The user or task receives a warning message and gains access.

NOWARNING
Specifies that if access authority is insufficient, RACF is to deny the user access to the resource and not issue a warning message.

Examples

Example 1

Operation
User AEH0 owns data set profile PAYROLL.DEPT2.DATA and wants to assign ownership of the data set to group PAYROLL. Only users with categories of FINANCIAL and PERSONNEL and a security level of PERSONAL are to be able to access the data set.

Known
Data set PAYROLL.DEPT2.DATA is RACF-defined with a discrete profile. FINANCIAL and PERSONNEL are valid categories of access; PERSONAL is a valid security level name. USER AEH0 wants to issue the command as a RACF TSO command.

Command
ALTDSD 'PAYROLL.DEPT2.DATA' OWNER(PAYROLL) ADDCATEGORY(FINANCIAL PERSONNEL) SECLEVEL(PERSONAL)

Defaults
None.
Example 2

Operation
User WRH0 wants to change the universal access authority to NONE for data set RESEARCH.PROJ02.DATA and wants to have all accesses to the data set logged on SMF records. User ADMIN02 is to be notified when RACF uses this profile to deny access to the data set. The data set is to be erased when it is deleted (scratched).

Known
User WRH0 has ALTER access to data set profile RESEARCH.PROJ02.DATA.
User WRH0 is logged onto group RESEARCH. USER WRH0 wants to issue the command as a RACF TSO command.

User ADMIN02 is a RACF-defined user.

Data set RESEARCH.PROJ02.DATA is RACF-defined with a generic profile.
The SETROPTS ERASE option has been specified for the installation.

Command
ALTDSD 'RESEARCH.PROJ02.DATA' UACC(NONE) AUDIT(ALL(READ)) GENERIC NOTIFY(ADMIN02) ERASE

Defaults
None.

Example 3

Operation
User CD0 wants to remove RACF-protection from volume 222222 of the multivolume data set CD0.PROJ2.DATA.

Known
CD0.PROJ2.DATA is a non-VSAM data set that resides on volumes 111111 and 222222 and is defined to RACF with a discrete profile. Volume 222222 is online. User CD0’s TSO profile specifies PREFIX (CDO). User CD0 wants to issue the command as a RACF operator command, and the RACF subsystem prefix is @.

Command
@ALTDSD PROJ2.DATA DELVOL(222222)

Default
None.

Example 4

Operation
User RVD02 wants to have all successful accesses to data set PAYROLL.ACCOUNT on volume SYS003 to be logged to the SMF data set.

Known
User RVD02 has the AUDITOR attribute. User RVD02 wants to issue the command as a RACF TSO command.

Command
ALTDSD 'PAYROLL.ACCOUNT' GLOBALAUDIT(SUCCESS(READ)) VOLUME(SYS003)

Defaults
None.

Example 5

Operation
User SJR1 wants to modify the installation-defined information associated with the tape data set SYSINV.ADMIN.DATA. The RACF security retention period is to be 360 days.

Known
User SJR1 has ALTER authority to the data set profile. User SJR1 wants to issue the command as a RACF TSO command.

Tape data set protection is active.

Command
ALTDSD 'SYSINV.ADMIN.DATA' DATA('LIST OF REVOKED RACF USERIDS') RETPD(360)

Defaults
None.

Example 6

Operation
User ADM1 wants to log all unauthorized access attempts and all successful updates to data sets protected by a generic profile (SALES.ABC.*).

Known
User ADM1 has the SPECIAL attribute. User ADM1 wants to issue the command as a RACF TSO command.

Command
ALTDSD 'SALES.ABC.*' AUDIT (FAILURES(READ) SUCCESS (UPDATE))

Defaults
None.
Example 7

Operation User ADM1 owns the DFP-managed data set RESEARCH.TEST.DATA3 and wants to assign user ADM6 as the data set resource owner.

User ADM1 wants to direct the command to run at node CLCON under the authority of user DROLLO and prohibit the command from being automatically directed to other nodes.

Known Data set RESEARCH.TEST.DATA3 is RACF-defined with a discrete profile. Users ADM1 and DROLLO at CLCON have the SPECIAL attribute, and ADM6 is defined to RACF on node CLCON. User ADM1 wants to issue the command as a RACF TSO command. Users ADM1 and DROLLO at CLCON have an already established user ID association.

Command ALTDSD ‘RESEARCH.TEST.DATA3’ DFP(RESOWNER(ADM6)) ONLYAT(CLCON.DROLLO)

Results The command is only processed on the node CLCON and not automatically directed to any other nodes in the RRSF configuration.
ALTGROUP

ALTGROUP (Alter group profile)

Purpose

Use the ALTGROUP command to change:

- The superior group of a group
- The owner of a group
- The terminal indicator for a group
- A model profile name for a group
- The installation-defined data associated with a group
- The default segment information for a group (for example, DFP or OMVS)

Issuing options

The following table identifies the eligible options for issuing the ALTGROUP command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.

Related commands

- To create a group profile, see “ADGROUP (Add group profile)” on page 24.
- To delete a group profile, see “DELGROUP (Delete group profile)” on page 199.
- To connect a user to a group, see “CONNECT (Connect user to group)” on page 187.
- To list information for a group profile, see “LISTGRP (List group profile)” on page 226.
- To remove a user from a group, see “REMOVE (Remove user from group)” on page 544.
- To obtain a list of group profiles, see “SEARCH (Search RACF database)” on page 580.

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.

To change the superior group of a group, you must have at least one of the following authorizations:

- You must have the SPECIAL attribute
All the following group profiles must be within the scope of a group in which you have the group-SPECIAL attribute:

- The group whose superior group you are changing
- The current superior group
- The new superior group

You must be the owner of, or have JOIN authority in, both the current and the new superior groups.

Note: You can have JOIN authority in one group and be the owner of or have the group-SPECIAL attribute in the other group.

If you have any of the following authorizations, you can specify any operand except as otherwise listed below:

- The SPECIAL attribute
- The group profile is within the scope of a group in which you have the group-SPECIAL attribute
- You are the current owner of the group.

To add, delete, or alter segments, such as DFP or OMVS, in a group's profile, you must have at least one of the following authorizations:

- You must have the SPECIAL attribute.
- Your installation must permit you to do so through field-level access checking.

For information on field-level access checking, see z/OS Security Server RACF Security Administrator's Guide.

To specify the AT keyword, you must have READ authority to the DIRECT.node resource in the RRSFDATA class and a user ID association must be established between the specified node.userid pair(s).

To specify the ONLYAT keyword, you must have the SPECIAL attribute, the userid specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified node.userid pair(s) if the user IDs are not identical.

To specify the SHARED keyword, you must have the SPECIAL attribute or at least READ authority to the SHARED.IDS resource in the UNIXPRIV class.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the ALTGROUP command is:

```
[subsystem-prefix][ALTGROUP | ALG]
  (group-name ...)
   [ AT([node].userid ...) | ONLYAT([node].userid ...) ]
   [ CSDATA(
      [ custom-field-name(custom-field-value) | NOcustom-field-name ] ...
   )
   | NOCSDATA ]
   [ DATA('installation-defined-data') | NODATA ]
```
Parameters

subsystem-prefix

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

group-name

Specifies the name of the group whose definition you want to change. If you specify more than one group name, the list of names must be enclosed in parentheses.

This operand is required and must be the first operand following ALTGROUP.

AT | ONLYAT

The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.
ALTGROUP

AT([node].userid ...)
Specifies that the command is to be directed to the node specified by node, where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed to the local node.

ONLYAT([node].userid ...)
Specifies that the command is to be directed only to the node specified by node where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed only to the local node.

CSDATA | NOCSDATA

CSDATA
Specifies information to add, change, or remove a custom field for this group.

custom-field-name ... | NOcustom-field-name ...
Specifies the name and value of a custom field for this group.

You can define multiple custom field values with a single ALTGROUP command.

custom-field-name(custom-field-value) ...
Specifies the name and value of a custom field for this group. You can specify values for multiple custom fields with a single ALTGROUP command.

Usage for each custom field is defined using the CFDEF operand of the RDEFINE command for resource profiles in the CFIELD class. Contact your security administrator to see how custom fields are used at your installation. For more information about custom fields, see z/OS Security Server RACF Security Administrator’s Guide.

Rules:
• You must use the same custom-field-name as defined by the CFIELD profile named GROUP.CSDATA.custom-field-name. (The CFIELD profile is defined using the CFDEF operand of the RDEFINE command.)
• You must specify a custom-field-value that is valid for the attributes of this custom field. (The attributes, such as data type, are defined in the CFDEF segment of the CFIELD profile.)

NOcustom-field-name ...
Removes the custom field information for this group. You can remove values for multiple custom fields with a single ALTGROUP command.

When you append the prefix NO to the name of the custom field, you delete the value for that custom field from the group’s profile. For example, if your installation has defined a custom field named COMPPADDR and you want to remove the COMPPADDR field from the profile of the group ABCSUPPLY, you might issue the following command:

Example:
ALTGROUP ABCSUPPLY CSDATA(NOCOMPPADDR)
ALTGROUP

NOCSDATA

Deletes the CSDATA segment from the group profile.

DATA | NODATA

DATA('installation-defined-data')

Specifies up to 255 characters of installation-defined data to be stored in the group profile and must be enclosed in single quotation marks. It can also contain double-byte character set (DBCS) data.

Use the LISTGRP command to list this information.

NODATA

Specifies that the ALTGROUP command is to delete any installation-defined data in the group profile.

DFP | NODFP

DFP

Specifies that when you change the profile of a group, you can enter any of the following suboperands to add, change, or delete default values for the DFP data application, data class, management class, and storage class. DFP uses this information to determine data management and DASD storage characteristics when a user creates a new data set for a group.

DATAAPPL | NODATAAPPL

DATAAPPL(application-name)

Specifies the name of a DFP data application. The name you specify can contain up to 8 alphanumeric characters.

NODATAAPPL

Specifies that you want to delete the DFP data application name from the DFP segment of the group's profile.

DATACLAS | NODATACLAS

DATACLAS(data-class-name)

Specifies the default data class. The class name you specify can contain up to 8 alphanumeric characters.

A data class can specify some or all of the physical data set attributes associated with a new data set. During new data set allocation, data management uses the value you specify as a default unless it is preempted by a higher priority default, or overridden in some other way (for example, by JCL).

Note: The value you specify must be a valid data class name defined for use on your system. For more information, see z/OS Security Server RACF Security Administrator's Guide.

For information on defining DFP data classes, see z/OS DFSMSdfp Storage Administration.

NODATACLAS

Specifies that you want to delete the default data class name from the DFP segment of the group's profile.

MGMTCLAS | NOMGMTCLAS

MGMTCLAS(management-class-name)

Specifies the default management class. The class name you specify can contain up to 8 alphanumeric characters.
A management class contains a collection of management policies that apply to data sets. Data management uses the value you specify as a default unless it is preempted by a higher priority default, or overridden in some other way (for example, by JCL).

Note: The value you specify must be defined as a profile in the MGMTCLAS general resource class, and the group must be granted at least READ access to the profile. Otherwise, RACF does not allow the group access to the specified MGMTCLAS. For more information, see [z/OS Security Server RACF Security Administrator’s Guide](http://www.ibm.com/support/docview.wss?uid=ssg1S1004116).

For information on defining DFP management classes, see [z/OS DFSMSdfp Storage Administration](http://www.ibm.com/support/docview.wss?uid=ssg1S1004116).

NOMGMTCLAS

Specifies that you want to delete the default management class name from the DFP segment of the group’s profile.

STORCLAS | NOSTORCLAS

STORCLAS(storage-class-name)

Specifies the default storage class. The class name you specify can contain up to 8 alphanumeric characters.

A storage class specifies the service level (performance and availability) for data sets managed by the Storage Management Subsystem (SMS). During new data set allocation, data management uses the value you specify as a default unless it is preempted by a higher priority default, or overridden in some other way (for example, by JCL).

Note: The value you specify must be defined as a profile in the STORCLAS general resource class, and the group must be granted at least READ access to the profile. Otherwise, RACF does not allow the group access to the specified STORCLAS. For more information, see [z/OS Security Server RACF Security Administrator’s Guide](http://www.ibm.com/support/docview.wss?uid=ssg1S1004116).

For information on defining DFP storage classes, see [z/OS DFSMSdfp Storage Administration](http://www.ibm.com/support/docview.wss?uid=ssg1S1004116).

NOSTORCLAS

Specifies that you want to delete the default storage class name from the DFP segment of the group’s profile.

NODFP

Specifies that RACF should delete the DFP segment from the group’s profile.

MODEL | NOMODEL

MODEL(dsname)

Specifies the name of a data set profile that RACF is to use as a model when new data set profiles are created that have group-name as the high-level qualifier. For this operand to be effective, the MODEL(GROUP) option on the SETROPTS command must be active. If the ALTGROUP command cannot find the dsname profile, it issues a warning message and places the profile name in the group entry.
ALTPROFILE

RACF always prefixes dsname with the group name when it accesses the profile.

For information about automatic profile modeling, refer to z/OS Security Server RACF Security Administrator’s Guide.

NOMODEL

Specifies that the ALTGROUP command is to delete the model name in the group profile.

OMVS | NOOMVS

OMVS

Specifies z/OS UNIX System Services information for the group profile being changed.

AUTOGID | GID | NOGID

Specifies whether RACF is to automatically assign an unused GID value to the group, if a specific GID value is to be assigned or if the group identifier from the OMVS segment of the group’s profile is to be deleted.

AUTOGID

Specifies that RACF is to automatically assign an unused GID value to the group. The GID value is derived from information obtained from the BPX.NEXT.USER profile in the FACILITY class. For more information on setting up BPX.NEXT.USER, see z/OS Security Server RACF Security Administrator’s Guide.

If you are using RRSF automatic command direction for the GROUP class, the command sent to other nodes will contain an explicit assignment of the GID value which was derived by RACF on the local node.

Rules:

• AUTOGID cannot be specified if more than one group is entered.
• The AUTOGID keyword is mutually exclusive with the SHARED keyword.
• If both GID and AUTOGID are specified, AUTOGID is ignored.
• If both NOGID and AUTOGID are specified, AUTOGID is ignored.
• Field-level access checking for the GID field applies when using AUTOGID.
• AUTOGID cannot be used to reassign a GID value if one already exists for the group. If AUTOGID is specified, but the group already has a GID assigned, one of two things will happen.
 – If the preexisting GID is unique to this group, this value will be identified in informational message IRR52177I, and the value will be left unchanged. If RRSF automatic command direction is in effect for the GROUP class, then the outbound ALTGROUP command will be altered to contain the preexisting GID value in the OMVS GID keyword.
 – If the preexisting GID is not unique to this group, error message IRR52178I will be issued, and the command will fail. See IRR52178I for information on changing the group’s existing GID value.
GID(group-identifier) [SHARED]

GID(group-identifier)

Specifies the group identifier. The GID is a numeric value from 0 - 2 147 483 647.

When a GID is assigned to a group, all users connected to that group who have a user identifier (UID) in their user profile can use functions such as the TSO/E command, OMVS, and can access z/OS UNIX files based on the GID and UID values assigned.

Note:

1. If the security administrator has defined the SHARED.IDS profile in the UNIXPRIV class, the GID must be unique. Use the SHARED keyword in addition to GID to specify a value that is already in use.

2. If SHARED.IDS is not defined, RACF does not require the GID to be unique. The same value can be assigned to multiple groups, but this is not recommended because individual group control would be lost. However, if you want a set of groups to have exactly the same access to z/OS UNIX resources, you might decide to assign the same GID to more than one group.

3. RACF allows you to define and connect a user to more than 300 groups (which is the same as the NGROUPS_MAX variable defined in the POSIX standard), but when a process is created or z/OS UNIX group information is requested, only up to the first 300 z/OS UNIX groups are associated with the process or user.

The first 300 z/OS UNIX groups that have GIDs to which a user is connected are used by z/OS UNIX. LISTUSER displays the groups in the order that RACF examines them when determining which of the user’s groups are z/OS UNIX groups.

See z/OS UNIX System Services Planning for information on NGROUPS_MAX.

SHARED

If the security administrator has chosen to control the use of shared GIDs, this keyword must be used in addition to the GID keyword to specify the group identifier if it is already in use by at least one other group. The administrator controls shared GIDs by defining the SHARED.IDS profile in the UNIXPRIV class.

Rules:

• If the SHARED.IDS profile is not defined, SHARED is ignored.

• If SHARED is specified in the absence of GID, it is ignored.

• If the SHARED.IDS profile is defined and SHARED is specified, but the value specified with GID is not currently in use, SHARED is ignored and UNIXPRIV authority is not required.
ALTGROUP

- Field-level access checking for the GID field applies when using SHARED.
- The SHARED keyword is mutually exclusive with the AUTOGID keyword.

NOGID
Specifies that you want to delete the group identifier from the OMVS segment of the group's profile.

NOOMVS
Specifies that RACF delete the OMVS segment from the group's profile.

OVM | NOOVM

OVM
Specifies OpenExtensions VM information for the group profile being changed.

GID | NOGID

GID(group-identifier)
Specifies the group identifier. The GID is a numeric value from 0 - 2,147,483,647.

Note:
1. RACF does not require the GID to be unique. The same value can be assigned to multiple groups, but this is not recommended because individual group control would be lost. However, if you want a set of groups to have exactly the same access to the OpenExtensions VM resources, you might decide to assign the same GID to more than one group.

2. Exercise caution when changing the GID for a group. The following situations might occur:
 - If the file system contains files that contain the old GID as the file owner GID, the members of the group lose access to those files, depending on the permission bits associated with the file.
 - If files exist with an owner GID equal to the group's new GID value, the members of the group gain access to these files.
 - If another group is subsequently added with the old value as its GID, the members of the group might have access to the old files.
 - If you have an EXEC.Ggid profile in the VMPOSIX class for the old GID value, make sure you delete this profile and create another to reflect the new value.

3. The value defined for the NGROUPS_MAX variable in the ICHNGMAX macro on VM defines the maximum number of OpenExtensions VM groups to be associated with an OpenExtensions VM process or user. The NGROUPS_MAX variable on VM is a number 32 - 125, inclusive. However, RACF allows you to define and connect a user to more than the number of groups defined in this variable. If the NGROUPS_MAX variable is n and a process is created or OpenExtensions VM group information is requested, only up to the first n OpenExtensions VM groups are associated with the process or user. The first n OpenExtensions VM groups to
which a user is connected are used by OpenExtensions VM. LISTUSER displays the groups in the order that RACF examines them when determining which of the user's groups are OpenExtensions VM groups.

See [z/OS Security Server RACF Macros and Interfaces](https://www.ibm.com) for information on NGROUPS_MAX.

NOGID
Specifies that you want to delete the group identifier from the OVM segment of the group's profile.

If NOGID is specified for the group, the default GID of 4294967295 (X'FFFFFFFF') is assigned on VM. The LISTGRP command displays the field name followed by the word NONE.

NOOVM
Specifies that RACF delete the OVM segment from the group's profile.

OWNER(userid or group-name)
Specifies a RACF-defined user or group you want to be the new owner of the group.

To change the owner of a group, you must be the current owner of the group, or have the SPECIAL attribute, or have the group-SPECIAL attribute in the group owning the profile.

If you specify a group name, then OWNER and SUPGROUP must specify the same group name.

SUPGROUP(group-name)
Specifies the name of the RACF-defined group you want to make the new superior group for the group profile you are changing.

The new superior group must not be the same as the current one, and it must not have any level of subgroup relationship to the group you are changing.

To change a superior group, you must have the SPECIAL attribute, the group profile must be within the scope of a group in which you have the group-SPECIAL attribute, or you must have JOIN authority in, or be the owner of, both the current and new superior groups. Note that you can have JOIN authority in one group and be the owner of or have the group-SPECIAL attribute in the other group.

If owner is a group name, OWNER and SUPGROUP must specify the same group name.

TERMUACC | NOTERMUACC

TERMUACC
Specifies that during terminal authorization checking, RACF is to allow the use of the universal access authority for a terminal when it checks whether a user in the group is authorized to access a terminal.

NOTERMUACC
Specifies that the group or a user connected to the group must be authorized (using the PERMIT command with at least READ authority) to access a terminal.

TME | NOTME

TME
Specifies that information for the Tivoli Security Management Application is to be added, changed, or deleted.
Note: The TME segment fields are intended to be updated only by the Tivoli Security Management Application, which manages updates, permissions, and cross references. A security administrator should only directly update Tivoli Security Management fields on an exception basis.

ROLES | **ADDEROLES** | **DELRoLES** | **NORoLES**

ROLES(*profile-name*)

Specifies a list of roles that reference this group.

The *profile-name* value should be the name of a defined role, which is a discrete general resource profile in the ROLE class.

ADDEROLES(*profile-name*)

Specifies a list of roles that reference this group.

The *profile-name* value should be the name of a defined role, which is a discrete general resource profile in the ROLE class.

DELRoLES(*profile-name*)

Specifies that specific roles from the current list of roles are to be removed.

The *profile-name* value should be the name of a defined role, which is a discrete general resource profile in the ROLE class.

NORoLES

Specifies that the entire list of roles be removed.

NOTME

Specifies that RACF delete the TME segment from the group profile.

Examples

Example 1

Operation User WJB10 wants to change the superior group and owning group for PROJECTA from RESEARCH to PAYROLL. Users connected to group PROJECTA are authorized access to terminals according to the universal access authority of the terminal.

Known User WJB10 has JOIN authority in RESEARCH and is the owner of PAYROLL.

PROJECTA is a subgroup of RESEARCH.

User WJB10 wants to issue the command as a RACF TSO command.

Command `ALTGROUP PROJECTA SUPGROUP(PAYROLL) OWNER(PAYROLL) TERMUACC`

Defaults None.

Example 2

Operation User MULES wants to change the superior group for PROJECTB from SYS1 to RESEARCH and assign RESEARCH as the new owner.

Known User MULES has the SPECIAL attribute.

PROJECTB is a subgroup of SYS1. User MULES wants to issue the command as a RACF operator command, and the RACF subsystem prefix is @.

Command `@ALTGROUP PROJECTB SUPGROUP(RESEARCH) OWNER(RESEARCH)`

Defaults None.

Example 3

Operation User SJR2 wants to change the installation-defined information associated with the RSC1 group and delete the model name. User SJR2 wants to direct the command to run under the authority of user ANW01.

Known User SJR2 is the owner of group RSC1. User SJR2 wants to issue the command as a RACF TSO command. SJR2 and ANW01 have an already established user ID association. User ANW01 is the owner of group RSC1.

Command `ALTGROUP RSC1 DATA('RESOURCE USAGE ADMINISTRATION') NOMODEL AT(.ANW01)`

Defaults Command direction defaults to the local node.
Example 4

Operation
User BILLC wants to make the following changes to the profile for group PROJECT6.

- Change the default DFP management class to MCLASS7
- Change the default DFP storage class to SCLASS3
- Change the default DFP data class to DCLASS15
- Delete the default DFP data application.

Known
- User BILLC has the SPECIAL attribute.
- Group PROJECT6 has been defined to RACF, and PROJECT6's group profile contains a DFP segment.
- MCLASS7 has been defined to RACF as a profile in the MGMTCLAS general resource class, and group PROJECT6 has been given READ access to this profile.
- SCLASS3 has been defined to RACF as a profile in the STORCLAS general resource class, and group PROJECT6 has been given READ access to this profile.
- User BILLC wants to issue the command as a RACF TSO command.

Command
ALTGROUP PROJECT6 DFP(MGMTCLAS(MCLASS7) STORCLAS(SCLASS3) DATACLAS(DCLASS15) NODATAAPPL))

Defaults
None.
ALTUSER (Alter user profile)

Purpose

Use the ALTUSER command to change the information in a user's profile, including the user's system-wide attributes and authorities. The user profile consists of a RACF segment and, optionally, other segments such as a TSO segment or a DFP segment. You can use this command to change information in any segment of the user's profile.

When you change a user's level of authority in a group (using the AUTHORITY operand), RACF updates the appropriate group profile. When you change a user's default universal access authority for a group (using the UACC operand), RACF changes the appropriate connect profile. For all other changes, RACF changes the user's profile.

Note: If the user is currently logged on, changes to the attributes (except for OWNER and AUTHORITY) do not take effect until the next time the user logs on, even though the LISTUSER command shows the new values.

Attention:
- When the ALTUSER command is issued from ISPF, the TSO command buffer (including password and password phrase data) is written to the ISPLOG data set. As a result, you should not issue this command from ISPF or you must control the ISPLOG data set carefully.
- If the ALTUSER command is issued as a RACF operator command, the command and all data (including password and password phrase data) is written to the system log. Therefore, use of ALTUSER as a RACF operator command should either be controlled or you should issue the command as a TSO command.

Note that you cannot:
- Use the ALTUSER command to change a user ID association; you must use the RACLINK command.
- Use the ALTUSER command for profiles in the DIGTCERT class.
- Use the ALTUSER command for user IDs that have mixed-case characters, such as irrcerta, irrsitec, and irrmulti (which are associated with digital certificates).

Issuing options

The following table identifies the eligible options for issuing the ALTUSER command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.
ALTUSER

You must be logged on to the console to issue this command as a RACF operator command.

Related commands

- To add a user profile, see "ADDUSER (Add user profile)" on page 48.
- To delete a user profile, see "DELUSER (Delete user profile)" on page 202.
- To display information from a user profile, see "LISTUSER (List user profile)" on page 235.
- To administer user ID associations, see "RACLINK (Administer user ID associations)" on page 401.
- To obtain a list of user profiles, see "SEARCH (Search RACF database)" on page 580.

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see "Controlling the use of operator commands" in *z/OS Security Server RACF Security Administrator's Guide*.

The level of authority required depends on which of the user's attributes you want to change.

- If you have the SPECIAL attribute, you can use all the operands except UAUDIT/NOUAUDIT.
- To specify the AT keyword, you must have READ authority to the DIRECT.node resource in the RRSFDATA class and a user ID association must be established between the specified node.userid pair(s).
- To specify the ONLYAT keyword you must have the SPECIAL attribute, the userid specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified node.userid pair(s) if the user IDs are not identical.
- If the owner of the user profile is within the scope of a group in which you have the group-SPECIAL attribute, you can use all of the operands except SPECIAL, AUDITOR, OPERATIONS, NOEXPIRED and UAUDIT/NOUAUDIT.
- If you are the owner of the user's profile, you can use any of the following operands for user-related attributes:

 | ADSP | NOADSP |
 | DATA | NODATA |
 | DFLTGRP |
 | GRPACC | NOGRPACC |
 | MODEL | NOMODEL |
 | NAME |
 | OIDCARD | NOOIDCARD |
 | OWNER |
 | PASSWORD | NOPASSWORD |
 | PHRASE | NOPHRAZE |
 | RESTRICTED | NORESTRICTED |
 | RESUME | NORESUME |
 | REVOKE | NOREVOKE |
 | WHEN |

- Users can change their own name field (using the NAME operand), default group (using the DFLTGRP operand), or model data set profile name (using the MODEL operand).
ALTUSER

- You can use the GROUP, AUTHORITY, and UACC operands for group-related user attributes if you have JOIN or CONNECT authority, if the group profile is within the scope of a group in which you have the group-SPECIAL attribute, or if you are the owner of the specified group.

- To specify the AUDITOR/NOAUDITOR, SPECIAL/NOSPECIAL, and OPERATIONS/NOOPERATIONS operands as system-wide user attributes, you must have the SPECIAL attribute.

- To specify the UAUDIT/NOUAUDIT operand, either you must have the AUDITOR attribute, or the user profile must be within the scope of a group in which you have the group-AUDITOR attribute.

- You can specify the CLAUTH and NOCLAUTH operands if you are the owner of the user's profile and have the CLAUTH attribute for the class to be added or deleted.

- To assign a security category to a profile, or to delete a category from a profile, one of the following must be true:
 - If the user profile is within the scope of a group in which you have the group-SPECIAL attribute, or if you are the owner of the specified user, the category you are adding or deleting must be in your user profile.
 - You have the SPECIAL attribute.

- To assign a security level to a profile, or to delete a security level from a profile, one of the following must be true:
 - If the user profile is within the scope of a group in which you have the group-SPECIAL attribute, or if you are the owner of the specified user, the security level in your user profile must be equal to or greater than the security level you are assigning or deleting.
 - You have the SPECIAL attribute.

- To change information within a segment other than the base segment, you must have one of the following:
 - The SPECIAL attribute
 - At least UPDATE authority to the desired field within the segment through field-level access control.

- To reset passwords and password phrases or to resume user IDs, you must have at least one of the following authorizations:
 - You have the SPECIAL attribute.
 - You have group-SPECIAL authority over the user profile.
 - You are the OWNER of the user profile.
 - You have sufficient access to the IRRPASSWORD.RESET resource in the FACILITY class.
 - You have sufficient access to an appropriate resource in the FACILITY class (IRR.PWRESET.OWNER.*owner* or IRR.PWRESET.TREE.*owner*), and both of the following conditions are also true:
 - The other user does not have the SPECIAL, OPERATIONS, AUDITOR, or PROTECTED attribute.
 - You are not excluded from altering the user by the IRR.PWRESET.EXCLUDE.excluded-user resource in the FACILITY class.

ALTUSER

When your reset and resume authority is through your access to the
IRRPASSWORDRESET resource, the IRRPWRESETOWNERowner resource, or
the IRRPWRESETTREEowner resource, the following requirements apply:

− If you have READ access, you can:
 - Use the PASSWORD operand to reset a password (to an expired password)
 for a user who does not have the SPECIAL, OPERATIONS, AUDITOR, or
 PROTECTED attribute.
 - Use the PHRASE operand to reset a password phrase (to an expired
 password phrase) for a user with an assigned password phrase who does
 not have the SPECIAL, OPERATIONS, AUDITOR, or PROTECTED
 attribute. Note: You cannot use the PHRASE operand to add a password
 phrase for a user who does not have one.
 - Use the RESUME operand, without specifying a date, for a user who does
 not have the SPECIAL, OPERATIONS, AUDITOR, or PROTECTED
 attribute.

− If you have UPDATE access, you can:
 - Use the PASSWORD, PHRASE, and RESUME operands as noted for READ
 access.
 - Use the NOEXPIRED operand (with PASSWORD or PHRASE) for a user
 who does not have the SPECIAL, OPERATIONS, AUDITOR, or
 PROTECTED attribute.

− If you have CONTROL access, you can:
 - Use the PASSWORD, PHRASE, RESUME, and NOEXPIRED operands as
 noted for READ and UPDATE access.
 - Reset the password or password phrase within the minimum change
 interval for a user who does not have the SPECIAL, OPERATIONS,
 AUDITOR, or PROTECTED attribute.

• To specify the SHARED keyword, you must have the SPECIAL attribute or at
 least READ authority to the SHAREDIDS resource in the UNIXPRIV class.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of
RACF commands and operands” on page 9. The complete syntax of the ALTUSER
command is:

\[[\text{subsystem-prefix}]\text{ALTUSER} \mid \text{ALU}\]
\[
(\text{userid} \ldots)
\]
\[
\quad [\text{ADDCATEGORY}(\text{category-name} \ldots)\]
\quad \quad \quad [\text{DELCATEGORY} [(\text{category-name} \ldots) | \ast]]
\]
\[
[\text{ADSP} \mid \text{NOADSP}]
\]
\[
[\text{AT}(\text{node}.\text{userid} \ldots) \mid \text{ONLYAT}(\text{node}.\text{userid} \ldots)]
\]
\[
[\text{AUDITOR} \mid \text{NOAUDITOR}]
\]
\[
[\text{AUTHORITY}(\text{group-authority})]
\]
<table>
<thead>
<tr>
<th>KERB</th>
<th>ENCRIPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES</td>
<td>NODES</td>
</tr>
<tr>
<td>DES3</td>
<td>NODES3</td>
</tr>
<tr>
<td>DESD</td>
<td>NODESD</td>
</tr>
<tr>
<td>AES128</td>
<td>NOAES128</td>
</tr>
<tr>
<td>AES256</td>
<td>NOAES256</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LANGUAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMARY</td>
</tr>
<tr>
<td>SECONDARY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LNOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNAME</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSMNAME</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNAME</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NETVIEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSNAME</td>
</tr>
<tr>
<td>CTL</td>
</tr>
<tr>
<td>DOMAINS</td>
</tr>
<tr>
<td>ADDDOMAINS</td>
</tr>
<tr>
<td>NODOMAINS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS GRECV R</td>
</tr>
<tr>
<td>NGMFADMN</td>
</tr>
<tr>
<td>NGMFVSPN</td>
</tr>
<tr>
<td>OPCLASS</td>
</tr>
<tr>
<td>ADDOPCLASS</td>
</tr>
<tr>
<td>NOOPCLASS</td>
</tr>
</tbody>
</table>

| OIDCARD | NOOIDCARD |
ALTUSER

[OMVS(
 [ASSIZEMAX(address-space-size) | NOASSIZEMAX]
 [AUTUID | UID(user-identifier) | SHARED] | NOUID]
 [CPUTIMEMAX(cpu-time) | NOCPUTIMEMAX]
 [FILEPROCMAX(files-per-process) | NOFILEPROCMAX]
 [HOME(directory-pathname) | NOHOME]
 [MEMLIMIT(nonshared-memory-size) | NOMMEMLIMIT]
 [MMAPAREAMAX(memory-map-size) | NOMEMMAPAREAMAX]
 [PROCUSERMAX(processes-per-UID) | NOPROCUSERMAX]
 [PROGRAM(program-name) | NOPROGRAM]
 [SHMEMMAX(shared-memory-size) | NOSHMEMMAX]
 [THREADSMAX(threads-per-process) | NOTHREADSMAX]
)
 | NOOMVS]
 [OPERATIONS | NOOPERATIONS]
)

[OPERPARM(
 [ALTGRP(alternate-console-group) | NOALTGRP]
 [AUTH(operator-authority) | NOAUTH]
 [AUTO(YES | NO) | NOAUTO]
 [CMDSYS(system-name) | NOCMDSYS]
 [DOM(NORMAL | ALL | NONE) | NODOM]
 [HC(YES | NO) | NOHC]
 [INTIDS(YES | NO) | NOINTIDS]
 [KEY(searching-key) | NOKEY]
 [LEVEL(message-level) | NOLEVEL]
 [LOGCMDRESP(SYSTEM | NO) | NOLOGCMDRESP]
 [MFORM(message-format) | NOMFORM]
 [MIGID(YES | NO) | NOMIGID]
 [MONITOR(event) | NOMONITOR]
 [MSCOPES(system-name ... | * | ** | ALL)
 ADDMSCOPE(system-name ...)
 DELMSCOPE(system-name ...)
] | NOMSCOPE]
 [ROUTCODE(ALL | NONE | routing-codes) | NOROUTCODE]
 [STORAGE(amount) | NOSTORAGE]
 [UD(YES | NO) | NOUD]
 [UNKNIDS(YES | NO) | NOUNKNIDS]
)
 | NOOPERPARM]
)

[OVM(
 [FSROOT(file-system-root) | NOFSROOT]
 [HOME(initial-directory-name) | NOHOME]
 [PROGRAM(program-name) | NOPROGRAM]
 [UID(user-identifier) | NOUID]
)
 | NOOVM]
 [OWNER(userid or group-name)]
 [PASSWORD(password) | NOPASSWORD]
 [PHRASE('password-phrase') | NOPHRASE]

[PROXY (]
 [LDAPHOST(ldap_url) | NOLDAPHOST]
 [BINDDN(bind_distinguished_name) | NOBINDDN]
 [BINDPW(bind_password) | NOBINDPW]
 | NOPROXY]
)

[RESTRICTED | NORESTRICTED]
For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

Parameters

subsystem-prefix

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.
ALTUSER

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

userid

Specifies the RACF-defined user or users whose profile you want to change. If you specify more than one user ID, the list must be enclosed in parentheses. This operand is required and must be the first operand following ALTUSER.

ADDCATEGORY | DELCATEGORY

ADDCATEGORy(category-name)

Specifies one or more names of installation-defined security categories. The names you specify must be defined as members of the CATEGORY profile in the SECDATA class. For information on defining security categories, see z/OS Security Server RACF Security Administrator's Guide.

When the SECDATA class is active and you specify ADDCATEGORY, RACF performs security category checking in addition to its other authorization checking. If a user requests access to a data set, RACF compares the list of security categories in the user profile with the list of security categories in the data set profile. If RACF finds any security category in the data set profile that is not in the user's profile, RACF denies access to the data set. If the user's profile contains all the required security categories, RACF continues with other authorization checking.

Note: RACF does not perform security category checking for a started task or user that has the RACF privileged or trusted attribute. The RACF privileged or trusted attribute can be assigned to a started task through the RACF started procedures table or STARTED class, or to other users by installation-supplied RACF exits.

DELcATEGORy[(category-name... | *)]

Specifies one or more names of the installation-defined security categories you want to delete from the user profile. Specifying an asterisk (*) deletes all categories; the user no longer has access to any resources protected by security category checking.

Specifying DELCATEGORY without category-name causes RACF to delete only undefined category names (those names that once were valid names but that the installation has since deleted from the CATEGORY profile).

ADSP | NOADSP

ADSP

Assigns the ADSP attribute to the user. This means that all permanent tape and DASD data sets the user creates are automatically RACF-protected by discrete profiles. ADSP specified on the ALTUSER command overrides NOADSP specified on the CONNECT command.

The ADSP attribute has no effect (even if assigned to a user) if SETROPTS NOADSP is in effect.

NOADSP

Specifies that the user no longer has the ADSP attribute.

AT | ONLYAT

The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.
ALTUSER

AT([node].userid ...)
Specifies that the command is to be directed to the node specified by node, where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed to the local node.

ONLYAT([node].userid ...)
Specifies that the command is to be directed only to the node specified by node where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed only to the local node.

AUDITOR | NOAUDITOR

AUDITOR
Specifies that the user is to have full responsibility for auditing the use of system resources. An AUDITOR user can control the logging of detected accesses to any RACF-protected resources during RACF authorization checking and accesses to the RACF database.

You must have the SPECIAL attribute to enter the AUDITOR operand.

NOAUDITOR
Specifies that the user no longer has the AUDITOR attribute.

You must have the SPECIAL attribute to enter the NOAUDITOR operand.

AUTHORITY(group-authority)
Specifies the new level of authority the user is to have in the group specified in the GROUP operand. The valid group authority values are USE, CREATE, CONNECT, and JOIN, as described in "Group authorities" on page 13. If you specify AUTHORITY without group-authority, RACF ignores the operand and the existing group authority remains unchanged.

CICS | NOCICS
Adds, alters, or deletes CICS operator information for a CICS terminal user.

If you are adding a CICS segment to a user profile, omitting a suboperand is equivalent to omitting the suboperand on the ADDUSER command. If you are changing an existing CICS segment in a user profile, omitting a suboperand leaves the existing value for that suboperand unchanged.

You can control access to the entire CICS segment or to individual fields within the CICS segment by using field-level access checking. For more information, see z/OS Security Server RACF Security Administrator’s Guide

OPCLASS | ADDOPCLASS | DELOPCLASS | NOOPCLASS
Where operator-class1, operator-class2 are numbers in the range 1 - 24, defined as two digits. These numbers represent classes assigned to this operator to which BMS (basic mapping support) messages are routed.

OPCLASS(operator-class ...)
Specifies the list of classes assigned to this operator to which BMS messages are routed.

ADDOPCLASS(operator-class ...)
Adds to the list of classes assigned to this operator to which BMS messages are routed.

DELOPCLASS(operator-class ...)
Deletes only the specified classes from the list of classes assigned to this operator to which BMS messages are routed.
ALTUSER

NOOPCLASS
Deletes all operator classes from this profile and returns the user to the CICS defaults for this field. This field no longer appears in LISTUSER output.

OPIDENT | NOOPIDENT

OPIDENT(operator-id)
Specifies a 1 - 3 character identification of the operator for use by BMS.

Operator identifiers can consist of any characters, and can be entered with or without single quotation marks. The following rules apply:

- If parentheses, commas, blanks, or semicolons are to be entered as part of the operator identifier, the character string must be enclosed in single quotation marks. For example, if the operator identifier is (1), you must enter **OPIDENT('(1)')**.
- If a single quotation mark is intended to be part of the operator identifier, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

NOOPIDENT
Deletes the operator identification and returns the user to the CICS default for this field. The OPIDENT field defaults to blanks in the RACF user profile, and blanks appear for the field in LISTUSER output.

OPPRTY | NOOPPRTY

OPPRTY(operator-priority)
Specifies a number in the range 0 - 255 that represents the priority of the operator.

NOOPPRTY
Deletes the operator priority and returns the user to the CICS default for this field.

This field defaults to zeros in the RACF user profile, and zeros appear for the field in LISTUSER output.

RSLKEY | NORSLKEY

RSLKEY(rslkey ... | 0 | 99)
Specifies the complete list of resource security level (RSL) keys assigned to the user. The RSL keys are used by CICS on distributed platforms. Each CICS resource has one RSL key assigned to it; in order for a user to access a resource, the user must have the same RSL key as the RSL key assigned to the resource.

RSLKEY does not add or delete keys. It only replaces existing keys. Use NORSLKEY to delete keys.

- **RSLKEY(rslkey ...)** specifies a list of one or more numbers in the range of 1 - 24 which represent the resource security level (RSL) keys assigned to the user.
- If RSLKEY(0) is specified, no RSL keys are assigned to the user.
- If RSLKEY(99) is specified, all RSL keys are assigned to the user (1 - 24, inclusive).
- Keys 0 and 99 are mutually exclusive and cannot be specified with any other keys.
If RSLKEY is specified with no key numbers, RSLKEY(0) is defaulted.

NORSLKEY

Specifies that you want to remove the RSL key list from the user's RACF user profile. CICS will treat it as RSLKEY(0).

TIMEOUT | NOTIMEOUT

TIMEOUT(timeout-value)

Specifies the time, in hours and minutes, that the operator is allowed to be idle before being signed off. The value for TIMEOUT can be entered in the form m, mm, hmm, or $hhmm$, where the value for m or mm is $00 - 59$, or $00 - 60$ if h or hh is not specified or is specified as 0 or 00. The value for h or hh must be $00 - 99$.

If this suboperand is omitted, there is no change to this field.

NOTIMEOUT

Deletes the timeout value and returns the user to the CICS default for this field.

This field defaults to zeros in the RACF user profile, and zeros appear for the field in LISTUSER output.

TSLKEY | NOTSLKEY

TSLKEY(tslkey ... | 0 | 1 | 99)

Specifies the complete list of transaction security level (TSL) keys assigned to the user. The TSL keys are used by CICS on distributed platforms. Each CICS transaction has one TSL key assigned to it; in order for a user to run a transaction, the user must have the same TSL key as the TSL key assigned to the transaction.

TSLKEY does not add or delete keys. It only replaces existing keys. Use NOTSLKEY to delete keys.

- **TSLKEY(tslkey ...)** specifies a list of one or more values of 1 - 64 which represent the transaction security level (TSL) keys assigned to the user.
- If TSLKEY(0) is specified, no TSL keys are assigned to the user.
- If TSLKEY(99) is specified, all TSL keys are assigned to the user (1 - 64, inclusive).
- Keys 0 and 99 are mutually exclusive and cannot be specified with any other keys.
- If TSLKEY is specified with no key numbers, TSLKEY(1) is defaulted.

NOTSLKEY

Specifies that you want to remove the TSL key list from the user's RACF user profile. CICS will treat it as TSLKEY(1).

XRFSOFF | NOXRFSOFF

XRFSOFF(FORCE | NOFORCE)

Specifies that the user is to be signed off by CICS when an XRF takeover occurs.

NOXRFSOFF

Returns the user to the CICS default for this field.

This field defaults to NOFORCE in the RACF user profile, and NOFORCE appears in LISTUSER output.
ALTUSER

NOCICS
Deletes the CICS segment from a user profile. No CICS information appears in LISTUSER output.

CLAUTH | NOCLAUTH

CLAUTH(class-name ...)
Specifies the classes in which the user is allowed to define profiles to RACF for protection, in addition to the classes previously allowed for the user. Classes you can specify are USER, and any resource class defined in the class descriptor table. RACF adds the class names you specify to the class names previously specified for this user.

To enter the CLAUTH operand, you must have the SPECIAL attribute, or the user's profile must be within the scope of a group in which you have the group-SPECIAL attribute and have the CLAUTH attribute, or you must be the owner of the user's profile and have the CLAUTH attribute for the class to be added.

Note: The CLAUTH attribute has no meaning for the FILE and DIRECTORY classes.

NOCLAUTH(class-name ...)
Specifies that the user is not allowed to define profiles to RACF for the classes that you specify. Classes you can specify are USER and any resource class name defined in the user profile. RACF deletes the class names you specify from the class names previously allowed for this user.

To enter the NOCLAUTH operand specifying a class in the class descriptor table, you must have the SPECIAL attribute, or the user's profile must be within the scope of a group in which you have the group-SPECIAL attribute and have the CLAUTH attribute, or you must be the owner of the user's profile and have the CLAUTH attribute for the class to be deleted.

To enter the NOCLAUTH operand specifying a class that is not in the class descriptor table you must have the SPECIAL attribute.

If you do not have sufficient authority for a specified class, RACF ignores the CLAUTH or NOCLAUTH specification for the class and continues processing with the next class name specified.

CSDATA | NOCSDATA

CSDATA
Specifies information to add, change, or remove a custom field for this user.

custom-field-name ... | NOcustom-field-name ...

custom-field-name(custom-field-value) ...
Specifies the name and value of a custom field for this user. You can specify values for multiple custom fields with a single ALTUSER command.

Usage for each custom field is defined using the CFDEF operand of the RDEFINE command for resource profiles in the CFIELD class. Contact your security administrator to see how custom fields are used at your installation. For more information about custom fields, see z/OS Security Server RACF Security Administrator’s Guide.

Rules:
ALTUSER

- You must use the same `custom-field-name` as defined by the CFIELD profile named USER.CSDATA.<custom-field-name>. (The CFIELD profile is defined using the CFDEF operand of the RDEFINE command.)
- You must specify a `custom-field-value` that is valid for the attributes of this custom field. (The attributes, such as data type, are defined in the CFDEF segment of the CFIELD profile.)

`NOCustom-field-name` ...
Removes the custom field information for this user. You can remove values for multiple custom fields with a single ALTUSER command.

When you append the prefix NO to the name of the custom field, you delete the value for that custom field from the user's profile. For example, if your installation has defined a custom field named ADDRESS and you want to remove the ADDRESS field from the profile of the user SHANNON, you might issue the following command:

Example:
```
ALTUSER SHANNON CSDATA(NOADDRESS)
```

`NOCSDATA`
Deletes the CSDATA segment from the user profile.

`DATA` | `NODATA`

DATA(‘installation-defined-data’)
Specifies up to 255 characters of installation-defined data to be stored in the user's profile and must be enclosed in single quotation marks. It can also contain double-byte character set (DBCS) data. Note that only 254 characters of data are available for installation exits. If your installation has exits that examine this data, you should specify a maximum of 254 characters.

Use the LISTUSER command to list this information.

`NODATA`
Specifies that the ALTUSER command is to delete the installation-defined data in the user's profile.

`DCE` | `NODCE`

DCE
Adds or modifies the DCE segment in the user profile of the specified z/OS DCE user or Distributed File Service (DFS) Server Message Block (SMB) user. You can enter any of the following suboperands to specify information for that user. Each suboperand defines information that RACF stores in a field within the DCE segment of the user's profile.

You can control access to an entire DCE segment or to individual fields within the DCE segment by using field level access checking.

AUTOLOGIN(YES | NO) | NOAUTOLOGIN
Specifies whether z/OS UNIX DCE is to log this user into z/OS UNIX DCE automatically. If AUTOLOGIN(NO) or NOAUTOLOGIN is specified, z/OS UNIX DCE does not attempt to login this user to z/OS UNIX DCE automatically. If AUTOLOGIN is not specified, AUTOLOGIN(NO) is the default.

`DCENAME` | `NODCENAME`
ALTUSER

DCENAME(user-principal-name)

Specifies the DCE principal name defined for this RACF user in the DCE registry.

The DCENAME you define to RACF can contain 1 - 1023 characters and can consist of any character. You can enter the name with or without single quotation marks, depending on the following:

- If parentheses, commas, blanks, or semicolons are entered as part of the name, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the character string, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. RACF does not ensure that a valid DCENAME has been specified.

The DCENAME assigned to a user must be the same as the DCE principal name defined to the DCE registry.

If DCENAME is not specified, the LISTUSER command does not display a DCENAME for this user.

Note: RACF does not enforce the uniqueness of each DCENAME. The DCENAME specified must match the user's DCE principal name that is defined to the DCE registry. If the DCENAME entered does not correspond to the DCE principal name entered in the DCE registry for this user, z/OS UNIX DCE cannot correctly associate the identity of the DCE principal with the correct RACF user ID.

NODCENAME

Specifies that you want to delete the DCE principal name from the DCE segment of the user's profile.

If NODCENAME is specified, the LISTUSER command does not display a DCENAME for this user.

HOMECELL | NOHOMECELL

HOMECELL(dce-cell-name)

Specifies the DCE cell name defined for this RACF user.

The HOMECELL you define to RACF can contain 1 - 1023 characters and can consist of any character. You can enter the name with or without single quotation marks, depending on the following:

- If parentheses, commas, blanks, or semicolons are entered as part of the cell name, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the cell name, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. The fully
qualified pathname should be specified. RACF does not ensure that a valid DCE cell name has been specified.

The HOMECELL assigned to a user must be the same as the DCE cell name that this user has been defined to.

If the HOMECELL is not specified, z/OS UNIX DCE single signon to DCE support assumes that the HOMECELL for this user is the same cell where this MVS system is defined.

RACF checks that the prefix of the HOMECELL name entered has a prefix of either /.../ or /.:/

The notation /.../ indicates that the HOMECELL name is a global domain name service (DNS) cell name or X.500 global name.

The notation /.:/ indicates that the HOMECELL name is a cell relative CDS (cell directory service) name. When determining the naming conventions used within your DCE cell, you should contact your DCE cell administrator.

NOHOMECELL

Specifies that you want to delete the cell information from the DCE segment of the user profile.

If NOHOMECELL is specified, the LISTUSER command does not display the HOMECELL for this user.

HOMEUUID | NOHOMEUUID

HOMEUUID(home-cell-UUID)

Specifies the DCE universal unique identifier (UUID) for the cell that this user is defined to. The UUID is a 36-character string that consists of numeric and hexadecimal characters. This string must have the delimiter character (-) in positions 9, 14, 19, and 24. The general format for the UUID string is xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, in which x represents a valid numeric or hexadecimal character.

Be careful when assigning UUIDs. The UUID cannot be randomly assigned. The HOMEUUID is the DCE UUID of the cell that this RACF user is defined to. If HOMEUUID is not specified, the LISTUSER command displays NONE for the HOMEUUID field.

Note: The HOMEUUID specified must match the UUID of the DCE cell to which this principal (specified by the DCENAME operand) is defined.

NOHOMEUUID

Specifies that you want to delete the home cell unique universal identifier from the DCE segment of the user’s profile.

If NOHOMEUUID is specified, LISTUSER for that user ID shows NONE for the HOMEUUID field.

UUID | NOUUID

UUID(universal-unique-identifier)

Specifies the DCE universal unique identifier (UUID) of the DCE principal defined in DCENAME. The UUID is a 36-character string that consists of numeric and hexadecimal characters. This string must have the delimiter character (-) in positions 9, 14, 19, and 24.
ALTUSER

The general format for the UUID string is `xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx`, in which `x` represents a valid numeric or hexadecimal character.

Be careful when assigning UUIDs. The UUID cannot be randomly assigned.

The DCE UUID assigned to a user must be the same as the DCE UUID assigned when defining this RACF user to the DCE registry as a DCE principal.

If UUID is not specified, the user cannot become a z/OS DCE user and a LISTUSER command for that user ID shows NONE for the UUID.

Note: RACF does not enforce the uniqueness of each UUID entered. The UUID specified must match the UUID in the DCE registry for the principal (specified by the DCENAME operand) that is being cross-linked with this RACF user ID.

NOUUID

Specifies that you want to delete the DCE unique universal identifier from the DCE segment of the user's profile.

If NOUUID is specified, LISTUSER for that user ID shows NONE for the UUID field.

NODCE

Specifies that RACF should delete the DCE segment from the user's profile.

DFLTGRP(group-name)

Specifies the name of a RACF-defined group to be used as the new default group for the user. The user must already be connected to this new group with at least USE authority. The user remains connected to the previous default group.

DFP | NODFP

DFP

Specifies that when you change the profile of a user, you can enter any of the following suboperands to add, change, or delete default values for the DFP data application, data class, management class, and storage class. DFP uses this information to determine data management and DASD storage characteristics when a user creates a new data set.

You can control access to the entire DFP segment or to individual fields within the DFP segment by using field-level access checking. For more information, see the RACF Security Administrator's Guide.

DATAAPPL | NODATAAPPL

DATAAPPL(application-name)

Specifies the name of a DFP data application. The name you specify can contain up to 8 alphanumeric characters.

NODATAAPPL

Specifies that you want to delete the DFP data application name from the DFP segment of the user's profile.

DATACLAS | NODATACLAS
DATACLAS(data-class-name)
Specifies the default data class. The class name you specify can contain up to 8 alphanumeric characters.

A data class can specify some or all of the physical data set attributes associated with a new data set. During new data set allocation, data management uses the value you specify as a default unless it is preempted by a higher priority default, or overridden in some other way (for example, by JCL).

The value you specify must be a valid data class name defined for use on your system. For more information, see z/OS Security Server RACF Security Administrator’s Guide. For information on defining DFP data classes, see z/OS DFSMSdfp Storage Administration.

NODATACLAS
Specifies that you want to delete the default data class name from the DFP segment of the user’s profile.

MGMTCLAS | NOMGMTCLAS

MGMTCLAS(management-class-name)
Specifies the default management class. The class name you specify can contain up to 8 alphanumeric characters.

A management class contains a collection of management policies that apply to data sets. Data management uses the value you specify as a default unless it is preempted by a higher priority default, or overridden in some other way (for example, by JCL).

The value you specify must be defined as a profile in the MGMTCLAS general resource class, and the user must be granted at least READ access to the profile. Otherwise, RACF does not allow the user access to the specified MGMTCLAS. For more information, see z/OS Security Server RACF Security Administrator’s Guide. For information on defining DFP management classes, see z/OS DFSMSdfp Storage Administration.

NOMGMTCLAS
Specifies that you want to delete the default management class name from the DFP segment of the user’s profile.

STORCLAS | NOSTORCLAS

STORCLAS(storage-class-name)
Specifies the default storage class. The class name you specify can contain up to 8 alphanumeric characters.

A storage class specifies the service level (performance and availability) for data sets managed by the storage management subsystem (SMS). During new data set allocation, data management uses the value you specify as a default unless it is preempted by a higher priority default, or overridden in some other way (for example, by JCL).

The value you specify must be defined as a profile in the STORCLAS general resource class, and the user must be granted at least READ access to the profile. Otherwise, RACF does not allow
ALTUSER

the user access to the specified STORCLAS. For more information, see z/OS Security Server RACF Security Administrator’s Guide.

For information on defining DFP storage classes, see z/OS DFSMSdfp Storage Administration.

NOSTORCLAS

Specifies that you want to delete the default storage class name from the DFP segment of the user’s profile.

NODFP

Specifies that RACF should delete the DFP segment from the user’s profile.

EIM | NOEIM

Specifies or deletes the bind information required to establish a connection with the EIM domain.

EIM

Specifies the EIM segment for the user’s profile.

LDAPPROF(ldapbind_profile)

Specifies the name of a profile in the LDAPBIND class. The profile in the LDAPBIND class contains the name of an EIM domain and the bind information required to establish a connection with the EIM domain. The EIM services attempt to retrieve this information when it is not explicitly supplied through invocation parameters. Applications or other services that use the EIM services may instruct their callers to define a profile in the LDAPBIND class or the IRR.PROXY.DEFAULTS profile in the FACILITY class.

The ldapbind_profile specifies the name of a profile in the LDAPBIND class containing the EIM domain and the LDAP bind information. The ldapbind_profile name may be 1 - 246 characters long. It is not a case-sensitive name.

NOLDAPPROF

Deletes the LDAPBIND profile name from the EIM segment in the user’s profile.

NOEIM

Deletes the EIM segment from the user’s profile.

EXPIRED | NOEXPIRED

EXPIRED

Specifies that the new password or password phrase (specified with the PASSWORD or PHRASE keyword) or the new password defaulted by the PASSWORD keyword is marked as expired. Specifying the EXPIRED keyword requires the user to change their new password or password phrase at the next logon or job start.

The EXPIRED keyword is only valid when specified with the PASSWORD or PHRASE keyword.

When EXPIRED is specified with the PHRASE keyword, the password phrase you specify is subject to the basic RACF rules for password phrase syntax and to any rules set by the installation through the new-password-phrase exit (ICHPWX11), if present.

When EXPIRED is specified with the PASSWORD keyword, the password you specify is not subject to the password syntax rules set by the installation through the SETROPTS PASSWORD command. However, the password is checked by the new-password exit (ICHPWX01), if present.
NOEXPIRED
Specifies that the password specified by the PASSWORD keyword or the password phrase specified by the PHRASE keyword need not be changed at the next logon. The NOEXPIRED keyword is only valid when specified with the PASSWORD or PHRASE keyword. NOEXPIRED does not indicate that the password or password phrase never expires. If you want to set a password or password phrase that never expires, use the NOINTERVAL keyword on the PASSWORD command.

When NOEXPIRED is specified, the password or password phrase value you supply is subject to certain rules. Those rules include the basic RACF rules for password phrase syntax and any password syntax rules set by the installation through the SETROPTS PASSWORD(RULEn) command. In addition, the new-password exit (ICHPWX01), if present, is called to check passwords. The new-password-phrase exit (ICHPWX11), if present, is called to check password phrases and perform additional validation.

To specify NOEXPIRED, you must either have the SPECIAL attribute (at the system level), or you must have UPDATE access to either the IRR.PASSWORD.RESET resource or the appropriate IRR.PWRESET resource in the FACILITY class. Being the owner of the USER profile or having the group-SPECIAL attribute is not sufficient when NOEXPIRED is specified.

GROUP(group-name)
Specifies the group to which changes to the group-related user attributes UACC and AUTHORITY are to be made. The user must be connected to the specified group.

If you omit GROUP, the changes apply to the user's default group. If you omit GROUP and specify DFLTGRP, however, the changes still apply to the user's previous default group.

GRPACC | NOGRPACC

GRPACC
Specifies that any group data sets protected by DATASET profiles defined by this user are automatically accessible to other users in the group. The group whose name is used as the high-level qualifier of the data set name (or the qualifier supplied by a command installation exit) has UPDATE access authority in the new profile. GRPACC specified on the ALTUSER command overrides NOGRPACC specified on the CONNECT command.

NOGRPACC
Specifies that the user no longer has the GRPACC attribute.

KERB | NOKERB

KERB
Specifies z/OS Integrated Security Services Network Authentication Service information for a user defined to RACF. Each subkeyword defines information that RACF stores in a field within the KERB segment of the user's profile.

Note: The RACF user password must be changed to be non-expired in order to complete the definition of the z/OS Network Authentication Service principal. The user cannot use any z/OS Network Authentication Service function until the definition is complete.

ENCRYPT | NOENCRYPT
ALTUSER

ENCRYPT
Specifies which keys the user (the z/OS Network Authentication Service principal) is allowed to use.

DES | NODES
Whether DES encrypted keys can be used.

DES3 | NODES3
Whether DES3 encrypted keys can be used.

DESD | NODESD
Whether DESD encrypted keys can be used.

AES128 | NOAES128
Whether AES128 encrypted keys can be used.

AES256 | NOAES256
Whether AES256 encrypted keys can be used.

When a principal's password changes, a key of each type is generated and stored in the principal's user profile. The use of each key is based on the z/OS Network Authentication Service configuration.

Important: When you enable the use of a new key type, be sure that the principal's password is changed to ensure that a key of the new type is generated and stored in the principal's user profile.

See z/OS Integrated Security Services Network Authentication Service Administration for information about how z/OS Network Authentication Service uses keys and how to customize environment variables related to keys.

NOENCRYPT
Specifies that there is no restriction on which generated keys the principal can use, and resets the KERB ENCRYPT values to the default settings.

See z/OS Integrated Security Services Network Authentication Service Administration for information about how z/OS Network Authentication Service uses keys and how to customize environment variables related to keys.

KERNAME | NOKERNAME

KERNAME(kerberos-principal-name)
Specifies the z/OS user ID's local kerberos-principal-name.

The value specified for the local kerberos-principal-name must be unique. Consequently, a list of users cannot be specified on an ALTUSER command with the KERNAME keyword.

The kerberos-principal-name you define to RACF can consist of any character except the @ (X'7C') character. You can enter the name with or without single quotation marks, depending on the following:

- If parentheses, commas, blanks, or semicolons are entered as part of the name, the name must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the name and the entire character string is enclosed in single quotation
marks, you must use two single quotation marks together to represent each single quotation mark within the string.

- If the first character of the name is a single quotation mark, you must enter the string within single quotation marks, with two single quotation marks entered for that single quotation mark.

Guideline: Avoid using EBCDIC variant characters to prevent problems with different code pages.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. However, RACF does not ensure that a valid `kerberos-principal-name` has been specified.

A local `kerberos-principal-name` must not be qualified with a realm name when specified with the KERBNAME keyword. However, RACF verifies that the local principal name, when fully qualified with the name of the local realm:

```
/.../local_realm_name/principal_name
```

does not exceed 240 characters. For example,

- If the local realm name is `X`

 fully qualified local principal names are prefixed with

 `/.../X/`

 and are limited to a maximum of 233 characters.

- If the local realm name is `KERB390.ENDICOTT.IBM.COM`

 fully qualified local principal names are prefixed with

 `/.../KERB390.ENDICOTT.IBM.COM/`

 and are limited to a maximum of 210 characters.

This length verification requires that the REALM profile for the local realm KERBDFLT be defined and contain the name of the local realm, prior to the specification of local z/OS Network Authentication Service user principals. Otherwise, z/OS Network Authentication Service users will not be defined.

Note: Because of the relationship between realm names and local `kerberos-principal-names`, in which the length of a fully qualified name cannot exceed 240 characters, caution and planning must go into renaming the local realm because the combined length is only checked by RACF when a local `kerberos-principal-name` is added or altered. Renaming the realm should be avoided as a result.

NOKERBNAME

Deletes the `kerberos-principal-name`. This invalidates the z/OS user ID’s z/OS Network Authentication Service account.

MAXTKTLFE | NOMAXTKTLFE

MAXTKTLFE(max-ticket-life)

Specifies the `max-ticket-life` in seconds. The value for MAXTKTLFE must be 1 - 2 147 483 647. Note that 0 is not a valid value.
ALTUSER

If MAXTKTLFE is specified on the definition of a local z/OS Network Authentication Service principal, the z/OS Integrated Security Services Network Authentication Service takes the most restrictive of the value defined for the local principal and the value specified on the definition of the local realm (the KERBDFLT profile in the REALM class). Consequently, if the realm max-ticket-life is 24 hours, a principal cannot get a ticket with a longer lifetime even if the max-ticket-life is set to 48 hours. If this field is not specified for a local principal, or if NOMAXTKTLFE has been specified, the maximum lifetime for tickets created by this principal is determined from the definition of the local z/OS Network Authentication Service realm.

NOMAXTKTLFE
Deletes the max-ticket-life value for this local z/OS Network Authentication Service principal.

NOKERB
Deletes the user’s KERB segment. This user is no longer considered a principal by the z/OS Integrated Security Services Network Authentication Service.

LANGUAGE | NOLANGUAGE
Specifies to add, alter, or delete the user’s preferred national languages.
Specify LANGUAGE if this user is to have languages other than the ones established or defaulted by the LANGUAGE operand on the SETROPTS command, or the ones previously specified with the ADDUSER command.

LANGUAGE(PRIMARY(\text{language}) SECONDARY(\text{language}))
Specifies the user’s preferred national languages. Specify this operand if the user is to have languages other than the system-wide defaults (established by the LANGUAGE operand on the SETROPTS command).
- If this profile is for a TSO/E user who will establish an extended MCS console session, the languages you specify should be one of the languages specified on the LANGUAGE LANGCODE statements in the MMSLSTxx PARMLIB member. See your MVS system programmer for this information.
 For more information on TSO/E national language support, see \textit{z/OS TSO/E Customization}.
- If this profile is for a CICS user, see your CICS administrator for the languages supported by CICS on your system.
 For more information, visit \url{http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp}

PRIMARY | NOPRIMARY

PRIMARY(\text{language})
Specifies the user’s new primary language.

NOPRIMARY
Deletes any primary language information from the user’s profile and returns the user to the installation’s default primary language.

SECONDARY | NOSECONDARY

SECONDARY(\text{language})
Specifies the language to which the user’s secondary language is to be changed.
ALTUSER

NOSECONDARY
Deletes any secondary language information from the user's profile and returns the user to the installation's default secondary language.

Note:
1. For the primary and secondary languages, specify either the installation-defined name of a currently active language (a maximum of 24 characters) or one of the language codes (three characters in length) for a language installed on your system.
2. The language name can be a quoted or unquoted string.
3. The same language can be specified for with both PRIMARY and SECONDARY parameters.
4. If the MVS message service is not active, the PRIMARY and SECONDARY values must be a 3-character language code.

NOLANGUAGE
Deletes the user's preferred national languages from the profile and returns that user to the installation defaults. LANGUAGE information no longer appears in LISTUSER output.

LNOTES | NOLNOTES

LNOTES
Specifies Lotus Notes for z/OS information for the user profile being changed.

SNAME | NOSNAME

SNAME(short-name)
Specifies the Lotus Notes for z/OS short-name of the user being changed. The name should match the one stored in the Lotus Notes address book for this user, but this is not verified by the command.

The short-name you define to RACF can contain 1 - 64 characters. You can specify the following characters: uppercase and lowercase alphabetic characters (A - Z, and a - z), 0 - 9, _ (X'50'), - (X'60'), . (X'4B'), _ (X'6D'), and blanks (X'40').

If the short-name you specify contains any blanks, it must be enclosed in single quotation marks. The short-name is stripped of leading and trailing blanks.

The value specified for the short-name must be unique. Consequently, a list of users might not be specified on an ALTUSER command with the SNAME keyword.

NOSNAME
Specifies that you want to delete the short-name from the LNOTES segment of the user's profile.

NOLNOTES
Specifies that you want to delete the LNOTES segment from the user's profile.

MODEL | NOMODEL

MODEL(dsname)
Specifies the name of a data set that RACF is to use as a model when new data set profiles are created that have userid as the high-level qualifier. For
ALTUSER

this operand to be effective, the MODEL(USER) option (specified on the SETROPTS command) must be active. If the ALTUSER command cannot find the dsname profile, it issues a warning message but places the model name in the user ID entry.

Note that RACF always prefixes dsname with the user ID.

For information about automatic profile modeling, refer to z/OS Security Server RACF Security Administrator’s Guide.

NOMODEL
Deletes the model profile name in the user's profile.

NAME(user-name)
Specifies the user name to be associated with the user ID. You can use a maximum of 20 alphanumeric or non-alphanumeric characters. If the name you specify contains any blanks, it must be enclosed in single quotation marks.

Names longer than 20 characters are truncated to 20 characters when you enclose the name in quotation marks. However, if you specify a name longer than 20 characters without enclosing the name in quotation marks, you receive an error from the TSO parse routine.

If you omit the NAME operand, RACF uses a default of twenty # (X'7B') characters ('### ...'). Note, however, that the corresponding entry in a LISTUSER output is the word UNKNOWN.

NDS | NONDS
NDS
Specifies Novell Directory Services for OS/390 information for the user profile being changed.

UNAME | NOUNAME
UNAME(user-name)
Specifies the Novell Directory Services for OS/390 user-name of the user being changed. The user-name value should match the name stored in the Novell Directory Services for OS/390 directory for this user, but this is not verified by the command.

The user-name you define to RACF can contain 1 - 246 characters. However, the user-name cannot contain the following characters: * (X'5C'), + (X'4E'), | (X'44'), = (X'7E'), , (X'6B'), " (X'7F'), / (X'61'), ; (X'7A'), : (X'5E'), $ (X'4A'), and brackets [and] (X'AD' and X'BD').

If the user-name you specify contains any parentheses or blanks, it must be enclosed in single quotation marks. The user-name is stripped of leading and trailing blanks. If a single quotation mark is intended to be part of the user-name, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

The value specified for the user-name must be unique. Consequently, a list of users cannot be specified on an ALTUSER command with the UNAME keyword.

NOUNAME
Specifies that you want to delete the user-name from the NDS segment of the user's profile.
NONDS

Specifies that RACF delete the NDS segment from the user's profile.

NETVIEW | NONETVIEW

NETVIEW

Specifies that this is a NetView operator that can enter any of the following suboperands to add, update, or delete the information in the NETVIEW segment.

You can control access to the entire NETVIEW segment or to individual fields within the NETVIEW segment by using field-level access checking. For more information, see z/OS Security Server RACF Security Administrator's Guide.

CONSNAME | NOCONSNAME

CONSNAME(console-name)

Specifies the default MCS console name identifier used for this operator. This default console name is used when the operator does not specify a console name using the NetView GETCONID command.

The console-name value is a 1 - 8 character identifier whose validity is checked by MVS processing when the operator tries to use it. See z/OS MVS Planning: Operations for information on valid values for a particular release.

NOCONSNAME

Deletes any default MCS console name previously specified for this operator.

CTL | NOCTL

CTL (GENERAL | GLOBAL | SPECIFIC)

Specifies whether a security check is performed for this NetView operator when they try to use a span or try to do a cross-domain logon.

GENERAL

Specifies that a security done should be done as for SPECIFIC, and, in addition, that the operator is allowed to access devices that are not part of any span.

GLOBAL

Specifies that no security check is done.

SPECIFIC

Specifies that a security check is performed through RACROUTE REQUEST=AUTH whenever this operator attempts to use a span. It also specifies that any cross-domain logon must be to a domain listed in the operator's NETVIEW segment with the DOMAINS keyword.

CTL(SPECIFIC) is the default.

NOCTL

NOCTL has the same effect as specifying CTL(SPECIFIC).

DOMAINS | NODOMAINS | ADDDOMAINS | DELDOMAINS

DOMAINS(domain-name ...)

Specifies the complete list of identifiers of NetView programs in another NetView domain where this operator can start a
cross-domain session. The NetView program identifiers are coded on the NCCFID definition statement for the other domains, and represent the name given to that NetView program on the APPL statement.

Domain-name is a 1 - 5 character identifier. The characters can be alphabetic, numeric, or national.

ADDDOMAINS(domain-name ...)
Adds identifiers of NetView programs in another NetView domain where this operator can start a cross-domain session. The NetView program identifiers are coded on the NCCFID definition statement for the other domains, and represent the name given to that NetView program on the APPL statement.

The *domain-name* value is a 1 - 5 character identifier. The characters can be alphabetic, numeric, or national.

DELDOMAINS(domain-name ...)
Deletes specific identifiers of NetView programs in another NetView domain where this operator can start a cross-domain session. The NetView program identifiers are coded on the NCCFID definition statement for the other domains, and represent the name given to that NetView program on the APPL statement.

The *domain-name* value is a 1 - 5 character identifier. The characters can be alphabetic, numeric, or national.

NODOMAINS
Specifies that the operator cannot start any cross-domain sessions.

IC | **NOIC**
IC('command | command-list')
Specifies the command or command list (up to 255 characters) to be processed when the operator logs on to NetView.

If the command or command list you specify contains any commas, blanks, or other special characters that TSO/E requires to be quoted, it must be enclosed in single quotation marks.

NOIC
Deletes the command or command list to be processed at logon time for this operator. No command or command list is automatically processed when this operator logs on.

MSGRECVR | **NOMSGRECVR**
MSGRECVR *(YES | NO)*
Specifies whether this operator can receive unsolicited messages that are not routed to a specific NetView operator.

YES
Specifies that the operator is to receive the messages.

NO
Specifies that the operator is not to receive the messages.

NOMSGRECVR
NOMSGRECVR has the same effect as specifying MSGRECVR(NO).
ALTUSER

NGMFADMN (YES | NO)
 Specifies whether a NetView operator has administrator authority to the NetView Graphic Monitor Facility (NGMF).

 YES
 Specifies that the operator does have the authority.

 NO
 Specifies that the operator does not have the authority.

NONGMFADMN
 NONGFMADMN has the same effect as specifying NGFMADMN(NO).

NGMFVSPN | NONGMFVSPN
 NGMFVSPN (view-span)
 Reserved for future use by the NetView Graphic Monitor Facility

NONGMFVSPN
 Reserved for future use by the NetView Graphic Monitor Facility

OPCLASS | NOOPCLASS | ADDOPCLASS | DELOPCLASS

OPCLASS(class ...)
 Specifies the complete list of NetView scope classes for which the operator has authority.
 The class value is a number 1 - 2040 that specifies a NetView scope class.

ADDOPCLASS(class ...)
 Adds specific NetView scope classes to the operator's current list of classes.
 The class value is a number 1 - 2040 that specifies a NetView scope class.

DELOPCLASS(class ...)
 Deletes specific NetView scope classes from the operator's current list of classes.
 The class value is a number 1 - 2040 that specifies a NetView scope class.

NOOPCLASS
 Specifies that the operator is in no scope classes.

NONETVIEW
 Specifies that RACF should delete the NETVIEW segment from the user's profile.

OIDCARD | NOOIDCARD

OIDCARD
 Specifies that the user must supply an operator identification card when logging onto the system. If you specify the OIDCARD operand, the system prompts you to enter the user's new operator identification card as part of the processing of the ALTUSER command. If you specify the OIDCARD operand in a job executing in the background or when you cannot be prompted in the foreground, the ALTUSER command fails.

NOOIDCARD
 Specifies that the user is not required to supply an operator identification card.
ALTUSER

If NOPASSWORD is specified or the user ID already has the NOPASSWORD attribute, specifying NOOIDCARD causes this user ID to become a protected user ID. Protected user IDs cannot be used to enter the system by any means that requires a password to be specified, such as TSO logon. If the user attempts to enter the system with a password, the attempt fails.

Protected user IDs can be used for the user IDs associated with the started tasks in ICHRIN03 or the STARTED class.

OMVS | NOOMVS

OMVS

Specifies z/OS UNIX information for the user profile being changed.

You can control access to the entire OMVS segment or to individual fields within the OMVS segment by using field-level access checking.

ASSIZEMAX | NOASSIZEMAX

ASSIZEMAX(address-space-size)

Specifies the RLIMIT_AS hard limit (maximum) resource value that processes receive when they are dubbed a process. The address-space-size you define to RACF is a numeric value from 10485760 - 2 147 483 647. ASSIZEMAX indicates the address space region size in bytes. The soft limit (current) resource value is obtained from MVS. If the soft limit value from MVS is greater than the address space size, the soft limit is used.

The value specified for ASSIZEMAX is also used when processes are initiated by a daemon process using an exec after setuid(). In this case, both the RLIMIT_AS hard limit and soft limit are set to the address-space-size value.

The value specified for ASSIZEMAX overrides any value provided by the MAXASSIZE parameter of BPXPRMxx. For more information, see [z/OS UNIX System Services Planning](#).

NOASSIZEMAX

Specifies that you want to delete the address space size from the OMVS segment of the user's profile. The value specified for MAXASSIZE in BPXPRMxx now applies to the user.

AUTUID | UID | NOUID

Specifies whether RACF is to automatically assign an unused UID value to the user, if a specific UID value is to be assigned or if the user identifier from the OMVS segment of the user's profile is to be deleted.

AUTUID

Specifies that RACF is to automatically assign an unused UID value to the user. The UID value is derived from information obtained from the BPX.NEXT.USER profile in the FACILITY class. For more information on setting up BPX.NEXT.USER, see [z/OS Security Server RACF Security Administrator's Guide](#).

If you are using RRSF automatic command direction for the USER class, the command sent to other nodes will contain an explicit assignment of the UID value which was derived by RACF on the local node.

Rules:
ALTUSER

- AUTOUID cannot be specified if more than one user ID is entered.
- The AUTOUID keyword is mutually exclusive with the SHARED keyword.
- If both UID and AUTOUID are specified, AUTOUID is ignored.
- If both NOUID and AUTOUID are specified, AUTOUID is ignored.
- Field-level access checking for the UID field applies when using AUTOUID.
- AUTOUID cannot be used to reassign a UID value when one already exists for the user. If AUTOUID is specified, but the user already has a UID assigned, one of two things will happen.
 - If the preexisting UID is unique to this user, this value will be identified in informational message IRR52177I, and the value will be left unchanged. If RRSF automatic command direction is in effect for the USER class, then the outbound ALTUSER command will be altered to contain the preexisting UID value in the OMVS UID keyword.
 - If the preexisting UID is not unique to this user, error message IRR52178I will be issued, and the command will fail. See IRR52178I for information on changing the user’s existing UID value.

UID(user-identifier) [SHARED]

- UID(user-identifier)
 Specifies the user identifier. The UID is a numeric value from 0 - 2,147,483,647.

 When assigning a UID to a user, you should make sure that the user’s default group has a GID. A user who has a UID and a current connect group that has a GID can use functions such as the TSO/E OMVS command and can access z/OS UNIX files based on the UID and GID values assigned.

 Care should be taken in assigning 0 as the user identifier. UID 0 is considered a superuser. The superuser passes all z/OS UNIX security checks. Assigning a UID to a user ID that appears in the RACF started procedures table (ICHRIN03) should also be done with care. RACF defined started tasks that have the trusted or privileged attribute are considered superusers even if their UID is a value other than 0.

 If the UID is not specified, the user is unable to become a z/OS UNIX user and a LISTUSER for that user ID shows NONE for the UID.

Note:

1. If the security administrator has defined the SHARED.IDS profile in the UNIXPRIV class, the UID value must be unique. Use the SHARED keyword in addition to UID to assign a value that is already in use.

2. If SHARED.IDS is not defined, RACF does not require the UID to be unique. The same value can be assigned to multiple users but this is not recommended because individual user control would be lost. However, if you
ALTUSER

want a set of users to have exactly the same access to z/OS UNIX resources, you might decide to assign the same UID to more than one user.

3. The maximum number of user IDs that can share a UID or groups that can share a GID is 132 at 8 characters. More user IDs or groups are available using less than 8 characters. If the limit is met, you can combine user ID functions (for started tasks or daemons) to use physically less user IDs sharing the same UID. You may also use SUPERUSER granularity functionality to reduce the need for SUPERUSER (using UID 0) for as many user IDs as possible.

SHARED

If the security administrator has chosen to control the use of shared UIDs, this keyword must be used in addition to the UID keyword to specify the user identifier if it is already in use by at least one other user. The administrator controls shared UIDs by defining the SHARED.IDS profile in the UNIXPRIV class.

Rules:

- If the SHARED.IDS profile is not defined, SHARED is ignored.
- If SHARED is specified in the absence of UID, it is ignored.
- If the SHARED.IDS profile is defined and SHARED is specified, but the value specified with UID is not currently in use, SHARED is ignored and UNIXPRIV authority is not required.
- Field-level access checking for the UID field applies when using SHARED.
- The SHARED keyword is mutually exclusive with the AUTOUID keyword.

NOUID

Specifies that you want to delete the user identifier from the OMVS segment of the user's profile.

If NOUID is specified, the user is unable to become a z/OS UNIX System Services user and a LISTUSER for that user ID shows NONE for the UID.

CPUTIMEMAX | NOCPUTIMEMAX

CPUTIMEMAX(cpu-time)

Specifies the RLIMIT_CPU hard limit (maximum) resource value that the user's z/OS UNIX processes receive when they are dubbed a process. The cpu-time you define to RACF is a numeric value from 7 - 2 147 483 647. RLIMIT_CPU indicates the cpu-time that a process is allowed to use, in seconds. The soft limit (current) is obtained from MVS. If the soft limit (current) resource value from MVS is greater than the cpu-time value, the soft limit is used.

The value specified for CPUTIMEMAX is also used when processes are initiated by a daemon process using an exec after setuid(). In this case, both the RLIMIT_CPU hard and soft limits are set to the cpu-time value.
For processes running in, or forked from TSO or BATCH, the cpu-time value has no effect. For processes created by the rlogin command or other daemons, cpu-time is the time limit for the address space.

The value specified for CPUTIMEMAX overrides any value provided by the MAXCPUTIME parameter of BPXPRMxx. For more information, see [Z/OS UNIX System Services Planning](#).

NOCPUTIMEMAX

Specifies that you want to delete the CPU time from the OMVS segment of the user's profile. The value specified for MAXCPUTIME in BPXPRMxx now applies to the user.

FILEPROCMAX

FILEPROCMAX(files-per-process)

Specifies the maximum number of files the user is allowed to have concurrently active or open. The files-per-process you define to RACF is a numeric value from 3 and 524287. FILEPROCMAX is the same as the OPEN_MAX variable defined in the POSIX standard.

FILEPROCMAX lets you limit the amount of system resources available to a user process. Select FILEPROCMAX by considering:

- For conformance to standards, set FILEPROCMAX to:
 - At least 16 to conform to the POSIX standard
 - At least 25 to conform to the FIPS standard
- The commonly recommended value is 256.
- A process can change its own value for the number of files it has active or open using the \texttt{setrlimit()} function. Only processes with appropriate privileges can increase their limits.
- The minimum value of 3 supports the standard files for a process: standard input, standard output, and standard error.
- The value needs to be larger than 3 to support z/OS UNIX shell users. If the value is too small, the z/OS UNIX shells might issue the message \\texttt{File descriptor not available}.

The value specified for FILEPROCMAX overrides any value provided by the MAXFILEPROC parameter of BPXPRMxx. For more information, see [Z/OS UNIX System Services Planning](#).

NOFILEPROCMAX

Specifies that you want to delete the files per process from the OMVS segment of the user's profile. The value specified for MAXFILEPROC in BPXPRMxx now applies to the user.

HOME

HOME(directory-pathname)

Specifies the z/OS UNIX directory pathname. This is the current working directory for the user's process when the user enters the TSO/E command OMVS.

When you define a directory pathname to RACF, it can contain 1 - 1023 characters. The directory pathname can consist of any characters and can be entered with or without single quotation marks. The following rules apply:
ALTUSER

- If parentheses, commas, blanks, or semicolons are to be entered as part of the pathname, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the pathname, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. The fully qualified pathname should be specified. RACF does not ensure that a valid pathname has been specified. If you issue the ALTUSER command as a RACF operator command and you specify the pathname in lowercase, you must include the pathname within single quotations.

NOHOME

Specifies that you want to delete the initial directory pathname from the OMVS segment of the user’s profile.

If no value is specified for HOME in the OMVS segment, MVS sets the working directory for the user to / (the root directory).

MEMLIMIT | NOMEMLIMIT

MEMLIMIT(nonshared-memory-size)

Specifies the maximum number of bytes of nonshared memory that can be allocated by the user. The nonshared-memory-size value must be numeric 0 - 16777215, followed by the letter M, G, T, or P. The M, G, T or P letter indicates the multiplier to be used. The maximum value is 16383P.

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Binary</th>
<th>Hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>M—megabyte</td>
<td>1048576</td>
<td>2¹⁰</td>
<td>00000000 00100000</td>
</tr>
<tr>
<td>G—gigabyte</td>
<td>1073741824</td>
<td>2³⁰</td>
<td>00000000 40000000</td>
</tr>
<tr>
<td>T—terabyte</td>
<td>109951162776</td>
<td>2⁴⁰</td>
<td>00000010 00000000</td>
</tr>
<tr>
<td>P—petabyte</td>
<td>1125899906842624</td>
<td>2⁵⁰</td>
<td>00040000 00000000</td>
</tr>
</tbody>
</table>

The following are different MEMLIMIT(nonshared-memory-size) examples:
- MEMLIMIT(1M) indicates a nonshared-memory-size of 1048576 bytes.
- MEMLIMIT(1500M) indicates a nonshared-memory-size of 1572864000 bytes.
- MEMLIMIT(10G) indicates a nonshared-memory-size of 10737418240 bytes.

For more extensive information, see z/OS UNIX System Services Planning.

NOMEMLIMIT

Specifies that you want to delete the nonshared memory size from the OMVS segment of the user’s profile.

MMAPAREAMAX | NOMMAPAREAMAX
MMAPAREAMAX(\textit{memory-map-size})

Specifies the maximum amount of data space storage, in pages, that can be allocated by this user for memory mappings of z/OS UNIX files. Storage is not allocated until memory mappings are active. The value of \textit{memory-map-size} must be 1 - 16777216.

Use of memory map services consumes a significant amount of system memory. For each page (4KB) that is memory mapped, 96 bytes of ESQA are consumed when a file is not shared with any other users. When a file is shared by multiple users, each user after the first causes 32 bytes of ESQA to be consumed for each shared page. The ESQA storage is consumed when the \texttt{mmap()} function is invoked by the application program.

The value specified for MMAPAREAMAX overrides any value provided by the MAXMMAPAREA parameter of BPXPRMxx. For more information, see \textit{z/OS UNIX System Services Planning}.

NOMMAPAREAMAX

Specifies that you want to delete the memory map size from the OMVS segment of the user's profile. The value specified for MAXMMAPAREA in BPXPRMxx now applies to the user.

PROCUSERMAX | NOPROCUSERMAX

\textbf{PROCUSERMAX(\textit{processes-per-UID})}

Specifies the maximum number of processes this user is allowed to have active at the same time, regardless of how the process became a z/OS UNIX process. The \textit{processes-per-UID} you define to RACF is a numeric value from 3 and 32767. PROCUSERMAX is the same as the CHILD_MAX variable defined in the POSIX standard.

PROCUSERMAX allows you to limit user activity to optimize performance. Select PROCUSERMAX by considering:

- For conformance to standards, set PROCUSERMAX to:
 - At least 16 to conform to the POSIX standard
 - At least 25 to conform to the FIPS standard
- A user with a UID of 0 is not limited by the PROCUSERMAX value because a superuser might need to be capable of logging on and using z/OS UNIX services to solve a problem.
- A low PROCUSERMAX value limits the number of concurrent processes that the user can run. A low value also limits the user's consumption of processing time, virtual storage, and other system resources.
- Some daemons run without UID 0, and can create many address spaces. In these cases, it is necessary to set the limit high enough for the daemon associated with this user ID to run all of its processes.

Though not recommended, the same OMVS UID can be given to more than one user ID. If users share a UID, you need to define a greater number for PROCUSERMAX.

The value specified for PROCUSERMAX overrides any value provided by the MAXPROCUSER parameter of BPXPRMxx. For more information, see \textit{z/OS UNIX System Services Planning}.

\textbf{NOPROCUSERMAX}

Specifies that you want to delete the processes per UID from the
OMVS segment of the user's profile. The value specified for MAXPROCUSER in BPXPRMxx now applies to the user.

SHMEMMAX | NOSHMEMMAX

SHMEMMAX(shared-memory-size)

Specifies the maximum number of bytes of shared memory that can be allocated by the user. The shared-memory-size value must be numeric 1 - 16777215, followed by the letter M, G, T, or P. The M, G, T, or P letter indicates the multiplier to be used. The maximum value is 16383P.

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Binary</th>
<th>Hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>M—megabyte</td>
<td>1048576</td>
<td>2^{20}</td>
<td>00000000 00100000</td>
</tr>
<tr>
<td>G—gigabyte</td>
<td>1073741824</td>
<td>2^{30}</td>
<td>00000000 40000000</td>
</tr>
<tr>
<td>T—terabyte</td>
<td>109951162776</td>
<td>2^{40}</td>
<td>00000010 00000000</td>
</tr>
<tr>
<td>P—petabyte</td>
<td>1125899906842624</td>
<td>2^{50}</td>
<td>00040000 00000000</td>
</tr>
</tbody>
</table>

The following are different SHMEMMAX(shared-memory-size) examples:

- SHMEMMAX(1M) indicates a shared-memory-size of 1048576 bytes.
- SHMEMMAX(1500M) indicates a shared-memory-size of 1572864000 bytes.
- SHMEMMAX(10G) indicates a shared-memory-size of 10737418240 bytes.

The value specified for SHMEMMAX overrides any value provided by the IPCSHMMPAGES parameter of BPXPRMxx. For more information, see [z/OS UNIX System Services Planning](https://www.ibm.com).

NOSHMEMMAX

Specifies that you want to delete the shared memory size from the OMVS segment of the user's profile. The value specified for IPCSHMMPAGES in BPXPRMxx now applies to the user.

THREADSMAX | NOTHREADSMAX

THREADSMAX(threads-per-process)

Specifies the maximum number of threads, including those running, queued, and exited but not detached, that this user can have concurrently active. The threads-per-process you define to RACF is a numeric value from 0 - 100000. Specifying a value of 0 prevents applications run by this user from using the pthread_create service.

The value specified for THREADSMAX overrides any value provided by the MAXTHREADS parameter of BPXPRMxx. For more information, see [z/OS UNIX System Services Planning](https://www.ibm.com).

NOTHREADSMAX

Specifies that you want to delete the threads per process from the OMVS segment of the user's profile. The value specified for MAXTHREADS in BPXPRMxx now applies to the user.

PROGRAM | NOPROGRAM

PROGRAM(program-name)

Specifies the PROGRAM pathname (z/OS UNIX shell program).
This is the first program started when the TSO/E command OMVS is entered or when a batch job is started using the BXPBATCH program.

When you define a PROGRAM pathname to RACF, it can contain 1 - 1023 characters. The PROGRAM pathname can consist of any characters and can be entered with or without single quotation marks. The following rules apply:

- If parentheses, commas, blanks, or semicolons are to be entered as part of the pathname, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the pathname, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. The fully qualified pathname should be specified. RACF does not ensure that a valid pathname has been specified. If you issue the ALTUSER command as a RACF operator command and you specify the pathname in lowercase, you must include the pathname within single quotations.

NOPROGRAM

Specifies that you want to delete the z/OS UNIX System Services program pathname from the OMVS segment of the user's profile.

If no value is specified for PROGRAM in the OMVS segment, MVS gives control to the default z/OS UNIX shell program when the user issues the TSO/E command OMVS or starts a batch job using the BXPBATCH program.

For more information about the default z/OS UNIX shell program supplied with z/OS UNIX System Services, see z/OS UNIX System Services Planning and z/OS UNIX System Services User’s Guide.

NOOMVS

Specifies that RACF delete the OMVS segment from the user's profile.

OPERATIONS | NOOPERATIONS

OPERATIONS

Specifies that the user is to have authorization to do maintenance operations on all RACF-protected DASD data sets, tape volumes, and DASD volumes except those where the access list specifically limits the OPERATIONS user to an access authority that is less than the operation requires.

You establish the lower access authority for the OPERATIONS user with the PERMIT command. OPERATIONS on the ALTUSER command overrides NOOPERATIONS on the CONNECT command.

You must have the SPECIAL attribute to use the OPERATIONS operand.

NOOPERATIONS

Specifies that the user is not to have the OPERATIONS attribute.

You must have the SPECIAL attribute to use the NOOPERATIONS operand.
ALTUSER

OPERPARM | NOOPERPARM

OPERPARM

Specifies default information used when this user establishes an extended MCS console session.
You can control access to the entire OPERPARM segment or to individual fields within the OPERPARM segment by using field-level access checking. For more information, see z/OS Security Server RACF Security Administrator’s Guide.

For information on planning how to use OPERPARM segments, see z/OS MVS Planning: Operations.

Note:
1. You need not specify every suboperand in an OPERPARM segment. In general, if you omit a suboperand, the default is the same as the default in the CONSOLxx PARMLIB member, which can also be used to define consoles.
2. If you specify MSCOPE or ROUTCODE but do not specify a value for them, RACF uses MSCOPE(*ALL) and ROUTCODE(NONE) to update the corresponding fields in the user profile. These values appear in listings of the OPERPARM segment of the user profile.
3. If you omit the other suboperands, RACF does not update the corresponding fields in the user's profile, and no value appears in listings of the OPERPARM segment of the profile.

ALTGRP | NOALTGRP

ALTGRP(alternate-console-group)

Specifies the console group used in recovery. The variable alternate-console-group can contain 1 - 8 characters. Valid characters are 0 - 9, A - Z, # (X'7B'), $ (X'5B'), or @ (X'7C').

Restriction: Starting with z/OS Version 1 Release 8, console services ignores ALTGRP(alternate-console-group) when a session is established and it need not be specified.

NOALTGRP

Deletes alternate console group information from this profile.

AUTH | NOAUTH

AUTH

Specifies this console's authority to issue operator commands.

If you omit this operand, RACF does not alter this field in the user's profile. If this field has not been added to the user's profile, an extended MCS console uses AUTH(INFO) when a session is established. The console can have the following authorities:

MASTER

Allows this console to act as a master console, which can issue all MVS operator commands. This authority can only be specified by itself.

ALL

Allows this console to issue system control commands, input/output commands, console control commands, and informational commands. This authority can only be specified by itself.
INFO
Allows this console to issue informational commands. This authority can only be specified by itself.

CONS
Allows this console to issue console control and informational commands.

IO
Allows this console to issue input/output and informational commands.

SYS
Allows this console to issue system control commands and informational commands.

NOAUTH
Deletes the user's operator authorities from the profile. Console operator authority no longer appears in profile listings. However, AUTH(INFO) is used when an extended MCS console session is established.

AUTO | NOAUTO
AUTO(YES | NO)
Specifies whether the extended console can receive messages that have been automated by the Message Processing Facility (MPF) in the sysplex.

NOAUTO
Deletes this field from the user's profile. No AUTO information appears in profile listings. However, AUTO(NO) is used when an extended MCS console session is established.

CMDSYS | NOCMDSYS
CMDSYS(system-name | *)
Specifies the system to which commands from this console are to be sent.

If you omit this operand, RACF does not alter this field in the user's profile. If this field has not been added to the user's profile, an extended MCS console uses CMDSYS(+) when a session is established. The system-name value must be 1 - 8 characters. Valid characters are A - Z, 0 - 9, @ (X'7C'), # (X'7B'), and $ (X'5B'). If (*) is specified, commands are processed on the local system where the console is attached.

NOCMDSYS
Deletes any system-names from this profile. No CMDSYS information appears in profile listings. However, CMDSYS(*) is used when an extended MCS console session is established.

DOM | NODOM
DOM(NORMAL | ALL | NONE)
Specifies which delete operator message (DOM) requests this console can receive.

If you omit this operand, RACF does not alter this field in the user's profile. If this field has not been added to the user's profile, an extended MCS console uses DOM(NORMAL) when a session is established.
The system queues all appropriate DOM requests to this console.

All systems in the sysplex queue DOM requests to this console.

No DOM requests are queued to this console.

Deletes this field from the user’s profile. DOM information no longer appears in profile listings. However, DOM(NORMAL) is used when an extended MCS console session is established.

Specifies whether this console is to receive all messages that are directed to hardcopy. Any route codes specified for a console do not apply to hardcopy messages, so this console will receive all hardcopy messages regardless of their specific route code.

Deletes this field from the user’s profile. z/OS console services will use HC(NO) when a session is established.

Specifies whether this console is to receive messages directed to console ID zero (the internal console). Such messages are usually responses to internally issued commands.

Deletes this field from the user’s profile. z/OS console services will use INTIDS(NO) when a session is established.

Specifies a 1 - 8 character name that can be used to display information for all consoles with the specified key by using the MVS command DISPLAY CONSOLES,KEY. If specified, KEY can include A - Z, 0 - 9, # (X'7B'), $ (X'5B'), or @ (X'7C').

If you omit this operand, RACF does not alter this field in the user’s profile. If this field has not been added to the user’s profile, an extended MCS console uses a KEY value of NONE when a session is established.

Deletes search key information from the user’s profile. Search key information no longer appears in profile listings. However, a KEY value of NONE is used when an extended MCS console session is established.

Specifies the messages that this console is to receive.
If you omit this operand, RACF does not alter this field in the user's profile. If this field has not been added to the user's profile, an extended MCS console uses LEVEL(ALL) when a session is established.

The message-level variable can be a list of R, I, CE, E, IN, NB or ALL. If you specify ALL, you cannot specify R, I, CE, E, or IN.

NB The console receives no broadcast messages.
ALL The console receives these messages: R, I, CE, E, IN.
R The console receives messages requiring an operator reply.
I The console receives immediate action messages.
CE The console receives critical eventual action messages.
E The console receives eventual action messages.
IN The console receives informational messages.

NOLEVEL
Deletes any defined message levels for this console from the profile. Message information no longer appears in profile listings. However, LEVEL(ALL) is used when an extended MCS console session is established.

LOGCMDRESP | NOLOGCMDRESP

LOGCMDRESP(SYSTEM | NO)
Specifies if command responses are to be logged.

If you omit this operand, RACF does not alter this field in the user's profile. If this field has not been added to the user's profile, an extended MCS console uses LOGCMDRESP(SYSTEM) when a session is established.

SYSTEM
Specifies that command responses are logged in the hardcopy log.

NO Specifies that command responses are not logged.

NOLOGCMDRESP
Deletes the value for LOGCMDRESP from the profile. Command response logging information no longer appears in profile listings. However, LOGCMDRESP(SYSTEM) is used when an extended MCS console session is established.

MFORM | NOMFORM

MFORM(message-format)
Specifies the format in which messages are displayed at the console.

If you omit this operand, RACF does not alter this field in the user's profile. If this field has not been added to the user's profile, an extended MCS console uses MFORM(M) when a session is established.

The message-format variable can be a combination of T, S, J, M, and X:

J Messages are displayed with a job ID or name.
ALTUSER

M The message text is displayed.
S Messages are displayed with the name of the originating system.
T Messages are displayed with a time stamp.
X Messages that are flagged as exempt from job name and system name formatting are ignored.

NOMFORM
Deletes the values for MFORM from the profile and causes message text to be displayed (MFORM(M)) when an extended MCS console session is established.

MIGID | NOMIGID
MIGID(YES | NO)
Specifies whether a 1-byte migration ID is to be assigned to this console or not. The migration ID allows command processors that use a 1-byte console ID to direct command responses to this console.

Restriction: Starting with z/OS Version 1 Release 7, console services ignores MIGID(YES | NO) when a session is established and it need not be specified.

NOMIGID
Deletes this segment from the profile. Migration identification information no longer appears in profile listings. However, MIGID(NO) is assigned when an extended MCS console session is established.

MONITOR | NOMONITOR
MONITOR(events)
Specifies which information should be displayed when monitoring jobs, TSO sessions, or data set status.

If you omit this operand, RACF does not alter this field in the user's profile. If this field has not been added to the user's profile, an extended MCS console uses MONITOR(JOBNAMES SESS) when a session is established. The variable events can be a list of the following:

JOBNAMES | JOBNAMEST
Displays information about the start and end of each job.
JOBNAMES omits the times of job start and job end.
JOBNAMEST displays the times of job start and job end.

SESS | SESST
Displays information about the start and end of each TSO session. SESS omits the times of session start and session end.
SESST displays the times of session start and session end.

STATUS
Specifies that the information displayed when a data set is freed or unallocated should include the data set status.

NOMONITOR
Deletes job monitor information from the user's profile. Information from this field no longer appears in profile listings.
However, MONITOR(JOBNAMES SESS) is used when an extended MCS console session is established.

MSCope | ADDMSCope | DELMSCope | NOMSCOPE

MSCope

```
MSCope(system-name ... | * | *ALL)
```

Specifies the systems from which this console can receive messages that are not directed to a specific console.

If you omit this operand, RACF does not alter this field in the user's profile. If this field has not been added to the user's profile, an extended MCS console uses MSCOPE(*ALL) when a session is established. If you specify MSCOPE but omit a value, RACF uses MSCOPE(*ALL) as the default to update this field in the user's profile. *ALL appears in listings of the OPERPARM segment of the user's profile.

```
*ALl
```

Is a list of one or more system names, where a system name can be any combination of A - Z, 0 - 9, # (X’7B’), $ (X’5B’), or @ (X’7C’).

```
* Is the system on which the console is currently active.
```

```
*ALl
```

Means all systems.

ADDMSCOPE

```
ADDMSCOPE(system-name ...)
```

Adds the specified system names to the existing list of systems from which this console can receive messages that are not directed to a specific console.

DELMSCOPE

```
DELMSCOPE(system-name ...)
```

Deletes the specified system names from the existing list of systems from which this console can receive messages that are not directed to a specific console.

NOMSCOPE

Deletes any system name information from the user's profile. Message reception information no longer appears in profile listings. However, MSCOPE(*ALL) is used when an extended MCS console session is established.

ROUTCODE | NOROUTCODE

ROUTCODE

```
ROUTCODE(ALL | NONE | routing-codes)
```

Specifies the routing codes of messages this operator is to receive.

If you omit this operand, RACF does not alter this field in the user's profile. If this field has not been added to the user's profile, an extended MCS console uses ROUTCODE(NONE) when a session is established. If you specify ROUTCODE but omit a value, RACF uses ROUTCODE(NONE) to update this field in the user's profile. NONE appears in listings of the OPERPARM segment of the user's profile.

The routing code information can be one of the following:

```
ALL
```

Means all routing codes.

```
NONE
```

Means no routing codes.
routing-codes

Specifies one or more routing codes or sequences of routing codes. The routing codes can be a list of \(n \) and \(n1:n2 \), where \(n \), \(n1 \), and \(n2 \) are integers 1 - 128, and \(n1:n2 \) represents a range of routing codes from \(n1 \) (low) to \(n2 \) (high).

NOROUTCODE

Deletes routing code information from the user’s profile. Routing code information no longer appears in profile listings. However, ROUTCODE(NONE) is used when an extended MCS console session is established.

STORAGE | NOSTORAGE

STORAGE(\(amount \)**)**

Specifies the amount of storage in the TSO/E user’s address space that can be used for message queuing to this console.

If you omit this operand, RACF does not alter this field in the user’s profile. If this field has not been added to the user’s profile, an extended MCS console uses STORAGE(1) when a session is established. A value of 0 will appear in listings of the user’s profile to indicate that no value was specified. The variable \(amount \) must be a value from 1 - 2000.

NOSTORAGE

Deletes this field from the profile. A value of 0 appears in listings of the user’s profile to indicate that no value was specified. However, STORAGE(1) is used when an extended MCS console session is established.

UD | NOUD

UD(\(YES \mid NO \)**)**

Specifies whether this console is to receive undelivered messages. If you do not specify this operand, RACF does not alter the user’s profile.

Restriction: Starting with z/OS Version 1 Release 8, console services ignores UD(**\(YES \mid NO \)**) when a session is established and it need not be specified.

NOUD

Deletes the field from the profile. Undelivered message information no longer appears in profile listings. However, UD(NO) is used when an extended MCS console session is established.

UNKNIDS | NOUNKNIDS

UNKNIDS(\(YES \mid NO \)**)**

Specifies whether this console is to receive messages directed to unknown console IDs. Unknown consoles are typically one-byte console IDs that the system cannot unambiguously resolve.

NOUNKNIDS

Deletes this field from the user’s profile. z/OS console services will use UNKNIDS(NO) when a session is established.

NOOPERPARM

Specifies that the OPERPARM segment is to be deleted. Operator information no longer appears in LISTUSER output.
Specifies OpenExtensions VM information for the user profile being changed. Information is stored in the OVM segment of the user's profile.

You can control access to an entire OVM segment or to individual fields within the OVM segment by using field level access checking.

FSROOT | NOFSROOT

FSROOT

Specifies the pathname for the file system root.

When you define the FSROOT pathname to RACF, it can contain 1 - 1023 characters, consist of any character, and be entered with or without single quotation marks. The following rules apply:

- If the pathname contains parentheses, commas, blanks, or semicolons, enclose the character string in single quotation marks. For example, if the pathname is (123), you must enter `FSROOT('(123)')`.
- If a single quotation mark is intended to be part of the pathname, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

When entering the ALTUSER command, both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. You should specify the fully qualified pathname because RACF does not ensure that a valid pathname has been specified.

NOFSROOT
Specifies that you want to delete the FSROOT pathname from the OVM segment of the user's profile.

If you do not specify a value for FSROOT in the OVM segment, VM uses the value specified in the CP directory. If no value is specified in the CP directory, issue the OPENVM MOUNT command to mount the appropriate file system.

HOME | NOHOME

HOME

Specifies the initial directory pathname. The initial directory is part of the file system and is the current working directory for the user's process when the user enters the OPENVM SHELL command.

When you define a HOME directory name to RACF, the name can contain 1 - 1023 characters, consist of any character, and be entered with or without single quotation marks. The following rules apply:

- If the pathname contains parentheses, commas, blanks, or semicolons, enclose the character string in single quotation marks. For example, if the pathname is (123), you must enter `HOME('(123)')`.
- If a single quotation mark is intended to be part of the pathname, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

When entering the ALTUSER command, both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.
ALTUSER

entered. You should specify the fully qualified pathname because RACF does not ensure that a valid pathname has been specified.

NOHOME

Specifies that you want to delete the initial directory pathname from the OVM segment of the user's profile.

If no value is specified for HOME in the OVM segment, VM uses the value specified in the CP directory. If no value is specified in the CP directory, VM sets the working directory for the user to / (the root directory).

PROGRAM | NOPROGRAM

PROGRAM(program-name)

Specifies the PROGRAM pathname (z/OS UNIX shell program). This is the first program started when the OPENVM SHELL command is entered.

When you define a PROGRAM pathname to RACF, it can contain 1 - 1023 characters, consist of any character, and be entered with or without single quotation marks. The following rules apply:

• If the pathname contains parentheses, commas, blanks, or semicolons, enclose the character string in single quotation marks. For example, if the pathname is (123), you must enter PROGRAM('(123)').

• If a single quotation mark is intended to be part of the pathname, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

When entering the ALTUSER command, both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. Specify the fully qualified pathname. RACF does not ensure that a valid pathname is specified.

NOPROGRAM

Specifies that you want to delete the PROGRAM pathname from the OVM segment of the user's profile.

If no value is specified for PROGRAM in the OVM segment, VM uses the value specified in the CP directory. If no value is specified in the CP directory, VM gives control to the default z/OS UNIX shell program (/bin/sh) when a user issues the OPENVM SHELL command.

UID | NOUID

UID(user-identifier)

Specifies the user identifier. The UID is a numeric value from 0 - 2,147,483,647.

Care should be taken in assigning 0 as the user identifier. UID 0 is considered a superuser, and a superuser passes all OpenExtensions VM security checks.

Note:

1. RACF does not require the UID to be unique. You can assign the same value to multiple users, but this is not recommended because individual user control is lost. However, if you want a set of users to have exactly the same access to the OpenExtensions VM resources, you can assign the same UID to more than one user.
2. Exercise caution when changing the UID for a user.
 - The file-system might contain files that were created by the user, and thus contain the old UID as the file owner UID. Depending on the permission bits associated with the file, the user will probably lose access to those files.
 - If files already exist with an owner UID equal to the user’s new UID value, the user will probably gain access to these files.
 - If another user is subsequently added with the old value as its UID, then the user might have access to the old files.
 - If you have an EXEC.uid profile in the VMPOSIX class for the old UID value, make sure you delete this profile and create another to reflect the new value.

NOUID

Specifies that you want to delete the user identifier from the OVM segment of the user’s profile.

If NOUID is specified, the user is assigned the default UID of 4294967295 (X'FFFFFFFF') and a LISTUSER for that user ID shows NONE for the UID.

NOOVM

Specifies that RACF delete the OVM segment from the user's profile.

OWNER(userid or group-name)

Specifies a RACF-defined user or group to be assigned as the new owner of the user’s profile.

PASSWORD | NOPASSWORD

PASSWORD[(password)]

Specifies the user's logon password. Use this command to specify a password for a user who has forgotten his/her password. Unless the NOEXPIRED operand is also specified, this password is set expired, thus requiring the user to change the password at next logon or job start. Note that the password syntax rules your installation defines using SETROPTS PASSWORD do not apply to this password unless the NOEXPIRED operand is also included.

If you specify a password value, the password is checked by the new-password exit (ICHPWX01), if present.

If you specify PASSWORD without a value, the password defaults to the user's default group name. If you specify PASSWORD without a value and specify DFLTGRP, the default password is the user's old default group name.

Note:

1. For z/OS Integrated Security Services Network Authentication Service support, this means the key is not generated for the default group. However, the default group continues to be used as the RACF password.

2. If the installation is maintaining user password history, the password that was in effect prior to issuing this command is stored as part of this history.

3. When the installation specifies a minimum change interval, RACF checks the number of days between password changes to ensure the minimum required days have elapsed each time users change their own
ALTUSER

passwords. RACF also checks the days when users change passwords using their IRR.PASSWORD.RESET or IRR.PWRESET authority unless the command issuer has CONTROL authority or higher.

NOPASSWORD

Specifies that the user does not need to supply an initial logon password when first entering the system if OIDCARD is also specified. If NOOIDCARD is specified, or the user ID has the NOOIDCARD attribute and you specify NOPASSWORD, you change the status of the user ID to protected. Protected user IDs cannot be used to enter the system by any means that requires a password to be specified, such as a TSO logon, CICS signon, batch job that specifies a password on the JOB statement. Therefore, user IDs that you assign to z/OS UNIX, UNIX daemons, started procedures, applications, servers or subsystems can be protected from being revoked when an incorrect password is entered. If the user attempts to enter the system with a password, the attempt fails. Note that the protected user ID is not revoked due to the failed password attempts even if the SETROPTS PASSWORD(REVOKE) option is in effect.

Determine which user IDs you want to protect, ensuring that these user IDs will not be used in any circumstance where a password must be supplied. A protected user will have the PROTECTED attribute displayed in the output of the LISTUSER command. Protected users can be associated with started procedures defined in the STARTED class (preferred method) or in the started procedures table (ICHRIN03).

Note: z/OS Integrated Security Services Network Authentication Service information such as a local kerberos-principal-name must not be defined for protected user IDs, and these user IDs must not be used for z/OS Network Authentication Service authentication, because these authentication failures can result in user revocation.

PHRASE | NOPHRASE

PHRASE('password-phrase')

Specifies the user's password phrase. The password phrase you define is a text string of up to 100 characters and must be enclosed in single quotation marks. The password phrase is set expired unless NOEXPIRED is also specified.

When the new-password-phrase exit (ICHPWX11) is present and allows it, the password phrase can be 9 - 100 characters. When ICHPWX11 is not present, the password phrase must be 14 - 100 characters. Contact your system programmer to find out if your installation uses the new-password-phrase exit (ICHPWX11) or see z/OS Security Server RACF System Programmer's Guide for programming details.

Every user that you assign a password phrase must have a password. If you attempt to remove the password from a user with a password phrase, or add a password phrase for a user with no password, the PHRASE operand is ignored and an error message issued.

The following syntax rules apply to all password phrases. You cannot alter these syntax rules but you can specify additional syntax rules if your installation tailors the new-password-phrase exit (ICHPWX11).

Syntax rules for password phrases:
- Maximum length: 100 characters
- Minimum length:
ALTUSER

- 9 characters, when ICHPWX11 is present and allows the new value
- 14 characters, when ICHPWX11 is not present

- Must not contain the user ID (as sequential uppercase or sequential lowercase characters)
- Must contain at least 2 alphabetic characters (A - Z, a - z)
- Must contain at least 2 non-alphabetic characters (numerics, punctuation, or special characters)
- Must not contain more than 2 consecutive characters that are identical
- If a single quotation mark is intended to be part of the password phrase, you must use two single quotation marks together for each single quotation mark.

If the new-password-phrase exit (ICHPWX11) is present, it can reject the specified password phrase. RACF rejects password phrases shorter than 14 characters unless ICHPWX11 is present and allows the new value.

If the specified password phrase is accepted, it is made the user's current password phrase and, when SETROPTS PASSWORD(HISTORY) is in effect, it is added to the user's password phrase history.

If you enter PHRASE without a password-phrase value, you are prompted for a value unless your TSO session is in NOPROMPT mode.

When the installation specifies a minimum change interval, RACF checks the number of days between password phrase changes to ensure the minimum required days have elapsed each time users change their own password phrases. RACF also checks the days when users change password phrases using the IRR.PASSWORD.RESET or IRR.PWRESET authority unless the command issuer has CONTROL authority or higher.

NOPHRASE

Specifies that the user cannot use a password phrase for authentication. If a password phrase was previously set, the password phrase is cleared. The date of the last password phrase change is also cleared from the user's profile.

PROXY | NOPROXY

PROXY

Specifies information which the z/OS LDAP server will use when acting as a proxy on behalf of a requester. The _R_proxyserv (IRRSPY00) SAF callable service will attempt to retrieve this information when it is not explicitly supplied with the invocation parameters. Applications or other services which use the _R_proxyserv callable service, such as IBM Policy Director Authorization Services for z/OS and OS/390, may instruct their invokers to define PROXY segment information.

LDAPHOST | NOLDAPHOST

LDAPHOST(ldap_url)

Specifies the URL of the LDAP server which the z/OS LDAP server will contact when acting as a proxy on behalf of a requestor. An LDAP URL has a format such as ldap://123.45.6:389 or ldaps://123.45.6:636, where ldaps indicates that an SSL connection is desired for a higher level of security. LDAP will also allow you to specify the host name portion of the URL using either the text form (BIGHOST.POK.IBM.COM) or the dotted decimal address (123.45.6). The port number is appended to the host name, separated by a colon : (X'7A').

Chapter 5. RACF command syntax 167
For more information about LDAP URLs and how to enable LDAP servers for SSL connections, see "z/OS IBM Tivoli Directory Server Administration and Use for z/OS".

The LDAP URL that you define to RACF can consist of 10 - 1023 characters. A valid URL must start with either ldap:// or ldaps://. RACF will allow any characters to be entered for the remaining portion of the URL, but you should ensure that the URL conforms to TCP/IP conventions. For example, parentheses, commas, blanks, semicolons, and single quotation marks are not typically allowed in a host name. The LDAP URL can be entered with or without single quotation marks, however, in both cases, it will be translated to uppercase.

RACF does not ensure that a valid LDAP URL has been specified.

NOLDAPHOST

Deletes the URL of the LDAP server which the z/OS LDAP server will contact when acting as a proxy on behalf of a requester.

BINDDN | NOBINDDN

BINDDN(bind_distinguished_name)

Specifies the distinguished name (DN) which the z/OS LDAP server will use when acting as a proxy on behalf of a requester. This DN will be used in conjunction with the BIND password, if the z/OS LDAP server needs to supply an administrator or user identity to BIND with another LDAP server. A DN is made up of attribute value pairs, separated by commas. For example:

- cn=Ben Gray,ou=editing,o=New York Times,c=US
- cn=Lucille White,ou=editing,o=New York Times,c=US
- cn=Tom Brown,ou=reporting,o=New York Times,c=US

When you define a BIND DN to RACF, it can contain 1 - 1023 characters. The BIND DN can consist of any characters and can be entered with or without single quotation marks. The following rules apply:

- If parentheses, commas, blanks, or semicolons are to be entered as part of the BIND DN, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the BIND DN, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. For more information about LDAP distinguished names, see "z/OS IBM Tivoli Directory Server Administration and Use for z/OS".

If you issue the ALTUSER command as a RACF operator command and you specify the BIND DN in lowercase, you must include the BIND DN within single quotations.

RACF does not ensure that a valid BIND DN has been specified.

NOBINDDN

Deletes the distinguished name (DN) used by the z/OS LDAP server when acting as a proxy on behalf of a requester.

BINDPW | NOBINDPW
BINDPW
 Specifies the password which the z/OS LDAP server will use when acting as a proxy on behalf of a requester.

When you define a BIND password to RACF, it can contain 1 - 128 characters. The BIND password can consist of any characters (see exception below) and can be entered with or without single quotation marks. The following rules apply:
 • The BIND password cannot start with a left brace { character (X'8B').
 • If parentheses, commas, blanks, or semicolons are to be entered as part of the BIND password, the character string must be enclosed in single quotation marks.
 • If a single quotation mark is intended to be part of the BIND password, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. For more information about LDAP passwords, see z/OS IBM Tivoli Directory Server Administration and Use for z/OS.

If you issue the ALTUSER command as a RACF operator command and you specify the BIND password in lowercase, you must include the BIND password within single quotations.

RACF does not ensure that a valid BIND password has been specified.

Important:
 • When the command is issued from ISPF, the TSO command buffer (including possible BINDPW password data) is written to the ISPLOG data set. As a result, you should not issue this command from ISPF or you must control the ISPLOG data set carefully.
 • When the command is issued as a RACF operator command, the command and the possible BINDPW password data is written to the system log. Therefore, use of ALTUSER as a RACF operator command should either be controlled or you should issue the command as a TSO command.

NOBINDPW
 Deletes the password used by the z/OS LDAP server when acting as a proxy on behalf of a requester.

NOproxy
 Deletes LDAP proxy information.

RESTRICTED | NORESTRICTED

RESTRICTED
 Specifies that global access checking is bypassed when resource access checking is performed for the user, and neither ID(*) on the access list nor the UACC will allow access. The RESTRICTED.FILESYS.ACCESS profile in the UNIXPRIV class can also be used to bypass the z/OS UNIX other permission bits during file access checking for RESTRICTED users.
ALTUSER

Note: If your installation has profiles defined in the PROGRAM class, and the user ID with the RESTRICTED attribute needs to load programs covered by one or more of these profiles, the user ID must be put on the access list with EXECUTE or READ authority.

NORESTRICTED
Specifies that the user does not have the RESTRICTED attribute and access checking is performed the standard way including global access checking, ID(*), the UACC, and the z/OS UNIX ‘other’ permission bits as appropriate.

RESUME | NORESUME

RESUME[[date]]
Specifies that the user is to be allowed to access the system again. You normally use RESUME to restore access to the system that has been prevented by a prior REVOKE.

If you specify a date, RACF prevents the user from accessing the system until the date you specify. The date must be a future date; if it is not, you are prompted to provide a future date.

Between the time you specify the RESUME and the time the RESUME takes effect, the RESUME is called a pending resumption (or a pending RESUME).

You specify a date in the form mm/dd/yy, and you need not specify leading zeros; specifying 9/1/06 is the same as specifying 09/01/06. RACF interprets dates as 20yy when yy is less than 71, and 19yy when yy is 71 or higher. So, 09/01/94 would be in the year 1994, and 09/01/14 would be in the year 2014.

If you specify RESUME without a date, the RESUME takes effect immediately.

When no REVOKE or pending REVOKE is in effect for the user, RACF ignores the RESUME operand.

Note:
1. If you use the ALTUSER command to issue a REVOKE for a user, you must use the ALTUSER command to issue the corresponding RESUME. Issuing RESUME on the CONNECT command does not restore access revoked on the ALTUSER command.

2. If you specify both REVOKE(date) and RESUME(date), RACF acts on them in date order. For example, if you specify RESUME(8/19/06) and REVOKE(8/5/06), RACF prevents the user from accessing the system from August 5, 2006, to August 18, 2006. On August 19, the user can again access the system.

 If a user is already revoked and you specify RESUME(8/5/06) and REVOKE(8/19/06), RACF allows the user to access the system from August 5, 2006, to August 18, 2006. On August 19, RACF prevents the user from accessing the system.

3. If RACF detects a conflict between REVOKE and RESUME (for example, you specify both without a date), RACF uses REVOKE.

4. To clear the RESUME date field, specify NORESUME.

5. To successfully resume a user whose revoke date has passed, you must specify NOREVOKE to clear the revoke date as well as specifying the RESUME keyword.
6. Downlevel systems sharing the RACF database should not be affected by the changes to REVOKE and RESUME processing. A user who is considered revoked on a z/OS V1R7 system should also be considered revoked on a downlevel system.

NORESUME
Specifies that RACF is to clear the user's RESUME date field. You can use the NORESUME option to cancel the pending resumption (of a user's ID) that resulted from a previous ALTUSER command specified with RESUME(date).

REVOKE | NOREVOKE
REVOKE[(date)]
Specifies that RACF is to prevent the user from accessing the system. The user's profile is not deleted from the RACF database, and the user's data sets are not deleted from the RACF data set.

If you specify the date, RACF prevents the user from accessing the system, starting on the date you specify. The date must be a future date; if it is not, you are prompted to provide a future date.

Between the time you specify the REVOKE and the time the REVOKE takes effect, the REVOKE is called a pending revocation (or a pending REVOKE).

You specify a date in the form mm/dd/yy, and you need not specify leading zeros; specifying 9/1/06 is the same as specifying 09/01/06. RACF interprets dates as 20yy when yy is less than 71, and 19yy when yy is 71 or higher. So, 09/01/94 would be in the year 1994, and 09/01/14 would be in the year 2014.

When you specify REVOKE without a date, the following conditions apply:
- The REVOKE takes effect the next time the user tries to log on to the system.
- Any pending RESUME date remains in effect unless you also specify NORESUME.

Important: To permanently revoke system access, specify both REVOKE and NORESUME.

When a REVOKE is already in effect for the user, RACF ignores the REVOKE operand and issues a message.

Note:
1. Specifying REVOKE on the ALTUSER command overrides RESUME on the CONNECT command.
2. If you specify both REVOKE(date) and RESUME(date), RACF acts on them in date order. For example, if you specify RESUME(8/19/06) and REVOKE(8/5/06), RACF prevents the user from accessing the system from August 5, 2006, to August 18, 2006. On August 19, the user can again access the system.
 If a user is already revoked and you specify RESUME(8/5/06) and REVOKE(8/19/06), RACF allows the user to access the system from August 5, 2006, to August 18, 2006. On August 19, RACF prevents the user from accessing the system.
3. If RACF detects a conflict between REVOKE and RESUME (for example, you specify both without a date), RACF uses REVOKE.
4. To clear the REVOKE date field, specify NOREVOKE.
ALTUSER

5. Downlevel systems sharing the RACF database should not be affected by the changes to REVOKE and RESUME processing. A user who is considered revoked on a z/OS V1R7 system should also be considered revoked on a downlevel system.

NOREVOKE

Specifies that RACF is to clear the user's REVOKE date field. You can use the NOREVOKE option to cancel the pending revocation (of a user’s ID) that resulted from a previous ALTUSER command specified with REVOKE(date).

To successfully resume a user whose revoke date has passed, you must specify NOREVOKE to clear the revoke date as well as specifying the RESUME keyword.

The NOREVOKE option does not resume the user ID after it was revoked by the ALTUSER REVOKE command or the user's excessive attempts to use incorrect passwords or password phrases.

SECLABEL | NOSECLABEL

SECLABEL(seclabel-name)

Specifies the user’s default security label where seclabel-name is an installation-defined security label that represents an association between a particular security level and a set of zero or more security categories.

A security label corresponds to a particular security level (such as CONFIDENTIAL) with a set of zero or more security categories (such as PAYROLL or PERSONNEL).

When no profile in the SECLABEL class exists for seclabel-name, an error message is issued and the user's security label is not changed.

NOSECLABEL

Specifies that the ALTUSER command is to delete any security label contained in the user profile.

SECLEVEL | NOSECLEVEL

SECLEVEL(seclevel-name)

Specifies the user’s security level, where seclevel-name is an installation-defined name that must be a member of the SECLEVEL profile in the SECDATA class. The security level name that you specify corresponds to the number of the minimum security level that a user must have to access the resource.

When you specify SECLEVEL and the SECDATA class is active, RACF adds security level access checking to its other authorization checking. If global access checking does not grant access, RACF compares the security level allowed in the user profile with the security level required in the resource profile. If the security level in the user profile is less than the security level in the resource profile, RACF denies the access. If the security level in the user profile is equal to or greater than the security level in the resource profile, RACF continues with other authorization checking.

Note: RACF does not perform security level checking for a started task or user that has the RACF privileged or trusted attribute. The RACF privileged or trusted attribute can be assigned to a started task through the RACF started procedures table or STARTED class, or to other users by installation-supplied RACF exits.
ALTUSER

When the SECDATA class is not active, RACF ignores this operand. When the SECLEVEL profile does not include a member for seclevel-name, you are prompted to provide a valid security level name.

NOSECELEVEL
Specifies that the ALTUSER command is to delete any security level contained in the user profile. The user no longer has access to any resource that requires a requester to have a certain security level.

SPECIAL | NOSPECIAL

SPECIAL
Specifies that the user is to be allowed to issue all RACF commands with all operands except the operands that require the AUDITOR attribute. SPECIAL specified on the ALTUSER command overrides NOSPECIAL specified on the CONNECT command.

You must have the SPECIAL attribute to use the SPECIAL operand.

NOSPECIAL
Specifies that the user no longer has the SPECIAL attribute.

You must have the SPECIAL attribute to use the NOSPECIAL operand.

TSO | NOTSO

TSO
Specifies that when you change the profile of a TSO user, you can enter any of the following suboperands to add or change default TSO logon information for that user. Each suboperand defines information that RACF stores in a field within the TSO segment of the user’s profile.

You can control access to an entire TSO segment or to individual fields within the TSO segment by using field-level access checking. For more information, see z/OS Security Server RACF Security Administrator’s Guide.

ACCTNUM | NOACCTNUM

ACCTNUM(account-number)
Specifies the user’s default TSO account number when logging on from the TSO/E logon panel. The account number you specify must be defined as a profile in the ACCTNUM general resource class, and the user must be granted READ access to the profile. Otherwise, the user cannot log on to TSO using the specified account number.

Account numbers can consist of any characters, and can be entered with or without single quotation marks. The following rules apply:

- If parentheses, commas, blanks, and semicolons are to be entered as part of the account number, the character string must be enclosed in single quotation marks. For example, if the account number is (123), you must enter ACCTNUM(' (123)').
- If a single quotation mark is intended to be part of the account number, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

A user can change an account number, or specify an account number if one has not been specified, using the TSO/E logon panel. RACF checks the user’s authorization to the specified account number. If the user is authorized to use the account number, RACF stores the account number in the TSO segment of
ALTUSER

the user's profile, and TSO/E uses it as a default value the next
time the user logs on to TSO/E. Otherwise, RACF denies the use
of the account number.

Note: When you define an account number on TSO, you can
specify 1 - 40 characters. When you define a TSO account number
to RACF, you can specify only 1 - 39 characters.

NOACCTNUM
Specifies that you want to delete the user's default account number.
If you delete the default account number from a user's profile,
RACF uses a default value consistent with current TSO defaults
when the user logs on to TSO.

COMMAND | NOCOMMAND

COMMAND(command-issued-at-logon)
Specifies the command to be run during TSO/E logon. TSO/E uses
this field to prime the COMMAND field of the logon panel. The
command value can contain 1 - 80 characters and consist of any
characters. You can enter the value with or without single
quotation marks depending on the following rules:
• If the command value contains parentheses, commas, blanks, or
 semicolons, enclose the character string in single quotation
 marks. For example, if the command value is (123), you must
 enter COMMAND('(123)').
• If a single quotation mark is intended to be part of the command
 value, use two single quotation marks together for each single
 quotation mark within the string, and enclose the entire string
 within single quotation marks.

Both uppercase and lowercase characters are accepted and
maintained in the case in which they are entered. A user can
change the command value, or specify a command if one has not
been specified, using the TSO/E logon panel.

Note: It is recommended that you use this command for a user
who is logged off. If you change the command value for a
currently logged-on user ID, the change is overwritten by the
TSO/E logoff command processor when the user ID is logged off.

NOCOMMAND
Deletes any COMMAND data that was previously saved in the
RACF database for this user ID.

Note: When you delete this field for a currently logged-on user ID,
the field is overwritten by the TSO/E logoff command processor
when the user ID is logged off.

DEST | NODEST

DEST(destination-id)
Specifies the default destination to which the user can route
dynamically allocated SYSOUT data sets. The specified value must
be 1 - 7 alphanumeric characters, beginning with an alphabetic or
national character.

NODEST
Specifies that you want to remove any default destination
ALTUSER

information for this user. Without explicit action by the user to route SYSOUT, the SYSOUT for this user is printed at your system default print location.

HOLDCLASS | NOHOLDCLASS

HOLDCLASS(hold-class)
 Specifies the user's default hold class. The specified value must be 1 alphanumeric character, excluding national characters.

 If you specify the TSO operand on the ALTUSER command but do not specify a value for HOLDCLASS, RACF uses a default value consistent with current TSO defaults.

NOHOLDCLASS
 Specifies that you want to delete the default hold class from the TSO segment of the user's profile. If you delete the default hold class from a user's profile, RACF uses a default value consistent with current TSO defaults when the user logs onto TSO.

JOBCLASS | NOJOBCLASS

JOBCLASS(job-class)
 Specifies the user's default job class. The specified value must be 1 alphanumeric character, excluding national characters.

 If you specify the TSO operand on the ALTUSER command but do not specify a value for JOBCLASS, RACF uses a default value consistent with current TSO defaults.

NOJOBCLASS
 Specifies that you want to delete the default job class from the TSO segment of the user's profile. If you delete the default job class from a user's profile, RACF uses a default value consistent with current TSO defaults when the user logs on to TSO.

MAXSIZE | NOMAXSIZE

MAXSIZE(maximum-region-size)
 Specifies the maximum region size that the user can request at logon. The maximum region size is the number of 1024-byte units of virtual storage that TSO can create for the user's private address space. The specified value must be an integer 0 - 2096128.

 If you specify the TSO operand on the ALTUSER command but do not specify a value for MAXSIZE, or specify MAXSIZE(0), RACF uses a default value consistent with current TSO defaults.

 If values are specified for both MAXSIZE and SIZE and SIZE is greater than MAXSIZE, RACF sets SIZE equal to MAXSIZE. If a value is specified for only SIZE or MAXSIZE and SIZE is greater than MAXSIZE, the operand is ignored.

NOMAXSIZE
 Specifies that you want to delete the maximum region size from the TSO segment of the user's profile. If you delete the maximum region size from a user's profile, RACF uses a default value consistent with current TSO defaults when the user logs on to TSO.

MSGCLASS | NOMSGCLASS
ALTUSER

MSGCLASS(message-class)
Specifies the user's default message class. The specified value must be one alphanumeric character, excluding national characters.

If you specify the TSO operand on the ALTUSER command but do not specify a value for MSGCLASS, RACF uses a default value consistent with current TSO defaults.

NOMSGCLASS
Specify that you want to delete the default message class from the TSO segment of the user's profile. If you delete the default message class from a user's profile, RACF uses a default value consistent with current TSO defaults when the user logs on to TSO.

PROC | NOPROC

PROC(logon-procedure-name)
Specifies the name of the user's default logon procedure when logging on through the TSO/E logon panel. The name you specify must be 1 - 8 alphanumeric characters and begin with an alphabetic character. The name must also be defined as a profile in the TSOPROC general resource class, and the user must be granted READ access to the profile. Otherwise, the user cannot log on to TSO using the specified logon procedure.

A user can change a logon procedure, or specify a logon procedure if one has not been specified, using the TSO/E logon panel. RACF checks the user's authorization to the specified logon procedure. If the user is authorized to use the logon procedure, RACF stores the name of the procedure in the TSO segment of the user's profile, and TSO/E uses it as a default value the next time the user logs on to TSO/E. Otherwise, RACF denies the use of the logon procedure.

NOPROC
Specify that you want to delete the default logon procedure from the TSO segment of the user's profile. If you delete the default logon procedure from a user's profile, RACF uses a default value consistent with current TSO defaults when the user logs on to TSO.

SECLABEL | NOSECLABEL

SECLABEL(security-label)
Specifies the user's security label if the user specifies one on the TSO logon panel.

NOSECLABEL
Specify that you want to delete the security label from the TSO segment of the user's profile. If you delete the security label from a user's TSO segment, RACF uses the security label in the user's profile the next time the user logs on to TSO.

SIZE | NOSIZE

SIZE(default-region-size)
Specifies the minimum region size if the user does not request a region size at logon. The default region size is the number of 1024-byte units of virtual storage available in the user's private address space at logon. The specified value must be an integer 0 - 2096128.

A user can change a minimum region size, or specify a minimum region size if one has not been specified, using the TSO/E logon
panel. RACF stores this value in the TSO segment of the user's profile, and TSO/E uses it as a default value the next time the user logs on to TSO.

If values are specified for both MAXSIZE and SIZE and SIZE is greater than MAXSIZE, RACF sets SIZE equal to MAXSIZE. If a value is specified for only SIZE or MAXSIZE and SIZE is greater than MAXSIZE, the operand is ignored.

NOSIZE

Specifies that you want to delete the default minimum region size from the TSO segment of the user's profile. If you delete the default minimum region size from a user's profile, RACF uses a default value consistent with current TSO defaults when the user logs on to TSO.

SYS | NOSYS

SYS(sysout-class)

Specifies the user's default SYSOUT class. The specified value must be one alphanumeric character, excluding national characters.

If you specify the TSO operand on the ALTUSER command but do not specify a value for SYS, RACF uses a default value consistent with current TSO defaults.

NOSYS

Specifies that you want to delete the default SYSOUT class from the TSO segment of the user's profile. If you delete the default SYSOUT class from a user's profile, RACF uses a default value consistent with current TSO defaults when the user logs on to TSO.

UNIT | NOUNIT

UNIT(unit-name)

Specifies the default name of a device or group of devices that a procedure uses for allocations. The specified value must be 1 - 8 alphanumeric characters.

NOUNIT

Specifies that you want to delete the default name of a device or group of devices that a procedure uses for allocations from the TSO segment of the user's profile. If you delete this name from a user's profile, RACF uses a default value consistent with current TSO defaults when the user logs on to TSO.

USERDATA | NOUSERDATA

USERDATA(user-data)

Specifies optional installation data defined for the user. The specified value must be 4 EBCDIC characters; valid characters are 0 - 9 and A - F.

Note: When you change this value for a currently logged-on user ID, the change is overwritten by the TSO logoff command processor when the user ID is logged off.

NOUSERDATA

Specifies that you want to delete the installation data previously defined for a user.
ALTUSER

NOTSO
Specifies that you are revoking a user's authority to use TSO. RACF deletes TSO logon information from the RACF database for the specified user. However, if the user ID is currently logged on, when the user issues the LOGOFF command the TSO logoff processor restores the TSO segment with default values (except for the USERDATA field which is set to the user's current value). To prevent the TSO segment from being restored, the user ID should be logged off before issuing the ALTUSER NOTSO command.

When you specify NOTSO, the result is the same as if you issue the TSO ACCOUNT command with the DELETE subcommand.

UACC(access-authority)
Specifies the new default universal access authority for all new resource profiles the user defines while the user's default group or the group specified in the GROUP operand is the user's current connect group. The universal access authorities are ALTER, CONTROL, UPDATE, READ, and NONE. (RACF does not accept EXECUTE access authority with the ALTUSER command.) If you specify UACC without a value, RACF ignores the operand.

This operand is group-related. If a user is subsequently connected to other groups (with the CONNECT command), the user can have a different default universal access authority in each group. Therefore, if the user specifies a different group at logon time or at batch job execution, the user's default UACC is the UACC of the specified group, not the UACC of the user's default group.

UAUDIT | NOUAUDIT

UAUDIT
Specifies that RACF is to log the following events:
- All RACF commands (except LISTDSD, LISTGRP, LISTUSER, RLIST and SEARCH) issued by this user
- All additions, changes, or deletions that the user makes to RACF profiles using RACROUTE REQUEST=DEFINE requests
- All attempts that the user makes to access RACF-protected resources, except those authorized by global access checking and those not logged because the resource manager (issuer of the RACROUTE REQUEST=AUTH or RACROUTE REQUEST=FASTAUTH request) specified no logging
- All security decisions made during RACF callable services involving this user and any resource in certain z/OS UNIX classes. For a list of these classes, see "Auditing for z/OS UNIX System Services" in z/OS Security Server RACF Auditor's Guide

You must have the AUDITOR attribute, or the user profile must be within the scope of a group in which you have the group-AUDITOR attribute, in order to enter the UAUDIT operand.

If an unauthorized user specifies UAUDIT on the ALTUSER command, none of the operands on the command is processed. RACF issues ICH21005I NOT AUTHORIZED TO SPECIFY UAUDIT, OPERAND IGNORED. The System Action states RACF ignores the operand and continues processing with the next operand. RACF verifies other operands, but does not process any of them. For more information, see z/OS Security Server RACF Messages and Codes.
NOAUDIT
Specifies that no UAUDES logging is to be performed. This operand does not override any other auditing options (for example, CMDVIOL specified on SETROPTS) that might be in effect.

You must have the AUDITOR attribute, or the user profile must be within the scope of a group in which you have the group-AUDITOR attribute, to enter the NOAUDIT operand.

WHEN
Specifies the days of the week and the hours in the day when the user is allowed to access the system from a terminal. The day-of-week and time restrictions apply only when a user logs on to the system; that is, RACF does not force the user off the system if the end-time occurs while the user is logged on. Also, the day-of-week and time restrictions do not apply to batch jobs; the user can submit a batch job on any day and at any time.

If you specify the WHEN operand, you can restrict the user’s access to the system to certain days of the week and to a certain time period within each day. For example, you can restrict a user’s access to any one of the following:

- From 9:00 a.m. to 5:00 p.m. (0900:1700). (This would be a daily restriction because days were not also specified.)
- Monday through Friday. (This restriction applies for all 24 hours of Monday, Tuesday, Wednesday, Thursday, and Friday.)
- Monday through Friday from 9:00 a.m. to 5:00 p.m. (0900:1700)

DAYS(day-info)
Specifies days of the week when a user can access the system. The day-info value can be any one of the following:

ANYDAY
Specifies that the user can access the system on any day.

WEEKDAYS
Specifies that the user can access the system only on weekdays (Monday through Friday).

day ...
Specifies that the user can access the system only on the days specified, where day can be MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, or SUNDAY, and you can specify the days in any order.

Restriction: You cannot specify more than one combination of days and times, even through multiple ALTUSER commands.

- Example:
 ALTUSER USER127 WHEN(DAYS(MONDAY TUESDAY) TIME(0100:0500))
 ALTUSER USER127 WHEN(DAYS(THURSDAY) TIME(0200:0500))

- Result:
 USER127 is allowed to access the system only on Thursday 2:00 - 5:00. The preceding DAYS(MONDAY TUESDAY) and TIME(0100:0500) operands are overwritten.

TIME(time-info)
Specifies the time period each day when a user can access the system. The time-info value can be any one of the following:

ANYTIME
Specifies that the user can access the system at any time.
ALTUSER

start-time: end-time

Specifies that the user can access the system only during the specified time period. The format of both start-time and end-time is hhmm, where hh is the hour in 24-hour notation (00 - 23) and mm is the minutes (00 - 59). Note that 0000 is not a valid time value.

If start-time is greater than end-time, the interval spans midnight and extends into the following day.

If you omit DAYS and specify TIME, the time restriction applies to any day-of-week restriction already indicated in the profile. If you omit TIME and specify DAYS, the day restriction applies to the time restriction already indicated in the profile. If you specify both DAYS and TIME, the user can access the system only during the specified time period and only on the specified days.

If you omit both DAYS and TIME, the time and day restriction remains as it was in the profile.

WORKATTR | NOWORKATTR

WORKATTR

Specifies the user-specific attributes of a unit of work.

z/OS elements or features such as APPC, WLM, and z/OS UNIX might use the WORKATTR segment.

These operands are used by APPC/MVS for SYSOUT created by APPC transactions.

WAACNT(account-number) | NOWAACNT

Specifies an account number for APPC/MVS processing.

You can specify a maximum of 255 EBCDIC characters. Use the following rules when entering a value for this field:

- If the data contains parentheses, commas, blanks, or semicolons, enclose the character string in single quotation marks. For example, if the data is (123), you must enter 'WAACNT(123)'.

- If a single quotation mark is intended to be part of the data, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

The NOWAACNT suboperand deletes the account number from the user profile.

WAADDRn(address-line-n) | NOWADDRn

Where n can be 1 - 4, address-line-n specifies other address lines for SYSOUT delivery. For each line of the address you can specify a maximum of 60 EBCDIC characters. Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

Use the following rules when entering a value for this field:

- If the data contains parentheses, commas, blanks, or semicolons, enclose the character string in single quotation marks. For example, if the data is (123), you must enter 'WAADDR('123')'.

If a single quotation mark is intended to be part of the data, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

The NOWAADDR suboperand deletes address line \(n \) from the user profile.

\textbf{WABLDG(building) | NOWABLDG}

Specifies the building that SYSOUT information is to be delivered to.

You can specify a maximum of 60 EBCDIC characters. Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

Use the following rules when entering a value for this field:

- If the data contains parentheses, commas, blanks, or semicolons, enclose the character string in single quotation marks. For example, if the data is \((123)\), you must enter \texttt{WABLDG(’(123)’)}.
- If a single quotation mark is intended to be part of the data, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

The NOWABLDG suboperand deletes the building from the profile.

\textbf{WADEPT(department) | NOWADEPT}

Specifies the department that SYSOUT information is to be delivered to.

You can specify a maximum of 60 EBCDIC characters. Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

Use the following rules when entering a value for this field:

- If the data contains parentheses, commas, blanks, or semicolons, enclose the character string in single quotation marks. For example, if the data is \((123)\), you must enter \texttt{WADEPT(’(123)’)}.
- If a single quotation mark is intended to be part of the data, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

The NOWADEPT suboperand deletes the department from the profile.

\textbf{WANAME(name) | NOWANAME}

Specifies the name of the user SYSOUT information is to be delivered to.

You can specify a maximum of 60 EBCDIC characters. Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

Use the following rules when entering a value for this field:

- If the data contains parentheses, commas, blanks, or semicolons, enclose the character string in single quotation marks. For example, if the data is \((123)\), you must enter \texttt{WANAME(’(123)’)}.
ALTUSER

- If a single quotation mark is intended to be part of the data, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

The NOWANAME suboperand deletes the name from the profile.

WAROOM(room) | NOWAROOM

Specifies the room SYSOUT information is to be delivered to.

You can specify a maximum of 60 EBCDIC characters. Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

Use the following rules when entering a value for this field:

- If the data contains parentheses, commas, blanks, or semicolons, enclose the character string in single quotation marks. For example, if the data is (123), you must enter WAROOM(' (123)').
- If a single quotation mark is intended to be part of the data, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

The NOWAROOM suboperand deletes the room from the profile.

NOWORKATTR

Specifies that you want to delete the work attributes previously defined for a user.

Examples

Example 1

Operation User IA0 wants to alter the level of group authority from USE to CREATE for user DAF0 in the user's (DAF0's) default group so user DAF0 can define generic profiles for data sets in group RESEARCH.

Known User IA0 is the owner of user DAF0 and has JOIN authority in the group RESEARCH.

The default group for user DAF0 is RESEARCH.

User IA0 wants to issue the command as a RACF TSO command.

Command ALTUSER DAF0 AUTHORITY(CREATE)

Defaults GROUP(RESEARCH)

Example 2

Operation User CD0 wants to correct his name and change his default group to PAYROLL.

Known The default group for user CD0 is RESEARCH.

User CD0 has USE authority in the group PAYROLL.

User CD0 wants to issue the command as a RACF TSO command.

Command ALTUSER CD0 NAME(CDAVIS) DFLTGRP(PAYROLL)

Defaults None.
Example 3

Operation User IA0 wants to add the FINANCIAL category and the CONFIDENTIAL security level to user ESH25's profile and restrict the user's access to the system to weekdays from 8:00 a.m. - 8:00 p.m.

Known User IA0 is connected to group PAYROLL with the group-SPECIAL attribute. Group PAYROLL is user ESH25's default group.

User IA0's profile includes the FINANCIAL category and the CONFIDENTIAL security level. The FINANCIAL category and the CONFIDENTIAL security level have been defined to RACF.

User IA0 wants to issue the command as a RACF TSO command.

Command

```
ALTUSER ESH25 ADDCATEGORY(FINANCIAL) SECLEVEL(CONFIDENTIAL) WHEN(DAYS(WEEKDAYS) TIME(0800:2000))
```

Defaults None.

Example 4

Operation User RADM02 wants to revoke the user ID of an employee, user D5819, who will be on vacation for three weeks, starting on August 5, 1994. User RADM02 wants to direct the command to run at the local node under the authority of user HICKS and prohibit the command from being automatically directed to other nodes.

Known Users RADM02 and HICKS have the SPECIAL attribute. Today's date is August 3, 1994. User RADM02 wants to issue the command as a RACF TSO command. Users RADM02 and HICKS have an already established user ID association.

Command

```
ALTUSER D5819 REVOKE(8/5/94) RESUME(8/26/94) ONLYAT(.HICKS)
```

Results The command is only processed on the local node and not automatically directed to any other nodes in the RRSF configuration.

Example 5

Operation User RGB01 wants to remove all class authorities and the AUDITOR attribute from user USER1, and wants to audit all activity by user USER1.

Known User RGB01 has the SPECIAL and AUDITOR attributes.

User USER1 is an existing user.

User RGB01 wants to issue the command as a RACF TSO command.

Command

```
ALTUSER USER1 NOCLAUTH(USER TERMINAL) NOAUDITOR UAUDIT
```

Defaults None.

Example 6

Operation User RADMIN wants to change the installation-defined information contained in the SJR1 user ID entry, and delete the model name information.

Known User RADMIN is the owner of user ID SJR1. User RADMIN wants to issue the command as a RACF TSO command.

Command

```
ALTUSER SJR1 DATA('RESOURCE USAGE ADMINISTRATOR NAME TOM P.') NOMODEL
```

Defaults None.
Example 7
Operation
User VROGERS wants to change default TSO logon information for user BNORTH. User BNORTH requires the following changes:
- A new TSO account number, 12345
- A new TSO logon procedure, LPROC12
- A new SYSOUT data set destination, BL2030
- A new SYSOUT class, Z
- A new maximum region size, 18000.

Known
- User VROGERS has the SPECIAL attribute.
- User BNORTH has been defined to RACF with authority to use TSO.
- 12345 has been defined to RACF as a profile in the ACCTNUM general resource class, and user BNORTH has been given READ access to this profile.
- LPROC12 has been defined to RACF as a profile in the TSOPROC general resource class, and user BNORTH has been given READ access to this profile.
- User VROGERS wants to issue the command as a RACF TSO command.

Command
ALTUSER BNORTH TSO(ACCTNUM(12345) PROC(LPROC12) DEST(BL2030) SYS(Z) MAXSIZE(18000))

Defaults
None.

Example 8
Operation
User MIKEM wants to make the following changes to the profile for user MARTIN:
- Change the default DFP management class to MGMT617
- Change the default DFP storage class to STOR533
- Delete the default DFP data application.

Known
- User MIKEM has the SPECIAL attribute.
- User MARTIN has been defined to RACF, and MARTIN's user profile contains a DFP segment.
- MGMT617 has been defined to RACF as a profile in the MGMTCLAS general resource class, and user MARTIN has been given READ access to this profile.
- STOR533 has been defined to RACF as a profile in the STORCLAS general resource class, and user MARTIN has been given READ access to this profile.
- User MIKEM wants to issue the command as a RACF TSO command.

Command
ALTUSER MARTIN DFP(MGMTCLAS(MGMT617) STORCLAS(STOR533) NODATAAPPL))

Defaults
None.

Example 9
Operation
A user with SPECIAL authority wants to make existing z/OS UNIX System Services user CSMITH a superuser and delete PROGRAM from CSMITH's profile so that the default z/OS UNIX shell program is used when CSMITH enters the TSO/E command OMVS.

Known
User CSMITH is already defined to OMVS. The user with SPECIAL authority wants to issue the command as a RACF TSO command.

Command
ALTUSER CSMITH OMVS(UID(0) NOPROGRAM)

Defaults
None.

Example 10
Operation
A user with SPECIAL authority wants to make existing z/OS UNIX System Services DCE user CSMITH, a z/OS UNIX System Services superuser and change the HOMECELL name to /.../hootie.scarol.ibm.com.

Known
The DCE UUID for the /.../hootie.scarol.ibm.com cell is 003456ab-ecb7-7de3-ebda-95531ed63dae.

Command
ALTUSER CSMITH OMVS(UID(0))
DCE(HOMECELL('/.../hootie.scarol.ibm.com')
HOMEUID(003456ab-ecb7-7de3-ebda-95531ed63dae))

Defaults
None.
ALTUSER

Example 11

Operation
A help desk consultant wants to reset a user’s password.

Known
- The consultant is authorized to reset passwords
- The consultant’s RACF user ID (or RACF group associated with the help desk consultant’s user ID) has been permitted by the security administrator with READ access to the RACF FACILITY class profile IRRPASSWORD.RESET.
- The help desk consultant is resetting user JIMBOB’s password.

Command
ALTUSER JIMBOB PASSWORD(TEMP012X)

Defaults
EXPIRED

Example 12

Operation
A help desk consultant wants to reset an application’s password.

Known
A help desk consultant has been authorized to reset passwords. The consultant’s RACF user ID (or the RACF group associated with the consultant’s user ID) has been permitted by the security administrator with UPDATE access to the RACF FACILITY class profile IRRPASSWORD.RESET.

In this example, at the request of operations personnel, the consultant is resetting the user ID associated with an application called CUSTAPP.

The consultant uses the NOEXPIRED operand so the application user ID (CUSTAPP in this example) does not need to change the password when it is logged on.

To reset the application’s password, the consultant enters:

Command
ALTUSER CUSTAPP PASSWORD(STBR01R) NOEXPIRED

Note: The password value STBR01R must satisfy the installation’s password quality rules enforced by both SETROPTS and ICHPWX01.

Defaults
None.

Example 13

Operation
User RACFADM with SPECIAL or UPDATE authority requests the alteration of a RACF user to add Lotus Notes information and to delete the NDS segment from the user’s profile.

Known
User RACFADM has SPECIAL authority or UPDATE authority to the desired field within the segment.

Command
ALTUSER PCUSER2 LNOTES(SNAME(B.B.SMITH)) NONDS

Defaults
None.

Example 14

Operation
User RACFADM with SPECIAL authority adds the user IDs PUBLIC, RACFU00, and USER04. The user ID PUBLIC is then altered and is assigned RESTRICTED access.

Known
User RACFADM has SPECIAL authority.

Command
ADDUSER (PUBLIC RACFU00 USER004)
ALTUSER PUBLIC RESTRICTED
ADDSO 'RACFU00.*' UACC(READ)

Defaults
RACFU00, USER004, and PUBLIC have NORESTRICTED access by default.

Example 15

Operation
An existing user, whose RACF user profile is RONTOMS, is defining a z/OS Integrated Security Services Network Authentication Service account within the local realm. MAXTKTLFE is not specified, so the value specified on the definition of the local realm KERBDFLT in the REALM class is used.

Known
User RONTOMS wants to alter his user profile in order to add z/OS Integrated Security Services Network Authentication Service information.

Command
ALTUSER RONTOMS KERB(KERBNAME('KerberizedUser'))
PASSWORD(BUNG21R) NOEXPIRED

Defaults
None.

Example 16

Operation
User RACFADMN issues a command to delete the profile that references the EIM domain in the LDAPBIND class for user MRSERVER.

Known
The profile in the LDAPBIND class that defines the EIM LDAP values is no longer required for EIM processing

Command
ALTUSER MRSERVER EIM(NOLDAPPROF)

Defaults
None.
ALTUSER

Example 17

Operation User RACFADM with SPECIAL authority alters a user’s values for allowable shared and nonshared memory allocation.

Known User RACFADM has SPECIAL authority.

Command ALTUSER OMVSUSER OMVS(SHMEMMAX(5M) MEMLIMIT(1G))

Defaults None.

Output See Figure 3

```
LU OMVSUSER OMVS NORACF

USER=OMVSUSER

OMVS INFORMATION
----------------
UID= 0000000005
CPUTILMEMMAX= NONE
ASSIZEMAX= NONE
FILEPROCCHMAX= NONE
PROCUSERMAX= NONE
THREADSOMAX= NONE
MMAPAREAMAX= NONE
MEMLIMIT= 1G
SHMEMMAX= 5M
```

Figure 3. Output for ALTUSER command for OMVS Segment
CONNECT (Connect user to group)

Purpose

Use the CONNECT command to connect a user to a group, modify a user’s connection to a group, or assign the group-related user attributes. If you are creating a connection, defaults are available as stated for each operand. If you are modifying an existing connection, no defaults apply.

RACF date handling: RACF interprets dates with 2-digit years as follows. (The yy value represents the 2-digit year.)
- If $70 < yy <= 99$, the date is interpreted as $19yy$.
- If $00 <= yy <= 70$, the date is interpreted as $20yy$.

Issuing options

The following table identifies the eligible options for issuing the CONNECT command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.

Related commands

- To list a user’s connections groups, see “LISTUSER (List user profile)” on page 235.
- To list the users connected to a group, see “LISTGRP (List group profile)” on page 226.
- To remove a user from a group, see “REMOVE (Remove user from group)” on page 544.

Authorization required

The specified users and group must already be defined to RACF.

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.

To use the CONNECT command, you must have at least one of the following:
- The SPECIAL attribute
- The group-SPECIAL attribute in the group
- The ownership of the group
CONNECT

- **JOIN or CONNECT authority in the group.**

You cannot give a user a higher level of authority in the group than you have.

To specify the AT keyword, you must have READ authority to the DIRECT.<node> resource in the RRSFDATA class and a user ID association must be established between the specified <node>.<userid> pair(s).

To specify the ONLYAT keyword you must have the SPECIAL attribute, the <userid> specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified <node>.<userid> pair(s) if the user IDs are not identical.

Note: If a user is added to a RACF group as a result of a CONNECT command while the user is logged on, the user must logoff and logon again to use that authority to access resources in classes that have been RACLISTed. In addition, started tasks have to STOP and START to use the new authority. This might include started tasks such as JES2 or JES3.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the CONNECT command is:

```
[subsystem-prefix]CONNECT CO
   (userid ...)
   [ ADSP | NOADSP ]
   [ AT([node].userid ...) | ONLYAT([node].userid ...) ]
   [ AUDITOR | NOAUDITOR ]
   [ AUTHORITY(group-authority) ]
   [ GROUP(group-name) ]
   [ GRPACC | NOGRPACC ]
   [ OPERATIONS | NOOPERATIONS ]
   [ OWNER(userid or group-name) ]
   [ RESUME [(date)] | NORESUME ]
   [ REVOKE [(date)] | NOREVOKE ]
   [ SPECIAL | NOSPECIAL ]
   [ UACC [(access-authority)] ]
```

For information on issuing this command as a RACF TSO command, refer to Chapter 3, "RACF TSO commands," on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, "RACF operator commands," on page 21.

Parameters

- **subsystem-prefix**
 Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.
Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

userid

Specifies the RACF-defined user to be connected to, or modified in, the group specified in the GROUP operand. If you are specifying more than one user, you must enclose the user IDs in parentheses.

In general, the maximum number of users you can connect to one group is 5957. See [z/OS Security Server RACF Macros and Interfaces](#) for information about how to determine the exact maximum number.

The exception to this is a group that has been defined as a UNIVERSAL group. A UNIVERSAL group may have an unlimited number of users, with USE authority, connected to it for the purpose of resource access.

The number of users in a universal group with authority higher than USE, or with the attributes SPECIAL, OPERATIONS or AUDITOR at the group level, is still limited to 5957.

When displayed with the LISTGRP command, all members of a UNIVERSAL group will be listed. Only users with authority higher than USE or with the attributes SPECIAL, OPERATIONS or AUDITOR at the group level will be shown in the member list.

This operand is required and must be the first operand following CONNECT.

ADSP | NOADSP

ADSP

Specifies that when the user is connected to this group, all permanent tape and DASD data sets created by the user is RACF-protected by discrete profiles.

RACF ignores the ADSP attribute at LOGON/job initiation if SETROPTS NOADSP is in effect.

NOADSP

Specifies that the user is not to have the ADSP attribute. If you are creating a connection and omit both ADSP and NOADSP, NOADSP is the default. A user attribute of ADSP specified on the ADDUSER or ALTUSER command overrides NOADSP as a connect attribute.

AT | ONLYAT

The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.

AT([node].userid ...)

Specifies that the command is to be directed to the node specified by `node`, where it runs under the authority of the user specified by `userid` in the RACF subsystem address space.

If `node` is not specified, the command is directed to the local node.

ONLYAT([node].userid ...)

Specifies that the command is to be directed only to the node specified by `node` where it runs under the authority of the user specified by `userid` in the RACF subsystem address space.

If `node` is not specified, the command is directed only to the local node.

AUDITOR | NOAUDITOR
AUDITOR

Specifies that the user is to have the group-AUDITOR attribute when connected to this group.

To enter the AUDITOR operand, you must have either the SPECIAL attribute or the group-SPECIAL attribute in the group to which you are connecting or modifying the user’s profile.

NOAUDITOR

Specifies that the user is not to have the group-AUDITOR attribute when connected to this group. When you are creating a connection and omit both AUDITOR and NOAUDITOR, NOAUDITOR is the default. If you are modifying an existing connection, you must have either the SPECIAL attribute or the group-SPECIAL attribute in the group in which you are modifying the user’s profile.

A user attribute of AUDITOR specified on the ADDUSER or ALTUSER command overrides NOAUDITOR as a connect attribute.

AUTHORITY(group-authority)

Specifies the level of authority the user is to have in the group. The valid group authority values are USE, CREATE, CONNECT, and JOIN, as described in “Group authorities” on page 13. If you are creating a connection and omit AUTHORITY or enter it without a value, the default is USE.

You cannot give a user a higher level of authority in the group than you have.

GROUP(group-name)

Specifies a RACF-defined group. If you omit this operand, the user is connected to or modified in your current connect group.

Note: RACF allows you to connect a user to more than 300 groups, which is the same as NGROUPS_MAX variable defined in the POSIX standard, but when z/OS UNIX group information is requested, only up to the first 300 z/OS UNIX groups that have GIDs are associated with the process or user.

The first 300 z/OS UNIX groups that have GIDs to which a user is connected are used by z/OS UNIX. LISTUSER displays the groups in the order that RACF examines them when determining which of the user's groups are z/OS UNIX groups.

In addition, the number of users connected to a group should be within the limits allowed by the NFS client for remote access to files. See z/OS UNIX System Services Planning for information on NGROUPS_MAX.

GRPACC | NOGRPACC

GRPACC

Specifies that when the user is connected to this group, any group data sets defined by the user are automatically accessible to other users in the group. The group whose name is used as the high-level qualifier of the data set name (or the qualifier supplied by a command installation exit) has UPDATE access authority to the data set.

NOGRPACC

Specifies that the user is not to have the GRPACC attribute. If you are creating a connection and omit both GRPACC and NOGRPACC, NOGRPACC is the default. A user attribute of GRPACC specified on the ADDUSER or ALTUSER command overrides NOGRPACC as a connect attribute.

OPERATIONS | NOOPERATIONS
OPERATIONS
Specifies that the user is to have the group-OPERATIONS attribute when connected to this group. The group-OPERATIONS user has authorization to do maintenance operations on all RACF-protected DASD data sets, tape volumes, and DASD volumes within the scope of the group unless the access list for a resource specifically limits the OPERATIONS user to an access authority that is less than the operation requires.

You establish the lower access authority for the group-OPERATIONS user through the PERMIT command.

To enter the OPERATIONS operand, you must have the SPECIAL attribute or the group-SPECIAL attribute in the group to which you are connecting or modifying the user's profile.

NOOPERATIONS
Specifies that the user is not to have the group-OPERATIONS attribute in this group. If you are creating a connection and omit both OPERATIONS and NOOPERATIONS, NOOPERATIONS is the default. If you are modifying an existing connection, you must have the SPECIAL attribute or the group-SPECIAL attribute in the group in which you are modifying the user's profile.

A user attribute of OPERATIONS specified on the ADDUSER or ALTUSER command overrides NOOPERATIONS as a connect attribute.

OWNER(userid or group-name)
Specifies a RACF-defined user or group to be assigned as the owner of the connect profile. If you are creating a connection and you do not specify an owner, you are defined as the owner of the connect profile.

RESUME | NORESUME
RESUME[(date)]
Specifies that the user, when connected to the group specified on the GROUP operand, is to be allowed to access the system again. You normally use RESUME to restore access to the system that has been prevented by a prior REVOKE operand. (RESUME, using the current date, is also the default when you are using the CONNECT command to create an initial connection between a user and this group.)

If you specify a date, RACF does not allow the user to access the system until the date you specify. The date must be a future date; if it is not, you are prompted to provide a future date.

Between the time you specify the RESUME and the time the RESUME takes effect, the RESUME is called a pending resumption (or a pending RESUME).

You specify a date in the form mmm/dd/yy, and you need not specify leading zeros; specifying 9/1/06 is the same as specifying 09/01/06. The date must be a future date; if it is not, you are prompted to provide a future date. RACF interprets dates as 20yy when yy is less than 71, and 19yy when yy is 71 or higher. So, 09/01/94 would be in the year 1994, and 09/01/14 would be in the year 2014.

If you specify RESUME without a date, the RESUME takes effect immediately.

When no REVOKE is in effect for the user, RACF ignores the RESUME operand and issues a message.
Note:
1. If you use the ALTUSER command to issue a REVOKE for a user, you must use the ALTUSER command to issue the corresponding RESUME. Issuing RESUME on the CONNECT command does not restore access revoked on the ALTUSER command.
2. If you specify both REVOKE(date) and RESUME(date), RACF acts on them in date order. For example, if you specify RESUME(8/19/06) and REVOKE(8/5/06), RACF prevents the user from accessing the system from August 5, 2006, to August 18, 2006. On August 19, the user can again access the system.
 If a user is already revoked and you specify RESUME(8/5/06) and REVOKE(8/19/06), RACF allows the user to access the system from August 5, 2006, to August 18, 2006. On August 19, RACF prevents the user from accessing the system.
3. If RACF detects a conflict between REVOKE and RESUME (for example, you specify both without a date), RACF uses REVOKE.
4. To clear the RESUME date field, specify NORESUME.
5. To successfully resume a user whose revoke date has passed, you must specify NOREVOKE to clear the revoke date as well as specifying the RESUME keyword.
6. Downlevel systems sharing the RACF database should not be affected by the changes to REVOKE and RESUME processing. A user who is considered revoked on a z/OS V1R7 system should also be considered revoked on a downlevel system.

NORESUME
Specifies that RACF is to clear the RESUME date field in the user's group connection. You can use the NORESUME option to cancel the pending resumption (of a user's group connection) that resulted from a previous CONNECT command specified with RESUME(date).

REVOKE | NOREVOKE
REVOKE[[date]]
Specifies that RACF is to prevent the user from accessing the system by attempting to connect to the group specified on the GROUP operand. The user's profile and data sets are not deleted from the RACF database.

If you specify a date, RACF does not prevent the user from accessing the system until the date you specify. The date must be a future date; if it is not, you are prompted to provide a future date.

You specify a date in the form mm/dd/yy, and you need not specify leading zeros; specifying 9/1/06 is the same as specifying 09/01/06. The date must be a future date; if it is not, you are prompted to provide a future date.
RACF interprets dates as 20yy when yy is less than 71, and 19yy when yy is 71 or higher. So, 09/01/94 would be in the year 1994, and 09/01/14 would be in the year 2014.

Between the time you specify the REVOKE and the time the REVOKE takes effect, the REVOKE is called a pending revocation (or a pending REVOKE).

When you specify REVOKE without a date, the following conditions apply:
• The REVOKE takes effect the next time the user tries to log on to the system.
• Any pending RESUME date remains in effect unless you also specify NORESUME.

Important: To permanently revoke system access, specify both REVOKE and NORESUME.

When a REVOKE is already in effect for the user, RACF ignores the REVOKE operand and issues a message.

Note:

1. If you specify both REVOKE(*date*) and RESUME(*date*), RACF acts on them in date order. For example, if you specify RESUME(8/19/06) and REVOKE(8/5/06), RACF prevents the user from accessing the system from August 5, 2006, to August 18, 2006. On August 19, the user can again access the system.

 If a user is already revoked and you specify RESUME(8/5/06) and REVOKE(8/19/06), RACF allows the user to access the system from August 5, 2006, to August 18, 2006. On August 19, RACF prevents the user from accessing the system.

2. If RACF detects a conflict between REVOKE and RESUME (for example, you specify both without a date), RACF uses REVOKE.

3. To clear the REVOKE date field, specify NOREVOKE.

4. Downlevel systems sharing the RACF database should not be affected by the changes to REVOKE and RESUME processing. A user who is considered revoked on a z/OS V1R7 system should also be considered revoked on a downlevel system.

NOREVOKE

Specifies that RACF is to clear the REVOKE date field in the user's group connection. You can use the NOREVOKE option to cancel the pending revocation (of a user's group connection) that resulted from a previous CONNECT command specified with REVOKE(*date*).

To successfully resume a user whose revoke date has passed, you must specify NOREVOKE to clear the revoke date as well as specifying the RESUME keyword.

The NOREVOKE option does not resume the user's group connection after it was revoked by the CONNECT REVOKE command.

SPECIAL | NOSPECIAL

SPECIAL

Specifies that the user is to have the group-SPECIAL attribute when connected to this group. To enter the SPECIAL operand, you must have the SPECIAL attribute or the group-SPECIAL attribute in the group to which you are connecting or modifying the user's profile.

NOSPECIAL

Specifies that the user is not to have the group-SPECIAL attribute. If you are creating a connection and omit both SPECIAL and NOSPECIAL, NOSPECIAL is the default. If you are modifying an existing connection, you must have the SPECIAL attribute or the group-SPECIAL attribute in the group in which you are modifying the user's profile.

A user attribute of SPECIAL specified on the ADDUSER or ALTUSER command overrides NOSPECIAL as a connect attribute.

UACC((access-authority))

Specifies the default value for the universal access authority for all new
CONNECT

resource profiles the user defines while the specified group is the user's current connect group. The universal access authorities are ALTER, CONTROL, UPDATE, READ, and NONE. (RACF does not accept EXECUTE access authority with the CONNECT command.) If you are creating a connection and omit UACC or enter it without a value, the default is NONE.

This operand is group-related. The user can have a different default universal access authority in each of the groups to which the user is connected (with the CONNECT command).

Examples

Example 1

Operation User WJE10 wants to connect users AFG5 and GMD2 to group PAYROLL and to make PAYROLL the owner of the connect profiles.

Known User WJE10 has JOIN authority to group PAYROLL.

- User WJE10 is currently connected to group PAYROLL.
- Users AFG5 and GMD2 are defined to RACF but not connected to group PAYROLL.
- User WJE10 wants to issue the command as a RACF TSO command.

Command

```
CONNECT (AFG5 GMD2) OWNER(PAYROLL)
```

Defaults

GROUP(PAYROLL) AUTHORITY(USE) UACC(NONE) NOADSP NOGRPACC RESUME NOOPERATIONS NOSPECIAL NOAUDITOR

Example 2

Operation User WRH0 wants to CONNECT user PDJ6 to group RESEARCH with CREATE authority and universal access of UPDATE. User WRH0 wants to direct the command to run under the authority of user EMWIN at node RALNC.

Known User EMWIN at RALNC has CONNECT authority to group RESEARCH.

- RESEARCH is not the default group of user EMWIN at RALNC.
- User PDJ6 is defined to RACF on node RALNC but is not connected to group RESEARCH.
- User WRH0 wants to issue the command as a RACF TSO command.
- WRH0 and EMWIN at RALNC have an already established user ID association.

Command

```
CONNECT PDJ6 GROUP(RESEARCH) AUTHORITY(CREATE) UACC(UPDATE)
AT(RALNC.EMWIN)
```

Defaults

NOGRPACC RESUME NOOPERATIONS NOSPECIAL NOAUDITOR

Example 3

Operation User IRB01 wants to revoke the user ID of an employee, user D5819, who will be on vacation for three weeks, starting on August 5, 1994.

Known User IRB01 is the owner of the profile for user D5819. Today's date is August 3, 1994. User IRB01 wants to issue the command as a RACF operator command, and the RACF subsystem prefix is @.

Command

```
@CONNECT D5819 REVOKE(8/5/94) RESUME(8/26/94)
```

Defaults None.
DELDSD (Delete data set profile)

Purpose

Use the DELDSD command to remove RACF protection from tape or DASD data sets that are protected by either discrete or generic profiles.

When RACF-protection is removed from a data set protected by a discrete profile:
- The RACF indicator for the data set is turned off. For a DASD data set, the indicator is in the DSCB for a non-VSAM data set or in the catalog entry for a VSAM data set. For a tape data set, the indicator is in the TVTOC entry for the data set in the corresponding TAPEVOL profile.
- The data set profile is deleted from the RACF database. (Note that the data set itself is not physically deleted or scratched.)
 If all the data sets in the TVTOC have expired, then RACF deletes the TAPEVOL profiles and the associated tape DATASET profiles.

To remove RACF protection from a non-VSAM DASD data set that is protected by a discrete profile, the data set must be online and not currently in use. For a VSAM data set that is protected by a discrete profile, the catalog for the data set must be online. The VSAM data set itself must also be online if the VSAM catalog recovery option is being used. If the required data set or catalog is not online, the DELDSD command processor requests that the volume be mounted if you have the TSO MOUNT authority.

Changes made to discrete profiles take effect after the DELDSD command is processed. Changes made to generic profiles do not take effect until one or more of the following steps is taken:
- The user of the data set issues the LISTDSD command:
 LISTDSD DA(data-set-protected-by-the-profile) GENERIC

 Note: Use the data set name, not the profile name.
- The security administrator issues the SETROPTS command:
 SETROPTS GENERIC(DATASET) REFRESH
 See SETROPTS command for authorization requirements.
- The user of the data set logs off and logs on again.

 Note: For more information, refer to the z/OS Security Server RACF Security Administrator’s Guide.

Issuing options

The following table identifies the eligible options for issuing the DELDSD command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.
DELDSD

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.

Related commands

- To create a data set profile, see ADDSD (Add data set profile) on page 33.
- To change a data set profile, see ALTDS (Alter data set profile) on page 93.
- To display a data set profile, see LISTDS (List data set profile) on page 213.
- To obtain a list of data set profiles, see SEARCH (Search RACF database) on page 580.

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.

To remove RACF protection from a data set or to delete a generic data set profile, you must have sufficient authority over the data set. RACF performs authorization checking in the following sequence until you meet one of these conditions:

- You have the SPECIAL attribute.
- The data set profile is within the scope of a group in which you have the group-SPECIAL attribute.
- The high-level qualifier of the profile name (or the qualifier supplied by a command installation exit) is your user ID.
- You are the owner of the profile.
- For a discrete profile, you are on the access list with ALTER authority.
- For a discrete profile, your group or one of your groups (if checking list of groups is active) is on the access list and has ALTER authority.
- For a discrete profile, the universal access authority is ALTER.

To specify the AT keyword, you must have READ authority to the DIRECT.node resource in the RRSFDATA class and a user ID association must be established between the specified node.userid pair(s).

To specify the ONLYAT keyword you must have the SPECIAL attribute, the userid specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified node.userid pair(s) if the user IDs are not identical.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the DELDSD command is:

```
[subsystem-prefix][DELDSD | DD]
(profile-name...)
   [ AT([node].userid ...) | ONLYAT([node].userid ...) ]
   [ GENERIC | NOSET | SET ]
   [ VOLUME(volume-serial) ]
```

DELDSD

Note: If you specify a profile name containing generic characters, RACF ignores the VOLUME, SET and NOSET operands.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.
For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

Parameters

subsystem-prefix
Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

profile-name ...
Specifies the name of the discrete or generic profile. If you specify more than one profile, the list must be enclosed in parentheses.

This operand is required and must be the first operand following DELDSD.

Note: Because RACF uses the RACF database and not the system catalog, you cannot use alias data set names.

AT | ONLYAT
The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.

AT([node].userid ...)
Specifies that the command is to be directed to the node specified by node, where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed to the local node.

ONLYAT([node].userid ...)
Specifies that the command is to be directed only to the node specified by node where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed only to the local node.

GENERIC | NOSET | SET
If you do not specify GENERIC, NOSET, or SET, the default value is SET.

GENERIC
Specifies that RACF is to treat the profile name as a generic name, even if it does not contain any generic characters.

NOSET | SET
Specifies whether the RACF indicator should be set off or not.
DELDSD

If the profile name contains a generic character or if you specify GENERIC, RACF ignores this operand.

NOSET

Specifies that RACF is not to turn off the RACF indicator for the data set.

Use NOSET when you are transferring a RACF-indicated data set to another system where it is also to be RACF-protected. Leaving the indicator on prevents unauthorized access to the data set until it can be redefined on the new system. (To delete multiple data set profiles, see Example 2 for the SEARCH command.)

When you specify NOSET for a tape data set protected by a discrete profile, RACF deletes the discrete profile but retains the TVTOC entry for the data set name. You can then use a generic profile to protect the data set.

If you specify NOSET, the volumes on which the data set or catalog resides need not be online.

To use NOSET, you must have the SPECIAL attribute, the data set profile must be within the scope of a group in which you have the group-SPECIAL attribute, or the high-level qualifier of the data set name (or the qualifier supplied by the naming conventions table or by a command installation exit) must be your user ID.

SET

Specifies that RACF is to turn off the RACF indicator for the data set. Use SET, which is the default value, when you are removing RACF protection for a data set. If the indicator is already off, the command fails.

VOLUME(volume-serial)

Specifies the volume on which the tape data set, the non-VSAM DASD data set, or the catalog for the VSAM data set resides.

If you specify this operand and volume-serial does not appear in the profile for the data set, the command fails.

If the data set name appears more than once in the RACF database and you do not specify VOLUME, the command fails. If the data set name appears only once and you do not specify VOLUME, no volume serial number checking is performed, and processing continues.

If the profile name contains a generic character or if you specify GENERIC, RACF ignores this operand.

Examples

Example 1

Operation User EH0 wants to remove discrete profile RACF protection from data set CD0.DEPT1.DATA. User EH0 wants to direct the command to run at node CPPD0 under the authority of user GCP02 and prohibit the command from being automatically directed to other nodes.

Known User GCP02 at CPPD0 owns data set CD0.DEPT1.DATA. User EH0 wants to issue the command as a RACF TSO command. Users EH0 and GCP02 at CPPD0 have an already established user ID association. Users EH0 and GCP02 at CPPD0 have the SPECIAL attribute.

Command DELDSD 'CD0.DEPT1.DATA' ONLYAT(CPPD0,GCP02)

Results The command is only processed at node CPPD0 and not automatically directed to any other nodes in the RRSF configuration.
Example 2

Operation User KLE05 wants to enter a RACF TSO command to remove discrete profile protection from data set KLE05.DUPDS1.DATA. The data set is a duplicate data set, and the user wants to remove the profile for the data set on volume DU2 without turning off the RACF indicator.

Command DELDSD DUPDS1.DATA VOLUME(DU2) NOSET

Defaults None.

Example 3

Operation User JTB01 wants to delete the generic profile and remove RACF protection from the data set or sets protected by the profile SALES.*.DATA

Known User JTB01 has the group-SPECIAL attribute in group SALES. User JTB01 wants to issue the command as a RACF operator command, and the RACF subsystem prefix is @.

Command @DELDSD 'SALES.*.DATA'

Defaults None.

DELGROUP (Delete group profile)

Purpose

Use the DELGROUP command to delete a group and its relationship to its superior group from RACF.

There are, however, other places in the RACF database where the group name might appear, and DELGROUP processing does not delete these other occurrences of the group name. For example, the group name could be in the access list for any resource. You can use the RACF Remove ID utility (IRRRID00) to remove all occurrences of a group name.

The DELGROUP command does not work for a UNIVERSAL group, in most cases. To delete a UNIVERSAL group, the RACF Remove ID Utility (IRRRID00) should be used.

For information on using the RACF remove ID utility, see the z/OS Security Server RACF Security Administrator’s Guide.

Issuing options

The following table identifies the eligible options for issuing the DELGROUP command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.
DELGROUP

Related commands
- To add a group profile to the RACF database, see "ADDGROUP (Add group profile)" on page 24.
- To change a group profile in the RACF database, see "ALTGROUP (Alter group profile)" on page 108.
- To connect a user to a group, see "CONNECT (Connect user to group)" on page 187.
- To list information related to a group profile, see "LISTGRP (List group profile)" on page 226.
- To remove a user from a group profile, see "REMOVE (Remove user from group)" on page 544.
- To obtain a list of group profiles, see "SEARCH (Search RACF database)" on page 580.

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see "Controlling the use of operator commands" in z/OS Security Server RACF Security Administrator's Guide.

To use the DELGROUP command, at least one of the following must be true:
- You must have the SPECIAL attribute
- The group to be deleted must be within the scope of a group in which you have the group-SPECIAL attribute
- You must be the owner of the superior group
- You must have JOIN authority in the superior group
- You must be the owner of the group to be deleted

To specify the AT keyword, you must have READ authority to the DIRECT.node resource in the RRSFDATA class and a user ID association must be established between the specified node.userid pair(s).

To specify the ONLYAT keyword you must have the SPECIAL attribute, the userid specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified node.userid pair(s) if the user IDs are not identical.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the DELGROUP command is:

```
[subsystem-prefix][DELGROUP | DG]
   (group-name ...)
   [ AT([node].userid ...) | ONLYAT([node].userid ...) ]
```

For information on issuing this command as a RACF TSO command, refer to Chapter 3, "RACF TSO commands," on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, "RACF operator commands," on page 21.
Parameters

subsystem-prefix

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

group-name

Specifies the name of the group whose profile is to be removed from the RACF database. If you are deleting more than one group, you must enclose the list of group names in parentheses.

You must enter at least one group name. For each group name you enter, the following conditions must exist:

- The group must be defined to RACF.
- The group must not have any subgroups.
- The group must not have any group data sets (data sets whose names are qualified by the group name or begin with the value supplied by an installation exit).
- The group must not have any users connected to it.

AT | ONLYAT

The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.

AT([node].userid ...)

Specifies that the command is to be directed to the node specified by node, where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed to the local node.

ONLYAT([node].userid ...)

Specifies that the command is to be directed only to the node specified by node where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed only to the local node.

Examples

Example Operation User WJE10 wants to delete subgroups DEPT1 and DEPT2 from group PAYROLL.
 Known User WJE10 has JOIN authority to group PAYROLL.
 DEPT1 and DEPT2 are subgroups of group PAYROLL.
 Neither DEPT1 nor DEPT2 have any subgroups or users connected to them.
 In addition, neither group has any group data sets.
 User WJE10 wants to issue the command as a RACF TSO command.
 Command DELGROUP (DEPT1 DEPT2)
 Defaults None.
DELUSER (Delete user profile)

Purpose

Use the DELUSER command to delete a user from RACF.

This command removes the user's profile and all user-to-group connections for the user. (The connect profiles define the user's connections to various RACF groups.)

There are, however, other places in the RACF database where the user's user ID might appear, and the DELUSER command does not delete the user ID from all these places. Specifically, the user could be the owner of a group, the owner of a user's profile, the owner of a group data set, or in an access list for any resource. Before issuing DELUSER, you must first issue the REMOVE command to assign new owners for any group data sets the user owns in groups other than his default group. You can use the RACF remove ID utility (IRRRID00) to remove all of the occurrences of a user ID. For information on using the RACF remove ID utility, see z/OS Security Server RACF Security Administrator's Guide.

You can use the DELUSER command to delete a TSO user from the RACF database. However, you have no way of knowing if the TSO user is logged on to TSO at the time you issue the DELUSER command. As a result, if the user is logged on to TSO, the user remains active until logging off. Therefore, you might consider having the console operator examine any logons (or jobs) that are active for the TSO user and cancel those that should not be allowed to continue.

The DELUSER command supports digital certificates. If the command issuer is authorized to delete the user profile, and the DELUSER command processor has decided that the user profile can be deleted, the profiles in the DIGTCERT, DIGTRING, or DIGTNMAP classes that describe certificates, private key information, key rings, or certificate mappings associated with the user profile are also deleted. When determining what certificates to delete, the list of certificates from the user profile is used. Certificates that are to be deleted as a result of DELUSER processing are removed from any rings they are connected to at the time the DELUSER command was issued. Likewise, rings that are to be deleted as a result of DELUSER processing have all certificates connected to them removed prior to being deleted. No additional authority checking is done. Authority to the IRR.DIGTCERT.function resource is not required. If an error is encountered by DELUSER while attempting to delete a DIGTCERT, DIGTRING, or DIGTNMAP profile, the DELUSER command is terminated without attempting to delete the user profile. If the error indicates that the template is downlevel, an error message is issued and the user profile is deleted.

Restrictions:

- User IDs with mixed-case characters, such as irrcerta, irrsitec, and irrmulti which are associated with digital certificates, cannot be specified as userid in the DELUSER command because DELUSER cannot process mixed-case user IDs.
- Do not issue a DELUSER command for user ID that has a distributed identity filter (contained in an IDIDMAP profile) associated with it. The command will fail with error message ICH04018I. You must first delete the distributed identity filter. To do this, issue the RACMAP LISTMAP command for the user ID to examine the name filter and determine its label name, and then issue the RACMAP DELMAP command.
Issuing options

The following table identifies the eligible options for issuing the DELUSER command:

<table>
<thead>
<tr>
<th></th>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.

Related commands

- To add a user profile to the RACF database, see “ADDUSER (Add user profile)” on page 48.
- To change a user profile in the RACF database, see “ALTUSER (Alter user profile)” on page 120.
- To list information in a user profile, see “LISTUSER (List user profile)” on page 235.
- To administer user ID associations, see “RACLINK (Administer user ID associations)” on page 401.

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.

To use the DELUSER command, at least one of the following must be true:

- You must have the SPECIAL attribute.
- The user profile to be deleted must be within the scope of a group in which you have the group-SPECIAL attribute.
- You must be the owner of the user’s profile.

Note: JOIN authority in the user’s default group is not sufficient authority to delete the user from RACF.

To specify the AT keyword, you must have READ authority to the DIRECT.node resource in the RRSFDATA class and a user ID association must be established between the specified node.userid pair(s).

To specify the ONLYAT keyword you must have the SPECIAL attribute, the userid specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified node.userid pair(s) if the user IDs are not identical.
DELUSER

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the DELUSER command is:

```
[subsystem-prefix] [DELUSER | DU]
  (userid ...)
  [ AT([node].userid ...) | ONLYAT([node].userid ...)]
```

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

Parameters

subsystem-prefix

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

userid

Specifies the user ID of the user whose profile is to be deleted from the RACF database. If you are deleting more than one user, you must enclose the list of user IDs in parentheses. You must enter at least one user ID. For each user ID you enter, the following conditions must exist:

- The user must be defined to RACF.
- The user must not have any user data sets defined to RACF. (User data sets are data sets whose names are qualified by the user ID of the user being deleted or begin with the value supplied by an installation exit.)
- The user cannot have any user ID associations defined. User ID associations for a user must be deleted before the user can be deleted.

AT | ONLYAT

The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.

```
AT([node].userid ...)

Specifies that the command is to be directed to the node specified by node, where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed to the local node.
```

```
ONLYAT([node].userid ...)

Specifies that the command is to be directed only to the node specified by node where it runs under the authority of the user specified by userid in the RACF subsystem address space.
```
DELUSER

If *node* is not specified, the command is directed only to the local node.

Examples

Example 1

Operation User WJE10 wants to delete user AEH0 from RACF.

Known User AEH0 is defined to RACF.

- User AEH0 is not the owner of any RACF profiles.
- User WJE10 is connected to group PAYROLL (and is the owner of user AEH0) with the group-SPECIAL attribute.
- User WJE10 wants to issue the command as a RACF TSO command.

Command DELUSER AEH0

Defaults None.

Example 2

Operation User SPB1 wants to delete user CA00 from RACF.

Known User CA00 is defined to RACF.

- User SPB1 is not the owner of any RACF profiles.
- User SPB1 is connected to group PAYROLL (and is the owner of user CA00) with the group-SPECIAL attribute.
- User SPB1 wants to issue the command as a RACF operator command, and the RACF subsystem prefix is @.

Command @DELEUSER CA00

Defaults None.
DISPLAY (Display signed-on-from list)

Background

Persistent verification allows users to sign on to a partner LU (logical unit) and have their authority persist. In other words, once a user has signed on, a password is not required for subsequent signin attempts.

APPC/MVS invokes RACF to create and maintain a list called the signed-on-from list. If persistent verification is being used, the signed-on-from list consists of the users currently signed on with persistent verification authority.

Purpose

The RACF DISPLAY operator command displays information held in the signed-on-from list. Entries in the signed-on-from list possess the following information:

- User ID
- Group
- APPL (the local LU name)
- POE (the partner LU name from which the user is signed on)
- SECLABEL

The DISPLAY command has operands which correspond to the items listed above. You can use these operands to select which user entries to display from the signed-on-from list.

The information is displayed as a list of entries sorted by local LU. If there are multiple entries for a given local LU, these entries are sorted by user ID.

Issuing options

The following table identifies the eligible options for issuing the DISPLAY command:

<table>
<thead>
<tr>
<th></th>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF operator command, see Chapter 4, “RACF operator commands,” on page 21.

Related commands

Use the SIGNOFF command to remove users from the signed-on-from list.

Authorization required

You might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see Controlling the use of operator commands in z/OS Security Server RACF Security Administrator’s Guide.
Syntax
For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the DISPLAY command is:

```
subsystem-prefix DISPLAY
  [ SIGNON ]
  [ APPL(local-luname | * ]
  [ POE(partner-luname | * ]
  [ USER(userid-name | * ]
  [ GROUP(group-name | * ]
  [ SECLABEL(security-label | * ]
```

For information on issuing this command as a RACF operator command, see "Rules for entering RACF operator commands" on page 22.

Parameters

subsystem-prefix
The subsystem prefix identifies that the RACF subsystem is the processing environment. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

SIGNON
This operand indicates that the information to be displayed is from the signed-on-from list. Because this is always the case, this operand is a default value and can be omitted from the command line.

The operands below allow the operator to select the necessary search criteria. These operands are all optional.

- If none of the operands are specified, you receive an informational message, indicating the version, release and modification level for RACF.
- If no local LU is currently active, you receive an informational message.
- If you specify the APPL operand and at least one local LU is currently active, you receive an informational message with the names of the LU applications listed.

APPL(local-luname | *)
The `local-luname` is a 1 - 8 character name of the local LU to be searched for. An asterisk can occupy the last position of the name in order to provide a partial generic selection capability. A character string consisting of a single asterisk is permitted as a full generic that matches any APPL name in the signed-on-from list. A single asterisk is the default value.

POE(partner-luname | *)
The `partner-luname` is the name of the partner LU to be searched for. It can be a 1 - 8 character unqualified LU name or a 1 - 17 character network qualified LU name in the format `netid.luname`, where `netid` and `luname` are each 1 - 8 characters. If the netid is omitted, all partner LUs with the specified LU name
DISPLAY

portion is shown (POE(LU1) would show NET1.LU1 and NET2.LU1). An asterisk can occupy the last position of the partner-luname in order to provide a partial generic selection capability. For example, the partner-luname NW1.LU2 would match with *, N*, NW*, NW1*, NW1.L*, NW1.LU*, NW1.LU2*, L*, LU*, and LU2*. A character string consisting of a single asterisk is permitted as a full generic that matches any POE name in the signed-on-from list. A single asterisk is the default if another operand (besides SIGNON) is specified.

USER(userid-name | *)
The userid-name is a 1 - 8 character name that represents the RACF user ID to be searched for. An asterisk can occupy the last position of the userid-name in order to provide a partial generic selection capability. A character string consisting of a single asterisk is permitted as a full generic that matches any user ID in the signed-on-from list. A single asterisk is the default value if either the GROUP operand or the SECLABEL operand is specified.

GROUP(group-name | *)
The group-name is a 1 - 8 character name of the RACF group to be searched for. An asterisk can be in the last position of the group-name in order to provide a partial generic selection capability. A character string consisting of a single asterisk is permitted as a full generic that matches any group name in the signed-on-from list. A single asterisk is the default value if either the USER operand or the SECLABEL operand is specified. Note that entries in the signed-on-from list might not always be added to that list with a group-name value. Such entries have group-name values consisting of blanks.

SECLABEL(security-label | *)
The security-label is a 1 - 8 character name which represents the RACF security label to be searched for. An asterisk can occupy the last position of the specification in order to provide a partial generic selection capability. A character string consisting of a single asterisk is permitted as a full generic that matches any security label in the signed-on-from list. A single asterisk is the default value if either the USER operand or the GROUP operand is specified.

Examples

Example 1
Operation Display all the partner LUs associated with a particular local LU.
Known The local LU name is locallu. The RACF subsystem prefix is @.
Command @display appl(locallu),poe(*)
Defaults SIGNON
Output See Figure 4 on page 209

Example 2
Operation Display all the users signed on for a particular LU pair.
Known The local LU is locallu, the partner LU is prtnrlu1. The RACF subsystem prefix is @.
Command @display appl(locallu),poe(prtnrlu1),user(*)
Defaults SIGNON, GROUP(*), and SECLABEL(*)
Output See Figure 5 on page 209

Example 3
Operation Display each local LU and its associated partner LUs, and for each LU pair, display the users signed on.
Known The RACF subsystem prefix is @.
Command @display appl(*),poe(*),user(*)
Defaults SIGNON, GROUP(*), and SECLABEL(*)
Output See Figure 6 on page 209

Important: In many instances, this command might generate large amounts of display output.
Example 4

Operation Display each local LU and its associated partner LUs, and for each LU pair, display the users with userid_names beginning with B.

Known The RACF subsystem prefix is @.

Command @display appl(*),poe(*),user(B*),group(*)

Defaults SIGNON and SECLABEL(*)

Output See Figure 7 on page 210

Example 5

Operation Display all the LU pairs that users have signed on to using a particular group.

Known The RACF subsystem prefix is @. The group-name is grp1.

Command @display group(grp1),appl(*),poe(*),user(*)

Defaults SIGNON, SECLABEL(*)

Output See Figure 8 on page 210

Figure 4. Example 1: Output for the DISPLAY command

```
IRRD004I RACF 2.6.0 SUBSYSTEM 219
REMOTE LU NAME(S) ASSOCIATED WITH ACTIVE LOCAL LU NAME LOCALLU
LU NAME     LU NAME     LU NAME
PRTNRLU1    PRTNRLU2    PRTNRLU3
NETID1.PRTNRLU4
```

Figure 5. Example 2: Output for the DISPLAY command

```
IRRD004I RACF 2.6.0 SUBSYSTEM 239
LOCAL LU LOCALLU FOR REMOTE LU PRTNRLU1 HAS USER(S):
USER = BOB   GROUP = SYS1   SECLABEL =
USER = BRIAN GROUP = SYS1   SECLABEL =
USER = JIM   GROUP = GRP1   SECLABEL =
USER = JOE   GROUP = GRP1   SECLABEL =
```

Figure 6. Example 3: Output for the DISPLAY command

```
IRRD004I RACF 2.6.0 SUBSYSTEM 245
LOCAL LU LOCALLU FOR REMOTE LU PRTNRLU1 HAS USER(S):
USER = BOB   GROUP = SYS1   SECLABEL =
USER = BRIAN GROUP = SYS1   SECLABEL =
USER = JIM   GROUP = GRP1   SECLABEL =
USER = JOE   GROUP = GRP1   SECLABEL =
LOCAL LU LOCALLU FOR REMOTE LU PRTNRLU2 HAS USER(S):
USER = BRIAN GROUP = GRP1   SECLABEL =
LOCAL LU LOCALLU FOR REMOTE LU PRTNRLU3 HAS USER(S):
USER = BRIAN GROUP = GRP1   SECLABEL =
LOCAL LU LOCALLU FOR REMOTE LU PRTNRLU4 HAS USER(S):
USER = BRIAN GROUP = GRP1   SECLABEL =
LOCAL LU LOCALLU FOR REMOTE LU PRTNRLU5 HAS USER(S):
USER = JIM   GROUP = GRP1   SECLABEL =
LOCAL LU LOCALLU FOR REMOTE LU PRTNRLU6 HAS USER(S):
USER = JIM   GROUP = GRP1   SECLABEL =
```
IRRD004I RACF 2.6.0 SUBSYSTEM 647
LOCAL LU LOCALLU FOR REMOTE LU PRTNRLU1 HAS USER(S):
USER = BOB GROUP = SYS1 SECLABEL =
USER = BRIAN GROUP = SYS1 SECLABEL =
LOCAL LU LOCALLU FOR REMOTE LU PRTNRLU2 HAS USER(S):
USER = BRIAN GROUP = SECLABEL =
LOCAL LU LOCALLU FOR REMOTE LU PRTNRLU3 HAS USER(S):
USER = BRIAN GROUP = SECLABEL =
LOCAL LU LOCALLU FOR REMOTE LU PRTNRLU4 HAS USER(S):
USER = BRIAN GROUP = SECLABEL =

Figure 7. Example 4: Output for the DISPLAY command

IRRD004I RACF 2.6.0 SUBSYSTEM 251
LOCAL LU LOCALLU FOR REMOTE LU PRTNRLU1 HAS USER(S):
USER = JIM GROUP = GRP1 SECLABEL =
USER = JOE GROUP = GRP1 SECLABEL =
LOCAL LU LOCALLU2 FOR REMOTE LU PRTNRLU1 HAS USER(S):
USER = JIM GROUP = GRP1 SECLABEL =
LOCAL LU LOCALLU3 FOR REMOTE LU PRTNRLU1 HAS USER(S):
USER = JIM GROUP = GRP1 SECLABEL =

Figure 8. Example 5: Output for the DISPLAY command
HELP (Obtain RACF help)

Purpose

Use the HELP command to obtain information about the function, syntax, and operands of RACF TSO commands. This information is displayed at your terminal in response to your request for help.

Note: When you use the HELP command to display the syntax for a RACF command, the brackets and braces shown in the syntax diagrams in this book are not displayed on your terminal, and a blank can appear in place of a bracket or brace. If you are unsure whether an operand is optional or required, you should refer to the syntax diagrams contained in this book.

Authorization required

You need no special attribute or authority to use the HELP command. Any user who can log on to TSO can issue this command.

Issuing options

The following table identifies the eligible options for issuing the HELP command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the HELP command is:

```
[ HELP | H ]
  [ command-name ]
  [ ALL ]
  [ FUNCTION ]
  [ OPERANDS [ (operand ...)] ]
  [ SYNTAX ]
```

Parameters

`command-name`

Specifies the name of the command about which you want information.

If you specify this operand, it must be the first operand following HELP. If you omit this operand, you obtain a list of all the TSO commands. However, this list does not contain any RACF commands. Therefore, if you want information about a particular RACF command, you must specify the RACF command name following HELP. Help information is available for all RACF commands that are documented in this book.
HELP

ALL
Specifies that you want to see all the available information about the command. This information includes the function, syntax, and operands of the command. If no other operand is specified, ALL is the default value.

FUNCTION
Specifies that you want to see information about the purpose and operation of the command.

OPERANDS[(operand ...)]
Specifies that you want to see information about the operands of the command. When you specify OPERANDS and omit any values, all operands for the command is described. To obtain information about a particular operand, specify that operand within parentheses following OPERANDS. If you specify more than one operand, separate the operand names by either commas or blanks.

SYNTAX
Specifies that you want to see information about the proper syntax of the command.

Examples

Example 1
Operation User LQJ0 wants to see all available information for the ADDUSER command.
Known User LQJ0 is RACF-defined.
Command HELP ADDUSER
Defaults ALL

Example 2
Operation User JXN01 wants to see a description of the AUDIT, ADDMEM, DATA, and SECELEVEL operands for the RDEFINE command.
Known User JXN01 is RACF-defined.
Command HELP RDEFINE OPERANDS(AUDIT ADDMEM DATA SECELEVEL)
Defaults None.

Example 3
Operation User MJW02 wants to see a description of the function and syntax of the SETROPTS command.
Known User MJW02 is RACF-defined.
Command HELP SETROPTS FUNCTION SYNTAX
Defaults None.
LISTDSD (List data set profile)

Purpose

Use the LISTDSD command to list information included in tape and DASD data set profiles. A data set profile consists of a RACF segment and, optionally, a DFP or TME segment. The LISTDSD command provides you with the option of listing information contained in the entire data set profile (all segments), or listing the information contained only in a specific segment of the profile.

You can request the details for any number of profiles by giving the full name of each profile. You can also request the details for all profiles whose names are qualified by specific user IDs, group names, or character strings.

You can use the LISTDSD command to cause the changes to go into effect for the generic profiles after issuing the ADDSD, ALTDS, or DELDSD commands. LISTDSD places a new copy of the profile in the user's address space.

Details RACF lists from the RACF segment of each profile:

- The level
- The owner
- The type of access attempts (as specified by the AUDIT operand on the ADDSD or ALTDS command) that are being logged on the SMF data set
- The universal access authority
- Your highest level of access authority
- The group under which the profile was created
- The data set type (tape, VSAM, non-VSAM, or MODEL)
- The retention period for a tape data set
- The type of access attempts (as specified by the GLOBALAUDIT operand on the ALTDS command) that are being logged on the SMF data set (for auditors only)
- The volume serial number (volser) of the volume on which the data set resides. For both a single volume and multivolume VSAM data set, the volser represents the volume containing the catalog entry for the data set. For a non-VSAM data set, the volser represents the volume containing the data set itself. If it is a multivolume non-VSAM data set, a list of volsers is given. The list represents the volumes on which the protected data set resides. They are listed in the order in which they were defined.
- Unit information for the data set (if unit information had been specified in the UNIT operand on the ADDSD or ALTDS command)
- Installation-defined data as specified on the DATA operand of the ADDSD or ALTDS command.

Note: If your installation is running with maximum security (that is, with SETROPTS MLSTABLE, MLS, MLACTIVE, and SECLABELCONTROL all active and the SECLABEL class active), this information is listed only for those with SPECIAL. If you are not SPECIAL, the following text appears in your output in the installation data field: * SUPPRESSED *

Additional details listed: You can request the following additional details by using the appropriate LISTDSD operands:

- Historical data, such as the date the data set was:
LISTDSD

- Defined to RACF
- Last referenced
- Last updated
For additional information, see the HISTORY operand.

- The number of times the data set was accessed by all users for each of the following access authorities:
 - ALTER, CONTROL, UPDATE, READ, EXECUTE.
For additional information, see the STATISTICS operand.

Note: These details are not meaningful if resource statistics gathering is bypassed at your installation. For a generic profile, RACF replaces any statistics line with NOT APPLICABLE FOR GENERIC PROFILE.

- The standard access list, which displays:
 - All users and groups authorized to access the data set
 - The level of authority for each user and group
 - The number of times each user has accessed the data set
For additional information, see the AUTHUSER operand.

- The conditional access list, which displays the same fields as the standard access list as well as the following fields:
 - The class of the resource
 - The entity name of the resource
For additional information, see the AUTHUSER operand.

- The information listed below:
 - The user categories authorized to access the data set
 - The security level required to access the data set
 - The security label required to access the data set
For additional information, see the AUTHUSER operand.

- The details RACF lists from the DFP segment of the profile:
 - The user ID or group name of the data set resource owner

- The details RACF lists from the TME segment of the profile:
 - The roles and associated access levels

RACF date handling: RACF interprets dates with 2-digit years as follows. (The \(yy \) value represents the 2-digit year.)

- If \(70 < yy <= 99 \), the date is interpreted as \(19yy \).
- If \(00 <= yy <= 70 \), the date is interpreted as \(20yy \).

Issuing options

The following table identifies the eligible options for issuing the LISTDSD command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.
LISTDSD

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.

Related commands

- To list a general resource profile, see “RLIST (List general resource profile)” on page 550. (General resources include terminals and other resources defined in the class descriptor table.)
- To list a user profile, see “LISTUSER (List user profile)” on page 235.
- To list a group profile, see “LISTGRP (List group profile)” on page 226.
- To obtain a list of data set profiles, see “SEARCH (Search RACF database)” on page 580.

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.

To specify the AT keyword, you must have READ authority to the DIRECT.node resource in the RRSFDATA class and a user ID association must be established between the specified node.userid pair(s).

To specify the ONLYAT keyword you must have the SPECIAL attribute, the userid specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified node.userid pair(s) if the user IDs are not identical.

Listing the RACF segment of a data set profile: To list the details of the RACF segment of a data set profile, you must have a sufficient level of authority for each profile to be listed. One of the following conditions must be met for each profile to be listed:

- You have the SPECIAL attribute.
- The profile is within the scope of a group in which you have the group-SPECIAL attribute.
- You have the OPERATIONS attribute.
- The profile is within the scope of a group in which you have the group-OPERATIONS attribute.
- The high-level qualifier of the profile name (or the qualifier supplied by a command installation exit) is your user ID.
- You are the owner of the profile.
- You are on the profile’s access list with at least READ authority. (If your level of authority is NONE, the data set is not listed.)
- Your current connect group (or, if list-of-groups checking is active, any group to which you are connected) is in the access list and has at least READ authority.
- The universal access authority is at least READ.
- You have at least READ access for the profile name from the GLOBAL ENTRY TABLE (if this table contains an entry for the profile).
- You have the AUDITOR attribute.
LISTDSD

- The data set profile is within the scope of a group in which you have the group-AUDITOR attribute.

To display the type of access attempts (as specified by the GLOBALAUDIT operand on the ALTDS command) that are being logged on the SMF data set, either you must have the AUDITOR attribute or the profile must be within the scope of a group in which you have the group-AUDITOR attribute.

To specify the AUTHUSER operand to display the access list for a profile, one of the following conditions must be met for each profile to be listed:
- You have the SPECIAL attribute.
- You have the OPERATIONS attribute.
- You have the AUDITOR attribute.
- The profile is within the scope of a group in which you have the group-SPECIAL attribute.
- The profile is within the scope of a group in which you have the group-OPERATIONS attribute.
- The data set profile is within the scope of a group in which you have the group-AUDITOR attribute.
- The high-level qualifier of the profile name (or the qualifier supplied by a command installation exit) is your user ID.
- You are the owner of the profile.
- You have ALTER access for the profile name from the GLOBAL ENTRY TABLE (if this table contains an entry for the profile).
- For a discrete profile, you are on the profile's access list with ALTER authority. (If you have any other level of authority, you cannot use the operand.)
- For a discrete profile, your current connect group (or, if list-of-groups checking is active, any group to which you are connected) is in the access list and has ALTER authority.
- For a discrete profile, the universal access authority is ALTER.

Profiles that contain inactive security labels may not be listed if SETROPTS SECLBYSYSTEM is active because only users with SPECIAL or AUDITOR authority are allowed to view inactive security labels.

Listing the DFP or TME segment of a data set profile: To list information within the segment of a data set profile, one of the following conditions must be true:
- You have the SPECIAL or AUDITOR attribute.
- You have at least READ authority to the desired field within the segment through field-level access control.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the LISTDSD command is:

```
[subsystem-prefix][LISTDSD | LD]
   [ ALL ]
   [ ISI[(node),userid ...] | ONLYAT[(node),userid ...] ]
   [ AUTHUSER ]
```
LISTDSD

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

Parameters

subsystem-prefix

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

ALL

Specifies that you want RACF to display all information for each data set.

The access list is included only if you have sufficient authority to use the AUTHUSER operand (see “Authorization required” on page 215). The type of access attempts (as specified by the GLOBALAUDIT operand on the ALTDSD command) that are being logged on the SMF data set is included only if you have the AUDITOR or group-AUDITOR attribute.

The DFP and TME segments must be requested explicitly.

AT | ONLYAT

The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.

AT([node].userid ...)

Specifies that the command is to be directed to the node specified by node, where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed to the local node.

ONLYAT([node].userid ...)

LISTDSD is not eligible for automatic command direction. If you specify the ONLYAT keyword, the effect is the same as if you specified the AT keyword.
AUTHUSER

Specifies that you want the following information included in the output:
- The user categories authorized to access the data set
- The security level required to access the data set
- The security label required to access the data set
- The standard access list. This contains the following:
 - All users and groups authorized to access the data set
 - The level of authority for each user and group
 - The number of times each user has accessed the data set. This detail is only meaningful when your installation is gathering resource statistics.
 This detail is not included in the output for generic profiles.
- The conditional access list. This list consists of the same fields as in the standard access list, as well as the following fields:
 - The class of the resource through which each user and group can access the data set. For example, if a user can access the data set through terminal TERM01, then TERMINAL would be the class listed.
 - The entity name of the resource through which each user and group can access the data set. In the example above, TERM01 would be listed.

You must have sufficient authorization to use the AUTHUSER operand (see “Authorization required” on page 215).

DATASET | ID | PREFIX

DATASET(profile-name ...)

Specifies the names of one or more data sets whose profiles RACF is to list. If a specified name appears more than once in the RACF database, LISTDSD displays information about all the profiles with that name to which you have proper authority.

The data set name you specify must be enclosed in single quotation marks unless it is your own data set.

Because RACF uses the RACF database and not the catalog when searching for data set profiles, you cannot use alias data set names.

Note that if you are using naming convention processing, either through the naming convention table or an exit, the name you type might not be the same as the name that appears in the output.

ID(name ...)

Specifies one or more user IDs or group names. All users and groups must be defined to RACF. Details are listed for all discrete and generic profiles that have the specified user IDs or group names as the high-level qualifier name (or as the qualifier supplied by a command installation exit).

If you do not specify DATASET, PREFIX, or ID, RACF uses your user ID as the default value for the ID operand.

PREFIX(char ...)

Specifies one or more character strings. Details are listed for all profiles whose names begin with the specified character strings.

Note that comparison between the character strings and the profile names is not limited to the high-level qualifier. For example, if you specify PREFIX(A.B.C), RACF would display information for profiles such as A.B.C, A.B.C.A0, and A.B.C.X.
LISTDSD

DFP
Specifies that for a DFP-managed data set, you want to list the user ID or
group name designated as the data set resource owner. (The data set resource
owner, or RESOWNER, is distinguished from the OWNER, which represents
the user or group that owns the data set profile.)

DSNS
Specifies that you want to list the cataloged data sets protected by the profile
specified by the DATASET, ID, or PREFIX operand.

Only data sets cataloged in an Integrated Catalog Facility (ICF) catalog are
listed.

Affected tape data sets are listed, regardless of what is specified for SETROPTS
TAPEDSN, or whether the TAPEVOL class is active.

When data and index components of VSAM clusters are listed, they are
followed by (D) or (I), respectively.

This operand might give unpredictable results if one of the following is true:
• You are using naming convention processing, either through the naming
 convention table or an exit, to modify data set names so they are protected
 by different profiles.
• You are using the PREFIX operand of SETROPTS to provide a high-level
 qualifier for data sets that have only one level in their names.
• There are migrated items in the list and either information about the item
cannot be obtained from the migration facility or the migration facility is not
available.

In these cases, RACF cannot verify that the item is protected by the input
profile and the migrated item is included in the list and is followed by the ?
character. Whenever these items are included in the list, the following
message appears at the end of the list to explain the ? character.

? = Migrated and unable to verify protection

Note:
1. If a migrated cluster name appears in the list, but it has an alternate
 index or path, information on its data or index names is unavailable
 without recalling the cluster. This message appears after the cluster
 name:
 ** Migrated cluster component information
 ** not available without recall.

2. If a migrated cluster name appears in the list and LISTDSD cannot obtain
 the index and data names due to a migration facility error, this message
 appears after the cluster name:
 ** Migrated cluster component information
 ** not available.

3. If the name of a non-migrated cluster appears in the list and RACF is
 unable to obtain the data and index names specifically through this item,
 this message appears after the cluster name:
 ** Cluster component information
 ** not available.

4. If the LISTDSD processor could not obtain all the information on one of
 the data sets potentially protected by the input profile, it includes the
 data set in the command output, but follow it with this message:
 ** Data set information not available.
LISTDSD

It is likely that this condition occurred because the data set was deleted between the time the LISTDSD DSNS processor first found the names of all the data sets potentially protected by the input profile and the time it processed that particular data set. If that is the case, ignore that data set entry. If that is not the case, issue the LISTDSD command again and if the additional message still appears, contact IBM support; (x) is a numeric value that denotes diagnostic information used by IBM support.

5. The LISTDSD command processor does not include the following items in the output list of protected data sets:
 - master catalog
 - alternate index (AIX®) and its components
 - catalogs

GENERIC | NOGENERIC

GENERIC
Specifies that RACF is to list only information for the generic profiles. If you specify GENERIC with DATASET, RACF lists information for generic profiles whose names most closely match the data set names you specify.

GENERIC, when specified with DATASET, causes changes to take effect after adding, changing, or deleting generic profiles. It places a fresh copy of the profile in the command user's address space.

NOGENERIC
Specifies that RACF is to list only information for discrete profiles.

Note:
1. If you specify ID or PREFIX but omit GENERIC and NOGENERIC, RACF lists information for all discrete and generic profiles of the data sets owned or represented by the names specified in the command. For example, if you enter the following command:
 LISTDSD ID(SMITH)
 RACF lists all data set profiles for user ID SMITH.

2. If you specify the DATASET operand but omit GENERIC and NOGENERIC, RACF lists information for the discrete profile, if it exists, and the fully qualified generic profile if it exists, or the generic profile that is not fully qualified, if its name, including all its qualifiers, matches the name specified on the command. For example, if you enter the following command:
 LISTDSD DATASET('XXX.YYY','AA.*')
 RACF lists information for the discrete profile XXX.YYY, if it exists, the fully qualified generic profile XXX.YYY if it exists, and the generic profile AA.* if it exists.

3. If you specify DATASET with a fully qualified name for a data set that is protected by a generic profile that is not fully qualified, information for this profile can be listed only when GENERIC is specified. If you specified DATASET without GENERIC and NOGENERIC and you received an informational message (No RACF description found.) for one of the specified fully qualified names, you might want to retry the command on this name using GENERIC, because it is possible that this data set is protected by a generic profile that is not fully qualified.
LISTDSD

For example, data set BBB.CCC is protected by a generic profile BBB.*. If you enter the following command:

LISTDSD DATASET('BBB.CCC')

RACF lists information only if there is a discrete profile BBB.CCC, or a fully qualified generic profile BBB.CCC, or both. But if you enter the following command:

LISTDSD DATASET('BBB.CCC') GENERIC

RACF lists information for the fully qualified generic profile BBB.CCC if it exists, or the generic profile that most closely matches BBB.CCC. In this example, the generic profile BBB.* is listed.

4. If generic profile command processing is inactive, only discrete profiles are listed. RACF does not search for generic profiles.

HISTORY

Specifies that you want to list the following data:

- The date each profile was defined to RACF
- The date each data set was last referenced
- The date of the last authorization check for UPDATE authority

NORACF

Specifies that you want to suppress the listing of RACF segment information from the specified data set's profile. If you specify NORACF, you must include one or more of the following operands: DSNS, DFP, TME.

If you do not specify NORACF, RACF displays the information in the RACF segment of a data set.

The information displayed as a result of using the NORACF operand is dependent on other operands used in the command. For example, if you use NORACF with DSNS, DFP, or TME also specified, only that information (DSNS, DFP, or TME) is displayed.

STATISTICS

Specifies that you want to list the statistics for each profile. The list includes the number of times the profile was accessed by users with READ, UPDATE, CONTROL, and ALTER authorities, as well as a separate total for each authority level. These details are meaningful only when your installation is gathering resource statistics. For generic profiles, RACF replaces any statistics line with NOT APPLICABLE FOR GENERIC PROFILE.

TME

Specifies that information for the Tivoli Security Management Application is to be listed.

VOLUME(volume-serial ...)

Limits the profiles listed to those found on the specific volume or list of volumes identified by volume serial number. RACF does not list profiles with the same name found on other volumes. If you do not specify NOGENERIC, RACF lists any generic profiles as well.
LISTDSD

Examples

Example 1

Operation User DAF0 wants to list all information for his own data set profiles.

Known User DAF0 is RACF-defined, and does not have the AUDITOR attribute. User DAF0 wants to issue the command as a RACF TSO command.

Command LISTDSD ALL

Defaults ID(DAF0)

Output See Figure 9 on page 223

Example 2

Operation User IA0 wants to list the users authorized to data set SYS1.PLIBASE.

Known User IA0 has ALTER authority to SYS1.PLIBASE, and does not have the AUDITOR attribute. User IA0 wants to issue the command as a RACF TSO command.

Command LISTDSD DATASET('SYS1.PLIBASE') AUTHUSER

Defaults None.

Output See Figure 10 on page 224

Example 3

Operation User ADM1 wants to list a generic profile SALES.*,ABC.

Known User ADM1 is the owner of the generic profile, and generic profile command processing is enabled. User ADM1 has the group-AUDITOR attribute in group SALES. User ADM1 wants to issue the command as a RACF TSO command.

Command LISTDSD DATASET('SALES.*.ABC')

Defaults None.

Output See Figure 11 on page 224

Example 4

Operation User JADAMS wants to display the discrete profile for the DFP-managed data set RESEARCH.TEST.DATA. JADAMS also wants to display the user or group who is the data set resource owner.

Known User JADAMS is the owner of the profile protecting data set RESEARCH.TEST.DATA.

User JADAMS has field-level access of at least READ for the DFP segment.

User JADAMS wants to issue the command as a RACF TSO command.

Command LISTDSD DATASET('RESEARCH.TEST.DATA') DFP

Defaults None.

Output See Figure 12 on page 225
LISTDSD

<table>
<thead>
<tr>
<th>Level</th>
<th>Owner</th>
<th>Universal Access</th>
<th>Warning</th>
<th>Erase</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>DAF0</td>
<td>READ</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

AUDITING

SUCCESS(READ), FAILURES(ALTER) NOTIFIED

No user to be notified.

YOUR ACCESS

Creation Group	Dataset Type
NONE GIVEN | RESEARCH | NON-VSAM

Volumes on which dataset resides:

Unit: 231406 SYSDA

No installation data.

SECURITY LEVEL

No security level.

CATEGORIES

No categories.

SECLABEL

No seclabel.

CREATION DATE

<table>
<thead>
<tr>
<th>Day</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>85</td>
</tr>
</tbody>
</table>

LAST REFERENCE DATE

<table>
<thead>
<tr>
<th>Day</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>85</td>
</tr>
</tbody>
</table>

LAST CHANGE DATE

<table>
<thead>
<tr>
<th>Day</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>85</td>
</tr>
</tbody>
</table>

ALTER COUNT

<table>
<thead>
<tr>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010</td>
</tr>
</tbody>
</table>

CONTROL COUNT

<table>
<thead>
<tr>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010</td>
</tr>
</tbody>
</table>

UPDATE COUNT

<table>
<thead>
<tr>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010</td>
</tr>
</tbody>
</table>

READ COUNT

<table>
<thead>
<tr>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010</td>
</tr>
</tbody>
</table>

ID ACCESS ACCESS COUNT

<table>
<thead>
<tr>
<th>ID</th>
<th>Access</th>
<th>Access Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA0</td>
<td>READ</td>
<td>00010</td>
</tr>
<tr>
<td>ADM1</td>
<td>READ</td>
<td>00000</td>
</tr>
<tr>
<td>PROJECTA</td>
<td>UPDATE</td>
<td>00008</td>
</tr>
</tbody>
</table>

No entries in conditional access list.

INFORMATION FOR DATASET DAF0.DS3.DATA

<table>
<thead>
<tr>
<th>Level</th>
<th>Owner</th>
<th>Universal Access</th>
<th>Warning</th>
<th>Erase</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>DAF0</td>
<td>READ</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

AUDITING

SUCCESS(UPDATE), FAILURES(ALTER) NOTIFIED

No user to be notified.

YOUR ACCESS

Creation Group	Dataset Type
NONE GIVEN | RESEARCH | NON-VSAM

Volumes on which dataset resides:

Unit: 231406 SYSDA

No installation data.

SECURITY LEVEL

No security level.

CATEGORIES

No categories.

SECLABEL

No seclabel.

CREATION DATE

<table>
<thead>
<tr>
<th>Day</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>85</td>
</tr>
</tbody>
</table>

LAST REFERENCE DATE

<table>
<thead>
<tr>
<th>Day</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>85</td>
</tr>
</tbody>
</table>

LAST CHANGE DATE

<table>
<thead>
<tr>
<th>Day</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>85</td>
</tr>
</tbody>
</table>

ALTER COUNT

<table>
<thead>
<tr>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
</tr>
</tbody>
</table>

CONTROL COUNT

<table>
<thead>
<tr>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010</td>
</tr>
</tbody>
</table>

UPDATE COUNT

<table>
<thead>
<tr>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
</tr>
</tbody>
</table>

READ COUNT

<table>
<thead>
<tr>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010</td>
</tr>
</tbody>
</table>

ID ACCESS ACCESS COUNT

<table>
<thead>
<tr>
<th>ID</th>
<th>Access</th>
<th>Access Count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No entries in conditional access list.

Chapter 5. RACF command syntax
LISTDSD

```
LISTDSD DATASET('SYS1.PL1BASE') AUTHUSER
INFORMATION FOR DATASET SYS1.PL1BASE
LEVEL OWNER UNIVERSAL ACCESS WARNING ERASE
-------- -------- -------------- ------- -----
00 IAO READ NO NO
AUDITING
SUCCESS(UPDATE)
NOTIFY
-------
NO USER TO BE NOTIFIED
YOUR ACCESS CREATION GROUP DATASET TYPE
----------- -------------- ------------
ALTER SYS1 NON-VSAM
VOLUMES ON WHICH DATASET RESIDES UNIT
--------------------------------- ----
231407 SYSDA
INSTALLATION DATA
----------------------------------
PL/1 LINK LIBRARY
SECURITY LEVEL
-------------------------------------------
NO SECURITY LEVEL
CATEGORIES
----------
NOCATEGORIES
SECLABEL
----------
NO SECLABEL
ID ACCESS ACCESS COUNT
------- ------ ------------
ESH25 UPDATE 00009
PROJECTB READ 00015
IA0 ALTER 00020
ID ACCESS ACCESS COUNT CLASS ENTITY NAME
------- ------ -------------- ----- -----------
NO ENTRIES IN CONDITIONAL ACCESS LIST
```

Figure 10. Example 2: Output for the LISTDSD command

```
LISTDSD DATASET('SALES.*.ABC') AUTHUSER
INFORMATION FOR DATASET SALES.*.ABC (G)
LEVEL OWNER UNIVERSAL ACCESS WARNING ERASE
-------- -------- -------------- ------- -----
00 ADM1 READ NO NO
AUDITING
ALL(READ)
NOTIFY
-------
NO USER TO BE NOTIFIED
YOUR ACCESS CREATION GROUP DATASET TYPE
----------- -------------- ------------
NONE GIVEN RESEARCH NON-VSAM
GLOBALAUDIT
-----------
NONE
NO INSTALLATION DATA
```

Figure 11. Example 3: Output for the LISTDSD command
LISTDSD

LISTDSD DATASET('RESEARCH.TEST.DATA') DFP
INFORMATION FOR DATASET RESEARCH.TEST.DATA
LEVEL OWNER UNIVERSAL ACCESS WARNING ERASE
----- -------- ---------------- ------- -----
00 JADAMS READ NO NO

AUDITING

ALL(READ)
NOTIFY

NO USER TO BE NOTIFIED

YOUR ACCESS CREATION GROUP DATASET TYPE
--------------- --------------
NONE GIVEN RESEARCH NON-VSAM

GLOBALAUDIT

NONE
NO INSTALLATION DATA

DFP INFORMATION

RESOWNER= KSMITH

Figure 12. Example 4: Output for the LISTDSD command
LISTGRP (List group profile)

Purpose

Use the LISTGRP command to list details of specific RACF group profiles. A group profile consists of a RACF segment and, optionally, other segments such as DFP and OMVS. The LISTGRP command provides you with the option of listing the information contained in the entire group profile (all segments), or listing the information contained only in a specific segment of the group profile.

The details RACF lists from the RACF segment of each group profile are:
- The superior group of the group
- The owner of the group
- The date the group was defined to RACF
- The terminal option of the group
- Whether or not the group is a universal group
- Any subgroups under the group
- Installation-defined data, as specified by the DATA operand of the ADDGROUP and ALTGROUP command
- The name of the data set model profile.

RACF lists the following information from the RACF segment of the group profile for each user connected to the group:
- The user ID
 An exception to this is when the group is a UNIVERSAL group. When a UNIVERSAL group displayed with the LISTGRP command, not all members will be listed. Only users with authority higher than USE or with the attributes SPECIAL, OPERATIONS or AUDITOR at the group level will be shown in the member list. To view all members of a UNIVERSAL group, the Database Unload Utility (IRRDBU00) must be used. For more information on using the Database Unload Utility (IRRDBU00), see z/OS Security Server RACF Security Administrator’s Guide
- The user’s level of authority in the group
- The number of times the user has entered the system using this group as the current connect group
- The user’s default universal access authority
- The user’s connect attributes (group-related user attributes)
- Any REVOKE or RESUME processing either in effect or pending, with the corresponding dates even if they have passed.

The details RACF lists from the DFP segment of the group profile are:
- The group's default data class
- The group's default management class
- The group's default storage class
- The data management data application for the group.

The details RACF lists from the TME segment of the group profile are:
- The list of roles that refer to this group.

The details RACF lists from the OMVS or OVM segment of the group profile are:
- The group's z/OS UNIX System Services group identifier.
LISTGRP

The details RACF lists from the CSDATA segment of the group profile are:
- The list of custom fields that your installation has added to this group.

Issuing options

The following table identifies the eligible options for issuing the LISTGRP command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to [Chapter 3, “RACF TSO commands,” on page 15](#).

For information on issuing this command as a RACF operator command, refer to [Chapter 4, “RACF operator commands,” on page 21](#).

You must be logged on to the console to issue this command as a RACF operator command.

Related commands

- To list a user profile, see [“LISTUSER (List user profile)” on page 235](#).
- To list a data set profile, see [“LISTDSD (List data set profile)” on page 213](#).
- To list a general resource profile, see [“RLIST (List general resource profile)” on page 550](#). (General resources include terminals and other resources defined in the class descriptor table.)
- To obtain a list of group profiles, see [“SEARCH (Search RACF database)” on page 580](#).

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in [z/OS Security Server RACF Security Administrator’s Guide](#).

To specify the AT keyword, you must have READ authority to the DIRECT=node resource in the RRSFDATA class and a user ID association must be established between the specified node.userid pair(s).

To specify the ONLYAT keyword you must have the SPECIAL attribute, the userid specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified node.userid pair(s) if the user IDs are not identical.

Listing the RACF segment of a group profile: To list the details of the RACF segment of a group profile, one of the following conditions must be true:
- You have the SPECIAL attribute.
- You have the group-SPECIAL attribute in each group to be listed, or each group to be listed is within the scope of a group in which you have the group-SPECIAL attribute.
- You have the AUDITOR attribute.
You have the group-AUDITOR attribute in each group to be listed, or each group to be listed is within the scope of a group in which you have the group-AUDITOR attribute.

You are the owner of the group.

You have JOIN or CONNECT authority in the group.

Listing the other segments of a group profile: To list information from segments other than the RACF segment for a group profile, one of the following conditions must be true:

- You have the SPECIAL or AUDITOR attribute.
- You have at least READ authority to the desired field through field-level access control.

Syntax

For the key to the symbols used in the command syntax diagrams, see the "Syntax of RACF commands and operands" on page 9. The complete syntax of the LISTGRP command is:

```
[subsystem-prefix][LISTGRP | LG]
  [ ((group-name ...) | *)
    [ AT([node].userid ...) | ONLYAT([node].userid ...) ]
    [ CSDATA ]
    [ DFP ]
    [ NORACF ]
    [ OMVS ]
    [ OVM ]
    [ TME ]
```

For information on issuing this command as a RACF TSO command, refer to Chapter 3, "RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, "RACF operator commands,” on page 21.

Parameters

subsystem-prefix

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

group-name | *

group-name

Specifies the name of one or more RACF-defined groups. If you specify more than one group name, you must enclose the names in parentheses.
LISTGRP

* Specifies that you want to list information contained in all RACF-defined group profiles to which you have the required authority.

On a system with many groups defined, the use of * might result in a large amount of output and might not be useful to a user issuing the command. It might be more appropriate for the user to browse the output of IRRDBU00 (database unload utility) or to write a program to process the IRRDBU00 output and produce a report showing only the subset of information that is of interest to the user. The processing of output of LISTGRP by programs is not supported nor recommended by IBM. If you want a listing of all the groups for use by a program you should instead have the program process the output from IRRDBU00, RACROUTE REQUEST=EXTRACT, or ICHEINTY.

If you specify a group name or *, it must be the first operand following LISTGRP.

If you specify one or more group names (or *) without specifying an additional operand, RACF lists only the RACF segment information from the specified profiles.

If you enter LISTGRP with no operands, RACF lists only the RACF segment information from your current connect group.

AT | ONLYAT
The AT and ONLYAT keywords are valid only when the command is issued as a RACF TSO command.

AT([node].userid ...)
Specifies that the command is to be directed to the node specified by node, where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed to the local node.

ONLYAT([node].userid ...)
LISTGRP is not eligible for automatic command direction. If you specify the ONLYAT keyword, the effect is the same as if you specified the AT keyword.

CSDATA
Specifies that you want to list custom field information for this group. The custom field information in the CSDATA segment for this group was added using the ADDGROUP and ALTGROUP commands.

If you specify CSDATA you must also specify a group name or *.

Usage for each custom field is defined using the CFDEF operand of the RDEFINE command for resource profiles in the CFIELD class. Contact your security administrator to see how custom fields are used at your installation. For more information about custom fields, see z/OS Security Server RACF Security Administrator's Guide

DFP
Specifies that you want to list the information contained in the DFP segment of the group profile.

If you specify DFP you must also specify a group name or *.

NORACF
Specifies that you want to suppress the listing of base segment information
LISTGRP

from the group profile. If you specify NORACF, you must also specify one of
the other segment names such as DFP or OMVS.

If you do not specify NORACF, RACF displays the information in the RACF
segment of a group profile.

OMVS
Specifies that you want to list the information contained in the OMVS segment
of the group profile.

If you specify OMVS, you must also specify a group name or (*).

If the group profile contains an OMVS segment but GID was not specified on a
ADDGROUP or ALTGROUP command, the listing displays the field name
followed by the word NONE.

OVM
Specifies that you want to list the information contained in the OVM segment
of the group profile.

If you specify OVM, you must also specify a group name or an (*).

If the group profile contains an OVM segment but GID was not specified on a
ADDGROUP or ALTGROUP command, the listing displays the field name
followed by the word NONE.

TME
Specifies that information for the Tivoli Security Management Application is to
be listed.

If you specify TME you must also specify a group name or an asterisk (*).

Examples

Example 1
Operation User IA0 wants to display the information contained in the RACF segment of
the profile for group RESEARCH.

Known User IA0 has CONNECT authority to group RESEARCH. User IA0 wants to
issue the command as a RACF TSO command.

Command LISTGRP RESEARCH

Defaults None.

Output See Figure 13 on page 232

Example 2
Operation User ADM1 wants to display the information contained in the RACF segment
of the profiles for all groups.

Known User ADM1 has the SPECIAL and AUDITOR attributes. User ADM1 wants to
issue the command as a RACF TSO command.

Command LISTGRP *

Defaults None.

Output See Figure 14 on page 233

Example 3
Operation User ADM1 wants to display the information contained in the RACF segment
and DFP segment of the profile for group DFPADMN.

Known User ADM1 has the SPECIAL and AUDITOR attributes.

Group DFPADMN is defined to RACF, and DFPADMN's profile contains a
DFP segment.

User ADM1 wants to issue the command as a RACF TSO command.

Command LISTGRP DFPADMN DFP

Defaults None.

Output See Figure 15 on page 234
Example 4

Operation User ADM1 wants to display the information contained in only the DFP segment of the profile for group DFPADMN.

Known User ADM1 has the SPECIAL and AUDITOR attributes.

Group DFPADMN is defined to RACF, and DFPADMN’s profile contains a DFP segment.

User ADM1 wants to issue the command as a RACF TSO command.

Command `LISTGRP DFPADMN DFP NORACF`

Defaults None.

Output See Figure 16 on page 234.

Example 5

Operation User ADM1 requests the listing of the OMVS segment for the group OMVSG1.

Known User ADM1 has the SPECIAL attribute. User ADM1 wants to issue the command as a RACF TSO command.

Command `LISTGRP OMVSG1 OMVS NORACF`

Defaults None.

Output See Figure 17 on page 234.

Example 6

Operation User NETADM requests the listing of the UNIVERSAL group NETGROUP.

Known NETGROUP is a UNIVERSAL group and only users with authority higher than USE or users with SPECIAL, OPERATIONS and AUDITOR at the GROUP level will be displayed in the member list. User NETADM has the SPECIAL attribute to the group NETGROUP. User NETADM wants to issue the command as a RACF TSO command.

Command `LISTGRP NETGROUP`

Defaults None.

Output See Figure 18 on page 235.
Figure 13. Example 1: Output for LISTGRP RESEARCH
LISTGRP *
INFORMATION FOR GROUP PAYROLLB
SUPERIOR GROUP=RESEARCH OWNER=IBMUSER CREATED=06.123
NO INSTALLATION DATA
NO MODEL DATA SET
TERMUACC
NO SUBGROUPS
USER(S)= ACCESS= ACCESS COUNT= UNIVERSAL ACCESS=
IBMUSER JOIN 000000 ALTER
 CONNECT ATTRIBUTES=NONE REVOKE DATE=NONE RESUME DATE=NONE
DAF0 CREATE 000000 READ
 CONNECT ATTRIBUTES=NONE REVOKE DATE=NONE RESUME DATE=NONE
IA0 CREATE 000000 READ
 CONNECT ATTRIBUTES=ADSP SPECIAL OPERATIONS
 REVOKE DATE=NONE RESUME DATE=NONE
AEH0 CREATE 000000 READ
 CONNECT ATTRIBUTES=NONE REVOKE DATE=NONE RESUME DATE=NONE
INFORMATION FOR GROUP RESEARCH
SUPERIOR GROUP=SYS1 OWNER=IBMUSER CREATED=06.123
NO INSTALLATION DATA
NO MODEL DATA SET
TERMUACC
SUBGROUP(S)= PAYROLLB
USER(S)= ACCESS= ACCESS COUNT= UNIVERSAL ACCESS=
IBMUSER JOIN 000000 ALTER
 CONNECT ATTRIBUTES=NONE REVOKE DATE=NONE RESUME DATE=NONE
DAF0 JOIN 000002 READ
 CONNECT ATTRIBUTES=NONE REVOKE DATE=NONE RESUME DATE=NONE
IA0 CONNECT 000004 READ
 CONNECT ATTRIBUTES=ADSP SPECIAL OPERATIONS
 REVOKE DATE=NONE RESUME DATE=NONE
ESH25 USE 000000 READ
 CONNECT ATTRIBUTES=NONE REVOKE DATE=NONE RESUME DATE=NONE
PROJECTB USE 000000 READ
 CONNECT ATTRIBUTES=NONE REVOKE DATE=NONE RESUME DATE=NONE
RV2 CREATE 000002 READ
 CONNECT ATTRIBUTES=NONE REVOKE DATE=NONE RESUME DATE=NONE
RV3 CREATE 000000 READ
 CONNECT ATTRIBUTES=NONE REVOKE DATE=NONE RESUME DATE=NONE
ADM1 JOIN 000001 READ
 CONNECT ATTRIBUTES=OPERATIONS
 REVOKE DATE=NONE RESUME DATE=NONE
AEH0 USE 000000 READ
 CONNECT ATTRIBUTES=NONE REVOKE DATE=NONE RESUME DATE=NONE

Figure 14. Example 2: Output for LISTGRP *
LISTGRP DFPADMN DFP
INFORMATION FOR GROUP DFPADMN
SUPERIOR GROUP=SYSADMN OWNER=SYSADMN CREATED=06.123
NO INSTALLATION DATA
NO MODEL DATA SET
TERMUACC
SUBGROUP(S)= DFPGRP1, DFPGRP2
USER(S)= ACCESS= ACCESS COUNT= UNIVERSAL ACCESS=
IBMUSER JOIN 000000 ALTER
CONNECT ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE
DSMITH JOIN 000002 READ
CONNECT ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE
HOTROD CONNECT 000004 READ
CONNECT ATTRIBUTES=ADSP SPECIAL OPERATIONS
REVOKE DATE=NONE RESUME DATE=NONE
ESHAW USE 000000 READ
CONNECT ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE
PROJECTB USE 000000 READ
CONNECT ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE
ADM1 JOIN 000000 READ
CONNECT ATTRIBUTES=OPERATIONS
REVOKE DATE=NONE RESUME DATE=NONE
AEHALL USE 000000 READ
CONNECT ATTRIBUTES=REVOKED
REVOKE DATE=NONE RESUME DATE=NONE
DFP INFORMATION
MGMTCLAS= DFP2MGMT
STORCLAS= DFP2STOR
DATACLAS= DFP2DATA
DATAAPPL= DFP2APPL

Figure 15. Example 3: Output for LISTGRP DFPADMIN DFP

LISTGRP DFPADMN DFP NORACF
INFORMATION FOR GROUP DFPADMN
DFP INFORMATION
MGMTCLAS= DFP2MGMT
STORCLAS= DFP2STOR
DATACLAS= DFP2DATA
DATAAPPL= DFP2APPL

Figure 16. Example 4: Output for LISTGRP DFPADMIN DFP NORACF

LISTGRP OMVSG1 OMVS NORACF
INFORMATION FOR GROUP OMVSG1
OMVS INFORMATION
GID= 0000003243

Figure 17. Example 5: Output for LISTGRP OMVSG1 OMVS NORACF
LISTUSER (List user profile)

Purpose

Use the LISTUSER command to list the details of specific RACF user profiles. A user profile consists of a RACF segment and, optionally, other segments such as TSO and DFP. The LISTUSER command provides you with the option of listing the information contained in the entire user profile (all segments), or listing the information contained only in specific segments of the user profile.

You cannot use the LISTUSER command to list information about user ID associations; you must use the RACLINK command.

The details RACF lists from the RACF segment for each user profile are:

- The user ID
- The user's name or UNKNOWN, if the user's name was not specified on the ADDUSER command
- The owner of the user's profile
- The date the user was defined to RACF
- The default group
- The date the user's password was last updated
- The date the user's password phrase was last updated
- The change interval (in number of days)
- Information about the user's password envelope and password phrase envelope, if any. (See “Details about listing envelope information”.)
- The user's attributes
- The date and time the user last entered the system
- The classes in which the user is authorized to define profiles
- The installation-defined data
 - If your z/OS installation is configured as a multilevel-secure environment, this information is not listed in your output. The output line * SUPPRESSED * appears under the installation data field. Only those with SPECIAL will be allowed to list the field.
- The name of default data set model profile
- Any REVOKE or RESUME processing either in effect or pending, with the corresponding dates even if they have passed
- The security label, the security level, and category
 - When you specify the user ID on the LISTUSER command, the default security label from the user profile in the RACF database is displayed in the output.

Figure 18. Example 6: Output for LISTGRP NETGROUP
When you do not specify the user ID on the LISTUSER command, the security label you are currently logged on with (from the in-storage ACEE control blocks) is displayed in the output.

In addition, RACF lists the following information from the RACF segment of the user profile for each group to which the user is connected:
- The group name
- The user's authority in the group
- The user ID of the person who connected the user to this group
- The date the user was connected to this group
- The number of times the user has entered the system with this group as the current connect group
- The default universal access authority
- The date and time the user last entered the system using this group as the current connect group
- The connect attributes (group-related user attributes).

Details about listing a user's envelope information:
- Listing information about password envelopes:
 - Information about a user's password envelope is displayed only if the user does not have the PROTECTED attribute.
 - If the user's password is enveloped (regardless of whether password enveloping is enabled), the PASSWORD ENVELOPED=YES line is displayed.
 - If the user's password is not enveloped and password enveloping is enabled, the PASSWORD ENVELOPED=NO line is displayed.
 - If the user's password is not enveloped and password enveloping is not enabled, no output line about password enveloping is displayed.
- Listing information about password phrase envelopes:
 - Information about a user's password phrase envelope is displayed only if the user does not have the PROTECTED attribute.
 - If the user's password phrase is enveloped (regardless of whether password phrase enveloping is enabled), the PHRASE ENVELOPED=YES line is displayed.
 - If the user's password phrase is not enveloped and password phrase enveloping is enabled, the PHRASE ENVELOPED=NO line is displayed.
 - If the user's password phrase is not enveloped and password phrase enveloping is not enabled, or if the user has no password phrase, no output line about password phrase enveloping is displayed.

RACF date handling: RACF interprets dates with 2-digit years as follows. (The yy value represents the 2-digit year.)
- If 70 \(<\) yy \(<=\) 99, the date is interpreted as 19yy.
- If 00 \(<=\) yy \(<=\) 70, the date is interpreted as 20yy.

Issuing options

The following table identifies the eligible options for issuing the LISTUSER command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
LISTUSER

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.

Related commands

- To list a group profile, see “LISTGRP (List group profile)” on page 226.
- To list a data set profile, see “LISTDSD (List data set profile)” on page 213.
- To list a general resource profile, see “RLIST (List general resource profile)” on page 550. (General resources include terminals, and other resources defined in the class descriptor table.)
- To list information about user ID associations, see “RACLINK (Administer user ID associations)” on page 401.
- To obtain a list of user profiles, see “SEARCH (Search RACF database)” on page 580.

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.

To specify the AT keyword, you must have READ authority to the DIRECT.node resource in the RRSFDATA class and a user ID association must be established between the specified node.userid pair(s).

To specify the ONLYAT keyword you must have the SPECIAL attribute, the userid specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified node.userid pair(s) if the user IDs are not identical.

Listing the RACF segment of a user profile: You can always list the details of the RACF segment of your own user profile. To list details of the RACF segment of another user’s profile, one of the following conditions must be true:

- You are the owner of the user’s profile.
- You have the SPECIAL attribute.
- The user’s profile is within the scope of a group in which you have the group-SPECIAL attribute.
- You have the AUDITOR attribute.
- The user’s profile is within the scope of a group in which you have the group-AUDITOR attribute.
- You have READ access to the IRR.LISTUSER resource in the FACILITY class and the user does not have the SPECIAL, AUDITOR, or OPERATIONS attribute.
- You have READ access to an appropriate resource (IRR.LU.OWNER.owner or IRR.LU.TREE.owner) in the FACILITY class, and both of the following conditions are also true:
 - The user does not have the SPECIAL, AUDITOR, or OPERATIONS attribute.
 (You can list a PROTECTED user.)
LISTUSER

- You are not excluded from listing the user by the IRR.LU.EXCLUDE.resource in the FACILITY class.

For more information about the IRR.LU profiles, see [z/OS Security Server RACF Security Administrator's Guide](#).

To list details of the RACF segment of all RACF-defined user profiles (by specifying the asterisk (*) operand), one of the following conditions must be true for each listed profile:

- You are the owner of the user’s profile. RACF lists the RACF segment for all the user profiles that you own.
- You have the SPECIAL attribute. RACF lists the RACF segment for all user profiles.
- The user’s profile is within the scope of a group in which you have the group-SPECIAL attribute. RACF lists the RACF segment for all the user profiles within the scope of your group.
- You have the AUDITOR attribute. RACF lists the RACF segment for all user profiles.
- The user’s profile is within the scope of a group in which you have the group-AUDITOR attribute. RACF lists the RACF segment for all the user profiles within the scope of your group.
- You have READ access to the IRR.LISTUSER resource in the FACILITY class and the user does not have any of the SPECIAL, AUDITOR or OPERATIONS attributes.

If you have the group-SPECIAL or group-AUDITOR attribute and your installation has assigned security levels and security categories to user profiles, you must have the following to be able to display the RACF segment of a user’s profile:

- A security level equal to, or greater than, that in the user profile you are trying to display
- All security categories contained in the user profile you are trying to display contained in your own user profile.

If you have the AUDITOR attribute, or the profile is within the scope of a group in which you group-AUDITOR attribute, RACF also lists the value of the UAUDIT/NOUAUDIT operand.

Listing the other segments of a user profile: To list information from segments other than the RACF segment for a user profile, including your own, one of the following conditions must be true:

- You have the SPECIAL or AUDITOR attribute
- You have at least READ authority to the desired field within the segment through field-level access checking.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the LISTUSER command is:

```
[subsystem-prefix][LISTUSER | LU]
   [ (userid ...) | * ]
   [ AT([node].userid ...) | ONLYAT([node].userid ...) ]
```
LISTUSER

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

Parameters

subsystem-prefix

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

userid | *

userid

Specifies the user ID of one or more RACF-defined users. If you specify more than one user ID, you must enclose the list of user IDs in parentheses.

* Specifies that you want to list information contained in all RACF-defined user profiles to which you have the required authority.

Important: On a system with many users defined, the use of * might result in a large amount of output and might not be useful to a user issuing the command. It might be more appropriate for the user to browse the output of IRRDBU00 (database unload) or to write a program to process the IRRDBU00 output and produce a report showing only the subset of information that is of interest to the user. The processing of output of LISTUSER by programs is not supported nor recommended by IBM. If you want a listing of all the groups for use by a program you should instead have the program process the output from IRRDBU00, RACROUTE REQUEST=EXTRACT, or ICHEINTY.
LISTUSER

The *userid* value or an asterisk (*) must be specified if you specify any other operand in the LISTUSER command, and must be the first operand following LISTUSER.

If you enter LISTUSER and specify one or more user IDs, or an asterisk (*), without specifying an additional operand, RACF lists only the RACF segment information from the specified profiles.

If you enter only LISTUSER, RACF lists only the RACF segment information from your own user profile.

Note: You cannot use the LISTUSER command for user IDs that have mixed-case characters, such as *irrcerta*, *irrsitec*, and *irrmulti* (which are associated with digital certificates).

AT | ONLYAT

The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.

AT([node].userid ...)

Specifies that the command is to be directed to the node specified by *node*, where it runs under the authority of the user specified by *userid* in the RACF subsystem address space.

If *node* is not specified, the command is directed to the local node.

ONLYAT([node].userid ...)

LISTUSER is not eligible for automatic command direction. If you specify the ONLYAT keyword, the effect is the same as if you specified the AT keyword.

CICS

Specifies that you want to list the information contained in the CICS segment of the user's profile.

The details RACF lists from the CICS segment of the user's profile are:

- The classes assigned to this operator to which BMS messages are sent.

Note: The values of the classes are listed in a three digit format, even though a maximum of two digits are used to define the value.

- Whether the operator are forced off when an XRFSOFF takeover occurs.

- The operator identification.

- The priority of the operator.

- The time in hours and minutes that the operator is allowed to be idle before being signed off.

- Resource security level (RSL) keys, if any are assigned to the user. If 99 is displayed, this indicates that all RSL keys are assigned to the user (1 - 24, inclusive). If 0 is displayed, no RSL keys are assigned to the user.

- Transaction security level (TSL) keys, if any are assigned to the user. If 99 is displayed, this indicates that all TSL keys are assigned to the user (1 - 64, inclusive). If 0 is displayed, no TSL keys are assigned to the user.

CSDATA

Specifies that you want to list custom field information for this user. The custom field information in the CSDATA segment for this user was added using the ADDUSER and ALTUSER commands.

Usage for each custom field is defined using the CFDEF operand of the RDEFINE command for resource profiles in the CFIELD class. Contact your
security administrator to see how custom fields are used at your installation. For more information about custom fields, see *z/OS Security Server RACF Security Administrator’s Guide*.

DCE

Specifies that you want to list the information contained in the DCE segment of the user’s profile.

The details that RACF lists from the DCE segment are:

- The DCE universal unique identifier
- The DCE principal name
- The DCE home cell name
- The DCE home cell universal unique identifier
- The DCE AUTOLOGIN indicator.

If there is no DCENAME or HOMECELL for this segment, the field name is not displayed. However, if UUID or HOMEUUID was not specified when the DCE segment was added to the user profile, the word *NONE* appears in the listing.

DFP

Specifies that you want to list the information contained in the DFP segment of the user’s profile.

The details RACF lists from the DFP segment of the user’s profile are:

- The user’s default data class
- The user’s default management class
- The user’s default storage class
- The data management data application for the user.

EIM

Specifies that the Enterprise Identity Mapping (EIM) segment information should be listed.

KERB

Specifies that you want to list the information contained in the KERB segment of the user’s profile.

The details that RACF lists from the KERB segment of the user’s profile are:

- The encryption value settings (ENCRYPT values or NOENCRYPT)
- The local *kerberos-principal-name* (KERBNAME)
- The *max-ticket-life* associated with this local principal (MAXTTLFE)
- The current z/OS Network Authentication Service key version (KEY VERSION)
- The authenticator used to generate the current user’s z/OS Network Authentication Service keys (KEY FROM)
 - When *PASSWORD* is displayed, the current keys were derived from the user’s password.
 - When *PHRASE* is displayed, the current keys were derived from the user’s password phrase.

LANGUAGE

Specifies that you want to list the information contained in the LANGUAGE segment of the user’s profile.

The 3-character language code and, if defined, the 24-character language name, is displayed. *NOT SPECIFIED* indicates that no language has been specified.

If the code is displayed without a name, one of the following is true:

- The MVS message service was not active
- The language was not active.
LISTUSER

If the language code equals the language name, one of the following is true:
• There was no language name defined on your system
• The language name was defined to be the same as the language code.

The details RACF lists from the LANGUAGE segment of the user’s profile are:
• The user’s primary language, if one has been specified
• The user’s secondary language, if one has been specified.

LNOTES
Specifies that you want to list the information for the Lotus Notes for z/OS short-name, which is contained in the LNOTES segment of the user’s profile.

NDS
Specifies that you want to list the information for the Novell Directory Services for OS/390 user-name, which is contained in the NDS segment of the user’s profile.

NETVIEW
Specifies that you want to list the information contained in the NETVIEW segment of the user’s profile.

The details RACF lists from the NETVIEW segment of the user’s profile are:
• The command or command line to be processed by NetView for this operator
• The default MCS console identifier
• Whether security checking should be done for this NetView operator
• Whether this operator can receive unsolicited messages
• The count of operator class values
• The list of NetView scope classes for which this operator has authority
• The number of domains this NetView operator controls
• The list of identifiers of NetView programs in another NetView domain for which this operator has authority
• Whether this operator has administrator authority to the NetView Graphic Monitor Facility (NGMF).

If there is no information in the fields of the NETVIEW segment, the field name is not displayed (with the exception of SIZE, MAXSIZE, and USERDATA).

NORACF
Specifies that you want to suppress the listing of RACF segment information from the user’s profile.

If you specify NORACF, you must also specify at least one segment name.

The information displayed as a result of using the NORACF operand is dependent on other operands used in the command. For example, if you use NORACF with TSO or DFP also specified, only that information (TSO or DFP) is displayed. User profiles that do not have at least one of the specified segments appear in the command output.

The information displayed as a result of using the NORACF operand is dependent on other operands used in the command. For example, if you use NORACF with TSO or DFP also specified, only that information (TSO or DFP) is displayed.

When you specify an asterisk (*) in place of the user ID, only user profiles with at least one of the specified segments appear in the command output. (See the description of the userid parameter on page 239 for an important note about specifying an asterisk with the LISTUSER command.)
LISTUSER

If you do not specify NORACF, RACF displays the information in the RACF segment of a user profile.

OMVS

Specifies that you want to list the information contained in the OMVS segment of the user's profile.

The details RACF lists from the OMVS segment are:
- The user identifier
- The initial directory pathname
- The program pathname
- The CPU time, in seconds, the user's processes can use
- The address space region size, in bytes, the user's processes can use
- The maximum number of active or open files the user can have
- The maximum number of active processes the user can have
- The maximum number of threads the user can have
- The maximum amount of space, in pages, the user can map in storage.

Note: If CPUTIMEMAX, ASSIZEMAX, FILEPROCMAX, PROCUSERMAX, THREADSMAX, or MMAPAREAMAX is not specified, or is removed with the ALTUSER command, the word NONE appears in the listing. In such situations, z/OS UNIX uses its system level values for limit values.

If there is no HOME or PROGRAM information, the field name is not displayed. However, the word NONE appears in the listing if the UID was not specified, or if the UID was removed using the NOUID operand on the ALTUSER command.

OPERPARM

Specifies that you want to list the information contained in the OPERPARM segment of the user's profile.

The details RACF lists from the OPERPARM segment of the user's profile are:
- The alternate console group (ALTGRP)
- The operator authority (AUTH)
- Whether the console receives messages that can be automated in a sysplex environment.
- The system name for commands from this console (CMDSYS)
- Whether, and what kind of, delete operator messages are received (DOM)
- The searching key (KEY)
- The message level information (LEVEL)
- Whether system command responses are logged (LOGCMDDRESP)
- The message format (MFORM)
- Whether this console is assigned a migration ID (MIGID)
- Event information (MONITOR)
- The systems this console can receive undirected messages from (MSCOPE)
- Routing code information (ROUTCODE)
- Storage information (STORAGE)
- Whether this console receives undeliverable messages (UD).

If there is no information in a field in the user's profile for this segment, the field name is not displayed. However, if no value was specified for STORAGE when the OPERPARM segment was added to the user profile, STORAGE=0 appears in the listing.

OVM

Specifies that you want to list the information contained in the OVM segment of the user's profile.
LISTUSER

The details that RACF lists from the OVM segment are the z/OS UNIX System Services user's:

- User identifier
- Initial directory pathname
- Program pathname
- File system root name.

If there is no HOME, PROGRAM, or FSROOT information, the field name is not displayed. However, the word NONE appears in the listing if the UID was not specified, or if the UID was removed using the NOUID operand on the ALTUSER command.

PROXY

Specifies that PROXY segment information should be listed.

The BINDPW password value will not be listed. If a BINDPW password value is defined for a user, LISTUSER will display YES for the PROXY segment BINDPW attribute. If no BINDPW password value has been defined, LISTUSER will display NO for the PROXY segment BINDPW attribute.

TSO

Specifies that you want to list the information contained in the TSO segment of the user's profile.

The details RACF lists from the TSO segment of the user's profile are:

- The user's default account number when logging on from the TSO/E logon panel
- The destination ID for SYSOUT data sets
- The user's default HOLDCLASS
- The user's default JOBCLASS
- The user's default MSGCLASS
- The user's default SYS
- The maximum region size
- The default region size
- The logon procedure name
- The unit name
- The optional user data
- The user's security label
- The default command to be run during the TSO/E logon.

If there is no information in the fields of the TSO segment, the field name is not displayed (with the exception of SIZE, MAXSIZE, and USERDATA).

WORKATTR

Specifies that you want to list the information contained in the WORKATTR segment of the user's profile.

The details RACF lists for the distribution information from the user's WORKATTR segment are:

- The name of the user (WANAME)
- The building (WABLDG)
- The department (WADEPT)
- The room (WAROOM)
- Up to four additional lines of output distribution information (WAADDRn)
- An account number for APPC/MVS processing (WAACCNT).
LISTUSER

Examples

Example 1

Operation User DAF0 wants to list the user attributes from the RACF segment of her user profile.

Known User DAF0 is RACF-defined. User DAF0 wants to issue the command as a RACF TSO command.

Command LISTUSER

Defaults DAF0 (userid)

Output See Figure 19 on page 248

Example 2

Operation User CALTMANN wants to list the user attributes from the RACF segment of profiles for users IBMUSER, CALTMANN, and DAF0.

Known User CALTMANN has the SPECIAL and AUDITOR attributes. User CALTMANN wants to issue the command as a RACF TSO command.

Command LISTUSER (IBMUSER CALTMANN DAF0)

Defaults None.

Output See Figure 20 on page 249

Example 3

Operation User ADM1 wants to list the user attributes from the RACF segment and TSO segment of the profile for user DAF0.

Known User ADM1 has the SPECIAL and AUDITOR attributes.

User DAF0 is defined to RACF with authority to use TSO.

User ADM1 wants to issue the command as a RACF TSO command.

Command LISTUSER DAF0 TSO

Defaults None.

Output See Figure 21 on page 250

Example 4

Operation User ADM1 wants to list the user attributes from only the TSO segment of the profile for user DAF0.

Known User ADM1 has the SPECIAL and AUDITOR attributes.

User DAF0 is defined to RACF with authority to use TSO.

User ADM1 wants to issue the command as a RACF TSO command.

Command LISTUSER DAF0 NORACF TSO

Defaults None.

Output See Figure 22 on page 250

Example 5

Operation User ADM1 wants to list the user attributes from the RACF segment and DFP segment of the profile for user DAF0.

Known User ADM1 has the SPECIAL and AUDITOR attributes.

User DAF0 is defined to RACF and DAF0’s profile contains a DFP segment.

User ADM1 wants to issue the command as a RACF TSO command.

Command LISTUSER DAF0 DFP

Defaults None.

Output See Figure 23 on page 251

Example 6

Operation User ADM1 wants to list the user attributes from only the DFP segment of the profile for user DAF0.

Known User ADM1 has the SPECIAL and AUDITOR attributes.

User DAF0 is defined to RACF and DAF0’s profile contains a DFP segment.

User ADM1 wants to issue the command as a RACF TSO command.

Command LISTUSER DAF0 NORACF DFP

Defaults None.

Output See Figure 24 on page 251
LISTUSER

Example 7
Operation User ADM1 wants to list the user attributes from only the CICS segment of the profile for user DAF0.

Known User DAF0 is defined to RACF and DAF0’s profile contains a CICS segment.

User running CICS in a distributed environment.

User ADM1 wants to issue the command as a RACF TSO command.

Command LISTUSER DAF0 NORACF CICS

Defaults None.

Output See Figure 25 on page 252

Example 8
Operation User ADM1 wants to list the user attributes from only the LANGUAGE segment of the profile for user DAF0.

Known User ADM1 has the SPECIAL and AUDITOR attributes.

User DAF0 is defined to RACF and DAF0’s profile has American English (language code ENU) defined as her primary language and German (language code DEU) defined as her secondary language.

User ADM1 wants to issue the command as a RACF TSO command.

Command LISTUSER DAF0 NORACF LANGUAGE

Defaults None.

Output See Figure 26 on page 252

Example 9
Operation User ADM1 wants to list the user attributes from only the OPERPARM segment of the profile for user DAF0.

Known User ADM1 has the SPECIAL and AUDITOR attributes.

User DAF0 is defined to RACF and DAF0’s profile contains an OPERPARM segment.

User ADM1 wants to issue the command as a RACF TSO command.

Command LISTUSER DAF0 NORACF OPERPARM

Defaults None.

Output See Figure 27 on page 252

Example 10
Operation User ADM1 wants to list the user attributes from the OMVS segment of the profile for user CSMITH.

Known User ADM1 has the SPECIAL attribute.

User CSMITH is defined to RACF and CSMITH’s profile contains an OMVS segment.

User ADM1 wants to issue the command as a RACF TSO command.

Command LISTUSER CSMITH OMVS NORACF

Defaults None.

Output See Figure 28 on page 253

Example 11
Operation User ADM1 wants to list the user attributes from the OMVS segment of the profile for user CSMITH.

Known User ADM1 has the SPECIAL attribute.

User CSMITH is defined to RACF and CSMITH’s profile contains an OMVS segment, but there was no value specified for HOME or PROGRAM in the OMVS segment for this profile. Defaults were used.

User ADM1 wants to issue the command as a RACF TSO command.

Note: If the user also has no user limits because the defaults were taken, CPUMEMAX, ASSIZEMAX, FILEPROCMAX, PROCUSERMAX, THREADSMAX, and MMAPAREAMAX will display NONE as their value.

Command LISTUSER CSMITH OMVS NORACF

Defaults None.

Output See Figure 29 on page 253
Example 12
Operation User ADM1 wants to list the DCE segment for user CSMITH.
Known User ADM1 has the SPECIAL attribute.
Command LISTUSER CSMITH NORACF DCE
Defaults None.
Output See Figure 30 on page 253.

Example 13
Operation A security administrator lists the KERB segment of the altered RACF user profile for RONTOMS.
Known The administrator wants to list the information contained in the KERB segment of the altered RACF user profile.
Command LISTUSER RONTOMS NORACF KERB
Defaults None.
Output See Figure 31 on page 253.

Example 14
Operation A security administrator lists the PROXY segment of the altered RACF user profile for MRSERVER.
Known The administrator wants to list the information contained in the PROXY segment of the altered RACF user profile.
Command LISTUSER MRSERVER PROXY NORACF
Defaults None.
Output See Figure 32 on page 254.

Example 15
Operation A security administrator lists the EIM segment of the RACF user profile for KCROVE.
Known User ADM1 has the SPECIAL attribute.
Command LISTUSER KCROVE EIM NORACF
Defaults None.
Output See Figure 33 on page 254.

Example 16
Operation User ADM1 wants to list the status of the RACF user profile for UPWENV who has an enveloped password and an enveloped password phrase.
Known User ADM1 has the SPECIAL attribute. User UPWENV does not have the PROTECTED attribute.
Command LISTUSER UPWENV
Defaults None.
Output See Figure 34 on page 254.

Example 17
Operation User SECADM wants to list the custom field information for user ANDREW.
Known User SECADM has the SPECIAL attribute.
Command LISTUSER ANDREW CSDATA NORACF
Output See Figure 35 on page 254.
Figure 19. Example 1: Output for LISTUSER

```
LISTUSER
USER=DAFO  NAME=D.M.BROWN  OWNER=IBMUSER  CREATED=05.228
DEFAULT-GROUP=RESEARCH  PASSDATE=05.228  PASS-INTERVAL=30  PHRASEDATE=05.231
PASSWORD ENVELOPED=NO
ATTRIBUTES=ADSP
ATTRIBUTES=PASSPHRASE
REVOCEDATE=NONE  RESUMEDATE=NONE
LAST-ACCESS=05.228/13:31:11
CLASS AUTHORIZATIONS=NONE
NO-INSTALLATION-DATA
NO-MODEL-NAME
LOGON ALLOWED (DAYS) (TIME)
--------------------------------------------
ANYDAY  ANYTIME
GROUP=RESEARCH  AUTH=JOIN  CONNECT-OWNER=IBMUSER  CONNECT-DATE=05.228
   CONNECTS=01  UACC=READ  LAST-CONNECT=05.228/13:31:11
   CONNECT ATTRIBUTES=NONE
   REVOCEDATE=NONE  RESUMEDATE=NONE
GROUP=PAYROLLB  AUTH=CREATE  CONNECT-OWNER=IBMUSER  CONNECT-DATE=05.228
   CONNECTS=00  UACC=READ  LAST-CONNECT=UNKNOWN
   CONNECT ATTRIBUTES=NONE
   REVOCEDATE=NONE  RESUMEDATE=NONE
SECURITY-LEVEL=NONE  SPECIFIED
CATEGORY-AUTHORIZATION
NONE  SPECIFIED
```
LISTUSER (IBMUSER CALTMANN DAF0)
USER=IBMUSER NAME=G. SMITH OWNER=IBMUSER CREATED=05.163
DEFAULT-GROUP=SYS1 PASSDATE=05.220 PASS-INTERVAL=N/A PHRASEDATE=05.231
PASSWORD ENVELOPED=NO
ATTRIBUTES=SPECIAL OPERATIONS
ATTRIBUTES=PASSPHRASE AUDITOR
REVOKE DATE=NONE RESUME DATE=NONE
LAST-ACCESS=05.146/15:45:23
CLASS AUTHORIZATIONS=NONE
NO-INSTALLATION-DATA
NO-MODEL-NAME
LOGON ALLOWED (DAYS) (TIME)
--
ANYDAY ANYTIME
GROUP=SYS1 AUTH=JOIN CONNECT-OWNER=IBMUSER CONNECT-DATE=04.263
CONNECTS= 456 UACC=READ LAST-CONNECT=05.146/15:45:23
CONNECT ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE
SECURITY-LEVEL=NONE SPECIFIED
CATEGORY-AUTHORIZATION
NONE SPECIFIED
SECURITY-LABEL=NONE SPECIFIED
USER=CALTMANN NAME=C. ALTMANN OWNER=IBMUSER CREATED=05.144
DEFAULT-GROUP=RESEARCH PASSDATE=00.000 PASS-INTERVAL=254 PHRASEDATE=05.231
PASSWORD ENVELOPED=NO
ATTRIBUTES=SPECIAL
ATTRIBUTES=PASSPHRASE AUDITOR
REVOKE DATE=NONE RESUME DATE=NONE
LAST-ACCESS=05.146/16:16:14
CLASS AUTHORIZATIONS=USER
NO-INSTALLATION-DATA
MODEL-NAME=ALLENA
LOGON ALLOWED (DAYS) (TIME)
--
ANYDAY ANYTIME
GROUP=RESEARCH AUTH=JOIN CONNECT-OWNER=IBMUSER CONNECT-DATE=05.144
CONNECTS= 01 UACC=READ LAST-CONNECT=05.146/16:16:14
CONNECT ATTRIBUTES=OPERATIONS
REVOKE DATE=NONE RESUME DATE=NONE
SECURITY-LEVEL=NONE SPECIFIED
CATEGORY-AUTHORIZATION
NONE SPECIFIED
SECURITY-LABEL=NONE SPECIFIED
USER=DAF0 NAME=D.M.BROWN OWNER=IBMUSER CREATED=05.144
DEFAULT-GROUP=RESEARCH PASSDATE=00.000 PASS-INTERVAL=254 PHRASEDATE=05.231
PASSWORD ENVELOPED=NO
ATTRIBUTES=ADSP
ATTRIBUTES=PASSPHRASE
REVOKE DATE=NONE RESUME DATE=NONE
LAST-ACCESS=05.146/15:11:31
CLASS AUTHORIZATIONS=NONE
NO-INSTALLATION-DATA
NO-MODEL-NAME
LOGON ALLOWED (DAYS) (TIME)
--
ANYDAY ANYTIME
GROUP=RESEARCH AUTH=JOIN CONNECT-OWNER=IBMUSER CONNECT-DATE=05.144
CONNECTS= 02 UACC=READ LAST-CONNECT=05.146/15:11:31
CONNECT ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE
SECURITY-LEVEL=NONE SPECIFIED
CATEGORY-AUTHORIZATION
NONE SPECIFIED
SECURITY-LABEL=NONE SPECIFIED

Figure 20. Example 2: Output for LISTUSER (IBMUSER CALTMANN DAF0)
LISTUSER

LISTUSER DAF0 TSO
USER=DAF0 NAME=D.M.BROWN OWNER=IBMUSER CREATED=05.228
DEFAULT-GROUP=RESEARCH PASSDATE=05.231 PASS-INTERVAL=30 PHRASEDATE=05.231
PASSWORD ENVELOPED=NO
ATTRIBUTES=ADSP
ATTRIBUTES=PASSPHRASE
REVOKE DATE=NONE RESUME DATE=NONE
LAST-ACCESS=05.228/13:31:11
CLASS AUTHORIZATIONS=None
NO-INSTALLATION-DATA
NO-MODEL-NAME
LOGON ALLOWED (DAYS) (TIME)
--
ANYDAY ANYTIME
GROUP=RESEARCH AUTH=JOIN CONNECT-OWNER=IBMUSER CONNECT-DATE=05.228
CONNECTS= 01 UACC=READ LAST-CONNECT=05.228/13:31:11
CONNECT ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE
GROUP=PAYROLLB AUTH=CREATE CONNECT-OWNER=IBMUSER CONNECT-DATE=05.228
CONNECTS= 00 UACC=READ LAST-CONNECT=UNKNOWN
CONNECT ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE
SECURITY-LEVEL=NONE SPECIFIED
CATEGORY-AUTHORIZATION
NONE SPECIFIED
SECURITY-LABEL=NONE SPECIFIED
TSO INFORMATION

ACCTNUM= P00F1V
HOLDCLASS= H
JOBCLASS= I
MSGCLASS= A
PROC= VOLOGON
SIZE= 00001024
MAXSIZE= 00002048
SYSOUTCLASS = A
UNIT= SYSDA
USERDATA= 0000

Figure 21. Example 3: Output for LISTUSER DAF0 TSO

LISTUSER DAF0 NORACF TSO
USER=DAF0
TSO INFORMATION
ACCTNUM= P00F1V
HOLDCLASS= H
JOBCLASS= I
MSGCLASS= A
PROC= VOLOGON
SIZE= 00001024
MAXSIZE= 00002048
SYSOUTCLASS = A
UNIT= SYSDA
USERDATA= 0000

Figure 22. Example 4: Output for LISTUSER NORACF TSO
Figure 23. Example 5: Output for LISTUSER DAF0 DFP

```
LISTUSER DAF0 DFP
USER=DAF0 NAME=D.M.BROWN OWNER=IBMUSER CREATED=05.228
DEFAULT-GROUP=RESEARCH PASSDATE=05.228 PASS-INTERVAL=30 PHRASEDATE=05.231
PASSWORD ENVELOPED=NO
ATTRIBUTES=ADSP
ATTRIBUTES=PASSPHRASE
REVOKE DATE=NONE RESUME DATE=NONE
LAST-ACCESS=05.228/13:31:11
CLASS AUTHORIZATIONS=NONE
NO-INSTALLATION-DATA
NO-MODEL-NAME
LOGON ALLOWED (DAYS) (TIME)
--------------------------------------------------------
ANYDAY ANYTIME
GROUP=RESEARCH AUTH=JOIN CONNECT-OWNER=IBMUSER CONNECT-DATE=05.228
CONNECTS= 01 UACC=READ LAST-CONNECT=05.228/13:31:11
CONNECT ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE
GROUP=PAYROLLB AUTH=CREATE CONNECT-OWNER=IBMUSER CONNECT-DATE=05.228
CONNECTS= 00 UACC=READ LAST-CONNECT=UNKNOWN
CONNECT ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE
SECURITY-LEVEL=NONE SPECIFIED
CATEGORY-AUTHORIZATION
NONE SPECIFIED
SECURITY-LABEL=NONE SPECIFIED
DFP INFORMATION
---------------------
MGMTCLAS= DFP5MGMT
STORCLAS= DFP5STOR
DATACLAS= DFP5DATA
DATAAPPL= DFP5APPL
```

Figure 24. Example 6: Output for LISTUSER DAF0 NORACF DFP

```
LISTUSER DAF0 NORACF DFP
USER=DAF0
DFP INFORMATION
---------------------
MGMTCLAS= DFP5MGMT
STORCLAS= DFP5STOR
DATACLAS= DFP5DATA
DATAAPPL= DFP5APPL
```
LISTUSER

LISTUSER DAF0 NORACF CICS
USER=TEST
CICS INFORMATION

OPCLASS=001
OPIDENT= ID2
OPRTPY= 00010
TIMEOUT= 02:30 (HH:MM)
XRFSOFF= NOFORCE
RSLKEYS= 00001 00003 00005 00007 00009 00011 00002
00018 00016 00014 00012 00023 00021 00019
00017 00015 00013
TSLKEYS= 00001 00003 00005 00007 00009 00011 00002
00004 00006 00008 00010 00024 00022 00020
00018 00016 00014 00012 00023 00021 00019
00038 00035 00036 00032 00064 00041 00063
00043 00048 00051 00042 00055 00062 00044
00061 00060 00059 00058

Figure 25. Example 7: Output for LISTUSER DAF0 NORACF CICS

LISTUSER DAF0 NORACF LANGUAGE
USER=DAF0
LANGUAGE INFORMATION

PRIMARY LANGUAGE: ENU
SECONDARY LANGUAGE: DEU
READY

Figure 26. Example 8: Output for LISTUSER DAF0 NORACF LANGUAGE

LU DAF0 NORACF OPERPARM
USER=DAF0
OPERPARM INFORMATION

STORAGE= 00002
AUTH= IO
ROUTCODE= ALL
LEVEL= ALL
MFORM= T J M
MONITOR= JOBNAMEST SESST
MIGID= YES
DOM= NORMAL
KEY= MCS2
CMDSYS= SYS1
MSCOPE= *ALL
UD= YES
HC= YES
INTIDS= YES
UNKNIDS= YES
READY

Note: With the exception of the STORAGE operand, if a field has no value in the
OPERPARM segment, no value appears for the field in the listing. If there is an
OPERPARM segment and the storage is not specified, 00000 appears in the listing. When
an extended MCS console session is established, the values for STORAGE is 1.

Figure 27. Example 9: Output for LISTUSER DAF0 NORACF OPERPARM
<table>
<thead>
<tr>
<th>ListUser Command</th>
<th>Output for Listing OMVS User Information</th>
<th>Output for LISTUSER CSMITH OMVS NORACF (Using Defaults)</th>
<th>Output for LISTUSER CSMITH NORACF DCE</th>
<th>Output for LISTUSER RONTOMS NORACF KERB</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTUSER CSMITH OMVS NORACF USER = CSMITH OMVS INFORMATION UID= 0000000024 HOME= /u/CSMITH PROGRAM= /u/CSMITH/bin/myshell CPUTIMEMAX= 0010000000 ASSIZE MAX= NONE FILEPROC MAX= 0000050000 PROCUS ERMAX= NONE THREADMAX= NONE MMAPAREAMAX= 0016777216</td>
<td>Figure 28. Example 10: Output for listing OMVS user information</td>
<td>LISTUSER CSMITH OMVS NORACF USER=CSMITH OMVS INFORMATION UID= 0000000024 CPUTIMEMAX= NONE ASSIZE MAX= NONE FILEPROC MAX= NONE PROCUSERMAX= None THREADMAX= None MMAPAREAMAX= None</td>
<td>Figure 29. Example 11: Output for LISTUSER CSMITH OMVS NORACF (Using Defaults)</td>
<td>LISTUSER RONTOMS NORACF KERB USER= RONTOMS KERB INFORMATION KERBNAME= KerberizedUser KEY FROM= PASSWORD KEY VERSION= 001 KEY ENCRYPTION TYPE= DES DES3 DESD AES128 AES256</td>
</tr>
</tbody>
</table>
LISTUSER

LISTUSER MRSERVER PROXY NORACF
USER=MRSERVER
PROXY INFORMATION

LDAPHOST= LDAP://SOME.LDAP.HOST:389
BINDDN= cn=Joe User,ou=Poughkeepsie,o=IBM,c=US
BINDPW= YES

Figure 32. Example 14: Output for LISTUSER MRSERVER PROXY NORACF

LISTUSER KCROVE EIM NORACF
USER=MRSERVER
EIM INFORMATION

LDAPPROF= EIMDOMAINALOOKUP

Figure 33. Example 15: Output for LISTUSER KCROVE EIM NORACF

LISTUSER UPWENV
USER=UPWENV NAME=GREGOR OWNER=IBMUSER CREATED=05.161
DEFAULT-GROUP=SYS1 PASSDATE=00.000 PASS-INTERVAL=254 PHRASEDATE=05.231
PASSWORD ENVELOPED=YES
PHRASE ENVELOPED=YES
ATTRIBUTES=PASSPHRASE

Figure 34. Example 16: Output for LISTUSER indicating that the user's password and password phrase are each enveloped

LISTUSER ANDREW CSDATA NORACF
USER=ANDREW
CSDATA INFORMATION

ACTIVE= NO
HOME ADDRESS= 14 Main Street, Anywhere, IL 01234
EMPLOYEE CODE= FC01B2D8
EMPLOYEE SERIAL= 0000256400
HOME PHONE= 555-555-5555

Figure 35. Example 17: Output for listing CSDATA user information
This command is usually called the PASSWORD command even though the PHRASE command is a supported alias.

Purpose

Use the PASSWORD command to:

- Change your own password or password phrase to a specified value
- Reset another user's password to a known default value
- Change another user's change interval (the number of days that the user's password and password phrase remain valid)
- Specify a password or password phrase that never expires.

When a user's password is changed, RACF makes sure the new password is not the same as the current password. When SETR PASSWORD(HISTORY) is active, RACF also makes sure the new password is not already in the user's password history list. If the new password does not match one of these passwords, the current password is added to the user's password history list, and the new password is activated.

When a user's password phrase is changed, RACF makes sure the new password phrase is not the same as the current password phrase. When SETR PASSWORD(HISTORY) is active, RACF also makes sure the new password phrase is not already in the user's password phrase history list. If the new password phrase does not match one of these password phrases, the new password phrase is added to the user's password phrase history list, and the new password phrase is activated.

If you use the PASSWORD command to change your own password or password phrase and you have user ID associations with password synchronization defined, the password or password phrase is synchronized. However, if you use the PASSWORD command to change another user's password or password phrase, it is not synchronized.

Attention:

- When the PASSWORD command is issued from ISPF, the TSO command buffer (including password or password phrase data) is written to the ISPLOG data set. As a result, you should not issue this command from ISPF or you must control the ISPLOG data set carefully.
- If the PASSWORD command is issued as a RACF operator command, the command and the password or password phrase data is written to the system log. Therefore, use of PASSWORD as a RACF operator command should either be controlled or you should issue the command as a TSO command.

Issuing options

The following table identifies the eligible options for issuing the PASSWORD command:
When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.

If you are a RACF-defined user and you are required to provide a RACF user password or password phrase when entering the system, you can change your own password, password phrase, or change interval.

To change another user’s change interval, or to set a password and password phrase (if assigned) that never expire, you must have the SPECIAL attribute, or the user’s profile must be within the scope of a group in which you have the group-SPECIAL attribute.

To reset another user’s password to the user’s default value, one of the following conditions must be true:

• You have the SPECIAL attribute.
• The user’s profile is within the scope of a group in which you have the group-SPECIAL attribute.
• You are the owner of the user’s profile.

To specify the AT keyword, you must have READ authority to the DIRECT.<node> resource in the RRSFDATA class and a user ID association must be established between the specified <node><userid> pair(s).

To specify the ONLYAT keyword you must have the SPECIAL attribute, the <userid> specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified <node><userid> pair(s) if the user IDs are not identical.
For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the PASSWORD or PHRASE command is:

```
[subsystem-prefix][PASSWORD | PW | PHRASE]
   [ AT([node].userid ...) | ONLYAT([node].userid ...) ]
   [ INTERVAL(change-interval) | NOINTERVAL ]
   [ PASSWORD(current-password new-password) ]
   [ PHRASE('current-password-phrase' 'new-password-phrase') ]
   [ USER(userid ...) ]
```

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

Parameters

[subsystem-prefix]

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

AT | ONLYAT

The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.

AT([node].userid ...)

Specifies that the command is to be directed to the node specified by node, where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed to the local node.

ONLYAT([node].userid ...)

Specifies that the command is to be directed only to the node specified by node where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed only to the local node.

INTERVAL | NOINTERVAL

INTERVAL(change-interval)

Specifies the number of days during which a user's password and password phrase (if set) remain valid; the value must be 1 - 254 days.
The INTERVAL value you specify here cannot exceed the system value (if any) that your installation specified using the INTERVAL operand on the SETROPTS command. (The initial system default after RACF initialization is 30 days.)

The INTERVAL value you specify should not be less than the value (if any) that your installation specified using the MINCHANGE operand on the SETROPTS command. If this occurs, the user’s password and password phrase (if set) cannot expire until your installation’s minimum interval is reached and the user will not be allowed to change them prior to expiration.

If you specify INTERVAL on the PASSWORD command without a change-interval value, RACF uses the system interval value (if any) that your installation specified or the system default.

To specify INTERVAL with USER, you must have the SPECIAL attribute, or the user profile must be within the scope of a group in which you have the group-SPECIAL attribute.

If you specify the interval incorrectly, RACF ignores this operand.

NOINTERVAL

Specifies that neither a user’s password nor password phrase (if set) will expire. To specify NOINTERVAL with USER, you must have the SPECIAL attribute, or the user profile must be within the scope of a group in which you have the group-SPECIAL attribute.

Specifying NOINTERVAL without USER defines your own password and password phrase (if set) to never expire.

You can use INTERVAL at any time to reinstate an expiration interval for a user previously defined with NOINTERVAL.

PASSWORD

Specifies your current password and the new one you want. If you enter only the PASSWORD operand, you are prompted so you can enter the current and new passwords in print inhibit mode.

The current and new passwords must have different values. When the installation allows mixed-case passwords, the old and new passwords cannot be the same characters with the case changed. If you specify your current password incorrectly, RACF notifies you and ignores the PASSWORD operand.

You can use the PASSWORD operand to change your own password at any time unless it is within the number of days specified by your installation’s minimum change interval.

RACF ignores this operand when you specify the USER operand.

PHRASE

Specifies your current password phrase and the new one you want. The new password phrase is a text string of up to 100 characters and must be enclosed in single quotation marks.

When the new-password-phrase exit (ICHPWX11) is present and allows it, the password phrase can be 9 - 100 characters. When ICHPWX11 is not present, the password phrase must be 14 - 100 characters. Contact your system programmer to find out if your installation uses the new-password-phrase exit (ICHPWX11) or see z/OS Security Server RACF System Programmer’s Guide for programming details.
Restriction: Because the password phrase value is a quoted string, TSO/E does not support your entering it in print inhibit mode. Therefore, you should take care when entering your new password phrase to ensure it is not observed by others.

The current and new password phrases must have different values. If you specify your current password phrase incorrectly, RACF notifies you and ignores the PHRASE operand.

You can use the PHRASE operand to change your own password phrase at any time unless it is within the number of days specified by your installation's minimum change interval.

The following syntax rules apply to all password phrases. You cannot alter these syntax rules but you can specify additional syntax rules if your installation tailors the new-password-phrase exit (ICHPWX11).

Syntax rules for password phrases:
- Maximum length: 100 characters
- Minimum length:
 - 9 characters, when ICHPWX11 is present and allows the new value
 - 14 characters, when ICHPWX11 is not present
- Must not contain the user ID (as sequential uppercase or sequential lowercase characters)
- Must contain at least 2 alphabetic characters (A - Z, a - z)
- Must contain at least 2 non-alphabetic characters (numerics, punctuation, or special characters)
- Must not contain more than 2 consecutive characters that are identical
- If a single quotation mark is intended to be part of the password phrase, you must use two single quotation marks together for each single quotation mark.

If the new-password-phrase exit (ICHPWX11) is present, it can reject the specified password phrase. RACF rejects password phrases shorter than 14 characters unless ICHPWX11 is present and allows the new value.

If the specified password phrase is accepted, it is made the user's current password phrase and, when SETROPTS PASSWORD(HISTORY) is in effect, it is added to the user's password phrase history.

RACF ignores this operand when you specify the USER operand.

USER(userid ...)

Specifies one or more users whose passwords are to be reset. Unless you also specify INTERVAL or NOINTERVAL, each user's password is set to the user's respective default group name and the password is set expired.

Note:
1. To change your own password or password phrase, use the PASSWORD or PHRASE operand, not the USER operand.
2. Specifying USER with your own user ID resets your password to the name of your default group and sets the password as expired, unless you also specify INTERVAL or NOINTERVAL.
3. If you specify USER with the PASSWORD or PHRASE operand, the PASSWORD or PHRASE operand is ignored.
Examples

Example 1

Operation User AEH0 wants to change his password from XY262 to YZ344 and increase his change interval to 60 days.

Known User AEH0 is RACF-defined.

- The maximum installation change-interval is at least 60 days.
- User AEH0 wants to issue the command as a RACF TSO command.

Command

```
PASSWORD PASSWORD(XY262 YZ344) INTERVAL(60)
```

Example 2

Operation User ADM1 wants to reset the passwords for users CD0 and DAF0 to the names of their default group.

Known User ADM1 has the group-SPECIAL attribute in group PAYROLL. Group PAYROLL is the owning group of users CD0 and DAF0.

- Users CD0 and DAF0 are RACF-defined.
- User ADM1 wants to issue the command as a RACF TSO command.

Command

```
PASSWORD USER(CD0 DAF0)
```

Example 3

Operation User ADM1 wants to set a password that never expires for user CD2. User ADM1 wants to direct the command to run under the authority of CHERYLB at node ALBNY and prohibit the command from being automatically directed to other nodes.

Known Users ADM1 and CHERYLB at ALBNY have the SPECIAL attribute.

- User CD2 is RACF-defined on node ALBNY. Users ADM1 and CHERYLB at ALBNY have an already established user ID association.
- User ADM1 wants to issue the command as a RACF TSO command.

Command

```
PASSWORD USER(CD2) NOINTERVAL ONLYAT(ALBNY.CHERYLB)
```

Results The command is only processed at node ALBNY and not automatically directed to any other nodes in the RRSF configuration.

Example 4

Operation Bob wants to change his password from pass1 to word1 on both his user IDs. His user IDs are BOB1 on MVS01 and BOB2 on MVS02.

Known Bob has a peer user ID association with password synchronization established between his two user IDs. Bob wants to issue the command as a RACF TSO command from MVS01.

Command

```
PASSWORD PASSWORD(pass1 word1)
```

Results The command is processed on MVS01 and the password is changed for user ID BOB1. The password is also changed for user ID BOB2 at MVS02.
PERMIT (Maintain resource access lists)

Purpose

Use the PERMIT command to maintain the lists of users and groups authorized to access a particular resource. RACF provides two types of access lists: standard and conditional.

Standard Access List: The standard access list includes the user IDs and group names authorized to access the resource and the level of access granted to each.

Conditional Access List: The conditional access list includes the user IDs and group names authorized to access the resource and the level of access granted to each when a certain condition is met. The conditions that can be specified are:
- The name of the program the user must be executing
- The name of the terminal by which the user entered the system
- The name of the JES input device through which the user entered the system
- The name of the system console from which the request was originated
- The name of the APPC partner LU (logical unit) from which the transaction program originated
- The system identifier (SMFID) of the system on which the user is loading the controlled program
- The SERVAUTH profile name that protected the network access security zone name containing the IP address by which the user entered the system
- An application-specific CRITERIA name and value.

RACF considers the conditional access list if one of the following is true:
- The class specified in the condition is active (for the SERVAUTH, TERMINAL, JESINPUT, CONSOLE, or APPCPORT conditions).
- The RACF program control facility is active (for the PROGRAM or the SYSID condition). The RACF program control facility is activated by your installation using SETROPTS WHEN(PROGRAM) command.
- An application-specific CRITERIA name and value is specified on the RACROUTE REQUEST=FASTAUTH request.

If one of the criteria above is met, RACF uses both the standard and conditional access lists when it checks a user’s authority to access a resource; otherwise RACF uses only the standard access list. For more information on conditional access lists or program control, see z/OS Security Server RACF Security Administrator’s Guide.

You can maintain either the standard access list or the conditional access list with a single PERMIT command. Changing both requires you to issue PERMIT twice, with one exception. You can change individual names in one access list and copy the other access list from another profile on one PERMIT command.

Using PERMIT, you can make the following changes to either a standard access list or a conditional access list:
- Give authority to access a discrete or generic resource profile to specific RACF-defined users or groups
- Remove authority to access a discrete or generic resource profile from specific users or groups
PERMIT

- Change the level of access authority to a discrete or generic resource profile for specific users or groups.
- Copy the list of authorized users from one discrete or generic resource profile to another profile of either type and modify the new list as you require.
- Delete an existing access list.

Using PERMIT to modify an automatic TAPEVOL profile changes the profile to nonautomatic. For more information about TAPEVOL profiles, see z/OS Security Server RACF Security Administrator's Guide.

To have changes take effect after updating a user's access to a generic profile, one of the following steps is required:

- If the command was issued for a data set profile, the user of the data set issues the LISTDSD command:

 LISTDSD DA(data-set-protected-by-the-profile) GENERIC

 Note: Use the data set name, not the profile name.

- The security administrator issues the SETROPTS command:

 SETROPTS GENERIC(class-name) REFRESH

 See SETROPTS command for authorization requirements.

- The user of the data set or resource logs off and logs on again.

 Note: For more information, refer to z/OS Security Server RACF Security Administrator's Guide.

Issuing options

The following table identifies the eligible options for issuing the PERMIT command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.

Related commands

- To specify the UACC for a data set profile, see “ADDSD (Add data set profile)” on page 33 (when creating a new profile), or “ALTDSD (Alter data set profile)” on page 93 (to change an existing profile).
- To specify the UACC for a general resource (such as a terminal), see “RDEFINE (Define general resource profile)” on page 481 (when creating a new profile), or “RALTER (Alter general resource profile)” on page 421 (to change an existing profile).
- To obtain a list of profiles, see “SEARCH (Search RACF database)” on page 580.
To list a data set profile, see "LISTDSD (List data set profile)" on page 213.
To list a general resource profile, see "RLIST (List general resource profile)" on page 550. (General resources include terminals, and other resources defined in the class descriptor table.)

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see "Controlling the use of operator commands" in z/OS Security Server RACF Security Administrator’s Guide.

To perform any of the PERMIT functions, you must have sufficient authority over the resource. RACF makes the following checks until one of the conditions is met:

- You have the SPECIAL attribute.
- The profile is within the scope of a group in which you have the group-SPECIAL attribute.
- You are the owner of the resource.
- If the resource belongs to the DATASET class, the high-level qualifier of the profile name (or the qualifier supplied by the naming conventions routine or a command installation exit) is your user ID.
- If the resource belongs to the DATASET class, you must be the current owner of the profile or have the SPECIAL attribute, or the profile must be within the scope of a group in which you have the group-SPECIAL attribute.
- If the profile is in the FILE or DIRECTRUY class, the second qualifier of the profile name is your user ID.
- For a discrete profile, you are on the standard access list for the resource and you have ALTER authority.
- For a discrete profile, your current connect group (or, if list-of-groups checking is active, any group to which you are connected) is on the standard access list and has ALTER authority.
- For a discrete profile, the universal access authority is ALTER.

To specify the AT keyword, you must have READ authority to the DIRECT.node resource in the RRSFDATA class and a user ID association must be established between the specified node.userid pair(s).

To specify the ONLYAT keyword you must have the SPECIAL attribute, the userid specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified node.userid pair(s) if the user IDs are not identical.

When you are copying a list of authorized users from one resource profile to another, you must have sufficient authority, as described in the preceding list, to both of the resources.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the PERMIT command is:

```sh
[subsystem-prefix][PERMIT | PE]
```
PERMIT

profile-name-1
[ACCESS(access-authority) | DELETE]
[AT([node].userid ...) | ONLYAT([node].userid ...)]
[CLASS(profile-name-1-class)]
[FCLASS(profile-name-2-class)]
[FGENERIC]
[FROM(profile-name-2)]
[FVOLUME(volume-serial)]
[GENERIC]
[ID({name ... | * })]
[RESET [(ALL | STANDARD | WHEN)]
[VOLUME(volume-serial)]
[WHEN(]
 [APPCPORT({partner-luname ... | *})]
 [CONSOLE({console-id ... | *})]
 [CRITERIA({criteria-name ({criteria-value | * }) }]
 [JESINPUT({JES-input-device-name ... | *})]
 [PROGRAM({program-name ... | *})]
 [SERVAUTH({SERV AUTH-profile-name ... | *})]
 [SYSID({system-identifier ... | *})]
 [TERMINAL({terminal-id ... | *})]
)]

For information on issuing this command as a RACF TSO command, refer to

For information on issuing this command as a RACF operator command, refer to
Chapter 4, “RACF operator commands,” on page 21.

Parameters

subsystem-prefix
Specifications that the RACF subsystem is the processing environment of the
command. The subsystem prefix can be either the installation-defined prefix
for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF
subsystem name followed by a blank. If the command prefix was registered
with CPF, you can use the MVS command D OPDATA to display it or you can
contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF
operator command. The subsystem prefix is required when issuing RACF
operator commands.

profile-name-1
Specifications the name of an existing discrete or generic profile whose access list
you want to modify. You can specify only one profile.

This operand is required and must be the first operand following PERMIT.

If the name specified is a tape volume serial number that is a member of a
tape volume set, the authorization assigned by this command applies to all the
volumes in the volume set.

If the profile does not belong to the DATASET class, you must also specify
CLASS.

Mixed-case profile names are accepted and preserved when CLASS refers to a
class defined in the static class descriptor table with CASE=ASIS or in the
dynamic class descriptor table with CASE(ASIS).
AT | ONLYAT

The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.

AT([node].userid ...)

Specifies that the command is to be directed to the node specified by node, where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed to the local node.

ONLYAT([node].userid ...)

Specifies that the command is to be directed only to the node specified by node where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed only to the local node.

ACCESS | DELETE

ACCESS(access-authority)

Specifies the access authority you want to associate with the names that you identify on the ID operand. RACF sets the access authority in the standard access list.

If you specify WHEN, RACF sets the access authority in the conditional access list.

The valid access authorities are NONE, EXECUTE (for DATASET, PROGRAM, or APPCTP class only), READ, UPDATE, CONTROL, and ALTER. If you need more information, see z/OS Security Server RACF Security Administrator’s Guide.

If you specify ACCESS and omit access-authority, the default value is ACCESS(READ).

If you specify the ID operand and omit both ACCESS and DELETE, the default value is ACCESS(READ).

If you specify both ACCESS and DELETE, RACF uses the last operand you specify.

DELETE

Specifies that you are removing the names you identify on the ID operand from an access list for the resource. RACF deletes the names from the standard access list.

If you specify WHEN, RACF deletes the names from the conditional access list.

If you specify the ID operand and omit both ACCESS and DELETE, the default value is ACCESS(READ).

If you specify both ACCESS and DELETE, RACF uses the last operand you specify.

CLASS(profile-name-1-class)

Specifies the name of the class to which profile-name-1 belongs. The valid class names are DATASET and those classes defined in the class descriptor table. For a list of general resource classes defined in the class descriptor table supplied by IBM, see Appendix B, “Supplied RACF resource classes,” on page 693.

If you omit CLASS, the default is DATASET.
FCLASS(profile-name-2-class)
Specifies the name of the class to which profile-name-2 belongs. The valid class names are DATASET and those classes defined in the class descriptor table. For a list of general resource classes defined in the class descriptor table supplied by IBM, see Appendix B, “Supplied RACF resource classes,” on page 693.

If you specify FROM and omit FCLASS, RACF assumes that the class for profile-name-2 is the same as the class for profile-name-1. This operand is valid only when you also specify the FROM operand; otherwise, RACF ignores it.

FGENERIC
Specifies that RACF is to treat profile-name-2 as a generic name, even if it is fully qualified (meaning that it does not contain any generic characters). This operand is only needed if profile-name-2 is a DATASET profile.

FROM(profile-name-2)
Specifies the name of the existing discrete or generic profile that contains the access lists RACF is to copy as the access lists for profile-name-1. If you specify FROM and omit FCLASS, RACF assumes that profile-name-2 is the name of a profile in the same class as profile-name-1.

Mixed-case profile names are accepted and preserved when FCLASS refers to a class defined in the static class descriptor table with CASE=ASIS or in the dynamic class descriptor table with CASE(ASIS).

If profile-name-2 contains a standard access list, RACF copies it to the profile you are changing. If profile-name-2 contains a conditional access list, RACF copies it to the profile you are changing.

RACF modifies the access list for profile-name-1 as follows:

- Authorizations for profile-name-2 are added to the access list for profile-name-1.

Note: The following conditional access list conditions are valid only for specific classes. Entries in the conditional access list of profile-name-2 for these conditions are copied to the conditional access list of profile-name-1 only if the condition is valid for the class of profile-name-1.
 - WHEN(SYSID) is valid only for the PROGRAM class. SYSID entries are copied only when the class of profile-name-1 is PROGRAM.
 - WHEN(PROGRAM) is valid only for data sets and the SERVAUTH class. PROGRAM entries are copied only when profile-name-1 is a data set profile or a SERVAUTH class profile.
 - WHEN(CRITERIA) is valid only for general resource classes (not data sets). CRITERIA entries are not copied when profile-name-1 is a data set profile.

- If a group or user appears in both lists, RACF uses the authorization granted in profile-name-1.
- If you specify a group or user on the ID operand and that group or user also appears in the profile-name-2 access list, RACF uses the authorization granted on the ID operand.

To specify FROM, you must have sufficient authority to both profile-name-1 and profile-name-2, as described under “Authorization required” on page 263.

FVOLUME(volume-serial)
Specifies the volume RACF is to use to locate profile-name-2. This is the volume on which the non-VSAM DASD data set, the tape data set, or the catalog for the VSAM data set resides.
PERMIT

If you specify FVOLUME and RACF does not find profile-name-2 on that volume, the command fails. If you omit this operand and profile-name-2 appears more than once in the RACF data set, the command fails.

FVOLUME is valid only when FCLASS either specifies or defaults to DATASET and when profile-name-2 specifies a discrete profile. Otherwise, RACF ignores FVOLUME.

GENERIC
Specifies that RACF is to treat profile-name-1 as a generic name, even if it does not contain any generic characters. This operand is only needed if profile-name-1 is a DATASET profile.

ID(name ... | *)
Specifies the user IDs and group names of RACF-defined users or groups whose authority to access the resource you are giving, removing, or changing. If you omit this operand, RACF ignores the ACCESS and DELETE operands.

ID(*) can be used with standard or conditional access lists. You might specify ID(*) with a conditional access list, as follows:

```
PERMIT 'resource' ID(*) WHEN(PROGRAM(XYZ)) ACCESS(READ)
```

This command, depending on other environmental factors, may allow all RACF-defined users and groups READ access to the specified data set when executing program XYZ. RACF grants access to the data set, using the conditional access list, with the authority you specify on the ACCESS operand. The value specified with ACCESS is used only if no more specific values are found. If you do not specify the ACCESS operand, or if you specify ACCESS without an access authority, RACF uses a default value of ACCESS(READ). See z/OS Security Server RACF Security Administrator’s Guide for more information on program access to data sets.

For profiles in the FIELD class, you may also specify the value &RACUID for the name variable with the ID operand on the PERMIT command. When you enter this value on the PERMIT command, you allow all users access to the specified field or segment of their own user profiles.

RESET

RESET | RESET(ALL)
Specifies that RACF is to delete from the profile both the entire current standard access list and the entire current conditional access list.

RACF deletes both access lists before it processes any operands (ID and ACCESS or FROM) that create new entries in an access list. If you delete both access lists and specify FROM when profile-name-2 contains two access lists, the PERMIT command copies both access lists to profile-name-1. In any other situation, you cannot, on one PERMIT command, add entries to both access lists.

If you specify RESET and do not specify ALL, STANDARD, or WHEN, the default value is RESET(ALL).

If you specify RESET or RESET(ALL), add entries, and omit WHEN, RACF deletes both access lists, then adds entries to the standard access list.

If you specify RESET or RESET(ALL), add entries, and specify WHEN, RACF deletes both access lists, then adds entries to the conditional access list.

For profiles that include two access lists, use RESET and RESET(ALL) carefully. Unless you are copying both lists from another profile, it is a
good practice to use RESET(STANDARD) to maintain the standard access list and RESET(WHEN) to maintain the conditional access list.

RESET (STANDARD)

Specifies that RACF is to delete the entire current standard access list from the profile.

If you specify RESET(STANDARD) with ID and ACCESS or with FROM, RACF deletes the current standard access list from the profile before it adds the new names.

If you specify RESET(STANDARD) with ID and DELETE, RACF ignores RESET(STANDARD) and deletes only the names that you specify.

If you specify RESET(STANDARD) without ID and ACCESS, or without FROM, the resulting standard access list is empty. An empty standard access list means that, for a general resource or a group data set profile, you must be the owner or have the SPECIAL attribute, or the profile must be within the scope of a group in which you have the group-SPECIAL attribute, in order to update the access list again.

For a DATASET profile, an empty conditional access list means that no users or groups can access the data set by executing a program.

RESET (WHEN)

Specifies that RACF is to delete the entire current conditional access list from the profile.

If you specify RESET(WHEN) with ID and ACCESS or with FROM, RACF deletes the current conditional access list from the profile before it adds the new names.

If you specify RESET(WHEN) with ID, DELETE, and WHEN, RACF ignores RESET(WHEN) and deletes only the names that you specify.

If you specify RESET(WHEN) without ID and ACCESS, or without FROM, the resulting conditional access list is empty.

VOLUME(volume-serial)

Specifies the volume on which the tape data set, the non-VSAM DASD data set, or the catalog for the VSAM data set resides.

If you specify VOLUME and volume-serial does not appear in the profile for the data set, the command fails.

If you omit VOLUME and the data set name appears more than once in the RACF data set, the command fails.

This operand is valid only for CLASS(DATASET). RACF ignores it for all other CLASS values.

If profile-name-1 is a generic profile, RACF ignores this operand.

WHEN(APPCPORT(partner-luname ... | *))

Specifies that the indicated users or groups have the specified access authority when executing commands and jobs originating from the specified partner LU.

Specify one or more LU names. No generic names or profile names are supported.

WHEN(APPCPORT(*)) deletes all APPCPORT entries for the specified users or groups. It is valid only with the DELETE operand.
Note: The LU name must be qualified with the network name if the installation is using the network qualified names feature on the APPC connection. For more information, refer to z/OS Security Server RACF Security Administrator’s Guide.

WHEN(CONSOLE(console-id ... | *))

Specifies that the indicated users or groups have the specified access authority when executing commands and jobs originating from the specified system console.

Specify one or more console identifiers. No generic names or profile names are supported.

WHEN(CONSOLE(*)) deletes all CONSOLE entries for the specified users or groups. It is valid only with the DELETE operand.

WHEN(CRITERIA(criteria-name (criteria-value | *)))

Specifies that the indicated users or groups have the specified access authority when they are defined in an application that uses the specified criteria.

Applications, such as DB2®, can execute the RACROUTE REQUEST=FASTAUTH request to check user and group authority to access a resource associated with a particular criteria, such as a DB2 role.

Important: Specify the same criteria name and value that the application specifies on the RACROUTE REQUEST=FASTAUTH request. For details about valid criteria names and values, see your application documentation. For information about RACROUTE, see z/OS Security Server RACROUTE Macro Reference.

The criteria-name is a string of 1–8 characters. The string can contain any combination of A-Z, 0-9, # (X’7B’), $ (X’5B’), or @ (X’7C’). It must not contain blanks. Lowercase alphabetic characters in the criteria-name are translated to upper case.

The criteria-value is a string of 1–235 characters of any combination. If the criteria-value consists of a single asterisk (*), you can optionally enclose it in single quotation marks. If the criteria-value contains blanks or other special characters, you must enclose the entire string in single quotation marks.

When the criteria-value is enclosed in single quotation marks, the following rules apply.

- The string must contain at least one non-blank character.
- The string must not contain blanks between the last character and the ending quote.
- If a single quotation mark is intended to be part of the criteria-value, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

The criteria-value is stored in the RACF database exactly as you specify it:

- Both uppercase and lowercase characters are preserved in the case in which they are specified.
- Leading blanks are preserved when the string is quoted.

WHEN(CRITERIA(SQLROLE(DB2-role-name)))

Beginning with DB2 Version 9, you can authorize conditional access to DB2 resources for users and groups associated (in DB2) with a DB2 role by specifying SQLROLE as the criteria-name and a DB2 role name as the criteria-value. Specify DB2-role-name to match a DB2-defined role name. (For more information about using DB2 roles, see the DB2 Version 9 publication library.)
PERMIT

Example: WHEN(CRITERIA(SQLROLE(TELLER)))

WHEN(CRITERIA(SQLROLE(*))) and WHEN(CRITERIA(SQLROLE('*'))) delete all SQLROLE CRITERIA entries for the specified users or groups.

WHEN(JESINPUT(JES-input-device-name ... | *))

Specifies that the indicated users or groups have the specified access authority when entering the system through the specific JES input device.

Specify one or more device names. No generic names or profile names are supported.

WHEN(JESINPUT(*)) deletes all JESINPUT entries for the specified users or groups. It is valid only with the DELETE operand.

WHEN(PROGRAM(program-name ... | *))

Specifies that you want to create or delete entries in the conditional access list of the specified data set or SERVAUTH profile. This operand applies only to resources in the data set and SERVAUTH classes.

Specify one or more program names. No generic names or profile names are supported.

For example, if you enter the following command:

PERMIT 'XXX.YYY' ID(SMITH) ACCESS(READ) WHEN(PROGRAM(ABC))

RACF allows user SMITH READ access to the data set protected by profile XXX.YYY when executing program ABC. RACF grants access, through the conditional access list, with the authority you specify on the ACCESS operand. If you do not specify the ACCESS operand, or if you specify ACCESS without an access authority, RACF uses a default value of ACCESS(READ).

See z/OS Security Server RACF Security Administrator's Guide for more information on data set access and program access to SERVAUTH resources when program control is active.

WHEN(PROGRAM) affects only users and groups specified on the ID operand; it has no effect on names copied from a standard access list in another profile (using the FROM operand). Thus, you can copy a standard access list from another profile that contains only a standard access list and add or delete names in the conditional access list on a single PERMIT command.

To delete an entry from the conditional access list of a data set profile, issue the PERMIT command as follows:

PERMIT 'XXX.YYY' ID(JONES) DELETE WHEN(PROGRAM(ABC))

When you issue this command, RACF no longer allows user JONES access to the data set protected by profile XXX.YYY when executing program ABC. If you specify WHEN(PROGRAM(*)) with DELETE, RACF deletes all program names for each user or group specified on the ID operand.

See also the description of the ID operand.

WHEN(PROGRAM(*)) deletes all PROGRAM entries for the specified users or groups. It is valid only with the DELETE operand.

WHEN(SERVAUTH(SERVAUTH-profile-name ... | *))

WHEN(SERVAUTH(SERVAUTH-profile-name ...))

Specifies that the indicated users or groups have the specified access authority when using an IP address protected by the named SERVAUTH profile. The profile name may be generic; however, it must match exactly the name of a profile to allow access.
Guideline: Use careful consideration before specifying the SERVAUTH profile name * on the RDEFINE and PERMIT WHEN(SERVAUTH(...)
commands. The SERVAUTH profile name * cannot be removed from the conditional access list without deleting all SERVAUTH entries for the specified users or groups. Instead, we recommend that you create the profile ** in the SERVAUTH class. Then use the ** profile name for the conditional access list.

WHEN(SERVAUTH(*))
Deletes all SERVAUTH entries for the specified users or groups when specified with the DELETE operand.

WHEN(SYSID(system-identifier ... | *))
Specifies that the indicated users or groups have the specified access authority when loading this controlled program on the specified system.

Specify one or more system identifiers. No generic names or profile names are supported.

This operand applies only to resources in the PROGRAM class. The system-identifier is the 4-character value specified for the SID parameter of the SMFPRMxx member of SYS1.PARMLIB. See z/OS MVS Initialization and Tuning for additional information on SMFPRMxx.

WHEN(SYSID(*)) deletes all SYSID entries for the specified users or groups. It is valid only with the DELETE operand.

WHEN(TERMINAL(terminal-id ... | *))
Specifies that the indicated users or groups have the specific access authority when logged on to the named terminal.

Specify one or more terminal identifiers. No generic names or profile names are supported.

WHEN(TERMINAL(*)) deletes all TERMINAL entries for the specified users or groups. It is valid only with the DELETE operand.

Examples

Example 1

Operation User WJE10 wants to give UPDATE access authority to data set WJE10.DEPT2.DATA to all the users in the group RESEARCH. Data set WJE10.DEPT2.DATA is protected by a discrete profile.

Known User WJE10 and group RESEARCH are RACF-defined.

Data set WJE10.DEPT2.DATA is RACF-defined.

User WJE10 wants to issue the command as a RACF TSO command.

Command PERMIT ‘WJE10.DEPT2.DATA’ ID(RESEARCH) ACCESS(UPDATE)

Defaults CLASS(DATASET)

Example 2

Operation User WRH0 wants to give all users authorized to access the data set RESEARCH.PROJ01.DATA on volume DASD22 the authority to access RESEARCH.PROJ01.DATA on volume DASD11. User WRH0 also wants to give user AEH10 READ authority to RESEARCH.PROJ01.DATA.

Known User WRH0 has ALTER access to both RESEARCH.PROJ01.DATA data sets. Both data sets are protected by discrete profiles. User WRH0 wants to issue the command as a RACF TSO command.

Command PERMIT ‘RESEARCH.PROJ01.DATA’ ID(AEH10) FROM(‘RESEARCH.PROJ01.DATA’) VOLUME(DASD11) FVOLUME(DASD22)

Defaults ACCESS(READ) CLASS(DATASET) FCLASS(DATASET)
PERMIT

Example 3
Operation User LAB2 wants to delete user MMC02’s access to tape volume TAP8X.
Known User LAB2 is the owner of the profile for tape volume TAP8X. User LAB2 wants to issue the command as a RACF operator command, and the RACF subsystem prefix is @.
Command @PERMIT TAP8X CLASS(TAPEVOL) ID(MMC02) DELETE
Defaults None.

Example 4
Operation User ADM1 wants to delete the existing standard access list from the discrete profile protecting the data set SALES.EUROPE.ABC, then copy the standard access list from the generic profile SALES.*.ABC to the discrete profile for SALES.EUROPE.ABC User ADM1 wants to direct the command to run under the authority of user THB11.
Known User THB11 has the SPECIAL attribute. SALES.EUROPE.ABC is in the DATASET class. User ADM1 wants to issue the command as a RACF TSO command.
ADM1 and THB11 have an already established user ID association.
Command PERMIT 'SALES.EUROPE.ABC' FROM('SALES.*.ABC') RESET(STANDARD) AT(.THB11)
Defaults CLASS (DATASET) FCLASS(DATASET)
Command direction defaults to the local node.

Example 5
Operation User ADM1 wants to replace the conditional access list in the discrete profile that protects the data set SALES.EUROPE.ABC. Two users, TH01 and TH03, are to be allowed to update the data set when executing the program named FUTURE.
Known User ADM1 has the SPECIAL attribute. Users TH01 and TH03 are defined to RACF. The program FUTURES has been defined to RACF as a controlled program. User ADM1 wants to issue the command as a RACF TSO command.
Command PERMIT 'SALES.EUROPE.ABC' RESET(WHEN) ID(TH01 TH03) ACCESS(UPDATE) WHEN(PROGRAM(FUTURES))
Defaults CLASS(DATASET)

Example 6
Operation User ADM1 wants to control the access of shared user IDs PUBLIC and RESELL to data sets containing sales data. All users working within the company need access to sales data along with RESELL, but PUBLIC cannot have access.
Known User ADM1 has the SPECIAL attribute. User IDs PUBLIC and RESELL have the RESTRICTED attribute. SALES RESELL.* is a generic data set with a UACC(READ).
Command PERMIT 'SALES.RESELL.*' ID(RESELL) ACCESS(READ)
Defaults None.

Example 7
Operation Rui wants to authorize user JEAN to alter a DB2 table owned by ZHAOHUI only when JEAN is assigned in DB2 to the role called TELLER.
Known Rui has the SPECIAL attribute. A general resource called DSN.ZHAOHUI.TABLE.ALTER is defined in the MDSNTB class with UACC(NONE). The user JEAN is assigned in DB2 to the role called TELLER. The installation uses the RACF access control module (ACM) with DB2. The ACM is configured for multiple-subsystem scope and the DB2 subsystem is operational.
Command PERMIT DSN.ZHAOHUI.TABLE.ALTER Class(MDSNTB) ID(JEAN) ACCESS(READ) WHEN(CRITERIA(SQLROLE(TELLER))))
Defaults None.
The RACDCERT command has numerous functions. Each function of the RACDCERT command is documented in a separate topic that contains its purpose, authorization required, syntax, and other specific information.

For details about each RACDCERT function, see the following topics:
- “RACDCERT ADD (Add certificate)” on page 281
- “RACDCERT ADDRING (Add key ring)” on page 292
- “RACDCERT ADDTOKEN (Add token)” on page 294
- “RACDCERT ALTER (Alter certificate)” on page 296
- “RACDCERT ALIMAP (Alter mapping)” on page 299
- “RACDCERT BIND (Bind certificate to token)” on page 302
- “RACDCERT CHECKCERT (Check certificate or certificate chain)” on page 306
- “RACDCERT CONNECT (Connect a certificate to key ring)” on page 314
- “RACDCERT DELETE (Delete certificate)” on page 318
- “RACDCERT DELMAP (Delete mapping)” on page 321
- “RACDCERT DELRING (Delete key ring)” on page 324
- “RACDCERT DETOKEN (Delete token)” on page 326
- “RACDCERT EXPORT (Export certificate package)” on page 328
- “RACDCERT GENCERT (Generate certificate)” on page 332
- “RACDCERT GENREQ (Generate request)” on page 348
- “RACDCERT IMPORT (Import certificate)” on page 351
- “RACDCERT LIST (List certificate)” on page 356
- “RACDCERT LISTCHAIN (List certificate chain)” on page 363
- “RACDCERT LISTMAP (List mapping)” on page 368
- “RACDCERT LISTRING (List key ring)” on page 371
- “RACDCERT LISTTOKEN (List token)” on page 374
- “RACDCERT MAP (Create mapping)” on page 377
- “RACDCERT REKEY (Rekey certificate)” on page 384
- “RACDCERT REMOVE (Remove certificate from key ring)” on page 392
- “RACDCERT ROLLER (Rollover certificate)” on page 394
- “RACDCERT UNBIND (Unbind certificate from token)” on page 398.

Purpose

Use the RACDCERT command to install and maintain digital certificates, key rings, and digital certificate mappings in RACF. RACDCERT should be used for all maintenance of profiles in the DIGTCERT, DIGTRING, and DIGTNMAP classes.

The RACDCERT command is a RACF TSO command used to:
- List information about the certificates for a specified RACF-defined user ID, or your own user ID.
- Add a certificate and associate it with a specified RACF-defined user ID, or your own user ID, and set the TRUST status.
- Check to see if a certificate has been defined to RACF.
- Alter the TRUST status or label for a certificate.
- Delete a certificate.
- List a certificate or a chain of certificates contained in a data set and determine if it is associated with a RACF-defined user ID.
- Add or remove a certificate from a key ring.
- Create, delete, or list a key ring.
- Generate a public/private key pair and certificate, replicate a digital certificate with a new public/private key pair, or retire the use of an existing private key.
RACDCERT (common)

- Write (export) a certificate or certificate package to a data set.
- Create a certificate request.
- Create, alter, delete, or list a certificate name filter (user ID mapping).
- Add, delete, or list a z/OS PKCS #11 token.
- Bind a certificate to a z/OS PKCS #11 token.
- Remove (unbind) a certificate from a z/OS PKCS #11 token.
- Import a certificate (with its private key, if present) from a z/OS PKCS #11 token and add it to RACF.

RACF supports RSA, DSA, and ECC keys. The key value can reside in the RACF database in a DER encoded format, or in the ICSF PKA key data set or ICSF token key data set (TKDS). If the key is in ICSF, its location, not the value, is stored in the RACF database.

RACF signs its certificates using a set of secure hash algorithms based on the SHA-1 or SHA-2 hash functions.

For increased security and performance of signature verifications, RACF uses an exponent value of 65537 for each key it generates with the RSA algorithm.

Authorization required

To issue the RACDCERT command, you must have sufficient authority for the specific RACDCERT function. This authority may include one or all of the following, depending on the command function.

- SPECIAL, or sufficient authority to the appropriate resource in the FACILITY class.
- Sufficient access to the appropriate resource in the CSFSERV class when your installation controls access to ICSF services and the CSFSERV class is active.
- Sufficient ICSF authority to the appropriate resource in the CRYPTOZ class.

For details about CSFSERV and CRYPTOZ resources, see "z/OS Cryptographic Services ICSF Administrator’s Guide".

For authorization details about each RACDCERT function, see the “Authorization required” topic for the RACDCERT function.

Controlling the use of RACDCERT: Effective use of RACDCERT requires that its privileges be carefully controlled. However, end users and application administrators should be allowed some flexibility in defining their security characteristics.

Guidelines:

- Give the authority to add certificate authorities to only a small set of trusted people.
- End users need to add, delete, and modify the contents of their own key rings and to add, delete, and alter their own certificates.
- Help desk personnel need to list certificates and key rings.

Example: ich2a400-obj2.dita#ich2a400-gen2/rdauth1 lists sample commands to implement one method of controlling RACDCERT access according to these guidelines. In the example shown, the system administrators (who are the only ones to add, alter, or delete certificate-authority certificates or site certificates) are in the WEBADMIN group and the help desk personnel are in the HELPDESK group.
Syntax

For details about syntax and parameters for each RACDCERT function, see the “Syntax” and “Parameters” subtopics of each RACDCERT function.

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

UTF-8 and BMP character restrictions

You can include UTF-8 and BMP characters in certificate names with the following restrictions:

- You can specify certificate names that include UTF-8 and BMP characters only when they are part of an encoded certificate or certificate request that is stored in an MVS data set, and you specify the data set name with your RACDCERT command.

- Do not use keyboard entries (including cut-and-paste methods) to specify UTF-8 and BMP characters as command-line input. UTF-8 or BMP characters specified at the command line might be incorrectly processed, although you might receive no input error.

- Any UTF-8 or BMP character that does not map to the IBM-1047 code page is represented by six characters in the \u+nnnn format, where nnnn is the hexadecimal form of the Unicode code point for the UTF-8 or BMP character. For example, the Euro symbol (€) is represented as \u+20AC.

For a sample listing of a certificate that contains information that includes an unmapped character, see [Figure 46 on page 362](#).

When one unmapped UTF-8 or BMP character is represented by six characters, the additional five characters of length might affect the processing of certain certificates, such as in the following cases:

- When the issuer's distinguished name is lengthy and contains one or more unmapped UTF-8 or BMP characters, the resulting profile name for the certificate might exceed the allowable length for a profile name. If this occurs, the RACDCERT ADD or GENCERT command fails and the certificate is not added.

- When RACF generates a default label for a certificate extracted from a PKCS #12 package during RACDCERT ADD processing and the certificate's friendly name contains one or more unmapped UTF-8 or BMP characters, the resulting label might exceed 32 characters. If this occurs, RACF truncates the label.

DEBUG keyword

Add the DEBUG keyword when you issue the RACDCERT command to obtain additional diagnostic messages for failures related to encryption calls, and RACF-invoked ICHEINTY ALTER, RACROUTE REQUEST=EXTRACT, and RACROUTE REQUEST=DEFINE calls.

The content of these additional diagnostic messages are not documented in the RACF publication library.

If you report a problem to the IBM Support Center, use the DEBUG keyword to gather diagnostic information.
ICSF considerations

RACDCERT processing makes use of ICSF services. When your installation controls access to ICSF services and the CSFSERV class is active, issuers of certain RACDCERT command functions might require additional access to CSFSERV resources. For complete details, see the “Authorization required” topic of each RACF command function.

Restriction: When ICSF is operating in FIPS mode, the following RACDCERT functions do not support Brainpool ECC keys:
- ADD
- EXPORT
- GENCERT
- GENREQ
- IMPORT
- REKEY

If your installation has established access control over keys stored in ICSF, the issuers of the RACDCERT command must have READ access authority to ICSF keys by label. Because the specific label values might be difficult to determine, generic profiles are suggested according to Table 3, based on the issued RACDCERT function and the attributes of the ICSF key.

Table 3. Suggested generic profiles (resources in the CSFKEYS class) that authorize access to ICSF keys based on RACDCERT function and key attributes

<table>
<thead>
<tr>
<th>RACDCERT command</th>
<th>Keywords</th>
<th>Suggested generic profile (CSFKEYS class resource)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD, GENCERT or REKEY for ID(cert.Owner)</td>
<td>PKDS, ICSF, or PCICC</td>
<td>IRR.DIGTCERT.cert-owner.*, *</td>
</tr>
<tr>
<td>ADD, GENCERT or REKEY for CERTAUTH</td>
<td>PKDS, ICSF, or PCICC</td>
<td>IRR.DIGTCERT.CERTIFAUTH.*, *</td>
</tr>
<tr>
<td>ADD, GENCERT or REKEY for SITE</td>
<td>PKDS, ICSF, or PCICC</td>
<td>IRR.DIGTCERT.SITECERTIF.*, *</td>
</tr>
<tr>
<td>GENCERT for ID(cert.Owner)</td>
<td>SIGNWITH(LABEL('label'))</td>
<td>IRR.DIGTCERT.cert-owner.*, *</td>
</tr>
<tr>
<td>GENCERT</td>
<td>SIGNWITH(CERTAUTH LABEL('label'))</td>
<td>IRR.DIGTCERT.CERTIFAUTH.*, *</td>
</tr>
<tr>
<td>GENCERT</td>
<td>SIGNWITH(SITE LABEL('label'))</td>
<td>IRR.DIGTCERT.SITECERTIF.*, *</td>
</tr>
<tr>
<td>GENREQ or DELETE for ID(cert.Owner)</td>
<td>—</td>
<td>IRR.DIGTCERT.cert-owner.*, *</td>
</tr>
<tr>
<td>GENREQ or DELETE for CERTAUTH</td>
<td>—</td>
<td>IRR.DIGTCERT.CERTIFAUTH.*, *</td>
</tr>
<tr>
<td>GENREQ or DELETE for SITE</td>
<td>—</td>
<td>IRR.DIGTCERT.SITECERTIF.*, *</td>
</tr>
</tbody>
</table>

Additionally, the user ID assigned to an application, such as System SSL, that uses certificates stored in RACF key rings also needs READ authority to ICSF keys by label. Because the specific label values might be difficult to determine, generic profiles are suggested according to Table 4 on page 277, based on the CONNECT attributes of the ICSF key.
Table 4. Suggested generic profiles (resources in the CSFKEYS class) that authorize access to ICSF keys based on CONNECT attributes

<table>
<thead>
<tr>
<th>RACDCERT CONNECT keywords used to populate the key ring</th>
<th>Suggested generic profile (CSFKEYS class resource)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONNECT(LABEL('label')) for ID(cert-owner)</td>
<td>IRR.DIGTCERT.cert-owner.*</td>
</tr>
<tr>
<td>CONNECT(CERTAUTH LABEL('label') USAGE(PERSONAL))</td>
<td>IRR.DIGTCERT.CERTIFAUTH.*</td>
</tr>
<tr>
<td>CONNECT(SITE LABEL('label-name') USAGE(PERSONAL))</td>
<td>IRR.DIGTCERT.SITECERTIF.*</td>
</tr>
</tbody>
</table>

Sufficient ICSF authority for the following command functions is controlled using resources in the CRYPTOZ class. If the CSFSERV class is active, sufficient ICSF authority for the following command functions might also be required. For authorization details, see "z/OS Cryptographic Services ICSF Administrator’s Guide"

- ADDTOKEN
- BIND
- DELTOKKEN
- IMPORT
- LISTTOKEN
- UNBIND

Hardware requirements

The following hardware features are required on the system when you issue the ADD, GENCERT, IMPORT, or REKEY functions to store a key in the ICSF PKA key data set (PKDS) or in the ICSF token data set (TKDS). These features are also required on any system where a user or SSL application accesses the key:

- The ICSF subsystem must be operational and configured for PKA operations. Otherwise, command processing stops and an error message is displayed.
- The cryptographic coprocessor must be operational and configured to use the PKDS or TKDS where the key is to be stored or accessed.
 - CCA cryptographic coprocessor is required to process keys stored in the PKDS.
 - A Crypto Express3 coprocessor (CEX3C), or later, is required to process ECC PKDS keys.
 - Enterprise PKCS#11 cryptographic coprocessor is required to process secure keys stored in the TKDS.

PKDS label considerations

When you specify the PKDS, ICSF, or PCICC keyword with the ADD, GENCERT, IMPORT, or REKEY function, RACF stores the key in the ICSF PKA key data set (PKDS).

Setting a PKDS label for the key is optional. You can specify a label or you can specify an asterisk (*) to use the certificate label from the WITHLABEL keyword as the PKDS label for the key. If you specify an asterisk (*), you must specify the WITHLABEL keyword.

Whether specified or taken from the WITHLABEL keyword, the PKDS label must be unique and conform to ICSF syntax requirements. That is, allowed characters are alphanumeric, national (θ, №, $), or period (.). Blank characters are not allowed.
RACDCERT (common)

The first character must be alphabetic or national. The label must be 1 - 64 characters and is translated to uppercase (not case-sensitive).

If the specified PKDS label, or the certificate label (when you specify an asterisk), does not conform to ICSF syntax requirements, it cannot be used as the PKDS label and the command fails.

When you do not specify a PKDS label and you do not specify an asterisk (*), RACF generates a default label in the format IRR.DIGTCERT.certificate-owner.cvtname.ebcdic-stck-value, where certificate-owner is the owning user ID, cvtname is the system name (taken from the CVT), and ebcdic-stck-value is an EBCDIC version of the current store-clock value. RACF does not generate a PKDS label for a public key.

Note: When the key is associated with a certificate-authority certificate, the owning user ID is set to CERTIFAUTH. When the key is associated with a site certificate, then the owning user ID is set to SITECERTIF.

Examples
RACDCERT (common)

<table>
<thead>
<tr>
<th>Command</th>
<th>Access Mode</th>
<th>User ID</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.ADD</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.ADDRING</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.ALTER</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.ALTMAP</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.BIND</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.CONNECT</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.DELETE</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.DELMAP</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.DELRING</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.EXPORT</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.EXPORTKEY</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.GENCERT</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.GENREQ</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.LIST</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.LISTMAP</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.LISTRING</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.MAP</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.REKEY</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.REMOVE</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDEFINE FACILITY IRR.DIGTCERT.ROLLOVER</td>
<td>UACC(NONE)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 36. Controlling access to RACDCERT functions

Chapter 5. RACF command syntax 279
Purpose

Use the RACDCERT ADD command to define a digital certificate using a certificate or certificate package contained in the specified data set.

Each user ID can be associated with more than one digital certificate but they must be added individually. The specified data set should contain only one digital certificate. The command reads the certificate from the data set, updates the user's profile, and creates the DIGTCERT profile.

If the data set contains a PKCS#7 or PKCS#12 package, the data set can contain more than one certificate and the processing will be as described in PKCS #7 and PKCS #12 processing details.

See “UTF-8 and BMP character restrictions” on page 275 for information about how UTF-8 and BMP characters in certificate names and labels are processed by RACDCERT functions.

Details about DIGTCERT profile names

The name of a DIGTCERT profile is derived from the certificate's serial number and the issuer's distinguished name (IDN). Any character in either value that would not be valid in a RACF profile name, such as a blank, is replaced with the $ character (X'4A').

The maximum length of a DIGTCERT profile name is 246 characters. The format of the profile name is based on the combined length of the certificate's serial number and the issuer's distinguished name (IDN), including the period.

When the combined length of the value of serial-number.issuer's-distinguished-name is 246 characters or less, the name of the DIGTCERT profile uses the following format:

```
serial-number.issuer's-distinguished-name
```

When the combined length of the value of serial-number.issuer's-distinguished-name exceeds 246 characters, the name of the DIGTCERT profile uses the following format, where the certificate-hash value is a hexadecimal representation of the certificate in a hashed form:

```
serial-number.<first-portion-of-IDN><certificate-hash><last-portion-of-IDN>
```

When a DIGTCERT profile name contains a certificate hash value, each occurrence of the equal sign (=) delimiter is replaced with a colon (:).

For examples of DIGTCERT profile names, see DIGTCERT profile names in z/OS Security Server RACF Security Administrator’s Guide.

Processing details

This topic contains additional information about the following subjects:

- Re-adding a certificate
- Renewing a certificate
- Adding a certificate with an existing key in the PKDS
RACDCERT ADD

- Supported certificate package formats
- Details about adding new certificates
- PKCS #12 format details
- PKCS #7 and PKCS #12 processing details

Re-adding a certificate:
If the certificate being added already exists in the RACF database, RACF will accept the certificate and refresh its stored information if all of the following conditions are true:
- The certificate is being added to the same user ID, SITE, or CERTAUTH as before.
- The label specified for the certificate matches the old value or no label is specified.
- The certificate being added has the same public key as the existing certificate.

Otherwise, an informational message is issued, and the certificate is not re-added.

Renewing a certificate:
The RACDCERT ADD function also supports certificate replacement, for cases of certificate renewal and fulfillment by an external certificate authority. When a certificate is replaced, all existing information, including key ring associations, are updated to reflect the new certificate. In addition, a new certificate label can be specified.

The certificate in the RACF database is replaced if the following conditions are true.
- If the existing certificate has a private key associated with it:
 - The certificate is being added to the same user ID, SITE, or CERTAUTH as before.
 - The certificate being added is not a duplicate. (You are not re-adding the certificate.)
 - The certificate being added is not expired.
 - The certificate being added has the same public key as the existing certificate.
- If the existing certificate does not have a private key associated with it:
 - The certificate is being added to the same user ID, SITE, or CERTAUTH as before.
 - The certificate being added is not a duplicate. (You are not re-adding the certificate.)
 - The certificate being added is not expired.
 - The certificate being added has a later expiration date than that of the existing certificate.
 - The certificate being added has the same subject's distinguished name, issuer's distinguished name, and public key as the existing certificate.

Adding a certificate with an existing key in the PKDS:
- If the certificate you are adding has an existing public or private key in the PKDS, and the key is already associated with this certificate, the following rules apply:
RACDCERT ADD

- If the public key already exists in the PKDS and you add its matching
 private key certificate, you must specify the PKDS, ICSF, or PCICC
 keyword. This upgrades the PKDS entry to include the new RSA or ECC
 private key.
- The PKDS label of the existing public or private key is not changed when
 you respecify the label with the PKDS, ICSF, or PCICC keyword.
- If the private key already exists in the PKDS as an RSA
 Modulus-Exponent (ME) key token, specifying PKDS or PCICC does not
 convert the key to an RSA Chinese Remainder Theorem (CRT) key token.
- If the private key already exists in the PKDS as a CRT key token,
 specifying ICSF does not convert the key to an ME key token.

- If the certificate you are adding has an existing public or private key in the
 PKDS but the key is not already associated with this (or another) RACF
 certificate, RACF associates the key with this certificate when all of
 the following conditions are true:
 - You specify the PKDS label of the existing key using the PKDS, ICSF, or
 PCICC keyword.
 - The existing key is either an RSA or ECC private key (an ICSF internal
 key token) or an RSA or ECC public key.

Supported certificate package formats:
The certificate package must be in one of the following formats:
1. A single BER encoded X.509 certificate.
2. A single Base64 encoded X.509 certificate.
3. A Privacy Enhanced Mail (PEM) encoded X.509 certificate. If the input is in
 this format, only the Originator Certificate is used.
4. One or more X.509 certificates contained within a PKCS #7 DER encoding
 package.
5. One or more X.509 certificates and private keys contained within a PKCS
 #12 DER encoding package. If the input is in this format, all certificates are
 processed but only the first user private key is used. PKCS #12 is also
 known as Private Information Exchange (PFX). The obsolete PFX V0.02
 standard is not supported.

Details about adding new certificates:
The following are additional details regarding RACDCERT’s certificate
processing:
1. All fields as defined for X.509 version 1 certificates must be present and
 must have a length greater than zero (non-null).
2. X.509 certificates with version numbers greater than 3 are not supported.
3. Noncritical extensions are ignored. Critical extensions that are supported include:
 • keyUsage—{2 5 29 15}
 • basicConstraints—{2 5 29 19}
 • subjectAltname—{2 5 29 17}
 • issuerAltName—{2 5 29 18}
 • certificatePolicies—{2 5 29 32}
 • policyMappings—{2 5 29 33}
 • policyConstraints—{2 5 29 36}
 • nameConstraints—{2 5 29 30}
 • extKeyUsage—{2 5 29 37}
RACDCERT ADD

- hostIdMapping—{131 8021 81}
- subjectKeyIdentifier—{252 91 4}
- authorityKeyIdentifier—{252 93 5}

4. Subject and issuer names can contain only the following string types:
 - UTF8—TAG 12
 - PRINTABLESTRING—TAG 19
 - T61STRING—TAG 20
 - IA5STRING—TAG 22
 - VISIBLESTRING—TAG 26
 - GENERALSTRING—TAG 27
 - BMPString—TAG 30

5. Because certificates can be encoded differently, be aware when transporting
 the different certificate encodings to and from z/OS systems. Both the BER
 encoded X.509 and PKCS #7 formats are binary formats and must be
 transported in their exact binary format. For example, binary formats, such
 as BER and X.509, cannot have any ASCII to EBCDIC translation performed
 on them, therefore, they must be transported in their exact binary format.
 In contrast, text formats, such as PEM and Base64, must be transported as
 text. When transporting for an ASCII system, the ASCII to EBCDIC
 translation must be performed for the PEM format and Base64 format
 certificate.

PKCS #12 format details:
PKCS #12 certificate packages can be processed. These certificates are
encrypted with a password when received and must be decrypted with the
same password before being added to the RACF database. For additional
information, see the PASSWORD (pkcs12-password) keyword.

When adding a certificate package that contains a private key, if ICSF is being
used to store private keys and no label is specified for the ICSF key, ADD
generates a default label in the format IRR.DIGTCERT.certificate-
owner.cvtsname.ebcdic-stck-value, where certificate-owner is the owning user ID,
cvtsname is the system name, as taken from the CVT, and ebcdic-stck-value is an
EBCDIC version of the current store-clock value. See "PKCS #7 and PKCS #12
processing details" for information on how the multiple certificates are
processed.

PKCS #7 and PKCS #12 processing details:
The ADD function of RACDCERT can accept PKCS #7 and PKCS #12 certificate
packages. For PKCS #7, if there is more than one certificate in the package, the
set consisting of the second through last certificate is the hierarchy of CAs. For
PKCS #12, every certificate in the package other than the first one that has a
'local key ID' that matches the first private key in the package, is considered
to be a CA certificate. If the command issuer is authorized to add CERTAUTH
certificates, the CA certificates will be sorted to determine the hierarchy chain.
The resulting set is then added to the CERTAUTH category in the hierarchy
order (top CA down to lowest CA). Thus each certificate in the package may
be verified using its previously added parent. If the command issuer is not
authorized to add CERTAUTH certificates, an informational message will be
issued. In either case, processing will then continue with the first certificate in
the package (the end-entity certificate).

Rules: For each CERTAUTH certificate in the PKCS #7 or PKCS #12 package,
the following rules apply in determining trust status. The rules are listed in
priority order. For rules that conflict, the first matching rule wins.
1. If the certificate is already defined to RACF with status HIGHTRUST, the certificate retains its HIGHTRUST status.

2. The trust status specified by the command issuer will apply to the top CA certificate. This primes the chain with a trust value which may be inherited down. (See the next rule.) The HIGHTRUST keyword is ignored if the target user ID on the ADD is not CERTAUTH (irrcerta).

3. For all lower CA certificates in the package and for the top CA certificate when no trust status is specified, the trust status is determined dynamically as follows:
 a. If NOTRUST is specified by the command issuer, the certificate is added with status NOTRUST.
 b. If the certificate has one or more of the following inconsistencies, the certificate is added with NOTRUST status:
 1) The certificate is expired.
 2) The certificate has an incorrect date range relative to the issuing CA certificate. (The validity period is not completely contained within the validity period of the issuing CA certificate).
 3) The issuer of the certificate is missing from the package and is not already installed under CERTAUTH.
 4) The certificate has an unknown signature algorithm to RACF. The supported signature algorithms are: SHA1RSA, SHA224RSA, SHA256RSA, SHA384RSA, SHA512RSA, SHA1ECDSA, SHA224ECDSA, SHA256ECDSA, SHA384ECDSA, SHA512ECDSA, SHA1DSA, MD2RSA and MD5RSA.
 c. If no inconsistencies are detected, the certificate is added and inherits the trust status of its parent. If the certificate's parent has not previously been added (either as a part of this package or otherwise), the certificate is added with TRUST status if it is self-signed, NOTRUST status if it is not self-signed. If the self-signed certificate has already been added, its trust status is not changed.

4. HIGHTRUST will be inherited from the parent as per the previous rule only if the target user ID on the ADD is CERTAUTH (irrcerta) and HIGHTRUST was specified on the command. In all other cases, HIGHTRUST reverts to TRUST when inheriting from the parent.

5. The LABEL value will not be used. The label will be generated.

The authority required to add the CERTAUTH certificates from a PKCS #7 or PKCS #12 package is the same authority required to add CERTAUTH certificates directly, either CONTROL authority to IRR.DIGTCERT.ADD in the FACILITY class or RACF SPECIAL.

Note: PKCS #7 and PKCS #12 add error processing that has no backout support. If a terminating error is encountered during processing, any CERTAUTH certificates previously added are not removed. Unless otherwise stated in the error message description, any error messages issued are relative to the certificate where the error occurred. This may be the end-entity certificate or one of the CERTAUTH certificates.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT ADD command:

RACDCERT ADD

1. If the certificate is already defined to RACF with status HIGHTRUST, the certificate retains its HIGHTRUST status.

2. The trust status specified by the command issuer will apply to the top CA certificate. This primes the chain with a trust value which may be inherited down. (See the next rule.) The HIGHTRUST keyword is ignored if the target user ID on the ADD is not CERTAUTH (irrcerta).

3. For all lower CA certificates in the package and for the top CA certificate when no trust status is specified, the trust status is determined dynamically as follows:
 a. If NOTRUST is specified by the command issuer, the certificate is added with status NOTRUST.
 b. If the certificate has one or more of the following inconsistencies, the certificate is added with NOTRUST status:
 1) The certificate is expired.
 2) The certificate has an incorrect date range relative to the issuing CA certificate. (The validity period is not completely contained within the validity period of the issuing CA certificate).
 3) The issuer of the certificate is missing from the package and is not already installed under CERTAUTH.
 4) The certificate has an unknown signature algorithm to RACF. The supported signature algorithms are: SHA1RSA, SHA224RSA, SHA256RSA, SHA384RSA, SHA512RSA, SHA1ECDSA, SHA224ECDSA, SHA256ECDSA, SHA384ECDSA, SHA512ECDSA, SHA1DSA, MD2RSA and MD5RSA.
 c. If no inconsistencies are detected, the certificate is added and inherits the trust status of its parent. If the certificate's parent has not previously been added (either as a part of this package or otherwise), the certificate is added with TRUST status if it is self-signed, NOTRUST status if it is not self-signed. If the self-signed certificate has already been added, its trust status is not changed.

4. HIGHTRUST will be inherited from the parent as per the previous rule only if the target user ID on the ADD is CERTAUTH (irrcerta) and HIGHTRUST was specified on the command. In all other cases, HIGHTRUST reverts to TRUST when inheriting from the parent.

5. The LABEL value will not be used. The label will be generated.

The authority required to add the CERTAUTH certificates from a PKCS #7 or PKCS #12 package is the same authority required to add CERTAUTH certificates directly, either CONTROL authority to IRR.DIGTCERT.ADD in the FACILITY class or RACF SPECIAL.

Note: PKCS #7 and PKCS #12 add error processing that has no backout support. If a terminating error is encountered during processing, any CERTAUTH certificates previously added are not removed. Unless otherwise stated in the error message description, any error messages issued are relative to the certificate where the error occurred. This may be the end-entity certificate or one of the CERTAUTH certificates.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT ADD command:
RACDCERT ADD

<table>
<thead>
<tr>
<th>As a RAC TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.
- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFCDATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT ADD command, you must have the following authorizations:
- The SPECIAL attribute, or sufficient authority to the IRR.DIGTCERT.ADD resource in the FACILITY class for your intended purpose, as shown in Table 5.
- READ access to the data set that contains the certificate you are adding.

When your installation controls access to ICSF services and the CSFSERV class is active, additional access to resources in the CSFSERV class might be required as follows:
- When specifying PKDS, ICSF, or PCICC, you must have READ access to the CSF1QF, CSFPKI, CSFPKRC, and CSFPKRW resources.
- If the certificate you are adding has an ECC key, you must also have the following access authorities:
 - When you specify PKDS, you must have READ access to the CSFDSV and CSFOWH resources.
 - When you omit PKDS, you must have READ access to the CSF1PKV, CSF1TRC, CSF1TRD, and CSFOWH resources.

For details about the CSFSERV resources, see [z/OS Cryptographic Services ICSF Administrator’s Guide](https://www.ibm.com/).

Table 5. Authority required for the RACDCERT ADD function

<table>
<thead>
<tr>
<th>IRR.DIGTCERT.ADD</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access level</td>
<td>Purpose</td>
</tr>
<tr>
<td>READ</td>
<td>Add a certificate to your own user ID.</td>
</tr>
<tr>
<td>UPDATE</td>
<td>Add a certificate for another user ID.</td>
</tr>
<tr>
<td>CONTROL</td>
<td>Add a SITE or CERTAUTH certificate.</td>
</tr>
</tbody>
</table>

Activating your changes

If the DIGTCERT or DIGTRING class is RACLISTed, refresh the classes to activate your changes.

Example:

SETRROPTS RACLST(DIGTCERT, DIGTRING) REFRESH
RACDCERT ADD

Related commands
- To alter a certificate, see [“RACDCERT ALTER (Alter certificate)” on page 296](#).
- To delete a certificate, see [“RACDCERT DELETE (Delete certificate)” on page 318](#).
- To list a certificate, see [“RACDCERT LIST (List certificate)” on page 356](#).

Syntax

For the key to the symbols used in the command syntax diagrams, see [“Syntax of RACF commands and operands” on page 9](#). The complete syntax of the RACDCERT ADD command is:

```
RACDCERT ADD(data-set-name)

[ ID(certificate-owner) | SITE | CERTAUTH ]
[ TRUST | NOTRUST | HIGHTRUST ]
[ WITHLABEL('label-name') ]
[ PASSWORD('pkcs12-password') ]
[ PKDS(pkds-label | * )] | PCICC(pkds-label | * ) | ICSF(pkds-label | * )]
```

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

ADD(data-set-name)

Specifies the data set containing one digital certificate or certificate package. You must specify a cataloged data set, and it may not be a PDS or a PDS member. The record format (RECFM) expected by RACDCERT is variable-byte (VB). When you specify the ADD function, RACDCERT dynamically allocates and opens the specified data set, and reads the certificate from it as binary data.

If the certificate package you are adding has an associated ECC private key, the ICSF subsystem must be operational and configured for PKCS #11 operations.

To add certificate with an RSA key that is longer than 1024 bits and is to be stored in the RACF database, the CP Assist for Cryptographic Function (CPACF) must be enabled.

Restriction: When ICSF is operating in FIPS mode, you cannot add a certificate that has a Brainpool ECC key.

ID(certificate-owner) | SITE | CERTAUTH

Specifies that the new certificate is either a user certificate associated with the specified user ID, a site certificate, or a certificate-authority certificate. If you do not specify ID, SITE, or CERTAUTH, the default is ID, and certificate-owner defaults to the user ID of the command issuer. If more than one keyword is specified, the last specified keyword is processed and the others are ignored by TSO command parse processing.
RACDCERT ADD

If the new certificate has an ECC private key and keyAgreement is the only key usage, the certificate cannot be used for signing. Therefore, you cannot add it as a CERTAUTH certificate.

TRUST | NOTRUST | HIGHTRUST

Specifies whether the status of the certificate being added is trusted, not trusted, or highly trusted. Whether a certificate is not trusted or trusted depends on whether or not the certificate is valid and whether the private key has been compromised or not.

Because highly trusted certificates are by definition trusted certificates, any certificate usage that was enabled by marking the certificate trusted will also be enabled by marking the certificate highly trusted. However, only certificate-authority certificates can be highly trusted. The trust status is stored in the UACC field of the certificate profile:
- X'00' indicates the status is trusted
- X'80' indicates the status is not trusted
- X'C0' indicates the status is highly trusted

When a certificate is trusted, it can be used by RACF for its intended purpose (map to a user ID, or treat as a trusted certificate authority or trusted site).

For a personal certificate, TRUST indicates that the certificate can be used to authenticate a user ID.

For a certificate-authority certificate, a trusted certificate is one that can be used to authenticate a user's certificate by indicating that the entity identified in the certificate (for example, the certificate authority) can issue certificates that this system honors. This implies that a user can gain access to the system based on the information contained in the certificate if the user's certificate was signed by a trusted certificate authority.

For site certificates, a trusted certificate is one indicating that the entity identified in the certificate (for example, the site) can gain access to the system based on information contained within the certificate. Because the authority that issued the certificate might not be defined to the system as a certificate authority, this certificate information might not be able to be authenticated.

TRUST should only be specified if the command issuer knows:
- This is a valid certificate for this user, site, or certificate authority.
- The private key related to this certificate has not been compromised.

If no trust value is specified on the command, the following processing will take place to determine the trust status:
- If the certificate's signature can be verified, the certificate has not expired, and the certificate's validity date range is within the validity date range of the certifying authority's certificate, the trust status is set to the trust status of the certifying authority's certificate. For self-signed certificates the certificate being added is set to TRUST by default. If the self-signed certificate has already been added, its trust status is not changed.
- If the certificate has expired, has an incorrect validity date range, or cannot be verified because it either has an unknown encryption algorithm or RACF cannot locate its certifying authority's certificate, the status is set to NOTRUST by default.

If the certificate's signature is incorrect, the certificate is not added.
RACDCERT ADD

The TRUST keyword is *unrelated* to the TRUSTED attribute as defined for started procedures.

WITHLABEL(‘label-name’)

Specifies the label to be associated with the certificate. Up to 32 characters can be specified. The *label-name* can contain blanks and mixed-case characters.

This label is used as a *handle* instead of the serial number and issuer’s distinguished name. It can be used to store a descriptive text.

If the value specified in WITHLABEL already exists, RACDCERT returns a message indicating that the label has already been used. The certificate is not added.

If the user did not specify WITHLABEL, and the data set being processed is PKCS #12, RACF generates the label based on the certificate’s friendly name, which is extracted from the PKCS #12 package and truncated to 32 characters if required.

If WITHLABEL is not specified, or extracted from the PKCS #12 package, RACDCERT generates a label for the certificate. The generated label is of the form LABELnnnnnnn, where nnnnnnnn is the first integer value, starting at 00000001 that generates a unique label name.

The *label-name* is stripped of leading and trailing blanks. If a single quotation mark is intended to be part of the *label-name*, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

PASSWORD(‘pkcs12-password’)

Specifies the password that is associated with the PKCS #12 certificate package. This keyword is required if the data set is PKCS #12 and it must not be specified if the data set is not PKCS #12.

Note: The password specified will be visible on the screen, so care should be taken to prevent it from being viewed when entered. Because PKCS #12 passwords do not follow the normal TSO/E rules for password content, they cannot be suppressed as they normally would be.

The *pkcs12-password* can be up to 255 characters in length, is case-sensitive, and can contain blanks.

PKDS | PCICC | ICSF

Specifies that RACF should attempt to store the RSA or ECC public or private key associated with this certificate in the ICSF PKA key data set (PKDS). This applies when the key is introduced to RACF by issuing the ADD function, and when an existing certificate profile is replaced by issuing the ADD function.

The default action for a new key is for RACF to store it as a software key in the RACF database, not in the ICSF PKDS. The default action for an existing key is to leave it unchanged.

These keywords cannot be specified when the key already exists as a secure key in the ICSF token key data set (TKDS).

Guidelines for choosing PKDS, PCICC, or ICSF: When you need hardware protection for the private key, choose the PKDS, PCICC, or ICSF keyword based on key type, key size, and available cryptographic hardware.

- The PKDS keyword supports both ECC and RSA private keys. For RSA keys, PKDS is equivalent to PCICC and stores the key as an RSA Chinese Remainder Theorem (CRT) key token. RACDCERT LIST will display this key with key type RSA along with a PKDS label.
The ICSF keyword supports only RSA keys and stores the key as an RSA Modulus-Exponent (ME) key token. RACDCERT LIST will display this key with key type RSA Mod-Exp along with a PKDS label.

The PKDS and PCICC keywords provide the best performance and support RSA key sizes up to 4096 bits, but require a PCI-class cryptographic coprocessor.

The ICSF keyword can be used on a PCI-class cryptographic coprocessor or older cryptographic coprocessor. However, the key size is limited to 1024 bits.

For details about specifying or allowing RACF to generate the PKDS label, see "PKDS label considerations" on page 277.

For the hardware requirements for storing or accessing a key in the ICSF PKA key data set (PKDS), see "Hardware requirements" on page 277.

PKDS[(pkds-label | *)]

Specifies that RACF should attempt to store the public or private key associated in the ICSF PKDS as follows, based on key type.

- **For an RSA key:**
 - When you specify a PKDS label or an asterisk (*):
 - If the certificate has a private key, the private key is converted using a PCI-class cryptographic coprocessor to an RSA Chinese Remainder Theorem (CRT) key token. The resulting private key is stored in the ICSF PKDS.
 - If the certificate has no private key, the public key is stored as an RSA Modulus-Exponent (ME) key token.

 If the data set contains only a certificate, you must specify a pkds-label value or an asterisk (*). Otherwise, the PKDS keyword is ignored and no PKDS entry is created. The public key is stored in the ICSF PKDS as an RSA Modulus-Exponent (ME) key token with the specified label.
 If the certificate has no private key and you specify PKDS without a PKDS label and without an asterisk (*), the PKDS keyword is ignored and no PKDS entry is created.

 If the data set contains a PKCS #12 package, the private key is stored in the ICSF PKDS with either a system-generated label, a label specified by pkds-label, or a label copied from the certificate label.

 Note: If you want to store the RSA private key in the PKDS as an RSA Modulus-Exponent (ME) key token, specify ICSF instead of this keyword.

- **For an ECC key:**

 If the data set contains only a certificate, you must specify a pkds-label value or an asterisk (*). Otherwise, the PKDS keyword is ignored and no PKDS entry is created. The public key is stored in the ICSF PKDS with the specified label.

 If the certificate has no private key and you specify PKDS without a PKDS label and without an asterisk (*), the PKDS keyword is ignored and no PKDS entry is created.

 If the data set contains a PKCS #12 package, the private key is stored in the ICSF PKDS with either a system-generated label, a label specified by pkds-label, or a label copied from the certificate label.

- **For a DSA key:** The PKDS keyword is ignored.
RACDCERT ADD

PCICC[(*pkds-label | * *)]
Specifies the same option as the PKDS keyword for an RSA key. See the PKDS keyword of the RACDCERT ADD function for details.

ICSF[(*pkds-label | * *)]
Specifies that the public or private key is to be converted to an RSA Modulus-Exponent (ME) key token. The resulting key is stored in the ICSF PKDS.

If the certificate has no private key and you specify ICSF without a PKDS label and without an asterisk (*), the ICSF keyword is ignored and no PKDS entry is created.

Examples

Example 1

Operation User RACFADM with SPECIAL authority requests the addition of a digital certificate for user NETB0Y. User RACFADM has placed the digital certificate in data set 'RACFADM.NETB0Y.CERT' and wants the status of the certificate to be trusted.

Known User RACFADM has SPECIAL authority. RACFADM has placed the digital certificate in data set 'RACFADM.NETB0Y.CERT'.

Command RACDCERT ADD('RACFADM.NETB0Y.CERT')
ID(NETB0Y)
TRUST WITHLABEL('Savings Account')

Output IRRD1991 Certificate with label 'Savings Account' is added for 'NETB0Y'

Example 2

Operation User WENTING exports her new certificate using the RACDCERT EXPORT command and sends it to her business partner Yun. When he receives it, Yun adds it to his company's RACF data base as a SITE certificate using the RACDCERT ADD command and calls it WenTing.

Known The exported certificate does not contain the private key so the data set Wen Ting transmits to Yun need not be protected in any way.

Commands Wen Ting's RACDCERT EXPORT command:
RACDCERT EXPORT(LABEL('Wen Ting''s certificate')) DSN(FOR.YUN.CRT)

Yun's RACDCERT ADD command:
RACDCERT SITE ADD(WENTING.CRT) WITHLABEL('WenTing') ICSF(*)

Output IRRD1991 Certificate with label 'WenTing' is added for SITE.

Example 3

Operation User RACFADM wants to add a certificate for user NETB0Y and protect the ECC private key by storing it in the ICSF PKDS. User RACFADM has placed the digital certificate in data set 'RACFADM.NETB0Y.ECC.CERT' and wants the status of the certificate to be trusted.

Known User RACFADM has SPECIAL authority and sufficient access to the appropriate resources in the CSFSERV class. The system contains an operational ICSF subsystem and Crypto Express3 coprocessor (CEX3C).

Command RACDCERT ADD('RACFADM.NETB0Y.ECC.CERT')
ID(NETB0Y)
TRUST WITHLABEL('Savings Account ECC PKDS')
PKDS(ECC4NETB0Y)

Output IRRD1991 Certificate with label 'Savings Account ECC PKDS' is added for 'NETB0Y'
RACDCERT ADDRING

RACDCERT ADDRING (Add key ring)

Purpose

Use the RACDCERT ADDRING command to create a new key ring.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT ADDRING command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.

- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFDATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT ADDRING command, you must have the SPECIAL attribute or sufficient authority to the IRR.DIGTCERT.ADDRING resource in the FACILITY class for your intended purpose.

Table 6. Authority required for the RACDCERT ADDRING function

<table>
<thead>
<tr>
<th>IRR.DIGTCERT.ADDRING</th>
<th>Access level</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>Create a key ring for your own user ID.</td>
<td></td>
</tr>
<tr>
<td>UPDATE</td>
<td>Create a key ring for another user.</td>
<td></td>
</tr>
</tbody>
</table>

Activating your changes

If the DIGTRING class is RACLISTed, refresh the class to activate your changes.

Example:

```plaintext
SETROPTS RACLST(DIGTRING) REFRESH
```

Related commands

- To delete a key ring, see RACDCERT DELRING.
- To list a key ring, see RACDCERT LISTRING.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the RACDCERT ADDRING command is:
RACDCERT ADDRING

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

ADDRING((ring-name))
 Specifies the name of the new key ring. This key ring must not already exist for this user. The new key ring belongs to the user ID specified or defaulted by the ID((ring-owner)) keyword.

 The key ring name can be up to 237 characters in length. Lowercase characters are permitted. Key ring names become names of RACF profiles in the DIGTRING class, and can contain only characters that are allowed in RACF profile names, with the following restrictions.

 Restrictions: The (ring-name) cannot contain any of the following characters:
 • an ampersand (X'50')
 • an asterisk (X'5C')
 • a percent sign (X'6C')

 Because only user IDs can have key rings, neither CERTAUTH nor SITE can be specified with ADDRING.

ID((ring-owner))
 Specifies the user ID of the key ring owner. (Only a user ID can have a key ring.) If not specified, the key ring owner defaults to the command issuer's user ID.

Examples

Example 1
 Operation User RACFADM wants to add a key ring for the local FTP server. The user ID of the FTP is FTPD. The keys that will be connected to the new ring will be shared by multiple users and the ring will represent the installation's FTP trust policy.
 Known User RACFADM has SPECIAL authority.
 Command RACDCERT ID(FTPD) ADDRING(FTPring)
 Output None.

Example 2
 Operation User RACFADM wants to add a key ring for a new Web server application. The user ID of the Web server application is WEBSRV02. The keys that will be connected to the new ring will be shared by multiple users and the ring will represent the installation's trust policy for this Web server application.
 Known User RACFADM has SPECIAL authority.
 Command RACDCERT ADDRING(SSLring) ID(WEBSRV02)
 Output None.
RACDCERT ADDTOKEN

RACDCERT ADDTOKEN (Add token)

Purpose

Use the RACDCERT ADDTOKEN command to create a new z/OS PKCS #11 token.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT ADDTOKEN command:

<table>
<thead>
<tr>
<th>As a RAC TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.
- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSF DATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT ADDTOKEN command, you must have sufficient authority to the appropriate resource in the CRYPTOZ class. (No authority to resources in the FACILITY class is required.) If you do not have authority to create the specified token as determined by ICSF, the command stops and an error message is displayed.

When your installation controls access to ICSF services and the CSFSERV class is active, you must also have READ access to the CSF1TRC resource in the CSFSERV class.

For authorization details about the CRYPTOZ and CSFSERV classes, see z/OS Cryptographic Services ICSF Administrator’s Guide.

Related commands
- To delete a token, see RACDCERT DELTOKEN.
- To list a token, see RACDCERT LISTTOKEN.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the RACDCERT ADDTOKEN command is:

RACDCERT ADDTOKEN(token-name)
RACDCERT ADDTOKEN

Note: The ID(certificate-owner) | SITE | CERTAUTH parameter is ignored for this RACDCERT function.

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

ADDTOKEN(token-name)

The token-name value is the name of the token being created. This token must not already exist. For token name rules, see the Tokens subsection in the Overview of z/OS support for PKCS #11 chapter [CSF Writing PKCS #11 Applications]

Examples

Example 1

Operation User RACFADM wants to create tokens for two servers that have existing RACF certificates.

Known User RACFADM has SPECIAL authority. The RACF certificate for each server already exists.

Commands RACDCERT ADDTOKEN(ftpserver.ftp.server.pkcs11.token)
RACDCERT ADDTOKEN(webserverr.web.server.pkcs11.token)

Output None.
RACDCERT ALTER

RACDCERT ALTER (Alter certificate)

Purpose

Use the RACDCERT ALTER command to change the status or the label of a digital certificate for the specified user ID, certificate-authority certificate, or site certificate.

Restriction: Because PKCS #11 tokens are managed by ICSF, not RACF, when you use the RACDCERT ALTER command to alter a certificate that is bound in a token, the change is not reflected on the corresponding certificate object in the token.

See "UTF-8 and BMP character restrictions" on page 275 for information about how UTF-8 and BMP characters in certificate names and labels are processed by RACDCERT functions.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT ALTER command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.

- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFDATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT ALTER command, you must have the SPECIAL attribute or sufficient authority to the IRR.DIGTCERT.ALTER resource in the FACILITY class for your intended purpose.

Table 7. Authority required for the RACDCERT ALTER function

<table>
<thead>
<tr>
<th>IRR.DIGTCERT.ALTER</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>Change the trust status or label of your own certificate.</td>
</tr>
<tr>
<td>UPDATE</td>
<td>Change the trust status or label of another user's certificate.</td>
</tr>
<tr>
<td>CONTROL</td>
<td>Change the trust status or label of a SITE or CERTAUTH certificate.</td>
</tr>
</tbody>
</table>

Activating your changes

If the DIGTCERT or DIGTRING class is RACLSTed, refresh the classes to activate your changes.

Example:
SETROPTS RACLIST(DIGTCERT, DIGTRING) REFRESH

Related commands

- To add a certificate, see "RACDCERT ADD (Add certificate)" on page 281.
- To delete a certificate, see "RACDCERT DELETE (Delete certificate)" on page 318.
- To list a certificate, see "RACDCERT LIST (List certificate)" on page 356.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the RACDCERT ALTER command is:

```plaintext
RACDCERT ALTER
   [ (LABEL('label-name')) ]
   | [ (SERIALNUMBER(serial-number) [ ISSUERSDN('issuer's-dn')] ) ]
   [ ID(certificate-owner) | SITE | CERTAUTH ]
   [ TRUST | NOTRUST | HIGHTRUST ]
   [ NEWLABEL('label-name') ]
```

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, "RACF TSO commands," on page 15.

Parameters

ALTER(LABEL('label-name'))

ALTER(SERIALNUMBER(serial-number) ISSUERSDN('issuer's-dn'))

The TRUST, NOTRUST, or NEWLABEL keyword must be specified with the ALTER keyword. If the user has only one certificate, the SERIALNUMBER and ISSUERSDN keywords, or the LABEL keyword, and their associated values can be omitted. If the user has more than one certificate the LABEL, SERIALNUMBER, or SERIALNUMBER and ISSUERSDN must be used to specify which certificate to alter.

When specifying the issuer's distinguished name or the label, you must specify any mixed-case or blank characters exactly as they appear in the output of the RACDCERT LIST command for the certificate.

Restriction: The ISSUERSDN keyword is not supported for lengthy issuer's distinguished names when the name of the certificate's DIGTCERT profile contains a certificate hash value. For more information about DIGTCERT profile names, see the "Purpose" topic of RACDCERT ADD.

For a description of `label-name`, see the WITHLABEL keyword for RACDCERT ADD.

Note that the only alterable certificate information is the TRUST status or the label of a certificate.

ID(certificate-owner) | SITE | CERTAUTH

Specifies that the certificate to alter is either a user certificate associated with
RACDCERT ALTER

the specified user ID, a site certificate, or a certificate-authority certificate. If you
do not specify ID, SITE, or CERTAUTH, the default is ID, and
certificate-owner defaults to the user ID of the command issuer. If more than one
keyword is specified, the last specified keyword is processed and the others are
ignored by TSO command parse processing.

TRUST | NOTRUST | HIGHTRUST

Specifies whether the status of the certificate being altered is trusted, not
trusted, or highly trusted. If TRUST, NOTRUST, or HIGHTRUST is not
specified with the ALTER keyword, no change to the status of the certificate is
attempted.

For a detailed description, see the TRUST, NOTRUST, HIGHTRUST keyword
for RACDCERT ADD.

NEWLABEL(’new-label-name’)

Specifies the label replacing the previous label (if there was one specified) that
is assigned to a certificate.

See the WITHLABEL keyword for RACDCERT ADD for information on label
rules.

If new-label-name is the same as label-name, the label is not changed and no
message is issued.

Examples

Example 1

Operation User CADUDE with CONTROL access to FACILITY class profile
IRR.DIGTCERT.* wants to mark the local certificate authority highly trusted.

Known User CADUDE has CONTROL authority to the profile IRR.DIGTCERT.* in the
FACILITY class.

Command RACDCERT CERTAUTH ALTER(LABEL(’Local PKIX CA’)) HIGHTRUST

Output None.
RACDCERT ALTMAP (Alter mapping)

Purpose

Use the RACDCERT ALTMAP command to change the label, trust status, or criteria associated with the specified mapping.

See “UTF-8 and BMP character restrictions” on page 275 for information about how UTF-8 and BMP characters in certificate names and labels are processed by RACDCERT functions.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT ALTMAP command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.

- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFCDATA profiles AUTODIRECT.target-node:DIGTMAP:APPL and AUTODIRECT.target-node:DIGTCRIT:APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT ALTMAP command, you must have the SPECIAL attribute or sufficient authority to the IRR.DIGTCERT.ALTMAP resource in the FACILITY class for your intended purpose.

Table 8. Authority required for the RACDCERT ALTMAP function

<table>
<thead>
<tr>
<th>IRR.DIGTCERT.ALTMAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access level</td>
</tr>
<tr>
<td>READ</td>
</tr>
<tr>
<td>UPDATE</td>
</tr>
</tbody>
</table>

Activating your changes

If the DIGTNMAP or DIGTCRIT class is RACLISTed, refresh the classes to activate your changes.

Example:

SETROPTS RACLIST(DIGTNMAP, DIGTCRIT) REFRESH

Related commands

- To define a user ID mapping, see RACDCERT MAP.
- To delete a user ID mapping, see RACDCERT DELMAP.
- To list a user ID mapping, see RACDCERT LISTMAP.
Syntax

For the key to the symbols used in the command syntax diagrams, see the "Syntax of RACF commands and operands" on page 9. The complete syntax of the RACDCERT ALTMAP command is:

```plaintext
RACDCERT ALTMAP[(LABEL('label-name'))]
  [ ID(mapping-owner) | MULTIID ]
  [ NEWCRITERIA(criteria-profile-name-template) ]
  [ NEWLABEL('label-name') ]
  [ TRUST | NOTRUST ]
```

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

ALTMAP

ALTMAP(LABEL('label-name'))

Specifying `label name` is required if more than one mapping is associated with the user ID. If NEWLABEL, NEWCRITERIA, or TRUST/NOTRUST is not specified, the mapping is not altered.

ID(mapping-owner) | MULTIID

Specifies the user ID associated with the mapping. If you do not specify ID or MULTIID, the default is ID, and `mapping-owner` defaults to the user ID of the command issuer. If more than one keyword is specified, the last specified keyword is processed and the others are ignored by TSO command parse processing.

ID(mapping-owner)

Specifies the user ID associated with the mapping.

MULTIID

Specifies that additional criteria is used to determine the user ID associated with the mapping.

NEWCRITERIA(criteria-profile-name-template)

Changes the template associated with this mapping when specified with MULTIID. New DIGTCRIT profiles must be created to match the new template profile names. NEWCRITERIA can only be set for MULTIID.

NEWLABEL('new-label-name')

Specifies the label replacing the previous label assigned to a certificate mapping.

See the WITHLABEL keyword for RACDCERT ADD for information on label rules.

If `new-label-name` is the same as `label-name`, the label is not changed and no message is issued.
TRUST | NOTRUST
When specified with ALTMAP, indicates whether this mapping can be used to associate a user ID to a certificate presented by a user accessing the system.

Examples

Example 1

Operation User RACFADM with SPECIAL authority has been notified by the network administrator that the users in department BWVA can begin using their certificates to access the system. The mapping previously created with the label BWVA USERS can now be marked trusted.

Known User RACFADM has SPECIAL authority.

Command RACDCERT ID(BWVAUSR) ALTMAP(LABEL('BWVA USERS')) TRUST

Output None.
RACDCERT BIND (Bind certificate to token)

Purpose

Use the RACDCERT BIND command to bind a digital certificate to a z/OS PKCS #11 token.

Rule: The certificate must be added to the RACF database by a RACDCERT ADD or RACDCERT GENCERT command prior to issuing the RACDCERT BIND command.

When a certificate is bound to a token, RACF creates the following objects in the token:
- a certificate object
- a public key object
- a private key object, if the certificate has an associated private key and the BIND USAGE is PERSONAL.
- If the private key is secure, it will already have a private key object in the token specified on GENCERT request. In this case, BIND will create a certificate object, a public key object, and, if the BIND USAGE is PERSONAL, will link the existing private key object to the certificate and public key objects.

Restrictions on the private key: The following restrictions apply to the private key of the certificate to be bound. Command processing stops and an error message is displayed.
- The private key must not be stored in the ICSF PKA key data set (PKDS).
- The private key must not be a DSA key longer than 1024 bits.

See "UTF-8 and BMP character restrictions" on page 275 for information about how UTF-8 and BMP characters in certificate names and labels are processed by RACDCERT functions.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT BIND command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.
- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFDATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT BIND command, you must have the following authorizations:
The SPECIAL attribute, or sufficient authority to the IRR.DIGTCERT.BIND resource in the FACILITY class based on the USAGE value, as shown in Table 9.

The SPECIAL attribute, or sufficient authority to the IRR.DIGTCERT.ADD resource in the FACILITY class based on the certificate owner.

When your installation controls access to ICSF services and the CSFSERV class is active, READ access to the CSF1GAV, CSF1SAV, CSF1TRC, and CSF1TRL resources in the CSFSERV class.

Sufficient authority to the appropriate resources in the CRYPTOZ class.

For details about CRYPTOZ and CSFSERV resources, see z/OS Cryptographic Services ICSF Administrator’s Guide.

If you are not authorized by ICSF (through the CRYPTOZ class) to add the object to the specified token or not authorized by RACF (through the FACILITY class) to reference the specified RACF certificate, the command stops and an error message is displayed.

Table 9. Authority required for the RACDCERT BIND function

<table>
<thead>
<tr>
<th>USAGE value</th>
<th>Your own certificate</th>
<th>Another user's certificate</th>
<th>SITE or CERTAUTH certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSONAL</td>
<td>Sufficient authority to CRYPTOZ resources and READ authority to IRR.DIGTCERT.BIND</td>
<td>Sufficient authority to CRYPTOZ resources and UPDATE authority to IRR.DIGTCERT.BIND</td>
<td>Sufficient authority to CRYPTOZ resources and CONTROL authority to IRR.DIGTCERT.BIND</td>
</tr>
<tr>
<td>SITE</td>
<td>Sufficient authority to CRYPTOZ resources, CONTROL authority to IRR.DIGTCERT.ADD and READ authority to IRR.DIGTCERT.BIND</td>
<td>Sufficient authority to CRYPTOZ resources, CONTROL authority to IRR.DIGTCERT.ADD and UPDATE authority to IRR.DIGTCERT.BIND</td>
<td>Sufficient authority to CRYPTOZ resources and UPDATE authority to IRR.DIGTCERT.BIND</td>
</tr>
<tr>
<td>CERTAUTH</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Related commands

- To unbind a certificate from a token, see RACDCERT UNBIND.
- To add a token, see RACDCERT ADDTOKEN.
- To list a token, see RACDCERT LISTTOKEN.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the RACDCERT BIND command is:

```
RACDCERT BIND[TOKEN((token-name))]

   LABEL('label-name')
   [ID(certificate-owner) | SITE | CERTAUTH]
   [DEFAULT]
   [USAGE(PERSONAL | SITE | CERTAUTH)]

```

Note: Unless specified as a subkeyword of the BIND parameter, the ID(certificate-owner) | SITE | CERTAUTH parameter is ignored for the RACDCERT BIND function.

Chapter 5. RACF command syntax 303
RACDCERT BIND

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

BIND(TOKEN(token-name) ID(certificate-owner) LABEL('label-name'))

BIND(TOKEN(token-name) SITE LABEL('label-name'))

BIND(TOKEN(token-name) CERTAUTH LABEL('label-name'))

You must uniquely identify both the token and the certificate to be bound.

TOKEN(token-name)
- Specifies the name of the token to which the certificate is to be bound. If it is not specified, the token, in which the private key associated with the binding certificate resides, will be used.
- If the certificate has an associated ECC private key, the ICSF subsystem must be operational and configured for PKCS #11 operations.

ID(certificate-owner) | SITE | CERTAUTH
- Specifies that the certificate being bound to the token is either a user certificate associated with the specified user ID, a site certificate, or a certificate-authority certificate. If the ID, SITE, and CERTAUTH keywords are omitted, the default is ID, and certificate-owner defaults to the user ID of the command issuer. If more than one keyword is specified, the last specified keyword is processed and the others are ignored by TSO command parse processing.

LABEL('label-name')
- Specifies the certificate being bound to the token. For RACDCERT BIND, you must specify the LABEL operand.

DEFAULT
- Specifies that the certificate is the default certificate for the token. Only one certificate within the token is the default certificate. If a default certificate already exists, its DEFAULT status is removed, and the specified certificate becomes the default certificate.
- You must specify the DEFAULT keyword when you want the specified certificate to be the default certificate for this token.
- To remove the DEFAULT status of a certificate without defining another certificate as the default certificate, reissue the RACDCERT BIND command for the certificate and omit the DEFAULT keyword.

USAGE(PERSONAL | SITE | CERTAUTH)
- Specifies how this certificate is used within the specified token. If no usage is specified, it defaults to the usage of the certificate being bound.
- Specify the USAGE keyword to alter the trust policy of the certificate for a specific token. For example, if you operate your own certificate authority, your certificate server application has its own certificate. Because the certificate represents your certificate authority, it is defined as CERTAUTH, which sets its default usage for all applications and users. Your certificate server application requires use of the certificate's private key for signing purposes but the default usage of CERTAUTH does not allow this use. To allow it, specify USAGE(PERSONAL) when you bind this certificate to the token of the
RACDCERT BIND

certificate server application. This allows you to alter the trust policy for this
token only without affecting the default usage for all other applications and
users.

Important: Carefully control use of the USAGE keyword. RACDCERT
processing ensures that the command issuer is authorized to define SITE or
CERTAUTH certificates and cannot bypass the installation security policy using
the USAGE keyword.

See [Table 9 on page 305](#) for authorization requirements for users without the
SPECIAL attribute to allow them to bind a certificate to a token with the
PERSONAL, SITE, or CERTAUTH usage.

Examples

Example 1

Operation User SECADM wants to bind an existing root CA certificate to two existing
tokens.

Known User SECADM has the SPECIAL attribute.

The root CA certificate is installed under CERTAUTH with the label *Local
Root CA for Servers*.

The following tokens are already defined to RACF:
- `ftpsrv.ftp.server.pkcs11.token`
- `websrv.web.server.pkcs11.token`

Commands

```
RACDCERT BIND(CERTAUTH LABEL('Local Root CA for Servers')
TOKEN(ftpsrv.ftp.server.pkcs11.token))
RACDCERT BIND(CERTAUTH LABEL('Local Root CA for Servers')
TOKEN(websrv.web.server.pkcs11.token))
```

Output None.

Example 2

Operation User SECADM wants to bind end-entity certificates to their respective tokens
and define each certificate as the default in its token.

Known User SECADM has the SPECIAL attribute.

The following tokens are already defined to RACF:
- `ftpsrv.ftp.server.pkcs11.token`
- `websrv.web.server.pkcs11.token`

An end-entity certificate and private key labeled *FTP key* is already defined to
RACF and installed under the user ID `FTPSRV`.

An end-entity certificate and private key labeled *Web key* is already defined to
RACF and installed under the user ID `WEBSRV`.

Both end-entity certificates are signed by the existing root CA certificate
labeled *Local Root CA for Servers*.

Commands

```
RACDCERT BIND(ID(FTPSRV) LABEL('FTP key') DEFAULT
TOKEN(ftpsrv.ftp.server.pkcs11.token))
RACDCERT BIND(ID(WEBSRV) LABEL('Web key') DEFAULT
TOKEN(websrv.web.server.pkcs11.token))
```

Output None.
RACDCERT CHECKCERT (Check certificate or certificate chain)

Purpose

Use the RACDCERT CHECKCERT command to check if the digital certificate (or certificates) contained in the specified data set has (or have) already been added to the RACF database and associated with a user ID.

For authorized users, CHECKCERT lists additional information about certificates in the RACF database. It also provides a summary of certificate chain information.

The output will look like the LISTCHAIN output, except that it will not contain the ring information.

If the certificate is not in the RACF database or the user is not authorized, the output will not show the RACF related information.

If there is no error encountered, the certificates will be displayed with the end-entity certificate listed first, followed by the subsequent issuers', and the following information about the chain:
- the number of certificates in the chain
- whether the dataset contains the complete chain
 - chain is complete
 - chain is incomplete
- indication of expired certificate(s), if any
 - chain contains expired certificate(s)

If an error is encountered, the output may show the chain up to the problem certificate, in the same order as in the valid chain. IRRD302I will be issued followed by another specific message on the cause. See examples below.

See "UTF-8 and BMP character restrictions" on page 275 for information about how UTF-8 and BMP characters in certificate names are displayed using RACDCERT functions.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT CHECKCERT command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.
- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFDATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.
Authorization required

To issue the RACDCERT CHECKCERT command, you must have the SPECIAL attribute or sufficient authority to the IRR.DIGTCERT.LIST resource in the FACILITY class for your intended purpose, as shown in Table 10.

You must also have READ access to the specified data set that contains the certificate to prevent an authorization abend from occurring when the data set is read.

If any certificate involved in CHECKCERT has the ECC key type, you must have READ authority to CSF1PKV, CSF1TRC, CSF1TRD and CSFOWH resources in the CSFSERV class.

Table 10. Authority required for the RACDCERT CHECKCERT function

<table>
<thead>
<tr>
<th>IRR.DIGTCERT.LIST</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>Check your own certificate.</td>
</tr>
<tr>
<td>UPDATE</td>
<td>Check another user's certificate.</td>
</tr>
<tr>
<td>CONTROL</td>
<td>Check a SITE or CERTAUTH certificate.</td>
</tr>
</tbody>
</table>

Related commands

- To add a certificate, see “RACDCERT ADD (Add certificate)” on page 281.
- To list a certificate, see “RACDCERT LIST (List certificate)” on page 356.
- To list a certificate, see “RACDCERT LISTCHAIN (List certificate chain)” on page 363.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the RACDCERT CHECKCERT command is:

```
RACDCERT CHECKCERT(data-set-name)

[PASSWORD('pkcs12-password')]
```

Note: The ID(certificate-owner) | SITE | CERTAUTH parameter is ignored for this RACDCERT function.

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

CHECKCERT(data-set-name)
RACDCERT CHECKCERT

CHECKCERT lists the certificate (or the chain of certificates) in the specified data set. If the certificate request is made by a user with proper authority, information in the RACF database pertaining to that certificate (or certificate chain) is also displayed. Additionally, an authority check is performed by data management when the data set is opened.

The CHECKCERT keyword also supports the evaluation of site certificates and certificate authority certificates. It indicates if the certificate is defined and to whom it is defined after checking the resource IRR.DIGTCERT.LIST in the FACILITY class. READ authority is required if the certificate is associated with the user issuing the command. UPDATE authority is required if the certificate is associated with a user other than the issuer of the command. CONTROL authority is required if the certificate is a certificate authority or a site certificate.

The CHECKCERT keyword can be used on the same set of certificate packages that is allowed by RACDCERT ADD. See RACDCERT ADD for more information.

Note:
1. The issuer of the RACDCERT command must have READ access to the data set-name data set to prevent an authorization abend from occurring when the data set is read.
2. No certificate ID is displayed if the certificate is not installed. If the certificate is installed, the certificate ID is displayed only if the certificate has a label and the user is authorized to list the specific certificate information.

PASSWORD('pkcs12-password')
Specifies the password that is associated with the PKCS #12 certificate package. It is required if the data set contains a PKCS #12 certificate package and it must not be specified if the data set contents are not PKCS #12.

Note: The password specified will be visible on the screen, so care should be taken to prevent it from being viewed when entered. Because PKCS #12 passwords do not follow the normal TSO/E rules for password content, they cannot be suppressed as they normally would be.

The 'pkcs12-password' can be up to 255 characters in length, is case-sensitive, and can contain blanks.

Examples

Example 1
Operation User NETADMN wishes to check the certificates of another user. Either NETADMN is not authorized to perform that function or none of the user's certificate are in RACF.
Known User NETADMN has UPDATE access to profile IRR.DIGTCERT.LIST in the FACILITY class.
Command RACDCERT CHECKCERT('TEST.FILE')
Output See Figure 37 on page 310

Example 2
Operation User NETADMN wishes to check the certificates of another user and is authorized to perform that function. Only the end-entity certificate is in RACF, and it is expired.
Known User NETADMN has UPDATE access to profile IRR.DIGTCERT.LIST in the FACILITY class.
Command RACDCERT CHECKCERT('TEST.FILE')
Output See Figure 38 on page 311
Example 3
Operation User NETADMN wishes to check the certificates of another user and is authorized to perform that function. Not all certificates are in RACF, and the signature on certificate is bad.

Known User NETADMN has CONTROL access to profile IRR.DIGTCERT.LIST in the FACILITY class.

Command RACDCERT CHECKCERT('TEST.FILE')

Output See Figure 39 on page 312

Example 4
Operation User NETADMN wishes to check the certificates of another user and is authorized to perform that function. Not all certificates are in RACF, and the subject name on certificate 2 has an invalid character (certificate 2 is not displayed).

Known User NETADMN has CONTROL access to profile IRR.DIGTCERT.LIST in the FACILITY class.

Command RACDCERT CHECKCERT('TEST.FILE')

Output See Figure 40 on page 313
RACDCERT CHECKCERT

RACDCERT CHECKCERT('TEST.FILE')

Certificate 1:
 Start Date: 2011/10/20 00:00:00
 End Date: 2012/10/20 23:59:59
 Serial Number:
 >05<
 Issuer's Name:
 >CN=sampleCA.O=Test.SP=Poughkeepsie.C=US<
 Subject's Name:
 >CN=samplecert.O=Test.SP=Poughkeepsie.C=US<
 Subject's AltNames:
 IP: 127.0.0.5
 EMail: choi at us.ibm.com
 Domain: www.ibm.com
 Signing Algorithm: sha1RSA
 Key Usage: HANDSHAKE
 Key Type: RSA
 Key Size: 1024

Certificate 2:
 Start Date: 2010/03/22 00:00:00
 End Date: 2020/10/22 23:59:59
 Serial Number:
 >02<
 Issuer's Name:
 >CN=MasterCA.O=Test.SP=Poughkeepsie.C=US<
 Subject's Name:
 >CN=sampleCA.O=Test.SP=Poughkeepsie.C=US<
 Signing Algorithm: sha256RSA
 Key Usage: CERTSIGN
 Key Type: RSA
 Key Size: 2048

Certificate 3:
 Start Date: 2008/04/20 00:00:00
 End Date: 2038/04/20 23:59:59
 Serial Number:
 >00<
 Issuer's Name:
 >CN=MasterCA.O=Test.SP=Poughkeepsie.C=US<
 Subject's Name:
 >CN=MasterCA.O=Test.SP=Poughkeepsie.C=US<
 Signing Algorithm: sha256RSA
 Key Usage: CERTSIGN
 Key Type: RSA
 Key Size: 4096

Chain information:
 Chain contains 3 certificate(s), chain is complete

Figure 37. Output for the RACDCERT CHECKCERT command where none of the user's certificates are in RACF.
RACDCERT CHECKCERT('TEST.FILE')

Certificate 1:
Digital certificate information for user CHOI:

Label: samplecert
Certificate ID: 2QbmxsPlIsml4OFmaPy
Status: TRUST
Start Date: 2010/10/20 00:00:00
End Date: 2011/10/20 23:59:59
Serial Number: >05<
Issuer's Name:
 >CN=sampleCA.O=Test.SP=Poughkeepsie.C=US<
Subject's Name:
 >CN=samplecert.O=Test.SP=Poughkeepsie.C=US<
Subject's AltNames:
 IP: 127.0.0.5
 EMail: choi at us.ibm.com
 Domain: www.ibm.com
Signing Algorithm: sha1RSA
Key Usage: HANDSHAKE
Key Type: RSA
Key Size: 1024
Private Key: Yes
PKDS Label: SAMPLECERT

Certificate 2:
Start Date: 2010/03/22 00:00:00
End Date: 2020/10/22 23:59:59
Serial Number: >02<
Issuer's Name:
 >CN=MasterCA.O=Test.SP=Poughkeepsie.C=US<
Subject's Name:
 >CN=sampleCA.O=Test.SP=Poughkeepsie.C=US<
Signing Algorithm: sha256RSA
Key Usage: CERTSIGN
Key Type: RSA
Key Size: 2048

Certificate 3:
Start Date: 2008/04/20 00:00:00
End Date: 2038/04/20 23:59:59
Serial Number: >00<
Issuer's Name:
 >CN=MasterCA.O=Test.SP=Poughkeepsie.C=US<
Subject's Name:
 >CN=MasterCA.O=Test.SP=Poughkeepsie.C=US<
Signing Algorithm: sha256RSA
Key Usage: CERTSIGN
Key Type: RSA
Key Size: 4096

Chain information:
Chain contains 3 certificate(s), chain is complete
Chain contains expired certificate(s)

Figure 38. Output for the RACDCERT CHECKCERT command from an authorized issuer, only the end-entity certificate is in RACF, and it expired.
Figure 39. Output for the RACDCERT CHECKCERT command from an authorized issuer, all the certificates are not in RACF, signature on certificate 2 is not good.

```plaintext
RACDCERT CHECKCERT('TEST.FILE')

Certificate 1:
  Start Date: 2011/10/20 00:00:00
  End Date: 2012/10/20 23:59:59
  Serial Number: >05<
  Issuer's Name:
    >CN=sampleCA.O=Test.SP=Poughkeepsie.C=US<
  Subject's Name:
    >CN=samplecert.O=Test.SP=Poughkeepsie.C=US<
  Subject's AltNames:
    IP: 127.0.0.5
    EMail: choi at us.ibm.com
    Domain: www.ibm.com
  Signing Algorithm: sha1RSA
  Key Usage: HANDSHAKE
  Key Type: RSA
  Key Size: 1024
  Private Key: No

Certificate 2:
  Start Date: 2010/03/22 00:00:00
  End Date: 2020/10/22 23:59:59
  Serial Number: >02<
  Issuer's Name:
    >CN=MasterCA.O=Test.SP=Poughkeepsie.C=US<
  Subject's Name:
    >CN=sampleCA.O=Test.SP=Poughkeepsie.C=US<
  Signing Algorithm: sha256RSA
  Key Usage: CERTSIGN
  Key Type: RSA
  Key Size: 2048
  Private Key: No

IRRD302I Processing terminated. Problem found in certificate 2 in the dataset.
IRRD112I The certificate that you are processing does not have a valid signature.
```
RACDCERT CHECKCERT

RACDCERT CHECKCERT('TEST.FILE')

Certificate 1:
Start Date: 2011/10/20 00:00:00
End Date: 2012/10/20 23:59:59
Serial Number: >05<
Issuer's Name:
 >CN=sampleCA.O=Test.SP=Poughkeepsie.C=US<
Subject's Name:
 >CN=samplecert.O=Test.SP=Poughkeepsie.C=US<
Subject's AltNames:
 IP: 127.0.0.5
 EMail: choi at us.ibm.com
 Domain: www.ibm.com
Signing Algorithm: sha1RSA
Key Usage: HANDSHAKE
Key Type: RSA
Key Size: 1024
Private Key: No

IRRD302I Processing terminated. Problem found in certificate 2 in the dataset.
IRRD182I Unexpected character encountered.

Figure 40. Output for the RACDCERT CHECKCERT command from an authorized issuer, all the certificates are not in RACF, subject name on certificate 2 has invalid character (certificate 2 is not displayed)
RACDCERT CONNECT

RACDCERT CONNECT (Connect a certificate to key ring)

Purpose

Use the RACDCERT CONNECT command to add a digital certificate to a key ring.

See “UTF-8 and BMP character restrictions” on page 275 for information about how UTF-8 and BMP characters in certificate names and labels are processed by RACDCERT functions.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT CONNECT command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No (See rules.)</td>
<td>No (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.

- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFDA DATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT CONNECT command, you must have the SPECIAL attribute or sufficient authority to the following resources in the FACILITY class, based on the certificate owner, key ring owner, and the USAGE value:

- IRR.DIGTCERT.CONNECT
- IRR.DIGTCERT.ADD

The USAGE keyword allows a certificate to be connected to a ring and used in a manner that differs from the certificate's original use. For example, by changing the USAGE value, a certificate defined as a user certificate might be used as a certificate-authority certificate.

The USAGE keyword is powerful, and must be controlled. The rules for connection are shown in Table 11, which shows the access control checks that are performed when connecting to your own key ring, and Table 12 on page 315, which shows the access control checks that are performed when connecting to another user's key ring.

Table 11. Authority required for the RACDCERT CONNECT function—Connecting to your own key ring

<table>
<thead>
<tr>
<th>USAGE value</th>
<th>Your own certificate</th>
<th>Another user's certificate</th>
<th>SITE or CERTAUTH certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSONAL</td>
<td>READ authority to IRR.DIGTCERT.CONNECT</td>
<td>UPDATE authority to IRR.DIGTCERT.CONNECT</td>
<td>CONTROL authority to IRR.DIGTCERT.CONNECT</td>
</tr>
</tbody>
</table>
RACDCERT CONNECT

Table 11. Authority required for the RACDCERT CONNECT function—Connecting to your own key ring (continued)

<table>
<thead>
<tr>
<th>USAGE value</th>
<th>Your own certificate</th>
<th>Another user's certificate</th>
<th>SITE or CERTAUTH certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE CERTAUTH</td>
<td>CONTROL authority to IRR.DIGTCERT.ADD and READ authority to IRR.DIGTCERT.CONNECT</td>
<td>CONTROL authority to IRR.DIGTCERT.CONNECT</td>
<td>UPDATE authority to IRR.DIGTCERT.CONNECT</td>
</tr>
</tbody>
</table>

Table 12. Authority required for the RACDCERT CONNECT function—Connecting to another user's key ring

<table>
<thead>
<tr>
<th>USAGE value</th>
<th>Your own certificate</th>
<th>Another user's certificate</th>
<th>SITE or CERTAUTH certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSONAL</td>
<td>CONTROL authority to IRR.DIGTCERT.CONNECT</td>
<td>CONTROL authority to IRR.DIGTCERT.CONNECT</td>
<td>CONTROL authority to IRR.DIGTCERT.CONNECT</td>
</tr>
<tr>
<td>SITE CERTAUTH</td>
<td>CONTROL authority to IRR.DIGTCERT.ADD and CONTROL authority to IRR.DIGTCERT.CONNECT</td>
<td>CONTROL authority to IRR.DIGTCERT.CONNECT</td>
<td>CONTROL authority to IRR.DIGTCERT.CONNECT</td>
</tr>
</tbody>
</table>

See the USAGE subkeyword below for additional information on the authority required to change a certificate's usage.

Activating your changes

If the DIGTCERT or DIGTRING class is RACLISTed, refresh the classes to activate your changes.

Example:

```
SETROPTS RACLIST(DIGTCERT, DIGTRING) REFRESH
```

Related commands

- To add a key ring, see RACDCERT ADDRING.
- To remove a certificate from a key ring, see RACDCERT REMOVE.
- To list a key ring, see RACDCERT LISTRING.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the RACDCERT CONNECT command is:

```
RACDCERT CONNECT([ID(certificate-owner) | SITE | CERTAUTH]
   LABEL('label-name')
   RING(ring-name)
   [DEFAULT]
   [USAGE(PERSONAL | SITE | CERTAUTH)]
   )
   [ID(ring-owner)]
```

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.
RACDCERT CONNECT

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

CONNECT(ID(certificate-owner) LABEL('label-name') RING(ring-name))
CONNECT(SITE LABEL('label-name') RING(ring-name))
CONNECT(CERTAUTH LABEL('label-name') RING(ring-name))

Specify the digital certificate to be added to the key ring. The specified certificate must be added to the RACF database by a RACDCERT ADD or RACDCERT GENCERT command prior to issuing the CONNECT command.

ID(certificate-owner) indicates that the certificate being connected is a user certificate, and certificate-owner is the user ID associated with this certificate. SITE indicates that the certificate being connected is a site certificate, and CERTAUTH indicates that it is a certificate authority certificate. If ID, SITE or CERTAUTH are not specified, ID(certificate-owner) defaults to the key ring owner as specified or defaulted by the ID(ring-owner) keyword.

LABEL('label-name')
Specify the certificate that is being connected to the key ring. You must specify a label.

RING(ring-name)
Specify the key ring to which this certificate is being connected. You must specify a ring name. Note: The key ring belongs to the ID specified or defaulted by the ID(ring-owner) keyword.

ID(ring-owner)
Specify the user ID of the key ring owner. (Only a user ID can have a key ring.) If not specified, the key ring owner defaults to the command issuer's user ID.

DEFAULT
Specify that the certificate is the default certificate for the ring. Only one certificate within the key ring can be the default certificate. If a default certificate already exists, its DEFAULT status is removed, and the specified certificate becomes the default certificate. If you want the specified certificate to be the default, DEFAULT must be explicitly specified.

If you have a key ring with a default certificate and you want to remove the default status of the certificate without defining another certificate as the default certificate, CONNECT the certificate again without specifying the DEFAULT keyword.

USAGE(PERSONAL | SITE | CERTAUTH)
Specify how this certificate is used within the specified ring. If no usage is specified, it defaults to the usage of the certificate being connected.

The USAGE keyword allows the altering of the trust policy within the confines of a specific key ring. For example, if you are operating your own certificate authority, your certificate server application would have its own certificate. Because the certificate does represent a certificate authority, it should be installed under CERTAUTH, thus setting its default usage for all other applications and users. However, your certificate server application would need to use the certificate’s private key for signing. The default usage of CERTAUTH does not allow this. So, for the certificate server application’s key ring only, the certificate should be connected with USAGE(PERSONAL). Note, in addition to the above, the user ID assigned to your certificate server...
application needs to be granted permission to operate as a certificate authority. This is done by giving the user ID CONTROL access to FACILITY class resource IRR.DIGTCERT.GENCERT.

For the sake of consistency, other certificate and USAGE variations are supported. However, there is currently no practical application for them.

When using the USAGE keyword to change the usage of a certificate, such as is done when a PERSONAL certificate is being used as a SITE or CERTAUTH certificate, RACDCERT must ensure that you have the ability to define a SITE or CERTAUTH certificate by authenticating that the command issuer has CONTROL authority to the resource IRR.DIGTCERT.ADD in the FACILITY class. This ensures that a user cannot bypass the installation security policy through the use of USAGE.

Examples

Example 1

Operation User RACFADM wants to connect an existing SITE certificate labeled Shared Server to the RING01 key ring of server INVSERV. The certificate will be added to the key ring as the default certificate.

Known User RACFADM has SPECIAL authority.

Command RACDCERT ID(INVSERV) CONNECT(SITE LABEL('Shared Server') RING(RING01) USAGE(PERSONAL) DEFAULT)

Output None.
RACDCERT DELETE

RACDCERT DELETE (Delete certificate)

Purpose

Use the RACDCERT DELETE command to delete a digital certificate.

When you delete a certificate that is connected to a key ring, the certificate is automatically removed from the key ring.

Restriction: Because PKCS #11 tokens are managed by ICSF, not RACF, when you use the RACDCERT DELETE command to delete a certificate that is bound in a token, the corresponding certificate object remains in the token.

The DELETE function also supports site and certificate-authority certificates, and the deletion of the private key and other certificate data that is stored when the certificate was created.

When a user profile is deleted with the DELUSER command, related DIGTCERT, DIGTRING, and DIGTNMAP profiles are deleted as a part of DELUSER processing. However, under some circumstances, residual profiles might not be deleted. For example, if you issue the DELUSER command from a z/VM® system (which does not support digital certificates), the profiles might not be deleted. The DELETE, DELRING, and DELMAP keywords for RACDCERT support the specification of a user ID in order to allow residual certificate information related to the user ID to be deleted. However, the other RACDCERT functions require the user ID to be defined to RACF.

See “UTF-8 and BMP character restrictions” on page 275 for information about how UTF-8 and BMP characters in certificate names and labels are processed by RACDCERT functions.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT DELETE command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.

- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFDATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT DELETE command, you must have the SPECIAL attribute or sufficient authority to the IRR.DIGTCERT.DELETE resource in the FACILITY class for your intended purpose, as shown in Table 13 on page 319.
When your installation controls access to ICSF services and the CSFSERV class is active, additional access to CSFSERV resources might be required as follows:

- If the certificate you are deleting has a key stored in the ICSF PKA key data set (PKDS), you must have READ access to the CSFIQF and CSFPKRD resources.
- If the certificate you are deleting has a key stored in the ICSF Token Data Set (TKDS), you must have READ access to the CSFIQF and CSFITRDR resources.

For details about the CSFSERV resources, see [z/OS Cryptographic Services ICSF Administrator’s Guide](#).

Table 13. Authority required for the RACDCERT DELETE function

<table>
<thead>
<tr>
<th>Access level</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>Delete your own certificate.</td>
</tr>
<tr>
<td>UPDATE</td>
<td>Delete another user's certificate.</td>
</tr>
<tr>
<td>CONTROL</td>
<td>Delete a SITE or CERTAUTH certificate.</td>
</tr>
</tbody>
</table>

Activating your changes

If the DIGTCERT or DIGTRING class is RACLISTed, refresh the classes to activate your changes.

Example:

```
SETROPTS RACLIST(DIGTCERT, DIGTRING) REFRESH
```

Related commands

- To add a certificate, see [“RACDCERT ADD (Add certificate)” on page 281](#).
- To alter a certificate, see [“RACDCERT ALTER (Alter certificate)” on page 296](#).
- To list a certificate, see [“RACDCERT LIST (List certificate)” on page 356](#).

Syntax

For the key to the symbols used in the command syntax diagrams, see [“Syntax of RACF commands and operands” on page 9](#). The complete syntax of the RACDCERT DELETE command is:

```
RACDCERT DELETE

    [ (LABEL('label-name')) ]
    | [ (SERIALNUMBER(serial-number) [ ISSUERSDN('issuer’s-dn‘) ] ) ]
    [ ID(certificate-owner) | SITE | CERTAUTH ]
    [ FORCE ]
```

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to [Chapter 3, “RACF TSO commands,” on page 15](#).
RACDCERT DELETE

Parameters

DELETE(LABEL('label-name'))

DELETE(SERIALNUMBER(serial-number) ISSUERSDN('issuer's-dn'))

If the user has only one certificate, the SERIALNUMBER and ISSUERSDN keywords, or the LABEL keyword, and their associated values can be omitted. If the user has more than one certificate the LABEL, SERIALNUMBER, or SERIALNUMBER and ISSUERSDN must be used to select which certificate to delete.

When specifying the issuer's distinguished name or the label, you must specify any mixed-case or blank characters exactly as they appear in the output of the RACDCERT LIST command for the certificate.

Restriction: The ISSUERSDN keyword is not supported for lengthy issuer's distinguished names when the name of the certificate's DIGTCERT profile contains a certificate hash value. For more information about DIGTCERT profile names, see the “Purpose” topic of RACDCERT ADD.

For a description of label-name, see the description of the WITHLABEL keyword for RACDCERT ADD.

FORCE

Specifies that RACF should bypass the following error checking and unconditionally perform the delete operation.

If you do not specify FORCE to bypass these conditions, an error message is issued and the command ends:

- The certificate being deleted has been used to generate a request through RACDCERT GENREQ.
- The private key associated with the certificate is a secure key in the PKDS or TKDS, but it no longer exists.

Note: Use this keyword with caution to force the deletion of a certificate.

ID(certificate-owner) | SITE | CERTAUTH

Specifies that the specified certificate is either a user certificate associated with the specified user ID, a site certificate, or a certificate-authority certificate. If you do not specify ID, SITE, or CERTAUTH, the default is ID, and certificate-owner defaults to the user ID of the command issuer. If more than one keyword is specified, the last specified keyword is processed and the others are ignored by TSO command parse processing.

Examples

Example 1

Operation User RACFADM wants to delete the digital certificate labeled Savings Account for user NETB0Y.

Known User RACFADM has SPECIAL authority.

Command RACDCERT DELETE(LABEL('Savings Account')) ID(NETB0Y)

Output None.

Example 2

Operation User RACFADM does a GENREQ for certificate labeled Savings Account for user NETB0Y to have it sent and signed by a Certificate Authority. In order to not allow the certificate deleted along with its private key until the Certificate Authority returns the signed certificate, the certificate cannot be deleted without the FORCE function.

Known User RACFADM has SPECIAL authority.

Command RACDCERT ID(NETB0Y) GENREQ (LABEL('Savings Account')) dsn('Request.cert')

RACDCERT ID(NETB0Y) DELETE (LABEL('Savings Account'))

Output IRRD198I The certificate has been used for generating a request. It was not deleted.
RACDCERT DELMAP (Delete mapping)

Purpose

Use the RACDCERT DELMAP command to delete a mapping for a user ID.

See “UTF-8 and BMP character restrictions” on page 275 for information about how UTF-8 and BMP characters in certificate names and labels are processed by RACDCERT functions.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT DELMAP command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.

- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFCDATA profiles AUTODIRECT.target-node.DIGTMAP.APPL and AUTODIRECT.target-node.DIGTCRIT.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT DELMAP command, you must have the SPECIAL attribute or sufficient authority to the IRR.DIGTCERT.DELMAP resource in the FACILITY class for your intended purpose.

Table 14. Authority required for the RACDCERT DELMAP function

<table>
<thead>
<tr>
<th>IRR.DIGTCERT.DELMAP Access level</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>Delete a mapping associated with your own user ID.</td>
</tr>
<tr>
<td>UPDATE</td>
<td>Delete a mapping associated with another user ID or MULTIID.</td>
</tr>
</tbody>
</table>

Activating your changes

If the DIGTNMAP or DIGTCRIT class is RACTIONed, refresh the classes to activate your changes.

Example:

```
SETROPTS RACLST(DIGTNMAP, DIGTCRIT) REFRESH
```

Related commands

- To define a user ID mapping, see RACDCERT MAP.
- To alter a user ID mapping, see RACDCERT ALTMAP.
- To list a user ID mapping, see RACDCERT LISTMAP.
The RACDCERT DELMAP command is unrelated to the RACMAP DELMAP command.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the RACDCERT DELMAP command is:

```
RACDCERT DELMAP[(LABEL('label-name'))]
[ID(mapping-owner) | MULTIID]
```

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, "RACF TSO commands," on page 15.

Parameters

DELMAP

DELMAP(LABEL('label-name'))

Specifying *label-name* is required if more than one mapping is associated with the user ID. Note that mappings might also be deleted as part of DELUSER processing.

Important: If the user profile for the specified user ID no longer exists and you specify a label name, RACF searches all profiles in the DIGTNMAP class to locate and delete the orphaned DIGTNMAP profile. (An orphaned DIGTNMAP profile might result when a DELUSER command is issued from a downlevel system for a user ID that has an associated mapping.) This search might take an extended period of time.

ID(mapping-owner) | MULTIID

Specifies the user ID associated with the mapping. If you do not specify ID or MULTIID, the default is ID, and *mapping-owner* defaults to the user ID of the command issuer. If more than one keyword is specified, the last specified keyword is processed and the others are ignored by TSO command parse processing.

ID(mapping-owner)

Specifies the user ID associated with the mapping.

MULTIID

Specifies that additional criteria is used to determine the user ID associated with the mapping.
Examples

Example 1

Operation User RACFADM with SPECIAL authority has been notified that departments BWVB and BWVA have merged. The members of BWVA will be issued new digital certificates.

Known User RACFADM has SPECIAL authority.

Command RACDCERT DELMAP(LABEL('BWVA USERS'))

ID(BWVAUSR)

Output None.
RACDCERT DELRING

RACDCERT DELRING (Delete key ring)

Purpose

Use the RACDCERT DELRING command to delete a key ring.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT DELRING command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.

- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFDATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT DELRING command, you must have the SPECIAL attribute or sufficient authority to the IRR.DIGTCERT.DELRING resource in the FACILITY class for your intended purpose.

Table 15. Authority required for the RACDCERT DELRING function

IRR.DIGTCERT.DELRING

<table>
<thead>
<tr>
<th>Access level</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>Delete your own key ring.</td>
</tr>
<tr>
<td>UPDATE</td>
<td>Delete another user’s key ring.</td>
</tr>
</tbody>
</table>

Activating your changes

If the DIGTRING class is RAclistEd, refresh the class to activate your changes.

Example:

SETROPTS RACLST(DIGTRING) REFRESH

Related commands

- To add a key ring, see RACDCERT ADDRING.
- To list a key ring, see RACDCERT LISTRING.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the RACDCERT DELRING command is:
RACDCERT DELRING

<table>
<thead>
<tr>
<th>RACDCERT DELRING(ring-name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ID(ring-owner)]</td>
</tr>
</tbody>
</table>

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

DELRING(ring-name)

The *ring-name* value is the name of the key ring. Because only user IDs can have key rings, neither CERTAUTH nor SITE can be specified with DELRING.

Note that when a DELUSER command is issued against a user ID, all of the key rings that are owned by that user ID are also deleted.

ID(ring-owner)

Specifies the user ID of the key ring owner. (Only a user ID can have a key ring.) If not specified, the key ring owner defaults to the command issuer’s user ID.

Examples

Example 1

Operation User RACFADM wants to delete the key ring for the local FTP server. The user ID of the FTP is FTPD. The name of the key ring to be deleted is FTPring.

Known User RACFADM has SPECIAL authority.

Command RACDCERT ID(FTPD) DELRING(FTPring)

Output None.
Purpose

Use the RACDCERT DELTOKEN command to delete a z/OS PKCS #11 token.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT DELTOKEN command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.

- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFCDATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

Authorization to delete z/OS PKCS #11 tokens is controlled by ICSF based on profiles in the CRYPTOZ class. (No authority in the FACILITY class is required.) If you do not have authority to delete the specified token as determined by ICSF, the command stops and an error message is displayed.

When your installation controls access to ICSF services and the CSFSERV class is active, you must also have READ access to the CSF1GAV, CSF1TRD, and CSF1TRL resources in the CSFSERV class.

For authorization details about the CRYPTOZ and CSFSERV classes, see z/OS Cryptographic Services ICSF Administrator's Guide.

Related commands

- To add a token, see RACDCERT ADDTOKEN.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the RACDCERT DELTOKEN command is:

```plaintext
RACDCERT DELTOKEN(token-name) [FORCE]
```

Note: The ID(certificate-owner) | SITE | CERTAUTH parameter is ignored for this RACDCERT function.
RACDCERT DELTOKEN

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

DELTOKEN(token-name)

The token-name value is the name of the token being deleted. If any object within the token is not currently defined to RACF, you must also specify FORCE or else an error message is issued and the command ends. (This error message prevents you from inadvertently deleting a certificate object that is not defined to RACF.)

FORCE

Specifies that RACF should bypass some error checking and unconditionally perform the delete token operation.

If you do not specify FORCE, the following condition must be true or an error message is issued and the command ends:

• The certificate (or its associated private key, if any) must be currently defined to RACF.

If you specify FORCE, this condition is not checked.

Examples

Example 1

Operation User ICSFADM has been notified that the z/OS PKCS #11 token named WEBSRV.NETTOKEN is no longer needed and should be deleted.

Known User ICSFADM has CONTROL authority to the SO.* generic profile in the CRYPTOZ class. The token to be deleted is empty.

Commands RACDCERT DELTOKEN(WEBSRV.NETTOKEN)

Output None.
RACDCERT EXPORT

RACDCERT EXPORT (Export certificate package)

Purpose

Use the RACDCERT EXPORT command to write a digital certificate to a data set.

Restriction: The private key of the exported certificate must not be stored in the ICSF PKA key data set (PKDS) or command processing stops and an error message is displayed.

See “UTF-8 and BMP character restrictions” on page 275 for information about how UTF-8 and BMP characters in certificate names and labels are processed by RACDCERT functions.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT EXPORT command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.

- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFDATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT EXPORT command, you must have the SPECIAL attribute, or sufficient authority to the IRR.DIGTCERT.EXPORT or IRR.DIGTCERT.EXPORTKEY resource in the FACILITY class based on the certificate owner and format of the exported certificate package, as shown in Table 16 on page 329.

When your installation controls access to ICSF services and the CSFSERV class is active, additional access to CSFSERV resources might be required as follows:

- If one or more certificates in the certificate chain you are exporting has an ECC key, you must have READ access to the CSF1PKV, CSF1TRC, CSF1TRD, CSFDSV, and CSFOWH resources.

Exception: When the Crypto Express3 coprocessor (CEX3C), or later, is operational, no access to CSF1PKV, CSF1TRC, or CSF1TRD is required.

For details about the CSFSERV resources, see z/OS Cryptographic Services ICSF Administrator’s Guide.
Table 16. Authority required for the RACDCERT EXPORT function

<table>
<thead>
<tr>
<th>Format</th>
<th>Your own certificate</th>
<th>Another user's certificate</th>
<th>SITE or CERTAUTH certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export in CERT format</td>
<td>Export your own certificate: READ authority to IRR.DIGTCERT.EXPORT</td>
<td>Export another user's certificate: UPDATE authority to IRR.DIGTCERT.EXPORT</td>
<td>Export SITE or CERTAUTH certificates: CONTROL authority to IRR.DIGTCERT.EXPORT</td>
</tr>
<tr>
<td>Export in PKCS #7 format</td>
<td>Export your own certificate, but not the parent CA chain: READ authority to IRR.DIGTCERT.EXPORT</td>
<td>Export another user's certificate, but not the parent CA chain: UPDATE authority to IRR.DIGTCERT.EXPORT</td>
<td>Export SITE or CERTAUTH certificates and/or the entire parent CA chain: CONTROL authority to IRR.DIGTCERT.EXPORT</td>
</tr>
<tr>
<td>Export in PKCS #12 format</td>
<td>Export your own certificate and the private key: READ authority to IRR.DIGTCERT.EXPORTKEY</td>
<td>Export another user's certificate and the private key: CONTROL authority to IRR.DIGTCERT.EXPORTKEY</td>
<td>Export SITE or CERTAUTH certificate and the private key: CONTROL authority to IRR.DIGTCERT.EXPORTKEY</td>
</tr>
</tbody>
</table>

Related commands

- To list a certificate, see “RACDCERT LIST (List certificate)” on page 356.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the RACDCERT EXPORT command is:

```
RACDCERT EXPORT(LABEL('label-name'))
    [ID(certificate-owner) | SITE | CERTAUTH]
    DSN(output-data-set-name)
    [FORMAT(
        CERTDER
        | CERTB64
        | PKCS7DER
        | PKCS7B64
        | PKCS12DER
        | PKCS12B64
    )]
    [PASSWORD('pkcs12-password')]
```

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

EXPORT (LABEL('label-name'))

The *label-name* value identifies the certificate that is being exported. Depending on which keyword you specify, you can export a certificate, a certificate and its CA chain, or a certificate and private key.
RACDCERT EXPORT

Restriction: When ICSF is operating in FIPS mode, you cannot export the certificate if one or more certificates in the certificate chain has a Brainpool ECC key.

ID(*certificate-owner*) | **SITE** | **CERTAUTH**
Specifies that the specified certificate is either a user certificate associated with the specified user ID, a site certificate, or a certificate-authority certificate. If you do not specify ID, SITE, or CERTAUTH, the default is ID, and *certificate-owner* defaults to the user ID of the command issuer. If more than one keyword is specified, the last specified keyword is processed and the others are ignored by TSO command parse processing.

DSN(*output-data-set-name*)
Specifies the data set that is to contain the certificate. The data set *output-data-set-name* is deleted and reallocated if it exists. If EXPORT is specified, DSN must be specified.

FORMAT
Specifies the format of the exported certificate package. Valid values for FORMAT are:
- **CERTB64**—specifies a DER encoded X.509 certificate that has been encoded using Base64.
- **CERTDER**—specifies a DER encoded X.509 certificate.
- **PKCS7B64**—specifies a DER encoded PKCS #7 package that has been encoded using Base64.
- **PKCS7DER**—specifies a DER encoded PKCS #7 package.
- **PKCS12B64**—specifies a DER encoded PKCS #12 package that has been encoded using Base64.
- **PKCS12DER**—specifies a DER encoded PKCS #12 package.

Note:
1. PKCS12DER is the default if PASSWORD is specified; otherwise, CERTB64 is the default.
2. The PKCS12B64 format might not be supported by non-IBM applications. These applications often issue messages indicating incorrect passwords. In this case, reissue the command specifying a format supported by the application.

The CERT keywords indicate that only a certificate is to be exported.

The PKCS #7 keywords indicate to export a certificate and its CA chain. If the command issuer is authorized to export CERTAUTH certificates PKCS #7 processing will attempt to package any certificate authority certificate necessary to complete the basing chain to the exported certificate. If a certificate in the chain cannot be found under CERTAUTH or is expired or the command issuer is not authorize to export CERTAUTH certificates, an informational message will be issued. Processing continues creating an incomplete PKCS #7 package. An incomplete PKCS #7 package can still be processed by RACF but might or might not be useful for OEM products.

The PKCS #12 keywords indicate to export the certificate and the private key (which must exist and must not be stored in the ICSF PKDS). The package produced by specifying one of the PKCS #12 keywords is encrypted using the password specified according to the PKCS #12 standard.
PKCS #12 processing requires a software private key. If the private key is stored in the ICSF PKDS, the PKCS #12 package cannot be created, and processing stops.

PKCS #12 processing will attempt to package any certificate-authority certificate necessary to complete the basing chain to the exported certificate. If a certificate in the chain cannot be found under CERTAUTH, an informational message will be issued. Processing continues and an incomplete PKCS #12 package is created that can still be processed by RACF but might or might not be useful for OEM products.

`PASSWORD('pkcs12-password')`

Specifies the password to use for PKCS #12 package encryption. The string is converted before being used, so any characters entered must be translatable to 7-bit ASCII. However, RACF does not enforce this.

Note: RACF assumes the current host code page is IBM-1047 and translates to ASCII accordingly.

Examples

Example 1

Operation User WENTING wants to export a certificate and send it to her business partner Yun.

Known The exported certificate does not contain the private key so the data set Wen Ting transmits to Yun need not be protected in any way.

Commands

```
RACDCERT EXPORT(LABEL('Wen Ting's certificate'))
  DSN(FOR.YUN.CRT)
```

Output None.
RACDCERT GENCERT (Generate certificate)

Purpose

Use the RACDCERT GENCERT command to create a digital certificate and potentially a public/private key pair.

See “UTF-8 and BMP character restrictions” on page 275 for information about how UTF-8 and BMP characters in certificate names and labels are processed by RACDCERT functions.

Processing details

When you specify an optional request data set containing the PKCS #10 request data, and extensions are present in the request data (not overridden by other keywords specified with the RACDCERT command), they are copied to the certificate being created. These extensions and the logic involved with using them are described in the following tables:

- For subjectKeyIdentifier, see [Table 17](#).
- For authorityKeyIdentifier, see [Table 18](#).
- For keyUsage, see [Table 19](#).
- For basicConstraints, see Table 20 on page 333.
- For subjectAltName, see Table 21 on page 333.
- For issuerAltName, see Table 22 on page 333.

Table 17. Logic for the subjectKeyIdentifier extension for GENCERT

<table>
<thead>
<tr>
<th>When the request data set is specified</th>
<th>When the request data set is not specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>The extension is encoded using the subjectKeyIdentifier value from the request data set if present, if not present the extension is encoded by generating the keyIdentifier according to the Public Key Infrastructure Standards.</td>
<td>The extension is encoded by generating the keyIdentifier according to Public Key Infrastructure Standards.</td>
</tr>
</tbody>
</table>

Table 18. Logic for the authorityKeyIdentifier extension for GENCERT

<table>
<thead>
<tr>
<th>When SIGNWITH is specified</th>
<th>When SIGNWITH is not specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>The extension is encoded using the subjectKeyIdentifier value of the signing certificate if present, if not present the extension is not created.</td>
<td>The authorityKeyIdentifier extension is not created.</td>
</tr>
</tbody>
</table>

Table 19. Logic for the keyUsage extension for GENCERT

<table>
<thead>
<tr>
<th>Situation</th>
<th>keyUsage is present in the request data set</th>
<th>keyUsage is not present in the request data set</th>
</tr>
</thead>
<tbody>
<tr>
<td>When KEYUSAGE is specified and the target ID is CERTAUTH</td>
<td>If the certSign bit is turned off in the request data set, the request will fail. Otherwise the extension is encoded as requested by the RACDCERT invoker. Additionally, the certSign and cRLSign bits will be turned on if not already specified by the CERTSIGN keyword.</td>
<td>The extension is encoded as requested by the RACDCERT invoker. Additionally, the certSign and cRLSign bits are turned on.</td>
</tr>
</tbody>
</table>
Table 19. Logic for the keyUsage extension for GENCERT (continued)

<table>
<thead>
<tr>
<th>Situation</th>
<th>keyUsage is present in the request data set</th>
<th>keyUsage is not present in the request data set</th>
</tr>
</thead>
<tbody>
<tr>
<td>When KEYUSAGE is specified and the target ID is SITE or ID(cert-owner)</td>
<td>The extension is encoded as requested by the RACDCERT invoker.</td>
<td>The extension is encoded as requested by the RACDCERT invoker.</td>
</tr>
<tr>
<td>When KEYUSAGE is not specified and the target ID is CERTAUTH</td>
<td>If the certSign bit is turned off this command fails, otherwise the extension is encoded as specified in the request data set.</td>
<td>The extension is encoded by turning the certSign and cRLSign bits on.</td>
</tr>
<tr>
<td>When KEYUSAGE is not specified and the target ID is SITE or ID(cert-owner)</td>
<td>The extension is encoded using the request data set values.</td>
<td>The keyUsage extension is not created.</td>
</tr>
</tbody>
</table>

Table 20. Logic for the basicConstraints extension for GENCERT

<table>
<thead>
<tr>
<th>Situation</th>
<th>basicConstraints is present in the request data set</th>
<th>basicConstraints is not present in the request data set</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the target ID is CERTAUTH</td>
<td>If the cA boolean value is false, the command will fail. Otherwise the extension is encoded turning the cA bit on. The pathLength value is not included.</td>
<td>The extension is encoded turning the cA bit on. The pathLength value is not included.</td>
</tr>
<tr>
<td>When the target ID is SITE or ID(cert-owner)</td>
<td>The extension is encoded using the request data set values, including the pathLength value.</td>
<td>The basicConstraints extension is not created.</td>
</tr>
</tbody>
</table>

Table 21. Logic for the subjectAltName extension for GENCERT

<table>
<thead>
<tr>
<th>Situation</th>
<th>subjectAltName is present in the request data set</th>
<th>subjectAltName is not present in the request data set</th>
</tr>
</thead>
<tbody>
<tr>
<td>When ALTNAME is specified</td>
<td>The extension is encoded as requested by the RACDCERT invoker.</td>
<td>The extension is encoded as requested by the RACDCERT invoker.</td>
</tr>
<tr>
<td>When ALTNAME is not specified</td>
<td>The extension is encoded using the request data set values.</td>
<td>The subjectAltName extension is not created.</td>
</tr>
</tbody>
</table>

Table 22. Logic for the issuerAltName extension for GENCERT

<table>
<thead>
<tr>
<th>When SIGNWITH is specified</th>
<th>When SIGNWITH is not specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>The extension is encoded using the subjectAltName value of the signing certificate if the extension is present. Otherwise, the issuerAltName extension is not created.</td>
<td>The IssuerAltName extension is not created.</td>
</tr>
</tbody>
</table>

Issuing options

The following table identifies the eligible options for issuing the RACDCERT GENCERT command:
RACDCERT GENCERT

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.

- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFCDATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT GENCERT command, you must have the SPECIAL attribute, or sufficient authority to the IRR.DIGTCERT.ADD and IRR.DIGTCERT.GENCERT resources in the FACILITY class based on the certificate owner and the SIGNWITH value, as shown in Table 23 on page 335.

When you specify the name of the request data set that contains the PKCS #10 request data, you must also have READ access to the specified data set.

When your installation controls access to ICSF services and the CSFSERV class is active, additional access to CSFSERV resources might be required as follows:

- When you specify RSA(PKDS) or PCICC, you must have READ authority to the CSFDSG, CSFIQF, CSFPKG, CSFPKRC, and CSFPKX resources.
- When you specify RSA(TOKEN(token-name)), you must have READ authority to the CSF1GAV, CSF1GKP, CSF1TRD, CSFDSG, and CSFIQF resources.
- When you specify RSA (or omit key type) and omit PKDS and TOKEN, you must have READ authority to the CSFIQF resource.
- When you specify NISTECC or BPECC, you must have the following access authorities:
 - When you specify PKDS, you must have READ access to the CSFDSG, CSFDSG, CSFWOH, CSFPKG, CSFPKRC, and CSFPKX resources.
 - When you specify TOKEN, you must have READ access to the CSF1GAV, CSF1GKP, CSF1PKV, CSF1TRC, CSF1TRD, CSFDSG, and CSFWOH resources.
 - When you omit PKDS and TOKEN, you must have READ access to the CSF1GAV, CSF1GKP, CSF1PKS, CSF1PKV, CSF1TRC, CSF1TRD, and CSFWOH resources.
- When you specify ICSF, you must have READ authority to the CSFIQF, CSFPKI, and CSFPKRC resources.
- When you specify FROMICSF, you must have READ authority to the CSFIQF and CSFPKX resources.
- When you specify SIGNWITH, you must have the following access authorities:
 - If the private key of the signing certificate is an ECC key that is stored in the RACF database, you must have READ authority to the CSF1PKS, CSF1PKV, CSF1TRC, CSF1TRD, and CSFWOH resources.
 - If the private key of the signing certificate is stored in the ICSF PKA key data set (PKDS) or in the ICSF Token Data Set (TKDS), you require additional access based on the key type, as follows:
When the key is an RSA type, you must have READ authority to the CSFDSG resource.

- When the key is an ECC type, you must have READ authority to the CSF1PKV, CSF1TRC, CSF1TRD, CSFDSG, and CSFOWH resources.

For details about the CSFSERV resources, see "z/OS Cryptographic Services ICSF Administrator's Guide".

Important: The GENCERT function allows a user to generate and sign a certificate. Carefully consider which users are authorized to use GENCERT, which user ID is associated with the generated certificate, and which certificate is used to sign the generated certificate.

Table 23. Authority required for the RACDCERT GENCERT function

<table>
<thead>
<tr>
<th>SIGNWITH</th>
<th>Your own certificate</th>
<th>Another user's certificate</th>
<th>SITE or CERTAUTH certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGNWITH your own certificate</td>
<td>READ authority to IRR.DIGTCERT.ADD and READ authority to IRR.DIGTCERT.GENCERT</td>
<td>UPDATE authority to IRR.DIGTCERT.ADD and READ authority to IRR.DIGTCERT.GENCERT</td>
<td>CONTROL authority to IRR.DIGTCERT.ADD and READ authority to IRR.DIGTCERT.GENCERT</td>
</tr>
<tr>
<td>SIGNWITH a SITE or CERTAUTH certificate</td>
<td>READ authority to IRR.DIGTCERT.ADD and CONTROL authority to IRR.DIGTCERT.GENCERT</td>
<td>UPDATE authority to IRR.DIGTCERT.ADD and CONTROL authority to IRR.DIGTCERT.GENCERT</td>
<td>CONTROL authority to IRR.DIGTCERT.ADD and CONTROL authority to IRR.DIGTCERT.GENCERT</td>
</tr>
<tr>
<td>SIGNWITH not specified</td>
<td>READ authority to IRR.DIGTCERT.ADD and READ authority to IRR.DIGTCERT.GENCERT</td>
<td>UPDATE authority to IRR.DIGTCERT.ADD and UPDATE authority to IRR.DIGTCERT.GENCERT</td>
<td>CONTROL authority to IRR.DIGTCERT.ADD and CONTROL authority to IRR.DIGTCERT.GENCERT</td>
</tr>
</tbody>
</table>

Authority processing details: RACF performs two checks that determine the authority required for the GENCERT command:

1. **How the certificate is being signed**, specified with the SIGNWITH keyword.
 - Users with SPECIAL authority can use the SIGNWITH keyword with any value. Users without SPECIAL authority must have authority to the IRR.DIGTCERT.GENCERT resource in the FACILITY class. If SIGNWITH is specified without the CERTAUTH or SITE keyword, the certificate is signed with the certificate identified with the LABEL keyword for the user who is issuing the RACDCERT command. This requires READ access to the resource IRR.DIGTCERT.GENCERT in the FACILITY class. If either SIGNWITH(CERTAUTH...) or SIGNWITH(SITE) is specified, CONTROL authority is required to the resource IRR.DIGTCERT.GENCERT in the FACILITY class.
 - Not specifying SIGNWITH indicates that the certificate is to be self-signed. The signing key is owned by the certificate itself. Thus the authority needed for signing is determined by the owner of the generated certificate.

2. **What type of certificate is being generated**, which is specified with the ID(), SITE or CERTAUTH keywords.
 - Users with SPECIAL authority can generate a digital certificate for any RACF-defined user or for any certificate-authority or site certificate. Users without SPECIAL authority can generate certificate authority or site certificates if they have CONTROL authority to the resource IRR.DIGTCERT.ADD in the FACILITY class. Users without SPECIAL authority can generate certificates for other users if they have UPDATE authority to the resource.
IRR.DIGTCERT.ADD in the FACILITY class. Users without SPECIAL authority can generate certificates for themselves if they have READ authority to the resource IRR.DIGTCERT.ADD in the FACILITY class.

Activating your changes

If the DIGTCERT class is RACLISTed, refresh the class to activate your changes.

Example:

SETROPTS RACLIST(DIGTCERT) REFRESH

Related commands

- To add a certificate, see "RACDCERT ADD (Add certificate)" on page 281.
- To generate a certificate request, see "RACDCERT GENREQ (Generate request)" on page 348.
- To rekey a expiring certificate, see "RACDCERT REKEY (Rekey certificate)" on page 384.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the RACDCERT GENCERT command is:
RACDCERT GENCERT [(request-data-set-name)]

[ID(certificate-owner) | SITE | CERTAUTH]
[SUBJECTSDN(
 [CN('common-name')]
 [T('title')]
 [OU('organizational-unit-name1', 'organizational-unit-name2', ...)]
 [O('organization-name')]
 [L('locality')]
 [SP('state-or-province')]
 [C('country')]
)
[SIZE(key-size)]
[NOTBEFORE([DATE(yyyy-mm-dd)] [TIME(hh:mm:ss)])]
[NOTAFTER([DATE(yyyy-mm-dd)] [TIME(hh:mm:ss)])]
[WITHLABEL('label-name')]
[SIGNWITH([CERTAUTH | SITE] LABEL('label-name'))]
[{ RSA [(pkds-label | *)] | TOKEN(token-name)]
 | NISTEC [(pkds-label | *)] | TOKEN(token-name)]
 | BPECC [(pkds-label | *)] | TOKEN(token-name)]
 | DSA]
 | FROMICSF(pkds-label)
 | PCICC [(pkds-label | *)]
 | ICSF [(pkds-label | *)]
[KEYUSAGE(
 [CERTSIGN]
 [DATAECRYPT]
 [DOCSIGN]
 [HANDSHAKE]
 [KEYAGREE]
)
[ALTNAME(
 IP('numeric-IP-address')
 DOMAIN('internet-domain-name')
 EMAIL('email-address')
 URI('universal-resource-identifier')
)

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

GENCERT
GENCERT(request-data-set-name)

Request-data-set-name is the name of an optional data set that contains the PKCS #10 certificate request data. The request data contains the user’s generated public key and X.509 distinguished name. The request data must be signed, DER-encoded, and then Base64 encoded according to the PKCS #10 standard.

The subkeywords of the GENCERT function specify the information that is to be contained within the certificate that is being created.
RACDCERT GENCERT

Request-data-set-name has characteristics (for example, RECFM) identical to the data set that can be specified with the ADD and CHECKCERT keywords. If *request-data-set-name* is specified, SIGNWITH must also be specified because the *request-data-set-name* data set does not contain a private key. If SIGNWITH is not specified, an informational message is issued. Note that the issuer of the RACDCERT command must have READ access to the *request-data-set-name* data set to prevent an authorization abend from occurring when the data set is read.

When GENCERT is issued with a request data set: The following conditions apply:

- No key-pair is generated. This is because the request data set contains the user’s public key.
- The public key from the request data set is used in the generated certificate.
- If FROMICSF is specified, the GENCERT command fails.
- If the RSA, NISTECC, BPECC, or DSA keyword is specified, it is ignored.
- If the RSA(PKDS), NISTECC(PKDS), BPECC(PKDS), ICSF, or PCICC keyword is specified, it is ignored unless one of the following conditions is true:
 - The certificate profile (containing the private key of the corresponding public key) in the request data set already exists and the private key is not yet stored in the PKDS. When this occurs, RACF stores the private key in the ICSF PKDS.
 - There is no corresponding private key profile and you specified a PKDS label value. When this occurs, RACF stores the public key in the ICSF PKDS.

ID(certificate-owner) | SITE | CERTAUTH

Specifies that the new certificate is either a user certificate associated with the specified user ID, a site certificate, or a certificate-authority certificate. If you do not specify ID, SITE, or CERTAUTH, the default is ID, and *certificate-owner* defaults to the user ID of the command issuer. If more than one keyword is specified, the last specified keyword is processed and the others are ignored by TSO command parse processing.

SUBJECTSDN

Specifies the subject’s X.509 distinguished name, which consists of the following components:

- **CommonName**—specified with the CN subkeyword.
- **Title**—specified with the T subkeyword.
- **Organizational Unit**—specified with the OU subkeyword. Multiple values can be specified for the organizational unit.
- **Organization**—specified with the O subkeyword.
- **Locality**—specified with the L subkeyword.
- **State/Province**—specified with the SP subkeyword.
- **Country**—specified with the C subkeyword.

SUBJECTSDN completely overrides the values contained in the certificate request in the data set specified with the GENCERT function.

The length of the value you specify for each component of the SUBJECTSDN is limited to 64 characters. Each SUBJECTSDN subkeyword can be specified only once. The total length of the subject’s distinguished name is limited to 1024 characters, including the X.509 identifiers (such as C= and CN=) and the dot qualifiers.
If the SUBJECTSDN name is too long, an informational message is issued and the certificate is not added.

Any printable character that can be mapped to an ASCII character can be specified. Characters that cannot be mapped, such as X'4A' (¢) and X'00' are shown by RACDCERT LIST as blanks.

If SUBJECTSDN and request-data-set-name are not specified, the programmer name data from the ID() user (either specified or defaulted), or the programmer name from the SITE or CERTAUTH anchor user IDs (irrsitec or irrcerta) is used as the common name (CN). If the programmer name is all blanks (X'40'), nulls (X'00'), # characters (X'7B'), or X'FF' characters, the common name is set to the user ID that is to be associated with this certificate.

SIZE(key-size)

Specifies the size of the private key expressed in decimal bits. This keyword is ignored if GENCERT is specified with request-data-set-name.

If SIZE is not specified, it defaults to 1024 for RSA and DSA keys, or 192 for NISTECC and BPECC keys.

For NISTECC keys, valid key sizes are 192, 224, 256, 384, and 521 bits. For BPECC keys, valid key sizes are 160, 192, 224, 256, 320, 384, and 512 bits.

For DSA keys, the minimum key size is 512.

For RSA keys, the minimum key size for clear keys and secure keys in the PKDS (PKA key data set) is 512; the minimum key size for secure keys in the TKDS (token key data set) is 1024 and the size must be a multiple of 256.

- The maximum key size for RSA and DSA keys is determined by United States export regulations and is controlled by RACF and non-RACF code in z/OS. Depending on the installation, non-RACF code may enforce a lower maximum size.
- Rounding up to the next appropriate key size might occur. Therefore, the key size of the generated key might be longer than the value you specify with SIZE but the generated key is never shorter than requested.

Maximum key sizes: The maximum key size for a private key depends on key type, as follows:

<table>
<thead>
<tr>
<th>Private key type</th>
<th>Maximum key size</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA key stored in the RACF database</td>
<td>4096 bits</td>
</tr>
<tr>
<td>RSA key stored in the ICSF TKDS as secure key</td>
<td>4096 bits</td>
</tr>
<tr>
<td>RSA key stored in the ICSF PKDS as a CRT key token</td>
<td>4096 bits</td>
</tr>
<tr>
<td>DSA key</td>
<td>2048 bits</td>
</tr>
<tr>
<td>RSA key stored in the ICSF PKDS as an ME key token</td>
<td>1024 bits</td>
</tr>
<tr>
<td>NISTECC key</td>
<td>521 bits</td>
</tr>
<tr>
<td>BPECC key</td>
<td>512 bits</td>
</tr>
</tbody>
</table>

Note: To generate an RSA key that is longer than 1024 bits and is to be stored in the RACF database, the CP Assist for Cryptographic Function (CPACF) must be enabled.

Standard key sizes: Currently, standard sizes for RSA keys are as follows:

<table>
<thead>
<tr>
<th>Key size</th>
<th>Key strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>512 bits</td>
<td>Low-strength key</td>
</tr>
</tbody>
</table>
Key size and Key strength

<table>
<thead>
<tr>
<th>Key size</th>
<th>Key strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024 bits</td>
<td>Medium-strength key</td>
</tr>
<tr>
<td>2048 bits</td>
<td>High-strength key</td>
</tr>
<tr>
<td>4096 bits</td>
<td>Very high-strength key</td>
</tr>
</tbody>
</table>

Key strength considerations: Shorter keys of the ECC type, which are generated when you specify NISTECC or BPECC, achieve comparable key strengths when compared with longer RSA keys.

RSA, NISTECC, and BPECC keys of the following sizes are comparable in strength:

<table>
<thead>
<tr>
<th>RSA key size</th>
<th>NISTECC key size</th>
<th>BPECC key size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024 bits</td>
<td>192 bits</td>
<td>160 or 192 bits</td>
</tr>
<tr>
<td>2048 bits</td>
<td>224 bits</td>
<td>224 bits</td>
</tr>
<tr>
<td>3072 bits</td>
<td>256 bits</td>
<td>256 or 320 bits</td>
</tr>
<tr>
<td>7680 bits</td>
<td>384 bits</td>
<td>256 or 320 bits</td>
</tr>
<tr>
<td>15360 bits</td>
<td>521 bits</td>
<td>512 bits</td>
</tr>
</tbody>
</table>

Hashing algorithm used for signing: RACF signs certificates using a set of secure hash algorithms based on the SHA-1 or SHA-2 hash functions. When the signing key is a DSA type, the SHA-1 algorithm is used for keys of all sizes. When the signing key is an RSA, NISTECC, or BPECC type, the size of the signing key determines the hashing algorithm used for signing, as follows:

<table>
<thead>
<tr>
<th>Hashing algorithm used for signing</th>
<th>Signing key size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHA-1</td>
<td>RSA</td>
</tr>
<tr>
<td></td>
<td>Less than 2048 bits</td>
</tr>
<tr>
<td>SHA-256</td>
<td>2048 bits or longer</td>
</tr>
<tr>
<td>SHA-384</td>
<td>—</td>
</tr>
<tr>
<td>SHA-512</td>
<td>—</td>
</tr>
</tbody>
</table>

NOTBEFORE(DATE(yyyy-mm-dd) TIME(hh:mm:ss))

Specifies the local date and time from which the certificate is valid. If DATE is not specified, it defaults to the current local date. If TIME is not specified, it defaults to TIME(00:00:00).

If DATE is specified, the value of yyyy must be 1950 - 9997.

Note that the use of the date format yyyy-mm-dd is valid. However, to aid installations familiar with the RACF date format, the value can be specified in the format yyyy/mm/dd.

The time and date values are stored in the certificate as a universal time coordinated (UTC) value. The calculated UTC value might be incorrect if the date and time values for NOTBEFORE and NOTAFTER represent a time that has a different local offset from UTC.

NOTAFTER(DATE(yyyy-mm-dd) TIME(hh:mm:ss))

Specifies the local date and time after which the certificate is no longer valid. If
DATE is not specified, it defaults to one year from the NOTBEFORE date value. If TIME is not specified, it defaults to TIME(23:59:59).

If DATE is specified, the value of yyyy must be 1950 - 9997. If DATE is defaulted, the value must be 1951 - 9998.

The NOTBEFORE value must be earlier than the NOTAFTER value or an informational message is issued.

Note the use of the date format yyyy-mm-dd is valid. However, to aid installations familiar with the RACF date format, the value can be specified as yyyy/mm/dd.

The time and date values are stored in the certificate as a universal time coordinated (UTC) value. The calculated UTC value might be incorrect if the date and time values for NOTBEFORE and NOTAFTER represent a time that has a different local offset from UTC.

WITHLABEL('label-name')

Specifies the label assigned to this certificate. If specified, this must be unique to the user ID with which the certificate is associated. If not specified, it defaults in the same manner as the WITHLABEL keyword on the RACDCERT ADD command.

The label-name is stripped of leading and trailing blanks. If a single quotation mark is intended to be part of the label-name, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

See the WITHLABEL keyword for RACDCERT ADD for information on label rules.

SIGNWITH(CERTAUTH LABEL('label-name'))
SIGNWITH(SITE LABEL('label-name'))
SIGNWITH(LABEL('label-name'))

Specifies the certificate with a private key that is signing the certificate. If not specified, the default is to sign the certificate with the private key of the certificate that is being generated. This creates a self-signed certificate. The signing certificate must belong to the user ID executing the command, or SITE or CERTAUTH. If SITE and CERTAUTH keywords are omitted, the signing certificate owner defaults to the user ID of the command issuer.

If SIGNWITH is specified, it must refer to a certificate that has a private key associated with it. If no private key is associated with the certificate, an informational message is issued and processing stops.

If you specify either request-data-set-name or FROMICSF, you must specify SIGNWITH.

Note that self-signed certificates are always trusted, while all other certificates are created with the trust status of the certificate specified in the SIGNWITH keyword. If the certificate specified in the SIGNWITH keyword is not trusted, an informational message is issued but the certificate is still generated.

RSA | PCICC | ICSF | DSA | NISTECC | BPECC | FROMICSF

Specifies if RACF should generate a new key pair, and if so, how to generate the key pair and where to store the private key for future use. The default action for a new key is to store it as a software key. If no keyword is specified, the key pair is generated using software with the RSA algorithm and the private key is stored in the RACF database as an RSA key.

Guidelines: The following guidelines apply when choosing key options:
Choose RSA(PKDS), ICSF, PCICC or RSA(TOKEN) when the private key to be generated is an RSA type and you need hardware protection for the key.

- The RSA(PKDS) keyword is equivalent to the PCICC keyword and stores the key as an RSA Chinese Remainder Theorem (CRT) key token. RACDCERT LIST will display this key with key type RSA along with a PKDS label.
- The ICSF keyword stores the key as an RSA Modulus-Exponent (ME) key token. RACDCERT LIST will display this key with key type RSA Mod-Exp along with a PKDS label.
- The RSA(PKDS), PCICC or RSA(TOKEN) keywords provide the best performance and support RSA key sizes up to 4096 bits. RSA(PKDS) or PCICC require a PCI-class cryptographic coprocessor; RSA(TOKEN) requires Enterprise PKCS#11 cryptographic coprocessor.
- The ICSF keyword can be used on a PCI-class cryptographic coprocessor or the older cryptographic coprocessor. However, the key size is limited to 1024 bits.

Specify RSA when the key to be generated is an RSA type but no hardware protection is needed. Such software keys can be up to 4096 bits in size.

Choose NISTECC or BPECC when the key to be generated is an ECC type.

Specify NISTECC(PKDS), BPECC(PKDS), NISTECC(TOKEN) or BPECC(TOKEN) when hardware protection is needed.

Choose DSA when the key to be generated is a DSA type. Note that no hardware protection is available for DSA keys.

When you issue GENCERT with a request data set: If the certificate you are generating is associated with a public or private key that is already stored in the PKDS, the following restriction applies:

- **Restriction:** Respecifying the PKDS label with the RSA(PKDS), ICSF, PCICC, NISTECC(PKDS), or BPECC(PKDS) keyword does not change the existing PKDS label or key type. For example:
 - If the private key already exists in the PKDS as an RSA Modulus-Exponent (ME) key token, specifying RSA(PKDS) or PCICC does not convert the key to an RSA Chinese Remainder Theorem (CRT) key token.
 - If the private key already exists in the PKDS as an RSA Chinese Remainder Theorem (CRT) key token, specifying ICSF does not convert the key to an RSA Modulus-Exponent (ME) key token.

For details about specifying or allowing RACF to generate the PKDS label, see “PKDS label considerations” on page 277.

For the hardware requirements for storing or accessing a key in the ICSF PKA key data set (PKDS), see “Hardware requirements” on page 277.

RSA

Specifies that the key pair is to be generated using software with the RSA algorithm and the private key is to be stored in the RACF database as an RSA key. RSA is the default key type.

When you specify RSA without the PKDS option or accept RSA as the default key type, the CP Assist for Cryptographic Function (CPACF) must be enabled to generate a key that is longer than 1024 bits.

PKDS[(pkds-label | *)]

Specifies that the key pair is to be generated using a CCA cryptographic coprocessor. The resulting private key is stored in the
ICSF PKA key data set (PKDS) as an RSA Chinese Remainder Theorem (CRT) key token with either a system-generated label, a label specified by pkds-label, or a label copied from the certificate label.

TOKEN (token-name)

Specifies that the key pair is to be generated using an Enterprise PKCS#11 cryptographic coprocessor. The resulting private key is stored in the specified existing token-name token in the ICSF token key data set (TKDS) as an RSA Chinese Remainder Theorem (CRT) key token.

PCICC[(pkds-label | *)]

Specifies the same function as the PKDS suboperand of the RSA operand. See the RSA operand of GENCERT for details.

Note: IBM Recommends that you use RSA (PKDS[(pkds-label | *)]) in lieu of PCICC[(pkds-label | *)].

ICSF[(pkds-label | *)]

Specifies that the key pair is to be generated using software. The resulting private key is generated with the RSA algorithm and stored in the ICSF PKA key data set (PKDS) as an RSA Modulus-Exponent (ME) key token.

DSA

Specifies that the key pair is to be generated using software with the DSA algorithm. The resulting private key is stored in the RACF database as a DSA key. **Note:** DSA key generation can be very slow, especially for keys longer than 1024 bits.

NISTECC

Specifies that the key pair is to be generated using software if clear key is not restricted in the system, with the elliptic curve cryptography (ECC) algorithm in accordance with the standard proposed by the National Institute of Standards and Technology (NIST). The resulting private key is stored in the RACF database as an ECC key.

When specifying NISTECC, the ICSF subsystem must be operational and configured for PKCS #11 operations.

PKDS[(pkds-label | *)]

Specifies that the key pair is to be generated using a CCA cryptographic coprocessor. The resulting private key is stored in the ICSF PKA data set (PKDS) in the PKA token with either a system-generated label, a label specified by pkds-label, or a label copied from the certificate label.

TOKEN (token-name)

Specifies that the key pair is to be generated using an Enterprise PKCS#11 cryptographic coprocessor. The resulting private key is stored in the specified existing token-name token in the ICSF token key data set (TKDS) as an RSA Chinese Remainder Theorem (CRT) key token.

BPECC

Specifies that the key pair is to be generated using software, if clear key is not restricted in the system, with the elliptic curve cryptography (ECC) algorithm in accordance with the standard proposed by the ECC Brainpool working group of the Internet Engineering Task Force (IETF). The resulting private key is stored in the RACF database as an ECC key.

When specifying BPECC, the ICSF subsystem must be operational and configured for PKCS #11 operations.
Restriction: When ICSF is operating in FIPS mode, you cannot generate a Brainpool ECC private key.

PKDS(pkds-label | *)
Specifies that the key pair is to be generated using a CCA cryptographic coprocessor. The resulting private key is stored in the ICSF PKA data set (PKDS) as an ECC key in the PKA token with either a system-generated label, a label specified by pkds-label, or a label copied from the certificate label.

TOKEN (token-name)
Specifies that the key pair is to be generated using an Enterprise PKCS#11 cryptographic coprocessor. The resulting private key is stored in the specified existing token-name token in the ICSF token key data set (TKDS) as an RSA Chinese Remainder Theorem (CRT) key token.

FROMICSF(pkds-label)
Specifies that no new key pair is to be generated for this new certificate. Instead, RACF uses an existing public key specified by its PKDS label. The public key must reside in the ICSF PKA key data set (PKDS).

When you specify FROMICSF, you must also specify SIGNWITH to sign the new certificate with an existing certificate. The new certificate will contain no private key and therefore cannot be self-signed.

You cannot specify both request-data-set-name and FROMICSF.

KEYUSAGE
Specifies the appropriate values for the keyUsage certificate extension, of which one or more of the values might be coded. For certificate authority certificates, the default is CERTSIGN and is always set. There is no default for certificates that are not certificate-authority certificates.

HANDSHAKE
Facilitates identification and key exchange during security handshakes, such as SSL, which set the digitalSignature and keyEncipherment indicators if the key algorithm is RSA. If key type is DSA, NISTECC, or BPECC, this usage sets only the digitalSignature indicator.

DATAENCRYPT
Encrypts data, which sets the dataEncipherment indicator. This usage is not valid for DSA, NISTECC, or BPECC keys.

DOCSIGN
Specifies a legally binding signature, which sets the nonRepudiation indicator.

CERTSIGN
Specifies a signature for other digital certificates and CRLs, which sets the keyCertSign and cRLSign indicators.

KEYAGREE
Facilitates key exchange, which sets the keyAgreement indicator. This usage is valid only for NISTECC and BPECC keys.

A certificate with no keyUsage value other than keyAgreement cannot be used for signing.

ALTNAME
Specifies the appropriate values for the subjectAltName extension, of which one or more of the values might be coded. If required for the extension, RACF converts the entered values to ASCII.

344 z/OS V2R1.0 Security Server RACF Command Language Reference
Note: RACF assumes the terminal code page is IBM-1047 and translates to ASCII accordingly.

IP('numeric-IP-address')
Specifies a fully qualified numeric IP address in IPv4 or IPv6 form.
IPv4 dotted decimal form consists of four decimal numbers (each number must be a value from 0 - 255) separated by periods:

Example: 9.117.2.45

IPv6 form consists of eight 16-bit blocks of hexadecimal characters separated by colons:

Example: A0C7:C0C0:14A8:0:0:0:0:0

In IPv6 form, leading zeros in each block are optional. Successive blocks of zeros can be represented by a single occurrence of `::`.

Example: 2001:0DB8:0:0:0:0:0:0

An IPv6 address can contain an IPv4 address:

Example: 0::0::ABCD:1.2.3.4

DOMAIN('internet-domain-name')
Specifies a quoted string containing a fully qualified 'internet-domain-name' (such as 'www.widgits.com'). RACF does not check this value's validity.

EMAIL('email-address')
Specifies a quoted string containing a fully qualified 'email-address', such as 'jasper at moes.bar.com'. RACF replaces the word 'at' with the @ symbol (X'7C') to conform with RFC822. If RACF cannot locate the word 'at' it assumes the address is already in RFC822 form and makes no attempt to alter it other than converting it to ASCII.

URI('universal-resource-identifier')
Specifies the 'universal-resource-identifier' (such as 'http://www.widgits.com'). RACF does not check the validity of this value.

Examples

Example 1

Operation
User RACFADM requests the creation of a certificate-authority certificate, with values for the subjectAltName extension and the keyUsage extension, for the local certificate authority. The certificate will be self-signed and a SIGNWITH value need not be specified.

Known
User RACFADM has CONTROL access authority to the IRR.DIGTCERT.* resource in the FACILITY class.

Command

```
RACDCERT GENCERT
  CERTAUTH
  SUBJECTDOTN(CN('Local CA'))
  ALTNAME(IP(9.117.170.150) DOMAIN('www.widgits.com'))
  EMAIL('localca@www.widgits.com')
  URI('http://www.widgits.com/welcome.html')
  KEYUSAGE(HANDSHAKE DATAENCRIPT DOCSIGN CERTSIGN)
  WITHLABEL('Local PKIX CA')
```

Output
None.
RACDCERT GENCERT

Example 2
Operation User WENTING wants to create a new certificate with a 2048-bit public/private key pair so she can share encrypted data with a business partner. She wants to call her certificate *Wen Ting's certificate*.

Known IBM Encryption Facility requires a PKDS label. RACF generates a default PKDS label when no value is specified with the PKDS keyword.

Command

```bash
RACDCERT GENCERT
SUBJECTSDN(CN('Wen Ting''s certificate'))
WITHLABEL('Wen Ting''s certificate')
SIZE(2048)
RSA(PKDS)
NOTAFTER(DATE(2020/08/10))
```

Output None. (See the PKDS label generated by RACF using the RACDCERT LIST command in Figure 41 on page 360.)

Example 3
Operation User RACFADM wants to create a CA certificate that can be used to issue code-signing certificates for users who need to digitally sign programs.

Known User RACFADM has CONTROL access authority to the IRR.DIGTCERT.* resource in the FACILITY class, and appropriate authority in the CSFSERV and CSFKEYS classes to be able to use the PKDS option.

Command

```bash
RACDCERT CERTAUTH GENCERT
SUBJECTSDN(OU('MyCompany Code Signing CA') O('MyCompany') C('US'))
SIZE(2048) RSA(PKDS) WITHLABEL('MyCompany Code Signing CA')
```

Output None.

Example 4
Operation User RACFADM wants to issue a code-signing certificate to user RAMOS who needs to digitally sign programs. The new code-signing certificate will be signed by the CA certificate created in Example 3.

Known User RACFADM has CONTROL access authority to the IRR.DIGTCERT.* resource in the FACILITY class.

Command

```bash
RACDCERT ID(RAMOS) GENCERT
SUBJECTSDN(CN('Ramos Code Signing Cert') O('MyCompany') C('US'))
SIZE(1024) WITHLABEL('Ramos Code Signing Cert')
SIGNWITH(CERTAUTH LABEL('MyCompany Code Signing CA'))
KEYUSAGE(HANDSHAKE DOCSIGN)
```

Output None.

Example 5
Operation User ANNA wants to create a new certificate with an ECC private key. The new certificate will be called *Anna's certificate*. The key requires hardware protection so she will store it in the ICSF PKDS.

Known User ANNA has sufficient authority to the appropriate resources in the FACILITY and CSFSERV classes. The system contains an operational ICSF subsystem and Crypto Express3 coprocessor (CEX3C).

Command

```bash
RACDCERT GENCERT
SUBJECTSDN(CN('COMPANY A'))
WITHLABEL('Anna''s certificate')
BPECC(PKDS(ECCKEY4ANNASCERTIFICATE))
```

Output None. (See a listing of this certificate in Figure 48 on page 363.)
Example 6

Operation
User CLAUSEN wants to create a new certificate with an RSA private key. The new certificate will be called Christine Clausen's certificate. The key requires secure hardware protection so she will create the key in the ICSF TKDS.

Known
User CLAUSEN has sufficient authority to the appropriate resources in the FACILITY, CRYPTOZ and CSFSERV classes. The token labelled COMPANYA.TOKEN has been defined. The system contains an operational ICSF subsystem and Crypto Express4 coprocessor (CEX4X).

Command
RACDCERT GENCERT
 SUBJECTSDN(CN('COMPANY A'))
 WITHLABEL('Christine Clausen's certificate')
 RSA(TOKEN(COMPANYA.TOKEN))

Output
None
RACDCERT GENREQ (Generate request)

Purpose

Use the RACDCERT GENREQ command to create a PKCS #10 Base64-encoded certificate request based on the specified certificate and write the request to a data set.

The specified certificate must have a private key associated with it. Otherwise an informational message is issued and processing stops.

The GENREQ syntax is RACDCERT GENREQ(LABEL('label-name')) DSN('output-data-set-name'), where label-name is the name of the certificate the request is based on. The generated request does not have a name. No key pair is generated during the GENREQ processing. It takes the subject's distinguished name, some of the extensions (indicated below) and the public key from the specified certificate and signed with the private key associated with the specified certificate to form the certificate request.

GENREQ requires that the certificate have a private key associated with it. If no private key is associated with the certificate, an informational message is issued and processing stops.

The certificate request contains the subject's distinguished name and public key, and is signed with the private key associated with the specified certificate. These are the extensions copied to the certificate request if they are present in the specified certificate:

- subjectAltName
- subjectKeyIdentifier
- authorityKeyIdentifier
- basicConstraints
- keyUsage
- extKeyUsage

Typically, these requests are sent to a certificate authority; however, they can also be imported into and signed by RACF using the GENCERT function with a request-data-set-name.

See "UTF-8 and BMP character restrictions" on page 275 for information about how UTF-8 and BMP characters in certificate names and labels are processed by RACDCERT functions.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT GENREQ command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>
RACDCERT GENREQ

Rules
The following rules apply when issuing this command.
- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFDATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required
To issue the RACDCERT GENREQ command, you must have the SPECIAL attribute or sufficient authority to the IRR.DIGTCERT.GENREQ resource in the FACILITY class for your intended purpose, as shown in Table 24.

When your installation controls access to ICSF services and the CSFSERV class is active, additional access to CSFSERV resources might be required as follows:
- If the certificate that the request is based upon has a private key stored in the ICSF PKA key data set (PKDS) or in the ICSF Token Data Set (TKDS), you must have READ access to the CSFDSG resource.
- If the certificate that the request is based upon has an ECC private key stored in the RACF database, you must have READ access to the CSF1PKS, CSF1TRC, CSF1TRD, and CSFOWH resources.

For details about the CSFSERV resources, see [z/OS Cryptographic Services ICSF Administrator’s Guide](#).

<table>
<thead>
<tr>
<th>Access level</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>Generate a request based on your own certificate.</td>
</tr>
<tr>
<td>UPDATE</td>
<td>Generate a request based on another user's certificate.</td>
</tr>
<tr>
<td>CONTROL</td>
<td>Generate a request based on a SITE or CERTAUTH certificate.</td>
</tr>
</tbody>
</table>

Related commands
- To add a certificate, see "RACDCERT ADD (Add certificate)" on page 281.
- To generate a certificate, see "RACDCERT GENCERT (Generate certificate)" on page 332.

Syntax
For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the RACDCERT GENREQ command is:

```
RACDCERT GENREQ(LABEL('label-name'))
```
RACDCERT GENREQ

[ID(certificate-owner) | SITE | CERTAUTH]

DSN(output-data-set-name)

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

GENREQ(LABEL('label-name'))
- Specifies the label of the certificate used to build the certificate request.
 - If the certificate has an associated ECC private key:
 • The ICSF subsystem must be operational and configured for PKCS #11 operations.
 • When keyAgreement is the only key usage, the certificate cannot be used for signing. Therefore, you cannot use GENREQ to create a certificate request based on the certificate nor create a self-signed certificate.
 - Restriction: When ICSF is operating in FIPS mode, you cannot use a certificate that has an associated Brainpool ECC private key.

ID(certificate-owner) | SITE | CERTAUTH
- Specifies that the specified certificate is either a user certificate associated with the specified user ID, a site certificate, or a certificate-authority certificate. If you do not specify ID, SITE, or CERTAUTH, the default is ID, and certificate-owner defaults to the user ID of the command issuer. If more than one keyword is specified, the last specified keyword is processed and the others are ignored by TSO command parse processing.

DSN(output-data-set-name)
- Specifies the data set that is to contain the certificate request. The data set output-data-set-name is deleted and reallocated if it exists. If you specify GENREQ, DSN must be specified.

Examples

Example 1

Operation User WEBADM needs to create a certificate request based on the expiring certificate for a Web server application, and store it in an MVS data set called 'SYSADM.CERT.REQ'. The user ID of the application is WEBSERVER01 and its expiring certificate is labeled 'My Web Server Cert'.

Known User WEBADM has UPDATE access authority to the IRR.DIGTCERT.GENREQ resource in the FACILITY class.

Command RACDCERT GENREQ(LABEL('My Web Server Cert'))
 ID(WEBSERVER01)
 DSN('SYSADM.CERT.REQ')

Output None.
RACDCERT IMPORT (Import certificate)

Purpose

Use the RACDCERT IMPORT command to import a digital certificate (with its associated private key, if present) from a z/OS PKCS #11 token and add it to RACF.

The IMPORT function processes certificates in the same way as the ADD function with regard to re-adding and renewing certificates, replacing keys, and determining the trust status of certificates. For details, see “Processing details” on page 281 in the RACDCERT ADD function.

See “UTF-8 and BMP character restrictions” on page 275 for information about how UTF-8 and BMP characters in certificate names and labels are processed by RACDCERT functions.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT IMPORT command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.
- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFDATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT IMPORT command, you must have SPECIAL attribute, or sufficient authority to the IRR.DIGTCERT.ADD resource in the FACILITY class based on the certificate owner, as shown in Table 25 on page 352. You also must have sufficient authority to the appropriate resources in the CRYPTOZ class.

When your installation controls access to ICSF services and the CSFSERV class is active, you must have READ authority to the CSF1GAV and CSF1TRL resources in the CSFSERV class.

Additional access to CSFSERV resources might be required as follows:
- If the certificate you are importing has an RSA key, you must also have the following access authorities:
 - When you specify PKDS, ICSF, or PCICC, you must have READ access to the CSFIQF, CSFPKI, and CSFPKRC resources.
 - When you omit PKDS, ICSF, and PCICC, you must have READ access to the CSFIQF resource.
If the certificate you are importing has an ECC key, you must also have the following access authorities:

- When you specify PKDS, you must have READ access to the CSFDSV, CSFOWH, CSFPKI, and CSFPKRC resources.
- When you omit PKDS, you must have READ access to the CSF1PKV, CSF1TRC, CSF1TRD, and CSFOWH resources.

If you are not authorized by ICSF (through the CRYPTOZ class) to access the specified token or not authorized by RACF (through the FACILITY class) to add the specified RACF certificate, the command stops and an error message is displayed.

For details about CRYPTOZ and CSPSERV resources, see [z/OS Cryptographic Services ICSF Administrator’s Guide](#).

Table 25. Authority required for the RACDCERT IMPORT function

<table>
<thead>
<tr>
<th>Your own certificate</th>
<th>Another user's certificate</th>
<th>SITE or CERTAUTH certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sufficient authority to CRYPTOZ resources and READ authority to IRR.DIGTCERT.ADD</td>
<td>Sufficient authority to CRYPTOZ resources and UPDATE authority to IRR.DIGTCERT.ADD</td>
<td>Sufficient authority to CRYPTOZ resources and CONTROL authority to IRR.DIGTCERT.ADD</td>
</tr>
</tbody>
</table>

Activating your changes

If the DIGTCERT class is RACLISTed, refresh the class to activate your changes.

Example:

```
SETROPTS RACLIST(DIGTCERT) REFRESH
```

Related commands

- To add a certificate, see "RACDCERT ADD (Add certificate)" on page 281.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the RACDCERT IMPORT command is:

```
RACDCERT IMPORT(TOKEN(token-name) SEQUENCE(sequence-number))
  [ ID(certificate-owner) | SITE | CERTAUTH ]
  [ WITHLABEL('label-name') ]
  [ TRUST | NOTRUST | HIGHTRUST ]
  [ PKDS(pkds-label | * ) ]
  [ PCICC(pkds-label | * ) ]
  [ ICSF(pkds-label | * ) ]
```

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.
RACDCERT IMPORT

Parameters

IMPORT **TOKEN**(token-name) **SEQNUM**(sequence-number)

Specifies the PKCS #11 token from which to import the specified certificate (and its associated private key, if present).

To import a certificate with an RSA key that is longer than 1024 bits and is to be stored in the RACF database, the CP Assist for Cryptographic Function (CPACF) must be enabled.

If the certificate in the token you are importing has an associated ECC private key, the ICSF subsystem must be operational and configured for PKCS #11 operations.

Restriction: When ICSF is operating in FIPS mode, you cannot import a certificate that has a Brainpool ECC key.

TOKEN(token-name)

Specifies the name of the token from which the certificate is being imported. When specifying the IMPORT operand, you must specify the TOKEN operand.

SEQNUM(sequence-number)

Specifies the sequence number of the certificate being imported from the token. When specifying the IMPORT operand, you must specify the SEQNUM operand.

ID(certificate-owner) | **SITE** | **CERTAUTH**

Specifies that the target owner for the imported certificate is the specified user ID, a site certificate, or a certificate-authority certificate. If you do not specify ID, SITE, or CERTAUTH, the default is ID, and certificate-owner defaults to the user ID of the command issuer. If more than one keyword is specified, the last specified keyword is processed and the others are ignored by TSO command parse processing.

If the imported certificate has an ECC private key and keyAgreement is the only key usage, the certificate cannot be used for signing. Therefore, you cannot import it as a CERTAUTH certificate.

WITHLABEL(‘label-name’)

Specifies the label to be associated with the imported certificate. Up to 32 characters can be specified. The label-name can contain blanks and mixed-case characters.

This label is used as a handle instead of the serial number and issuer’s distinguished name. It can be used to store a descriptive text.

If the value specified in WITHLABEL already exists, RACDCERT returns a message indicating that the label has already been used. The certificate is not added.

If WITHLABEL is not specified, RACDCERT generates a label for the certificate. The generated label is of the form \texttt{LABEL\textbackslash mmmmmn}, where mmmmmnnn is the first integer value, starting at 00000001 that generates a unique label name.

The label-name is stripped of leading and trailing blanks. If a single quotation mark is intended to be part of the label-name, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.
TRUST | NOTRUST | HIGHTRUST

Specifies whether the status of the imported certificate is trusted, not trusted, or highly trusted.

For a detailed description, see the TRUST, NOTRUST, HIGHTRUST keyword for RACDCERT ADD.

PKDS | PCICC | ICSF

Specifies that RACF should store the public or private key associated with this certificate in the ICSF PKA key data set (PKDS). This applies when the key is introduced to RACF and when an existing certificate profile is replaced.

The default action for a new key is for RACF to store it as a software key in the RACF database, not in the ICSF PKDS. The default action for an existing key is to leave it unchanged.

If the private key already exists as a secure key in the token key data set (TKDS), you cannot import the private key and the certificate will be imported without the private key.

Guidelines for choosing PKDS, PCICC, or ICSF: When you need hardware protection for the private key, choose the PKDS, PCICC, or ICSF keyword based on key type, key size, and available cryptographic hardware.

- The PKDS keyword supports both ECC and RSA private keys. For RSA keys, PKDS is equivalent to PCICC and stores the key as an RSA Chinese Remainder Theorem (CRT) key token. RACDCERT LIST will display this key with key type RSA along with a PKDS label.
- The ICSF keyword supports only RSA keys and stores the key as an RSA Modulus-Exponent (ME) key token. RACDCERT LIST will display this key with key type RSA Mod-Exp along with a PKDS label.
- The PKDS and PCICC keywords provide the best performance and support RSA key sizes up to 4096 bits, but require a PCI-class cryptographic coprocessor.
- The ICSF keyword can be used on a PCI-class cryptographic coprocessor or older cryptographic coprocessor. However, the key size is limited to 1024 bits.

For details about specifying or allowing RACF to generate the PKDS label, see "PKDS label considerations" on page 277.

For the hardware requirements for storing or accessing a key in the ICSF PKA key data set (PKDS), see "Hardware requirements" on page 277.

PKDS[(pkds-label | *)]

Specifies as follows, based on the key type of the public or private key:

- For an RSA key:
 If the token contains only a certificate, you must specify a pkds-label value or an asterisk (*). Otherwise the PKDS keyword is ignored and no PKDS entry is created. The public key is stored in the ICSF PKDS as an RSA Modulus-Exponent (ME) key token with the specified label.
 If the certificate has no private key and you specify PKDS without a PKDS label and without an asterisk (*), the PKDS keyword is ignored and no PKDS entry is created.
 If the token contains a PKCS #12 package, the private key is stored in the ICSF PKDS as an RSA Chinese Remainder Theorem (CRT) key token with either a system-generated label, a label specified by pkds-label, or a label copied from the certificate label.
RACDCERT IMPORT

Note: If you want to store the RSA private key in the PKDS as an RSA Modulus-Exponent (ME) key token, specify ICSF instead of PKDS.

- **For an ECC key:**

 If the token contains only a certificate, you must specify a `pkds-label` value or an asterisk (*). Otherwise the PKDS keyword is ignored and no PKDS entry is created. The public key is stored in the ICSF PKDS with the specified label.

 If the certificate has no private key and you specify PKDS without a PKDS label and without an asterisk (*), the PKDS keyword is ignored and no PKDS entry is created.

 If the token contains a PKCS #12 package, the private key is stored in the ICSF PKDS with either a system-generated label, a label specified by `pkds-label`, or a label copied from the certificate label.

- **For a DSA key:** The PKDS keyword is ignored.

Examples

Example 1

Operation User NETB0Y wants to add a digital certificate to RACF and associate it with his own user ID. The certificate is labeled Savings Account and currently resides in the z/OS PKCS #11 token named NETB0Y.TKN1. The status of the certificate will be trusted.

Known User NETB0Y has READ access to the discrete profile named IRR.DIGTCERT.ADD in the FACILITY class, and READ access to the discrete profile named USER.NETB0Y.TKN1 in the CRYPTOZ class. Using RACDCERT LISTTOKEN, user NETB0Y determined the sequence number of the certificate to be added is 3.

Command

```
RACDCERT IMPORT(TOKEN(NETB0Y.TKN1) SEQNUM(3))
  ID(NETB0Y) TRUST WITHLABEL('Savings Account')
```

Output None.

Example 2

Operation User RACFADM wants to add a digital certificate for NETB0Y and protect the 1024-bit RSA key by storing it in the ICSF PKDS. The certificate is labeled RSA token and currently resides in the z/OS PKCS #11 token named NETB0Y.TKN2. The status of the certificate will be trusted.

Known User RACFADM has SPECIAL authority, sufficient authority to resources in the CSFSERV class and READ access to the discrete profile named USER.NETB0Y.TKN2 in the CRYPTOZ class. The system contains an operational ICSF subsystem and PCI-class cryptographic coprocessor. Using RACDCERT LISTTOKEN, user RACFADM determined the sequence number of the certificate to be added is 1.

Command

```
RACDCERT IMPORT(TOKEN(NETB0Y.TKN2) SEQNUM(1))
  ID(NETB0Y) TRUST WITHLABEL('RSA token') PKDS
```

Output None.
RACDCERT LIST

RACDCERT LIST (List certificate)

Purpose

Use the RACDCERT LIST command to display digital certificate information, including certificate authority and site certificate information. You can also use the RACDCERT LIST command to list all certificates owned by a user ID.

Because the virtual key ring for a user ID consists of all certificates owned by the user ID, using the RACDCERT LIST command to list all certificates owned by a user ID is the same as listing the contents of the virtual key ring for that user ID.

For each digital certificate defined, the following information is displayed:

- Label
- Certificate ID
- Status (trusted, not trusted, or highly trusted)
- Validity dates
- Serial number
- Issuer’s distinguished name
- Up to 256 bytes of the subject’s name, as found in the certificate itself
- Signing algorithm
- Extensions, if present (specifically, keyUsage and subjectAltName)
- Key type:
 - RSA (if the certificate was installed in RACF with no key type specified or with keyword RSA or PCICC)
 - RSA Mod-Exp (if the certificate was installed in RACF with keyword ICSF)
 - DSA (if the certificate was installed in RACF with keyword DSA)
 - NIST ECC (if the certificate was installed in RACF with keyword NISTECC)
 - Brainpool ECC (if the certificate was installed in RACF with keyword BPECC)
- Key size
- Presence of a private key (YES or NO)
- PKDS label, if the public or private key is stored in the ICSF PKA key data set (PKDS); TKDS token and TKDS ID, if the private key is stored in the ICSF Token data set (TKDS)
- Ring associations, if present (the ring name to which this certificate is connected and the ring owner)

See “UTF-8 and BMP character restrictions” on page 275 for information about how UTF-8 and BMP characters in certificate names are displayed using RACDCERT functions.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT LIST command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>
RACDCERT LIST

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
</table>

Rules: The following rules apply when issuing this command.

- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSF DATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT LIST command, you must have the SPECIAL attribute or sufficient authority to the IRR.DIGTCERT.LIST resource in the FACILITY class for your intended purpose.

Table 26. Authority required for the RACDCERT LIST function

<table>
<thead>
<tr>
<th>IRR.DIGTCERT.LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access level</td>
</tr>
<tr>
<td>READ</td>
</tr>
<tr>
<td>UPDATE</td>
</tr>
<tr>
<td>CONTROL</td>
</tr>
</tbody>
</table>

Related commands

- To list a key ring, see RACDCERT LISTRING.
- To list a token, see RACDCERT LISTTOKEN.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the RACDCERT LIST command is:

```plaintext
RACDCERT [ LIST

   [ (LABEL('label-name')) ]
   | [ (SERIALNUMBER(serial-number) [ ISSUERSDN('issuer’s-dn') ] ) ]
   [ ID(certificate-owner) | SITE | CERTAUTH ]
```

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.
RACDCERT LIST

Parameters

LIST(LABEL('label-name'))
LIST(SERIALNUMBER(serial-number) ISSUERSDN('issuer's-dn'))

If the RACDCERT command is issued with no other operands, LIST is the default and the RACDCERT command lists the command issuer's digital certificate information. If the RACDCERT command is issued with the ID keyword and no other operands, it lists the digital certificate information associated with the user ID specified with the ID keyword.

The issuer's distinguished name and the subject's distinguished name can contain blanks. If the name displayed in the output is subsequently entered with the ISSUERSDN keyword, the blanks must be included. In the output of LIST, the characters > and < are used to mark the beginning and end of the serial number, issuer's name, and subject's name. When information continues to the next line, < appears in column 79 of the output, and > appears in column 9 of the continuation line.

If the user has only one certificate, or if all certificates are to be displayed, the SERIALNUMBER and ISSUERSDN keywords, or the LABEL keyword, and their associated values can be omitted. If the user has more than one certificate the LABEL, SERIALNUMBER, or SERIALNUMBER and ISSUERSDN can be used to select which certificate to list.

When specifying the issuer's distinguished name or the label, you must specify any mixed-case or blank characters exactly as they are defined in the certificate.

Restriction: The ISSUERSDN keyword is not supported for lengthy issuer's distinguished names when the name of the certificate's DIGTCERT profile contains a certificate hash value. For more information about DIGTCERT profile names, see the “Purpose” topic of RACDCERT ADD.

For a description of label-name, see the description of the WITHLABEL keyword for RACDCERT ADD.

If present, the SubjectAltName values are displayed under the heading Subject's AltNames. The subheadings IP, EMail, Domain, and URI are followed by the appropriate values. If more than one line is required to display the value, the additional lines will start in the same column. The word at replaces the @ symbol for email-address.

Example:

ess-follows-Some-More-Info-About-An-EMail-Address

If present, the keyUsage values are displayed next to the heading Key Usage. The possible values are:

- HANDSHAKE—indicates digitalSignature and keyEncipherment are on
- DATAENCRYPT—indicates dataEncipherment is on
- DOCSIGN—indicates nonRepudiation is on
- CERTSIGN—indicates keyCertSign and cRLSign is on
- KEYAGREE—indicates keyAgreement is on

The keyUsage values are displayed as GENCERT options separated by commas.

Example:

Key Usage: HANDSHAKE, CERTSIGN
RACDCERT LIST

Note: If the certificate was created using a previous z/OS release of RACF that did not support certificate labels, the certificate listing will contain the following output: No label assigned.

ID(certificate-owner) | SITE | CERTAUTH

Specifies that the certificate to list is either a user certificate associated with the specified user ID, a site certificate, or a certificate-authority certificate. If you do not specify ID, SITE, or CERTAUTH, the default is ID, and certificate-owner defaults to the user ID of the command issuer. If more than one keyword is specified, the last specified keyword is processed and the others are ignored by TSO command parse processing.

Examples

Example 1
- **Operation** User NETB0Y requests the listing of his Savings Account digital certificate to ensure it has been defined, and that it is marked trusted. He has READ access to the FACILITY class profile IRR.DIGTCERTLIST. He issues the RACDCERT command with the LIST keyword, specifying the label to identify his certificate.
 - **Known** User NETB0Y has been given READ access to profile IRR.DIGTCERTLIST in the FACILITY class.
 - **Command** RACDCERT LIST(LABEL('Savings Account'))
 - **Output** See [Figure 43 on page 360](#).

Example 2
- **Operation** User GEORGEM requests the listing of all certificates associated with his user ID.
 - **Known** User ID GEORGEM has 3 certificates, one of which is not associated with any rings.
 - **Command** RACDCERT LIST
 - **Output** See [Figure 44 on page 361](#).

Example 3
- **Operation** User CADUDE wants to list the information from the local certificate-authority certificate with HIGHTRUST status.
 - **Known** User CADUDE has CONTROL authority to the profile IRR.DIGTCERT.* in the FACILITY class.
 - **Command** RACDCERT CERTAUTH LIST(LABEL('Local PKIX CA'))
 - **Output** See [Figure 45 on page 362](#).

Example 4
- **Operation** User CADUDE wants to list information from the certificate of user MSURESH.
 - **Known** User CADUDE has CONTROL authority to the profile IRR.DIGTCERT.* in the FACILITY class. User SURESH has only one certificate. The certificate is self-signed and was issued by the Show Me The € Bank. Because the Euro symbol (€) does not map to the IBM-1047 code page, the certificate listing contains the Euro symbol represented by six characters in the format U+20AC, where 20AC is the hexadecimal form of the Unicode code point for the Euro symbol.
 - **Command** RACDCERT ID(MSURESH) LIST
 - **Output** See [Figure 46 on page 362](#).

Example 5
- **Operation** User CADUDE wants to list information from the certificate of user CHLOE.
 - **Known** User CADUDE has CONTROL authority to the profile IRR.DIGTCERT.* in the FACILITY class. User CHLOE has only one certificate. The private key of the certificate was generated with the elliptic curve cryptography (ECC) algorithm and the keyAgreement indicator is set on.
 - **Command** RACDCERT ID(CHLOE) LIST
 - **Output** See [Figure 47 on page 362](#).
RACDCERT LIST

RACDCERT LIST(LABEL('Wen Ting''s certificate'))

Digital certificate information for user WENTING:
Label: Wen Ting's certificate
Certificate ID: 2QfHxdbZx8XUaqweOMQ0naAA68KUgK0KFUUB7QPDw
Status: TRUST
Start Date: 2005/08/11 00:00:00
End Date: 2020/08/10 23:59:59
Serial Number:
Issuer's Name:
Subject's Name:
Signing Algorithm: sha256RSA
Key Type: RSA
Key Size: 2048
Private Key: YES
PKDS Label: IRR.DIGTCERT.WENTING.SY1.8D7103108611F42F

Figure 41. Output for the RACDCERT LIST command showing an assigned PKDS label (based on RACDCERT GENCERT: Example 2)

RACDCERT SITE LIST(LABEL('WenTing'))

Digital certificate information for SITE:
Label: WenTing
Certificate ID: egljcv8XUaqweOMQ0naAA68KUgK0KFUUB7QPDw
Status: TRUST
Start Date: 2005/08/11 00:00:00
End Date: 2020/08/10 23:59:59
Serial Number:
Issuer's Name:
Subject's Name:
Signing Algorithm: sha1RSA
Key Type: RSA
Key Size: 1024
Private Key: NO
PKDS Label: WENTING

Figure 42. Output for the RACDCERT LIST command showing a PKDS label that is derived from a specified certificate label (based on RACDCERT ADD: Example 2)

RACDCERT LIST(LABEL('Savings Account'))

Digital certificate information for user NETBOY:
Label: Savings Account
Certificate ID: 2QbVxePC1ujigaWJlYeiQMGDg5aklaNA
Status: TRUST
Start Date: 2010/11/10 00:00:00
End Date: 2011/11/10 23:59:59
Serial Number:
Issuer's Name:
Subject's Name:
Signing Algorithm: sha256ECDSA
Key Type: Brainpool ECC
Key Size: 192
Private Key: YES
Ring Associations: *** No rings associated ***

Figure 43. Output for the RACDCERT LIST command specifying the certificate by label

360 z/OS V2R1.0 Security Server RACF Command Language Reference
Digital certificate information for user GEORGEM:

Label: New Cert Type - Ser # 00
Certificate ID: 2QfHdzbzX8U1VwQMFmNA46xXhUbqQDKF4uB7QP0w
Status: TRUST
Start Date: 2010/04/18 03:01:13
End Date: 2020/02/13 03:01:13
Serial Number:
Issuer's Name:
Subject's Name:
Signing Algorithm: sha1RSA
Key Type: RSA Mod-Exp
Key Size: 1024
Private Key: YES
PKDS Label: IRM_BIGCERT,GEORGEM_SY1.B07103108611DF427
Ring Associations:
Ring Owner: GEORGEM
Ring:

Label: New Type Cert - VsignC1
Certificate ID: 2QfHdzbzX8U1VwQD00l4Vw4W4Z0bqQ4W11VeW/FA
Status: TRUST
Start Date: 2010/04/22 23:23:26
End Date: 2020/01/15 23:23:26
Serial Number:
Issuer's Name:
Subject's Name:
Signing Algorithm: sha1RSA
Key Type: RSA
Key Size: 512
Private Key: YES
Ring Associations:
Ring Owner: GEORGEM
Ring:

Label: New Type Cert - VsignC2
Certificate ID: 2QfHdzbzX8U1VwQD00l4Vw4W4Z0bqQ4W11YeW/DA
Status: NOTRUST
Start Date: 2010/03/19 15:39:52
End Date: 2020/03/19 15:39:52
Serial Number:
Issuer's Name:
Subject's Name:
Signing Algorithm: sha256ECDSA
Key Type: NIST ECC
Key Size: 256
Private Key: NO
Ring Associations:
*** No rings associated ***

Figure 44. Output for the RACDCERT LIST command listing all certificates owned by the command issuer.
RACDCERT LIST

Digital certificate information for CERTAUTH:
Label: Local PKIX CA
Certificate ID: Sc9bjZwKwLNxKw2myumPlGy8iGzJQSYi/u35j0eyFe213XgGBMTsUvCW
Status: HIGHTRUST
Start Date: 2008/08/05 00:00:00
End Date: 2020/08/05 23:59:59
Serial Number: >00<
Issuer's Name: >CN=Local CA<
Subject's Name: >CN=Local CA<
Subject's AltNames:
 IP: 9.117.170.150
 EMail: localca at www.widgits.com
 Domain: www.widgits.com
 URI: http://www.widgits.com/welcome.html
Signing Algorithm: sha1RSA
Key Usage: HANDSHAKE, DATAENCRYPT, DOCSIGN, CERTSIGN
Key Type: RSA
Key Size: 1024
Private Key: YES
Ring Associations: *** No rings associated ***

Figure 45. Output for the RACDCERT LIST command showing a CERTAUTH certificate

Digital certificate information for user MSURESH:
Label: Euro
Certificate ID: 2QfJwtTk4sXZxaSZlkBA
Status: NOTRUST
Start Date: 2008/10/04 00:00:00
End Date: 2020/01/01 00:00:00
Serial Number: >68655BB4D15CDF8D45ED01BC551E8ED7<
Issuer's Name:
 >CN=Show Me The U+20AC Bank<
Subject's Name:
 >CN=Show Me The U+20AC Bank<
Signing Algorithm: sha1RSA
Key Type: RSA
Key Size: 512
Private Key: NO
Ring Associations: *** No rings associated ***

Figure 46. Output for the RACDCERT LIST command showing a UTF-8 or BMP character that does not map to the IBM-1047 code page

Digital certificate information for user CHLOE:
Label: Joans Personal Certificate
Certificate ID: 2QfJwtTk4sXZ0ZaBlaJA14WZopaVgZNAw4WZo4mGiYOBo4VA
Status: TRUST
Start Date: 2010/01/26 00:00:00
End Date: 2011/01/26 23:59:59
Serial Number: >01<
Issuer's Name:
 >CN=Certificate Authority for First Savings Bank.OU=Mortgage Department<
 >L=First Savings Bank.C=US<
Subject's Name:
 >CN=Joan Doe OU=Mortgage.L=Red Hook.SP=NYS.C=US<
Signing Algorithm: sha256ECDSA
Key Usage: KEYAGREE
Key Type: NIST ECC
Key Size: 192
Private Key: YES
Ring Associations: *** No rings associated ***

Figure 47. Output for the RACDCERT LIST command for a certificate with an NIST ECC private key
RACDCERT LISTCHAIN (List certificate chain)

Purpose

Use the RACDCERT LISTCHAIN command to display information about a digital certificate and its issuer chain of certificates in the RACF database.

The specified certificate, identified by the LABEL keyword, may be owned by SITE, CERTAUTH, or a user ID. After finding that certificate, RACF will search its database under the same owning user ID to locate the issuer's certificate. If it is not found, RACF will search under CERTAUTH for the issuer's certificate, and its issuers. A certificate chain is considered incomplete if RACF is unable to follow the chain back to a self-signed 'root' certificate.

The information displayed by LISTCHAIN, for each certificate, is similar to that displayed by LIST. The certificate identified by the specified label appears first, followed in order by its chain of issuers. At the end, LISTCHAIN includes the following summary information:

- The number of certificates in the displayed chain.
- The chain is complete or incomplete.
- The chain contains any NOTRUST or expired certificates.
- Any common rings to which all certificates in the chain are connected.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT LISTCHAIN command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>
RACDCERT LISTCHAIN

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
</table>

Rules: The following rules apply when issuing this command.
- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFDATA profiles AUTODIRECT.target-node:DIGTCERT.APPL and AUTODIRECT.target-node:DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT LISTCHAIN command, you must have CONTROL access to the IRR.DIGTCERT.LIST resource in the FACILITY class.

If the user does not have CONTROL access to IRR.DIGTCERT.LIST, IRRD101I will be issued.

If any certificate in the chain has the ECC key type, READ access to CSF1PKV, CSF1TRC, CSF1TRD and CSFOWH resources in the CSFSERV class is required.

Related commands
- To list digital certificate information, see RACDCERT LIST.
- To list a key ring, see RACDCERT LISTRING.
- To list a token, see RACDCERT LISTTOKEN.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the RACDCERT LISTCHAIN command is:

```
RACDCERT [ ID(certificate-owner) | SITE | CERTAUTH ]

LISTCHAIN (LABEL('label-name'))
```

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

LISTCHAIN(LABEL('label-name'))

- If the user has only one certificate, the LABEL keyword and its associated value can be omitted.
- For a description of label-name, see the description of the WITHLABEL keyword for RACDCERT ADD.
RACDCERT LISTCHAIN

Note: If the certificate was created using a previous z/OS release of RACF that did not support certificate labels, the certificate listing will contain the following output: No label assigned

Examples

Example 1

Operation User CHOI requests the listing of all certificates.

Known User CHOI has been given CONTROL access to profile IRR.DIGTCERT.LIST in the FACILITY class.

Command RACDCERT LISTCHAIN(LABEL('samplecert'))

Output See [Figure 49 on page 366](#).

Example 2

Operation User CHOI requests the listing of all certificates: There are expired and NOTRUST certificates.

Known User CHOI has been given CONTROL access to profile IRR.DIGTCERT.LIST in the FACILITY class.

Command RACDCERT LISTCHAIN(LABEL('samplecert'))

Output See [Figure 50 on page 367](#).
Figure 49. Output for the RACDCERT LISTCHAIN command showing all the certificates (based on RACDCERT LISTCHAIN: Example 1)
Certificate 1:
Digital certificate information for user CHOI:

Label: samplecert
Certificate ID: 2QbmxsPlisnUl40FmPa
Status: TRUST
Start Date: 2010/10/20 00:00:00
End Date: 2011/10/20 23:59:59
Serial Number: >05<
Issuer's Name:
>CN=sampleCA.O=Test.SP=Poughkeepsie.C=US<
Subject's Name:
>CN=samplecert.O=Test.SP=Poughkeepsie.C=US<
Subject's AltNames:
IP: 127.0.0.5
EMail: choi at us.ibm.com
Domain: www.ibm.com
Signing Algorithm: sha1RSA
Key Usage: HANDSHAKE
Key Type: RSA
Key Size: 1024
Private Key: Yes
PKDS Label: SAMPLECERT
Ring Associations:
Ring Owner: CHOI
Ring: >testring<

Certificate 2:
Digital certificate information for CERTAUTH:

Label: sampleCA
Certificate ID: 2PabcsPlisnUl40FmPa
Status: NOTRUST
Start Date: 2010/03/22 00:00:00
End Date: 2020/10/22 23:59:59
Serial Number: >02<
Issuer's Name:
>CN=MasterCA.O=Test.SP=Poughkeepsie.C=US<
Subject's Name:
>CN=sampleCA.O=Test.SP=Poughkeepsie.C=US<
Signing Algorithm: sha256RSA
Key Usage: CERTSIGN
Key Type: RSA
Key Size: 2048
Private Key: Yes
PKDS Label: SAMPLECA
Ring Associations:
Ring Owner: CHOI
Ring: >testring<

Certificate 3:
Digital certificate information for CERTAUTH:

Label: MasterCA
Certificate ID: 2KbmxsPlisnUl40FmPm
Status: TRUST
Start Date: 2008/04/20 00:00:00
End Date: 2038/04/20 23:59:59
Serial Number: >00<
Issuer's Name:
>CN=MasterCA,O=Test.SP=Poughkeepsie.C=US<
Subject's Name:
>CN=MasterCA,O=Test.SP=Poughkeepsie.C=US<
Signing Algorithm: sha256RSA
Key Usage: CERTSIGN
Key Type: RSA
Key Size: 4096
Private Key: Yes
PKDS Label: MASTERCA
Ring Associations:
Ring Owner: CHOI
Ring: >testring<

Chain information:
Chain contains 3 certificate(s), chain is complete
Chain contains ring in common: CHOI/testring
Chain contains NOTRUST certificate(s)
Chain contains expired certificate(s)

Figure 50. Output for the RACDCERT LISTCHAIN command showing all the certificates, there are expired and NOTRUST certificates (based on RACDCERT LISTCHAIN command: Example 2)
RACDCERT LISTMAP

RACDCERT LISTMAP (List mapping)

Purpose

Use the RACDCERT LISTMAP command to display information about the specified mapping, or all mappings, for a user ID.

See “UTF-8 and BMP character restrictions” on page 275 for information about how UTF-8 and BMP characters in certificate names are displayed using RACDCERT functions.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT LISTMAP command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.

- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFDATA profiles AUTODIRECT tgt-node.DIGTCRTmAPPL and AUTODIRECT tgt-node.DIGTRRT.APPL, where tgt-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT LISTMAP command, you must have the SPECIAL attribute or sufficient authority to the IRR.DIGTCERT.LISTMAP resource in the FACILITY class for your intended purpose.

Table 27. Authority required for the RACDCERT LISTMAP function

<table>
<thead>
<tr>
<th>IRR.DIGTCERT.LISTMAP Access level</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>List mapping information associated with your own user ID.</td>
</tr>
<tr>
<td>UPDATE</td>
<td>List mapping information associated with another user ID or MULTIID.</td>
</tr>
</tbody>
</table>

Related commands

- To define a user ID mapping, see RACDCERT MAP.
- To alter a user ID mapping, see RACDCERT ALTMAP.
- To delete a user ID mapping, see RACDCERT DELMAP.

The RACDCERT LISTMAP command is unrelated to the RACMAP LISTMAP command.
Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the RACDCERT LISTMAP command is:

```
RACDCERT LISTMAP[(LABEL('label-name'))]
   [ ID(mapping-owner) | MULTIID ]
```

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

LISTMAP

LISTMAP(LABEL('label-name'))

Tip: Omit LABEL to list all mappings associated with the specified user ID.

If the mapping cannot be listed because the DIGTNMAP profile containing it is missing or incomplete, the following error text appears in the LISTMAP output:

```
Filter with label label-name not found.
```

Guideline: When this error text appears in the LISTMAP output, issue a RACDCERT DELMAP command specifying this label name to remove residual filter information from the user's profile.

A missing or incomplete DIGTNMAP profile might result if a previous RACDCERT command failed to complete due to a system failure or early termination by the issuer. If the mapping or DIGTNMAP profile were not created before the failure, the resulting user profile might contain residual filter information indicating that the user ID is associated with a mapping.

ID(mapping-owner) | MULTIID

Specifies the user ID associated with the mapping. If you do not specify ID or MULTIID, the default is ID, and mapping-owner defaults to the user ID of the command issuer. If more than one keyword is specified, the last specified keyword is processed and the others are ignored by TSO command parse processing.

ID(mapping-owner)

Specifies the user ID associated with the mapping.

MULTIID

Specifies that additional criteria is used to determine the user ID associated with the mapping.
Examples

Example 1

Operation User RACFADM with SPECIAL authority to the profile IRR.DIGTCERT.LISTMAP would like to list the mapping information for user ID NET1ID.

Known NET1ID has one mapping associated with it.

Command RACDCERT ID(NET1ID) LISTMAP

Output See Figure 51

Example 2

Operation User RACFADM with SPECIAL authority to the profile IRR.DIGTCERT.LISTMAP would like to list the mapping information for MULTIID.

Known MULTIID has several mappings associated with it, but only the one with this label name will be listed.

Command RACDCERT MULTIID LISTMAP(LABEL('NewAPPL ID Mapping'))

Output See Figure 52

Mapping information for user NET1ID:

- Label: General Internet ID Map
- Status: TRUST
- Issuer's Name Filter:
 >OU=Internet Demo CertAuth.O=BobsMart Software Inc.L=Internet<
- Subject's Name Filter:
 >L=Internet<

Figure 51. Output for the LISTMAP command

Mapping information for MULTIID:

- Label: NewAPPL ID Mapping
- Status: TRUST
- Issuer's Name Filter:
 >OU=Class 1 Public Primary Certification Authority.O=VeriSign, Inc..C=<
 >US<
- Subject's Name Filter:
 ><
- Criteria:
 APPLID=&APPLID

Figure 52. Output for the LISTMAP LABEL command
RACDCERT LISTRING (List key ring)

Purpose

Use the RACDCERT LISTRING command to display the specified key ring, or all key rings, associated with a user, certificate authority, or site certificate.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT LISTRING command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.

- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFIDATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT LISTRING command, you must have the SPECIAL attribute or sufficient authority to the IRR.DIGTCERT.LISTRING resource in the FACILITY class for your intended purpose.

Table 28. Authority required for the RACDCERT LISTRING function

<table>
<thead>
<tr>
<th>IRR.DIGTCERT.LISTRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access level</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>READ</td>
</tr>
<tr>
<td>UPDATE</td>
</tr>
</tbody>
</table>

Related commands

- To list a certificate, see RACDCERT LIST.
- To list a token, see RACDCERT LISTTOKEN.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the RACDCERT LISTRING is:

```
RACDCERT LISTRING[(ring-name)]

[ID(ring-owner)]
```
RACDCERT LISTRING

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

LISTRING
LISTRING(ring-name | *)
The ring-name value is the name of the key ring. To list all rings that are associated with a particular user, LISTRING(*) must be specified. For each certificate in the ring, the following information is displayed:
• The ring name
• The owner of the certificate (ID(name), CERTAUTH, or SITE)
• The label assigned to the certificate
• The DEFAULT status of the certificate within the ring
• The usage within the ring.

Because only user IDs can have key rings, neither CERTAUTH nor SITE can be specified with LISTRING.

ID(ring-owner)
Specifies the user ID of the key ring owner. (Only a user ID can have a key ring.) If not specified, the key ring owner defaults to the command issuer’s user ID.

Examples

Example 1

Operation User GEORGE requests the listing of his key rings.
Known User ID GEORGE has three key rings with certificates and one key ring that has no certificates.
Command RACDCERT LISTRING(*)
Output See Figure 53 on page 373
Digital ring information for user GEORGEM:

<table>
<thead>
<tr>
<th>Certificate Label Name</th>
<th>Cert Owner</th>
<th>USAGE</th>
<th>DEFAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Cert Type - Ser # 00</td>
<td>ID(GEORGEM)</td>
<td>PERSONAL</td>
<td>YES</td>
</tr>
<tr>
<td>New Type Cert - VsingC1</td>
<td>ID(GEORGEM)</td>
<td>CERTAUTH</td>
<td>NO</td>
</tr>
<tr>
<td>New Type Cert - VsingC2</td>
<td>ID(GEORGEM)</td>
<td>SITE</td>
<td>NO</td>
</tr>
<tr>
<td>65</td>
<td>ID(JOHN)</td>
<td>PERSONAL</td>
<td>NO</td>
</tr>
</tbody>
</table>

Ring:

<table>
<thead>
<tr>
<th>Certificate Label Name</th>
<th>Cert Owner</th>
<th>USAGE</th>
<th>DEFAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEORGEM's Cert # 48</td>
<td>ID(GEORGEM)</td>
<td>PERSONAL</td>
<td>NO</td>
</tr>
<tr>
<td>GEORGEM's Cert # 84</td>
<td>ID(GEORGEM)</td>
<td>PERSONAL</td>
<td>NO</td>
</tr>
<tr>
<td>New Cert Type - Ser # 00</td>
<td>ID(GEORGEM)</td>
<td>PERSONAL</td>
<td>YES</td>
</tr>
</tbody>
</table>

Ring:

<table>
<thead>
<tr>
<th>Certificate Label Name</th>
<th>Cert Owner</th>
<th>USAGE</th>
<th>DEFAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEORGEM's Cert # 84</td>
<td>ID(GEORGEM)</td>
<td>PERSONAL</td>
<td>NO</td>
</tr>
<tr>
<td>GEORGEM's Cert # 48</td>
<td>ID(GEORGEM)</td>
<td>PERSONAL</td>
<td>NO</td>
</tr>
</tbody>
</table>

Ring:

*** No certificates connected ***

Figure 53. Output for the RACDCERT LISTRING command
RACDCERT LISTTOKEN

RACDCERT LISTTOKEN (List token)

Purpose

Use the RACDCERT LISTTOKEN command to display information about the certificate objects in a z/OS PKCS #11 token.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT LISTTOKEN command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.
- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFDATA profiles AUTODIRECT.target-node.DGTCERT.APPL and AUTODIRECT.target-node.DGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT LISTTOKEN command, you must have the following authorizations:
- The SPECIAL attribute, or sufficient authority to the IRR.DGTCERT.LIST resource in the FACILITY class based on the certificate owner.
- When your installation controls access to ICSF services and the CSFSERV class is active, READ access to the CSF1GAV and CSF1TRL resources in the CSFSERV class.
- Sufficient authority to the appropriate resources in the CRYPTOZ class.

For details about CRYPTOZ and CSFSERV resources, see z/OS Cryptographic Services ICSF Administrator's Guide.

If you are not authorized by ICSF (through the CRYPTOZ class) to read the specified token, the command stops and an error message is displayed. If you are authorized to read the specified token but not authorized by RACF (through the FACILITY class) to list the RACF certificates, the output listing contains token information but no certificate information.

Table 29. Authority required for the RACDCERT LISTTOKEN function

<table>
<thead>
<tr>
<th>Your own certificate</th>
<th>Another user's certificate</th>
<th>SITE or CERTAUTH certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sufficient authority to CRYPTOZ resources, and READ authority to IRR.DGTCERT.LIST</td>
<td>Sufficient authority to CRYPTOZ resources, and UPDATE authority to IRR.DGTCERT.LIST</td>
<td>Sufficient authority to CRYPTOZ resources, and CONTROL authority to IRR.DGTCERT.LIST</td>
</tr>
</tbody>
</table>
RACDCERT LISTTOKEN

Related commands
- To list a certificate, see RACDCERT LIST.
- To list a key ring, see RACDCERT LISTRING.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the RACDCERT LISTTOKEN is:

```
RACDCERT LISTTOKEN(token-name | *)
```

Note: The ID(certificate-owner) | SITE | CERTAUTH parameter is ignored for this RACDCERT function.

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

LISTTOKEN(token-name | *)

To list all tokens that the command issuer is authorized to access, specify LISTTOKEN (*).

For each certificate object in the token that the command issuer is authorized to access with at least READ authority, the following information is displayed:
- The token name
- The sequence number of the certificate object in the token
- The DEFAULT status of the certificate within the token
- The status indicating whether the certificate has an associated private key
- The status indicating whether the certificate has an associated public key
- The certificate’s usage within the token (PERSONAL, SITE or CERTAUTH)
- The ICSF token data set (TKDS) label assigned to the certificate object.
- If the certificate is installed in RACF, the RACF label of the certificate.
- If the certificate is installed in RACF, the owner of the certificate is listed as one of the following values:
 - ID(certificate-owner)
 - CERTAUTH
 - SITE

Examples

Example 1

Operation The security administrator wants to display information for all certificate objects in the z/OS PKCS #11 token called VENDOR.TOKEN.

Known

Commands RACDCERT LISTTOKEN(VENDOR.TOKEN)

Output See Figure 54 on page 376
RACDCERT LISTTOKEN

```plaintext
RACDCERT LISTTOKEN(VENDOR.TOKEN)

Token: VENDOR.TOKEN

<table>
<thead>
<tr>
<th>Seq Num</th>
<th>Attributes</th>
<th>Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------</td>
<td>------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Default: YES Priv Key: SECURE TKDS: HTTP Serv Usage: PERSONAL Pub Key: YES RACF: Webserver Cert Owner: ID(WEBSRV)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Default: NO Priv Key: NONE TKDS: Extranet CA Usage: CERTAUTH Pub Key: NONE RACF: Extranet CA Owner: CERTAUTH</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Default: NO Priv Key: CLEAR TKDS: Code signing certificate Usage: PERSONAL Pub Key: NONE</td>
<td></td>
</tr>
</tbody>
</table>
```

Figure 54. Output of RACF details from the RACDCERT LISTTOKEN command
RACDCERT MAP (Create mapping)

Purpose

Use the RACDCERT MAP command to define a user ID mapping, also called a certificate name filter. Defining a mapping results in the creation of a profile in the DIGTNMAP class. DIGTNMAP profiles are used as filters when a user attempts to access the system using a digital certificate. A user ID is found by comparing the issuer’s distinguished name and subject’s distinguished name from the certificate with the filter values used to create the DIGTNMAP profile. The user ID is specified with the ID keyword or specified in DIGTCRIT profiles if MULTIID is specified. When you specify MAP, you must specify IDNFILTER, SDNFILTER, or both.

See “UTF-8 and BMP character restrictions” on page 275 for information about how UTF-8 and BMP characters in certificate names and labels are processed by RACDCERT functions.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT MAP command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.
- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFDATA profiles AUTODIRECT.target-node.DIGTNMAP.APPL and AUTODIRECT.target-node.DIGTCRIT.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT MAP command, you must have the SPECIAL attribute or sufficient authority to the IRR.DIGTCERT.MAP resource in the FACILITY class for your intended purpose.

Table 30. Authority required for the RACDCERT MAP function

<table>
<thead>
<tr>
<th>IRR.DIGTCERT.MAP</th>
<th>Access level</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>READ</td>
<td>Create a mapping associated with your own user ID.</td>
</tr>
<tr>
<td></td>
<td>UPDATE</td>
<td>Create a mapping associated with another user ID or MULTIID.</td>
</tr>
</tbody>
</table>

Activating your changes

If the DIGTNMAP or DIGTCRIT class is RACLISTed, refresh the classes to activate your changes.
Example:
SETROPTS RACLIST(DIGTNMAP, DIGTCRIT) REFRESH

Related commands
- To alter a user ID mapping, see RACDCERT ALTMAP.
- To delete a user ID mapping, see RACDCERT DELMAP.
- To list a user ID mapping, see RACDCERT LISTMAP.

The RACDCERT MAP command is unrelated to the RACMAP MAP command.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the RACDCERT MAP command is:

```
RACDCERT MAP[(data-set-name)]
   [ ID(mapping-owner) | MULTIID ]
   [ SDNFILTER(‘subject’s-distinguished-name-filter’) ]
   [ IDNFILTER(‘issuer’s-distinguished-name-filter’) ]
   [ CRITERIA(criteria-profile-name-template) ]
   [ WITHLABEL(‘label-name’) ]
   [ TRUST | NOTRUST ]
```

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

MAP
MAP(data-set-name)

A data set name can be specified with the MAP keyword. The data-set-name value is the name of the data set that contains a certificate. The certificate provides a model for the filter names specified with SDNFILTER and IDNFILTER. The subject’s distinguished name is used beginning with the value specified by SDNFILTER. The issuer’s distinguished name is used beginning with the value specified by IDNFILTER. Using a model certificate is optional but can reduce the chance of typographical errors when entering long filters for SDNFILTER or IDNFILTER.

The model certificate used with the MAP keyword can have an issuer’s distinguished name or subject’s distinguished name that exceeds 255 characters. However, the portion of each used in the filter to associate a user ID with the certificate cannot exceed 255 characters.

See RACDCERT ADD for acceptable certificate formats.

The data-set-name value has the same characteristics (for example, RECFM) as the data set that can be specified with the ADD and CHECKCERT keywords. The issuer of the RACDCERT command must have READ access to the data set containing the data-set-name.
ID(mapping-owner) | MULTIID

Specifies the user ID to be associated with the new mapping. If you do not specify ID or MULTIID, the default is ID, and mapping-owner defaults to the user ID of the command issuer. If more than one keyword is specified, the last specified keyword is processed and the others are ignored by TSO command parse processing.

ID(mapping-owner)

Specifies the user ID to be associated with the mapping.

MULTIID

Specifies that additional criteria is used to determine the user ID to be associated with the mapping. You must also specify the CRITERIA keyword.

IDNFILTER('issuer's-distinguished-name-filter')

Specifies the significant portion of the issuer's distinguished name that is used as a filter when associating a user ID with a certificate. For an explanation of how filter values are used to associate a user ID with a digital certificate, see "Certificate name filtering" in z/OS Security Server RACF Security Administrator's Guide.

When specified without data-set-name on the MAP keyword, you must specify the entire portion of the distinguished name to be used as a filter.

The format of the issuer's-distinguished-name-filter is similar to the output displayed when a certificate is listed with RACDCERT. It is an X.509 distinguished name in an address type format:

cOMPONENT.component.component.component.component...

Or, more specifically:

qualifier1=node1.qualifier2=node2.qualifier3=node3...

Example:

Restriction: The filter name cannot contain the $ character (X'4A').

The IDNFILTER value is limited to 1024 characters and must begin with a prefix found in the following list, followed by an equal sign (X'7E'). Each component should be separated by a period (X'4B'). The case, blanks, and punctuation displayed when the digital certificate information is listed must be maintained in the IDNFILTER. Because digital certificates only contain characters available in the ASCII character set, the same characters should be used for the IDNFILTER value. Valid prefixes are:

Country
 Specified as C=

State/Province
 Specified as SP=

Locality
 Specified as L=

Organization
 Specified as O=

Organizational Unit
 Specified as OU=

Title
 Specified as T=

Common Name
 Specified as CN=
When specified along with data-set-name on the MAP keyword, the issuer’s distinguished-name-filter must correspond to a starting point within the issuer’s distinguished name found in the certificate contained in the data set. You should specify enough of the name to precisely identify the starting point for the filter. For example, if the certificate in the data set has the issuer OU=Class 1 Certificate.O=BobCA, Inc.L=internet.C=US and you want all certificates issued by BobCA to be selected by this filter, specify:

IDNFILTER('O=BobCA')

Without the data set containing the certificate, you need to enter the following to produce the same result:

IDNFILTER('O=BobCA, Inc.L=internet.C=US')

IDNFILTER is optional if SDNFILTER is specified. If IDNFILTER is not specified, only the subject’s name is used as a filter. If IDNFILTER is specified and only a portion of the issuer’s name is to be used as the filter, SDNFILTER must not be specified.

If both IDNFILTER and SDNFILTER are specified, the IDNFILTER value does not need to begin with a valid prefix from the list above. This allows the use of certificates from a certificate authority that chooses to include nonstandard data in the issuer’s distinguished name.

SDNFILTER('subject’s-distinguished-name-filter')

Specifies the significant portion of the subject’s distinguished name that is used as a filter when associating a user ID with a certificate. For an explanation of how filter values are used to associate a user ID with a digital certificate, see ‘Certificate name filtering’ in z/OS Security Server RACF Security Administrator’s Guide.

When specified without data-set-name on the MAP keyword, you must specify the entire portion of the distinguished name to be used as the filter.

The format of the subject’s distinguished-name-filter is similar to the output displayed when a certificate is listed with RACDCERT. It is an X.509 distinguished name in an address type format:

component.component.component.component...

Or, more specifically:

qualifier1=node1.qualifier2=node2.qualifier3=node3...

For example:

SDNFILTER('CN=Bob Cook.OU=BobsAccounting.O=BobsMart.L=internet')

Restriction: The filter name cannot contain the character (X'4A').

The SDNFILTER value is limited to 1024 characters and must begin with a prefix found in the following list, followed by an equal sign (X'7E'). Each component should be separated by a period (X'4B'). The case, blanks, and punctuation displayed when the digital certificate information is listed must be maintained in the SDNFILTER. Because digital certificates only contain characters available in the ASCII character set, the same characters should be used for the SDNFILTER value. Valid prefixes are:

Country
 Specified as C=

State/Province
 Specified as SP=

Locality
 Specified as L=
Organization
 Specified as O=
Organizational Unit
 Specified as OU=
Title
 Specified as T=
Common Name
 Specified as CN=

When specified along with data-set-name on the MAP keyword, the subject's-distinguished-name-filter must correspond to a starting point within the subject's distinguished name found in the certificate contained in the data set. You should specify enough of the name to precisely identify the starting point for the filter. For example, if the certificate in the data set has the subject CN=Bob Cook.OU=BobsAccounting.O=BobsMart.L=internet and you want all certificates for anyone in BobsAccounting to be selected by this filter, specify:

SDNFILTER('OU=BobsAcc')

Without the data set containing the certificate, you need to enter the following to produce the same result:

SDNFILTER('OU=BobsAccounting.O=BobsMart.L=internet')

SDNFILTER is optional if IDNFILTER is specified. If SDNFILTER is not specified, only the issuer's name is used as a filter. SDNFILTER must not be specified with IDNFILTER unless the value of IDNFILTER will result in the entire issuer's name being used in the filter. Note that subject's name can be partial but cannot be used in a filter that contains only a partial issuer's name.

CRITERIA(criteria-profile-name-template)

When specified with MULTIID, it indicates a dynamic user ID mapping. The user ID associated with this mapping profile is based not only on the issuer's distinguished name and the subject's distinguished name found in the certificate, but also on additional criteria. The criteria-profile-name-template specifies the additional criteria in the form of a profile name containing one or more variable names, separated by free-form text. These variable names begin with an ampersand (&) and end with a period. The free-form text should identify the variables contained in the template:

variable-name1=&variable-name1.variable-name2=&variable-name2...

For example, if the application identity and system identifier are to be considered in determining the user ID associated with this mapping, the CRITERIA keyword should be specified as follows:

CRITERIA(APPLID=&APPLID.SYSID=&SYSID)

The RACF-defined criteria are the application ID (APPLID) and the system-identifier (SYSID). When a user presents a certificate to the system for identification, the identity of the application (as well as the system the user is trying to access) being accessed becomes part of the criteria. The application passes its identity to RACF, and RACF determines the system-identifier. The system-identifier is the 4-character value specified for the SID parameter of the SMFPRMxx member of SYS1.PARMLIB. These values are substituted for &APPLID and &SYSID in the criteria.

Once the substitution is made, the fully expanded criteria template is used as a resource name to find a matching profile defined in the DIGTCRIT class using the RDEFINE command. For example, if the application being accessed is BANKU on system SYSA, the template is:

APPLID=BANKU.SYSID=SYSA
You should define a profile in the DIGTCRIT class using the RDEFINE command for this name. The user ID to be associated with these certificates must be specified as the APPLDATA. While the DIGTCRIT profile name can be discrete, generic profiles can be used if you have generic profile checking active for the DIGTCRIT class. A DIGTCRIT profile name of APPLID=BANKU.* allows the certificates to be used on any system, rather than just system SYSA. While generic characters such as * and % can be used when defining the DIGTCRIT class profiles, they should not be used in the template name specified with the CRITERIA keyword.

Criteria names other than APPLID and SYSID are allowed, but are effective in certificate name filtering if the application supplies these criteria names and their associated values to RACF when the user attempts to access the application using a certificate. SYSID is determined by RACF, but APPLID must be specified with the initACEE callable service. Criteria names, such as APPLID and SYSID, should only be specified on RACDCERT if the application instructs you to do so.

A maximum of 255 characters can be entered when specifying the CRITERIA keyword. The values can be entered in any case, but are made uppercase by the RACDCERT command because they must match uppercase profile names in the DIGTCRIT class to be effective. When specifying the criteria value, the maximum length for profile names in the DIGTCRIT class is 246 characters.

The CRITERIA keyword can only be set for MULTIID.

WITHLABEL('label-name')

Specifies the label that is assigned to this mapping. If specified, it must be unique to the user ID with which the mapping is associated. If WITHLABEL is not specified, a label is generated in the same manner as issuing the WITHLABEL keyword for the RACDCERT ADD command.

Up to 32 characters can be specified for label-name. It can contain imbedded blanks and mixed-case characters, and is stripped of leading and trailing blanks. If a single quotation mark is intended to be part of the label-name, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

TRUST | NOTRUST

When specified with MAP, indicates whether this mapping can be used to associate a user ID to a certificate presented by a user accessing the system. If neither TRUST nor NOTRUST is specified, the default is TRUST.

Examples

Example 1

Operation User RACFADM with SPECIAL authority requests the addition of a new mapping profile that will associate the user ID WEBUSER with all digital certificates issued by VeriSign for Class 1 Individual Subscribers. A certificate is not readily available in a data set.

Known User RACFADM has SPECIAL authority.

Command RACDCERT ID(WEBUSER) MAP
 IDNFILTER('OU=VeriSign Class 1 Individual Subscriber.O=VeriSign, Inc..L=Internet')
 WITHLABEL('Savings Account')

Output None.
Example 2

Operation User RACFADM with SPECIAL authority requests the addition of a new mapping profile that will associate all members of department BWVA, who have VeriSign Class 1 Individual subscriber certificates, with the user ID BWVAUSR. All members of the department have the organizational unit BWVA (OU=BWVA) as the second node of the subject name in their certificates. A certificate belonging to one of the department member is available in the data set JJONES.DEPTCERT. The use of the certificates should not be allowed until the network administrator gives his approval, so this mapping is currently not trusted.

Known User RACFADM has SPECIAL authority to profile IRR.DIGTCERT.MAP in the FACILITY class.

Command

```
RACDCERT ID(BWVAUSR) MAP('JJONES.DEPTCERT')
IDNFILTER('OU=VeriSign Class 1') NOTRUST
SDNFILTER('OU=BWVA') WITHLABEL('BWVA USERS')
```

Output None.

Example 3

Operation User CERTADM with ALTER authority to profile IRR.DIGTCERT.MAP in the FACILITY class has received a digital certificate and placed it in the data set CERTADM.MODEL.CERT. BobsBank has contracted VeriSign, Inc. to create certificates like the one received. These certificates will be installed on the workstations of each bank teller, and used to access the banking application BANKAPP. All certificates must map to the user ID BANKU which has access to the data sets containing the banking data. CERTADM uses this function to display the issuer's name and subject name from the certificate.

Known User CERTADM has ALTER authority to profiles IRR.DIGTCERT.MAP in the FACILITY class.

Commands

```
RDEF DIGTCRT BOBS.APPLID1=BANKAPP APPLDATA('BANKU')
RACDCERT MULTIID MAP(MODEL.CERT)
IDNFILTER('OU=')
SDNFILTER('CN=')
CRITERIA(BOBS.APPLID1=&APPLID)
WITHLABEL('Bobs Tellers')
```

Output None.
RACDCERT REKEY

RACDCERT REKEY (Rekey certificate)

Purpose

Use the RACDCERT REKEY command to replicate (rekey) a digital certificate with a new public/private key pair. In general, after you rekey a certificate, issue the RACDCERT ROLLOVER command to supersede the old certificate with the new rekeyed certificate and retire the old private key. For sample procedures, see "Renewing a certificate with a new private key (rekeying)" in z/OS Security Server RACF Security Administrator's Guide.

During rekeying, the subject's distinguished name, key usage, and subject alternate name are copied from the original certificate to the replicated certificate. The replicated certificate is then self-signed and stored as a new certificate associated with the same user ID, CERTAUTH, or SITE. The original certificate is not changed by this operation.

If the rekeyed certificate needs to be signed by another certificate in RACF or another certificate authority, issue the RACDCERT GENREQ command to create a PKCS #10 request from the replicated certificate. Use the resulting request as input to RACDCERT GENCERT to sign the replicated certificate with another certificate in RACF or sent to the external certificate authority for fulfillment. Perform signing (if needed) before issuing the RACDCERT ROLLOVER command.

Use the RACDCERT GENCERT command instead of REKEY when you want to change the subject's distinguished name or supported extensions in addition to creating a new key pair.

See "UTF-8 and BMP character restrictions" on page 275 for information about how UTF-8 and BMP characters in certificate names and labels are processed by RACDCERT functions.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT REKEY command:

<table>
<thead>
<tr>
<th></th>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.

- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSF DATA profiles AUTODIRECT.<target-node>.DIGTCERT.APPL and AUTODIRECT.<target-node>.DIGTRING.APPL, where <target-node> is the remote node to which the update is to be propagated.
RACDCERT REKEY

Authorization required

To issue the RACDCERT REKEY command, you must have the SPECIAL attribute or sufficient authority to the IRR.DIGTCERT.REKEY resource in the FACILITY class for your intended purpose, as shown in Table 31.

When your installation controls access to ICSF services and the CSFSERV class is active, additional access to CSFSERV resources might be required as follows:

- When you specify RSA(PKDS) or PCICC, you must have READ authority to the CSFDSG, CSFIQF, CSFPKG, CSFPKRC, and CSFPKX resources.
- When you specify RSA(TOKEN(token-name)), you must have READ authority to the CSF1GAV, CSF1GKP, CSF1TRD, CSFDSG, and CSFIQF resources.
- When you specify RSA and omit PKDS or TOKEN, you must have READ authority to the CSFIQF resource.
- When you specify ICSF, you must have READ authority to the CSFIQF, CSFPKI, and CSFPKRC resources.
- When you specify NISTECC(PKDS) or BPECC(PKDS), you must have READ access to the CSFDSG, CSFDSV, CSFOWH, CSFPKG, CSFPKRC, and CSFPKX resources.
- When you specify NISTECC(TOKEN(token-name)) or BPECC(TOKEN(token-name)), you must have READ access to the CSF1GAV, CSF1GKP, CSF1PKV, CSF1TRC, CSF1TRD, CSFDSG, and CSFOWH resources.
- When you specify NISTECC or BPECC and omit PKDS or TOKEN, you must have READ access to the CSF1GAV, CSF1GKP, CSF1PKS, CSF1PKV, CSF1TRC, CSF1TRD, and CSFOWH resources.
- When you omit key type, RACF rekeys the private key using the characteristics of the original key, including how it is stored. Therefore, you must have access authority to the appropriate resources based on the characteristics of the original key even when you omit the key types shown in this list.

For details about the CSFSERV resources, see z/OS Cryptographic Services ICSF Administrator’s Guide.

Table 31. Authority required for the RACDCERT REKEY function

<table>
<thead>
<tr>
<th>IRR.DIGTCERT.REKEY</th>
<th>Access level</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td></td>
<td>Rekey your own certificate.</td>
</tr>
<tr>
<td>UPDATE</td>
<td></td>
<td>Rekey another user’s certificate.</td>
</tr>
<tr>
<td>CONTROL</td>
<td></td>
<td>Rekey a SITE or CERTAUTH certificate.</td>
</tr>
</tbody>
</table>

Activating your changes

If the DIGTCERT class is RACLISTed, refresh the class to activate your changes.

Example:

```
SETROPTS RACLST(DIGTCERT) REFRESH
```

Related commands

- To rollover an expiring certificate to a rekeyed certificate, see “RACDCERT ROLLOVER (Rollover certificate)” on page 394.
- To generate a certificate, see “RACDCERT GENCERT (Generate certificate)” on page 332.
RACDCERT REKEY

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the RACDCERT REKEY command is:

```
RACDCERT REKEY(LABEL('existing-label-name'))
  [ ID(certificate-owner) | SITE | CERTAUTH ]
  [ SIZE(key-size) ]
  [ NOTBEFORE( [ DATE(yyyy-mm-dd) ] [ TIME(hh:mm:ss) ] ) ]
  [ NOTAFTER( [ DATE(yyyy-mm-dd) ] [ TIME(hh:mm:ss) ] ) ]
  [ RSA [ (pkds-label | * ) | TOKEN(token-name) ] ]
  [ NISTECC [ (pkds-label | * ) | TOKEN(token-name) ] ]
  [ BPECC [ (pkds-label | * ) | TOKEN(token-name) ] ]
  [ PCICC [ (pkds-label | * ) ] ]
  [ ICSF [ (pkds-label | * ) ] ]
  [ WITHLABEL('to-be-created-label-name') ]
```

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, "RACF TSO commands," on page 15.

Parameters

REKEY(LABEL('existing-label-name'))

Specifies the label of the existing certificate to be replicated during RACDCERT REKEY processing. This keyword is required and identifies an existing certificate owned by ID(certificate-owner), SITE, or CERTAUTH. The certificate identified by the LABEL keyword must be associated with the must have a private key associated with it otherwise an error message is issued and the command ends.

If the private key associated with the certificate is an ECC key, the ICSF subsystem must be operational and configured for PKCS #11 operations.

Restriction: When ICSF is operating in FIPS mode, you cannot rekey a certificate that has an associated Brainpool ECC private key.

ID(certificate-owner) | SITE | CERTAUTH

Specifies that the certificate to replicate is either a user certificate associated with the specified user ID, a site certificate, or a certificate-authority certificate. If you do not specify ID, SITE, or CERTAUTH, the default is ID, and certificate-owner defaults to the user ID of the command issuer. If more than one keyword is specified, the last specified keyword is processed and the others are ignored by TSO command parse processing.

SIZE(key-size)

Specifies the size of the new private key expressed in decimal bits.

If SIZE is omitted, it defaults to the size of the private key associated with the original certificate.
For NISTECC keys, valid key sizes are 192, 224, 256, 384, and 521 bits. For BPECC keys, valid key sizes are 160, 192, 224, 256, 320, 384, and 512 bits.

For DSA keys, the minimum key size is 512.

For RSA keys, the minimum key size for clear keys and secure keys in the PKDS (PKA key data set) is 512; the minimum key size for secure keys in the TKDS (token key data set) is 1024 and the size must be a multiple of 256.
- The maximum key size for RSA and DSA keys is determined by United States export regulations and is controlled by RACF and non-RACF code in z/OS. Depending on the installation, non-RACF code may enforce a lower maximum size.
- Rounding up to the next appropriate key size might occur. Therefore, the key size of the generated key might be longer than the value you specify with SIZE but the generated key is never shorter than requested.

Maximum key sizes: The maximum key size for a private key depends on key type, as follows:

<table>
<thead>
<tr>
<th>Private key type</th>
<th>Maximum key size</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA key stored in the RACF database</td>
<td>4096 bits</td>
</tr>
<tr>
<td>RSA key stored in the ICSF PKDS as a CRT key token</td>
<td>4096 bits</td>
</tr>
<tr>
<td>RSA key stored in the ICSF PKDS as an ME key token</td>
<td>1024 bits</td>
</tr>
<tr>
<td>NISTECC key</td>
<td>521 bits</td>
</tr>
<tr>
<td>BPECC key</td>
<td>512 bits</td>
</tr>
</tbody>
</table>

Note: To generate an RSA key that is longer than 1024 bits and is to be stored in the RACF database, the CP Assist for Cryptographic Function (CPACF) must be enabled.

Standard RSA key sizes: Currently, standard key sizes for RSA keys are as follows:

<table>
<thead>
<tr>
<th>Key size</th>
<th>Key strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>512 bits</td>
<td>Low-strength key</td>
</tr>
<tr>
<td>1024 bits</td>
<td>Medium-strength key</td>
</tr>
<tr>
<td>2048 bits</td>
<td>High-strength key</td>
</tr>
<tr>
<td>4096 bits</td>
<td>Very high-strength key</td>
</tr>
</tbody>
</table>

Key strength considerations: Shorter keys of the ECC type, which are generated when you specify NISTECC or BPECC, achieve comparable key strengths when compared with longer RSA keys.

RSA, NISTECC, and BPECC keys of the following sizes are comparable in strength:

<table>
<thead>
<tr>
<th>RSA key size</th>
<th>NISTECC key size</th>
<th>BPECC key size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024 bits</td>
<td>192 bits</td>
<td>160 or 192 bits</td>
</tr>
<tr>
<td>2048 bits</td>
<td>224 bits</td>
<td>224 bits</td>
</tr>
<tr>
<td>3072 bits</td>
<td>256 bits</td>
<td>256 or 320 bits</td>
</tr>
<tr>
<td>7680 bits</td>
<td>384 bits</td>
<td>384 bits</td>
</tr>
<tr>
<td>15360 bits</td>
<td>521 bits</td>
<td>512 bits</td>
</tr>
</tbody>
</table>
RACDCERT REKEY

Hashing algorithm used for signing: RACF signs certificates using a set of secure hash algorithms based on the SHA-1 or SHA-2 hash functions. When the signing key is a DSA type, the SHA-1 algorithm is used for keys of all sizes. When the signing key is an RSA, NISTECC, or BPECC type, the size of the signing key determines the hashing algorithm used for signing, as follows:

<table>
<thead>
<tr>
<th>Hashing algorithm used for signing</th>
<th>Signing key size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHA-1</td>
<td>RSA</td>
</tr>
<tr>
<td></td>
<td>Less than 2048 bits</td>
</tr>
<tr>
<td>SHA-256</td>
<td>RSA</td>
</tr>
<tr>
<td></td>
<td>2048 bits or longer</td>
</tr>
<tr>
<td></td>
<td>192, 224, or 256 bits</td>
</tr>
<tr>
<td></td>
<td>160, 192, 224, or 256, or 320 bits</td>
</tr>
<tr>
<td>SHA-384</td>
<td>RSA</td>
</tr>
<tr>
<td></td>
<td>384 bits</td>
</tr>
<tr>
<td>SHA-512</td>
<td>RSA</td>
</tr>
<tr>
<td></td>
<td>521 bits</td>
</tr>
</tbody>
</table>

NOTBEFORE(DATE(*yyyy-mm-dd*) TIME(*hh:mm:ss*))

Specifies the local date and time from which the certificate is valid. If DATE is not specified, it defaults to the current local date. If TIME is not specified, it defaults to TIME(00:00:00).

If DATE is specified, the value of *yyyy* must be 1950 - 9997.

Note that the use of the date format *yyyy-mm-dd* is valid. However, to aid installations familiar with the RACF date format, the value can be specified in the format *yyyy/mm/dd*.

The time and date values are stored in the certificate as a universal time coordinated (UTC) value. The calculated UTC value might be incorrect if the date and time values for NOTBEFORE and NOTAFTER represent a time that has a different local offset from UTC.

NOTAFTER(DATE(*yyyy-mm-dd*) TIME(*hh:mm:ss*))

Specifies the local date and time after which the certificate is no longer valid. If DATE is not specified, it defaults to one year from the NOTBEFORE date value. If TIME is not specified, it defaults to TIME(23:59:59).

If DATE is specified, the value of *yyyy* must be 1950 - 9997. If DATE is defaulted, the value must be 1951 - 9998.

The NOTBEFORE value must be earlier than the NOTAFTER value or an informational message is issued.

Note the use of the date format *yyyy-mm-dd* is valid. However, to aid installations familiar with the RACF date format, the value can be specified as *yyyy/mm/dd*.

The time and date values are stored in the certificate as a universal time coordinated (UTC) value. The calculated UTC value might be incorrect if the date and time values for NOTBEFORE and NOTAFTER represent a time that has a different local offset from UTC.

RSA | PCICC | ICSF | NISTECC | BPECC

Specifies how RACF should generate the new key pair and how the private key should be stored for future use.

When you omit the RSA, PCICC, ICSF, NISTECC, and BPECC operands, RACF rekeys using the key type and key size of the private key associated with the original certificate. The new key will have all the characteristics of the original
key, including how it is stored. For example, if the original key is stored in the ICSF PKDS, the new key is also stored in the PKDS but with a new system-generated key label.

To specify a PKDS label for the new key, you must specify key type with the PKDS suboperand and a pkds-label value or an asterisk (*). When you specify PKDS with a pkds-label value, the new key is stored in the PKDS (if all required conditions are met) regardless of whether the original key was stored in the PKDS. Conversely, if the original key is stored in PKDS and you specify key type without the PKDS suboperand, the new key is not stored in the PKDS unless the following condition occurs. When the specified key type is incompatible with the original key, the key-type keyword is ignored. (For example, you cannot specify BPECC to rekey a certificate with an RSA key.) If the key-type operand is ignored, the new key is stored in the PKDS if the original key was stored in the PKDS.

For details about specifying or allowing RACF to generate the PKDS label, see “PKDS label considerations” on page 277.

For the hardware requirements for storing or accessing a key in the ICSF PKA key data set (PKDS), see “Hardware requirements” on page 277.

RSA

Specifies that the key pair is to be generated using software with the RSA algorithm and the private key is to be stored in the RACF database as an RSA key.

When you specify RSA without the PKDS option, the CP Assist for Cryptographic Function (CPACF) must be enabled to generate a key that is longer than 1024 bits.

PKDS[(pkds-label | *)]

Specifies that the key pair is to be generated using a CCA cryptographic coprocessor. The resulting private key is generated with the RSA algorithm and stored in the ICSF PKA key data set (PKDS) as an RSA Chinese Remainder Theorem (CRT) key token with either a system-generated label, a label specified by pkds-label, or a label copied from the certificate label.

TOKEN(token-name)

Specifies that the key pair is to be generated using an Enterprise PKCS#11 cryptographic coprocessor. The resulting private key is stored in the specified existing token-name token in the ICSF token key data set (TKDS) as an RSA Chinese Remainder Theorem (CRT) key token.

PCICC[(pkds-label | *)]

Specifies the same function as the PKDS suboperand of the RSA operand. See the RSA operand of REKEY for details.

ICSF[(pkds-label | *)]

Specifies that the key pair is to be generated using software. The resulting private key is generated with the RSA algorithm and stored in the ICSF PKA key data set (PKDS) as an RSA Modulus-Exponent (ME) key token.

NISTECC

Specifies that the key pair is to be generated using software, if clear key is not restricted in the system, with the elliptic curve cryptography (ECC) algorithm in accordance with the standard proposed by the National Institute of Standards and Technology (NIST). The resulting private key is stored in the RACF database as an ECC key.
You can specify NISTECC to rekey only an ECC key pair.

When specifying NISTECC, the ICSF subsystem must be operational and configured for PKCS #11 operations.

PKDS(pkds-label | *)

Specifies that the key pair is to be generated using a CCA cryptographic coprocessor. The resulting private key is stored in the ICSF PKA data set (PKDS) as an ECC key in the PKA token with either a system-generated label, a label specified by pkds-label, or a label copied from the certificate label.

TOKEN(token-name)

Specifies that the key pair is to be generated using an Enterprise PKCS#11 cryptographic coprocessor. The resulting private key is stored in the specified existing token-name token in the ICSF token key data set (TKDS).

BPECC

Specifies that the key pair is to be generated using software, if clear key is not restricted in the system, with the elliptic curve cryptography (ECC) algorithm in accordance with the standard proposed by the ECC Brainpool working group of the Internet Engineering Task Force (IETF). The resulting private key is stored in the RACF database as an ECC key.

You can specify BPECC to rekey only an ECC key pair.

When specifying BPECC, the ICSF subsystem must be operational and configured for PKCS #11 operations.

Restriction: When ICSF is operating in FIPS mode, you cannot generate a Brainpool ECC key.

PKDS(pkds-label | *)

Specifies that the key pair is to be generated using a CCA cryptographic coprocessor. The resulting private key is stored in the ICSF PKA data set (PKDS) as an ECC key in the PKA token with either a system-generated label, a label specified by pkds-label, or a label copied from the certificate label.

TOKEN(token-name)

Specifies that the key pair is to be generated using an Enterprise PKCS#11 cryptographic coprocessor. The resulting private key is stored in the specified existing token-name token in the ICSF token key data set (TKDS).

WITHLABEL(to-be-created-label-name)

Specifies the label assigned to the new certificate. If specified, this must be unique to the user ID with which the certificate is associated. If not specified, it defaults in the same manner as the WITHLABEL keyword on the RACDCERT ADD command.

The label-name value is stripped of leading and trailing blanks. If a single quotation mark is intended to be part of the label-name, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

See the WITHLABEL keyword for RACDCERT ADD for information on label rules.
Examples

Example 1

Operation User RACFADM has an expiring CERTAUTH certificate labeled ‘Local PKI CA’ and wants to renew it and rekey the private key. The new, rekeyed certificate will be labeled ‘Local PKI CA-2’. The PCI cryptographic coprocessor will be used to generate the new key pair. The size of the new private key will be 1024 bits (RACF default size). After issuing the RACDCERT REKEY command, the user RACFADM will issue the RACDCERT ROLLOVER command to retire and replace the expiring certificate.

Known User RACFADM has CONTROL access to the IRR.DIGTCERT.REKEY resource in the FACILITY class.

Command

```
RACDCERT REKEY(LABEL('Local PKI CA'))
   CERTAUTH
   WITHLABEL('Local PKI CA-2')
   RSA(PKDS)
```

Output None.
RACDCERT REMOVE

RACDCERT REMOVE (Remove certificate from key ring)

Purpose

Use the RACDCERT REMOVE command to remove a digital certificate from a key ring.

See “UTF-8 and BMP character restrictions” on page 275 for information about how UTF-8 and BMP characters in certificate names and labels are processed by RACDCERT functions.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT REMOVE command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.

- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFDATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT REMOVE command, you must have the SPECIAL attribute or sufficient authority to the IRR.DIGTCERT.REMOVE resource in the FACILITY class for your intended purpose.

Table 32. Authority required for the RACDCERT REMOVE function

<table>
<thead>
<tr>
<th>IRR.DIGTCERT.REMOVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access level</td>
</tr>
<tr>
<td>READ</td>
</tr>
<tr>
<td>UPDATE</td>
</tr>
<tr>
<td>CONTROL</td>
</tr>
</tbody>
</table>

Activating your changes

If the DIGTCERT or DIGTRING class is RACLISTed, refresh the classes to activate your changes.

Example:

SETROPTS RACLIST(DIGTCERT, DIGTRING) REFRESH

Related commands

- To connect a certificate to a key ring, see RACDCERT CONNECT.
- To list a key ring, see RACDCERT LISTRING.
RACDCERT REMOVE

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the RACDCERT REMOVE command is:

```plaintext
RACDCERT REMOVE([ID(certificate-owner) | SITE | CERTAUTH]
  LABEL('label-name')
  RING(ring-name)
) [ ID(ring-owner) ]
```

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

- **REMOVE(ID(certificate-owner) LABEL('label-name') RING(ring-name))**
- **REMOVE(SITE LABEL('label-name') RING(ring-name))**
- **REMOVE(CERTAUTH LABEL('label-name') RING(ring-name))**

 Specifies the digital certificate to be removed from the key ring.

 ID(certificate-owner) indicates that the certificate being removed is a user certificate, and certificate-owner is the user ID associated with this certificate.

 SITE indicates that the certificate being removed is a site certificate.

 CERTAUTH indicates that it is a certificate authority certificate. If ID, SITE or CERTAUTH are not specified, ID(certificate-owner) defaults to the key ring owner as specified or defaulted by the ID(ring-owner) keyword.

 LABEL('label-name')

 Identifies the certificate that is being removed from the key ring. You must specify a label.

 RING(ring-name)

 Identifies the key ring from which this certificate is being removed. You must specify a ring name. **Note:** The key ring belongs to the ID specified or defaulted by the ID(ring-owner) keyword.

 ID(ring-owner)

 Specifies the user ID of the key ring owner. (Only a user ID can have a key ring.) If not specified, the key ring owner defaults to the command issuer's user ID.

Examples

Example 1

Operation User RACFADM wants to remove a SITE certificate with the label Shared Server from the RING01 key ring of server INVSERV.

Known User RACFADM has SPECIAL authority.

Command RACDCERT ID(INVSERV) REMOVE(SITE LABEL('Shared Server') RING(RING01))

Output None.
RACDCERT ROLLOVER

RACDCERT ROLLOVER (Rollover certificate)

Purpose

Use the RACDCERT ROLLOVER command to supersede one certificate (the source certificate) with another certificate (the target certificate). In general, issue the RACDCERT ROLLOVER command after issuing the RACDCERT REKEY command to supersede an old, expiring certificate with a new rekeyed certificate, and to retire the private key of the expiring certificate. For sample procedures, see "Renewing a certificate with a new private key (rekeying)" in z/OS Security Server RACF Security Administrator’s Guide.

Both the source and target certificates are associated with the user ID, CERTAUTH, or SITE as specified on the command. RACDCERT ROLLOVER processing performs the following actions in the specified order:

1. Deletes the private key of the source certificate so that it may not be used again for any cryptographic operations that need the private key. For example, signing another certificate or decrypting data encrypted via the certificate’s public key.

2. Adds the target certificate to any key ring that contains the source certificate and, depending on how the source certificate is connected to the ring, RACDCERT ROLLOVER processing also does one of the following actions:
 - If the source certificate is connected with PERSONAL usage, the source certificate is replaced by the target certificate. In other words, the new certificate is added to the ring and the old one is removed.
 - If the source certificate is connected with CERTAUTH or SITE usage, the target certificate is added to the key ring and the source certificate remains connected. In other words, the new certificate is added to the ring but the old one is not removed.

3. Copies the serial number base from the source certificate to the target certificate. The serial number base is the serial number of the last certificate that this certificate issued.

Once rollover is complete, the new certificate may be used as if it were the old certificate. The old certificate is retained for historical reasons such as validating signatures on existing certificates, but may no longer be used for any private key operations such as signing other certificates.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT ROLLOVER command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>
RACDCERT ROLLOVER

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
</table>

Rules: The following rules apply when issuing this command.

- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFDATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

To issue the RACDCERT ROLLOVER command, you must have the SPECIAL attribute or sufficient authority to the IRR.DIGTCERT.ROLLOVER resource in the FACILITY class for your intended purpose.

Table 33. Authority required for the RACDCERT ROLLOVER function

IRR.DIGTCERT.ROLLOVER

<table>
<thead>
<tr>
<th>Access level</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>Rollover your own certificate.</td>
</tr>
<tr>
<td>UPDATE</td>
<td>Rollover another user's certificate.</td>
</tr>
<tr>
<td>CONTROL</td>
<td>Rollover a SITE or CERTAUTH certificate.</td>
</tr>
</tbody>
</table>

If the private key of the source certificate is stored in the ICSF PKA key data set (PKDS), you must have READ access to the CSFPKRD resource.

If the private key of the source certificate is stored in the ICSF Token Data Set (TKDS), you must have READ access to the CSF1TRD resource.

Activating your changes

If the DIGTCERT class is RACLISTed, refresh the class to activate your changes.

Example:

SETROPTS RACLST(DIGTCERT) REFRESH

Related commands

- To rekey a expiring certificate, see “RACDCERT REKEY (Rekey certificate)” on page 384.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the RACDCERT ROLLOVER command is:

RACDCERT ROLLOVER(LABEL('old-label-name'))
If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

ROLLOVER(LABEL('old-label-name'))

Specifies the label of the source certificate to be superseded by the certificate with the 'new-label-name' label.

ID(certificate-owner) | SITE | CERTAUTH

Specifies that both certificates identified by LABEL and NEWLABEL are either user certificates associated with the specified user ID, site certificates, or a certificate-authority certificates. If you do not specify ID, SITE, or CERTAUTH, the default is ID, and certificate-owner defaults to the user ID of the command issuer. If more than one keyword is specified, the last specified keyword is processed and the others are ignored by TSO command parse processing.

NEWLABEL('new-label-name')

Specifies the label of the target certificate for the rollover function. This keyword is required and must identity an existing certificate owned by the specified user ID, SITE, or CERTAUTH.

FORCE

Specifies that RACF should bypass the following error checking and unconditionally perform the rollover operation.

If you do not specify FORCE to bypass these conditions, an error message is issued and the command ends:

- The values specified for the LABEL and NEWLABEL keywords are the same.
- The certificate identified by the LABEL or NEWLABEL keywords does not have a private key associated with it.
- The certificate identified by the NEWLABEL keyword has been the target certificate of a previously issued RACDCERT ROLLOVER command.
- The certificate identified by the NEWLABEL keyword has been used to sign other certificates.
- The certificate being superseded has been used to generate a request through RACDCERT GENREQ.

If you specify FORCE, these conditions are not checked. If you specify FORCE and inadvertently specify the same certificate with both the LABEL and NEWLABEL keywords, the private key of this certificate is deleted.
Examples

Example 1

Operation User RACFADM has an expiring CERTAUTH certificate labeled ‘Local PKI CA’ and wants to retire it and replace it with a new, rekeyed certificate labeled ‘Local PKI CA-2’.

Known User RACFADM has CONTROL access to the IRR.DIGTCERT.ROLLOVER resource in the FACILITY class.

Command

```
RACDCERT ROLLOVER(LABEL('Local PKI CA'))
  CERTAUTH
  NEWLABEL('Local PKI CA-2')
```

Output None.
RACDCERT UNBIND

RACDCERT UNBIND (Unbind certificate from token)

Purpose

Removes a digital certificate from the specified z/OS PKCS #11 token.

See “UTF-8 and BMP character restrictions” on page 275 for information about how UTF-8 and BMP characters in certificate names and labels are processed by RACDCERT functions.

Issuing options

The following table identifies the eligible options for issuing the RACDCERT UNBIND command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No (See rules.)</td>
<td>No (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.

- The RACDCERT command cannot be directed to a remote system using the AT or ONLYAT keyword.
- The updates made to the RACF database by RACDCERT are eligible for propagation with automatic direction of application updates based on the RRSFCDATA profiles AUTODIRECT.target-node.DIGTCERT.APPL and AUTODIRECT.target-node.DIGTRING.APPL, where target-node is the remote node to which the update is to be propagated.

Authorization required

Authorization to delete z/OS PKCS #11 tokens is controlled by ICSF based on profiles in the CRYPTOZ class. (No authority in the FACILITY class is required.) If you do not have authority to remove the certificate from the specified token as determined by ICSF, the command stops and an error message is displayed.

When your installation controls access to ICSF services and the CSFSERV class is active, you must also have READ access to the CSF1GAV, CSF1TRD, and CSF1TRL resources in the CSFSERV class.

For authorization details about the CRYPTOZ and CSFSERV classes, see z/OS Cryptographic Services ICSF Administrator’s Guide.

Related commands

- To bind a certificate to a token, see RACDCERT BIND.
- To list a token, see RACDCERT LISTTOKEN.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the RACDCERT UNBIND command is:

RACDCERT UNBIND(TOKEN(token-name))
RACDCERT UNBIND

Note: Unless specified as a subkeyword of the UNBIND parameter, the ID(certificate-owner) | SITE | CERTAUTH parameter is ignored for the RACDCERT UNBIND function.

If you specify more than one RACDCERT function, only the last specified function is processed. Extraneous keywords that are not related to the function being performed are ignored.

If you do not specify a RACDCERT function, LIST is the default function.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, "RACF TSO commands," on page 15.

Parameters

UNBIND(TOKEN(token-name) ID(certificate-owner) LABEL('label-name'))
UNBIND(TOKEN(token-name) SITE LABEL('label-name'))
UNBIND(TOKEN(token-name) CERTAUTH LABEL('label-name'))
UNBIND(TOKEN(token-name) SEQNUM(sequence-number))

You must uniquely identify the certificate to be removed in one of the following ways:
• By its RACF label name (if defined to RACF), and optionally identify it as a user, SITE or CERTAUTH certificate. (The certificate must be defined to RACF when you specify the label name.)
• By its sequence number within the token. (The certificate need not be defined to RACF when you specify the sequence number.)

TOKEN(token-name)
Specifies the name of the token from which the certificate is being removed. When specifying the UNBIND operand, you must specify the TOKEN operand.

ID(certificate-owner) | SITE | CERTAUTH
Specifies that the certificate to remove from the token is either a user certificate associated with the specified user ID, a site certificate, or a certificate-authority certificate. If you do not specify ID, SITE, or CERTAUTH, the default is ID, and certificate-owner defaults to the user ID of the command issuer. If more than one keyword is specified, the last specified keyword is processed and the others are ignored by TSO command parse processing.

LABEL('label-name')
Specifies the certificate to remove from the token. LABEL is mutually exclusive with SEQNUM.

SEQNUM(sequence-number)
Specifies the sequence number of the certificate to remove from the token. If the certificate (or its associated private key, if any) is not currently defined to RACF, you must also specify FORCE or else an error message is issued and the command ends. (This error prevents you from inadvertently deleting a certificate that is not defined to RACF.) SEQNUM is mutually exclusive with LABEL.
FORCE

Specifies that RACF should bypass some error checking and unconditionally perform the unbind operation.

If you do not specify FORCE, the following condition must be true or an error message is issued and the command ends:

- The certificate (or its associated private key, if any) must be currently defined to RACF.

If you specify FORCE, this condition is not checked. If you specify FORCE and inadvertently specify a sequence number for a certificate not defined to RACF, the certificate (or its associated private key, if any) is deleted.

Examples

Example 1

Operation User NETBOY wants to remove a digital certificate labeled *My temp certificate* from the z/OS PKCS #11 token named NETBOY.TKN1. The certificate does not currently reside in RACF.

Known User NETBOY has CONTROL authority to the discrete profile named USER.NETBOY.TKN1 in the CRYPTOZ class. Using RACDCERT LISTTOKEN, user NETBOY determined the sequence number of the certificate to be removed is 3.

Command

```
RACDCERT UNBIND(TOKEN(NETBOY.TKN1) SEQNUM(3)) FORCE
```

Output None.
RACLK (Administer user ID associations)

Purpose

Use the RACLK command to:

- Define, approve, and delete (undefine) an established or pending user ID association
- List information related to a user ID association
- Establish password synchronization between user IDs

Note:

1. When the RACLK command is issued from ISPF, the TSO command buffer (including password data) is written to the ISPLOG data set. As a result, you should not issue this command from ISPF or you must control the ISPLOG data set carefully.

2. If the RACLK command is issued as a RACF operator command, the command and the password data are written to the system log. Therefore, either use of RACLK as a RACF operator command should be controlled or you should issue the command as a TSO command.

Issuing options

The following table identifies the eligible options for issuing the RACLK command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.

Related commands

- To add a user profile, see “ADDUSER (Add user profile)” on page 48.
- To display information from a user profile, see “LISTUSER (List user profile)” on page 235.
- To change a user profile, see “ALTUSER (Alter user profile)” on page 120.
- To delete a user profile, see “DELUSER (Delete user profile)” on page 202.
- To obtain a list of user profiles, see “SEARCH (Search RACF database)” on page 580.

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.
You have the authority to issue the RACLINK command for your own user ID.

To issue the RACLINK DEFINE command you must also have sufficient authority to the proper profiles in the RRSFDATA class. For RACLINK DEFINE, this is the first security check performed. For more information, see z/OS Security Server RACF Security Administrator's Guide.

You can issue the RACLINK command for a user ID other than your own if you have the following authority over the user ID specified on the ID keyword:

- You have the SPECIAL attribute.
- The profile is within the scope of a group in which you have the group-SPECIAL attribute.
- You are the profile owner.

When the DEFINE keyword is specified and the command issuer has sufficient authority to perform the RACLINK command for the user ID, the user ID association is implicitly approved if:

- A valid password is supplied for the user ID specified on the DEFINE keyword.
- The command issuer has one of the following authorities over the user ID specified on the DEFINE keyword:
 - The command issuer has the SPECIAL attribute.
 - The profile is within the scope of a group in which the command issuer has the group-SPECIAL attribute.
 - The command issuer is the owner of the profile.
- The command issuer has an association with a user ID on the node specified on the DEFINE keyword. That association must be either a PEER association or a MANAGED association with the command issuer as the manager. The user ID with which the command issuer has the association must have one of the following authorities over the user ID specified on the DEFINE keyword:
 - The command issuer has the SPECIAL attribute.
 - It is within the scope of a group that has the group-SPECIAL attribute.
 - It is the owner of the profile.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the RACLINK command is:

```
[subsystem-prefix]RACLINK
  [ ID(userid1 ...) ]
  [ LIST ( [ node | * ] [ userid2 | * ] ...) ]
  [ DEFINE ( [ node ] userid2 [ /password ] ...) ]
  [ MANAGED | PEER ( NOPWSYNC | PWSYNC ) ]
  [ UNDEFINE ( [ node ] userid2 ... ) ]
  [ APPROVE ( [ node ] userid2 ... ) ]
```

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.
RACLINK

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

Parameters

subsystem-prefix

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

ID(userid1 ...)

Specifies the user for whom the RAACLIN operation is to be performed. Specify one or more user IDs on the RRSF node from which the command is issued.

If this operand is not specified, the command defaults to the user issuing the command at the node where the command is issued.

LIST([node | *],[userid2 |*] ...)

Specifies that a list of associations for node.userid2 is to be displayed. If multiple user IDs are specified, then multiple lists are displayed, one for each user ID specified.

RAACLIN LIST (*.*) is the default. RAACLIN LIST (*.*) lists all user ID associations for the specified user ID or the issuer's user ID if the ID keyword is not specified.

If the node name is not specified, the default is the local node.

The node names you specify must have been defined as RRSF nodes with the TARGET command.

The following information is displayed for each user ID association:

- User ID association type
 - Peer association
 - Managed association (including whether the specified user ID is the managed user ID or the managing user ID)

- Password synchronization status
 - YES (password synchronization is active)
 - NO (password synchronization is inactive)
 - N/A (password synchronization is not applicable to a managed association)

- User ID association status
 - PENDING APPROVAL BY userid (waiting for userid to approve or reject the user ID association)
 - ESTABLISHED (the user ID association has been approved)
 - SYSTEM ERROR (an unexpected error occurred on the target node that prevented the user ID association from being completed) The user ID association should be deleted and then defined again.
DEFINE([node].userid2[/password] ...)
Specifies that a user ID association is to be formed between userid1 at the node where the command was issued, and userid2 at node. If you specify more than one node.userid2 operand, an association is established between userid1 and each node.userid2 specified. A user ID association enables RACF users to utilize command direction and password synchronization.

To issue the RACLINK DEFINE command, you need READ access to the following profile in the RRSFDATA class:

- RACLINK.DEFINE.node

The RRSFDATA class must be active.

When the DEFINE keyword is specified and the command issuer has sufficient authority to perform the RACLINK command for the user ID, the user ID association is implicitly approved if any of the following are true:

- A valid password is supplied for node.userid2 on the DEFINE keyword.
- The command issuer has one of the following authorities over userid2 on the DEFINE keyword:
 - The command issuer has the SPECIAL attribute.
 - The profile is within the scope of a group in which the command issuer has the group-SPECIAL attribute.
 - The command issuer is the owner of the profile.
- The command issuer has an association with a user ID on the node specified on the DEFINE keyword. That association must be either a PEER association or a MANAGED association with the command issuer as the manager. The user ID with which the command issuer has the association must have one of the following authorities over userid2 on the DEFINE keyword:
 - The command issuer has the SPECIAL attribute.
 - It is within the scope of a group that has the group-SPECIAL attribute.
 - It is the owner of the profile.

Otherwise, a user ID association requires explicit approval by node.userid2 with the RACLINK APPROVE command.

Although it is possible for the command issuer to have more than 50 associated user IDs on the target node, only the first 50 are used for authority checking. RACLINK issues a message if more than 50 user ID associations exist for the command issuer.

An association is PENDING until node.userid2 either approves the association with a RACLINK APPROVE command or rejects the association with a RACLINK UNDEFINE command.

Note:

1. Under certain circumstances, RACLINK DEFINE(node.userid) requests can be issued by two users. If both requests are consistent, RACF treats this as an implicit approval. The entry is marked established in the target user IDs profile. An entry is considered consistent if the association type (PEER(PWSYNC) or PEER(NOPWSYNC)) is the same. If the request is not consistent (for example, differing PEER definitions or both users requesting a MANAGED association), RACF fails the request and the entries remain in a pending state. In order to correct this situation, the user(s) need to undefine and redefine the user ID associations.

2. When creating a user ID association with a revoked user ID:
• If a RACLINK DEFINE command is coded without the password operand and the target user ID is a revoked user, the results vary depending on the authority of the command issuer and the user ID associations of the command issuer. When:

The user ID association with the revoked user ID is created and the status displayed by a RACLINK LIST command is ESTABLISHED when one of the following is true:

- The command issuer has sufficient authority (SPECIAL, group-SPECIAL, or owner) over the target user ID or
- The command issuer has a PEER association or is the manager of a MANAGED association with a user ID on the target node and the associated user ID has sufficient authority over the target user ID.

3. If a RACLINK DEFINE command is coded without the password operand, the target user ID is a revoked user ID, and the command issuer does not have sufficient authority (SPECIAL, group-SPECIAL, or owner) over the target user ID, the user ID association is created and the status displayed by a RACLINK LIST command is PENDING APPROVAL BY userid2.

4. If a RACLINK DEFINE command is coded with the password operand and the target user is a revoked user, the user ID association is not established and the status displayed by a RACLINK LIST is SYSTEM ERROR.

The type of association you want to establish is specified with one of the following:

MANAGED

Specifies a managed association.

A managed association does not provide password synchronization. A managed association allows commands to be directed from the managing user ID to the managed user ID (that is, from userid1 to node.userid2).

A managed association does not allow commands to be directed from the managed user ID to the managing user ID (that is, node.userid2 cannot direct commands to userid1).

PEER(NOPWSYNC)

Specifies a peer association without password synchronization.

Either user ID in a peer association can direct commands to the other user ID in the association.

If no association type is specified, PEER(NOPWSYNC) is the default.

PEER(PWSYNC)

Specifies a peer association with password synchronization.

Either user ID in a peer association can direct commands to the other user ID in the association.

If either user in the association changes their password, the password is automatically changed for the other user in the association.

READ access to the RACLINK.PWSYNC.resource is required to use the RACLINK command to define a peer association with the PWSYNC attribute. READ access to the PWSYNC resource is required to synchronize the passwords when one of the associated users changes their password.

If the RRSFDATA class is not active, you cannot define an association with the PWSYNC attribute, or synchronize passwords.
RACLINK

UNDEFINE([node].userid2 ...
Specifies that a user ID association is ended between userid2 on node and userid1 on the node where the command is processed. Either member of an association can end an association.

If a user ID has attempted to establish an association with your user ID which requires approval, and you do not want to approve it, use the UNDEFINE keyword to reject the pending association.

APPROVE([node1].userid1 ...
Specifies that userid2 on node2 approves of a pending association between userid2 at node2 and userid1 at node1. node1 is the node where the RACLINK DEFINE was issued, and node2 is the node where userid2 issues the command.

Examples

Example 1

Operation The security administrator wants to know what, if any, associations user DENICE has with user BETH.

Known The security administrator wants to issue the command as a RACF TSO command.

Command RACLINK ID(DENICE) LIST(*.BETH)

Defaults None.

Output See Figure 55 on page 407.

Example 2

Operation User DENICE wants to define password synchronization between all of her MVS user IDs; DENICE at NODE1, DENICE at NODE2, and DENICE at NODE3.

Known DENICE wants to issue the command as a RACF TSO command. DENICE has the authority to issue the RACLINK command for her own user IDs and has the authority to establish password synchronization for her own user IDs. The command is to be issued from DENICE at NODE1.

Command RACLINK DEFINE(NODE2.DENICE/passw2 NODE3.DENICE/passw3) PEER(PWSYNC)

Defaults None.

Results DENICE at NODE1 receives the following messages:

IRRT032I RACLINK command to associate user ID DENICE with NODE2.DENICE is pending approval.
IRRT032I RACLINK command to associate user ID DENICE with NODE3.DENICE is pending approval.
IRRP097I Peer association with DENICE at node NODE2 has been approved.
IRRP097I Peer association with DENICE at node NODE3 has been approved.

When user DENICE changes her password on one of her MVS user IDs, the new password propagates to take effect on her other user IDs. The password is checked for validity only on the node where user DENICE issues the command to change her password, not at any of the other nodes.
Example 3

Operation User BETH wants to define a MANAGED user ID association where BETH is the managing user ID and DENICE is the managed user ID.

Known User BETH:
- wants to issue the command as a RACF TSO command,
- does not know the password for user DENICE, and
- has the authority to issue the RACLINK command for her own user ID.

Command RACLINK DEFINE(NODE1.DENICE) MANAGED

Defaults None.

Results User BETH receives the following message:

IRRT032I RACLINK command to associate user ID BETH with NODE1.DENICE is pending approval.

User DENICE receives the following message:

IRRP094I Managed association with DENICE at node NODE1 issued by BETH waiting for your approval.

The association remains pending until DENICE at NODE1 either approves the association with a RACLINK APPROVE command or rejects the association with a RACLINK UNDEFINE command.

ASSOCIATION information for user ID DENICE on node NODE1 at 1:12:31 on 04/01/95:

<table>
<thead>
<tr>
<th>Association Type</th>
<th>Node.userid</th>
<th>Password Sync</th>
<th>Association Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEER OF</td>
<td>NODE1.BETH</td>
<td>YES</td>
<td>ESTABLISHED</td>
</tr>
<tr>
<td>MANAGED BY</td>
<td>NODE2.BETH</td>
<td>N/A</td>
<td>PENDING APPROVAL BY DENICE</td>
</tr>
<tr>
<td>PEER OF</td>
<td>NODE3.BETH</td>
<td>NO</td>
<td>PENDING APPROVAL BY BETH</td>
</tr>
</tbody>
</table>

Figure 55. Example 1: Output for the RACLINK LIST Command
RACMAP (Create, delete, list, or query a distributed identity filter)

Purpose

Use the RACMAP command to create, delete, list, and query a distributed identity filter. A distributed identity filter is a mapping association between a RACF user ID and one or more distributed user identities. The filter consists of all or selected components of a distributed-identity user name and the distributed-identity registry name.

When you use the RACMAP command to add a distributed identity filter, RACF creates a general resource profile in the IDIDMAP class. RACF uses distributed identity filters to determine the RACF user ID of a user who attempts to access the system using a distributed identity.

RACF accepts distributed user information from authorized applications that issue the RACROUTE REQUEST=VERIFY request or the initACEE callable service (IRRSIA00), and determines the RACF user ID of the distributed user by matching the distributed-identity user name and registry name with the filters in IDIDMAP class profiles.

For information about how to use a distributed identity filter to map distributed identities to a RACF user ID, see “Distributed identity filters” in z/OS Security Server RACF Security Administrator's Guide.

Issuing options

The following table identifies the eligible options for issuing the RACMAP command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No. (See rules.)</td>
<td>No. (See rules.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Rules: The following rules apply when issuing this command.

- The RACMAP command cannot be directed to a remote system using the AT or ONLYAT keyword.
- Updates made to the RACF database by RACMAP are eligible for propagation with automatic direction of application updates based on the RRSFDATA profile named AUTODIRECT.target-node.IDIDMAP.APPL, where target-node is the remote node to which the update is to be propagated.

For information on issuing this command as a RACF TSO command, see Chapter 3, “RACF TSO commands,” on page 15.

Related commands

None.

The MAP, DELMAP and LISTMAP functions of the RACMAP command are unrelated to the MAP, DELMAP and LISTMAP functions of the RACDCERT command.
Authorization required

To issue the RACMAP command, you must have SPECIAL authority or sufficient authority to the IRR.IDIDMAP function resource in the FACILITY class, where function is MAP, DELMAP, LISTMAP, or QUERY.

Table 34. Authority required for the RACMAP command

<table>
<thead>
<tr>
<th>IRR.IDIDMAP function</th>
<th>Access level</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP</td>
<td>READ</td>
<td>Create a filter for your own RACF user ID.</td>
</tr>
<tr>
<td></td>
<td>UPDATE</td>
<td>Create a filter for another RACF user ID.</td>
</tr>
<tr>
<td>DELMAP</td>
<td>READ</td>
<td>Delete a filter for your own RACF user ID.</td>
</tr>
<tr>
<td></td>
<td>UPDATE</td>
<td>Delete a filter for another RACF user ID.</td>
</tr>
<tr>
<td>LISTMAP</td>
<td>READ</td>
<td>List a filter for your own RACF user ID.</td>
</tr>
<tr>
<td></td>
<td>UPDATE</td>
<td>List a filter for another RACF user ID.</td>
</tr>
<tr>
<td>QUERY</td>
<td>READ</td>
<td>Query a filter to find the matching RACF user ID.</td>
</tr>
</tbody>
</table>

Activating your changes

To activate your changes, you must activate and RACLIST the IDIDMAP class. When you create a distributed identity filter for the first time, issue the following command.

Example:

```
SETROPTS CLASSACT(IDIDMAP) RACLIST(IDIDMAP)
```

If the IDIDMAP class is already active and RACLISTed, refresh the class to activate your changes.

Example:

```
SETROPTS RACLIST(IDIDMAP) REFRESH
```

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the RACMAP command is:

```
RACMAP
  [ ID(userid) ]
  MAP
    USERDIDFILTER(NAME('distributed-identity-user-name' | '*'))
    REGISTRY(NAME('distributed-identity-registry-name' | '*'))
    [ WITHLABEL('label-name') ]
  | DELMAP
  | [ (LABEL('label-name')) ]
  | LISTMAP
  | [ (LABEL('label-name')) ]
  QUERY
    USERDIDFILTER(NAME('distributed-identity-user-name'))
    REGISTRY(NAME('distributed-identity-registry-name'))
```
RACMAP

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

ID(userid)

Specifies the RACF user ID mapped by the distributed identity filter. The user ID must already be defined to RACF. If you do not specify ID, the default value is the RACF user ID of the command issuer.

The ID operand is ignored when specified with the QUERY function.

MAP

Specifies the MAP function of the RACMAP command. Use the MAP function to create a distributed identity filter that maps a user's distributed identity to a RACF user ID. The MAP function creates a profile in the IDIDMAP class for each filter you create.

Rule: When you specify the MAP function, you must specify USERDIDFILTER and REGISTRY.

USERDIDFILTER(NAME('distributed-identity-user-name' | '*'))

Specifies the significant portion of the distributed-identity user name. RACF uses the user name as part of the distributed identity filter to map a distributed identity to a RACF user ID.

The USERDIDFILTER operand is required for the MAP and QUERY functions and ignored for other RACMAP functions.

Specify the user name value enclosed in single quotation marks. If a single quotation mark is intended to be part of the name, specify two single quotation marks together for each single quotation mark in the name, and enclose the entire name value in single quotation marks.

The maximum length for a user name is 246 bytes.

In general, the user name can contain blank and mixed-case characters. Any leading or trailing blank or null characters are removed from the value before it is stored in the IDIDMAP profile.

You cannot specify the name value as a hexadecimal character string.

Examples:

USERDIDFILTER(NAME('DENICE'))
USERDIDFILTER(NAME('UID=GUSKI,OU=Tools,O=IBM,C=US'))
USERDIDFILTER(NAME('Rich's ID'))
USERDIDFILTER(NAME('Dev\+Test219'))
USERDIDFILTER(NAME('*'))

Restriction for names containing multibyte characters: Because RACF converts the name value you specify from EBCDIC to UTF-8 format prior to storing it in the RACF database, if your value contains multibyte characters, the resulting UTF-8 value might be longer than 246 bytes. If this occurs, the command fails and message IRRW213I is issued.

Format of the user name value: Specify the user name value in any of the following three formats:

1. As a single asterisk (X'5C') to indicate that any user name matches this filter.
2. As a simple character string, such as a user ID defined in a non-LDAP registry.
Typically, special characters do not appear in user names stored within a registry. However, if you need to specify a user name value that includes certain characters, they must be preceded by the backslash (\) escape character.

These characters include the plus sign (+), semicolon (;), comma (,), quotation mark ("), backslash (\), less than symbol (<), greater than symbol (>) and the equal sign (=).

3. As a character string that represents an X.500 distinguished name (DN).
 A DN consists of one or more relative distinguished names (RDNs). Each RDN consists of an attribute type and attribute value, separated by an equal sign (=). RDNs are separated by a comma (,).
 When you use mixed-case characters to specify the user name as a DN, the RACMAP command translates the attribute types to uppercase characters, and preserves the mixed-case characters of the attribute value.

 The RACMAP command performs no validity checking of the X.500 names you specify.

Rules for specifying the user name as a distinguished name (DN):
- Specify the user name value in its canonical form, as it is defined within the registry, with any special characters preceded by the backslash (\) escape character. You must specify the RDNs in their correct sequence.
 For example, for users of WebSphere® Application Server applications, the canonical form of the user name must match the value returned by the WSCredential interface method called getUniqueSecurityName().
- Typically, special characters do not appear in user names stored within a registry. However, if you need to specify a user name value that includes certain characters, including LDAP special characters, they must be preceded by the backslash (\) escape character.
 These characters include the plus sign (+), semicolon (;), comma (,), quotation mark ("), backslash (\), less than symbol (<), greater than symbol (>) and the equal sign (=).
 Exception: Do not escape the equal sign (=), semicolon (;), or comma (,) when you specify them as delimiters of an RDN.
- Do not specify a blank character immediately preceding or following the equal sign (=) when using the equal sign as a delimiter of an attribute type or an RDN.

Normalization of the X.500 distinguished name (DN): When you specify the user name as a DN, the name is normalized before it is stored in the IDIDMAP profile. The normalized form of the DN appears in the output of the RACMAP LISTMAP command.
Normalization of the DN is done as follows:
- Any leading blank or null characters at the beginning of each RDN are removed.
- Any trailing blank or null characters at the end of each RDN are removed with the following exception.
 Exception: The last escaped blank or null character that precedes an RDN delimeter (an unescaped semicolon or comma) is not removed unless it appears in the last RDN.
- Any unescaped semicolon delimiter is replaced by a comma.
Any lowercase characters that appear in the attribute type of each RDN are translated to uppercase characters.

Note: During normalization, a character is processed as an escaped character when it is preceded by an odd number of consecutive backslash characters.

```plaintext
REGISTRY(NAME('distributed-identity-registry-name' | '*'))
```

Specifies the registry that contains the distributed-identity user name. RACF uses the registry name as part of the distributed identity filter to map a distributed identity to a RACF user ID.

The REGISTRY operand is required for the MAP and QUERY functions and ignored for other RACMAP functions.

Specify the registry name value enclosed in single quotation marks. If a single quotation mark is intended to be part of the name, specify two single quotation marks together for each single quotation mark in the name, and enclose the entire name value in single quotation marks.

You can specify a single asterisk (X'5C') as the registry name to indicate that any distributed-identity registry name matches this filter.

The maximum length for a registry name is 255 bytes.

The registry name can contain blank and mixed-case characters. Any leading or trailing blank or null characters are removed from the value before it is stored in the IDIDMAP profile.

You cannot specify the name value as a hexadecimal character string.

Examples:

```plaintext
REGISTRY(NAME('ldaps://us.richradioham.com'))
REGISTRY(NAME('ldap://12.34.56.78:389'))
```

Restriction for names containing multibyte characters: Because RACF converts the name value you specify from EBCDIC to UTF-8 format prior to storing it in the RACF database, if your value contains multibyte characters, the resulting UTF-8 value might be longer than 255 bytes. If this occurs, the command fails and message IRRW213I is issued.

Defining registry names for LDAP servers: When the user’s distributed identity is based on an LDAP registry, specify the `distributed-identity-registry-name` value as the URL of the LDAP server where the user is defined. The URL is defined with a `listen` option in the `ds.conf` configuration file of the LDAP server, or overridden using the `-l` command-line parameter when the LDAP server is started.

For information about LDAP URLs, see [z/OS IBM Tivoli Directory Server Administration and Use for z/OS](https://www.ibm.com/support/knowledgecenter/SSEKJW_1.2.3.6/ibmtds_admin.html).

For users of WebSphere Application Server applications: The registry name must match the value returned by the `WSCredential` interface method called `getRealmName()`.

The RACMAP command performs no validity checking of the registry names you specify.

```plaintext
WITHLABEL('label-name')
```

Specifies the label assigned to this distributed identity filter. If specified, the label must be unique to the RACF user ID associated with this filter.
If WITHLABEL is not specified, RACF generates a label for the filter in the form of LABELnnnnnnn, where nnnnnnnn is the first integer value, starting at 00000001 that generates a unique label name.

Up to 32 characters can be specified for label-name. The label name can contain blank and mixed-case characters. Any leading or trailing blank characters are removed from the value before it is stored in the IDIDMAP profile.

Specify the label name value enclosed in single quotation marks. If a single quotation mark is intended to be part of the label name, specify two single quotation marks together for each single quotation mark in the name, and enclose the entire label name in single quotation marks.

The WITHLABEL operand is ignored when the RACMAP function is not MAP.

DELMAP

Specifies the DELMAP function of the RACMAP command. Use the DELMAP function to delete a distributed identity filter for the specified RACF user ID. The DELMAP function deletes the profile in the IDIDMAP class that contains the specified filter.

Rule: You must specify LABEL when the specified RACF user ID is associated with more than one filter.

LABEL(’label-name’)

Specifies the label name of the distributed identity filter to delete for the specified RACF user ID.

The LABEL operand is ignored when the RACMAP function is not DELMAP or LISTMAP.

Performance consideration: When you issue the RACMAP DELMAP command specifying both filter label and a user ID for which no user profile exists, RACF searches all profiles in the IDIDMAP class to locate and delete all distributed identity filters that match. This search might take an extended period of time.

LISTMAP

Specifies the LISTMAP function of the RACMAP command. Use the LISTMAP function to list information about a distributed identity filter for the specified RACF user ID.

Rule: You must specify LABEL when the specified RACF user ID is associated with more than one filter.

LABEL(’label-name’)

Specifies the label name of the distributed identity filter to list for the specified RACF user ID.

Tip: Omit LABEL to list all filters associated with the specified user ID.

The LABEL operand is ignored when the RACMAP function is not DELMAP or LISTMAP.

Note: When you define a distributed-identity user name as an X.500 distinguished name (DN), the DN appears in its normalized form in the LISTMAP output. For details about how a DN is normalized, see the description of the USERDIDFILTER operand of the MAP function.
If the filter cannot be listed because the IDIDMAP profile containing it is missing or incomplete, the following error text appears in the LISTMAP output:

Filter with label label-name not found.

Guideline: When this error text appears in the LISTMAP output, issue a RACMAP DELMAP command specifying this label name to remove residual filter information from the user’s profile.

A missing or incomplete IDIDMAP profile might result if a previous RACMAP MAP command failed to complete due to a system failure or early termination by the issuer. If the filter or IDIDMAP profile were not created before the failure, the resulting user profile might contain residual filter information indicating that the RACF user ID is associated with a filter.

When you do not specify a RACMAP function, LISTMAP is the default function.

QUERY

Specifies the QUERY function of the RACMAP command. Use the QUERY function to find the matching RACF user ID that is associated with a distributed identity filter.

Rule: When you specify the QUERY function, you must specify USERDIDFILTER and REGISTRY.

USERDIDFILTER(NAME('distributed-identity-user-name'))

Specifies the significant portion of the distributed-identity user name. RACF uses the user name as part of the distributed identity filter to map a distributed identity to a RACF user ID.

The USERDIDFILTER operand is required for the MAP and QUERY functions and ignored for other RACMAP functions.

Specify the user name value enclosed in single quotation marks. If a single quotation mark is intended to be part of the name, specify two single quotation marks together for each single quotation mark in the name, and enclose the entire name value in single quotation marks.

The maximum length for a user name is 246 bytes.

In general, the user name can contain blank and mixed-case characters. Any leading or trailing blank or null characters are removed from the value before it is stored in the IDIDMAP profile.

You cannot specify the name value as a hexadecimal character string.

Examples:

- USERDIDFILTER(NAME('DENICE'))
- USERDIDFILTER(NAME('UID=GUSKI,OU=Tools,O=IBM,C=US'))
- USERDIDFILTER(NAME('Rich''s ID'))
- USERDIDFILTER(NAME('Dev\+Test219'))

Restriction for names containing multibyte characters: Because RACF converts the name value you specify from EBCDIC to UTF-8 format prior to storing it in the RACF database, if your value contains multibyte characters, the resulting UTF-8 value might be longer than 246 bytes. If this occurs, the command fails and message IRRW213I is issued.

Format of the user name value: Specify the user name value in either of the following two formats:

1. As a simple character string, such as a user ID defined in a non-LDAP registry.
Typically, special characters do not appear in user names stored within a registry. However, if you need to specify a user name value that includes certain characters, they must be preceded by the backslash (\) escape character.

These characters include the plus sign (+), semicolon (;), comma (,), quotation mark ("), backslash (\), less than symbol (<), greater than symbol (>) and the equal sign (=).

2. As a character string that represents an X.500 distinguished name (DN). A DN consists of one or more relative distinguished names (RDNs). Each RDN consists of an attribute type and attribute value, separated by an equal sign (=). RDNs are separated by a comma (,).

When you use mixed-case characters to specify the user name as a DN, the RACMAP command translates the attribute types to uppercase characters, and preserves the mixed-case characters of the attribute value.

The RACMAP command performs no validity checking of the X.500 names you specify.

Rules for specifying the user name as a distinguished name (DN):
- Specify the user name value in its canonical form, as it is defined within the registry, with any special characters preceded by the backslash (\) escape character. You must specify the RDNs in their correct sequence.

 For example, for users of WebSphere Application Server applications, the canonical form of the user name must match the value returned by the WSCredential interface method called getUniqueSecurityName().

- Typically, special characters do not appear in user names stored within a registry. However, if you need to specify a user name value that includes certain characters, including LDAP special characters, they must be preceded by the backslash (\) escape character.

 These characters include the plus sign (+), semicolon (;), comma (,), quotation mark ("), backslash (\), less than symbol (<), greater than symbol (>) and the equal sign (=).

 Exception: Do not escape the equal sign (=), semicolon (;), or comma (,) when you specify them as delimiters of an RDN.

 - Do not specify a blank character immediately preceding or following the equal sign (=) when using the equal sign as a delimiter of an attribute type or an RDN.

Normalization of the X.500 distinguished name (DN): When you specify the user name as a DN, the name is normalized before it is used to find the matching user ID that is associated with the distributed identity filter. For details about how the DN is normalized, see the description of the USERDIDFILTER operand of the MAP function.

REGISTRY(NAME('distributed-identity-registry-name' | '*'))

Specifies the registry that contains the distributed-identity user name. RACF uses the registry name as part of the distributed identity filter to map a distributed identity to a RACF user ID.

The REGISTRY operand is required for the MAP and QUERY functions and ignored for other RACMAP functions.
Specify the registry name value enclosed in single quotation marks. If a single quotation mark is intended to be part of the name, specify two single quotation marks together for each single quotation mark in the name, and enclose the entire name value in single quotation marks.

The maximum length for a registry name is 255 bytes.

Examples:
REGISTRY(NAME('ldaps://us.richradioham.com'))
REGISTRY(NAME('ldap://12.34.56.78:389'))

The registry name can contain blank and mixed-case characters. Any leading or trailing blank or null characters are removed from the value before it is stored in the IDIDMAP profile.

You cannot specify the name value as a hexadecimal character string.

Restriction for names containing multibyte characters: Because RACF converts the name value you specify from EBCDIC to UTF-8 format prior to storing it in the RACF database, if your value contains multibyte characters, the resulting UTF-8 value might be longer than 255 bytes. If this occurs, the command fails and message IRRW213I is issued.

Defining registry names for LDAP servers: When the user's distributed identity is based on an LDAP registry, specify the distributed-identity-registry-name value as the URL of the LDAP server where the user is defined. The URL is defined with a listen option in the ds.conf configuration file of the LDAP server, or overridden using the -l command-line parameter when the LDAP server is started.

For information about LDAP URLs, see z/OS IBM Tivoli Directory Server Administration and Use for z/OS.

For users of WebSphere Application Server applications: The registry name must match the value returned by the WSCredential interface method called getRealmName().

The RACMAP command performs no validity checking of the registry names you specify.

Examples

Example 1
Operation The security administrator wants to add a distributed identity filter that specifies the distributed user's name using all RDNs of the user's X.500 distinguished name.
Known The security administrator has the SPECIAL attribute.
Command RACMAP ID(RLCOOK) MAP
USERIDFILTER(NAME('UID=BobC,CN=Bob Cook,OU=Accounting,O=BobsMart,C=US'))
REGISTRY(NAME('ldaps://us.bobsmarturl.com'))
WITHLABEL('Accounting boss')

Defaults None.
Output None. For a listing of the output of the RACMAP LISTMAP command for this filter, see Figure 56 on page 417.

Example 2
Operation The security administrator wants to add a distributed identity filter that specifies the distributed user's name using selected RDNs of the user's X.500 distinguished name.
Known The security administrator has the SPECIAL attribute.
Command RACMAP ID(ACCTUSER) MAP
USERIDFILTER(NAME('OU=Accounting,O=BobsMart,C=US'))
REGISTRY(NAME('ldaps://us.bobsmarturl1.com'))
WITHLABEL('Accounting office workers')

Defaults None.
Output None. For a listing of the output of the RACMAP LISTMAP command for this filter, see Figure 57 on page 417.
Example 3

Operation The security administrator wants to add a distributed identity filter that specifies the distributed user's name as a non-LDAP user name.

Known The security administrator has the SPECIAL attribute.

Command

```r*
RACMAP ID(DENICE) MAP
  USERDIDFILTER(NAME('DENICE'))
  REGISTRY(NAME('Registry01'))
  WITHLABEL('Filter for Denice from Registry01')
```

Defaults None.

Output None. For a listing of the RACMAP LISTMAP command for this filter, see Figure 58 on page 418.

Example 4

Operation The security administrator wants to delete the distributed identity filter labeled Filter for Denice from Registry01 for the RACF user ID DENICE.

Known The security administrator has the SPECIAL attribute.

Command

```r*
RACMAP ID(DENICE) DELMAP(LABEL('Filter for Denice from Registry01'))
```

Defaults None.

Output None.

Example 5

Operation User GUSKI wants to list a distributed identity filter and knows that RLCOOK is the RACF user ID that is associated with it.

Known User GUSKI has UPDATE access to the IRR.IDIDMAP.LISTMAP resource in the FACILITY class.

Command

```r*
RACMAP ID(RLCOOK) LISTMAP
```

Defaults None.

Output See Figure 56.

Example 6

Operation User GUSKI wants to find out the RACF user ID associated with the distributed identity filter for the user name OU=Accounting,O=BobsMart,C=US in registry ldaps://us.bobsmarturl.com.

Known User GUSKI has READ access to the IRR.IDIDMAP.QUERY resource in the FACILITY class.

Command

```r*
RACMAP QUERY
  USERDIDFILTER(NAME('OU=Accounting,O=BobsMart,C=US'))
  REGISTRY(NAME('ldaps://us.bobsmarturl.com'))
```

Defaults None.

Output RACMAP QUERY result. RACF user ID: ACCTUSER

Note For a listing of the output of the RACMAP LISTMAP command for this filter, see Figure 57.

<table>
<thead>
<tr>
<th>RACMAP ID(RLCOOK) LISTMAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapping information for user RLCOOK:</td>
</tr>
<tr>
<td>Label: Accounting boss</td>
</tr>
<tr>
<td>Distributed Identity User Name Filter:</td>
</tr>
<tr>
<td>>UID=BobC,CN=Bob Cook,OU=Accounting,O=BobsMart,C=US<</td>
</tr>
<tr>
<td>Registry name:</td>
</tr>
<tr>
<td>>ldaps://us.bobsmarturl.com<</td>
</tr>
</tbody>
</table>

Figure 56. Example 1: Output for the RACMAP LISTMAP command

<table>
<thead>
<tr>
<th>RACMAP ID(ACCTUSER) LISTMAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapping information for user ACCTUSER:</td>
</tr>
<tr>
<td>Label: Accounting office workers</td>
</tr>
<tr>
<td>Distributed Identity User Name Filter:</td>
</tr>
<tr>
<td>>OU=Accounting,O=BobsMart,C=US<</td>
</tr>
<tr>
<td>Registry name:</td>
</tr>
<tr>
<td>>ldaps://us.bobsmarturl.com<</td>
</tr>
</tbody>
</table>

Figure 57. Example 2: Output for the RACMAP LISTMAP command
RACMAP ID(DENICE) LISTMAP

Mapping information for user DENICE:
Label: Filter for Denice from Registry01
Distributed Identity User Name Filter: >DENICE<
Registry name: >Registry01<

Figure 58. Example 3: Output for the RACMAP LISTMAP command
RACPRIV (Set write-down privileges)

Purpose

Use the RACPRIV command to allow users, who are authorized to the profile IRR.WRITEDOWN.BYUSER in the FACILITY class, to set, reset, and query the setting of the write-down privilege that they are running within their address space. This command ends with an error message if write-down by user is not active on the system.

To activate write-down by user, the profile IRR.WRITEDOWN.BYUSER must be defined in the FACILITY class, the FACILITY class must be active and RACLISTed, and the SETR MLS option must be active.

Issuing options

The following table identifies the eligible options for issuing the RACPRIV command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Authorization required

To issue the RACPRIV command, the user must have at least READ access to IRR.WRITEDOWN.BYUSER.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the RACPRIV command is:

```
RACPRIV
   [ WRITEDOWN [( ACTIVE | INACTIVE | RESET )] ]
```

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

Parameters

WRITEDOWN

Specifies the user’s current write-down mode. If WRITEDOWN is specified without a value, or if RACPRIV is issued without any keywords, the current write-down mode is listed. The write-down privilege can only be set, reset, or listed if the FACILITY class is active and RACLISTed, the profile IRR.WRITEDOWN.BYUSER exists in the FACILITY class in the RACLISTed profiles, the SETR MLS option is active, and the user issuing the command has authority to IRR.WRITEDOWN.BYUSER.
RACPRIV

ACTIVE
Specifies that the user's write-down mode be set on.

INACTIVE
Specifies that the user's write-down mode be set off.

RESET
Specifies that the user's write-down mode be reset to the user's installation defined default.

Examples

Example 1

Operation User DEBBIE1 wants to know her current write-down setting.

Known
- DEBBIE1 has READ access to IRR.WRITEDOWN.BYUSER.
- The FACILITY class is active and RACLISTed.
- The profile IRR.WRITEDOWN.BYUSER exists in the FACILITY class in the RACLISTed profiles.
- The SETROPTS MLS option is active.

Command RACPRIV

Defaults None.

Output User DEBBIE1 might receive the following message:

WRITEDOWN is not currently active for this user

Example 2

Operation User DEBBIE1 wants to set her write-down setting to active.

Known
- DEBBIE1 has READ access to IRR.WRITEDOWN.BYUSER.
- The FACILITY class is active and RACLISTed.
- The profile IRR.WRITEDOWN.BYUSER exists in the FACILITY class in the RACLISTed profiles.
- The SETROPTS MLS option is active.

Command RACPRIV WRITEDOWN(ACTIVE)

Defaults None.

Output User DEBBIE1 will receive the following message:

WRITEDOWN is currently active for this user
RALTER (Alter general resource profile)

Purpose

Use the RALTER command to:

- Alter the profile for one or more resources belonging to classes defined in the class descriptor table. Using RALTER to modify an automatic TAPEVOL profile (a profile RACF creates automatically as part of protecting a tape data set) makes that TAPEVOL profile nonautomatic. For more information about TAPEVOL profiles, see z/OS Security Server RACF Security Administrator’s Guide.
- Change the global access checking table
- Change the attributes of classes in the dynamic class descriptor table
- Change the list of security categories
- Change the list of security levels

To have changes take effect after altering a generic profile if the class is not RACLISTed using the RACROUTE REQUEST=LIST, GLOBAL=YES, or SETROPTS RACLIST, one of the following steps is required:

- The security administrator issues the SETROPTS command:

 SETROPTS GENERIC(class-name) REFRESH

 See the SETROPTS command for authorization requirements.
- The user of the resource logs off and logs on again.

To have changes take effect after altering a generic profile if the class has been RACLISTed, the security administrator issues the following command:

SETROPTS RACLST(class-name) REFRESH

Attention:

- When the RALTER command is issued from ISPF, the TSO command buffer (including SESSKEY, SSIGNON and possible BINDPW password data) is written to the ISPLOG data set. As a result, you should not issue this command from ISPF or you must control the ISPLOG data set carefully.
- When the command is issued as a RACF operator command, the command (including SESSKEY, SSIGNON and possible BINDPW password data) is written to the system log. Therefore, if any of the sensitive operands are used the command should be issued through TSO, not as an operator command.

Issuing options

The following table identifies the eligible options for issuing the RALTER command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.
For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.

Related commands
- To define a general resource profile, see “RDEFINE (Define general resource profile)” on page 481.
- To list a general resource profile, see “RLIST (List general resource profile)” on page 550.
- To permit or deny access to a general resource profile, see “PERMIT (Maintain resource access lists)” on page 261.
- To obtain a list of general resource profiles, see “SEARCH (Search RACF database)” on page 580.

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator's Guide.

To alter the profile for a resource belonging to a class defined in the class descriptor table, you must have sufficient authority over the resource. RACF makes the following checks until one of the conditions is met:
- You have the SPECIAL attribute.
- The resource profile is within the scope of a group in which you have the group-SPECIAL attribute.
- You are the owner of the profile.
- If the profile is in the FILE or DIRECTRY class, the second qualifier of the profile name is your user ID.
- To assign a security label, you must have the SPECIAL attribute or have READ access to the security label profile. However, the security administrator can limit the ability to assign security labels to only users with the SPECIAL attribute.
- To assign a security category to a profile, you must have the SPECIAL attribute, or the category must be in your user profile.
- To assign a security level to a profile, you must have the SPECIAL attribute, or, in your own profile, a security level that is equal to or greater than the security level you are assigning.
- Only a SPECIAL user can define a delegated resource (by specifying the RACF-DELEGATED string in the APPLDATA of the profile protecting the resource) when the resource has a SECLABEL and SETROPTS SECLABELCONTROL is in effect.
- To modify information in segments other than the base segment, such as DLFDATA, you must have the SPECIAL attribute or your installation must permit you to do so through field-level access checking.
- For a discrete profile, you are on the access list for the resource and you have ALTER authority. If you have any other level of authority, you cannot use the command for this resource.
- For a discrete profile, your current connect group (or, if list-of-groups checking is active, any group to which you are connected) is in the access list and has ALTER authority.
For a discrete profile, the universal access authority for the resource is ALTER.

To use the GLOBALAUDIT operand, you must have the AUDITOR attribute or the profile is within the scope of a group in which you have group-AUDITOR attribute.

If you have the AUDITOR attribute or the resource profile is within the scope of a group in which you have the group-AUDITOR attribute, but you do not satisfy one of the above checks, you can specify only the GLOBALAUDIT operand.

Restrictions: The following operands have restrictions noted with the description of each operand:

- ADDMEM
- DELMEM
- ADDVOL
- GLOBALAUDIT

To specify the AT keyword, you must have READ authority to the DIRECT.node resource in the RRSFDATA class and a user ID association must be established between the specified node.userid pair(s).

To specify the ONLYAT keyword you must have the SPECIAL attribute, the userid specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified node.userid pair(s) if the user IDs are not identical.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the RALTER command is:

```
[subsystem-prefix][RALTER | RALT]

    class-name
    (profile-name ...)

    [ ADDCATEGORY(category-name ...)
    | DELCATEGORY [ (category-name ... | *) ] ]
    [ [ADDMEM | DELMEM] (member ...) ]
    [ [ADDVOL | DELVOL] (volume-serial ...) ]
    [ APPLDATA ('application-data') | NOAPPLDATA ]
    [ AT([node].userid ...) | ONLYAT([node].userid ...) ]
    [ AUDIT( access-attempt [audit-access-level] ...) ]
```
RALTER

[CDTINFO(
 [CASE (UPPER | ASIS) | NOCASE]
 [DEFAULTRC (0 | 4 | 8) | NODEFAULTRC]
 [DEFAULTUACC (ACEE | ALTER | CONTROL
 | UPDATE | READ | NONE)
 | NODEFAULTUACC]
 [FIRST (characters-allowed ...) | NOFIRST]
 [GENERIC (ALLOWED | DISALLOWED) | NOGENERIC]
 [GENLIST (ALLOWED | DISALLOWED) | NOGENLIST]
 [GROUP (grouping-class-name) | NOGROUP]
 [KEYQUALIFIERS (nnn) | NOKEYQUALIFIERS]
 [MACPROCESSING (NORMAL | REVERSE | EQUAL)
 | NOMACPROCESSING]
 [MAXLENGTH (nnn) | NOMAXLENGTH]
 [MAXLENX (nnn) | NOMAXLENX]
 [MEMBER (member-class-name) | NOMEMBER]
 [OPERATIONS (YES | NO) | NOOPERATIONS]
 [OTHER (characters-allowed ...) | NOOTHER]
 [POSIT (nnn) | NOPOSIT]
 [PROFESLALLOWED (YES | NO)
 | NOPROFILESALLOWED]
 [RACLIST (ALLOWED | DISALLOWED | REQUIRED)
 | NORACLST]
 [SECLABELSREQUIRED (YES | NO)
 | NOSECLABELSREQUIRED]
 [SIGNAL (YES | NO) | NOSIGNAL]
)
 | NOCDTINFO]

[CFDEF(
 [FIRST(ALPHA | ALPHANUM | ANY
 | NONATABC | NONATNUM | NUMERIC)]
 [HELP(help-text)]
 [LISTHEAD(list-heading-text)]
 [MAXLENGTH(maximum-field-length)]
 [MAXVALUE(maximum-numeric-value) | NOMAXVALUE]
 [MINVALUE(minimum-numeric-value) | NOMINVALUE]
 [MIXED(YES | NO)]
 [OTHER(ALPHA | ALPHANUM | ANY
 | NONATABC | NONATNUM | NUMERIC)]
)
 | NOCFDEF]

[DATA (‘installation-defined-data’) | NODATA]

[DLFDATA(
 [RETAIN (YES | NO) | NORETAIN]
 [JOBNAMEs(jobname1 ...)]
 [NOJOBNAMEs
 | ADDJOBNAMEs(jobname1 ...)
 | DELJOBNAMEs(jobname1 ...)]
)
 | NODLFDATA]
[EIM(
 [DOMAINDN (eim_domain_dn) | NODOMAINDN]
 [OPTIONS (ENABLE | DISABLE) | NOOPTIONS]
 [LOCALREGISTRY (registry_name) | NOLOCALREGISTRY]
 [KERBREGISTRY (registry_name) | NOKERBREGISTRY]
 [X509REGISTRY (registry_name) | NOX509REGISTRY]
)
 | NOEIM]
[GLOBALAUDIT (access-attempt[(audit-access-level)] ...)]

[ICSF(
 [ASYMUSAGE(
 [HANDSHAKE | NOHANDSHAKE]
 [SECUREEXPORT | NOSECUREEXPORT]
)
 | NOASYMUSAGE]
 [SYMEXPORTABLE(BYANY | BYLIST | BYNONE)
 | NOSYMEXPORTABLE]
 [SYMEXPORTCERTS([qualifier]/label-name ... | *)
 | ADDSYMEXPORTCERTS([qualifier]/label-name ... | *)
 | DELSYMEXPORTCERTS([qualifier]/label-name ... | *)
 | NOSYMEXPORTCERTS]
 [SYMEXPORTKEYS(ICSF-key-label ... | *)
 | ADDSYMEXPORTKEYS(ICSF-key-label ... | *)
 | DELSYMEXPORTKEYS(ICSF-key-label ... | *)
 | NOSYMEXPORTKEYS]
 [SYMCPACFWRAP (YES | NO)]
)
 | NOICSF]

[ICTX(
 [USEMAP(YES | NO) | NOUSEMAP]
 [DOMAP(YES | NO) | NODOMAP]
 [MAPREQUIRED(YES | NO) | NOMAPREQUIRED]
 [MAPPINGTIMEOUT(nnnn) | NOMAPPINGTIMEOUT]
)
 | NOICTX]

[KERB(
 [CHECKADDRS(YES | NO) | NOCHECKADDRS]
 [DEFTKTLFE(def-ticket-life) | NODEFTKTLFE]
 [ENCRYPT(
 [DES | NODES]
 [DES3 | NODES3]
 [DESD | NODESD]
 [AES128 | NOAES128]
 [AES256 | NOAES256]
)
 | NOENCRYPT]
 [KERBNAME(kerberos-realm-name) | NOKERBNAME]
 [MAXTKTLFE(max-ticket-life) | NOMAXTKTLFE]
 [MINTKTLFE(min-ticket-life) | NOMINTKTLFE]
 [PASSWORD(kerberos-password) | NOPASSWORD]
)
 | NOKERB]
[LEVEL (nnn)]
[NOTIFY [(userid)] | NONOTIFY]
[OWNER (userid or group-name)]

Chapter 5. RACF command syntax 425
[PROXY(
 [LDAPHOST (ldap_url) | NOLDAPHOST]
 [BINDDN (bind_distinguished_name) | NOBINDDN]
 [BINDPW (bind_password) | NOBINDPW]
)
 | NOPROXY]
[SECLABEL (seclabel-name) | NOSECLABEL]
[SECLEVEL (seclevel-name) | NOSECLEVEL]

[SESSION(
 [CONVSEC(NONE | CONV | ALREADYV | PERSISTV | AVPV)
 | NOCONVSEC]
 [INTERVAL(n) | NOINTERVAL]
 [LOCK | NOLOCK]
 [SESSKEY(session-key) | NOSESSKEY]
)
 | NOSESSION]

[SIGVER(
 [SIGREQUIRED(YES | NO) | NOSIGREQUIRED]
 [FAILLOAD(ANYBAD | BADSIGONLY | NEVER) | NOFAILLOAD]
 [SIGAUDIT(ALL | SUCCESS | ANYBAD | BADSIGONLY | NONE)
 | NOSIGAUDIT]
)
 | NOSIGVER]
[SINGLEDNS | NOSINGLEDNS]

[SSIGNON(
 [KEYMASKED(key-value)
 | KEYENCRYPTED(key-value)]
)
 | NOSSIGNON]

[STDATA(
 [USER(userid | =MEMBER) | NOUSER]
 [GROUP(group-name | =MEMBER) | NOGROUP]
 [PRIVILEGED(YES | NO) | NOPRIVILEGED]
 [TRACE(YES | NO) | NOTRACE]
 [TRUSTED(YES | NO) | NOTRUSTED]
)
 | NOSTDATA]

[SVFMR(
 [SCRIPTNAME(script-name) | NOSCRIPTNAME]
 [PARMNAME(parm-name) | NOPARMNAME]
)
 | NOSVFMR]
[TIMEZONE({E | W} hh [.mm]) | NOTIMEZONE]
For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

Parameters

subsystem-prefix

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

class-name

Specifies the name of the class to which the resource belongs. Valid class names are those defined in the class descriptor table. For a list of general resource classes defined in the class descriptor table supplied by IBM, see Appendix B, “Supplied RACF resource classes,” on page 693.

This operand is required and must be the first operand following RALTER. This command is not intended to be used for profiles in the following classes:

- DCEUUIDS
- DIGTCERT
- DIGTNMAP
RALTER

- DIGTRING
- IDIDMAP
- NDSLINK
- NOTE LINK
- ROLE
- UNIXMAP

(profile-name ...)

Specifies the name of the profile you want to change. The name you specify must be the name of an existing discrete or generic profile in the specified class. RACF uses the class descriptor table to determine the syntax of resource names within the class and whether the resource is a group.

Mixed-case profile names are accepted and preserved when class-name refers to a class defined in the static class descriptor table with CASE=ASIS or in the dynamic class descriptor table with CASE(ASIS).

This operand is required and must be the second operand following RALTER.

Note:

1. For class TAPEVOL, if the volume serial specified for profile-name is a member of a tape volume set, then the profile definition for all tapes in the set is changed, because there is only one profile for the tape volume set.

A tape volume set is used to refer to a set of two or more tapes created by the overflow of one tape to the next. RACF protects these tapes with one profile. Hence, if the value specified for profile-name on this command is a member of a tape volume set, the changes in its resource profile affect the other members of the set.

2. You can specify only a single volume serial number if you also specify the ADDVOL or DELVOL operand.

3. To define a controlled program, you must specify class-name as PROGRAM and also specify ADDMEM or DELMEM. Also, you can specify only one profile-name.

4. If you specify class-name as PROGRAM, profile-name must identify one or more load modules or program objects. If you specify the full name of the program, the profile applies only to load modules or program objects with that specific name. If you specify the last character of the name as an *, the profile applies to all load modules or program objects that match the preceding part of the name, but only if they reside in one of the libraries listed in the profile's member list. For example, IKF* identifies all load module names that begin with IKF. If you specify profile-name as * or **, then the profile applies to all load modules and program objects that reside in one of the libraries you identify in the profile's member list, unless a profile with a more specific name and matching library applies.

5. For z/OS Integrated Security Services Network Authentication Service, the profile name for the definition of the local realm must be KERBDFLT.

6. RACF processes each profile name you specify independently, and all operands you specify apply to each named profile name. If an error occurs while processing a profile name, RACF issues a message and continues processing with the next profile name.

ADDCATEGORY | DELCATEGORY

ADDCATEGORY(category-name ...)

Specifies one or more names of installation-defined security categories. The
category-name you specify must be defined as members of the CATEGORY profile in the SECDATA class. (For information on defining security categories, see z/OS Security Server RACF Security Administrator’s Guide.)

Specifying ADDCATEGORY causes RACF to add any category-name values you specify to any list of required categories that already exists in the resource profile. All users previously allowed to access the resource can continue to do so only if their profiles also include the additional values for category-name.

When the SECDATA class is active and you specify ADDCATEGORY, RACF performs security category checking in addition to its other authorization checking. If a user requests access to a resource, RACF compares the list of security categories in the user profile with the list of security categories in the resource profile. If RACF finds any security category in the resource profile that is not in the user’s profile, RACF denies access to the resource. If the user’s profile contains all the required security categories, RACF continues with other authorization checking.

Note:
1. RACF does not perform security category checking for a started task with the RACF privileged or trusted attribute. The RACF privileged or trusted attribute can be assigned to a started task through the RACF started procedures table or STARTED class. Also, RACF does not enforce security category information specified on profiles in the PROGRAM class.
2. If you specify both ADDCATEGORY and DELCATEGORY, RACF uses the last operand that you specify.

DELCATEGORY\[(category-name ... | *)\]
Specifies one or more names of installation-defined security categories you want to delete from the resource profile. Specifying an asterisk (*) deletes all categories; RACF no longer performs security category checking for the resource.

Specifying DELCATEGORY by itself causes RACF to delete from the profile only undefined category names (those category names that were once known to RACF but that the installation has since deleted from the CATEGORY profile).

Note: If you specify both ADDCATEGORY and DELCATEGORY, RACF uses the last operand that you specify.

ADDMEM | DELMEM
Specifies the resource names that RACF is to add to, or delete from, the member list of the resource group profile indicated by profile-name.

ADDMEM\(\text{member ...}\)
You can use the ADDMEM operand to perform tasks such as altering security categories and security levels, entries in the global access checking table, and entries for program control, or to implement security labels on a system basis, as described in the following sections.

If you specify ADDMEM to add one or more members to an existing profile, the new members are stored in the profile in the reverse of the order in which you specified them with the ADDMEM operand of the RALTER command. Additionally, if the existing profile already contains members, the new members are stored ahead of the existing members. For
example, if you specify ADDMEM(C D) with the RALTER command to add members to an existing profile that already contains the members A B, the resulting member list stored in the profile is D C A B.

Mixed-case member names are accepted and preserved when `class-name` refers to a class defined in the static class descriptor table with `CASE=ASIS` or in the dynamic class descriptor table with `CASE(ASIS)`. When `class-name` is `GLOBAL` and `profile-name` is the name of a class defined in the static class descriptor table with `CASE=ASIS` or in the dynamic class descriptor table with `CASE(ASIS)`, the name part of a member entry in the `GLOBAL` access table is preserved as entered.

For ADDMEM with the `GLOBAL DATASET` class, no characters including generic characters, such as the asterisk (`*`) and the percent sign (`%`), can be combined with the value `&RACUID` to form a single qualifier level of the member name. This restriction does not exist for ADDMEM with classes other than `GLOBAL DATASET`.

For ADDMEM with the `RACFVARS` class, the following rules apply:

- Do not specify generic characters, such as the ampersand (`&`), the asterisk (`*`) and the percent sign (`%`) in a member name.
- Issue the SETROPTS RACLIST(RACFVARS) REFRESH command to activate your member change.
- If your member change affects profiles in a class with in-storage profiles processed by RACLST or GENLIST, you must also refresh that class to activate your change.

For important guidelines, see "Administering the RACFVARS member list" in z/OS Security Server RACF Security Administrator’s Guide.

To add members using the RALTER command, you need one of the following authorities, in addition to the authority needed to issue the RALTER command:

1. For classes other than SECLABEL, PROGRAM, SECDATA, GLOBAL, RACFVARS, and NODES, if the member resources are already RACF-protected by a member class profile or as a member of a profile in the same grouping class, one of the following must be true:
 - You have ALTER access authority to the member.
 - You are the owner of the member resource.
 - The member resource is within the scope of a group in which you have the group-SPECIAL attribute.
 - You have the SPECIAL attribute.

2. For classes other than SECLABEL, PROGRAM, SECDATA, GLOBAL, RACFVARS, and NODES, if the member resources are not RACF-protected (that is, there is no profile defined for that member), one of the following must be true:
 - You have CLAUTH authority to define resources in the member resource class.
 - You have the SPECIAL attribute.

3. To add a member to a profile in the RACFVARS or NODES class, one of the following must be true:
 - You have CLAUTH authority to define resources in the specified class (for example, RACFVARS or NODES).
 - You have the SPECIAL attribute.
 - You are the owner of the profile indicated by `profile-name`.
4. To add a member to a profile in the PROGRAM or SECDATA class, one of the following must be true:
 - You have CLAUTH authority to define resources in the specified class (for example, PROGRAM or SECDATA).
 - You have the SPECIAL attribute.

5. To add a member to a profile in the GLOBAL class (other than the GLOBAL DATASET, GLOBAL DIRECTRY, or GLOBAL FILE profile) using the following syntax:

   ```
   RALT GLOBAL class-name
       ADDMEM(resource-name/access-level)
   ```

 - If the profile `resource-name` is already RACF-protected by a profile in class `class-name`:
 - You have ALTER access authority to the profile `resource-name` in class `class-name`.
 - You are the OWNER of the profile `resource-name`.
 - The profile `resource-name` in class `class-name` is within the scope of a group in which you have the group-special attribute.
 - You have the SPECIAL attribute.
 - If the profile `resource-name` is not already RACF-protected (that is, there is no profile defined for that member in class `class-name`):
 - You have CLAUTH authority to define resources in the class `class-name`.
 - You have the SPECIAL attribute.

6. To add a member to the GLOBAL DATASET profile, one of the following must be true:
 - You are the owner of the DATASET profile in the GLOBAL class.
 - The member is within the scope of a group in which you have the group-SPECIAL attribute.
 - You have the SPECIAL attribute.

7. To add a member to the GLOBAL DIRECTRY or GLOBAL FILE profile, you must have the SPECIAL attribute.

For more information on the format of member names in general, and for specific classes (SECLABEL, GLOBAL, NODES, PROGRAM, SECDATA), see "Specifying member on the ADDMEM operand" under the ADDMEM parameter of the RDEFINE command.

Note: If you specify both ADDMEM and DELMEM, RACF uses the last operand that you specify.

DELMEM(member . . .)

Specifies the resource names that are to be deleted from the resource group indicated by `profile-name`. This operand is ignored when the class name specified is not a resource group class.

If `class-name` is specified as GLOBAL the rules for `member` are the same as given for ADDMEM. If `class-name` is specified as SECDATA, `member` should be a valid SECLEVEL name or category name.

Mixed-case member names are accepted and preserved when `class-name` refers to a class defined in the static class descriptor table with CASE=ASIS or in the dynamic class descriptor table with CASE(ASIS). When `class-name`
is GLOBAL and profile-name is the name of a class defined in the static class descriptor table with CASE=ASIS or in the dynamic class descriptor table with CASE(ASIS), the name part of a member entry in the GLOBAL access table is preserved as entered.

For DELMEM with the RACFVARS class, the following rules apply:
- Issue the SETROPTS RACLIST(RACFVARS) REFRESH command to activate your member change.
- If your member change affects profiles in a class with in-storage profiles processed by RACLST or GENLIST, you must also refresh that class to activate your change.

For important guidelines, see “Administering the RACFVARS member list” in z/OS Security Server RACF Security Administrator’s Guide.

Note: If you specify both ADDMEM and DELMEM, RACF uses the last operand that you specify.

ADDVOL | DELVOL

ADDVOL(volume-serial ...)
Specifies the tape volume serial numbers to be added to the tape volume set represented by profile-name. When you specify ADDVOL, profile-name must be a single volume serial number, which can identify any of the volumes currently defined in the volume set.

To use the ADDVOL operand, you must have the SPECIAL attribute, or you must have the CLAUTH attribute for the TAPEVOL resource class in addition to the other authorization requirements for using the RALTER command.

If you specify a generic profile, RACF ignores this operand.

Note:
1. The ADDVOL operand is only valid for the TAPEVOL resource class.
2. If you specify both ADDVOL and DELVOL, RACF uses the last operand that you specify.

DELVOL(volume-serial ...)
Specifies the tape volume serial numbers to be deleted from the tape volume set represented by profile-name. When you specify DELVOL, profile-name must be a single volume serial number, which can identify any of the volumes currently defined in the volume set except one of the volumes to be deleted. If you specify the same volume serial number for both profile-name and DELVOL, RACF ignores it.

If you try to delete a tape volume when the TAPEVOL profile contains one or more TVTOC entries, RACF does not complete the command if a TVTOC entry indicates that there is a protected data set on the volume. To delete this volume, you must first use the DELDSD command to delete any protected data sets on the volume.

If you specify a generic profile, RACF ignores this operand.

Note:
1. The DELVOL operand is only valid for the TAPEVOL resource class.
2. If you specify both ADDVOL and DELVOL, RACF uses the last operand that you specify.
APPLDATA | NOAPPLDATA

APPLDATA('application-data')

Specifies a text string that is associated with each of the named resources. The text string can contain a maximum of 255 characters and must be enclosed in single quotation marks. It can also contain double-byte character set (DBCS) data.

Rules:

- For profiles in the PROGRAM class, RACF examines the APPLDATA (if any) and perform special processing if you have specified MAIN or BASIC (optionally followed by blanks). This processing will occur only for profiles whose names do not end in *, and only when you have enabled enhanced PGMSECURITY mode. For details of this processing, see z/OS Security Server RACF Security Administrator’s Guide.
- For the FACILITY class, RACF examines the APPLDATA value of the following profiles:
 - BPX.UNIQUE.USER
 The APPLDATA value specifies the name of a user profile from which RACF can copy OMVS segment information (other than UID) when assigning unique UIDs through a callable service.
 - BPX.DEFAULT.USER
 The APPLDATA value specifies a user ID and group name from which RACF can retrieve default OMVS segment information.
 Beginning with z/OS Version 1 Release 11, the BPX.DEFAULT.USER profile is ignored when the BPX.UNIQUE.USER profile is defined. Beginning with z/OS Version 2 Release 1, the BPX.DEFAULT.USER profile is no longer supported.
 - BPX.NEXT.USER
 The APPLDATA value specifies information that RACF will use for the automatic assignment of OMVS UIDs and GIDs.
 - IRR.PGMSECURITY
 The APPLDATA value specifies whether RACF will operate in basic, enhanced, or enhanced-warning PGMSECURITY mode.
 - If the APPLDATA value contains the string ENHANCED, then RACF will run in enhanced PGMSECURITY mode.
 - If the APPLDATA value contains the string BASIC, then RACF will run in basic PGMSECURITY mode.
 - If the APPLDATA is empty or contains any other value, RACF will run in enhanced PGMSECURITY mode but in warning mode rather than failure mode.
 - IRR.PROGRAM.SIGNING.group.userid
 - IRR.PROGRAM.SIGNING.userid
 - IRR.PROGRAM.SIGNING.group
 - IRR.PROGRAM.SIGNING
 For any of the IRR.PROGRAM.SIGNING profiles, the APPLDATA value specifies the signing hash algorithm, and the SAF key ring to use when signing a program.
 - IRR.PROGRAM.SIGNATURE.VERIFICATION
 The APPLDATA value specifies the SAF key ring to use when verifying the signature of a signed program.
RALTER

- For the TIMS and GIMS class, specify application-data as REVERIFY to force the user to reenter his password whenever the transaction or transactions listed in the profile-name or ADDMEM operands are used.
- For the PTKTDATA class, the application-data field can be used to control the replay protection function of PassTicket support.
 - PassTicket replay protection prevents the use of user IDs to be shared among multiple users. However, in some events it is desirable to bypass this replay protection function.
 - Specifying no replay protection in the application-data field indicates that replay protection is to be bypassed. For example, the following command would result in replay protection being bypassed.

```
RALTER PTKTDATA profile-name
   APPLDATA('NO REPLAY PROTECTION')
```

Note the following:
- There must be a single space between the words no and replay, and between replay and protection. Lack of spaces or additional spaces or characters will make the command ineffective. For example, entering the following command would not result in replay protection being bypassed.

```
RALTER PTKTDATA profile-name
   APPLDATA('NOREPLAY PROTECTION')
```
- The text string no replay protection will always be translated to uppercase.
- The text string no replay protection can appear anywhere in the APPLDATA field.

- For the APPL class, when the APPLDATA value contains the RACF-INITSTATS(DAILY) string, RACF records statistics only for the first user verification of the day for the applications protected by this profile. The RACF-INITSTATS(DAILY) string is reserved text and may appear anywhere in the APPLDATA field. For more information about statistics collection, see z/OS Security Server RACF Security Administrator's Guide

- Specifying the RACF-DELEGATED string in the APPLDATA designates the resources protected by the profile as delegated, meaning that RACROUTE REQUEST=FASTAUTH should honor a nested ACEE during access checking to this resource. The RACF-DELEGATED string is reserved text and may appear anywhere in the APPLDATA field. For more information on nested ACEEs and delegated resources, see z/OS Security Server RACF Security Administrator's Guide

RACF does not validate the APPLDATA value during RALTER. Depending on the function, RACF might or might not issue any messages during subsequent processing if it finds an unexpected value.

The APPLDATA value, if present, can be displayed with the RLIST command.

For detailed information about each APPLDATA value, see z/OS Security Server RACF Security Administrator's Guide

NOAPPLDATA

Specifies that the RALTER command is to delete the text string that was present in the profile associated with the resource.
AT | ONLYAT
The AT and ONLYAT keywords are only valid when the command is issued as
a RACF TSO command.

\textbf{AT([node].userid ...)}
Specifies that the command is to be directed to the node specified by \textit{node},
where it runs under the authority of the user specified by \textit{userid} in the
RACF subsystem address space.

If \textit{node} is not specified, the command is directed to the local node.

\textbf{ONLYAT([node].userid ...)}
Specifies that the command is to be directed only to the node specified by
\textit{node} where it runs under the authority of the user specified by \textit{userid} in the
RACF subsystem address space.

If \textit{node} is not specified, the command is directed only to the local node.

\textbf{AUDIT(access-attempt[(audit-access-level)])}
Specifies which access attempts and access levels you want logged to the SMF
data set.

\textit{access-attempt}
Specifies which access attempts you want logged to the SMF data set. The
following options are available:

\textbf{ALL}
Specifies that you want to log both authorized accesses and detected
unauthorized attempts to access the resource.

\textbf{FAILURES}
Specifies that you want to log detected unauthorized attempts to access
the resource.

\textbf{NONE}
Specifies that you do not want any logging to be done for accesses to
the resource.

\textbf{SUCCESS}
Specifies that you want to log authorized accesses to the resource.

\textit{audit-access-level}
Specifies which access levels you want logged to the SMF data set. The
levels you can specify are:

\textbf{ALTER}
Logs ALTER access-level attempts only.

\textbf{CONTROL}
Logs access attempts at the CONTROL and ALTER levels.

\textbf{READ}
Logs access attempts at any level. This is the default value if no access
level is specified.

\textbf{UPDATE}
Logs access attempts at the UPDATE, CONTROL, and ALTER levels.

You cannot audit access attempts at the EXECUTE level.

\textbf{CDTINFO | NOCDTINFO}

\textbf{CDTINFO}
Specifies information used in the definition of an installation-defined class
in the dynamic class descriptor table. CDTINFO should only be specified for profiles in the CDT class. Carefully plan changes to avoid unintended results. For guidelines, see "Guidelines for changing dynamic CDT entries" in z/OS Security Server RACF Security Administrator's Guide.

You can use the CDTINFO keyword with no operands to initiate validation checking of fields within the CDTINFO segment. For example, you issued an RDEFINE CDT command and received several errors, but you did not save a copy of the error messages. You could then issue the following command and the validation checking will be performed; those error messages will then be issued again.

```
RALTER CDT profile-name CDTINFO
```

```
CASE | NOCASE
```

```
CASE ( UPPER | ASIS )
```

Specifies whether mixed-case profile names are allowed for the class. When UPPER is specified, RACF translates the profile names for the specified class to uppercase. When ASIS is specified, RACF commands preserve the case of profile names for the specified class. Lowercase characters are allowed in any position of the profile name where alphabetic characters are allowed, based on the character restrictions in the FIRST and OTHER keywords.

```
NOCASE
``` Resets CASE to the default value of UPPER.

```
DEFAULTUACC | NODEFAULTUACC
```

```
DEFAULTUACC ( ALTER | CONTROL | UPDATE | READ | NONE )
```

Specifies the minimum access allowed if the access level is not set when a resource profile is defined in the class.

```
DEFAULTUACC ( ACEE )
```

If no universal access level is specified at the time the profile is created, RACF uses the default universal access authority from the command issuer's ACEE, as specified on the UACC operand of the ADDUSER, ALTUSER or CONNECT command.

```
NODEFAULTUACC
``` Resets the DEFAULTUACC to the default of NONE.

```
FIRST | NOFIRST
```
FIRST (characters-allowed ...)
Specifies a character type restriction for the first character of the
profile name. One or more of the following may be specified.

- **ALPHA**—Allows an alphabetic character (A - Z)
- **NUMERIC**—Allows a digit (0 - 9)
- **NATIONAL**—Allows characters # (X'7B'), @ (X'7C'), and $ (X'5B')
- **SPECIAL**—Allows any character except the following:
 - a blank
 - a comma
 - a parenthesis
 - a semicolon
 - those characters in ALPHA, NUMERIC, or NATIONAL.

Note: This option includes the period (’.’) and is needed if you
intend to use it as a delimiter.

NOFIRST
Resets FIRST to the default value of FIRST(ALPHA, NATIONAL).

GENERIC | NOGENERIC

GENERIC (ALLOWED | DISALLOWED)
Specifies whether or not SETROPTS GENERIC and SETROPTS
GENCMD are allowed for the class. The SETROPTS GENERIC
command activates generic profile checking for a class. The
SETROPTS GENCMD command activates generic profile command
processing.

If GENERIC(DISALLOWED) is specified, GENLIST(ALLOWED)
cannot also be specified.

Because generic processing is not allowed for grouping classes,
GENERIC(DISALLOWED) should be specified if
MEMBER(member-class-name) is also specified. If
GENERIC(ALLOWED) is specified or defaulted for a grouping
class, a warning message is issued. Subsequent processing for the
dynamic class being defined and for profiles in that class will be
treated as if GENERIC(DISALLOWED) was specified.

Rule: If the dynamic class you are defining shares a POSIT number
with other classes, all classes with the shared POSIT number must
have the same GENERIC keyword value. This is because the
SETROPTS GENERIC and SETROPTS GENCMD commands
process all classes that share a POSIT number. If at least one class
specifies GENERIC(DISALLOWED) and at least one class specifies
GENERIC(ALLOWED), RACF issues a warning message. When
you subsequently add this class to the dynamic class descriptor
table using the SETROPTS RACLST(CDT) command, RACF might
change the value of the GENERIC keyword to match the GENERIC
keyword value of the other classes sharing the POSIT number.

- If this dynamic class shares a POSIT number with an
 IBM-supplied class, RACF changes the value of the GENERIC
 keyword in the dynamic class to match the IBM class. (The class
 attribute in the IBM-supplied class takes precedence).

- If this dynamic class shares a POSIT number with an
 installation-defined class (static or dynamic), RACF determines
 the least restrictive attribute—GENERIC(ALLOWED) is less
restrictive than GENERIC(DISALLOWED)—and changes the GENERIC(DISALLOWED) class attribute to GENERIC(ALLOWED).

Exception: A grouping class and member class can share a POSIT number although their GENERIC keyword values need not match. You must specify GENERIC(DISALLOWED) for the grouping class. However, you can specify either ALLOWED or DISALLOWED for the member class.

NOGENERIC
Resets GENERIC to the default value of ALLOWED.

GENLIST | NOGENLIST

GENLIST (ALLOWED | DISALLOWED)
Specifies whether SETROPTS GENLIST is to be allowed for the class. If you GENLIST the class on the SETROPTS command and a user then requests access to a resource protected by a generic profile, a copy of that profile will be brought into the common storage area rather than into the user's address space. RACF uses those generic profiles in common storage to check the authorization of any users who want to access the resource. The profiles remain in common storage until a REFRESH occurs.

NOGENLIST
Resets GENLIST to the default value of DISALLOWED.

GROUP | NOGROUP

GROUP (grouping-class-name)
Specifies the name of the class that groups the resources within the specified class. If GROUP is not specified, RACF does not allow resource grouping for the class. The grouping-class-name must be 1 - 8 characters.

When GROUP is specified, the class being defined is a member class.

If GROUP is specified, then grouping-class-name must also be defined in the CDT class, and its MEMBER keyword should refer to the class being defined. The GROUP and MEMBER keywords must have matching class entries before SETROPTS RAclist(CDT) is issued to build or refresh the dynamic CDT or before the system is restarted; otherwise, the class in error will not be added to the dynamic class descriptor table.

NOGROUP
Removes the grouping-class-name.

KEYQUALIFIERS | NOKEYQUALIFIERS

KEYQUALIFIERS (nnn)
Specifies the number of matching qualifiers RACF uses when loading generic profile names to satisfy an authorization request if a discrete profile does not exist for a resource. For example, if you specify two for the class, all generic profile names whose highest level qualifiers match the two highest qualifiers of the entity name are loaded into the user's storage when the user requests access to a resource. The nnn value must be a number 0 - 123.
If KEYQUALIFIERS is not specified, the default is 0 and profile names for the entire class are loaded and searched.

The maximum value you can specify is 123, which is the maximum number of qualifiers in a name 246 characters long.

When KEYQUALIFIERS(nnn) is specified, generic profiles created in that class may not contain generic characters in the first nnn qualifiers of the profile name.

When KEYQUALIFIERS(nnn) is greater than 0 for a class, all discrete and generic profiles in that class must have at least nnn+1 qualifiers in each profile name. The number of qualifiers a profile name is determined by counting the number of period characters in the profile and adding one; the first character is not examined.

Examples of valid profile names for KEYQUALIFIERS(2) are:

A.B.C
A.B.**
A.B.C.D*

Guideline: Specify KEYQUALIFIERS(nnn) greater than 0 for classes that have the following characteristics:

- The class is not usually RACLISTed or GENLISTed.
- Profile names in the class follow a naming convention where many generic profiles have the same nnn number of qualifiers at the beginning of the profile name.

For example, if you have an application that uses an installation-defined class to protect reports on terminal usage, you might have profiles such as these for each user on your z/OS system:

REP\[T]REPS.USER1.TERMUSE.*
REP\[T]REPS.USER1.TERMUSE.DEPT60.*
REP\[T]REPS.USER1.TERMUSE.2006.JAN.*
REP\[T]REPS.USER1.TERMUSE.2006.FEB.*
REP\[T]REPS.USER1.TERMUSE.2006.MAR.*
REP\[T]REPS.USER1.TERMUSE.2006.APR.*
REP\[T]REPS.USER1.TERMUSE.2006.MAY.*
REP\[T]REPS.USER1.TERMUSE.2006.JUN.*
REP\[T]REPS.USER1.TERMUSE.2006.JUL.*
REP\[T]REPS.USER1.TERMUSE.2006.AUG.*
REP\[T]REPS.USER1.TERMUSE.2006.SEP.*
REP\[T]REPS.USER1.TERMUSE.2006.OCT.*
REP\[T]REPS.USER1.TERMUSE.2006.NOV.*
REP\[T]REPS.USER1.TERMUSE.2006.DEC.*

In this example, you might define your installation class using KEYQUALIFIERS(3) so that when RACF checks authorization checks for resources in your class, only generic profile names that match the first three qualifiers of your report are loaded into storage for RACF to check.

Restriction: Different rules apply for the FILE and DIRECTRY classes. For the syntax required for profile names in the DIRECTRY and FILE classes, see the appropriate RACF Command Language Reference for your VM system.

NOKEYQUALIFIERS

Resets KEYQUALIFIERS to the default value of 0.
MACPROCESSING (NORMAL | REVERSE | EQUAL)
Specifies which type of mandatory access control (MAC)
processing is required for the class:

- **NORMAL**—specifies normal MAC processing is required. If and
when a MAC check is performed, the user's SECLABEL must
dominate that of the resource.

- **REVERSE**—specifies reverse MAC processing is required. If and
when a MAC check is performed, the SECLABEL of the resource
must dominate that of the user.

- **EQUAL**—specifies equal MAC processing is required. If and
when a MAC check is performed, the SECLABEL of the user
must be equivalent to that of the resource.

MACPROCESSING(EQUAL) should be used for classes where
two-way communication is expected. Writedown (SETROPTS
MLS) does not apply to classes where
MACPROCESSING(EQUAL) is specified.

NOMACPROCESSING
Resets MACPROCESSING to the default value of NORMAL.

MAXLENGTH | NOMAXLENGTH

MAXLENGTH (nnn)
Specifies the maximum length of resource and profile names for
the specified class when MAXLENX is not specified. When
MAXLENX is also specified, MAXLENGTH represents the
maximum length of a resource name only when a RACROUTE
macro is invoked with the ENTITY keyword. The value of nnn
must be 1 - 246.

NOMAXLENGTH
Resets MAXLENGTH to the default value of 8.

MAXLENX | NOMAXLENX

MAXLENX (nnn)
Specifies the maximum length of resource and profile names for
the specified class when a RACROUTE macro is invoked with the
ENTITYX keyword or when a profile is added or changed using a
RACF command processor. The value of nnn must be 1 - 246.

If MAXLENX is not specified before SETROPTS RACLST(CDT) is
issued to build or refresh the dynamic CDT or before the system is
restarted, the value specified for MAXLENGTH is used for
MAXLENX in subsequent processing for the dynamic class.

NOMAXLENX
Removes the MAXLENX value.

MEMBER | NOMEMBER

MEMBER (member-class-name)
Specifies the name of the class grouped by the resources within the
specified class. The member-class-name value must be 1 - 8
characters.

When MEMBER is specified, the class being defined is a resource
group.

If MEMBER is specified, then member-class-name must also be
defined in the CDT class and its GROUP keyword should refer to
the class being defined. The GROUP and MEMBER keywords must have matching class entries before SETROPTS RACLST(CDT) is issued to build or refresh the dynamic CDT or before the system is restarted; otherwise, the class in error will not be added to the dynamic class descriptor table.

NOMEMBER
Removes the member-class-name.

OPERATIONS | NOOPERATIONS
OPERATIONS (YES | NO)
Specifies whether RACF is to take the OPERATIONS attribute into account when it performs authorization checking. If YES is specified, RACF considers the OPERATIONS attribute; if NO is specified, RACF ignores the OPERATIONS attribute.

NOOPERATIONS
Resets OPERATIONS to the default value of NO.

OTHER | NOOTHER
OTHER (characters-allowed ...)
 Specifies a character type restriction for the characters of the profile name other than the first character. One or more of the following may be specified:
• ALPHA—Allows an alphabetic character (A - Z)
• NUMERIC— Allows a digit (0 - 9)
• NATIONAL— Allows characters # (X'7B'), @ (X'7C'), and $ (X'5B')
• SPECIAL—Allows any character except the following:
 – a blank
 – a comma
 – a parenthesis
 – a semicolon
 – those characters in ALPHA, NUMERIC, or NATIONAL.

Note: This option includes the period (‘.’) and is needed if you intend to use it as a delimiter.

NOOTHER
Resets OTHER to the default of OTHER(ALPHA, NATIONAL).

POSIT | NOPosit
POSIT (nnn)
Specifies the POSIT number associated with the class. Each class in the class descriptor table has a POSIT number specified which identifies a set of option flags that control the following RACF processing options:
• Whether authorization checking should take place for the class (SETROPTS CLASSACT)
• Whether auditing should take place for resources within the class (SETROPTS AUDIT)
• Whether statistics should be kept for resources within the class (SETROPTS STATISTICS)
• Whether generic profile access checking is active for the class (SETROPTS GENERIC)
Whether generic command processing is active for the class (SETROPTS GENCMD)
Whether global access checking is active for the class (SETROPTS GLOBAL)
Whether the user has CLAUTH to a resource class
Whether special resource access auditing applies to the class (SETROPTS LOGOPTIONS)
Whether SETROPTS RACLIST will occur for this class (when RACLIST(ALLOWED) or RACLIST(REQUIRED) is also specified)
For all classes that have the same POSIT number specified, these options are identical. If you change an option for one class, this change will also affect all other classes that share the same POSIT number.

Before you issue SETROPTS RACLIST(CDT) to build or refresh the dynamic class descriptor table, you must decide whether to use a unique set of option flags for each RACF class or whether to have two or more RACF classes share the same set of option flags. If you choose to use a unique set of option flags for a class, assign the class a unique POSIT number. If you choose to share the same set of option flags among several classes, assign those classes the same POSIT number.

Before you issue SETROPTS RACLIST(CDT) to build or refresh the dynamic CDT, the POSIT keyword must specify a valid value on either the RDEFINE or RALTER command. Otherwise, the new or changed class will not be added to the dynamic class descriptor table.

Once you issue SETROPTS RACLIST(CDT) to build or refresh the dynamic class descriptor table, you can activate the classes that comprise it and their respective set of option flags using the appropriate keywords on the SETROPTS command.

There are 1024 POSIT numbers that can identify 1024 sets of option flags. Installations can specify POSIT numbers 19 - 56 and 128 - 527. POSIT numbers 0 - 18, 57 - 127 and 528 - 1023 are reserved for IBM use and should not be specified for installation-defined classes unless an installation intends that one of its classes share SETROPTS options with an IBM-defined class.

Guideline: A RACF class that has a default return code of 8 should not share a POSIT value with a RACF class having a different default return code. If a class with a default return code of 8 is activated but no profiles are defined, user activity that requires access in that class will be prevented.

NOPOSIT
Removes the POSIT number.
Before you issue SETROPTS RACLIST(CDT) to build or refresh the dynamic CDT, the POSIT keyword must specify a valid value on either the RDEFINE or RALTER command. Otherwise, the new or changed class will not be added to the dynamic class descriptor table.

PROFILESALLOWED | NOPROFILESALLOWED
PROFILESALLOWED (YES | NO)
Specifies whether you want RACF to allow profiles to be defined for this RACF class. If you specify PROFILESALLOWED(NO), RACF will not allow profiles to be defined to this RACF class; if a user attempts to define a profile to that class, the RDEFINE command responds with an appropriate message.

NOPROFILESALLOWED
Resets the PROFILESALLOWED value to the default of YES.

RACLIST | NORACLIST

RACLIST
Specifies whether SETROPTS RACLIST is to be allowed, disallowed or required for the specified class. If you process this class using SETROPTS RACLIST, RACF brings copies of all discrete and generic profiles within that class into storage in a data space. RACF uses those profiles in storage to check the authorization of any users who want to access the resources. The profiles remain in storage until removed by SETROPTS NORACLIST.

ALLOWED
Specifies that SETROPTS RACLIST may be used for the class, but is not required for authorization checking.

DISALLOWED
Specifies that SETROPTS RACLIST may not be used for the class.

REQUIRED
Specifies that you must process the class using SETROPTS RACLIST in order to use RACROUTE REQUEST=AUTH. The purpose of this keyword is to allow routines that cannot tolerate I/O to invoke RACF. When this keyword is specified and the class is not processed by SETROPTS RACLIST and a RACROUTE REQUEST=AUTH is attempted, the return code is 4.

NORACLIST
Resets the RACLIST value to the default of DISALLOWED.

SECLABELSREQUIRED | NOSECLABELSREQUIRED

SECLABELSREQUIRED (YES | NO)
Specifies whether a SECLABEL is required for the profiles of the specified class when SETROPTS MLACTIVE is on.

SECLABELSREQUIRED(NO) means that RACF will not require a SECLABEL for profiles in this class; however, if a SECLABEL exists for this profile and the SECLABEL class is active, RACF will use it during authorization checking. SECLABELSREQUIRED(NO) applies to general resource classes that have no profiles, such as DIRAUTH, or for classes that contain no data, such as OPERCMDS and SECLABEL.

SECLABELSREQUIRED(YES) means that RACF will require a SECLABEL for profiles in this class when SETROPTS MLACTIVE is on.

NOSECLABELSREQUIRED
Resets the SECLABELSREQUIRED to the default of NO.
RALTER

SIGNAL | NOSIGNAL

SIGNAL (YES | NO)

Specifies whether an ENF signal should be sent to listeners when
RAclist ed profiles are created, updated or deleted for
authorization checking.

When SIGNAL(YES) is specified, RACF will send an ENF signal to
listeners when a SETROPTS RACLST, SETROPTS NORACLST or
SETROPTS RACLST REFRESH is issued for the class to activate,
deactivate, or update the profiles used for authorization checking.
For more information, see "ENF signals" in z/OS Security Server
RACF System Programmer’s Guide

When SIGNAL(NO) is specified, no ENF signal is sent.

SIGNAL(YES) is not valid if RACLST(DISALLOWED) is specified.

NOSIGNAL

Resets the SIGNAL value to the default of NO.

NOCDTINFO

Deletes the CDTINFO segment.

CFDEF | NOCFDEF

CFDEF

Changes the attributes of a custom field for profiles in the CFIELD class.
The custom fields you define with the CFDEF operand can be used in the
CSDATA segment of user and group profiles. For more information about
custom fields, including the profile name format, see “Defining and using
custom fields” in z/OS Security Server RACF Security Administrator’s Guide

Changes in the custom field are not effective until the system programmer
rebuids the dynamic parse table using the IRRDP100 UPDATE command.
For information about using the IRRDP100 command, see z/OS Security
Server RACF System Programmer’s Guide

You can use the CFDEF keyword with no suboperands to initiate
validation checking of fields within the CFDEF segment. For example, you
issued an RDEFINE CFIELD command and received several errors, but
you did not save a copy of the error messages. You could then issue the
following command and the validation checking will be performed; those
error messages will then be issued again.

RALTER CFIELD profile-name CFDEF

Rules:

• Specify CFDEF only for profiles in the CFIELD class.
• You cannot change the data type of a custom field using the RALTER
command. (Changing the data type might render the field unusable if all
other attributes are not correctly set.)

If you want to change the data type for a custom field, delete the
CFIELD profile using the RDELETE command, and then define the
custom field with the proper data type using the RDEFINE command.

Important: Plan carefully before you change the attributes of a custom
field. Most attributes are either required or desirable based on data type.
Therefore, you can change but not remove certain attributes using the
RALTER command.
FIRST
Specifies a character restriction for the first character in the custom field.

Rules:

- You can change but you cannot remove the FIRST value.
- The valid options for the FIRST attribute apply as follows, based on TYPE value (data type).

<table>
<thead>
<tr>
<th>Valid options</th>
<th>Data type based on TYPE attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHAR</td>
</tr>
<tr>
<td>ALPHA</td>
<td>✓</td>
</tr>
<tr>
<td>ALPHANUM</td>
<td>✓</td>
</tr>
<tr>
<td>ANY</td>
<td>✓</td>
</tr>
<tr>
<td>NONATABC</td>
<td>✓</td>
</tr>
<tr>
<td>NONATNUM</td>
<td>✓</td>
</tr>
<tr>
<td>NUMERIC</td>
<td>✓</td>
</tr>
</tbody>
</table>

For each option of the FIRST attribute, the characters allowed in the custom field are as follows:

<table>
<thead>
<tr>
<th>Valid options</th>
<th>Alphabetic characters (A - Z)</th>
<th>National characters # (X'7B'), @ (X'7C'), and $ (X'5B')</th>
<th>Numeric characters (0 - 9)</th>
<th>Any other character</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ALPHANUM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ANY</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NONATABC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NONATNUM</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>NUMERIC</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

ALPHA

Allows alphabetic characters (A - Z) and national characters # (X'7B'), @ (X'7C'), and $ (X'5B').

ALPHANUM

Allows alphabetic characters (A - Z), numbers (0 - 9), and national characters # (X'7B'), @ (X'7C'), and $ (X'5B').

ANY

Allows alphabetic characters (A - Z), numbers (0 - 9), national characters # (X'7B'), @ (X'7C'), and $ (X'5B'), and any other character. When you specify both FIRST(ANY) and OTHER(ANY), also allows quoted strings.

NONATABC

Allows alphabetic characters, and excludes numbers and national characters # (X'7B'), @ (X'7C'), and $ (X'5B').
NONATNUM
Allows alphabetic characters and numbers, but excludes national characters # (X'7B'), @ (X'7C'), and $ (X'5B').

NUMERIC
Allows numbers (0 - 9).

HELP(help-text)
Specifies the help text for this custom field. The help text is displayed when the user is in TSO PROMPT mode and presses the PF1 key or enters a question mark (?). Lowercase alphabetic characters in the help-text value are translated to upper case.

Rules:
• Length: 1–255 characters.
• If the help text contains parentheses, commas, blanks, or semicolons, enclose the entire text string in single quotation marks.
• If a single quotation mark is intended to be part of the help text, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string in single quotation marks.

Example: To define help text for a customer's address and indicate that the field can be up to 100 characters, you might specify the following value:
HELP('CUSTOMER'S ADDRESS. SPECIFY UP TO 100 CHARACTERS')
• You can change but you cannot remove the HELP value.

LISTHEAD(list-heading-text)
Specifies the heading to display in the output for the LISTUSER or LISTGRP command whenever the CSDATA segment is listed. Lowercase alphabetic characters in the list-heading-text value are translated to upper case.

Rules:
• Length: 1–40 characters.
• If the heading text contains parentheses, commas, blanks, or semicolons, enclose the entire text string in single quotation marks.
• If a single quotation mark is intended to be part of the help text, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string in single quotation marks.

Example:
LISTHEAD('CUSTOMER'S ADDRESS =')
• You can change but you cannot remove the LISTHEAD value.

Guidelines: If you specify a LISTHEAD value, avoid confusion for users who use the LISTUSER or LISTGRP command to list custom field values by following these guidelines:
• Ensure that each custom field has a unique heading.
• Append an equal sign (=) or other delimiter to your LISTHEAD value to indicate in the list output where the heading ends and the data begins.

MAXLENGTH(maximum-field-length)
Specifies the maximum length of the custom field.

Rules:
• You can change but you cannot remove the MAXLENGTH value.
• The valid values or value ranges shown in Table 35 apply based on data type.

Table 35. Valid values or value range for the MAXLENGTH keyword, based on data type

<table>
<thead>
<tr>
<th>Data type</th>
<th>Valid value or range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAR</td>
<td>1–1100</td>
</tr>
<tr>
<td>FLAG</td>
<td>3</td>
</tr>
<tr>
<td>HEX</td>
<td>1–512</td>
</tr>
<tr>
<td>NUM</td>
<td>1–10</td>
</tr>
</tbody>
</table>

MAXVALUE | NOMAXVALUE

MAXVALUE(maximum-numeric-value)

Specifies the maximum numeric value for a custom field with TYPE(NUM).

Rules:
• Valid range: 0 – 2,147,483,647
• Do not specify a MAXVALUE value for fields with CHAR, FLAG, or HEX data type.
• Do not specify a MAXVALUE value lower than the MINVALUE value.
• Do not specify a MAXVALUE value longer than the highest value based on MAXLENGTH value.

NOMAXVALUE

Removes the MAXVALUE value. If you specify NOMAXVALUE, the following information is displayed when you list the CFDEF segment using the RLIST command.

MAXVALUE = NONE

MINVALUE | NOMINVALUE

MINVALUE(minimum-numeric-value)

Specifies the minimum numeric value for a custom field with TYPE(NUM).

Rules:
• Valid range: 0 – 2,147,483,647
• Do not specify a MINVALUE value for fields with CHAR, FLAG, or HEX data type.
• Do not specify a MINVALUE value higher than the MAXVALUE value.
• Do not specify a MINVALUE value longer than the highest value based on MAXLENGTH value.

NOMINVALUE

Removes the MINVALUE value. If you specify NOMINVALUE, the following information is displayed when you list the CFDEF segment using the RLIST command.

MINVALUE = NONE

MIXED

Specifies whether mixed-case alphabetic characters are allowed for a custom field with TYPE(CHAR).
YES

Lowercase characters are allowed in any position of the custom field where alphabetic characters are allowed, based on the character restrictions specified in the FIRST and OTHER keywords. RACF commands, such as ADDUSER, do not translate lowercase alphabetic characters in the field to upper case.

Rule: Do not specify MIXED(YES) for custom fields with FLAG, HEX, or NUM data type.

NO

RACF commands translate lowercase alphabetic characters in the field to upper case.

OTHER

Specifies a character restriction for characters in the custom field other than the first character.

For each option of the OTHER attribute, the characters allowed in the custom field are as follows:

<table>
<thead>
<tr>
<th>Valid options</th>
<th>Alphabetic characters (A - Z)</th>
<th>National characters # (X'7B'), @ (X'7C'), and $ (X'5B')</th>
<th>Numeric characters (0 - 9)</th>
<th>Any other character</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHANUM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ANY</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NONATABC</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NONATNUM</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMERIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALPHA

Allows alphabetic characters (A - Z) and national characters # (X'7B'), @ (X'7C'), and $ (X'5B').

ALPHANUM

Allows alphabetic characters (A - Z), numbers (0 - 9), and national characters # (X'7B'), @ (X'7C'), and $ (X'5B').

ANY

Allows alphabetic characters (A - Z), numbers (0 - 9), national characters # (X'7B'), @ (X'7C'), and $ (X'5B'), and any other character. When you specify both FIRST(ANY) and OTHER(ANY), also allows quoted strings.

NONATABC

Allows alphabetic characters, and excludes numbers and national characters # (X'7B'), @ (X'7C'), and $ (X'5B').

NONATNUM

Allows alphabetic characters and numbers, but excludes national characters # (X'7B'), @ (X'7C'), and $ (X'5B').

NUMERIC

Allows numbers (0 - 9).
Rules:

- You can change but you cannot remove the OTHER value.
- The valid options for the OTHER attribute apply as follows, based on TYPE value (data type).

<table>
<thead>
<tr>
<th>Valid options</th>
<th>Data type based on TYPE attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHAR</td>
</tr>
<tr>
<td>ALPHA</td>
<td>✔</td>
</tr>
<tr>
<td>ALPHANUM</td>
<td>✔</td>
</tr>
<tr>
<td>ANY</td>
<td>✔</td>
</tr>
<tr>
<td>NONATABC</td>
<td>✔</td>
</tr>
<tr>
<td>NONATNUM</td>
<td>✔</td>
</tr>
<tr>
<td>NUMERIC</td>
<td>✔</td>
</tr>
<tr>
<td>NOCFDEF</td>
<td>Deletes the CFDEF segment.</td>
</tr>
</tbody>
</table>

Important: Avoid issuing the NOCFDEF operand for profiles in the CFIELD class because it causes the custom fields defined in the CFDEF segment to be unusable.

If you want to change the TYPE attribute, or remove an attribute that you are unable to remove using the RALTER command, delete the CFIELD profile using the RDELETE command, and then define the custom field with the proper attributes using the RDEFINE command.

DATA | NODATA

DATA('installation-defined-data')
Specifies up to 255 characters of installation-defined data to be stored in the profile for the resource. The data must be enclosed in single quotation marks. It can also contain double-byte character set (DBCS) data.

This information is listed by the RLIST command.

NODATA
Specifies that the RALTER command is to delete the installation-defined data in the resource profile.

DLFDATA | NODLFDATA

DLFDATA
For profiles in the DLFCLASS, specifies information used in the control of DLF objects.

RETAI(NYES | NO) | NORETAIN
Specifies whether the DLF object can be retained after use.

JOBNAMES | NOJOBNAMES | ADDJOBNAMES | DELJOBNAMES
You can specify any job name valid on your system. You can also specify generic job names with an asterisk (*) as the last character of a job name, to indicate generic job names. For example, JOBNAMES(ABC) allows only job ABC to access the DLF objects protected by the profile. JOBNAMES(ABC*) allows any job whose name begins with ABC (such as ABC, ABC1, or ABCDEF and so forth) to access to the DLF objects.
RALTER

JOBNAME *(jobname1 ...)*
Specifies the list of job names that can access the DLF objects protected by this profile.

NOJOBNAME
Specifies that no job names can access the DLF objects protected by this profile.

ADDDOMAIN *(jobname1 ...)*
Adds to the list of job names, the job names that can access the DLF objects protected by this profile.

DELDOMAIN *(jobname1 ...)*
Deletes the names from the job names list.

NODLFDATA
Deletes the DLFDATA in the specified segment.

EIM | NOEIM

EIM
The EIM and PROXY segment keywords and subkeywords combine to define the EIM domain, the LDAP host it resides on, and the bind information required by the EIM services to establish a connection with an EIM domain. The EIM services will attempt to retrieve this information when it is not explicitly supplied with the invocation parameters.

DOMAINDN | NODOMAINDN

DOMAINDN *(eim_domain_dn)*
Specifies the distinguished name of the EIM domain. A valid EIM domain distinguished name begins with `ibm-eimDomainName=`. Uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

The EIM domain distinguished name is one component of an EIM domain name. An EIM domain name identifies the LDAP server that stores the EIM domain information. The EIM domain name begins with the `ldap_url` from the LDAPHOST suboperand of the keyword, followed by `/` and ends with the `eim_domain_dn` from the DOMAINDN suboperand. The length of a valid EIM domain name is determined by the combination of those factors. RACF allows the input of 1023 characters for the domain distinguished name. RACF does not ensure that an EIM domain name created from the LDAP URL and EIM domain distinguished name forms a valid EIM domain name.

For more information about LDAP distinguished names, see [IBM Tivoli Directory Server Administration and Use for z/OS](https://www.ibm.com/support/docview.wss?uid=swg21307951).

NODOMAINDN
Deletes the `eim_domain_dn` value.

OPTIONS | NOOPTIONS
Specifies options that control the EIM configuration.

ENABLE | DISABLE

ENABLE
Specifies that new connections may be established with the specified EIM domain. This is the default.
DISABLE
Specifies that new connections may not be established with the specified EIM domain.

NOOPTIONS
Resets OPTIONS to the default value of ENABLE.

LOCALREGISTRY | NOLOCALREGISTRY

LOCALREGISTRY(registry_name)
Specifies the name of the local RACF registry in EIM domains. This operand is valid only with the following profiles and is ignored for all others:
- The IRR.PROXY.DEFAULTS profile in the FACILITY class
- The IRR.ICTX.DEFAULTS.sysid profile in the LDAPBIND class
- The IRR.ICTX.DEFAULTS profile in the LDAPBIND class.

EIM uses the registry_name value defined in the IRR.PROXY.DEFAULTS profile. The ICTX identity cache uses the registry_name value defined in the IRR.ICTX.DEFAULTS.sysid or IRR.ICTX.DEFAULTS profile.

The registry_name value is 1 - 255 characters in length. It can consist of any characters and can be entered with or without single quotation marks. The following rules apply:
- If parentheses, commas, blanks, or semicolons are intended as part of the registry_name, you must enclose the entire character string in single quotation marks.
- If a single quotation mark is intended as part of the registry_name, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.
- Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

NOLOCALREGISTRY
Deletes the local registry name from the profile. It does not affect the in-storage copy of the registry name. IPL the system to remove the in-storage copy.

KERBREGISTRY | NOKERBREGISTRY

KERBREGISTRY(registry_name)
Specifies the name of the Kerberos registry in the EIM domain that the system is configured to use. This operand is only valid for the IRR.PROXY.DEFAULTS FACILITY class profile. The value is ignored when used on other profiles.

The Kerberos registry_name may be 1 - 255 characters in length. The registry_name can consist of any characters and can be entered with or without single quotation marks. The following rules apply:
- If parentheses, commas, blanks, or semicolons are to be entered as part of the registry_name, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the registry_name, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.
Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

NOKERBREGISTRY
Deletes the Kerberos registry name from the profile.

X509REGISTRY | NOX509REGISTRY

X509REGISTRY(registry_name)
Specifies the name of the X.509 registry in the EIM domain that the system is configured to use. This operand is only valid for the IRR.PROXY.DEFAULTS FACILITY class profile. The value is ignored when used on other profiles.

The X.509 registry_name may be 1 - 255 characters long. The registry_name can consist of any characters and can be entered with or without single quotation marks. The following rules apply:

- If parentheses, commas, blanks, or semicolons are to be entered as part of the registry_name, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the registry_name, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.
- Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

NOX509REGISTRY
Deletes the X.509 registry name from the profile.

NOEIM
Deletes the EIM segment.

GLOBALAUDIT(access-attempt[[audit-access-level]]))
Specifies which access attempts and access levels the user who has the AUDITOR attribute wants logged to the SMF data set.

access-attempt
Specifies which access attempts the user who has the AUDITOR attribute wants to log on the SMF data set.

- **ALL**
 Specifies that you want to log both authorized accesses and detected unauthorized attempts to access the resource.

- **FAILURES**
 Specifies that you want to log detected unauthorized attempts to access the resource.

- **NONE**
 Specifies that you do not want any logging to be done for accesses to the resource.

- **SUCCESS**
 Specifies that you want to log authorized accesses to the resource.

audit-access-level
Specifies which access levels the user who has the AUDITOR attribute wants to log on the SMF data set.

- **ALTER**
 Logs ALTER access-level attempts only.
CONTROL
Logs access attempts at the CONTROL and ALTER levels.

READ
Logs access attempts at any level. This is the default value if no access level is specified.

UPDATE
Logs access attempts at the UPDATE, CONTROL, and ALTER levels.

You cannot audit access attempts at the EXECUTE level.

To use GLOBALAUDIT, you must have the AUDITOR attribute, or the resource profile must be within the scope of a group in which you have the group-AUDITOR attribute.

Regardless of the value you specify for GLOBALAUDIT, RACF always logs all access attempts specified on AUDIT.

ICSF | NOICSF

ICSF
Specifies ICSF attributes for the keys that are controlled by this profile.
ICSF attributes are valid only for profiles in the CSFKEYS, GCSFKEYS, XCSFKEY, and GXCSFKEY classes.

ASYMUSAGE | NOASYMUSAGE

ASYMUSAGE
Specifies how an asymmetric key that is controlled by this profile is eligible to be used.

If you specify ICSF operand to create a new ICSF segment and omit the ASYMUSAGE option, SECUREEXPORT and HANDSHAKE are the default settings.

SECUREEXPORT | NOSECUREEXPORT
Specifies whether the key is eligible to be used to export or import symmetric keys.

HANDSHAKE | NOHANDSHAKE
Specifies whether the key is eligible to be used to protect communication channels.

NOASYMUSAGE
Resets to SECUREEXPORT and HANDSHAKE.

SYMEXPORTABLE | NOSYMEXPORTABLE

SYMEXPORTABLE
Specifies which public keys, if any, are eligible to be used to export a symmetric key that is controlled by this profile.

If you specify ICSF operand to create a new ICSF segment and omit the SYMEXPORTABLE option, BYANY is the default setting.

BYANY
Any public key is eligible. The SYMEXPORTCERTS and SYMEXPORTKEYS settings are ignored.

BYLIST
Only public keys specified with the SYMEXPORTCERTS or
SYMEXPORTKEYS option are eligible. If neither option is set for this symmetric key, no public key is eligible (as if BYNONE were specified).

BYNONE
No public key is eligible. The SYMEXPORTCERTS and SYMEXPORTKEYS settings are ignored.

NOSYMBOLPORTABLE
Resets the SYMEXPORTABLE option to BYANY.

SYMEXPORTCERTS | NOSYMBOLPORTCERTS

SYMEXPORTCERTS((qualifier)/label-name ... | *)
Specifies a list of the labels of digital certificates that are eligible to be used to export the symmetric keys controlled by this profile.

Each listed certificate must exist in the ICSF key store (the SAF key ring or PKCS #11 token specified by an ICSF configuration setting). For information about the ICSF key store, see [z/OS Cryptographic Services ICSF Administrator’s Guide](https://www.ibm.com/support/knowledgecenter/Serrals8_2.1.0/com.ibm.zos.racf.racfg.doc/).

Specify an asterisk (*) to indicate that any certificate in the ICSF key store is eligible to be used to export the symmetric keys controlled by this profile. Specifying an asterisk (*) overrides any listed labels.

Specify each certificate label using a certificate label string in the form of qualifier/label-name.

qualifier
Specifies an optional qualifier in the certificate label string when multiple certificates have the same label. If specified, RACF translates the qualifier value to uppercase characters before storing it in the profile. The meaning of the qualifier value depends on where the certificate resides.

<table>
<thead>
<tr>
<th>When the certificate resides in a ...</th>
<th>The qualifier value is ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAF key ring</td>
<td>The RACF user ID of the certificate owner.</td>
</tr>
<tr>
<td>PKCS #11 token</td>
<td>The value of the CKA_ID attribute of the certificate. The CKA_ID value consists of up to 64 hexadecimal characters. Valid characters are 0 - 9 and A - F.</td>
</tr>
</tbody>
</table>

/label-name
Specifies the certificate label assigned when the certificate was created. You must specify the forward slash character (/) followed by the certificate label.

If the certificate label contains blanks, or special characters that cause problems with TSO/E, such as the comma, parenthesis, or comment delimiter (/*), the entire certificate label string must be enclosed in single quotation marks.

Any leading or trailing blanks specified in label-name are removed from this value before storing it in the profile.

Examples of certificate label strings:
DENICE/CertForDenice
‘ROGERS/Cert for Rogers’
’/DLR cert’
ADDSYMEXPORTCERTS([qualifier]/label-name ... | *)
Adds the specified certificate labels to the current list of labels.

DELSYMEXPORTCERTS([qualifier]/label-name ... | *)
Removes the specified certificate labels from the current list of labels.

NOSYMEXPORTCERTS
Removes the entire list of certificate labels.

SYMEXPORTKEYS | NOSYMEXPORTKEYS

SYMEXPORTKEYS(ICSF-key-label ... | *)
Specifies a list of the ICSF key labels of public keys that are eligible to be used to export the symmetric keys controlled by this profile. Each listed public key must reside in the ICSF PKA key data set (PKDS).

Specify an asterisk (*) to indicate that any public key in the ICSF PKDS is eligible to be used to export the symmetric keys controlled by this profile. Specifying an asterisk (*) overrides any listed labels.

ICSF-key-label
Specifies the ICSF key label for the public key. The label name cannot exceed 64 characters. The first character must be an alphabetic character or a national character (#, @, or $). Subsequent characters can be a period character (.) or any alphanumeric or national character.

ADDSYMEXPORTKEYS(ICSF-key-label ... | *)
Adds the specified key labels to the current list of labels.

DELSYMEXPORTKEYS(ICSF-key-label ... | *)
Removes the specified key labels from the current list of labels.

NOSYMEXPORTKEYS
Removes the entire list of key labels.

SYMCPACFWRAP
Specifies whether the encrypted symmetric keys that are controlled by this profile are eligible to be rewrapped by CP Assist for Cryptographic Function (CPACF).

If you specify ICSF operand to create a new ICSF segment and omit the SYMCPACFWRAP option, NO is the default setting.

YES
Specifies that the encrypted symmetric keys that are controlled by this profile are eligible to be rewrapped by CPACF.

NO
Specifies that the encrypted symmetric keys that are controlled by this profile are ineligible to be rewrapped by CPACF.

NOICSF
Deletes the ICSF segment.

ICTX | NOICTX

ICTX
Specifies the ICTX configuration options that control the ICTX identity cache.

The ICTX identity cache uses an in-storage copy of the configuration options. Use SETROPTS RAACLST processing for the LDAPBIND class to
activate these options. (See the z/OS Security Server RACF Security Administrator's Guide for more information about SETROPTS RACLIST processing.)

For details about the ICTX configuration options, see z/OS Integrated Security Services EIM Guide and Reference.

The following operands are used only for the following profiles in the LDAPBIND class and are ignored for other profiles:

- IRR.ICTX.DEFAULTS.sysid
- IRR.ICTX.DEFAULTS

USEMAP (YES | NO)

Specifies whether the ICTX identity cache stores an identity mapping to a local z/OS user ID when provided by the application.

- **YES**
 - When the application provides a valid mapping to a local z/OS user ID, the ICTX identity cache stores it.
- **NO**
 - Identity mappings provided by the application are not stored.

NOUSEMAP

Resets the USEMAP value to YES.

DOMAP (YES | NO)

Specifies whether the ICTX identity cache uses Enterprise Identity Mapping (EIM) services to find a mapping to a z/OS user ID for an authenticated user, and then stores the mapping.

- **YES**
 - When EIM finds a mapping to a z/OS user ID for an authenticated user, the ICTX identity cache stores it.
- **NO**
 - The ICTX identity cache does not use EIM to find an identity mapping.

NODOMAP

Resets the DOMAP value to NO.

MAPREQUIRED (YES | NO)

Specifies whether the ICTX identity cache requires identity mapping to a z/OS user ID for an authenticated user.

- **YES**
 - The ICTX identity cache fails the request when no valid mapping is provided by the application or found using EIM.
- **NO**
 - The ICTX identity cache does not fail the request when no valid mapping is provided by the application or found using EIM.

NOMAPREQUIRED

Resets the MAPREQUIRED value to NO.

MAPPINGTIMEOUT(1 - 3600)

Specifies how long (one second to one hour) the ICTX identity cache stores an identity mapping to a z/OS user ID for an authenticated user.

Guideline: If you frequently modify your EIM mappings, consider a low MAPPINGTIMEOUT value. A shorter timeout period causes the
ICTX identity cache to invoke EIM more frequently. This allows your cached mappings to be refreshed more frequently and improves their currency.

NOMAPPINGTIMEOUT

Resets the MAPPINGTIMEOUT value to 3600 seconds (one hour).

NOICTX

Deletes the ICTX segment.

KERB | NOKERB

KERB

Specifies z/OS Integrated Security Services Network Authentication Service information for a REALM class profile.

CHECKADDRS | NOCHECKADDRS

CHECKADDRS

Specifies whether the Kerberos server validates addresses in tickets as part of ticket validation processing.

This keyword is only applicable when defining the KERBDFLT REALM profile for the local realm.

YES

The server validates addresses in tickets.

NO

The server ignores addresses in tickets.

NOCHECKADDRS

Resets the CHECKADDRS value to NO.

DEFTKTLFE | NODEFTKTLFE

DEFTKTLFE(def-ticket-life)

Specifies the default ticket lifetime for the local z/OS Network Authentication Service in seconds. The value for DEFTKTLFE is 1 - 2 147 483 647. Note that 0 is not a valid value.

This keyword is only applicable when defining the KERBDFLT REALM profile for the local realm.

The RALTER command only requires specification of all of the ticket lifetime keywords on the same command invocation if RALTER is being used to initially define these values. If values have been previously defined, RACF uses both the previous values and new values specified to verify the specified def-ticket-life value.

NODEFTKTLFE

Deletes the def-ticket-lifetime value for the local z/OS Network Authentication Service.

ENCRYPT | NOENCRYPT

ENCRYPT

Specifies which keys can be used by the z/OS Network Authentication Service realm you are changing.

DES || NODES

Whether DES encrypted keys can be used.

DES3 || NODES3

Whether DES3 encrypted keys can be used.
Whether DESD encrypted keys can be used.

Whether AES128 encrypted keys can be used.

Whether AES256 encrypted keys can be used.

When a realm’s password changes, a key of each type is generated and stored in the principal’s user profile. The use of each key is based on the z/OS Network Authentication Service configuration. See z/OS Integrated Security Services Network Authentication Service Administration for information about how z/OS Network Authentication Service uses keys and how to customize environment variables related to keys.

NOENCRYPT

Specifies that there is no restriction on which generated keys the realm can use, and resets the KERB ENCRYPT values to the default settings. See z/OS Integrated Security Services Network Authentication Service Administration for information about how z/OS Network Authentication Service uses keys and how to customize environment variables related to keys.

KERBNAME | NOKERBNAME

KERBNAME(kerberos-realm-name)

Specifies the local realm name or a trust relationship for z/OS Network Authentication Service. The maximum length of this field is 117 characters.

• When you specify the local realm name for the KERBDFLT realm, you must specify KERBNAME using the unqualified form of the local realm name. For example:
 RALTER REALM KERBDFLT KERB(KERBNAME(KRB2000.IBM.COM))

Important: Avoid renaming your local realm name. If you rename your local realm, the keys for existing principals become unusable.

• When you specify a trust relationship, you must specify the fully qualified principal name using the following form:
 .../kerberos_realm_name_1/krbtgt/kerberos_realm_name_2

 For more information about defining trust relationships, see z/OS Integrated Security Services Network Authentication Service Administration.

Syntax rules for naming your local realm:

The local realm name that you define to RACF can consist of any character, except the / (X’61’) character. You can enter the name with or without single quotation marks, depending on the following:

• If parentheses, commas, blanks, or semicolons are entered as part of the name, the character string must be enclosed in single quotation marks.
If a single quotation mark is intended to be part of the name and the entire character string is enclosed in single quotation marks, you must use two single quotation marks together to represent each single quotation mark within the string.

If the first character of the name is a single quotation mark, you must enter the string within single quotation marks, with two single quotation marks entered for the single quotation mark.

Regardless of the case in which it is entered, RACF translates the name of the local z/OS Network Authentication Service realm to upper case. However, RACF does not ensure that a valid kerberos-realm-name has been specified.

Guidelines for naming your local realm:

- Avoid using EBCDIC variant characters to prevent problems with different code pages.
- Carefully consider the length of the local realm name. Its length limits the length of local principal names because fully qualified local principal names use the following form and cannot exceed 240 characters:

 /.../kerberos_realm_name/principal_name

 The length of the fully qualified local principal name is checked by RACF only when a local kerberos-principal-name is added or altered. Therefore, plan ahead to ensure that the maximum length of your principal names is sufficient and help you avoid renaming the local realm. If you rename your local realm (using the RALTER command), the keys for existing principals become unusable.

NOKERBNAME

Deletes the kerberos-realm-name value.

MAXTTLFE | NOMAXTTLFE

MAXTTLFE(max-ticket-life)

Specifies the max-ticket-life for the local z/OS Integrated Security Services Network Authentication Service in seconds. The value for MAXTTLFE is 1 - 2 147 483 647. Note that 0 is not a valid value.

This keyword is only applicable when defining the KERBDFLT REALM profile for the local z/OS Network Authentication Service realm.

The RALTER command only requires specification of all of the ticket lifetime keywords on the same command invocation if RALTER is being used to initially define these values. If values have been previously defined, RACF uses both these previous values and new values specified on the command, to verify the specified max-ticket-life value.

NOMAXTTLFE

Deletes the max-ticket-lifetime value for the local z/OS Network Authentication Service.

MINTTTLFE | NOMINTTTLFE

MINTTTLFE(min-ticket-life)

Specifies the min-ticket-life for the z/OS Network Authentication Service.
RALTER

Service in seconds. The value of MINTKTLFE is 1 - 2 147 483 647. Note that 0 is not a valid value.

This keyword is only applicable when defining the KERBDFLT REALM profile for the local realm.

The RALTER command only requires specification of all of the ticket lifetime keywords on the same command invocation if RALTER is being used to initially define these values. If values have been previously defined, RACF uses both the previous values and new values specified on the command to verify the specified min-ticket-life value.

NOMINTKTLFE
Deletes the min-ticket-lifetime value for the local z/OS Network Authentication Service principal.

PASSWORD | NOPASSWORD

PASSWORD(kerberos-password)
Specifies the value of the kerberos-password. The maximum length of this value is 128 characters. The PASSWORD keyword is applicable to all REALM class profile definitions. A password must be associated with the definition of a trust relationship or else the definition is incomplete.

Guideline: Avoid using EBCDIC variant characters to prevent problems with different code pages.

The kerberos-password that you define to RACF might consist of any character. You can enter a password with or without single quotation marks, depending on the following:
- If parentheses, commas, blanks, or semicolons are entered as part of the password, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the password and the entire character string is enclosed in single quotation marks, you must use two single quotation marks together for each single quotation mark within the string.
- If the first character of the password is a single quotation mark, you must enter the string within single quotation marks, with two single quotation marks entered for the character.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

Note: This keyword is intended for administrators to be able to associate a password with the definition of a realm. It is not the same as a RACF user password and is not constrained by the SETROPTS password rules and change interval values that might be established for RACF user passwords.

NOPASSWORD
Deletes the z/OS Network Authentication Service password. If this is the local z/OS Network Authentication Service realm (KERBDFLT), it will no longer be able to grant ticket-granting tickets. Removal of the password from a foreign realm definition will invalidate the inter-realm trust relationship.
NOKERB
Deletes the KERB segment.

LEVEL(nn)
Specifies a level indicator, where nn is an integer in the range of 00 - 99. Your installation assigns the meaning of the value. It is included on all records that log resource accesses and is listed by the RLIST command.

NOTIFY | NONOTIFY

NOTIFY[(userid)]
Specifies the user ID of a RACF-defined user to be notified whenever RACF uses this profile to deny access to a resource. If you specify NOTIFY without specifying a user ID, RACF takes your user ID as the default; you are notified whenever the profile denies access to a resource.

If you receive NOTIFY messages, you should log on frequently to take action in response to the unauthorized access attempt described in each message. RACF sends NOTIFY messages to the SYS1.BROADCAST data set. When the resource profile also includes WARNING, RACF might have granted access to the resource to the user identified in the message.

When RACF denies access to a resource, it does not notify a user:
- When the resource is in the PROGRAM class
- When the resource is in a class for which an application has built in-storage profiles using RACROUTE REQUEST=LIST

Some applications, such as IMS™ and CICS, load all the profiles for a given class into storage. After these profiles are in storage, the applications can do a fast authorization check using RACROUTE REQUEST=FASTAUTH. Fast authorization checking is different from normal authorization checking in several ways. One difference is that, in some cases, fast authorization checking does not issue warning messages, notification messages or support auditing. In cases where it does not, return and reason codes are returned to the application to allow support of these functions. The application can examine the return and reason codes and use RACROUTE REQUEST=AUTH to create the messages and audit records. If the application uses RACROUTE REQUEST=AUTH to support auditing or specifies LOG=ASIS on RACROUTE REQUEST=FASTAUTH, the specified user is notified. Otherwise, notification, warning, and such do not occur.

- When the profile is used to disallow the creation or deletion of a data set
 NOTIFY is used only for resource access checking, not for resource creation or deletion.

NONOTIFY
Specifies that no user is to be notified when RACF uses this profile to deny access to a resource.

OWNER(userid or group-name)
Specifies a RACF-defined user or group to be assigned as the new owner of the resource you are changing.
To change the owner of a resource, you must be the current owner of the resource or have the SPECIAL attribute, or the profile must be within the scope of a group in which you have the group-SPECIAL attribute. The user specified as the owner does not automatically have access to the resource. Use the PERMIT command to add the owner to the access list as desired.

PROXY | NOPROXY

PROXY

Specifies information which the z/OS LDAP server will use when acting as a proxy on behalf of a requester. The R_proxyserv (IRRSPY00) SAF callable service will attempt to retrieve this information when it is not explicitly supplied with the invocation parameters. Applications or other services which use the R_proxyserv callable service, such as IBM Policy Director Authorization Services for z/OS and OS/390, may instruct their invokers to define PROXY segment information.

LDAPHOST | NOLDAPHOST

LDAPHOST(ldap_url)

Specifies the URL of the LDAP server which the z/OS LDAP server will contact when acting as a proxy on behalf of a requester. An LDAP URL has a format such as ldap://12.34.56.78:389 or ldaps://12.34.56.78:636, where ldaps indicates that an SSL connection is desired for a higher level of security. LDAP will also allow you to specify the host name portion of the URL using either the text form (BIGHOST.POK.IBM.COM) or the dotted decimal address (12.34.56.78). The port number is appended to the host name, separated by a colon (X'7A').

For more information about LDAP URLs and how to enable LDAP servers for SSL connections, see [z/OS IBM Tivoli Directory Server Administration and Use for z/OS](https://www.ibm.com/support/knowledgecenter/en/SSGURY_2.0.1/welcome).

The LDAP URL that you define to RACF can consist of 10 - 1023 characters. A valid URL must start with either ldap:// or ldaps://. RACF will allow any characters to be entered for the remaining portion of the URL, but you should ensure that the URL conforms to TCP/IP conventions. For example, parentheses, commas, blanks, semicolons, and single quotation marks are not typically allowed in a host name. The LDAP URL can be entered with or without single quotation marks.

RACF does not ensure that a valid LDAP URL has been specified.

NOLDAPHOST

Deletes the URL of the LDAP server which the z/OS LDAP server will contact when acting as a proxy on behalf of a requester.

BINDDN | NOBINDDN

BINDDN(bind_distinguished_name)

Specifies the distinguished name (DN) which the z/OS LDAP server will use when acting as a proxy on behalf of a requester. This DN will be used in conjunction with the BIND password, if the z/OS LDAP server needs to supply an administrator or user identity to BIND with another LDAP server. A DN is made up of attribute:value pairs, separated by commas. For example:

- cn=Ben Gray,ou=editing,o=New York Times,c=US
- cn=Lucille White,ou=editing,o=New York Times,c=US
- cn=Tom Brown,ou=reporting,o=New York Times,c=US
When you define a BIND DN to RACF, it can contain 1 - 1023 characters. The BIND DN can consist of any characters and can be entered with or without single quotation marks. The following rules apply:

- If parentheses, commas, blanks, or semicolons are to be entered as part of the BIND DN, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the BIND DN, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. For more information about LDAP distinguished names, see z/OS IBM Tivoli Directory Server Administration and Use for z/OS.

If you issue the RALTER command as a RACF operator command and you specify the BIND DN in lowercase, you must include the BIND DN within single quotations.

RACF does not ensure that a valid BIND DN has been specified.

NOBINDDN

Deletes the distinguished name (DN) used by the z/OS LDAP server when acting as a proxy on behalf of a requester.

BINDPW | NOBINDPW

BINDPW

Specifies the password which the z/OS LDAP server will use when acting as a proxy on behalf of a requester.

When you define a BIND password to RACF, it can contain 1 - 128 characters. The BIND password can consist of any characters (see exception below) and can be entered with or without single quotation marks. The following rules apply:

- The BIND password cannot start with a left brace \{ character (X'8B').
- If parentheses, commas, blanks, or semicolons are to be entered as part of the BIND password, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the BIND password, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. For more information about LDAP passwords, see z/OS IBM Tivoli Directory Server Administration and Use for z/OS.

If you issue the RALTER command as a RACF operator command and you specify the BIND password in lowercase, you must include the BIND password within single quotations.

RACF does not ensure that a valid BIND password has been specified.
RALTER

NOBINDPW

Deletes the password used by the z/OS LDAP server when acting as a proxy on behalf of a requester.

NOPROXY

Deletes LDAP proxy information.

SECLABEL | NOSECLABEL

SECLABEL(seclabel-name)

Specifies an installation-defined security label for this profile. A security label corresponds to a particular security level (such as CONFIDENTIAL) with a set of zero or more security categories (such as PAYROLL or PERSONNEL).

If you are authorized to use the SECLABEL, RACF stores the name of the security label you specify in the resource profile.

If you are not authorized to the SECLABEL or if the name you had specified is not defined as a SECLABEL profile in the SECLABEL class, the resource profile is not updated. If the SECLABEL class is active and the security level is specified in this profile, any security levels and categories in the profile are ignored.

NOSECLABEL

Removes the security label, if one had been specified, from the profile.

SECLEVEL | NOSECLEVEL

SECLEVEL(seclevel-name)

Specifies the name of an installation-defined security level. This name corresponds to the number that is the minimum security level that a user must have to access the resource. The `seclevel-name` must be a member of the SECLEVEL profile in the SECDATA class.

When you specify SECLEVEL and the SECDATA class is active, RACF adds security level access checking to its other authorization checking. If global access checking does not grant access, RACF compares the security level allowed in the user profile with the security level required in the resource profile. If the security level in the user profile is less than the security level in the resource profile, RACF denies the access. If the security level in the user profile is equal to or greater than the security level in the resource profile, RACF continues with other authorization checking.

RACF does not perform security level checking for a started task that has the RACF privileged or trusted attribute. The RACF privileged or trusted attribute can be assigned to a started task through the RACF started procedures table or STARTED class. Also, RACF does not enforce security level information specified on profiles in the PROGRAM class.

If the SECDATA class is not active, RACF stores the name you specify in the resource profile. When the SECDATA class is activated and the name you specified is defined as a SECLEVEL profile, RACF can perform security level access checking for the resource profile. If the name you specify is not defined as a SECLEVEL profile, you are prompted to provide a valid `seclevel-name`.

NOSECLEVEL

Specifies that the RALTER command is to delete the security level name from the profile. RACF no longer performs security level checking for the resource.
SESSION | NOSESSION

SESSION
Controls the establishment of sessions between logical units under LU6.2. This operand is only valid for the APPCLU resource class. It allows the following suboperand to add, change, or delete SESSION segment field values when changing an APPCLU class profile.

CONVSEC | NOCONVSEC

CONVSEC(security-checking-level)
Specifies the level or levels of security checking performed when conversations are established with the LU protected by this profile.

The security-checking-level value can be one of the following levels.

Guideline: Specify a CONVSEC option for each APPCLU profile.

NONE
All inbound allocate requests pass without RACF checking for a valid user ID. No RACROUTE REQUEST=VERIFY is issued.

CONV
APPC/MVS issues a RACROUTE REQUEST=VERIFY to verify the user ID and password for all inbound allocate requests.

ALREADYV
APPC/MVS RACF does not verify the user ID and password for any inbound allocate requests. If you specify ALREADYV, you assume that user IDs and passwords have already been verified by the partner LU. You must specify this only if the partner LU is trustworthy.

PERSISTV
Specifies persistent verification.

AVPV
The user ID/password is already verified and persistent verification is requested. In general, you should select one of NONE, CONV, and ALREADYV for each APPCLU profile.

NOCONVSEC
Delete any existing conversation security parameters.

INTERVAL | NOINTERVAL

INTERVAL(n)
Sets the maximum number of days the session key is valid. This value of n is 1 – 32767. If the key interval is longer than the installation maximum (set with SETROPTS SESSIONINTERVAL), the INTERVAL is not changed.

NOINTERVAL
There is no limit on the number of days the key is valid.

LOCK | NOLOCK

LOCK
Marks the profile as locked.

NOLOCK
Unlocks a previously locked profile.

SESSKEY | NOSESSKEY
RALTER

SESSKEY(session-key)
Changes the key for this profile. The session-key value can be expressed in two ways:
- X^y where y is a hexadecimal number of 1 - 16 digits
- z or "$z" where z is a string of 1 - 8 characters

If the entire 16 digits or 8 characters are not used, the field is padded to the right with binary zeros.

Note: Session keys are 64-bit Data Encryption Standard (DES) keys. With DES, 8 of the 64 bits are reserved for use as parity bits, so those 8 bits are not part of the 56-bit key. In hexadecimal notation, the DES parity bits are: 0101 0101 0101 0101. Any two 64-bit keys are equivalent DES keys if their only difference is in one or more of these parity bits. For instance, the following SESSKEY values, although appearing to be quite different, are equivalent because they differ only in the last bit of each byte:
- BDF0KM4Q, which is X'C2C4 C6F0 D2D4 F4D8'
- CEG1LN5R, which is X'C3C5 C7F1 D3D5 F5D9'

NOSESSKEY
Deletes the session key for this profile.

NOSESSION
Deletes the SESSION segment from this profile.

SIGVER | NOSIGVER

SIGVER
Specifies the options for verifying the signatures of programs that are protected by this general resource profile.

Rule: Specify SIGVER only for profiles in the PROGRAM class. Any options specified with the SIGVER operand are ignored for profiles in a class other than the PROGRAM class.

Restriction: Digital signature verification is supported only for program objects that are stored as members of a partitioned data set extended (PDSE) library. Digital signature verification is not supported for programs that are stored as members of a partitioned data set (PDS) library.

Any options specified with the SIGVER operand are ignored for unsupported programs.

Note: Regardless of the SIGREQUIRED setting, specifying FAILLOAD(NEVER) and SIGAUDIT(NONE) is equivalent to having no SIGVER segment.

For detailed information, see "Program signing and verification" in z/OS Security Server RACF Security Administrator’s Guide.

SIGREQUIRED | NOSIGREQUIRED

SIGREQUIRED
Specifies whether programs that are protected by this profile must be digitally signed.

YES
 Specifies that programs must be digitally signed.
When you specify SIGREQUIRED(YES), the following conditions apply to any program that is protected by this general resource profile:

- If the program has a digital signature:
 - Signature verification processing occurs.
 - The program continues to load according to the FAILLOAD setting.
 - Logging occurs according to the SIGAUDIT setting.

- If the program has no digital signature:
 - Signature verification processing occurs, resulting in a signature verification failure.
 - The program continues to load according to the FAILLOAD setting.
 - Logging occurs according to the SIGAUDIT setting.

Important: If you share the RACF database with other z/OS systems, do not specify SIGREQUIRED(YES) until you determine if another version of any program that is protected by this profile runs on a shared system. If so, ensure that each version of a protected program on the shared system is digitally signed. An unsigned version of a program that is protected with SIGREQUIRED(YES) might fail to load. Alternatively, consider protecting the other version with a separate program profile.

NO Specifies that programs need not be digitally signed.

When you specify SIGREQUIRED(NO), the following conditions apply to any program that is protected by this general resource profile:

- If the program has a digital signature:
 - Signature verification processing occurs.
 - The program continues to load according to the FAILLOAD setting.
 - Logging occurs according to the SIGAUDIT options.

- If the program has no digital signature:
 - No signature verification occurs.
 - The program continues to load. The FAILLOAD setting is ignored.
 - No logging occurs. The SIGAUDIT setting is ignored.

NOSIGREQUIRED
Resets the SIGREQUIRED value to NO.

FAILLOAD | NOFAILLOAD

FAILLOAD
Specifies the conditions under which the program fails to load in the event that a signature verification failure occurs.

ANYBAD
Specifies that the program fails to load when a signature verification failure occurs, regardless of the cause. Such failures include those resulting from an incorrect signature, or an error.
establishing the trust of the signer. This setting includes failures related to administrative errors, such as a missing or incorrectly defined key ring.

The ANYBAD setting includes the failures covered by the BADSIGONLY setting, and also includes errors establishing the trust of the signer.

BADSIGONLY

Specifies that the program fails to load only when the signature verification failure is caused by an incorrect digital signature. Such failures include only those resulting from a signature that fails verification or a signature structure that is missing or improperly formatted.

In contrast to ANYBAD, the BADSIGONLY setting does not cause a program to fail to load when the program has a valid signature originating from an untrusted signer.

NEVER

Specifies that the program never fails to load when a signature verification failure is detected.

NOFAILLOAD

Resets the FAILLOAD value to NEVER.

SIGAUDIT | NOSIGAUDIT

SIGAUDIT

Specifies which signature verification events are logged. Messages are issued to the console only for signature verification failures that are logged.

ALL

Logs all signature verifications, whether successful or not.

SUCCESS

Logs only signature verification successes. In other words, the digital signature is valid and the root CA certificate is trusted.

ANYBAD

Logs all signature verification failures, regardless of the cause of the failure. Such failures include those resulting from an incorrect signature, or an error establishing the trust of the signer. This setting includes failures related to administrative errors, such as a missing or incorrectly defined key ring.

The ANYBAD setting logs the failures covered by the BADSIGONLY setting, and also logs errors encountered when establishing the trust of the signer.

BADSIGONLY

Logs only signature verification failures caused by an incorrect digital signature. Such failures include only those resulting from a signature that fails verification or a signature structure that is missing or improperly formatted.

In contrast to ANYBAD, the BADSIGONLY setting does not log a signature verification failure when the program has a valid signature originating from an untrusted signer.

NONE

Logs no digital signature verification events.
NOSIGAUDIT
Resets the SIGAUDIT value to NONE.

NOSIGVER
Deletes the SIGVER segment.

SINGLEDSN | NOSINGLEDSN

SINGLEDSN
Specifies that the tape volume can contain only one data set. SINGLEDSN is valid only for a TAPEVOL profile. If the volume already contains more than one data set, RACF issues a message and ignores the operand.

NOSINGLEDSN
Specifies that the tape volume can contain multiple data sets, up to a maximum of 9999. NOSINGLEDSN is valid only for a TAPEVOL profile.

SSIGNON | NOSSIGNON

SSIGNON
Defines the application key or a secured signon key and indicates the method you want to use to protect the key value within the RACF database. You can mask or encrypt the key. The key-value represents a 64-bit (8-byte) key that must be represented as 16 hexadecimal characters. The valid characters are 0 - 9 and A - F.

Note:
1. As with RACF passwords, the database unload facility does not unload application keys or a secured signon keys.
2. The RLIST command does not list the value of the application key or the secured signon keys. Therefore, when you define the keys, you should note the value and keep it in a secure place.

KEYMASKED(key-value)
Specifies that you want to mask the key value using the masking algorithm.

Note:
1. You can specify this operand only once for each application key.
2. If you mask a key, you cannot encrypt it. These are mutually exclusive.

You can use the RLIST command to verify that the key is protected.

KEYENCRYPTED(key-value)
Specifies that you want to encrypt the key value.

Note:
1. You can specify this operand only once for each application key.
2. If you encrypt a key, you cannot mask it. These are mutually exclusive.
3. A cryptographic product must be installed and active on the system.

You can use the RLIST command to verify that the key is protected.

NOSSIGNON
Specifies that the SSIGNON segment should be deleted.

STDATA | NOSTDATA
STDATA
Used to control security for started tasks. STDATA should only be specified for profiles in the STARTED class.

USER | NOUSER

USER(userid)
Specifies the user ID to be associated with this entry.

RACF issues a warning message if the specified userid does not exist, but information is added to the STDATA segment. If the error is not corrected, RACF uses the started procedures table to process START requests that would have used this STARTED profile.

USER(=MEMBER)
Specifies that the procedure name should be used as the user ID. If =MEMBER is specified for USER, a group-name value should be specified for the GROUP operand. If =MEMBER is specified for both USER and GROUP, a warning message is issued and problems might result when the profile is used. For information, see z/OS Security Server RACF Security Administrator's Guide.

NOUSER
Specifies the user ID should be deleted from this entry, leaving it unspecified. A warning message is issued because the absence of a user specification in the STDATA segment normally indicates that the segment information is incomplete. If NOUSER is specified, RACF uses the started procedures table to process START requests that would have used this STARTED profile.

GROUP | NOGROUP

GROUP(group-name)
Specifies the group name to be associated with this entry.

RACF issues a warning message if the specified group-name does not exist. If userid and group-name are specified, RACF verifies that the user is connected to the group. If there is an error in the specification of the group name, the started task runs as an undefined user.

GROUP(=MEMBER)
Specifies that the procedure name should be used as the group name. If =MEMBER is specified for GROUP, a userid value must be specified for the USER operand or RACF uses the started procedures table to assign an identifier for this started task. If =MEMBER is specified for both USER and GROUP, a warning message is issued and problems might result when the profile is used. For information, see z/OS Security Server RACF Security Administrator’s Guide.

NOGROUP
Specifies the group name should be deleted from this entry, leaving it unspecified. If NOGROUP is specified, the started task runs with the default group of the specified user ID.

PRIVILEGED(YES | NO) | NOPRIVILEGED
Specifies whether the started task should run with the RACF PRIVILEGED attribute. The PRIVILEGED attribute allows the started task to pass most authorization checking. No installation exits are called, no SMF records are generated, and no statistics are updated.
PRIVILEGED(NO) and NOPRIVILEGED indicate that the started task should run without the PRIVILEGED attribute.

If neither PRIVILEGED nor NOPRIVILEGED is specified, PRIVILEGED(NO) is the default.

TRACE(YES | NO | NOTRACE)
Specifies whether a message should be issued to the operator when this entry is used to assign an ID to the started task.

If TRACE(YES) is specified, RACF issues an informational message to the operator to record the use of this entry when it is used to assign an ID to a started task. This record can be useful in finding started tasks that do not have a specific entry defined and in diagnosing problems with the user IDs assigned for started tasks.

TRACE(NO) and NOTRACE specify that an informational message should not be issued when this entry is used to assign an ID to the started task.

If neither TRACE nor NOTRACE is specified, TRACE(NO) is the default.

TRUSTED(YES | NO | NOTRUSTED)
Specifies whether the started task should run with the RACF TRUSTED attribute. The TRUSTED attribute is similar to the PRIVILEGED attribute except that auditing can be requested using the SETROPTS LOGOPTIONS command. For more information about the TRUSTED attribute, see z/OS Security Server RACF System Programmer’s Guide.

TRUSTED(NO) and NOTRUSTED indicate that the started task should run without the RACF TRUSTED attribute.

If neither TRUST nor NOTRUSTED is specified, TRUSTED(NO) is the default.

NOSTDATA
Specifies that all the STDATA information for this entry should be deleted. When this entry is used, and no STDATA was specified (or when the STDATA has been deleted), then RACF issues a message and use the started procedures table to assign information for this START command.

SVFMR | NOSVFMR

SVFMR
Defines profiles associated with a particular SystemView® for MVS application.

SCRIPTNAME | NOSCRIPITNAME

SCRIPTNAME(script-name) Specifies the name of the list of default logon scripts associated with this application. This operand is optional. If you omit this operand, no scripts are changed for the application.

The script-name is the 1 - 8 character alphanumeric name of a member of an MVS partitioned data set (PDS). RACF accepts both
RALTER

uppercase and lowercase characters for *script-name*, but lowercase characters are translated to uppercase.

The PDS member specified by *script-name* contains a list of other PDS members that contain the scripts associated with this application's profile. The PDS and members, including the member that contains the list of other members, are created by the administrator of the SystemView for MVS application.

NOScriptName

Specifies that the logon script name should be deleted from this entry.

PARMNAME | NOPARMNAME

PARMNAME(*parm-name*)

Specifies the name of the parameter list associated with this application. This operand is optional. If this operand is omitted, no parameters are changed for the application.

The *parm-name* is the 1 - 8 character alphanumeric name of a member of an MVS partitioned data set (PDS). RACF accepts both uppercase and lowercase characters for *parm-name*, but lowercase characters are translated to uppercase.

The PDS member specified by *parm-name* contains a list of other PDS members that contain the parameters associated with this application's profile. The PDS and members, including the list of other members, are created by System View for the MVS administrator.

NOPARMNAME

Specifies that the parameter list name should be deleted from this entry.

NOSVFMR

Specifies that the SVFMR segment should be deleted.

TIMEZONE | NOTIMEZONE

TIMEZONE({E | W} *hh*[*mm]*)

Specifies the time zone in which a terminal resides. TIMEZONE is valid only for resources in the TERMINAL class; RACF ignores it for all other resources.

Specify TIMEZONE only when the terminal is not in the same time zone as the processor on which RACF is running. In this situation, TIMEZONE provides the information RACF needs to calculate the time and day values correctly. If you identify more than one terminal in the *profile-name* operand, all the terminals must be in the same time zone.

On TIMEZONE, you specify whether the terminal is east (E) or west (W) of the system and by how many hours (*hh*) and, optionally, minutes (*mm*). The terminal time zone is different from the processor time zone. Valid hour values are 0 - 11, and valid minute values are 00 - 59.

For example, if the processor is in New York and the terminal is in Los Angeles, specify TIMEZONE(W 3). If the processor is in Houston and the terminal is in New York, specify TIMEZONE(E 1).

If you change the local time on the processor (to accommodate daylight savings time, for instance), RACF adjusts its time calculations accordingly. However, if the processor time zone and the terminal time zone do not
change in the same way, you must adjust the terminal time zones yourself, as described for the WHEN(TIME) operand.

NOTETIMEZONE
 Specifies that the terminal is in the same time zone as the processor.
 NOTIMEZONE is valid only for resources in the terminal class; RACF ignores it for all other resources.

TME | NOTME
TME
 Specifies that information for the Tivoli Security Management Application is to be added, changed, or deleted.

Note: The TME segment fields are intended to be updated only by the Tivoli Security Management Application, which manages updates, permissions, and cross references. A security administrator should only directly update Tivoli Security Management fields on an exception basis.

All TME suboperands, with the exception of those for ROLES, can be specified when changing a resource profile in the ROLE class. Conversely, only the ROLES suboperand can be specified when changing a resource profile in any other class.

CHILDREN | NOCHILDREN | ADDCHILDREN | DELCHILDREN

CHILDREN(profile-name ...)
 Specifies the complete list of roles which inherit attributes from this role. A role is a discrete general resource profile defined in the ROLE class.

ADDC children(profile-name ...)
 Specifies the addition of specific child roles to the current list of roles.

DELCHILDREN(profile-name ...)
 Specifies the removal of specific child roles from the current list of roles.

NOCHILDREN
 Specifies the removal of the entire list of child roles.

GROUPS | NOGROUPS | ADDGROUPS | DELGROUPS

GROUPS(group-name ...)
 Specifies the complete list of groups which should be permitted to resources defined in this role profile.
 The group-name value should be the name of a defined group.

ADDGROU PS(group-name ...)
 Specifies the addition of specific groups to the current list of groups.

DELGROUPS(group-name ...)
 Specifies the removal of specific groups from the current list of groups.

NOGROUPS
 Specifies the removal of the entire list of groups.

PARENT | NOPARENT
RALTER

PARENT(profile-name)
 Specifies the name of a role from which this role inherits attributes.
 A role is a discrete general resource profile defined in the ROLE class.

NOPARENT
 Specifies the deletion of the parent role from this profile.

RESOURCE | NORESOURCE | ADDRESOURCE | DELRESOURCE

RESOURCE(resource-access-specification ...)
 Specifies the complete list of resources and associated access levels
 for groups defined in this role profile.

 One or more resource-access-specification values can be specified,
 each separated by blanks. Each value should contain no imbedded
 blanks and should have the following format:

 origin-role:class-name:profile-name:authority
 [:conditional-class:conditional-profile]

 where origin-role is the name of the role profile from which the
 resource access is inherited. The class-name value is an existing
 resource class name and profile-name is a resource profile defined in
 that class. The authority is the access authority (NONE, EXECUTE,
 READ, UPDATE, CONTROL, or ALTER) with which groups in the
 role definition should be permitted to the resource.

 The conditional-class value is a class name (APPCPORT, CONSOLE,
 JESINPUT, PROGRAM, TERMINAL, or SYSID) for conditional
 access permission, and is followed by the conditional-profile value, a
 resource profile defined in the conditional class.

ADDRESOURCE(resource-access-specification ...)
 Specifies the addition of specific resource-access-specifications
 to the current list.

DELRRESOURCE(resource-access-specification ...)
 Specifies the removal of specific resource-access-specifications
 from the current list.

NORESOURCE
 Specifies the removal of the entire list of resources.

ROLES | NOROLES | ADDROLES | DELROLES

ROLES(role-access-specification ...)
 Specifies a list of roles and associated access levels related to
 this profile.

 One or more role-access-specification values can be specified,
 each separated by blanks. Each value should contain no
 imbedded blanks and should have the following format:

 role-name:authority
 [:conditional-class:conditional-profile]

 where role-name is a discrete general resource profile defined in
 the ROLE class. The authority value is the access authority
 (NONE, EXECUTE, READ, UPDATE, CONTROL, or ALTER)
 with which groups in the role definition should be permitted
 to the resource.
The *conditional-class* value is a class name (APPCPORT, CONSOLE, JESINPUT, PROGRAM, TERMINAL, or SYSID) for conditional access permission, and is followed by the *conditional-profile* value, a resource profile defined in the conditional class.

ADDROLES(role-access-specification ...)

Specifies that specific roles and access levels are to be added to the current list.

DELROLES(role-access-specification ...)

Specifies that specific roles from the current list of roles are to be removed.

NOROLES

Specifies that the entire list of roles be removed.

NOTME

Specifies that RACF delete the TME segment from the profile.

TVTOC | NOTVTOC

TVTOC

Specifies, for a TAPEVOL profile, that RACF is to create a TVTOC in the TAPEVOL profile when a user creates the first output data set on the volume.

Specifying TVTOC affects the access list for the TAPEVOL profile:

1. When RACF processes the RALTER command with the TVTOC operand, it places the user ID of the command issuer (perhaps the tape librarian) in the access list with ALTER authority.
2. When the first output data set is created on the volume, RACF adds the user ID associated with the job or task to the access list with ALTER authority.

The TVTOC operand is valid only for a discrete profile in the TAPEVOL class. If you specify TVTOC and the volume already contains a TVTOC, RACF issues a message and ignores the operand.

NOTVTOC

Specifies that RACF cannot create a TVTOC in the resource profile. The NOTVTOC operand is valid only for a discrete profile in the TAPEVOL class. It is also invalid if a TVTOC with at least one entry already exists in the TAPEVOL profile. When NOTVTOC is invalid, RACF issues a message and ignores the operand. If your installation uses DFSMSHsm and you activate tape data set protection, the TVTOC for DFSMSHsm tapes might become too large. To avoid this problem, issue the following RALTER command:

```
RALTER TAPEVOL HSMHSM NOTVTOC
```

UACC(access-authority)

Specifies the universal access authority to be associated with this resource. The universal access authorities are ALTER, CONTROL, UPDATE, READ, EXECUTE (for controlled programs only), and NONE.

Note:

1. For tape volumes and DASD volumes, RACF treats CONTROL authority as UPDATE authority.
2. For all other resources listed in the class descriptor table, RACF treats CONTROL and UPDATE authority as READ authority.

3. If a user accessing a data set has the RESTRICTED attribute, RACF treats the universal access authority (UACC) as NONE for that access attempt.

WARNING | NOWARNING

WARNING
Specifies that even if access authority is insufficient, RACF is to issue a warning message and allow access to the resource. RACF also records the access attempt in the SMF record if logging is specified in the profile.

Restriction: RACF does *not* issue a warning message for a resource when the resource is:

- In the PROGRAM or NODES class
- In a class for which an application has built in-storage profiles using RACROUTE REQUEST=LIST.

When SETROPTS MLACTIVE(FAILURES) is in effect: A user or task can access a resource that is in WARNING mode and has no security label even when MLACTIVE(FAILURES) is in effect and the class requires security labels. The user or task receives a warning message and gains access.

Applications that use REQUEST=LIST: Some applications, such as IMS and CICS, load all the profiles for a given class into storage. After these profiles are in storage, the applications can do a fast authorization check using RACROUTE REQUEST=FASTAUTH. Fast authorization checking is different from normal authorization checking in several ways. One difference is that, in some cases, fast authorization checking does not issue warning messages, notification messages or support auditing. In cases where it does not, return and reason codes are returned to the application to allow support of these functions. The application can examine the return and reason codes and use RACROUTE REQUEST=AUTH to create the messages and audit records. If the application uses RACROUTE REQUEST=AUTH to support auditing or specifies LOG=ASIS on the RACROUTE REQUEST=FASTAUTH, the specified user is notified. Otherwise, notification, warning, and so on, does not occur.

NOWARNING
Specifies that if access authority is insufficient, RACF is to deny the user access to the resource and not issue a warning message.

WHEN
Specifies, for resources in the TERMINAL class, the days of the week or the hours in the day when the terminal can be used to access the system. The day-of-week and time restrictions apply only when a user logs on to the system; that is, RACF does not force the user off the system if the end-time occurs while the user is logged on.
If you specify the WHEN operand, you can restrict the use of the terminal to certain days of the week or to a certain time period on each day. You can also restrict access to both certain days of the week and to a certain time period within each day.

DAYS(day-info)

Specifies days of the week when the terminal can be used. The *day-info* value can be any one of the following:

- **ANYDAY**
 - Allows use of the terminal on any day.
- **WEEKDAYS**
 - Allows use of the terminal only on weekdays (Monday through Friday).
- **day ...**
 - Allows use of the terminal only on the days specified, where day can be MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, or SUNDAY, and you can specify the days in any order.

TIME(time-info)

Specifies the time period each day when the terminal can be used. The *time-info* value can be any one of the following:

- **ANYTIME**
 - RACF allows use of the terminal at any time.

start-time,end-time

RACF allows use of the terminal only during the specified time period. The format of both the *start-time* and *end-time* values is *hhmm*, where *hh* is the hour in 24-hour notation (00 - 24) and *mm* is the minutes (00 - 59) within the range 0001 - 2400. Note that 2400 indicates 12:00 a.m. (midnight).

If *start-time* is greater than *end-time*, the interval spans midnight and extends into the following day.

Specifying *start-time* and *end-time* is straightforward when the processor on which RACF is running and the terminal are in the same time zone; you specify the time values in local time.

However, if the terminal is in a different time zone from the processor and you want to restrict access to certain time periods, you have two choices. You can specify the TIMEZONE operand to allow RACF to calculate the time and day values correctly. Or, you can adjust the time values yourself, by translating the *start-time* and *end-time* for the terminal to the equivalent local time for the processor.

For example, assume that the processor is in New York and the terminal is in Los Angeles, and you want to allow access to the terminal from 8:00 A.M. to 5:00 P.M. in Los Angeles. In this situation, you would specify TIME(1100:2000). If the processor is in Houston and the terminal is in New York, you would specify TIME(0900:1800).

If you omit DAYS and specify TIME, the time restriction applies to any day-of-week restriction already specified in the profile. If you omit TIME and specify DAYS, the days restriction applies to any time restriction already specified in the profile. If you specify both DAYS and TIME, RACF allows use of the terminal only during the specified time period and only on the specified days.
RALTER

Examples

Example 1

Operation
User TRA02 wants to change the owner and universal access for terminal TERMID01 and restrict use of the terminal to weekdays during regular business hours (8:00 A.M. - 6:00 P.M.).

Known
User TRA02 has the SPECIAL attribute.

Terminal TERMID01 is defined to RACF. Terminal TERMID01 is in the same time zone as the processor on which RACF is running.

User TRA02 wants to issue the command as a RACF TSO command.

Command
```
RALTER TERMINAL TERMID01 OWNER(TRA02) UACC(ALTER)
WHEN(DAYS(WEEKDAYS) TIME(0800:1800))
```

Defaults
None.

Example 2

Operation
User RFF23 wants to delete the two data fields associated with the terminal T3E8. The user wants to be notified whenever the terminal profile denies access to the terminal.

Known
User RFF23, who is a RACF-defined user, is the owner of the T3E8 terminal entry.

User RFF23 wants to issue the command as a RACF operator command, and the RACF subsystem prefix is `@`.

Command
```
@RALTER TERMINAL T3E8 NODATA NOAPPLDATA NOTIFY(RFF23)
```

Defaults
None.

Example 3

Operation
User ADM1 wants to delete the data fields associated with the generic profile `*` in the TERMINAL class.

Known
User ADM1 has the SPECIAL attribute.

User ADM1 wants to issue the command as a RACF TSO command.

Command
```
RALTER TERMINAL * NODATA NOAPPLDATA
```

Defaults
None.

Example 4

Operation
User PAYADM1 wants to add the PAYROLL category to the list of security categories known to RACF.

Known
User PAYADM1 has the SPECIAL attribute. RACF security category checking is active.

User PAYADM1 wants to issue the command as a RACF TSO command.

Command
```
RALTER SECDATA CATEGORY ADDMEM(PAYROLL)
```

Defaults
None.

Example 5

Operation
User RFF22 wants to add volume TAP02 to the tape volume set, change the level of the tape volume set, and change the AUDIT and GLOBALAUDIT logging options.

Known
User RFF22 is the owner of the tape volume set. User RFF22 has the AUDITOR attribute. TAP01 is a volume of the tape volume set. User RFF22 wants to issue the command as a RACF TSO command.

Command
```
RALTER TAPEVOL TAP01 AUDIT(SUCCESS(READ)) LEVEL(22)
GLOBALAUDIT(SUCCESS(UPDATE) FAILURES(READ)) ADDVOL(TAP02)
```

Defaults
None.

Example 6

Operation
User ADM1 wants to add AMASPDAP to the in-storage profile table of controlled programs. AMASPDAP requires program-accessed data set checking.

Known
User ADM1 has the SPECIAL attribute. AMASPDAP resides in SYS1.LINKLIB on the SYSRES volume. RACF program control is active.

User ADM1 wants to issue the command as a RACF TSO command.

Command
```
RALTER PROGRAM AMASPDAP ADDMEM('SYS1.LINKLIB'/SYSRES/PADCHK)
```

Defaults
None.
Example 7
Operation User ADM1 wants to add all load modules that start with IKF to the in-storage profile table of controlled programs. These load modules do not require program-accessed data set checking. User ADM1 wants to direct the command to run at the local node under the authority of user EMILIE and prohibit the command from being automatically directed to other nodes.

Known Users ADM1 and EMILY have the SPECIAL attribute. All load modules whose names begin with IKF reside in SYS1.COBLIB on the SYSRES volume. RACF program control is active. Users ADM1 and EMILIE have an already established user ID association.

User ADM1 wants to issue the command as a RACF TSO command.

Command
```
ALTER PROGRAM IKF* ONLYAT(.'EMILIE')
ADDMEM('SYS1.COBLIB'/SYSRES/NOPADCHK)
```

Results
The command is only processed on the local node and not automatically directed to any other nodes in the RRSF configuration.

Example 8
Operation The security administrator wants to change the key value of a profile in the PTKTDATA class so the value becomes encrypted.

Known NONNEL is the user ID of the security administrator. The profile name is TSOR004. The key-value is B004194019641980. The security administrator wants to issue the command as a RACF TSO command.

Command
```
ALTER PTKTDATA TSOR004
SSIGNON(KEYENCRYPTED(B004194019641980))
```

Defaults
None.

Example 9
Operation The administrator wants to change the script and parameter definitions for an existing SystemView for MVS application that has been defined to the SYSMVIEW class.

Known
The new script definition is APPL2SC.
The new parameter definition is APPL2P.

Command
```
ALTER SYSMVIEW APPL1.HOST1.USER1
SVFMR(SCRIPTNAME(APPL2SC) PARMSNAME(APPL2P))
```

Defaults
None.

Example 10
Operation Local realm KRB2000.IBM.COM is being defined with a minimum ticket lifetime of 5 minutes, a default ticket lifetime of 10 hours, a maximum ticket lifetime of 24 hours, and a password of 744275. All of the ticket lifetime values are specified in seconds.

Known
The administrator has access to the KERBDFLT profile in the REALM class.

Command
```
ALTER REALM KERBDFLT KERB(KERBNAME(KRB2000.IBM.COM)
MINTKTLFE(300) DEFTKTLFE(36000) MAXTTLFE(86400)
PASSWORD(744275))
```

Defaults
None.

Example 11
Operation A trust relationship is being defined between the kerb390.endicott.ibm.com realm and the realm at kerb2000.endicott.ibm.com.

Known
The administrator has access to the /.../KERB390.ENDICOTT.IBM.COM/KRBTGT/KER2000.ENDICOTT.IBM.COM profile in the REALM class.

Command
```
ALTER REALM /.../KERB390.ENDICOTT.IBM.COM/KRBTGT/ KER2000.ENDICOTT.IBM.COM KERB(PASSWORD(12345678))
```

Defaults
None.

Example 12
Operation The system default EIM values are being altered by changing the domainDn and disabling it.

Known
IRR.PROXY.DEFAUTS is the profile being changed in the FACILITY class. The EIM domain distinguished name begins with Pok EIM Domain,o=IBM,c=US.

Command
```
ALTER FACILITY IRR.PROXY.DEFAUTS
EIM(DOMAINDN('ibm-eimDomainName=Pok EIM Domain,o=IBM,c=US')
OPTIONS(DISABLE))
```

Defaults
None.
RALTER

Example 13

Operation
The security administrator wants to change an attribute of the installation-defined class TSTCLAS8. He wants to change the value of RACLST(REQUIRED) to RACLST(ALLOWED).

Known
The administrator has the SPECIAL attribute.

Command
RALTER CDT TSTCLAS8 CDTINFO(RACLST(ALLOWED))

Note: The dynamic CDT must be refreshed to make this change effective:
SETROPTS RACLIST(CDT) REFRESH

Defaults
None.

Example 14

Operation
At Rui's installation, identity mappings in EIM change frequently and identity mapping changes are not refreshed often enough. She wants to reduce the MAPPINGTIMEOUT value so that mappings in the identity cache expire sooner and are refreshed more frequently from EIM. She reduces the timeout value to 1800 seconds (one-half hour).

Known
When the IRR.ICTX.DEFAULTS profile was defined in the LDAPBIND class, the MAPPINGTIMEOUT value was defaulted to 3600 seconds (one hour).

Command
RALTER LDAPBIND IRR.ICTX.DEFAULTS ICTX(MAPPINGTIMEOUT(1800))

Defaults
None.

Example 15

Operation
At Rui's installation, identity mappings in EIM change frequently and identity mapping changes are not refreshed often enough. She wants to reduce the MAPPINGTIMEOUT value so that mappings in the identity cache expire sooner and are refreshed more frequently from EIM. She reduces the timeout value to 1800 seconds (one-half hour).

Known
When the IRR.ICTX.DEFAULTS profile was defined in the LDAPBIND class, the MAPPINGTIMEOUT value was defaulted to 3600 seconds (one hour).

Command
RALTER LDAPBIND IRR.ICTX.DEFAULTS ICTX(MAPPINGTIMEOUT(1800))

Defaults
None.

Example 16

Operation
The security administrator uses a custom field called ADDRESS in her user profiles. She wants to update the help text and modify the maximum length of this custom field.

Known
The user has the SPECIAL attribute. The changes in the custom field are not effective until the system programmer rebuilds the dynamic parse table using the IRRDPI00 UPDATE command.

Command
RALTER CFIELD USER.CSDATA.ADDRESS CFDEF(MAXLENGTH(200)
HELP('HOME ADDRESS, 1-200 characters')

Defaults
None.

Example 17

Operation
User SECADM wants to update the signature verification options for a controlled program called MYPROG14 program to specify that it must now be digitally signed before it can be loaded, that the program should fail to load if its digital signature cannot be verified for any reason, and that logging of signature verification events should occur for only failures.

Known
The user has the SPECIAL attribute. The MYPROG14 program is a program object that resides in a partitioned data set extended (PDSE) library.

Command
RALTER PROGRAM MYPROG14
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

Defaults
None.
RDEFINE (Define general resource profile)

Purpose

Use the RDEFINE command to:
- Define to RACF all resources belonging to classes specified in the class descriptor table.
- Create entries in the global access checking table.
- Define security categories and security levels.
- Define classes (as profiles in the RACGLIST class) for which RACF saves RACLISTed results on the RACF database.
- Define the attributes ofclasses in the dynamic class descriptor table.
- Define a custom field and its attributes.

The RDEFINE command adds a profile for the resource to the RACF database in order to control access to the resource. It also places your user ID on the access list and gives you ALTER authority to the resource unless SETROPTS NOADDCREATOR is in effect.

You cannot use the RDEFINE command to define users, groups, data sets, certificates, certificate key rings, or certificate mappings.

To have changes take effect after defining a generic profile if the class is not RACLISTed by either the SETROPTS RACLIST or RACROUTE REQUEST=LIST, GLOBAL=YES, one of the following steps is required:
- The security administrator issues the SETROPTS command:
 SETROPTS GENERIC(class-name) REFRESH
 See the SETROPTS command for authorization requirements.
- The user of the resource logs off and logs on again.

To have changes take effect after defining a generic profile if the class is RACLISTed, the security administrator issues the following command:
SETROPTS RACLIST(class-name) REFRESH

For more information, refer to Z/OS Security Server RACF Security Administrator’s Guide

Attention:
- When the RDEFINE command is issued from ISPF, the TSO command buffer (including SESSKEY and SSIGNON) is written to the ISPLOG data set. As a result, you should not issue this command from ISPF or you must control the ISPLOG data set carefully.
- If the RDEFINE command is issued as a RACF operator command, the command and all data is written to the system log. Therefore, use of RDEFINE as a RACF operator command should either be controlled or you should issue the command as a TSO command.

Issuing options

The following table identifies the eligible options for issuing the RDEFINE command:
RDEFINE

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.

Related commands
- To create a group profile, see “ADDGROU P (Add group profile)” on page 24.
- To create a data set profile, see “ADDDS D (Add data set profile)” on page 33.
- To create a user profile, see “ADDUSER (Add user profile)” on page 48.
- To permit or deny access to a general resource profile, see “PERMIT (Maintain resource access lists)” on page 261.
- To change a general resource profile, see “RALTER (Alter general resource profile)” on page 421.
- To delete a general resource profile, see “RDELETE (Delete general resource profile)” on page 539.
- To obtain a list of general resource profiles, see “SEARCH (Search RACF database)” on page 580.
- To list a general resource profile, see “RLIST (List general resource profile)” on page 550.

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.

To use the RDEFINE command, you must have either the SPECIAL attribute or minimally the CLAUTH authority for the class.

If you have CLAUTH authority but not the SPECIAL attribute, you may need to be authorized as follows:
- If you have CLAUTH authority for the GLOBAL class, and group-SPECIAL authority in a group, you can add members whose high-level qualifier is the group name or a user ID in the scope of the group. This applies only to classes that are sensitive to high-level qualifiers, such as DATASET.
- If the name to be defined is not already defined to RACF as a member of a resource group and you are defining a profile in a normal (non-member, non-grouping) class, you must be authorized to define resources for the specified class. (This authority can be established with the CLAUTH operand on the ADDUSER or ALTUSER command.)
- If the name to be defined is not already defined to RACF as a member of a resource group and you are defining a profile in a member class or a member of...
RDEFINE

a grouping class, you must be authorized to define resources for the specified
class. (This authority can be established with the CLAUTH operand on the
ADDUSER or ALTUSER command.)

- If the resource to be defined is a discrete name already defined to RACF as a
 member of a resource group, you can define it as a resource to RACF if you
 have ALTER authority, or if the resource group profile is within the scope of a
 group in which you have the group-SPECIAL attribute, or if you are the owner
 of the resource group profile. If authority conflicts arise because the resource is a
 member of more than one group and the user's authority in those groups differs,
 RACF resolves the conflict by using the least restrictive authority (unless
 modified by the installation).

- If you do not have the SPECIAL attribute and the SETROPTS GENERICOWNER
 option is in effect, and if an existing generic profile protects the profile name
 you are defining, you need to own the less specific profile.
 - If the less specific profile is within the scope of a group in which you have
 group-SPECIAL, you are considered to own the profile.
 - GENERICOWNER does not apply to the PROGRAM general resource class.
 - For additional information on the GENERICOWNER option and restricting
 the creation of general resource profiles, see z/OS Security Server RACF
 Security Administrator’s Guide.

- To assign a security category to a profile, you must have the category in your
 user profile.

- To assign a security level to a profile, your own profile must have a security
 level that is equal to or greater than the security level you are defining.

- To use the ADDMEM operand, see the description of the ADDMEM operand for
 information on the authority required to use the operand.

- To specify the AT keyword, you must have READ authority to the DIRECT.node
 resource in the RRSFCDATA class and a user ID association must be established
 between the specified node.userid pair(s).

- To specify the ONLYAT keyword you must have the SPECIAL attribute, the
 userid specified on the ONLYAT keyword must have the SPECIAL attribute, and
 a user ID association must be established between the specified node.userid
 pair(s) if the user IDs are not identical.

- To define segments other than the base segment, such as DLFDATA, you must
 have the SPECIAL attribute or your installation must permit you to do so
 through field-level access checking.

- To assign a security label to a profile, you must have READ access to the
 security label profile. However, the security administrator can limit the ability to
 assign security labels to only users with the SPECIAL attribute.

- Only a SPECIAL user can define a delegated resource (by specifying the
 RACF-DELEGATED string in the APPLDATA of the profile protecting the resource)
 when the resource has a SECLABEL and SETROPTS SECLABELCONTROL is in
 effect.

To define a profile in the FILE or DIRECTRy class, one of the following must be
true:

- The second qualifier of the profile name must match your user ID.
- You must have the SPECIAL attribute.
- The profile name must be within the scope of a group in which you have the
 group-SPECIAL attribute.
RDEFINE

Model profiles: To specify a model profile (using, as required, FROM, FCLASS, FGENERIC, and FVOLUME), you must have sufficient authority over the model profile (the from profile). RACF makes the following checks until one of the conditions is met:

- You have the SPECIAL attribute.
- The from profile is within the scope of a group in which you have the group-SPECIAL attribute.
- You are the owner of the from profile.
- If the FCLASS operand is DATASET, the high-level qualifier of the profile name (or the qualifier supplied by the naming conventions routine or a command installation exit) is your user ID.
- For a discrete profile, you are on the access list in the from profile with ALTER authority. (If you have any lower level of authority, you cannot use the profile as a model.)
- For a discrete profile, your current connect group (or, if list-of-groups checking is active, any group to which you are connected) is in the access list in the from profile with ALTER authority.
- For a discrete profile, the universal access authority (UACC) is ALTER.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the RDEFINE command is:

```
[subsystem-prefix][RDEFINE | RDEF]
   class-name
      (profile-name-1 ...)
      [ ADDCATEGORY(category-name ...) ]
      [ ADDMEM(member ...) ]
      [ APPLDATA('application-data') ]
      [ AT([node].userid ...) | ONLYAT([node].userid ...) ]
      [ AUDIT( access-attempt[[audit-access-level]] ...) ]
```
RDEFINE

```
[ CDTINFO(
    [ CASE( UPPER | ASIS ) ]
    [ DEFaulTRc( 0 | 4 | 8 ) ]
    [ DEFaulTUACC( ACEE | ALTER | CONTROL |
        UPDATE | READ | NONE ) ]
    [ FIRST( characters-allowed ... ) ]
    [ GENERIC( ALLOWED | DISALLOWED ) ]
    [ GENLIST( ALLOWED | DISALLOWED ) ]
    [ GROUP( grouping-class-name ) ]
    [ KEYQUALIFIERS( 0 | nnn ) ]
    [ MACPROCESSING( NORMAL | REVERSE | EQUAL ) ]
    [ MAXLENGTH( 8 | nnn ) ]
    [ MAXlENX( nnn ) ]
    [ MEMBER( member-class-name ) ]
    [ OPERATIONS( YES | NO ) ]
    [ OTHER( characters-allowed ... ) ]
    [ POSIT( nnn ) ]
    [ PROFILESALLOWED( YES | NO ) ]
    [ RACLST( ALLOWED | DISALLOWED | REQUIRED ) ]
    [ SECLABELSREQUIRED( YES | NO ) ]
    [ SIGNAL( YES | NO ) ]
) ]

[ CFDEF(
    [ TYPE( CHAR | FLAG | HEX | NUM ) ]
    [ FIRST( ALPHA | ALPHANUM | ANY |
        NONATABC | NONATNUM | NUMERIC ) ]
    [ HELP( help-text ) ]
    [ LISTHEAD( list-heading-text ) ]
    [ MAXLENGTH( maximum-field-length ) ]
    [ MAXVALUE( maximum-numeric-value ) ]
    [ MINVALUE( minimum-numeric-value ) ]
    [ MIXED( YES | NO ) ]
    [ OTHER( ALPHA | ALPHANUM | ANY |
        NONATABC | NONATNUM | NUMERIC ) ]
) ]

[ DATA('installation-defined-data') ]

[ DLFDATA(
    [ RETAIN( YES | NO ) ]
    [ JOBNAMEs(jobname-1 ... ) ]
) ]

[ EIM(
    [ DOMAINDN(eim_domain_dn) ]
    [ OPTIONS( ENABLE | DISABLE ) ]
    [ LOCALREGISTRY(registry_name) ]
    [ KERBREGISTRY(registry_name) ]
    [ X509REGISTRY(registry_name) ]
) ]

[ FCLASS(profile-name-2-class) ]
[ FGENERIC ]
[ FROM(profile-name-2) ]
[ FVOLUME(profile-name-2-serial) ]
```
RDEFINE

[ICSF(
 [ASYMUSAGE(
 [HANDSHAKE | NOHANDSHAKE]
 [SECUREEXPORT | NOSECUREEXPORT]
)]
 [SYMEXPORTABLE(BYANY | BYLIST | BYNONE)]
 [SYMEXPORTCERTS([qualifier]/label-name ... | *)]
 [SYMEXPORTKEYS(ICSF-key-label ... | *)]
 [SYMCPACFWRAP(YES | NO)]
)]

[ICTX(
 [USEMAP(YES | NO)]
 [DOMAP(YES | NO)]
 [MAPREQUIRED(YES | NO)]
 [MAPPINGTIMEOUT(nnnn)]
)]

[KERB(
 [CHECKADDRS(YES | NO)]
 [DEFTKTLFE(def-ticket-life)]
 [ENCRYPT(
 [DES | NODES]
 [DES3 | NODES3]
 [DESD | NOEDS]
 [AES128 | NOAES128]
 [AES256 | NOAES256]
)]
 [KERBNAME(kerberos-realm-name)]
 [MAXTKTLFE(max-ticket-life)]
 [MINTKTLFE(min-ticket-life)]
 [PASSWORD(kerberos-password)]
)]

[LEVEL(nn)]
[NOTIFY(userid)]
[OWNER(userid or group-name)]

[PROXY(
 [LDAPHOST(ldap_url)]
 [BINDDDN(bind_distinguished_name)]
 [BINDPW(bind_password)]
)]

[SECLABEL(seclabel-name)]
[SECLEVEL(secllevel-name)]

[SESSION(
 [CONVSEC(NONE | CONV | ALREADYV | PERSISTV | AVPV)]
 [INTERVAL(n)]
 [LOCK]
 [SESSKEY(session-key)]
)]

[SIGVER(
 [SIGREQUIRED(YES | NO)]
 [FAILLOAD(ANYBAD | BADSIGONLY | NEVER)]
 [SIGAUDIT(ALL | SUCCESS | ANYBAD | BADSIGONLY | NONE)]
)]

[SIGLEDSN]
For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

Parameters

subsystem-prefix

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

class-name

Specifies the name of the class to which the resource belongs. The valid class names are those defined in the class descriptor table. For a list of general resource classes defined in the class descriptor table supplied by IBM, see Appendix B, “Supplied RACF resource classes,” on page 693.
RDEFINE

This operand is required and must be the first operand following RDEFINE. This command is not intended to be used for profiles in the following classes:

- DCEUUIDS
- DIGTCERT
- DIGTNMAP
- DIGTRING
- IDIDMAP
- NDSLINK
- NOTE LINK
- ROLE
- UNIXMAP

Note: If you have the CLAUTH attribute (class authority) to a member or grouping class, the member or grouping class must be active in order for you to define profiles in that class.

profile-name-1

Specifies the name of the discrete or generic profile you want to add to the specified class. RACF uses the class descriptor table to determine if the class is defined to RACF, the syntax of resource names within the class, and whether the resource is a group resource. For more information, see "Naming considerations for resource profiles," on page 681 and z/OS Security Server RACF Security Administrator's Guide.

Mixed-case profile names are accepted and preserved when class-name refers to a class defined in the static class descriptor table with CASE=ASIS or in the dynamic class descriptor table with CASE(ASIS).

This operand is required and must be the second operand following RDEFINE.

- If you specify more than one profile name, you must enclose the list of names in parentheses.
- In general, you should not specify profile names within single quotation marks because most classes will not allow this, and the RDEFINE command will fail. Classes such as FACILITY (or others whose class definition allows any character as the first character) will allow RDEFINE to work, but this will result in defining a profile whose name contains the single quotation mark. As a result, during authorization checking, the profile might not protect the resources intended to be protected. In fact, such a profile can only work if you also have a resource manager that encloses its resource names in single quotation marks, but most resource managers do not.
- If you specify class-name as GLOBAL, profile-name-1 must be either DATASET or a valid class name (other than a resource group class) as specified in the class descriptor table. If you specify class-name as GLOBAL or SECDATA and also specify ADDMEM, you can specify only one profile name.
- If you want RACF to store the results from a SETROPTS RACLST or a RACROUTE REQUEST=LIST,GLOBAL=YES in the RACGLIST class, define the base profile for the class by issuing the following RDEFINE command, where profile-name-1 is a valid class in the class descriptor table:

 RDEFINE RACGLIST profile-name-1

If the RACGLIST class is active when the class profile-name-1 is RACLISTed, RACF stores the RACLISTed results as profile-name-1_nnnnn profiles on the RACF database. For example, the following RDEFINE command creates a base profile DASDVOL:
RDEFINE

Example:

```
RDEFINE RACGLIST DASDVOL
```

The following SETROPTS command stores the RACLST results as profiles DASDVOL_00001, DASDVOL_00002, and so on, in the RACGLIST class.

Example:

```
SETROPTS RACLST(DASDVOL)
```

Restrictions: The following classes can *not* be specified as profile names for RACGLIST:

- The CDT, GLOBAL, RACLIST, USER, CONNECT, GROUP, and DATASET classes
- Any class noted in Appendix B, “Supplied RACF resource classes,” on page 693 as not allowing profiles in the class (for example, the DIRAUTH class)
- Any class noted in Appendix B, “Supplied RACF resource classes,” on page 693 as not intended for use with any RACF command (for example, the SCDMBR class)
- Any resource grouping class, other than the NODES and RACFVARS grouping classes which are allowed.

- If `class-name` is a resource grouping class (other than NODES or RACFVARS), you cannot specify a generic `profile-name-1`. If `class-name` is DLFCLASS, you should not specify a generic `profile-name-1` as it is ignored by DLF processing.
- If you specify `class-name` as PROGRAM, you can specify only one profile name, and you must specify the ADDMEM operand.
- If you specify `class-name` as PROGRAM, `profile-name` must be the name of a load module. If you specify the full name of the load module, the profile applies only to that module. If you specify the last character of the name as an asterisk (*), the profile applies to all load modules that match the preceding part of the name, and these load modules must all reside in the same library. For example, `IKF*` identifies all load module names that begin with `IKF`. If you specify `profile-name` as an asterisk (*), the profile applies to all load modules that reside in the library you identify on the ADDMEM operand.
- If you are activating field-level access checking, you must specify `class-name` as FIELD. To define a profile (`profile-name-1`) in the FIELD class, you must follow the profile naming conventions described in “Field-level access checking” in z/OS Security Server RACF Security Administrator’s Guide.
- If you specify `class-name` as STARTED, you must specify two qualifiers for the profile name. Follow the profile naming conventions described in “Specifying STARTED class profile names” in z/OS Security Server RACF Security Administrator’s Guide.
- If you specify `class-name` as CFIELD, you must follow the profile naming conventions described in “Profiles in the CFIELD class” in z/OS Security Server RACF Security Administrator’s Guide.

Note:

1. Do not specify a generic character unless SETROPTS GENERIC (or SETROPTS GENCMD) is in effect.
2. RACF processes each resource you specify independently, and all operands you specify apply to each named resource. If an error occurs while it is processing a resource, RACF issues a message and continues processing with the next resource.

ADDCATEGORY(category-name ...)

Specifies one or more names of installation-defined security categories. The names you specify must be defined as members of the CATEGORY profile in the SECDATA class. (For information on defining security categories, see [z/OS Security Server RACF Security Administrator’s Guide](#).)

When the SECDATA class is active and you specify ADDCATEGORY, RACF performs security category checking in addition to its other authorization checking. If a user requests access to a resource, RACF compares the list of security categories in the user’s profile with the list of security categories in the resource profile. If RACF finds any security category in the resource profile that is not in the user’s profile, RACF denies access to the resource. If the user’s profile contains all the required security categories, RACF continues with other authorization checking.

Note: RACF does not perform security category checking for a started task with the RACF privileged or trusted attribute. The RACF privileged or trusted attribute can be assigned to a started task through the RACF started procedures table or STARTED class. Also, RACF does not enforce security category information specified on profiles in the PROGRAM class.

ADDMEM(member ...)

Specifies the member names that RACF is to add to the profile indicated by profile-name-1. The meaning of member varies, depending on the class.

You can use the ADDMEM operand to perform tasks such as defining security categories and security levels, entries in the global access checking table, and entries for program control, or to implement security labels on a system basis, as described in the following sections.

When you specify ADDMEM to add multiple members, they are added to the RACFVARS profile in the same order that you specify them with the ADDMEM operand of the RDEFINE command. For example, if you specify ADDMEM(A B) with the RDEFINE command, the members are stored in the RACFVARS profile as A B.

Mixed-case member names are accepted and preserved when class-name refers to a class defined in the static class descriptor table with CASE=ASIS or in the dynamic class descriptor table with CASE(ASIS). When class-name is GLOBAL and profile-name is the name of a class defined in the static class descriptor table with CASE=ASIS or in the dynamic class descriptor table with CASE(ASIS), the name part of a member entry in the GLOBAL access table is preserved as entered.

If you define a profile and use generic characters such as (*) to add members to the profile, RLIST RESGROUP will not return any of the matching profiles in its output because it does not support generic matches. For example, you have:

```
RDEF GIMS GIMSGRP ADDMEM(ABC*)
```

and you are looking for a specific member, so you enter:

```
RLIST TIMS ABCD RESGROUP
```

The GIMS profile GIMSGRP will not appear in the output.
Note: When considering this example, if you are unable to define the profile ABCD, it might be due to a generic definition somewhere in GIMS.

For ADDMEM with the GLOBAL DATASET class, no characters including generic characters, such as the asterisk (*) and the percent sign (%), can be combined with the value &RACUID to form a single qualifier level of the member name. This restriction does not exist for ADDMEM with classes other than GLOBAL DATASET.

For ADDMEM with the RACFVARS class, the following rules apply:

- Do not specify generic characters, such as the ampersand (&), the asterisk (*) and the percent sign (%) in a member name.
- Issue the SETROPTS RAclist(RACFVARS) REFRESH command to activate your member change.
- If your member change affects profiles in a class with in-storage profiles processed by RAclist or GENLST, you must also refresh that class to activate your change.

For important guidelines, see ‘Administering the RACFVARS member list’ in z/OS Security Server RACF Security Administrator’s Guide.

In addition to the authority needed to issue the RDEFINE command, you need one of the following authorities to add members using the RDEFINE command:

1. For classes other than SECLABEL, PROGRAM, SECDATA, GLOBAL, RACFVARS, and NODES, if the member resources are already RACF-protected by a member class profile or as a member of a profile in the same grouping class, one of the following must be true:
 - You have ALTER access authority to the member.
 - You are the owner of the member resource.
 - The member resource is within the scope of a group in which you have the group-SPECIAL attribute.
 - You have the SPECIAL attribute.

2. For classes other than SECLABEL, PROGRAM, SECDATA, GLOBAL, RACFVARS, and NODES, if the member resources are not RACF-protected (that is, there is no profile defined for that member), one of the following must be true:
 - You have CLAUTH authority to define resources in the member resource class.
 - You have the SPECIAL attribute.

3. To add a member to a profile in the RACFVARS or NODES class, one of the following must be true:
 - You have CLAUTH authority to define resources in the specified class (for example, RACFVARS or NODES).
 - You have the SPECIAL attribute.
 - You are the owner of the profile indicated by profile-name-1.
 - You have ALTER access authority to the profile indicated by profile-name-1.

4. To add a member to a profile in the SECLABEL, PROGRAM or SECDATA class, one of the following must be true:
 - You have CLAUTH authority to define resources in the specified class (for example, PROGRAM or SECDATA).
 - You have the SPECIAL attribute.
To add a member to a profile in the GLOBAL class (other than the GLOBAL DATASET, GLOBAL DIRECTRY, or GLOBAL FILE profile) using the following syntax:

```
RDEFINE GLOBAL class-name
  ADDMEM(resource-name/access-level)
```

- If the profile resource-name is already RACF-protected by a profile in class class-name, one of the following must be true:
 - You have ALTER access authority to the profile resource-name in class class-name.
 - You are the OWNER of the profile resource-name.
 - The profile resource-name in class class-name is within the scope of a group in which you have the group-SPECIAL attribute.
 - You have the SPECIAL attribute.

- If the profile resource-name is not already RACF-protected (that is, there is no profile defined for that member in class class-name):
 - You have CLAUTH authority to define resources in the class class-name.
 - You have the SPECIAL attribute.

To add a member to the GLOBAL DATASET profile, one of the following must be true:

- The member is within the scope of a group in which you have the group-SPECIAL attribute, or the high-level qualifier of the member name is your user ID.
- You have the SPECIAL attribute.

To add a member to the GLOBAL DIRECTRY or GLOBAL FILE profile, you must have the SPECIAL attribute.

RACF ignores the ADDMEM operand if the class name you specify is not a resource grouping class, SECLABEL, GLOBAL, SECDATA, NODES, or PROGRAM.

Specifying member on the ADDMEM operand

The following sections describe how to specify members for each of the following classes:

- Resource grouping classes
- SECLABEL
- GLOBAL
- SECDATA
- NODES
- PROGRAM.

The descriptions for these classes are below.

- **When a resource grouping class is the class name**

 Resource Grouping Class: If the class name is a resource grouping class, the members you specify through the ADDMEM operand protects the resources in the related member class.

 If generic profile checking is active for the related member class, you can include a generic character (*, **, &, or % only) in the member to protect multiple resources.

 For more information on resource grouping classes and their related member classes, see z/OS Security Server RACF Security Administrator's Guide.
• When SECLABEL is the class name

Security Label By System: You can define a security label for use on specific systems. Issue the RDEFINE command specifying the system identifier (SMFID) of the system on which the security label can be used. Note that RACF-defined SECLABELs (SYSHIGH, SYSLOW, SYSNONE, and SYSMULTI) are not affected by SECLABEL by System.

The format of this command is as follows:

RDEFINE SECLABEL profile-name
 ADDMEM(system-identifier)

The system-identifier is the 4-character value specified for the SID parameter of the SMFPRMxx member of SYS1.PARMLIB. See z/OS MVS Initialization and Tuning Reference for additional information on SMFPRMxx. RACF does not check that the specified system-identifier actually exists in SMFPRMxx.

The security label will only be restricted to the systems specified by ADDMEM if the SETR SECLBYSYSTEM option is active. If this option is not active, or ADDMEM is not specified, the security label can be used on all systems. Changes to profiles in the SECLABEL class are activated by issuing SETR RAclist(SECLABEL) REFRESH.

• When GLOBAL is the class name

Global Access Checking: You can define an entry in the global access checking table by issuing the RDEFINE command with the following operands:

– GLOBAL as the class-name
– The appropriate resource class name as profile-name
– ADDMEM with the name of the entry you are defining (as member). (If the name you specify as member contains a generic character (* or %), generic profile checking (SETROPTS command with the GENERIC operand) must be active for the resource class you specify as profile-name.)
– The access level you are assigning to the entry (member) using the following format:
 member[/{ALTER|CONTROL|NONE|READ|UPDATE}]

The format of this command is as follows:

RDEFINE GLOBAL profile-name
 ADDMEM(member/access-level)

Each entry you define controls global access checking for the resources matching that entry name.

Important: Because RACF performs global access checking before security classification processing, an entry in the global access checking table might allow access to a resource you are protecting with a security category, security level, or both. To avoid a security exposure to a sensitive resource, do not define an entry in the global access checking table for a resource you are protecting with security classification processing.

When you define an entry in the global access checking table, specify member on the ADDMEM operand as described in the following sections.

– Global access checking for data sets

When you define an entry in the global access checking table for a data set, enclose the entry name in single quotation marks if you do not want your TSO prefix (which might be your user ID) used as the high-level qualifier of the entry name.

For example, assume that your user ID is SMITH. If you issue the following command, you define the entry SMITH.ABC in the global access table.
RDEFINE

RDEFINE GLOBAL DATASET ADDMEM('SMITH.ABC'/READ)
If you do not enclose the entry name in single quotation marks, your TSO prefix is used as the high-level qualifier of the entry name. For example, if you issue the following command, you define the entry SMITH.ABC in the global access table.

RDEFINE GLOBAL DATASET ADDMEM(ABC/READ)
If the entry name you specify contains * as the high-level qualifier and you do not enclose the name in single quotation marks, RACF creates the entry exactly as you specify it (your TSO prefix is not used as the high-level qualifier of the entry name). For example, if you issue the following command, you define the entry *.ABC in the global access table. If you enclose *.ABC in single quotation marks, you define the same entry (*.ABC) in the global access table.

RDEFINE GLOBAL DATASET ADDMEM(*.ABC/READ)

– Global access checking for general resources
To define an entry in the global access checking table for a general resource, specify any valid class name in the class descriptor table as a profile name. (For a list of general resource classes defined in the class descriptor table supplied by IBM, see Appendix B, “Supplied RACF resource classes,” on page 693.) The member name you specify with the ADDMEM operand can contain one or more generic characters (%, *, or **). For information on using generic characters, see Appendix A, “Naming considerations for resource profiles,” on page 683.

• When SECDATA is the class name

Security Classification of Users and Data: To define a security category or security level for your installation, specify class-name as SECDATA and profile-name as one of the following:
– CATEGORY when defining a security category
– SECLEVEL when defining a security level.
If you specify SECDATA CATEGORY, the ADDMEM operand specifies the name of an installation-defined category of users.

For example, to define three categories of users named CODE, TEST, and DOC, issue:

RDEFINE SECDATA CATEGORY ADDMEM(CODE TEST DOC)
If you specify SECDATA SECLEVEL, the ADDMEM operand specifies both the name of an installation-defined security level and the number you assign to that level, in the form:

selevel-name/selevel-number
You must separate the two items by a forward slash character (/). The selevel-name can contain 1 - 44 characters and must not contain a blank, comma, semicolon, or right parenthesis. The selevel-number can be any number 1 - 254. The higher the number, the higher the security level. For example, to define three security levels, where CONFIDENTIAL is the most restrictive, enter:

RDEFINE SECDATA SECLEVEL
 ADDMEM(GENERAL/10 EXPERIMENTAL/75 CONFIDENTIAL/150)
Because RACF keeps track of security levels by number, replacing an existing security level name does not affect the protection that the security level number provides. If you had defined the security levels shown in the preceding example and then replaced GENERAL/10 with INTERNAL/10, a listing of a user or resource profile that included security level 10 would show the
new name. Because the security level number is the same, there is no need to change any resource or user profiles.

When you actually change an existing CATEGORY profile or SECLLEVEL profile, however, RACF issues a warning message to remind you that the change is not reflected in existing resource or user profiles. In this case, you can use the SEARCH command to locate the profiles you must modify.

- **When NODES is the class name**
 Specify only one value with the ADDMEM operand. If you specify multiple values, RACF stores them in the NODES profile but translates using only the last one specified.

 Restriction: When more than one value is defined in a NODES profile, you cannot use the RLIST command to determine which value was the last one specified.

 Guideline: If one or more values are already defined in a NODES profile, use the DELMEM operand to remove them before specifying the new value.

 For information on setting up NODES profiles, see [RACF Security Administrator’s Guide](z/OS Security Server).

 Translation of User IDs, Group Name, or Security Labels on Inbound Jobs or SYSOUT:

 If the class name is NODES, you can specify how user IDs, group names, and security labels are translated. The translation depends on the second and third qualifiers of the profile name, as follows:

<table>
<thead>
<tr>
<th>If the second qualifier is...</th>
<th>The ADDMEM value specifies...</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUSER</td>
<td>The user ID to be used on this system for the jobs originating from NJE nodes to which the profile applies</td>
</tr>
<tr>
<td>USERJ</td>
<td>The user ID to be used on this system for the inbound jobs to which the profile applies</td>
</tr>
<tr>
<td>USERS</td>
<td>The user ID to be used on this system for the inbound SYSOUT to which the profile applies</td>
</tr>
<tr>
<td>GROUPJ</td>
<td>The group name to be used on this system for the inbound jobs to which the profile applies</td>
</tr>
<tr>
<td>GROUPS</td>
<td>The group name to be used on this system for the inbound SYSOUT to which the profile applies</td>
</tr>
<tr>
<td>SECLJ</td>
<td>The security label to be used on this system for the inbound jobs to which the profile applies</td>
</tr>
<tr>
<td>SECLS</td>
<td>The security label to be used on this system for the inbound SYSOUT to which the profile applies</td>
</tr>
</tbody>
</table>

- **When PROGRAM is the class name**

 Program Control: If you specify `class-name` as PROGRAM, `profile-name` must identify one or more controlled programs (load modules or program objects), and `member` identifies the library containing the programs, the volume serial of that library, and a processing option. Additionally, APPLDATA may contain information that RACF will process. You specify the member entry in the following format: `library-name/volume-serial/PADCHK` or `NOPADCHK`

 library-name

 Specifies the name of the library in which the controlled programs reside. If `profile-name` is * or **, RACF treats all load modules in the specified library as controlled programs.
If it is necessary to define a program that resides in the system’s LPA or dynamic LPA as a controlled program (for example: to give it the MAIN or BASIC attribute), define the program with a profile-name that does not end in *, specify 'LPALST' as the library name, and omit the volume serial.

When it is necessary to define a specific profile for a program in the LPA, 'LPALST' should be used as the library name and the volume serial should be omitted.

The following represent valid ADDMEM values for program XYZ which exists in one of the LPA libraries or in the dynamic LPA:

- 'LPALST'
- 'LPALST'/PADCHK
- 'LPALST'/NOPADCHK

volume-serial (optional)

Specifies the serial number of the volume on which the library resides. You can use six asterisks within single quotation marks to specify the current SYSRES volume: library-name/******'/PADCHK or NOPADCHK.

Note:
1. The '******' value works when the SYSRES resides on more than one volume, but it applies only when the data set lives on the IPL volume
2. If volume-serial is not specified, the specified library can exist on any volume. The alternate formats are:

 library-name//NOPADCHK
 or
 library-name

PADCHK | NOPADCHK

Specifies that RACF is to make (PADCHK) or not to make (NOPADCHK) the checks for program-accessed data sets when a user is executing the controlled programs. If you specify PADCHK, RACF verifies that (1) the conditional access list in the profile for a program-accessed data set allows the access and (2) no task in the user's address space has previously loaded a non-controlled program.

If you specify NOPADCHK, RACF does not perform this extra checking to verify that a non-controlled program cannot access a program-accessed data set. NOPADCHK allows you, for example, to define entire libraries of modules (such as ISPF) as controlled programs without then having to grant each of these modules access to many program-accessed data sets. Examples on page 534 show two ways to define controlled programs. Before defining or modifying PROGRAM profiles, see the program control sections of z/OS Security Server RACF Security Administrator’s Guide.

APPLDATA('application-data')

Specifies a text string that is associated with each of the named resources. The text string can contain a maximum of 255 characters and must be enclosed in single quotation marks. It can also contain double-byte character set (DBCS) data.

Rules:
For profiles in the PROGRAM class, RACF will examine the APPLDATA value (if any) and perform special processing if you have specified MAIN or BASIC (optionally followed by blanks).

- This processing will occur only for profiles whose names do not end in *, and only when you have enabled enhanced PGMSECURITY mode.
- For details of this processing, see z/OS Security Server RACF Security Administrator’s Guide.

For the FACILITY class, RACF examines the APPLDATA value of the following profiles:

- **BPX.UNIQUE.USER**
 The APPLDATA value specifies the name of a user profile from which RACF can copy OMVS segment information (other than UID) when assigning unique UIDs through a callable service.

- **BPX.DEFAULT.USER**
 The APPLDATA value specifies a user ID and group name from which RACF can retrieve default OMVS segment information. Beginning with z/OS Version 1 Release 11, the BPX.DEFAULT.USER profile is ignored when the BPX.UNIQUE.USER profile is defined. Beginning with z/OS Version 2 Release 1, the BPX.DEFAULT.USER profile is no longer supported.

- **BPX.NEXT.USER**
 The APPLDATA value specifies information that RACF will use for the automatic assignment of OMVS UIDs and GIDs.

- **IRR.PGMSECURITY**
 The APPLDATA value specifies whether RACF will operate in basic, enhanced, or enhanced-warning PGMSECURITY mode.
 - If the APPLDATA value contains the string ENHANCED, then RACF will run in enhanced PGMSECURITY mode.
 - If the APPLDATA value contains the string BASIC, then RACF will run in basic PGMSECURITY mode.
 - If the APPLDATA is empty or contains any other value, RACF will run in enhanced PGMSECURITY mode but in warning mode rather than failure mode.

- **IRR.PROGRAM.SIGNING.group.userid**
- **IRR.PROGRAM.SIGNING.userid**
- **IRR.PROGRAM.SIGNING.group**
- **IRR.PROGRAM.SIGNING**
 For any of the IRR.PROGRAM.SIGNING profiles, the APPLDATA value specifies the signing hash algorithm, and the SAF key ring to use when signing a program.

- **IRR.PROGRAM.SIGNATURE.VERIFICATION**
 The APPLDATA value specifies the SAF key ring to use when verifying the signature of a signed program.

For the TIMS and GIMS class, specify application-data as REVERIFY to force the user to reenter his password whenever the transaction or transactions listed in the profile-name or ADDMEM operands are used.

For the PTKTDATA class, the application data field can be used to control the replay protection function of PassTicket support.

- PassTicket replay protection prevents the use of user IDs to be shared among multiple users. However, in some events it is desirable to bypass this replay protection function.
Specifying no replay protection in the application data field indicates that replay protection is to be bypassed. For example, the following command would successfully result in replay protection being bypassed.

```
RDEFINE PTKTDATA profile-name
   APPLDATA('NO REPLAY PROTECTION')
```

Note the following:
- There must be a single space between the words no and replay, and between replay and protection. Lack of spaces, or additional spaces or characters, will make the command ineffective. For example, entering the following command would not result in replay protection being bypassed.

```
RDEFINE PTKTDATA profile-name
   APPLDATA('NOREPLAY PROTECTION')
```
- The text string no replay protection will always be translated to uppercase.
- The text string no replay protection can appear anywhere in the APPLDATA field.

- For the APPL class, when the APPLDATA value contains the `RACF-INITSTATS(DAILY)` string, RACF records statistics only for the first user verification of the day for the applications protected by this profile. The `RACF-INITSTATS(DAILY)` string is reserved text and may appear anywhere in the APPLDATA field. For more information about statistics collection, see [z/OS Security Server RACF Security Administrator's Guide](https://www.ibm.com/support/knowledgecenter/SCH5T0_2.1.0/com.ibm.zos.security.racf.doc/racf_admin.html).
- Specifying the `RACF-DELEGATED` string in the APPLDATA designates the resources protected by the profile as delegated, meaning that RACROUTE REQUEST=FASTAUTH should honor a nested ACEE during access checking to this resource. The `RACF-DELEGATED` string is reserved text and may appear anywhere in the APPLDATA field. For more information on nested ACEEs and delegated resources, see [z/OS Security Server RACF Security Administrator's Guide](https://www.ibm.com/support/knowledgecenter/SCH5T0_2.1.0/com.ibm.zos.security.racf.doc/racf_admin.html).

RACF does not validate the APPLDATA value during RALTER. Depending on the function, RACF might or might not issue any messages during subsequent processing if it finds an unexpected value.

The APPLDATA value, if present, can be displayed with the RLIST command.

For detailed information about each APPLDATA value, see [z/OS Security Server RACF Security Administrator's Guide](https://www.ibm.com/support/knowledgecenter/SCH5T0_2.1.0/com.ibm.zos.security.racf.doc/racf_admin.html).

AT | ONLYAT

The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.

AT([node].userid ...)

Specifies that the command is to be directed to the node specified by `node`, where it runs under the authority of the user specified by `userid` in the RACF subsystem address space.

If `node` is not specified, the command is directed to the local node.

ONLYAT([node].userid ...)

Specifies that the command is to be directed only to the node specified by `node` where it runs under the authority of the user specified by `userid` in the RACF subsystem address space.
RDEFINE

If `node` is not specified, the command is directed only to the local node.

AUDIT(access-attempt[(audit-access-level)])

Specifies which access attempts and access levels you want logged to the SMF data set.

`access-attempt`

Specifies which access attempts you want logged to the SMF data set. The following options are available:

- **ALL**
 Specifies that you want to log both authorized accesses and detected unauthorized access attempts.

- **FAILURES**
 Specifies that you want to log detected unauthorized access attempts. This is the default value if you do not specify `access-attempt`.

- **NONE**
 Specifies that you do not want any logging to be done.

- **SUCCESS**
 Specifies that you want to log authorized accesses to the resource.

`audit-access-level`

Specifies which access levels you want logged to the SMF data set. The levels you can specify are:

- **ALTER**
 Logs ALTER access-level attempts only.

- **CONTROL**
 Logs access attempts at the CONTROL and ALTER levels.

- **READ**
 Logs access attempts at any level. This is the default value if no access level is specified.

- **UPDATE**
 Logs access attempts at the UPDATE, CONTROL, and ALTER levels.

`FAILURES(READ)` is the default value if the AUDIT operand is omitted from the command.

You cannot audit access attempts for the EXECUTE level.

CDTINFO

Specifies information used in the definition of an installation-defined class in the dynamic class descriptor table (CDT). For details about defining classes in the dynamic CDT, see "Administering the Dynamic Class Descriptor Table (CDT)" in [z/OS Security Server RACF Security Administrator's Guide](#).

Note: CDTINFO should only be specified for profiles in the CDT class.

CASE (UPPER | ASIS)

Specifies whether mixed-case profile names are allowed for the class.

- **ASIS**
 When ASIS is specified, RACF commands preserve the case of profile names for the specified class. Lowercase characters are allowed in any position of the profile name where alphabetic characters are allowed, based on the character restrictions in the FIRST and OTHER keywords.
UPPER

When UPPER is specified, RACF translates the profile names for the specified class to uppercase. If CASE is not specified, CASE(UPPER) is the default.

DEFAULTRC

Specifies the return code that RACF will provide from RACROUTE REQUEST=AUTH or REQUEST=FASTAUTH when both RACF and the class are active and (if required) the class has been processed using SETROPTS RACLST, but RACF doesn’t find a profile to protect the resource specified on the AUTH or FASTAUTH request. The return codes are interpreted as follows:

0 The access request was accepted.
4 No profile exists.
8 The access request was denied.

If DEFAULTRC is not specified, DEFAULTRC(4) is the default.

DEFAULTUACC

DEFAULTUACC (ALTER | CONTROL | UPDATE | READ | NONE)

Specifies the minimum access allowed if the access level is not set when a resource profile is defined in the class.

DEFAULTUACC (ACEE)

If no universal access level is specified at the time the profile is created, RACF uses the default universal access authority from the command issuer's ACEE, as specified on the UACC operand of the ADDUSER, ALTUSER or CONNECT command.

If DEFAULTUACC is not specified, DEFAULTUACC(NONE) is the default.

FIRST (characters-allowed ...)

Specifies a character type restriction for the first character of the profile name. One or more of the following may be specified.

• ALPHA—Allows an alphabetic character (A - Z)
• NUMERIC—Allows a digit (0 - 9)
• NATIONAL—Allows characters # (X'7B'), @ (X'7C'), and $ (X'5B')</div>

• SPECIAL—Allows any character except the following:
 - a blank
 - a comma
 - a parenthesis
 - a semicolon
 - those characters in ALPHA, NUMERIC, or NATIONAL.

Note: This option includes the period ('.') and is needed if you intend to use it as a delimiter.

If FIRST is not specified, FIRST(ALPHA, NATIONAL) is the default.

GENERIC (ALLOWED | DISALLOWED)

Specifies whether or not SETROPTS GENERIC and SETROPTS GENCMD are allowed for the class. The SETROPTS GENERIC command activates generic profile checking for a class. The SETROPTS GENCMD command activates generic profile command processing.
If GENERIC is not specified, GENERIC(ALLOWED) is the default. If GENERIC(DISALLOWED) is specified, GENLIST(ALLOWED) cannot also be specified.

Because generic processing is not allowed for grouping classes, GENERIC(DISALLOWED) should be specified if MEMBER(member-class-name) is also specified. If GENERIC(ALLOWED) is specified or defaulted for a grouping class, a warning message is issued. Subsequent processing for the dynamic class being defined and for profiles in that class will be treated as if GENERIC(DISALLOWED) was specified.

Rule: If the dynamic class you are defining shares a POSIT number with other classes, all classes with the shared POSIT number must have the same GENERIC keyword value. This is because the SETROPTS GENERIC and SETROPTS GENCMD commands process all classes that share a POSIT number. If at least one class specifies GENERIC(DISALLOWED) and at least one class specifies GENERIC(ALLOWED), RACF issues a warning message. When you subsequently add this class to the dynamic class descriptor table using the SETROPTS RACLIST(CDT) command, RACF might change the value of the GENERIC keyword to match the GENERIC keyword value of the other classes sharing the POSIT number.

- If this dynamic class shares a POSIT number with an IBM-supplied class, RACF changes the value of the GENERIC keyword in the dynamic class to match the IBM class. (The class attribute in the IBM-supplied class takes precedence).
- If this dynamic class shares a POSIT number with an installation-defined class (static or dynamic), RACF determines the least restrictive attribute—GENERIC(ALLOWED) is less restrictive than GENERIC(DISALLOWED)—and changes the GENERIC(DISALLOWED) class attribute to GENERIC(ALLOWED).

Exception: A grouping class and member class can share a POSIT number although their GENERIC keyword values need not match. You must specify GENERIC(DISALLOWED) for the grouping class. However, you can specify either ALLOWED or DISALLOWED for the member class.

GENLIST (ALLOWED | DISALLOWED)
Specifies whether SETROPTS GENLIST is to be allowed for the class. If you GENLIST the class on the SETROPTS command and a user then requests access to a resource protected by a generic profile, a copy of that profile will be brought into the common storage area rather than into the user's address space. RACF uses those generic profiles in common storage to check the authorization of any users who want to access the resource. The profiles remain in common storage until a REFRESH occurs.

If GENLIST is not specified, GENLIST(DISALLOWED) is the default.

GROUP (grouping-class-name)
Specifies the name of the class that groups the resources within the specified class. If GROUP is not specified, RACF does not allow resource grouping for the class. The grouping-class-name must be 1 - 8 characters.

When GROUP is specified, the class being defined is a member class.

If GROUP is specified, then grouping-class-name must also be defined in the CDT class and its MEMBER keyword should refer to the class being defined. The GROUP and MEMBER keywords must have matching class entries before SETROPTS RACLIST(CDT) is issued to build or refresh the
KEYQUALIFIERS (0 | nnn)

Specifies the number of matching qualifiers RACF uses when loading generic profilenames to satisfy an authorization request if a discrete profile does not exist for a resource. For example, if you specify two for the class, all generic profile names whose highest level qualifiers match the two highest qualifiers of the entity name are loaded into the user's storage when the user requests access to a resource. The nnn value must be a number 0 - 123.

If KEYQUALIFIERS is not specified, the default is 0 and profile names for the entire class are loaded and searched.

The maximum value you can specify is 123, which is the maximum number of qualifiers in a name 246 characters long.

When KEYQUALIFIERS(nnn) is specified, generic profiles created in that class may not contain generic characters in the first nnn qualifiers of the profile name.

When KEYQUALIFIERS(nnn) is greater than 0 for a class, all discrete and generic profiles in that class must have at least nnn+1 qualifiers in each profile name. The number of qualifiers a profile name is determined by counting the number of period characters in the profile and adding one; the first character is not examined.

Examples of valid profile names for KEYQUALIFIERS(2) are:

A.B.C
A.B.**
A.B.C.D*

Guideline: Specify KEYQUALIFIERS(nnn) greater than 0 for classes that have the following characteristics:

- The class is not usually RACLISTed or GENLISTed.
- Profile names in the class follow a naming convention where many generic profiles have the same nnn qualifiers at the beginning of the profile name.

For example, if you have an application that uses an installation-defined class to protect reports on terminal usage, you might have profiles such as these for each user on your z/OS system:

```
REPORTS.USER1.TERMUSE.*
REPORTS.USER1.TERMUSE.DEPT60.*
REPORTS.USER1.TERMUSE.2006.JAN.*
REPORTS.USER1.TERMUSE.2006.FEB.*
REPORTS.USER1.TERMUSE.2006.MAR.*
REPORTS.USER1.TERMUSE.2006.APR.*
REPORTS.USER1.TERMUSE.2006.MAY.*
REPORTS.USER1.TERMUSE.2006.JUN.*
REPORTS.USER1.TERMUSE.2006.JUL.*
REPORTS.USER1.TERMUSE.2006.AUG.*
REPORTS.USER1.TERMUSE.2006.SEP.*
REPORTS.USER1.TERMUSE.2006.OCT.*
REPORTS.USER1.TERMUSE.2006.NOV.*
REPORTS.USER1.TERMUSE.2006.DEC.*
```

In this example, you might define your installation class using KEYQUALIFIERS(3) so that when RACF checks authorization checks for resources in your class, only generic profile names that match the first three qualifiers of your report are loaded into storage for RACF to check.
Restriction: Different rules apply for the FILE and DIRECTRY classes. For the syntax required for profile names in the DIRECTRY and FILE classes, see the appropriate RACF Command Language Reference for your VM system.

MACPROCESSING (NORMAL | REVERSE | EQUAL)
Specifies which type of mandatory access control (MAC) processing is required for the class. If MACPROCESSING is not specified, MACPROCESSING(NORMAL) is the default.

- NORMAL—specifies normal MAC processing is required. If and when a MAC check is performed, the user’s SECLABEL must dominate that of the resource.
- REVERSE—specifies reverse MAC processing is required. If and when a MAC check is performed, the SECLABEL of the resource must dominate that of the user.
- EQUAL—specifies equal MAC processing is required. If and when a MAC check is performed, the SECLABEL of the user must be equivalent to that of the resource. MACPROCESSING(EQUAL) should be used for classes where two-way communication is expected. Writedown (SETROPTS MLS) does not apply to classes where MACPROCESSING(EQUAL) is specified.

MAXLENGTH (8 | nnn)
Specifies the maximum length of resource and profile names for the specified class when MAXLENX is not specified. When MAXLENX is also specified, MAXLENGTH represents the maximum length of a resource name only when a RACROUTE macro is invoked with the ENTITY keyword. The value of nnn must be 1 - 246.

If MAXLENGTH is not specified, the default is 8.

MAXLENX (nnn)
Specifies the maximum length of resource and profile names for the specified class when a RACROUTE macro is invoked with the ENTITYX keyword, or when a profile is added or changed using a RACF command processor. The value of nnn value must be 1 - 246.

If MAXLENX is not specified before SETROPTS RACLST(CDT) is issued to build or refresh the dynamic CDT or before the system is restarted, the value specified for MAXLENGTH is used for MAXLENX in subsequent processing for the dynamic class.

MEMBER (member-class-name)
Specifies the name of the class grouped by the resources within the specified class. The member-class-name must be 1 - 8 characters.

When MEMBER is specified, the class being defined is a resource group.

If MEMBER is specified, then member-class-name must also be defined in the CDT class and its GROUP keyword should refer to the class being defined. The GROUP and MEMBER keywords must have matching class entries before SETROPTS RACLST(CDT) is issued to build or refresh the dynamic CDT or before the system is restarted; otherwise, the class in error will not be added to the dynamic class descriptor table.

OPERATIONS (YES | NO)
Specifies whether RACF is to take the OPERATIONS attribute into account when it performs authorization checking. If YES is specified, RACF considers the OPERATIONS attribute; if NO is specified, RACF ignores the OPERATIONS attribute.
If OPERATIONS is not specified, OPERATIONS(NO) is the default.

OTHER (characters-allowed ...)

Specifies a character type restriction for the characters of the profile name other than the first character. One or more of the following may be specified:

- **ALPHA**—Allows an alphabetic character (A - Z)
- **NUMERIC**—Allows a digit (0 - 9)
- **NATIONAL**—Allows characters # (X'7B'), @ (X'7C'), and $ (X'5B')
- **SPECIAL**—Allows any character except the following:
 - a blank
 - a comma
 - a parenthesis
 - a semicolon
 - those characters in ALPHA, NUMERIC, or NATIONAL.

Note: This option includes the period (\.') and is needed if you intend to use it as a delimiter.

If OTHER is not specified, OTHER(ALPHA, NATIONAL) is the default.

POSIT (nnn)

Specifies the POSIT number associated with the class. Each class in the class descriptor table has a POSIT number specified which identifies a set of option flags that control the following RACF processing options:

- Whether authorization checking should take place for the class (SETROPTS CLASSACT).
- Whether auditing should take place for resources within the class (SETROPTS AUDIT).
- Whether statistics should be kept for resources within the class (SETROPTS STATISTICS).
- Whether generic profile access checking is active for the class (SETROPTS GENERIC).
- Whether generic command processing is active for the class (SETROPTS GENCMD).
- Whether global access checking is active for the class (SETROPTS GLOBAL).
- Whether the user has CLAUTH to a resource class.
- Whether special resource access auditing applies to the class (SETROPTS LOGOPTIONS).
- Whether SETROPTS RACLIST will occur for this class (when RACLIST(ALLOWED) or RACLIST(REQUIRED) is also specified).
- For all classes that have the same POSIT number specified, these options are identical. If you change an option for one class, this change will also affect all other classes that share the same POSIT number.

Before you issue SETROPTS RACLIST(CDT) to build or refresh the dynamic class descriptor table, you must decide whether to use a unique set of option flags for each RACF class or whether to have two or more RACF classes share the same set of option flags. If you choose to use a unique set of option flags for a class, assign the class a unique POSIT number. If you choose to share the same set of option flags among several classes, assign those classes the same POSIT number.
Before you issue SETROPTS RACLIST(CDT), the POSIT keyword must specify a valid value on the RDEFINE command. Otherwise, the new class will not be added to the dynamic class descriptor table.

Once you issue SETROPTS RACLIST(CDT) to build or refresh the dynamic class descriptor table, you can activate the classes that comprise it and their respective set of option flags by using the appropriate keywords on the SETROPTS command.

There are 1024 POSIT numbers that can identify 1024 sets of option flags. Installations can specify POSIT numbers 19 - 56 and 128 - 527. POSIT numbers 0 - 18, 57 - 127 and 528 - 1023 are reserved for IBM use and should not be specified for installation-defined classes unless an installation intends that one of its classes share SETROPTS options with an IBM-defined class.

Guideline: A RACF class that has a default return code 8 should not share a POSIT value with a RACF class having a different default return code. If a class with a default return code 8 is activated but no profiles are defined, user activity that requires access in that class will be prevented.

PROFILESALLOWED (YES | NO)
Specifies whether you want RACF to allow profiles to be defined for this RACF class. If you specify PROFILESALLOWED(NO), RACF will not allow profiles to be defined to this RACF class; if a user attempts to define a profile to that class, the RDEFINE command responds with an appropriate message.

If PROFILESALLOWED is not specified, PROFILESALLOWED(YES) is the default.

RACLIST
Specifies whether SETROPTS RACLIST is to be allowed, disallowed or required for the specified class. If you process this class using SETROPTS RACLIST, RACF brings copies of all discrete and generic profiles within that class into storage in a data space. RACF uses those profiles in storage to check the authorization of any users who want to access the resources. The profiles remain in storage until removed by SETROPTS NORACLIST.

ALLOWED
Specifies that SETROPTS RACLIST may be used for the class, but is not required for authorization checking.

DISALLOWED
Specifies that SETROPTS RACLIST may not be used for the class.

REQUIRED
Specifies that you must process the class using SETROPTS RACLIST in order to use RACROUTE REQUEST=AUTH. The purpose of this keyword is to allow routines that cannot tolerate I/O to invoke RACF. When this keyword is specified and the class is not processed by SETROPTS RACLIST and a RACROUTE REQUEST=AUTH is attempted, the return code is 4.

If RACLIST is not specified, RACLIST(DISALLOWED) is the default.

SECLABELSREQUIRED (YES | NO)
Specifies whether a SECLABEL is required for the profiles of the specified class when SETROPTS MLACTIVE is on.
SECLABELSREQUIRED(NO) means that RACF will not require a SECLABEL for profiles in this class; however, if a SECLABEL exists for this profile and the SECLABEL class is active, RACF will use it during authorization checking. SECLABELSREQUIRED(NO) applies to general resource classes that have no profiles, such as DIRAUTH, or for classes that contain no data, such as OPERCMDS and SECLABEL.

SECLABELSREQUIRED(YES) means that RACF will require a SECLABEL for profiles in this class when SETROPTS MLACTIVE is on.

If SECLABELSREQUIRED is not specified, SECLABELSREQUIRED(NO) is the default.

SIGNAL (YES | NO)
Specifies whether an ENF signal should be sent to listeners when RACLISTed profiles are created, updated or deleted for authorization checking.

When SIGNAL(YES) is specified, RACF will send an ENF signal to listeners when a SETROPTS RACLIST, SETROPTS NORACLIST or a SETROPTS RACLIST REFRESH is issued for the class to activate, deactivate or update the profiles used for authorization checking. For more information, “ENF signals” in z/OS Security Server RACF System Programmer’s Guide.

When SIGNAL(NO) is specified, no ENF signal is sent.

SIGNAL(YES) is not valid if RACLIST(DISALLOWED) is specified.

If SIGNAL is not specified, SIGNAL(NO) is the default.

CFDEF
Defines a custom field for profiles in the CFIELD class, and specifies the name and attributes for the custom field. The custom fields you define with the CFDEF operand can be used in the CSDATA segment of user and group profiles. For more information about custom fields, including the profile name format, see z/OS Security Server RACF Security Administrator’s Guide.

New custom fields are not effective until the system programmer rebuilds the dynamic parse table using the IRRDPI00 UPDATE command. For information about using the IRRDPI00 command, see z/OS Security Server RACF System Programmer’s Guide.

Rule: Specify CFDEF only for profiles in the CFIELD class.

TYPE
Specifies the data type of the custom field. If you do not specify TYPE, CHAR is the default.

For each data type, you can restrict the content of the custom field using the attributes shown in Table 36. For each attribute shown, the default values based on data type, are as follows.

Rule: For each data type, do not specify attributes noted in Table 36 with a dash (—).

Table 36. Default values for attributes that restrict the content of a custom field, based on data type.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>CHAR</th>
<th>FLAG</th>
<th>HEX</th>
<th>NUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST</td>
<td>ALPHA</td>
<td>NONATBC</td>
<td>NONATNUM</td>
<td>NUMERIC</td>
</tr>
</tbody>
</table>
Table 36. Default values for attributes that restrict the content of a custom field, based on data type. (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>CHAR</th>
<th>FLAG</th>
<th>HEX</th>
<th>NUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXLENGTH</td>
<td>1100</td>
<td>3</td>
<td>512</td>
<td>10</td>
</tr>
<tr>
<td>MAXVALUE</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>(See Note.)</td>
</tr>
<tr>
<td>MINVALUE</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>MIXED</td>
<td>NO</td>
<td>—</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>OTHER</td>
<td>ALPHA</td>
<td>NONATABC</td>
<td>NONATNUM</td>
<td>NUMERIC</td>
</tr>
</tbody>
</table>

Note: If you do not specify MAXVALUE with TYPE(NUM), it defaults to the length of the highest value based on the MAXLENGTH value.

CHAR

Specifies that the custom field is a character field.

Guidelines:

- When you specify TYPE(CHAR), specify values for the following attributes:
 - FIRST: The default value is ALPHA.
 - MAXLENGTH: The default value is 1100.
 - MIXED: The default value is NO.
 - OTHER: The default value is ALPHA.
- To allow a custom field value to be specified as a quoted string, specify FIRST(ANY) and OTHER(ANY).

Rule: Do not specify MAXVALUE or MINVALUE with TYPE(CHAR).

FLAG

Specifies that the custom field is a flag field.

Rule: Do not specify any attributes with TYPE(FLAG). The default values are sufficient and required. The default values are FIRST(NONATABC), OTHER(NONATABC), and MAXLENGTH(3).

HEX

Specifies that the custom field is a hexadecimal field.

Guideline: When you specify TYPE(HEX), specify a value for the MAXLENGTH attribute. The default value is 512. Specify an even number because hexadecimal data is stored and displayed as an even number of characters.

Rule: Do not specify FIRST, OTHER, MAXVALUE, MINVALUE, or MIXED with TYPE(HEX).

NUM

Specifies that the custom field is a numeric field.

Guidelines:

- When you specify TYPE(NUM), specify values for the MAXVALUE and MINVALUE attributes.
- You need not specify MAXLENGTH with TYPE(NUM) because MAXVALUE limits the numeric value.

Rule: Do not specify FIRST, OTHER, or MIXED with TYPE(NUM).
FIRST
Specifies a character restriction for the first character in the custom field.

Guideline: Do not specify FIRST for custom fields with FLAG, HEX, or NUM data type. If you incorrectly specify the FIRST value for the data type, the custom field might be unusable.

Rules: The valid options for the FIRST attribute apply as follows, based on TYPE value (data type).

<table>
<thead>
<tr>
<th>Valid options</th>
<th>CHAR</th>
<th>FLAG</th>
<th>HEX</th>
<th>NUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHANUM</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANY</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NONATABC</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NONATNUM</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>NUMERIC</td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>

For each option of the FIRST attribute, the characters allowed in the custom field are as follows:

<table>
<thead>
<tr>
<th>Valid options</th>
<th>Alphabetic characters (A - Z)</th>
<th>National characters # (X'7B'), @ (X'7C'), and $ (X'5B')</th>
<th>Numeric characters (0 - 9)</th>
<th>Any other character</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHANUM</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANY</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>NONATABC</td>
<td>❌</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NONATNUM</td>
<td>❌</td>
<td></td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>NUMERIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALPHA
Allows alphabetic characters (A - Z) and national characters # (X'7B'), @ (X'7C'), and $ (X'5B').

ALPHANUM
Allows alphabetic characters (A - Z), numbers (0 - 9), and national characters # (X'7B'), @ (X'7C'), and $ (X'5B').

ANY
Allows alphabetic characters (A - Z), numbers (0 - 9), national characters # (X'7B'), @ (X'7C'), and $ (X'5B'), and any other character. When you specify both FIRST(ANY) and OTHER(ANY), also allows quoted strings.

NONATABC
Allows alphabetic characters, and excludes numbers and national characters # (X'7B'), @ (X'7C'), and $ (X'5B').
NONATNUM
 Allows alphabetic characters and numbers, but excludes national
 characters # (X'7B'), @ (X'7C'), and $ (X'5B').

NUMERIC
 Allows numbers (0 - 9).

If you do not specify FIRST, the values default as follows, based on TYPE
value (data type).

Data type
 Default value
CHAR
 ALPHA
FLAG
 NONATABC
HEX
 NONATNUM
NUM
 NUMERIC

HELP(help-text)
 Specifies the help text for this custom field. The help text is displayed
 when the user is in TSO PROMPT mode and presses the PF1 key or enters
 a question mark (?). Lowercase alphabetic characters in the help-text value
 are translated to upper case.

Rules:
 • Length: 1–255 characters.
 • If the help text contains parentheses, commas, blanks, or semicolons,
 enclose the entire text string in single quotation marks.
 • If a single quotation mark is intended to be part of the help text, use
 two single quotation marks together for each single quotation mark
 within the string, and enclose the entire string in single quotation marks.

Example:
 To define help text for a customer's address and indicate that
 the field can be up to 100 characters, you might specify the following
 value:
 HELP('CUSTOMER'S ADDRESS. SPECIFY UP TO 100 CHARACTERS')

If you do not specify HELP, the value defaults to the custom field name
defined in CFIELD profile name.

LISTHEAD(list-heading-text)
 Specifies the heading to display in the output for the LISTUSER or
 LISTGRP command whenever the CSDATA segment is listed. Lowercase
 alphabetic characters in the list-heading-text value are translated to upper
 case.

Rules:
 • Length: 1–40 characters.
 • If the heading text contains parentheses, commas, blanks, or semicolons,
 enclose the entire text string in single quotation marks.
 • If a single quotation mark is intended to be part of the help text, use
 two single quotation marks together for each single quotation mark
 within the string, and enclose the entire string in single quotation marks.

Example:
 LISTHEAD('CUSTOMER'S ADDRESS =')

Guidelines: If you specify a LISTHEAD value, avoid confusion for users
who use the LISTUSER or LISTGRP command to list custom field values
by following these guidelines:
RDEFINE

- Ensure that each custom field has a unique heading.
- Append an equal sign (=) or other delimiter to your LISTHEAD value to indicate in the list output where the heading ends and the data begins.

If you do not specify LISTHEAD, the value defaults to the custom field name defined in CFIELD profile name and an equal sign (=) is appended to the end of the value.

`MAXLENGTH(maximum-field-length)`

Specifies the maximum length of the custom field. You can specify MAXLENGTH with any TYPE value (data type).

Guideline: Do not specify with TYPE(FLAG) because 3 is the default value and the only valid value.

Rules: The valid values or value ranges shown in Table 37 apply based on data type.

<table>
<thead>
<tr>
<th>Data type</th>
<th>Valid value or range</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAR</td>
<td>1–1100</td>
<td>1100</td>
</tr>
<tr>
<td>FLAG</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>HEX</td>
<td>1–512</td>
<td>512</td>
</tr>
<tr>
<td>NUM</td>
<td>1–10</td>
<td>10</td>
</tr>
</tbody>
</table>

If you do not specify MAXLENGTH, the default values shown in Table 37 apply based on data type.

`MAXVALUE(maximum-numeric-value)`

Specifies the maximum numeric value for a custom field with TYPE(NUM).

Rules:
- Valid range: 0 – 2,147,483,647
- Do not specify a MAXVALUE value for custom fields with CHAR, FLAG, or HEX data type.
- Do not specify a MAXVALUE value lower than the MINVALUE value.
- Do not specify a MAXVALUE value longer than the highest value based on MAXLENGTH value.

If you do not specify MAXVALUE, the value defaults to the length of the highest value based on the MAXLENGTH value. For example, if you specify MAXLENGTH(4), the default MAXVALUE is 9999.

`MINVALUE(minimum-numeric-value)`

Specifies the minimum numeric value for a custom field with TYPE(NUM).

Rules:
- Valid range: 0 – 2,147,483,647
- Do not specify a MINVALUE value for fields with CHAR, FLAG, or HEX data type.
- Do not specify a MINVALUE value higher than the MAXVALUE value.
- Do not specify a MINVALUE value longer than the highest value based on MAXLENGTH value.

If you do not specify MINVALUE, the value defaults to 0.
MIXED(YES | NO)
Specifies whether mixed-case alphabetic characters are allowed for a custom field with TYPE(CHAR).

YES
Lowercase characters are allowed in any position of the custom field where alphabetic characters are allowed, based on the character restrictions specified with the FIRST and OTHER attributes. RACF commands, such as ADDUSER, do not translate lowercase alphabetic characters in the field to upper case.

Rule: Do not specify MIXED(YES) for custom fields with FLAG, HEX, or NUM data type.

NO RACF commands translate lowercase alphabetic characters in the field to upper case.

If you do not specify MIXED, the value defaults to NO.

OTHER
Specifies a character restriction for characters in the custom field other than the first character.

Guideline: Do not specify OTHER for custom fields with FLAG, HEX, or NUM data type. If you incorrectly specify the OTHER value for the data type, the custom field might be unusable.

For each option of the OTHER attribute, the characters allowed in the custom field are as follows:

<table>
<thead>
<tr>
<th>Valid options</th>
<th>Alphabetic characters (A - Z)</th>
<th>National characters</th>
<th>Any other character</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td># (X’7B’),</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>@ (X’7C’),</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and $ (X’5B’).</td>
<td></td>
</tr>
<tr>
<td>ALPHA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ALPHANUM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ANY</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>NONATAABC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NONATNUM</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>NUMERIC</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

ALPHA
Allows alphabetic characters (A - Z) and national characters # (X’7B’), @ (X’7C’), and $ (X’5B’).

ALPHANUM
Allows alphabetic characters (A - Z), numbers (0 - 9), and national characters # (X’7B’), @ (X’7C’), and $ (X’5B’).

ANY
Allows alphabetic characters (A - Z), numbers (0 - 9), national characters # (X’7B’), @ (X’7C’), and $ (X’5B’), and any other character. When you specify both FIRST(ANY) and OTHER(ANY), also allows quoted strings.
RDEFINE

NONATABC
Allows alphabetic characters, and excludes numbers and national characters # (X'7B'), @ (X'7C'), and $ (X'5B').

NONATNUM
Allows alphabetic characters and numbers, but excludes national characters # (X'7B'), @ (X'7C'), and $ (X'5B').

NUMERIC
Allows numbers (0 - 9).

Rules: The valid options for the OTHER attribute apply as follows, based on TYPE value (data type).

<table>
<thead>
<tr>
<th>Valid options</th>
<th>Data type based on TYPE attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHAR</td>
</tr>
<tr>
<td>ALPHA</td>
<td>✓</td>
</tr>
<tr>
<td>ALPHANUM</td>
<td>✓</td>
</tr>
<tr>
<td>ANY</td>
<td>✓</td>
</tr>
<tr>
<td>NONATABC</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>NONATNUM</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>NUMERIC</td>
<td>✓</td>
</tr>
</tbody>
</table>

If you do not specify OTHER, the values default as follows, based on TYPE value (data type).

Data type

Default value

CHAR

FLAG

HEX

NUM

DATA('installation-defined-data')
Specifies up to 255 characters of installation-defined data to be stored in the profile for the resource and the data must be enclosed in single quotation marks. It can also contain double-byte character set (DBCS) data.

This information is listed by the RLIST command.

DLFDATA
Specifies information used in the control of DLF objects in profiles in the DLFCCLASS.

RETAI N(YES | NO)
Specifies whether the DLF object can be retained after use.

JOBNAMES(jobname-1 ...)
Specifies the list of objects which can access the DLF objects protected by this profile.

You can specify any job name valid on your system. You can also specify generic job names with an asterisk (*) as the last character of the job name. For example, JOBNAMES(ABC) allows only job ABC to access the DLF objects protected by the profile. JOBNAMES(ABC*) allows any job whose name begins with ABC (such as ABC, ABC1, or ABCDEF and so forth) to access the DLF objects.
If DLFDATA is not specified, or is specified without the RETAIN suboperand, RETAIN(NO) is defaulted.

EIM

The EIM and PROXY segment keywords and subkeywords combine to define the EIM domain, the LDAP host it resides on, and the bind information required by the EIM services to establish a connection with an EIM domain. The EIM services will attempt to retrieve this information when it is not explicitly supplied with the invocation parameters.

DOMAINDN(eim_domain_dn)

Specifies the distinguished name of the EIM domain. A valid EIM domain distinguished name begins with `ibm-eimDomainName=`. Uppercase and lowercase characters are accepted and maintained in the case in which they are entered. The EIM domain distinguished name is one component of an EIM domain name.

An EIM domain name identifies the LDAP server that stores the EIM domain information. The EIM domain name begins with the `ldap_url` from the LDAPHOST suboperand of the PROXY keyword, followed by `/` and ends with the `eim_domain_dn` from the DOMAINDN suboperand. The length of a valid EIM domain name is determined by the combination of those factors. RACF allows the input of 1023 characters for the domain distinguished name. RACF does not ensure that an EIM domain name created from the LDAP URL and EIM domain distinguished name forms a valid EIM domain name.

For more information about LDAP distinguished names, see [z/OS IBM Tivoli Directory Server Administration and Use for z/OS](https://www.ibm.com/support/knowledgecenter/SSEQJZ_6.3.0/com.ibm.zos.v6r1.doc/cmd/eimpi_rdef.html).

OPTIONS

Specifies options that control the EIM configuration.

ENABLE | DISABLE

ENABLE

Specifies that new connections may be established with the specified EIM domain. This is the default.

DISABLE

Specifies that new connections may not be established with the specified EIM domain.

LOCALREGISTRY(registry_name)

Specifies the name of the local RACF registry in EIM domains. This operand is valid only with the following profiles and is ignored for all others:

- The IRR.PROXY.DEFAULTS profile in the FACILITY class
- The IRR.ICTX.DEFAULTS.sysid profile in the LDAPBIND class
- The IRR.ICTX.DEFAULTS profile in the LDAPBIND class.

EIM uses the `registry_name` value defined in the IRR.PROXY.DEFAULTS profile. The ICTX identity cache `registry_name` uses the value defined in the IRR.ICTX.DEFAULTS.sysid or IRR.ICTX.DEFAULTS profile.

The `registry_name` value is 1 - 255 characters in length. It can consist of any characters and can be entered with or without single quotation marks. The following rules apply:
RDEFINE

- If parentheses, commas, blanks, or semicolons are intended as part of the registry_name, you must enclose the entire character string in single quotation marks.
- If a single quotation mark is intended as part of the registry_name, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.
- Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

KERBREGISTRY(registry_name)
Specifies the name of the Kerberos registry in the EIM domain that the system is configured to use. This operand is only valid for the IRR.PROXY.DEFAULTS FACILITY class profile. The value is ignored when used on other profiles.

The Kerberos registry_name may be 1 - 255 characters long. Uppercase and lowercase characters are allowed, but are not significant because the Kerberos registry name is stored in the RACF database in uppercase.

X509REGISTRY(registry_name)
Specifies the name of the X.509 registry in the EIM domain that the system is configured to use. This operand is only valid for the IRR.PROXY.DEFAULTS FACILITY class profile. The value is ignored when used on other profiles.

The X.509 registry_name may be 1 - 255 characters long. Uppercase and lowercase characters are allowed, but are not significant because the X.509 registry name is stored in the RACF database in uppercase.

FCLASS(profile-name-2-class)
Specifies the name of the class to which profile-name-2 belongs. The valid class names are DATASET and those classes defined in the class descriptor table. For a list of general resource classes defined in the class descriptor table supplied by IBM, see Appendix B, “Supplied RACF resource classes,” on page 693.

If you omit this operand, RACF assumes that profile-name-2 belongs to the same class as profile-name-1. This operand is valid only when you also specify the FROM operand; otherwise, RACF ignores it.

FgenerIc
Specifies that RACF is to treat profile-name-2 as a generic name, even if it is fully qualified (meaning that it does not contain any generic characters). This operand is needed only if profile-name-2 is a DATASET profile.

FROM(profile-name-2)
Specifies the name of an existing discrete or generic profile that RACF is to use as a model for the new profile. The model profile name you specify on the FROM operand overrides any model name specified in your user or group profile. If you specify FROM and omit FCLASS, RACF assumes that profile-name-2 is the name of a profile in the same class as profile-name-1.

Mixed-case profile names are accepted and preserved when FCLASS refers to a class defined in the static class descriptor table with CASE=ASIS or in the dynamic class descriptor table with CASE(ASIS).

To specify FROM, you must have sufficient authority to both profile-name-1 and profile-name-2, as described under “Authorization Required”.

514 z/OS V2R1.0 Security Server RACF Command Language Reference
Possible Changes to Copied Profiles When Modeling Occurs: When a profile is copied during profile modeling, the new profile might differ from the model in the following ways:

- Certain conditional access list conditions are valid only for specific classes. For example, WHEN(SYSID) is only valid for the PROGRAM class and WHEN(PROGRAM) is only valid for data sets and the SERVAUTH class. PROGRAM and SYSID entries in the conditional access list of profile-name-2 will be copied to the conditional access list of profile-name-1 only if the condition is valid for the class of profile-name-1.
- RACF places the user’s ID on the access list with ALTER access authority or, if the user’s ID is already on the access list, RACF changes the user’s access authority to ALTER. However, if NOADDCREATOR is in effect, RACF copies the access list authorities exactly as they appear in the model’s access list.
- If the model profile contains members (specified with the ADDMEM operand), the members are not copied into the new profile.
- If the SETROPTS MLS option is in effect, the security label (if specified in the model profile) is not copied. Instead, the user’s current security label is used.

 Exception: When SETROPTS MLS and MLSTABLE are both in effect and the user has the SPECIAL attribute, the security label specified in the model profile is copied to the new profile.
- For TAPEVOL profiles, TVTOC information is not copied to the new profile.
- Information in the non-RACF segments (for example, the SESSION or DLFDATA segment) is not copied.

For information about automatic profile modeling, refer to z/OS Security Server RACF Security Administrator’s Guide.

FVOLUME(volume-serial)

Specifies the volume RACF is to use to locate the model profile (profile-name-2).

If you specify FVOLUME and RACF does not find profile-name-2 associated with that volume, the command fails. If you omit this operand and profile-name-2 appears more than once in the RACF data set, the command fails.

FVOLUME is valid only when FCLASS either specifies or defaults to DATASET and when profile-name-2 specifies a discrete profile. Otherwise, RACF ignores FVOLUME.

ICSF

Specifies ICSF attributes for the keys that are controlled by this profile. ICSF attributes are valid only for profiles in the CSFKEYS, GCFSFKEYS, XCSFKEY, and GXCSFKEY classes.

ASYMUSAGE

Specifies how an asymmetric key that is controlled by this profile is eligible to be used. If you do not specify ASYMUSAGE, the key is eligible for all uses.

SECUREEXPORT | NOSECUREEXPORT

Specifies whether the key is eligible to be used to export or import symmetric keys.

HANDSHAKE | NOHANDSHAKE

Specifies whether the key is eligible to be used to protect communication channels.
SYMEXPORTABLE
Specifies which public keys, if any, are eligible for use to export a symmetric key that is controlled by this profile. If you do not specify SYMEXPORTABLE, any public key is eligible.

BYANY
Any public key is eligible. The SYMEXPORTCERTS and SYMEXPORTKEYS settings are ignored. This option is the default setting.

BYLIST
Only public keys specified with the SYMEXPORTCERTS or SYMEXPORTKEYS option are eligible. If neither option is set for this symmetric key, no public key is eligible (as if BYNONE were specified).

BYNONE
No public key is eligible. The SYMEXPORTCERTS and SYMEXPORTKEYS settings are ignored.

SYMEXPORTCERTS(\[\text{qualifier}]/\text{label-name} ... | *)
Specifies a list of the labels of digital certificates that are eligible to be used to export the symmetric keys controlled by this profile.

Each listed certificate must exist in the ICSF key store (the SAF key ring or PKCS #11 token specified by an ICSF configuration setting). For information about the ICSF key store, see z/OS Cryptographic Services ICSF Administrator's Guide.

Specify an asterisk (*) to indicate that any certificate in the ICSF key store is eligible to be used to export the symmetric keys controlled by this profile. Specifying an asterisk (*) overrides any listed labels.

Specify each certificate label using a certificate label string in the form of \text{qualifier}/\text{label-name}.

\text{qualifier}
Specifies an optional qualifier in the certificate label string when multiple certificates have the same label. If specified, RACF translates the qualifier value to uppercase characters before storing it in the profile. The meaning of the qualifier value depends on where the certificate resides.

When the certificate resides in a ...
| The qualifier value is ...
| SAF key ring | The RACF user ID of the certificate owner.
| PKCS #11 token | The value of the CKA_ID attribute of the certificate. The CKA_ID value consists of up to 64 hexadecimal characters. Valid characters are 0 – 9 and A – F.

\text{/label-name}
Specifies the certificate label assigned when the certificate was created. You must specify the forward slash character (/) followed by the certificate label.

If the certificate label contains blanks, or special characters that cause problems with TSO/E, such as the comma, parenthesis, or comment delimiter (/*), the entire certificate label string must be enclosed in single quotation marks.
Any leading or trailing blanks specified in label-name are removed from this value before storing it in the profile.

Examples of certificate label strings:
 DENICE/CertForDenice
 'ROGERS/Cert for Rogers'
 '/DLR cert'

SYMEXPORTKEYS(ICSF-key-label ... | *)

Specifies a list of the ICSF key labels of public keys that are eligible to be used to export the symmetric keys controlled by this profile. Each listed public key must reside in the ICSF PKA key data set (PKDS).

Specify an asterisk (*) to indicate that any public key in the ICSF PKDS is eligible to be used to export the symmetric keys controlled by this profile. Specifying an asterisk (*) overrides any listed labels.

 ICSF-key-label

 Specifies the ICSF key label for the public key. The label name cannot exceed 64 characters. The first character must be an alphabetic character or a national character (#, @, or $). Subsequent characters can be a period character (.) or any alphanumeric or national character.

SYMCPACFWRAP

Specifies whether the encrypted symmetric keys that are controlled by this profile are eligible to be rewrapped by CP Assist for Cryptographic Function (CPACF). If you do not specify SYMCPACFWRAP, the keys are ineligible.

 YES

 Specifies that the encrypted symmetric keys that are controlled by this profile are eligible to be rewrapped by CPACF.

 NO

 Specifies that the encrypted symmetric keys that are controlled by this profile are ineligible to be rewrapped by CPACF. This option is the default setting.

ICTX

Specifies the ICTX configuration options that control the ICTX identity cache.

The ICTX identity cache uses an in-storage copy of the configuration options. Use SETROPTS RACLIST processing for the LDAPBIND class to activate these options. (See the z/OS Security Server RACF Security Administrator’s Guide for more information about SETROPTS RACLIST processing.)

For details about the ICTX configuration options, see z/OS Integrated Security Services EIM Guide and Reference

The following operands are used only for the following profiles in the LDAPBIND class and are ignored for other profiles:

 • IRR.ICTX.DEFAULTS.sysid
 • IRR.ICTX.DEFAULTS

USEMAP (YES | NO)

Specifies whether the ICTX identity cache stores a valid identity mapping to a z/OS user ID when provided by the application. If you do not specify this, USEMAP(YES) is the default.

 YES

 When the application provides a valid mapping to a local z/OS user ID, the ICTX identity cache stores it. (This is the default value.)
RDEFINE

NO Identity mappings provided by the application are not stored.

DOMAP (YES | NO)
 Specifies whether the ICTX identity cache uses Enterprise Identity Mapping (EIM) services to find a mapping to a z/OS user ID for an authenticated user, and then stores the mapping. If you do not specify this, DOMAP(NO) is the default.

 YES
 When EIM finds a mapping to a z/OS user ID for an authenticated user, the ICTX identity cache stores it.

 NO The ICTX identity cache will not use EIM to find an identity mapping. (This is the default value.)

MAPREQUIRED(YES | NO)
 Specifies whether the ICTX identity cache requires identity mapping to a z/OS user ID for an authenticated user. If you do not specify this, MAPREQUIRED(NO) is the default.

 YES
 The ICTX identity cache fails the request when no valid mapping is provided by the application or found using EIM.

 NO The ICTX identity cache does not fail the request when no valid mapping is provided by the application or found using EIM.

MAPPINGTIMEOUT(1 - 3600)
 Specifies how long (one second to one hour) the ICTX identity cache stores an identity mapping to a z/OS user ID for an authenticated user. If you do not specify this, MAPPINGTIMEOUT(3600) is the default.

 Guideline: If you frequently modify your EIM mappings, consider a low MAPPINGTIMEOUT value. A shorter timeout period causes the ICTX identity cache to invoke EIM more frequently. This allows your cached mappings to be refreshed more frequently and improves their currency.

KERB
 Specifies z/OS Integrated Security Services Network Authentication Service information for a REALM class profile.

CHECKADDRS
 Specifies whether the Kerberos server validates addresses in tickets as part of ticket validation processing.

 This keyword is only applicable when defining the KERBDFLT REALM profile for the local realm.

 YES
 The server validates addresses in tickets.

 NO The server ignores addresses in tickets. This is the default value.

DEFTKTLFE(def-ticket-life)
 Specifies the default ticket lifetime for the local z/OS Network Authentication Service in seconds. The value of DEFTKTLFE is 1 - 2,147,483,647. Note that 0 is not a valid value.

 This keyword is only applicable when defining the KERBDFLT REALM profile for the local realm.

 If DEFTKTLFE is specified, MAXTKTLFE and MINTKTLFE must also be specified.
ENCRYPT
Specifies which keys can be used by the z/OS Network Authentication Service realm you are defining.

ENCRYPT is the default value when you specify KERB. The default values for ENCRYPT are DES, DES3, DESD, AES128, and AES256.

DES | NODES
Whether DES encrypted keys can be used.

DES3 | NODES3
Whether DES3 encrypted keys can be used.

DESD | NODESD
Whether DESD encrypted keys can be used.

AES128 | NOAES128
Whether AES128 encrypted keys can be used.

AES256 | NOAES256
Whether AES256 encrypted keys can be used.

When a realm’s password changes, a key of each type is generated and stored in the principal’s user profile. The use of each key is based on the z/OS Network Authentication Service configuration.

See z/OS Integrated Security Services Network Authentication Service Administration for information about how z/OS Network Authentication Service uses keys and how to customize environment variables related to keys.

KERBNAME(kerberos-realm-name)
Specifies the local realm name or a trust relationship for z/OS Network Authentication Service. The maximum length of this field is 117 characters.

- When you specify the local realm name for the KERBDFLT realm, you must specify KERBNAME using the unqualified form of the local realm name. For example:
 RDEFINE REALM KERBDFLT KERB(KERBNAME(KRB2000.IBM.COM))
- When you specify a trust relationship, you must specify the fully qualified principal name using the following form:
 /.../kerberos_realm_name_1/krbtgt/kerberos_realm_name_2

For more information about defining trust relationships, see z/OS Integrated Security Services Network Authentication Service Administration.

Syntax rules for naming your local realm:
The local realm name that you define to RACF can consist of any character, except the / (X'61') character. You can enter the name with or without single quotation marks, depending on the following:

- If parentheses, commas, blanks, or semicolons are entered as part of the name, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the name and the entire character string is enclosed in single quotation marks, you must use two single quotation marks together to represent each single quotation mark within the string.
- If the first character of the name is a single quotation mark, you must enter the string within single quotation marks, with two single quotation marks entered for the single quotation mark.
Regardless of the case in which it is entered, RACF translates the name of the local z/OS Network Authentication Service realm to upper case. However, RACF does not ensure that a valid `kerberos-realm-name` has been specified.

Guidelines for naming your local realm:
- Avoid using EBCDIC variant characters to prevent problems with different code pages.
- Carefully consider the length of the local realm name. Its length limits the length of local principal names because fully qualified local principal names use the following form and cannot exceed 240 characters:

 `/.../kerberos_realm_name/principal_name`

 The length of the fully qualified local principal name is checked by RACF only when a local `kerberos-principal-name` is added or altered. Therefore, plan ahead to ensure that the maximum length of your principal names is sufficient and help you avoid renaming the local realm. If you rename your local realm (using the RALTER command), the keys for existing principals become unusable.

MAXTTLFE (max-ticket-life)
Specifies the `max-ticket-life` for the local z/OS Network Authentication Service in seconds. The value of MAXTTLFE is 1 - 2,147,483,647. Note that 0 is not a valid value.

This keyword is only applicable when defining the KERBDFLT REALM profile for the local z/OS Network Authentication Service realm.

If MAXTTLFE is specified, DEFTTLFE and MINTTLFE must also be specified.

MINTTLFE (min-ticket-life)
Specifies the `min-ticket-life` for the z/OS Network Authentication Service in seconds. The value of MINTTLFE is 1 - 2,147,483,647. Note that 0 is not a valid value.

This keyword is only applicable when defining the KERBDFLT REALM profile for the local Kerberos realm.

If MINTTLFE is specified, DEFTTLFE and MAXTTLFE must also be specified.

PASSWORD (kerberos-password)
Specifies the value of the `kerberos-password`. The maximum length of this value is 128 characters. The PASSWORD keyword is applicable to all REALM class profile definitions. A password must be associated with the definition of a trust relationship or else the definition is incomplete.

Guideline: Avoid using EBCDIC variant characters to prevent problems with different code pages.

The password that you define to RACF can consist of any character. You can enter a password with or without single quotation marks, depending on the following:
- If parentheses, commas, blanks, or semicolons are entered as part of the password, the character string must be enclosed in single quotation marks.
If a single quotation mark is intended to be part of the password and the entire character string is enclosed in single quotation marks, you must use two single quotation marks together for each single quotation mark within the string.

If the first character of the password is a single quotation mark, you must enter the string within single quotation marks, with two single quotation marks entered for the character.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered.

Note: This keyword is intended for administrators to be able to associate a kerberos-password with the definition of a realm. It is not the same as a RACF user password and is not constrained by the SETROPTS password rules or change interval values that might be established for RACF user passwords.

LEVEL(nn)

Specifies a level indicator, where mm is an integer from 0 - 99. The default is 0.

Your installation assigns the meaning of the value. It is included on all records that log resource accesses and is listed by the RLIST command.

NOTIFY[(userid)]

Specifies the user ID of a user to be notified whenever RACF uses this profile to deny access to a resource. If you specify NOTIFY without specifying a user ID, RACF takes your user ID as the default; you are notified whenever the profile denies access to a resource.

A user who is to receive NOTIFY messages should log on frequently to take action in response to the unauthorized access attempt described in each message. RACF sends NOTIFY messages to the SYS1.BROADCAST data set. When the resource profile also includes WARNING, RACF might have granted access to the resource to the user identified in the message.

When RACF denies access to a resource, it does not notify a user:

- When the resource is in the PROGRAM class
- When the resource is in a class for which an application has built in-storage profiles using RACROUTE REQUEST=LIST

Some applications, such as IMS and CICS, load all the profiles for a given class into storage. After these profiles are in storage, the applications can do a fast authorization check using RACROUTE REQUEST=FASTAUTH. One difference is that, in some cases, fast authorization checking does not issue warning messages, notification messages, or support auditing. In cases where it does not, return and reason codes are returned to the application to allow support of these functions. Return and reason codes are returned to the application to allow support of these functions. The application can examine the return and reason codes and use RACROUTE REQUEST=AUTH to create the messages and audit records. If the application uses RACROUTE REQUEST=AUTH to support auditing, the specified user is notified. Otherwise, notification, warning, and such does not occur.

For details on using RACF with IMS, visit [IBM Information Management Software for z/OS Solutions Information Center](http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp).
RDEFINE

- When the profile is used to disallow the creation or deletion of a data set NOTIFY is used only for resource access checking, not for resource creation or deletion.

OWNER(userid or group-name)
 Specifies a RACF-defined user or group to be assigned as the owner of the resource you are defining. If you omit this operand, you are defined as the owner. The user specified as the owner does not automatically have access to the resource. Use the PERMIT command to add the owner to the access list as desired.

PROXY
 Specifies information which the z/OS LDAP server will use when acting as a proxy on behalf of a requester. The _R_proxyserv (IRRSPY00) SAF callable service will attempt to retrieve this information when it is not explicitly supplied with the invocation parameters. Applications or other services which use the _R_proxyserv callable service, such as IBM Policy Director Authorization Services for z/OS and OS/390, may instruct their invokers to define PROXY segment information.

LDAPHOST(ldap_url)
 Specifies the URL of the LDAP server which the z/OS LDAP server will contact when acting as a proxy on behalf of a requester. An LDAP URL has a format such as ldap://123.45.6:389 or ldaps://123.45.6:636, where ldaps indicates that an SSL connection is desired for a higher level of security. LDAP will also allow you to specify the host name portion of the URL using either the text form (BIGHOST.POK.IBM.COM) or the dotted decimal address (123.45.6). The port number is appended to the host name, separated by a colon (:).

 For more information about LDAP URLs and how to enable LDAP servers for SSL connections, see z/OS IBM Tivoli Directory Server Administration and Use for z/OS.

 The LDAP URL that you define to RACF can consist of 10 - 1023 characters. A valid URL must start with either ldap:// or ldaps://. RACF will allow any characters to be entered for the remaining portion of the URL, but you should ensure that the URL conforms to TCP/IP conventions. For example, parentheses, commas, blanks, semicolons, and single quotation marks are not typically allowed in a host name. The LDAP URL can be entered with or without single quotation marks, however, in both cases, it will be translated to uppercase.

 RACF does not ensure that a valid LDAP URL has been specified.

BINDDN(bind_distinguished_name)
 Specifies the distinguished name (DN) which the z/OS LDAP server will use when acting as a proxy on behalf of a requester. This DN will be used in conjunction with the BIND password, if the z/OS LDAP server needs to supply an administrator or user identity to BIND with another LDAP server. A DN is made up of attribute value pairs, separated by commas. For example:

 cn=Ben Gray,ou=editing,o=New York Times,c=US
 cn=Lucille White,ou=editing,o=New York Times,c=US
 cn=Tom Brown,ou=reporting,o=New York Times,c=US
When you define a BIND DN to RACF, it can contain 1 - 1023 characters. The BIND DN can consist of any characters and can be entered with or without single quotation marks. The following rules apply:

- If parentheses, commas, blanks, or semicolons are to be entered as part of the BIND DN, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the BIND DN, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. For more information about LDAP distinguished names, see z/OS IBM Tivoli Directory Server Administration and Use for z/OS.

If you issue the RDEFINE command as a RACF operator command and you specify the BIND DN in lowercase, you must include the BIND DN within single quotations.

RACF does not ensure that a valid BIND DN has been specified.

BINDPW

Specifies the password which the z/OS LDAP server will use when acting as a proxy on behalf of a requester.

When you define a BIND password to RACF, it can contain 1 - 128 characters. The BIND password can consist of any characters (see exception below) and can be entered with or without single quotation marks. The following rules apply:

- The BIND password cannot start with a left brace { character (X'8B').
- If parentheses, commas, blanks, or semicolons are to be entered as part of the BIND password, the character string must be enclosed in single quotation marks.
- If a single quotation mark is intended to be part of the BIND password, use two single quotation marks together for each single quotation mark within the string, and enclose the entire string within single quotation marks.

Both uppercase and lowercase characters are accepted and maintained in the case in which they are entered. For more information about LDAP passwords, see z/OS IBM Tivoli Directory Server Administration and Use for z/OS.

If you issue the RDEFINE command as a RACF operator command and you specify the BIND password in lowercase, you must include the BIND password within single quotations.

RACF does not ensure that a valid BIND password has been specified.
RDEFINE

Attention:
• When the command is issued from ISPF, the TSO command buffer (including possible BINDPW password data) is written to the ISPLOG data set. As a result, you should not issue this command from ISPF or you must control the ISPLOG data set carefully.
• When the command is issued as a RACF operator command, the command and the possible BINDPW password data is written to the system log. Therefore, use of RDEFINE as a RACF operator command should either be controlled or you should issue the command as a TSO command.

SECLABEL(seclabel-name)
Specifies the installation-defined security label for this profile.

A security label corresponds to a particular security level (such as CONFIDENTIAL) with a set of zero or more security categories (such as PAYROLL or PERSONNEL).

RACF stores the name of the security label you specify in the resource profile if you are authorized to use that SECLABEL.

If you are not authorized to the SECLABEL or if the name you had specified is not defined as a SECLABEL profile in the SECLABEL class, the resource profile is not created.

If SECLABEL is not specified, the created profile will not have a SECLABEL associated with the resource, unless the SETROPTS MLACTIVE option is turned on. In this case, the user's current logon SECLABEL will automatically be assigned to the profile.

SECLEVEL(seclevel-name)
Specifies the name of an installation-defined security level. The name corresponds to the number that is the minimum security level that a user must have to access the resource. The seclevel-name must be a member of the SECLEVEL profile in the SECDATA class.

When you specify SECLEVEL and the SECDATA class is active, RACF adds security level checking to its other authorization checking. If global access checking grants access, RACF compares the security level allowed in the user profile with the security level required in the resource profile. If the security level in the user profile is less than the security level in the resource profile, RACF denies the access. If the security level in the user profile is equal to or greater than the security level in the resource profile, RACF continues with other authorization checking. The SECLEVEL operand is required for the SECLABEL class.

Note: RACF does not perform security level checking for a started task that has the RACF privileged or trusted attribute. The RACF privileged or trusted attribute can be assigned to a started task through the RACF started procedures table or STARTED class. Also, RACF does not enforce security level information specified on profiles in the PROGRAM class.

If the SECDATA class is not active, RACF stores the name you specify in the resource profile. When the SECDATA class is activated and the name you specified is defined as a SECLEVEL profile, RACF can perform security level access checking for the resource profile. If the name you specify is not defined as a SECLEVEL profile, you are prompted to provide a valid SECLEVEL name.

SESSION
Is only valid for the APPCLU resource class. It specifies that when changing an
APPCLU class profile, the following suboperands add, change, or delete SESSION segment field values. The SESSION segment is used to control the establishment of sessions between logical units under LU6.2.

CONVSEC

Specifies the level or levels of security checking performed when conversations are established with the LU protected by this profile.

Guideline: Specify a CONVSEC option for each APPCLU profile.

ALREADYV

APPC/MVS RACF does not verify the user ID and password for any inbound allocate requests. If you specify ALREADYV, you assume that user IDs and passwords have already been verified by the partner LU. You must specify this only if the partner LU is trustworthy.

AVPV

The user ID/password is already verified and persistent verification is requested.

CONV

APPC/MVS issues a RACROUTE REQUEST=VERIFY to verify the user ID and password for all inbound allocate requests.

NONE

All inbound allocate requests pass without RACF checking for a valid user ID. No RACROUTE REQUEST=VERIFY is issued.

PERSISTV

Specifies persistent verification.

INTERVAL(n)

Sets the maximum number of days the session key is valid. The n value can be 1 - 32767. If the key interval is longer than the installation maximum (set with SETROPTS SESSIONINTERVAL), then the profile is created.

If the key interval is not specified and there is a SETROPTS SESSIONINTERVAL value, the profile is created with that value. If there is no SETROPTS SESSIONINTERVAL value, there is no limit to the number of days the session key is valid.

LOCK

Mark the profile as locked. This prevents all session establishment from succeeding.

SESSKEY(session-key)

Change the key for this profile. The session-key value can be expressed in two ways:

- \(X'y\) where \(y\) is a hexadecimal number of 1 - 16 digits
- \(z\) or \('z'\) where \(z\) is a string of 1 - 8 characters

If the entire 16 digits or 8 characters are not used, the field is padded to the right with binary zeros.

Note: Session keys are 64-bit Data Encryption Standard (DES) keys. With DES, 8 of the 64 bits are reserved for use as parity bits, so those 8 bits are not part of the 56-bit key. In hexadecimal notation, the DES parity bits are: \(X'0101\ 0101\ 0101\ 0101'\). Any two 64-bit keys are equivalent DES keys if their only difference is in one or more of these parity bits. For instance, the
following SESSKEY values, although appearing to be quite different, are equivalent because they differ only in the last bit of each byte:
• BDF0KM4Q, which is X'C2C4 C6F0 D2D4 F4D8'
• CEG1LN5R, which is X'C3C5 C7F1 D3D5 F5D9'

SIGVER
Specifies the options for verifying the signatures of programs that are protected by this general resource profile.

Rule: Specify SIGVER only for profiles in the PROGRAM class. Any options specified with the SIGVER operand are ignored for profiles in a class other than the PROGRAM class.

Restriction: Digital signature verification is supported only for program objects that are stored as members of a partitioned data set extended (PDSE) library. Digital signature verification is not supported for programs that are stored as members of a partitioned data set (PDS) library.

Any options specified with the SIGVER operand are ignored for unsupported programs.

Note: Regardless of the SIGREQUIRED setting, specifying FAILLOAD(NEVER) and SIGAUDIT(NONE) is equivalent to having no SIGVER segment.

For detailed information, see “Program signing and verification” in z/OS Security Server RACF Security Administrator’s Guide.

SIGREQUIRED
Specifies whether programs that are protected by this profile must be digitally signed.

YES
Specifies that programs must be digitally signed.

When you specify SIGREQUIRED(YES), the following conditions apply to any program that is protected by this general resource profile:
• If the program has a digital signature:
 – Signature verification processing occurs.
 – The program continues to load according to the FAILLOAD setting.
 – Logging occurs according to the SIGAUDIT setting.
• If the program has no digital signature:
 – Signature verification processing occurs, resulting in a signature verification failure.
 – The program continues to load according to the FAILLOAD setting.
 – Logging occurs according to the SIGAUDIT setting.

NO
Specifies that programs need not be digitally signed.

When you specify SIGREQUIRED(NO), the following conditions apply to any program that is protected by this general resource profile:
• If the program has a digital signature:
 – Signature verification processing occurs.
 – The program continues to load according to the FAILLOAD setting.
 – Logging occurs according to the SIGAUDIT options.
• If the program has no digital signature:
No signature verification occurs.
The program continues to load. The FAILLOAD setting is ignored.
No logging occurs. The SIGAUDIT setting is ignored.

If SIGREQUIRED is not specified, SIGREQUIRED(NO) is the default value.

FAILLOAD
Specifies the conditions under which the program fails to load in the event that a signature verification failure occurs.

ANYBAD
Specifies that the program fails to load when a signature verification failure occurs, regardless of the cause. Such failures include those resulting from an incorrect signature, or an error establishing the trust of the signer. This setting includes failures related to administrative errors, such as a missing or incorrectly defined key ring.

The ANYBAD setting includes the failures covered by the BADSIGONLY setting, and also includes errors establishing the trust of the signer.

BADSIGONLY
Specifies that the program fails to load only when the signature verification failure is caused by an incorrect digital signature. Such failures include only those resulting from a signature that fails verification or a signature structure that is missing or improperly formatted.

In contrast to ANYBAD, the BADSIGONLY setting does not cause a program to fail to load when the program has a valid signature originating from an untrusted signer.

NEVER
Specifies that the program never fails to load when a signature verification failure is detected.

If FAILLOAD is not specified, FAILLOAD(NEVER) is the default value.

SIGAUDIT
Specifies which signature verification events are logged. Messages are issued to the console only for signature verification failures that are logged.

ALL
Logs all signature verifications, whether successful or not.

SUCCESS
Logs only signature verification successes. In other words, the digital signature is valid and the root CA certificate is trusted.

ANYBAD
Logs all signature verification failures, regardless of the cause of the failure. Such failures include those resulting from an incorrect signature, or an error establishing the trust of the signer. This setting includes failures related to administrative errors, such as a missing or incorrectly defined key ring.

The ANYBAD setting logs the failures covered by the BADSIGONLY setting, and also logs errors encountered when establishing the trust of the signer.
RDEFINE

BADSIGONLY
Logs only signature verification failures caused by an incorrect digital signature. Such failures include only those resulting from a signature that fails verification or a signature structure that is missing or improperly formatted.

In contrast to ANYBAD, the BADSIGONLY setting does not log a signature verification failure when the program has a valid signature originating from an untrusted signer.

NONE
Logs no digital signature verification events.

If SIGAUDIT is not specified, SIGAUDIT(NONE) is the default value.

SINGLEDSN
Specifies that the tape volume can contain only one data set. SINGLEDSN is valid only for a TAPEVOL profile. If the volume already contains more than one data set, RACF issues a message and ignores the operand.

SSIGNON
Defines the application key or a secured signon key and indicates the method you want to use to protect the key value within the RACF database on the host. When defining the profile, you can either mask or encrypt the key. The key-value represents a 64-bit (8-byte) key that must be represented as 16 hexadecimal characters. The valid characters are 0 - 9 and A - F.

Restrictions:
- As with RACF passwords, the database unload facility does not unload application keys or the secured signon keys.
- The RLIST command does not list the value of the application keys or a secured signon keys. Therefore, when you define the keys, you should note the value and keep it in a secure place.

KEYMASKED(key-value)
Specifies that you want to mask the key value using the masking algorithm.

Rules:
- You can specify this operand only once for each application key.
- If you mask a key, you cannot encrypt it. These are mutually exclusive.

You can use the RLIST command to verify that the key is protected.

KEYENCRYPTED(key-value)
Specifies that you want to encrypt the key value.

Rules:
- You can specify this operand only once for each application key.
- If you encrypt a key, you cannot mask it. These are mutually exclusive.
- A cryptographic product must be installed and active on the system.

You can use the RLIST command to verify that the key is protected.

STDATA
Used to control security for started tasks. STDATA should only be specified for profiles in the STARTED class.

USER
RDEFINE

USER(userid)
 Specifies the user ID to be associated with this entry.

 RACF issues a warning message if the specified userid does not exist,
or if the USER operand is not specified, but data is placed into the
STDATA segment. If the error is not corrected, RACF uses the started
procedures table to process START requests that would have used this
STARTED profile.

USER(=MEMBER)
 Specifies that the procedure name should be used as the user ID. If
=MEMBER is specified for USER, a group-name value should be specified
for the GROUP operand. If =MEMBER is specified for both USER and
GROUP, a warning message is issued and problems might result when
the profile is used. For information, see z/OS Security Server RACF
System Programmer’s Guide.

GROUP

GROUP(group-name)
 Specifies the group name to be associated with this entry.

 RACF issues a warning message if the specified group-name does not
exist. If userid and group-name are specified, RACF verifies that the user
is connected to the group. If GROUP is specified incorrectly, the started
task runs as an undefined user.

GROUP(=MEMBER)
 Specifies that the procedure name should be used as the group name.
If =MEMBER is specified for GROUP, a userid value must be specified for
the USER operand or RACF uses the started procedures table to assign
an identity for this started task. If =MEMBER is specified for both USER
and GROUP, a warning message is issued and problems might result when
the profile is used. For information, see z/OS Security Server
RACF System Programmer’s Guide.

 If GROUP is not specified the started task runs with the default group of
the specified user ID.

PRIVILEGED(YES | NO)
 Specifies whether the started task should run with the RACF PRIVILEGED
attribute. The PRIVILEGED attribute allows the started task to pass most
authorization checking. No installation exits are called, no SMF records are
generated, and no statistics are updated. (Note that bypassing
authorization checking includes bypassing the checks for security
classification of users and data.) For more information, see z/OS Security
Server RACF System Programmer’s Guide.

 If PRIVILEGED(NO) is specified, the started task runs without the RACF
PRIVILEGED attribute.

 If PRIVILEGED is not specified PRIVILEGED(NO) is defaulted.

TRACE(YES | NO)
 Specifies whether a message should be issued to the operator when this
entry is used to assign an ID to the started task.

 If TRACE(YES) is specified, RACF issues an informational message to the
operator to record the use of this entry when it is used to assign an ID to a
started task. This record can be useful in finding started tasks that do not have a specific entry defined and in diagnosing problems with the user IDs assigned for started tasks.

If TRACE(NO) is specified, RACF does not issue an informational message when this entry is used.

If TRACE is not specified, TRACE(NO) is defaulted.

TRUSTED(YES | NO)

Specifies whether the started task should run with the RACF TRUSTED attribute. The TRUSTED attribute is similar to the PRIVILEGED attribute except that auditing can be requested using the SETROPTS LOGOPTIONS command. For more information about the TRUSTED attribute, see [z/OS Security Server RACF System Programmer’s Guide](https://www.ibm.com/support/docview.wss?uid=swg21133977).

If TRUSTED(NO) is specified, the started task runs without the RACF TRUSTED attribute.

If TRUSTED is not specified, TRUSTED(NO) is defaulted.

SVFMR

Defines profiles associated with a particular SystemView for MVS application.

SCRIPTNAME(script-name)

Specifies the name of the list of default logon scripts associated with this application. This operand is optional. If this operand is omitted, no scripts are associated with the application.

The `script-name` is a 1 - 8 character alphanumeric name of a member of an MVS partitioned data set (PDS). RACF accepts both uppercase and lowercase characters for `script-name`, but lowercase characters are translated to uppercase.

The PDS member specified by the `script-name` contains a list of other PDS members that contain the scripts associated with this application’s profile. The PDS and members, including the member that contains the list of other members, are created by the SystemView for MVS administrator.

PARMNAME(parm-name)

Specifies the name of the parameter list associated with this application. If this operand is omitted, no parameters are associated with the application.

The `parm-name` is a 1 - 8 character alphanumeric name of a member of an MVS partitioned data set (PDS). RACF accepts both uppercase and lowercase characters for `parm-name`, but lowercase characters are translated to uppercase.

The PDS member specified by `parm-name` contains a list of other PDS members that contain the parameters associated with this application’s profile. The PDS and members, including the list of other members, are created by SystemView for the MVS administrator.

TIMEZONE({E | W} hh[.mm])

Specifies the time zone in which a terminal resides. TIMEZONE is valid only for resources in the TERMINAL class; RACF ignores it for all other resources.

Specify TIMEZONE only when the terminal is not in the same time zone as the processor on which RACF is running and you are also specifying WHEN to limit access to the terminal to specific time periods. In this situation, TIMEZONE provides the information RACF needs to calculate the time values correctly. If you identify more than one terminal in the `profile-name-1` operand, all the terminals must be in the same time zone.
On TIMEZONE, you specify whether the terminal is east (E) or west (W) of the system and by how many hours (hh) and, optionally, minutes (mm) that the terminal time zone is different from the processor time zone. Valid hour values are 0 - 11, and valid minute values are 00 - 59.

For example, if the processor is in New York and the terminal is in Los Angeles, specify `TIMEZONE(W 3)` If the processor is in Houston and the terminal is in New York, specify `TIMEZONE(E 1)`.

If you change the local time on the processor (to accommodate daylight savings time, for instance), RACF adjusts its time calculations accordingly. However, if the processor time zone and the terminal time zone do not change in the same way, you must adjust the terminal time zones yourself, as described earlier for the WHEN(TIME) operand.

TME

Specifies that information for the Tivoli Security Management Application be added.

Note: The TME segment fields are intended to be updated only by the Tivoli Security Management Application, which manages updates, permissions, and cross references. A security administrator should only directly update Tivoli Security Management fields on an exception basis.

All TME suboperands, with the exception of those for ROLES, can be specified when changing a resource profile in the ROLE class. Conversely, only the ROLES suboperands can be specified when changing a resource profile in any other class.

CHILDREN(profile-name ...)

Specifies the complete list of roles that inherit attributes from this role. A role is a discrete general resource profile defined in the ROLE class.

GROUPS(group-name ...)

Specifies the complete list of groups that should be permitted to resources defined in this role profile.

PARENT(profile-name)

Specifies the name of a role from which this role inherits attributes. A role is a discrete general resource profile defined in the ROLE class.

RESOURCE(resource-access-specification ...)

Specifies the complete list of resources and associated access levels for groups defined in this role profile.

One or more `resource-access-specification` values can be specified, each separated by blanks. Each value should contain no imbedded blanks and should have the following format:

```
origin-role:classname:profile-name:authority
[:conditional-class:conditional-profile]
```

where `origin-role` is the name of the role profile from which the resource access is inherited. The `classname` value is an existing resource class name and `profile-name` is a resource profile defined in that class. The `authority` is the access authority (NONE, EXECUTE, READ, UPDATE, CONTROL, or ALTER) with which groups in the role definition should be permitted to the resource.
RDEFINE

The conditional-class is a class name (APPCPORT, CONSOLE, JESINPUT, PROGRAM, TERMINAL, or SYSID) for conditional access permission, and is followed by the conditional-profile value, a resource profile defined in the conditional class.

ROLES(role-access-specification ...)
Specifies a list of roles and associated access levels related to this profile.

One or more role-access-specification values can be specified, each separated by blanks. Each value should contain no imbedded blanks and should have the following format:
role-name:authority[conditional-class:conditional-profile]

where role-name is a discrete general resource profile defined in the ROLE class. The authority is the access authority (NONE, EXECUTE, READ, UPDATE, CONTROL, or ALTER) with which groups in the role definition should be permitted to the resource.

The conditional-class is a class name (APPCPORT, CONSOLE, JESINPUT, PROGRAM, TERMINAL, or SYSID) for conditional access permission, and is followed by the conditional-profile value, a resource profile defined in the conditional class.

TVTOC
Specifies, for a TAPEVOL profile, that RACF is to create a TVTOC in the TAPEVOL profile when a user creates the first output data set on the volume. The RDEFINE command creates a nonautomatic TAPEVOL profile; RACF creates and maintains the TVTOC for data sets residing on tape.

Specifying TVTOC also affects the access list for the TAPEVOL profile:
1. When RACF processes the RDEFINE command with the TVTOC operand, it places the user ID of the command issuer (perhaps the tape librarian) in the access list with ALTER authority.
2. When the first output data set is created on the volume, RACF adds the user ID associated with the job or task to the access list with ALTER authority.

The TVTOC operand is valid only for a discrete profile in the TAPEVOL class.

UACC(access-authority)
Specifies the universal access authority to be associated with this resource. The universal access authorities are ALTER, CONTROL, UPDATE, READ, EXECUTE (for controlled programs only), and NONE. If UACC is not specified, RACF uses the value in the ACEE or the class descriptor table. If UACC is specified without access-authority, RACF uses the value in the current connect group. For tape volumes and DASD volumes, RACF treats CONTROL authority as UPDATE authority. For all other resources listed in the class descriptor table and for applications, RACF treats CONTROL and UPDATE authority as READ authority.

If the user ID accessing the general resource has the RESTRICTED attribute, RACF treats the access authority as NONE.

WARNING
Specifies that even if access authority is insufficient, RACF is to issue a warning message and allow access to the resource. RACF also records the access attempt in the SMF record if logging is specified in the profile.
Restriction: RACF does not issue a warning message for a resource when the resource is:

- In the PROGRAM or NODES class
- In a class for which an application has built in-storage profiles using RACROUTE REQUEST=LIST.

When SETROPTS MLACTIVE(FAILURES) is in effect: A user or task can access a resource that is in WARNING mode and has no security label even when MLACTIVE(FAILURES) is in effect and the class requires security labels. The user or task receives a warning message and gains access.

Applications that use REQUEST=LIST: Some applications, such as IMS and CICS, load all the profiles for a given class into storage. After these profiles are in storage, the applications can do a fast authorization check using RACROUTE REQUEST=FASTAUTH. Fast authorization checking is different from normal authorization checking in several ways. One difference is that, in some cases, fast authorization checking does not issue warning messages, notification messages or support auditing. In cases where it does not, return and reason codes are returned to the application to allow support of these functions. The application can examine the return and reason codes and use RACROUTE REQUEST=AUTH to create the messages and audit records. If the application uses RACROUTE REQUEST=AUTH to support auditing or specifies LOG=ASIS on the RACROUTE REQUEST=FASTAUTH, the specified user is notified. Otherwise, notification, warning, and so on does not occur.

For details on using RACF with IMS, visit IBM Information Management Software for z/OS Solutions Information Center at http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp

For details on using RACF with CICS, visit CICS Transaction Server for z/OS Information Center at http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp

WHEN

Specifies, for a resource in the TERMINAL class, the days of the week or the hours in the day when a user can access the system from the terminal. The day-of-week and time restrictions apply only when a user logs on to the system; that is, RACF does not force the user off the system if the end-time occurs while the user is logged on.

If you omit the WHEN operand, a user can access the system from the terminal at any time. If you specify the WHEN operand, you can restrict the use of the terminal to certain days of the week or to a certain time period on each day. Or, you can restrict access to both certain days of the week and to a certain time period within each day.

DAYS(day-info)

Specifies days of the week when the terminal can be used. The day-info value can be any one of the following:

ANYDAY

RACF allows use of the terminal on any day. If you omit DAYS, ANYDAY is the default.

WEEKDAYS

RACF allows use of the terminal only on weekdays (Monday through Friday).

day . . .

RACF allows use of the terminal only on the days specified, where day
RDEFINE

can be MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, or SUNDAY. You can specify the days in any order.

TIME(time-info)
Specifies the time period each day when the terminal can be used. The time-info value can be any one of the following:

ANYTIME
RACF allows use of the terminal at any time. If you omit TIME, ANYTIME is the default.

start-time:end-time
RACF allows use of the terminal only during the specified time period. The format of both start-time and end-time is hhmm, where hh is the hour in 24-hour notation (00 - 24) and mm is the minutes (00 - 59) within the range 0001 - 2400. Note that 2400 indicates 12:00 a.m. (midnight).

If start-time is greater than end-time, the interval spans midnight and extends into the following day.

Specifying start-time and end-time is straightforward when the processor on which RACF is running and the terminal are in the same time zone; you specify the time values in local time.

However, if the terminal is in a different time zone from the processor and you want to restrict access to certain time periods, you have two choices. You can specify the TIMEZONE operand to allow RACF to calculate the time and day values correctly. Otherwise, you can adjust the time values yourself, by translating the start-time and end-time for the terminal to the equivalent local time for the processor.

For example, assume that the processor is in New York and the terminal is in Los Angeles, and you want to allow access to the terminal from 8:00 A.M. to 5:00 P.M. in Los Angeles. In this situation, you would specify TIME(1100:2000). If the processor is in Houston and the terminal is in New York, you would specify TIME(0900:1800).

If you omit DAYS and specify TIME, the time restriction applies to all seven days of the week. If you specify both DAYS and TIME, RACF allows use of the terminal only during the specified time period and only on the specified days.

Examples

Example 1

Operation User TBK20 wants to define resource GIMS600 in class GIMS which is a resource group class. He also wants to define TIMS200, TIMS111, TIMS300, and TIMS333 as members of the resource group (GIMS600).

Known User TBK20 has the CLAUTH attribute for the GIMS and TIMS classes. GIMS is a resource group class, and TIMS is its associated resource member class. TIMS200 and TIMS111 are members of another resource group. The user has ALTER authority to the other resource group. User TBK20 wants to issue the command as a RACF TSO command.

Command RDEFINE GIMS GIMS600 ADDMEM(TIMS200 TIMS111 TIMS300 TIMS333)

Defaults OWNER (TBK20) LEVEL(0) AUDIT(FAILURES(READ)) UACC(NONE)
Example 2
Operation
User ADM1 wants to define a generic profile for all resources starting with a T belonging to the TIMS class, and to require that users must reenter their passwords whenever they enter any IMS transaction starting with a T.
Known
User ADM1 has the SPECIAL attribute. User ADM1 wants to issue the command as a RACF TSO command.
Command
RDEFINE TIMS T* APPL('REVERIFY')
Defaults
UACC(NONE) OWNER(ADM1) LEVEL(0) AUDIT(FAILURES(READ))

Example 3
Operation
User ADM1 wants to define AMASPZAP as a controlled program with program-accessed data set checking.
Known
User ADM1 has the SPECIAL attribute. AMASPZAP resides in SYS1.LINKLIB on the SYSRES volume. RACF program control is active. User ADM1 wants to issue the command as a RACF TSO command.
Command
RDEFINE PROGRAM AMASPZAP ADDMEM('SYS1.LINKLIB'/SYSRES/PADCHK)
Defaults
UACC(NONE) OWNER(ADM1) LEVEL(0) AUDIT(FAILURES(READ))

Example 4
Operation
User ADM1 wants to define all load modules that start with IKF as controlled programs that do not require program-accessed data set checking.
Known
User ADM1 has the SPECIAL attribute. All load modules whose names begin with IKF reside in SYS1.COBLIB on the SYSRES volume. User ADM1 wants to issue the command as a RACF operator command, and the RACF subsystem prefix is @.
Command
@RDEFINE PROGRAM IKF* ADDMEM('SYS1.COBLIB'/SYSRES/NOPADCHK)
Defaults
UACC(NONE) OWNER(ADM1) LEVEL(0) AUDIT(FAILURES(READ))

Example 5
Operation
User JPQ12 wants to define a tape volume labeled DP0123 and allow it to hold a TVTOC. The tape volume is assigned a UACC of NONE.
Known
User JPQ12 has the SPECIAL attribute. User JPQ12 wants to issue the command as a RACF TSO command.
Command
RDEFINE TAPEVOL DP0123 TVTOC UACC(NONE)
Defaults
OWNER(JPQ12) LEVEL(0) AUDIT(FAILURES(READ))

Example 6
Operation
User ADM1 wants to prepare the TCICSTRN class to be used for RACGLIST processing.
Known
User ADM1 has the SPECIAL attribute. User ADM1 wants to issue the command as a RACF TSO command.
Command
RDEFINE RACGLIST TCICSTRN UACC(NONE)
Defaults
OWNER(ADM1) LEVEL(0) AUDIT(FAILURES(READ))

Example 7
Operation
The security administrator wants to define a profile for TSO in the PTKTDATA class. The security administrator wants to direct the command to run under the authority of user OJC11 at node NYTSO.
Known
ELVIS1 is the user ID of the security administrator. OJC11 has the SPECIAL attribute on node NYTSO.
The profile name is TSOR001. The key-value is e001193519561977 and is to be masked. The security administrator wants to issue the command as a RACF TSO command. The security administrator and OJC11 at NYTSO have an already established user ID association.
Command
RDEFINE PTKTDATA TSOR001 SSIGNON(KEYMASKED(e001193519561977)) AT(NYTSO.OJC11)
Defaults
UACC(NONE)
RDEFINE

Example 8

Operation The security administrator wants to create an entry in the dynamic started procedures table for the OMVS started procedure by defining a generic profile in the STARTED class.

Known The administrator wants to use the procedure name as the user ID. The group name is STCGRP.

SETROPTS GENERIC(STARTED) has been issued to allow generic profiles to be created in this class. The security administrator wants to issue the command as a RACF TSO command.

Command RDEFINE STARTED OMVS.* STDATA(USER(=MEMBER) GROUP(STCGRP))

Defaults PRIVILEGED(NO) TRACE(NO) TRUSTED(NO) UACC(NONE)

Example 9

Operation User ADM1 wants to define the following:

- A SystemView for the MVS application named APPL1.HOST1.USER1
- TSOR220 application data
- A list of scripts named APPL1SC for the application
- A list of parameters named APPL1P for the application

Known User ADM1 has CLAUTH authority for the SYSMVIEW class.

Command RDEFINE SYSMVIEW APPL1.HOST1.USER1 APPLDATA('TSOR220') SVFMR(SCRIPTNAME(APPL1SC) PARMNAME(APPL1P))

Defaults UACC(NONE)

Example 10

Operation Local realm KRB2000.IBM.COM is being defined with a minimum ticket lifetime of 5 minutes, a default ticket lifetime of 10 hours, a maximum ticket lifetime of 24 hours, and a password of 744275. All of the ticket lifetime values are specified in seconds.

Known The administrator has access to the KERBDFT profile in the REALM class.

Command RDEFINE REALM KERBDFT KERB(KERBNAME(KRB2000.IBM.COM) MINTKTLFE(300) DEFTKTLFE(36000) MAXTKTLFE(86400) PASSWORD(744275))

Defaults CHECKADDRS(NO) ENCRYPT(DES DES3 DESD AES128 AES256)

Example 11

Known The administrator has access to the /.../KERB390.ENDICOTT.IBM.COM/KERBTGT/KER2000.ENDICOTT.IBM.COM profile in the REALM class.

Command RDEFINE REALM /.../KERB390.ENDICOTT.IBM.COM/KERBTGT/KER2000.ENDICOTT.IBM.COM KERB(PASSWORD(12345678))

Defaults CHECKADDRS(NO) ENCRYPT(DES DES3 DESD AES128 AES256)

Example 12

Operation The administrator wants to create a profile (TSOIM13) in the PTKTDATA class with replay protection bypassed.

Known The administrator has the SPECIAL attribute.

Command RDEFINE PTKTDATA TSOIM13 APPLDATA('NO REPLAY PROTECTION')

Defaults None.

Example 13

Operation The administrator is defining the system wide defaults for Enterprise Identity Mapping (EIM) applications. One of the applications uses the default name given to RACF.

Known The EIM domain's distinguished name is ibm-eimDomainName=Pok EIM Domain,o=IBM,c=US. The domain resides in LDAP at http://some.big.host/. The bind distinguished name has authority to retrieve lookup information. The name given to the local RACF registry is RACFSYS2.

Command RDEFINE FACILITY IRR.PROXY.DEFAULTS EIM(DOMAINDN('ibm-eimDomainName=Pok EIM Domain,o=IBM,c=US') OPTIONS(ENABLE) LOCALREGISTRY(RACFSYS2))

Defaults None.
Example 14

Operation The administrator wants to define the SAFDFLT profile in the REALM class using the APPLDATA field to define the RACF realm name.

Known The administrator has the SPECIAL attribute. The realm name racf.winmvs2c is selected by the security administrator to give a name to the set of user ids and other user information held in the security manager database. If Kerberos is in use in the installation, the Kerberos realm name would be expected to be different than the SAFDFLT realm name.

Command RDEFINE REALM SAFDFLT APPLDATA('racf.winmvs2c')

Defaults None.

Example 15

Operation The security administrator with user ID ADMIN1 wants to add a new class to the class descriptor table (CDT) named TSTCLAS8.

Known The administrator has the SPECIAL attribute.

Command RDEFINE CDT TSTCLAS8 UACC(NONE)

CDTINFO(DEFAULTUACC(NONE) FIRST(ALPHA) MAXLENGTH(42) OTHER(ALPHA,NUMERIC,SPECIAL) POSIT(303) RACLIST(REQUIRED) SECLABELSREQURED(YES))

Note The dynamic CDT must be built or refreshed to make this change effective. Use the SETROPTS RACLIST(CDT) or the SETROPTS RACLIST(CDT) REFRESH command.

Defaults AUDIT(FAILURES(READ)) OWNER(ADMIN1) LEVEL(0) CDTINFO(CASE(UPPER) DEFAULTRC(4) GENLIST(DISALLOWED) KEYQUALIFIERS(0) MACPROCESSING(NORMAL) OPERATIONS(NO) ProfilesALLOWED(YES) SIGNAL(NO))

Example 16

Operation The security administrator Rui wants to specify that the identity cache should never store a mapping to a local z/OS user ID when it is provided by an application. The identity cache must always use EIM to find a mapping and it must always reject a store request if it cannot find a mapping.

Known At Rui’s installation, identity mappings in EIM are not changed frequently so the default MAPPINGTIMEOUT value of 3600 seconds (one hour) is acceptable.

Command RDEFINE LDAPBIND IRR.ICTX.DEFAULTS ICTX(USEMAP(NO) DOMAP(YES) MAPREQUIRED(YES))

Defaults MAPPINGTIMEOUT defaults to 3600 seconds.

Example 17

Operation Rui wants to protect a DB2 table owned by ZHAOHUI by defining a general resource called DSN.ZHAOHUI.TABLE.ALTER in the MDSNTB class.

Known Rui’s user ID ADMRUI has the SPECIAL attribute. The installation uses the DB2 RACF access control module (ACM) and the ACM is configured for multiple-subsystem scope.

Command RDEFINE MDSNTB DSN.ZHAOHUI.TABLE.ALTER UACC(NONE)

Defaults OWNER(ADMRUI) LEVEL(0) AUDIT(FAILURES(READ))

Example 18

Operation User SECADM wants to define a custom field to store employee home addresses in the CSDATA segment of her user profiles. The custom field will be named ADDRESS. It will be a character field and will contain a quoted string.

Known The user has the SPECIAL attribute. The new custom field is not effective until the system programmer rebuilds the dynamic parse table using the IRRDPi00 UPDATE command.

Command RDEFINE CFIELD USER.CSDATA.ADDRESS UACC(NONE)

CFDEF(TYPE(CHAR) MAXLENGTH(100) FIRST(ANY) OTHER(ANY) HELP('EMPLOYEE''S HOME ADDRESS. SPECIFY UP TO 100 CHARACTERS.') MIXED(YES) LISTHEAD('HOME ADDRESS = '))

Defaults AUDIT(FAILURES(READ)) OWNER(SECADM) LEVEL(0)
Example 19

Operation User SECADM wants to control the XYZLIB64 program and specify that it must be digitally signed before it can be loaded, that the program should fail to load if its digital signature cannot be verified for any reason, and that logging of signature verification events should occur for only failures. The XYZLIB64 program does not require program-accessed data set checking.

Known The user has the SPECIAL attribute. The XYZLIB64 program is a program object that resides in a partitioned data set extended (PDSE) library named SYS1.XYZ.LOADDLL.

Command

```
RDEFINE PROGRAM XYZLIB64 UACC(READ)
  ADDMEM('SYS1.XYZ.LOADDLL'//NOPADCHK)
  SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))
```

Defaults

```
AUDIT(FAILURES(READ)) OWNER(SECADM) LEVEL(0)
```
RDELETE (Delete general resource profile)

Purpose

Use the RDELETE command to delete RACF resources belonging to classes specified in the class descriptor table.

This command removes the profile for the resource from the RACF database.

To have changes take effect after deleting a generic profile, if the class is not RACLISTed by either the SETROPTS RACLST or RACROUTE REQUEST=LIST,GLOBAL=YES, one of the following steps is required:

- The security administrator issues the SETROPTS command:

  ```
  SETROPTS GENERIC(class-name) REFRESH
  ```

 See the SETROPTS command for authorization requirements.

- The user of the resource logs off and logs on again.

To have changes take effect after deleting a generic profile if the class is RACLISTed, the security administrator issues the following command:

```
SETROPTS RACLST(class-name) REFRESH
```

For more information, refer to z/OS Security Server RACF Security Administrator's Guide.

Issuing options

The following table identifies the eligible options for issuing the RDELETE command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.

Related commands

- To delete a user profile, see “DELUSER (Delete user profile)” on page 202.
- To delete a group profile, see “DELCMD (Delete group profile)” on page 199.
- To delete a data set profile, see “DELDSD (Delete data set profile)” on page 195.
- To obtain a list of general resource profiles, see “SEARCH (Search RACF database)” on page 580.
Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.

To remove RACF protection from a resource in a class specified in the class descriptor table, you must have sufficient authority over the resource, so that one of the following conditions is met:

- You have the SPECIAL attribute.
- The resource profile is within the scope of a group in which you have the group-SPECIAL attribute.
- You are the owner of the resource.
- If the profile is in the FILE or DIRECTORY class, the second qualifier of the profile name is your user ID.
- For a discrete profile, you are on the access list for the resource and you have ALTER authority. (If you have any other level of authority, you cannot use the command for this resource.)
- For a discrete profile, your current connect group (or, if list-of-groups checking is active, any group to which you are connected) is in the access list and has ALTER authority.
- For a discrete profile, the universal access authority for the resource is ALTER.

To specify the AT keyword, you must have READ authority to the DIRECT.node resource in the RRSFDATA class and a user ID association must be established between the specified node.userid pair(s).

To specify the ONLYAT keyword you must have the SPECIAL attribute, the userid specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified node.userid pair(s) if the user IDs are not identical.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the RDELETE command is:

```
[subsystem-prefix][RDELETE | RDEL]
  class-name
  (profile-name ...)  
  [ AT([node].userid ...) | ONLYAT([node].userid ...) ]
  [ NOGENERIC ]
```

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.
Parameters

subsystem-prefix
Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

class-name
Specifies the name of the class to which the resource belongs. Valid class names are those specified in the class descriptor table. For a list of general resource classes defined in the class descriptor table supplied by IBM, see [Appendix B, “Supplied RACF resource classes,” on page 693](#).

Restrictions:
- This operand is required and must be the first operand following RDELETE.
- This command is not intended to be used for profiles in the following classes:
 - DCEUUDS
 - DIGTCERT
 - DIGTRING
 - IDIDMAP
 - NDSLINK
 - NOTELINK
 - TMEADMIN
 - UNIXMAP

(profile-name ...)
Specifies the name of the existing discrete or generic profile RACF is to delete from the specified class. RACF deletes the profile for any resource you name by deleting it from the RACF database. RACF uses the class descriptor table to determine if the class is defined to RACF, the syntax of resource names within the class, and whether the resource is a group.

This operand is required and must be the second operand following RDELETE.

If you specify more than one value for profile-name, you must enclose the list of names in parentheses.

Mixed-case profile names are accepted and preserved when class-name refers to a class defined in the static class descriptor table with CASE=ASIS or in the dynamic class descriptor table with CASE(ASIS).

If you specify the class-name as CACHECLS, profile-name can either be cachename_ddd_mnnnn or cachename.

Profiles in the CACHECLS hold the contents of a cache in profiles each containing 50K pieces of the cache. The profiles are named cachename_001_00001, cachename_001_00002 and so forth, for as many profiles as are needed to hold the contents of the cache, where cachename was the Cache_name given as input on the R_cacheserv callable service. RDELETE command processing for these profiles should only be used to correct an error.
RDELETE

condition, and is expected to be used in response to an IRRL100xI message that was issued in response to invocation of the _r_cacheserv SAF callable service. If for some reason, you want to delete the entire cache contents (perhaps because you do not want the contents used for authorization right after an IPL), you can delete all of the cachename_add_nnnnn profiles as well as the base profile by specifying just the cachename on the RDELETE.

If you specify class-name as a resource grouping class, you cannot specify a generic profile.

Note:
1. If the resource you specify is a tape volume serial number that is a member of a tape volume set, RACF deletes the definitions for all of the volumes in the set.
2. RACF processes each resource you specify independently. If an error occurs while it is processing a resource, RACF issues a message and continues processing with the next resource.
3. You can use RDELETE to remove the profiles for a class defined to RACGLIST. For example, RDELETE RACGLIST TCICSTRN would remove the TCICSTRN base profile and any RACF-created TCICSTRN_nnnnn profiles from the RACGLIST class. If you want to stop using RACGLIST for a particular class, issue the command RDELETE RACGLIST class-name. Do not delete specific RACF-created profiles unless RDELETE RACGLIST class-name was issued and failed to remove the profiles.

AT | ONLYAT
The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.

AT([node].userid ...) Specifies that the command is to be directed to the node specified by node, where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed to the local node.

ONLYAT([node].userid ...) Specifies that the command is to be directed only to the node specified by node where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed only to the local node.

NOGENERIC Specifies that RACF is to delete the specified profile only if it is a discrete profile. If a generic profile exists with the same name, it is not deleted.

Examples

Example 1

Operation User ADM2 wants to remove RACF protection from the terminals protected by the generic profile TERM*.

Known User ADM2 has the SPECIAL attribute. User ADM2 wants to issue the command as a RACF TSO command.

Command RDELETE TERMINAL TERM*

Defaults None.
Example 2

Operation User JHT01 wants to remove RACF protection from the tape volume set VOL001.

Known User JHT01 has the SPECIAL attribute. User JHT01 wants to issue the command as a RACF operator command, and the RACF subsystem prefix is @.

Command @RDELETE TAPEVOL VOL001

Defaults None.

Example 3

Operation User ADM1 wants to remove the generic profile T* from the TIMS class.

Known User ADM1 has the SPECIAL attribute. User ADM1 wants to issue the command as a RACF TSO command.

Command RDELETE TIMS T*

Defaults None.

Example 4

Operation User ADM1 wants to delete the TERMINAL profiles in the RACGLIST class from the RACF database and stop using RACGLIST processing with the TERMINAL class. User ADM1 wants to direct the command to run at the node MVSFL under the authority of user JCARTER and prohibit the command from being automatically directed to other nodes.

Known Users ADM1 and JCARTER at MVSFL have the SPECIAL attribute. Users ADM1 and JCARTER at MVSFL have an already established user ID association. User ADM1 wants to issue the command as a RACF TSO command.

Command RDELETE RACGLIST TERMINAL ONLYAT(MVSFL.JCARTER)

Results The command is only run at node MVSFL and not automatically directed to any other nodes in the RRSF configuration.
REMOVE

REMOVE (Remove user from group)

Purpose

You can use the REMOVE command to remove a user from a group, and to assign a new owner to any group data set profiles the user owns on behalf of that group.

Issuing options

The following table identifies the eligible options for issuing the REMOVE command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.

Related commands

- To add a group profile, see "ADDGROUP (Add group profile)” on page 24.
- To change a group profile, see "ALTGROUP (Alter group profile)” on page 108.
- To connect a user to a group, see "CONNECT (Connect user to group)” on page 187.
- To delete a group profile, see "DELGROUP (Delete group profile)” on page 199.
- To list a group profile, see "LISTGRP (List group profile)” on page 226.
- To display information from a user profile, see "LISTUSER (List user profile)” on page 235.

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see "Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.

To use the REMOVE command, one of the following conditions must be true:

- You have the SPECIAL attribute.
- The group profile is within the scope of a group in which you have the group-SPECIAL attribute.
- You are the owner of the group.
- You have JOIN or CONNECT authority in the group.

To specify the AT keyword, you must have READ authority to the DIRECT.node resource in the RRSFDATA class and a user ID association must be established between the specified node.userid pair(s).
To specify the ONLYAT keyword you must have the SPECIAL attribute, the \textit{userid} specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified \textit{node.userid} pair(s) if the user IDs are not identical.

\textbf{Note:}

1. If you only have ownership of the user's profile, you do not have sufficient authority to remove the user from a group.
2. If a user is deleted from a RACF group as a result of a REMOVE command while the user is logged on, the user must logoff and logon again before that authority to access resources in classes that have been RACLlisterd is revoked. In addition, started tasks have to STOP and START to revoke the authority. This might include started tasks such as JES2 or JES3.

\textbf{Syntax}

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the REMOVE command is:

\begin{verbatim}
[subsystem-prefix][REMOVE | RE]
 (userid ...)
 [AT([node].userid ...) | ONLYAT([node].userid ...)]
 [GROUP(group-name)]
 [OWNER(userid or group-name)]
\end{verbatim}

For information on issuing this command as a RACF TSO command, refer to Chapter 3, "RACF TSO commands," on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, "RACF operator commands," on page 21.

\textbf{Parameters}

\textit{subsystem-prefix}

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

\textit{userid}

Specifies the user you want to remove from the group. If you are removing more than one user from the group, you must enclose the list of user IDs in parentheses.

This value is required and must be the first operand following REMOVE.

\textit{AT | ONLYAT}

The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.
REMOVE

AT([node].userid ...)

Specifies that the command is to be directed to the node specified by node, where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed to the local node.

ONLYAT([node].userid ...)

Specifies that the command is to be directed only to the node specified by node where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed only to the local node.

GROUP(group-name)

Specifies the group from which the user is to be removed. If you omit this operand, the default is your current connect group. The value specified for group-name cannot be the name of user’s default group.

OWNER(userid or group-name)

Specifies a RACF-defined user or group that owns the group data set profiles now owned by the user to be removed.

If you omit this operand when group data set profiles exist that require a new owner, RACF does not remove the user from the group. (Group data set profiles are data set profiles whose names are qualified by the group name or begin with the value supplied by an installation exit.)

The new owner of the group data set profiles must have at least USE authority in the specified group. Do not specify a user who is being removed from the group as the new data set profile owner.

Examples

Example 1

Operation User ELVIS wants to remove users KURT and JIMI from group PAYROLL.

Known User ELVIS has JOIN authority to group PAYROLL.

User ELVIS is currently connected to group PAYROLL.

Users KURT and JIMI are connected to group PAYROLL but do not own any group data set profiles, and group PAYROLL is not their default group.

User ELVIS wants to issue the command as a RACF TSO command.

Command REMOVE (KURT JIMI)

Defaults GROUP(PAYROLL)

Example 2

Operation User WRH0 wants to remove user PDJ6 from group RESEARCH, assigning user DAF0 as the new owner of PDJ6’s group data set profiles.

Known User WRH0 has CONNECT authority to group RESEARCH.

User WRH0 is not logged on to group RESEARCH.

User PDJ6 is connected to group RESEARCH and owns group data set profiles (The default connect group for user PDJ6 is not RESEARCH).

User DAF0 is connected to group RESEARCH with USE authority.

User WRH0 wants to issue the command as a RACF operator command, and the RACF subsystem prefix is @.

Command @REMOVE PDJ6 GROUP(RESEARCH) OWNER(DAF0)

Defaults None.
RESTART (Restart RACF subsystem functions)

Purpose

Use the RESTART command to restart a function in the RACF subsystem address space. The RESTART command can be used after you apply maintenance and to recover from failures.

The RESTART command ends the current subtask and starts a new one. Only one function can be restarted with a single RESTART command, but that function might involve multiple subtasks.

Note: All users or applications that update the RACF database should be completed before issuing the RESTART command.

Issuing options

The following table identifies the eligible options for issuing the RESTART command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF operator command, see Chapter 4, “RACF operator commands,” on page 21.

Related commands

- To stop the RACF subsystem address space, see “STOP (Stop RACF subsystem)” on page 662.
- To restart the RACF subsystem address space after it has been stopped, use the MVS START command.

Authorization required

You might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the RESTART command is:

```
subsystem-prefix RESTART
```
RESTART

For information on issuing this command as a RACF operator command, see “Rules for entering RACF operator commands” on page 22.

Parameters

subsystem-prefix

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Subsystem prefix is a required keyword for RACF operator commands.

COMMAND | CONNECTION | MESSAGE | RA CLINK | RECEIVE | SEND

Specifies the restartable function. The RESTART command signals the specified function to stop and then restart.

Specify only one function per RESTART command. If more than one function is specified, only the first is processed and the rest are ignored.

For a list of the modules associated with each restartable function, see “Restarting a function in the RACF subsystem” in z/OS Security Server RACF System Programmer’s Guide.

NODE(nodename | *)

Restarts the RRSF connection to the specified node only when the connection is in an operative state. When you specify a single node name, the handshaking and communication subtasks for specified node are stopped and restarted. When you specify an asterisk (*), the handshaking and communication subtasks for all nodes with operative connections are stopped and restarted.

The NODE operand applies only to the CONNECTION function. If NODE is specified with any other function, it is ignored.

If NODE is not specified with CONNECTION, all modules associated with the CONNECTION function are stopped and restarted.

SYSNAME(sysname | *)

Restarts the RRSF connection to the specified system in the specified multisystem node only when the connection is in an operative state. When you specify a single system name, the handshaking and communication subtasks for specified system are stopped and restarted. When you specify an asterisk (*), the handshaking and communication subtasks for all systems in the node with operative connections are stopped and restarted.

The SYSNAME operand is positional and must follow NODE.
Examples

Example 1

Operation A maintenance PTF has been applied to module IRRSSC01 and user DNP2
 wants to load a new copy to put the change in effect.
Known Module IRRSSC01 resides in load module IRRSSC00.

 The RACF subsystem prefix is @.

Command @RESTART Command
Defaults None.
Results The command handler is shut down and restarted. A new copy of load
 module IRRSSC00 is loaded including the updated copy of IRRSSC01.

Example 2

Operation Restart the connection to the single-system node NODE1
Known NODE1 is a single-system node. If it were not a single-system node, RACF
 would issue an error message and not execute the command.

Command RESTART CONNECTION NODE (NODE1)
Defaults None.
Results The command restarts the connection to NODE1

Example 3

Operation Restart the connections to all single-system nodes, and to all member systems
 of multisystem nodes

Command RESTART CONNECTION NODE (*)
 or RESTART CONNECTION NODE (*) SYSNAME(*)
Defaults None.
Results The command restarts the connection to all single-system nodes and to all
 member systems of multisystem nodes.

Example 4

Operation Restart the connections to the specific member system SYS1 on the
 multisystem node MULTNODE.

Command RESTART CONNECTION NODE (MULTNODE) SYSNAME(SYS1)
Defaults None.
Results The command restarts the connection to SYS1 on MULTNODE. If
 MULTNODE is a single-system node, RACF issues an error message.

Example 5

Operation Restart the connections to all member systems of the multisystem node
 MULTNODE.

Command RESTART CONNECTION NODE (MULTNODE) SYSNAME(*)
Defaults None.
Results The command restarts the connection to all member systems of MULTNODE.
 If MULTNODE is a single-system node, RACF issues an error message.
RLIST (List general resource profile)

Purpose

Use the RLIST command to display information on resources belonging to classes specified in the class descriptor table. Note that the DATASET, USER, and GROUP classes are not defined in the class descriptor table.

Note: The RLIST command might provide unpredictable results when searching on the DIGTCERT and DIGTRING classes. Due to the lowercase characters in these classes, the profile filter on the RLIST command might not function correctly.

RACF uses the class descriptor table to determine if a class is defined to RACF, the syntax of resource names within the class, and whether the class is a resource grouping class.

Profiles are listed in alphabetical order. Generic profiles are listed in the same order as they are searched for a resource match. (This also applies to the names in the global access table.)

RACF date handling: RACF interprets dates with 2-digit years as follows. (The yy value represents the 2-digit year.)

- If $70 < yy <= 99$, the date is interpreted as 19yy.
- If $00 <= yy <= 70$, the date is interpreted as 20yy.

Issuing options

The following table identifies the eligible options for issuing the RLIST command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.

Related commands

- To list a data set profile, see “LISTDSD (List data set profile)” on page 213.
- To list a user profile, see “LISTUSER (List user profile)” on page 235.
- To list a group profile, see “LISTGRP (List group profile)” on page 226.
- To obtain a list of general resource profiles, see “SEARCH (Search RACF database)” on page 580.

Details listed

This command lists the information in an existing profile for the resource or resource group.
Details that are listed for each profile:

- The resource class.
- The name of the resource.
- One of the following indicators, if applicable, displayed after the resource name:
 - (G) indicates a generic profile.
 - (UNUSABLE) indicates a discrete profile with a profile name containing generic characters that is defined in a general resource class for which SETROPTS GENERIC or GENCMD is enabled. RACF is unable to use this profile for authorization checking. Tip: Use the RDELETE command with the NOGENERIC option to delete this profile.
- The cross-reference class name (that is, the member class name for resource groups or the group name for non-group resources).
- If the resource named in the command (in the resource-name operand) is a resource group, RACF lists member resources.
- The level of the resource.
- The owner of the resource.
- The type of access attempts (as specified by the AUDIT operand on the RDEFINE or RALTER command) that are being logged on the SMF data set.
- The user, if any, to be notified when RACF uses this profile to deny access to the resource.
- The universal access authority for the resource.
- Your highest level of access authority to the resource.
- The installation-defined data (information specified in the DATA operand of the RALTER or RDEFINE commands).
 If your z/OS installation is configured to be a multilevel-secure environment, this information is not listed in your output. * SUPPRESSED * appears under the installation data field. Only those with SPECIAL are allowed to list the field.
- The APPLDATA value, if any.
 If your z/OS installation is configured to be a multilevel-secure environment, this information is not listed in your output. * SUPPRESSED * appears under the installation data field. Only those with SPECIAL are allowed to list the field.
- The domain distinguished name, options and local registry for the EIM segment.
- The type of access attempts (as specified by the GLOBALAUDIT operand on the RALTER command) that RACF logs.
- The status of the WARNING/NOWARNING indicator.
- For resources in the TAPEVOL class:
 - The volumes in a tape volume set,
 - Whether the TAPEVOL profile is automatic or nonautomatic,
 - Whether the volume can hold more than one data set, or
 - Whether the volume contains a TVTOC.

Additional details:

You can request the following details by using the appropriate RLIST operands:

- The security label, the security level and categories.
 For additional information, see the AUTHUSER operand.
- For member resources, RACF lists the names of all resource group members in which the entity is a member.
 For additional information, see the RESGROUP operand.
The number of times the resource was accessed by all users for each of the following access authorities.
- ALTER, CONTROL, UPDATE, READ
For additional information, see the STATISTICS operand. This detail is only meaningful when your installation is gathering resource statistics and the class is not RACLSTed. For a generic profile, RACF replaces any statistics line with NOT APPLICABLE FOR GENERIC PROFILE.

Historical data, such as:
- Date the resource was defined to RACF,
- Date the resource was last referenced (this detail is only meaningful when your installation is gathering resource statistics and the class is not RACLSTed; for a generic profile, RACF replaces any statistics line with NOT APPLICABLE FOR GENERIC PROFILE), or
- Date the resource was last accessed at the update level.
For additional information, see the HISTORY operand.

The standard access list which displays:
- All users and groups authorized to access the resource,
- The level of authority for each user and group, or
- The number of times each user has accessed the resource. (This detail is only meaningful when your installation is gathering resource statistics. This detail is not included in the output for generic profiles.)
For additional information, see the AUTHUSER operand.

The conditional access list which displays the same fields as the standard access list, as well as the following additional fields:
- The class of the resource, or
- The entity name of the resource.
For additional information, see the AUTHUSER operand.

For a tape volume that contains RACF-protected data sets, the following information about each RACF-protected data set on the volume:
- The name used to create the data set,
- The internal RACF name for the data set,
- The volumes on which the data set resides,
- The file sequence number for the data set,
- The date when the data set was created, or
- Whether the data set profile is discrete or generic.
For additional information, see the TVTOC operand.

The contents of segments other than the base segment.
(See the segment operands for details about the listed information.)

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.

You must have a sufficient level of authority for each resource or resource group listed as the result of your request so that one of the following conditions is met:
- You have the SPECIAL attribute.
- The resource profile is within the scope of a group in which you have the group-SPECIAL attribute.
- You have the OPERATIONS attribute.
The resource profile is within the scope of a group in which you have the group-OPERATIONS attribute.

You have the AUDITOR attribute.

The resource profile is within the scope of a group in which you have the group-AUDITOR attribute.

You are the owner of the resource.

If the profile is in the FILE or DIRECTRY class, the second qualifier of the profile name is your user ID.

To list the contents of segments other than the base segment, such as the DLFCDATA segment, you must have the SPECIAL or AUDITOR attribute, or your installation must permit you to do so through field-level access checking.

You are on the access list for the resource and you have at least READ authority. (If your level of authority is NONE, the resource is not listed.) If you specify ALL, RACF lists only information pertinent to your user ID.

Your current connect group (or, if list-of-groups checking is active, any group to which you are connected) is in the access list and has at least READ authority.

The universal access authority of the resource is at least READ.

You have at least read access for the profile name from the GLOBAL ENTRY TABLE (if this table contains an entry for the profile).

You see the type of access attempts, as specified by the GLOBALAUDIT operand, only if you have the AUDITOR attribute or if the resource profile is within the scope of a group in which you have the group-AUDITOR attribute.

To specify the AT keyword, you must have READ authority to the DIRECT.NODE resource in the RRSFDATA class and a user ID association must be established between the specified node.userid pair(s).

To specify the ONLYAT keyword you must have the SPECIAL attribute, the userid specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified node.userid pair(s) if the user IDs are not identical.

Listing resource access lists: When you are requesting to see the access list for a resource with the AUTHUSER operand, your level of authority is checked for each resource. Your level of authority must be such that one of the following conditions is met:

You have the SPECIAL attribute.

The resource profile is within the scope of a group in which you have the group-SPECIAL attribute.

You have the OPERATIONS attribute.

The resource profile is within the scope of a group in which you have the group-OPERATIONS attribute.

You are the owner of the resource.

You have the AUDITOR attribute.

The resource profile is within the scope of a group in which you have the group-AUDITOR attribute.

You have alter access for the profile name from the GLOBAL ENTRY TABLE (if this table contains an entry for the profile).

If the profile is in the FILE or DIRECTRY class, the second qualifier of the profile name is your user ID.
• For a discrete profile, you are on the access list for the resource and you have ALTER authority. (If you have any other level of authority, you cannot use the operand.)
• For a discrete profile, your current connect group (or, if list-of-groups checking is active, any group to which you are connected) is in the access list and has ALTER authority.
• For a discrete profile, the universal access authority of the resource is ALTER.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the RLIST command is:

```
[subsystem-prefix][RLIST | RL]
  class-name
    ([profile-name ...] | *)
    [ ALL ]
    [ AT([node].userid ...) | ONLYAT([node].userid ...) ]
    [ AUTHUSER ]
    [ CDTINFO ]
    [ CFDEF ]
    [ DLFDATA ]
    [ EIM ]
    [ [GENERIC | NOGENERIC] ]
    [ HISTORY ]
    [ ICSF ]
    [ ICTX ]
    [ KERB ]
    [ NORACF ]
    [ NOYOURACC ]
    [ PROXY]
    [ RESGROUP ]
    [ SESSION ]
    [ SIGVER ]
    [ SSIGNON ]
    [ STATISTICS ]
    [ STDATA ]
    [ SVFMR ]
    [ TME ]
    [ TVTOC ]
```

For information on issuing this command as a RACF TSO command, refer to Chapter 3, "RACF TSO commands," on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, "RACF operator commands," on page 21.

Parameters

`subsystem-prefix`

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered
with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

class-name

Specifies the name of the class to which the resource belongs. Valid class names are those specified in the class descriptor table. For a list of general resource classes defined in the class descriptor table supplied by IBM, see [Appendix B, “Supplied RACF resource classes,” on page 693.](#)

This operand is required and must be the first operand following RLIST.

This command is not intended to be used for profiles in the following classes:

- DCEUUlDS
- DIGTCERT
- DIGTNMAP
- DIGTRING
- IDIDMAP
- NDSLINK
- NOTE LINK
- ROLE
- UNIXMAP

(profile-name ...) | *

(profile-name ...)

Specifies the name of an existing discrete or generic profile about which information is to be displayed. The RLIST command can be used to display which profile will be used for a specific resource.

The variable profile-name or an asterisk (*) is required and must be the second operand following RLIST.

If you specify more than one value for profile-name, the list of names must be enclosed in parentheses.

Mixed-case profile names are accepted and preserved when class-name refers to a class defined in the static class descriptor table with CASE=ASIS or in the dynamic class descriptor table with CASE(ASIS).

If the resource specified is a tape volume serial number that is a member of a tape volume set, information on all the volumes in the set are displayed.

RACF processes each resource you specify independently. If an error occurs while processing a resource, RACF issues a message and continues processing with the next resource.

Note: Inactive SECLABEL profiles and profiles that contain inactive security labels may not be listed if SETROPTS SECLBSYSTEM is active because only users with SPECIAL or AUDITOR authority are allowed to view inactive security labels.

* Specifies that you want to display information for all resources defined to the specified class for which you have the proper authority.
On a system with many profiles defined, the use of * may result in a large amount of output that may not be useful to a user issuing the command. It may be more appropriate for the user to browse the output of IRRDBU00 (database unload) or to write a program to process the IRRDBU00 output and produce a report showing only the subset of information that is of interest to the user. The processing of output of RLIST by programs is not supported nor recommended by IBM. If you want a listing of all the profiles for use by a program you should instead have the program process the output from IRRDBU00, RACROUTE REQUEST=EXTRACT, or ICHEINTY.

An asterisk (*) or profile-name is required and must be the second operand following RLIST.

RACF processes each resource independently and displays information only for those resources for which you have sufficient authority.

If you have the AUDITOR attribute, or if the resource profile is within the scope of a group in which you have the group-AUDITOR attribute, RACF displays GLOBALAUDIT information for all resources in the class.

ALL

Specifies that you want all information for the BASE segment of each resource displayed.

The access list is included only if you have sufficient authority to use the AUTHUSER operand. (See "Authorization required" on page 552.) The type of access attempts (as specified by the GLOBALAUDIT operand) that are being logged on the SMF data set is included only if you have the AUDITOR attribute, or the resource profile is within the scope of a group in which you have the group-AUDITOR attribute.

AT | ONLYAT

The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.

AT([node].userid ...)

Specifies that the command is to be directed to the node specified by node, where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed to the local node.

ONLYAT([node].userid ...)

RLIST is not eligible for automatic command direction. If you specify the ONLYAT keyword, the effect is the same as if you specified the AT keyword.

AUTHUSER

Specifies that you want the following information included in the output:

- The user categories authorized to access the resource
- The security level required to access the resource
- The security label required to access the resource
- The standard access list. This includes the following:
 - All users and groups authorized to access the resource
 - The level of authority for each user and group
 - The number of times the user has accessed the resource (This detail is only meaningful when your installation is gathering resource statistics and is not included in the output for generic profiles.)
The conditional access list. This list consists of the same fields as in the standard access list, as well as the following fields:

- The class of the resource through which each user and group in the list can access the target resource of the command. For example, if a user can access the target resource through terminal TERM01, then TERMINAL would be the class listed.
- The entity name of the resource through which each user and group in the list can access the target resource of the command. In the example above, TERM01 would be listed.

You must have sufficient authorization to use the AUTHUSER operand. (See "Authorization required" on page 552.)

CDTINFO
Specifies that CDTINFO segment information should be listed for profiles in the CDT class.

CFDEF
Specifies that CFDEF segment information should be listed for profiles in the CFIELD class. Use this operand to display the custom field names and attributes, such as data type, that your installation has defined.

Contact your security administrator to see how custom fields are used at your installation. For more information about custom fields, see z/OS Security Server RACF Security Administrator’s Guide.

DLFDATA
Lists the contents of the DLFDATA segment for profiles in the DLFCLASS class.

EIM
Specifies that EIM segment information should be listed.

GENERIC | NOGENERIC

GENERIC
Specifies that you want RACF to display information for the generic profile that most closely matches a resource name. If you specify GENERIC, RACF ignores a discrete profile that protects the resource. If asterisk (*) is specified instead of the profile name, all generic profiles are listed.

NOGENERIC
Specifies that you want RACF to display information for the discrete profile that protects a resource. If asterisk (*) is specified instead of the profile name, all discrete profiles are listed.

If neither GENERIC nor NOGENERIC is specified, RACF lists information for the discrete resource name that matches the resource name you specify. If there is no matching discrete profile, RACF lists the generic profile that most closely matches the resource name. If asterisk (*) is specified instead of the profile name, all discrete and generic profiles are listed.

The following list shows examples of using the GENERIC and NOGENERIC operands:

- If you enter the following command, RACF lists all discrete and generic profiles in the DASDVOL class.
 \texttt{RLIST DASDVOL *}
- If you enter the following command, RACF lists information for all the generic profiles in the DASDVOL class.
 \texttt{RLIST DASDVOL * GENERIC}
If you enter the following command, RACF lists all discrete profiles in the JESSPOOL class.

RLIST JESSPOOL * NOGENERIC

If you enter the following command, RACF displays the best-fit generic profile that protects the resource ABC.DEF. RACF ignores discrete profile ABC.DEF if it exists.

RLIST APPCLU ABC.DEF GENERIC

Note: When searching for a generic profile that matches the specified resource, RACF does not examine members that are defined in a grouping class (through the ADDMEM operand of the RDEFINE command). For example, suppose two profiles had been defined by the following RDEFINE commands:

RDEFINE TCICSTRN A*
RDEFINE GCICSTRN xxx ADDMEM(AB*)

The command:

RLIST TCICSTRN ABC

displays profile A* in the TCICSTRN class, but it does not search the GCICSTRN class and therefore does not display any AB* profile of the GCICSTRN class. In addition, the command:

RLIST GCICSTRN ABC

does not find member AB* in the GCICSTRN class because it does not look at the members in a grouping class.

If you want to make use of RLIST to find the generic profile that protects a specific resource, and the resource is in a class that has both a grouping class and a member class, you should define the generic profile as a profile in the member class.

To illustrate the above RDEFINE example where ADDMEM(AB*) had been specified for a grouping class, the following command:

RDEFINE TCICSTRN AB*

allows the RLIST command to display AB* as the generic member in the TCICSTRN class.

HISTORY

Specifies that you want to list the following data:

- The date each profile was defined to RACF
- The date each profile was last referenced (this detail is only meaningful when your installation is gathering resource statistics; for a generic profile and profiles that are RACLISTed, RACF replaces any statistics line with NOT APPLICABLE FOR GENERIC PROFILE)
- The date of last RACROUTE REQUEST=AUTH for UPDATE authority (this detail is only meaningful when your installation is gathering resource statistics; for a generic profile and profiles that are RACLISTed, RACF replaces any statistics line with NOT APPLICABLE FOR GENERIC PROFILE)
- The date of last RACROUTE REQUEST=AUTH for UPDATE authority (this detail is only meaningful when your installation is gathering resource statistics; for a generic profile and profiles that are RACLISTed, RACF replaces any statistics line with NOT APPLICABLE FOR GENERIC PROFILE)

ICSF

Specifies that ICSF segment information should be listed for profiles in the CSFKEYS, GCSFKEYS, XCSFKEY, or GCXSFKKEY class.

ICTX

Specifies that ICTX segment information should be listed.
RLIST

KERB
Specifies that you want to list the following z/OS Integrated Security Services
Network Authentication Service information:

• The local kerberos-realm-name (KERBNAME)
• The encryption value settings (ENCRYPT values or NOENCRYPT)
• The min-ticket-life value for the local realm (MINTKTLFE)
• The def-ticket-life value for the local realm (DEFTKTLFE)
• The max-ticket-life value for the local realm (MAXTKTLFE)
• The current key version (KEY VERSION)

Note: If KEY VERSION is not displayed, there is no z/OS Network
Authentication Service key associated with this realm definition.

• Whether the Kerberos server validates addresses in tickets as part of ticket
validation processing (CHECKADDRS)

NORACF
Specifies that you want to suppress the listing of RACF segment information.
If you specify NORACF, you must include either CDTINFO, DLFDATA, EIM,
KERB, PROXY, SESSION, SSIGNON, STDATA, SVFMR, TME, or a combination
of operands.

If you do not specify NORACF, RACF displays the information in the base
segment of a general resource profile.

The information displayed as a result of using the NORACF operand is
dependent on other operands used in the command. For example, if you use
NORACF with SESSION also specified, only the SESSION information is
displayed.

NOYOURACC
For grouping and member classes, RLIST must do additional processing to
assure that the your access information field is accurate. A SPECIAL user can
use the NOYOURACC operand to bypass this processing, for performance
reasons. The your access field contains n/a in this circumstance.

Note: This operand applies to SPECIAL users only. It has no effect for other
users.

PROXY
Specifies that PROXY segment information should be listed. The following
information will be provided:

• the URL of the LDAP server to be contacted
• the BIND distinguished name
• information regarding the BIND password

The BINDPW password values will not be listed. If a BINDPW password
value is defined for a general resource profile, RLIST will display YES for the
PROXY segment BINDPW attribute. If no BINDPW password value has
been defined, RLIST will display NO for the PROXY segment BINDPW
attribute.

RESGROUP
Requests a list of all resource groups of which the resource specified by the
profile-name operand is a member.

If a profile does not exist for the specified resource, RACF lists the names of all
resource groups of which the resource is a member and to which the command
user is authorized. To be authorized, the command user must meet one of the authorization requirements listed in "Authorization required" on page 552.

If a profile *does* exist for the specified resource and the command user has ALTER authority to the resource, RACF lists the names of all groups of which the resource is a member.

If a profile *does* exist for the specified resource but the command user has less than ALTER authority to the resource, RACF lists the names of all groups of which the resource is a member and to which the command user is authorized.

To be authorized to the resource group, the command user must meet one of the authorization requirements listed in "Authorization required" on page 552.

However, the command issuer must have the authority to list the resource specified on the command in order to list the member groups. If this requirement is met, then the user must be also authorized to the resource group. Otherwise, an error message is issued.

When *profile-name* is the name of a protected resource (such as a terminal or DASD volume) and *class-name* is a member class (such as TERMINAL or DASDVOL), the RESGROUP operand lists the profiles that protect the resource (for example, profiles in the GTERMINL or GDASDVOL class).

If you define a profile and use generic characters such as (*) to add members to the profile, RLIST RESGROUP will not return any of the matching profiles in its output because it does not support generic matches. For example, you have:

```
RDEF GIMS GIMSGRP ADDMEM(ABC*)
```

and you are looking for a specific member, so you enter:

```
RLIST TIMS ABCD RESGROUP
```

The GIMS profile GIMSGRP will not appear in the output.

Note: When considering this example, if you are unable to define the profile ABCD, it might be due to a generic definition somewhere in GIMS.

This operand applies only to member classes for which resource group profiles exist.

SESSION

Specifies that the contents of the SESSION segment are to be listed for profiles in the APPCLU class.

SIGVER

Specifies that the contents of the SIGVER segment are to be listed for profiles in the PROGRAM class.

SSIGNON

Specifies that you want to display the secured signon information.

Note: The secured signon application key value cannot be displayed. However, information is displayed that describes whether the key value is masked or encrypted.

STATISTICS

Specifies that you want to list the statistics for each resource. The list contains the number of times the resource was accessed by users with READ, UPDATE, CONTROL, and ALTER authorities. A separate total is given for each authority level.
Note: This detail is only meaningful when your installation is gathering resource statistics. For a generic profile, RACF replaces any statistics line with NOT APPLICABLE FOR GENERIC PROFILE.

STDATA
Specifies that you want to list the contents of the STDATA segment for profiles in the STARTED class.

SVFMR
Lists the contents of the SVFMR segment for profiles in the SYSMVIEW class.

TME
Specifies that information in the Tivoli Security Management Application is to be listed.

TVTOC
Specifies that you want to see information about the data sets defined in the TVTOC of a TAPEVOL profile. The output displays:
- The name used to create the data set
- The internal RACF name for the data set
- The volumes on which the data set resides
- The file sequence number for the data set
- The date when the data set was created
- Whether the data set profile is discrete or generic.

Examples

Example 1

Operation User RV2 wants to list all information about the tape volume VOL001.

Known User RV2 is the owner of tape volume VOL001.

- User RV2 has the AUDITOR attribute.
- User RV2 wants to issue the command as a RACF TSO command.

Command RLIST TAPEVOL VOL001 ALL

Defaults None.

Output See Figure 59 on page 564

Example 2

Operation User ADM1 wants to list information about the generic profile T* in the TIMS class.

Known User ADM1 has the SPECIAL and AUDITOR attributes.

- User ADM1 wants to issue the command as a RACF TSO command.

Command RLIST TIMS T*

Defaults None.

Output See Figure 60 on page 565

Example 3

Operation User IBMUSER wants to list information about the profile TERM1 in the TERMINAL class. TERM1 is a member of four GTERMINL class profiles: GTERM1, GTERM2, GTERM3, and GTERM4. TERM1 has a UACC of NONE.

Known User IBMUSER has the SPECIAL and AUDITOR attributes. User IBMUSER wants to issue the command as a RACF TSO command.

Command RLIST TERMINAL TERM1 RESGROUP

Defaults None.

Output See Figure 61 on page 565
Example 4

Operation The security administrator wants to display secured signon key information for profile name TSOR001 in the PTKTDATA class to be certain that the application key is masked instead of encrypted.

Known ELVIS1 is the user ID of the security administrator and has the SPECIAL attribute. The security administrator wants to issue the command as a RACF TSO command.

Command `RLIST PTKTDATA TSOR001 SSIGNON`

Defaults None.

Output See Figure 62 on page 566.

Example 5

Operation The security administrator wants to display secured signon key information for profile name TSOR004 in the PTKTDATA class and to be certain that the application key is encrypted instead of masked.

Known NONNEL is the user ID of the security administrator and has the SPECIAL attribute. The security administrator wants to issue the command as a RACF operator command, and the RACF subsystem prefix is @.

Command `@RLIST PTKTDATA TSOR004 SSIGNON`

Defaults None.

Output See Figure 63 on page 566.

Example 6

Operation The security administrator wants to display the contents of the STDATA segments for profiles in the STARTED class with the generic profile name (VTAM®.*).

Known SYSUSER is the user ID of the security administrator and has the SPECIAL attribute. The security administrator wants to issue the command as a RACF TSO command.

Command `RLIST STARTED VTAM.* STDATA NORACF`

Defaults None.

Output See Figure 64 on page 566.

Example 7

Operation The security administrator wants to list the contents of the KERBDFLT profile in the REALM class.

Known The administrator has access to the KERBDFLT profile in the REALM class.

Command `RLIST REALM KERBDFLT KERB NORACF`

Defaults None.

Output See Figure 65 on page 566.

Example 8

Operation The administrator wants to list the contents of a profile (TSOIM13) in the PTKTDATA class. This particular PassTicket profile indicates that replay protection is to be bypassed.

Known The administrator has access to the PTKTDATA class.

Command `RLIST PTKTDATA TSOIM13`

Defaults None.

Output See Figure 66 on page 567.

Example 9

Operation The administrator wants to list the contents of a profile (IRR.PROXY.DEFAULTS) in the FACILITY class and the contents of the EIM segment. This particular PROXY profile indicates that a BINDPW has been defined.

Known The administrator has access to the FACILITY class.

Command `RLIST FACILITY IRR.PROXY.DEFAULTS EIM PROXY NORACF`

Defaults None.

Output See Figure 67 on page 567.

Example 10

Operation The security administrator wants to list class descriptor table (CDT) information of the TSTCLASS8 in the CDT class.

Known The administrator has the SPECIAL attribute.

Command `RLIST CDT TSTCLASS8 NORACF CDTINFO`

Defaults None.

Output See Figure 68 on page 568.
Example 11

Operation
The security administrator Rui wants to list the contents of the
IRR.ICTX.DEFAULTS profile in the LDAPBIND class and the contents of the
ICTX segment.

Known
Rui has READ access to the LDAPBIND class.

Command
RLIST LDAPBIND IRR.ICTX.DEFAULTS ICTX NORACF

Defaults
None.

Output
See Figure 69 on page 568.

Example 12

Operation
Rui wants to list the access list for the DSN.ZHAOHUI.TABLE.ALTER
resource in the MDSNTB class.

Known
Rui has the SPECIAL attribute.

Command
RLIST MDSNTB DSN.ZHAOHUI.TABLE.ALTER AUTHUSER

Defaults
None.

Output
See Figure 70 on page 569.

Example 13

Operation
The security administrator uses the custom field named EMPSER for
employee serial numbers. She wants to list the attributes of this custom field
for user profiles.

Known
The security administrator has the SPECIAL attribute.

Command
RLIST CFIELD USER.CSDATA.EMPSER CFDEF NORACF

Defaults
None.

Output
See Figure 71 on page 570.

Example 14

Operation
The security administrator wants to list the settings related to digital signature
verification for the program called XYZLIB64.

Known
The security administrator has the SPECIAL attribute.

Command
RLIST PROGRAM XYZLIB64 SIGVER NORACF

Defaults
None.

Output
See Figure 72 on page 570.

Example 15

Operation
The security administrator wants to list ICSF segment information for all
profiles in the XCSFKEY class.

Known
The security administrator has the SPECIAL attribute.

Command
RLIST XCSFKEY * ICSF NORACF

Defaults
None.

Output
See Figure 73 on page 570.
RLIST

- RLIST TAPEVOL VOL001 ALL
- CLASS NAME
 - TAPEVOL VOL001
 - LEVEL OWNER UNIVERAL ACCESS YOUR ACCESS WARNING
 - 00 RV2 READ ALTER NO
 - INSTALLATION DATA
 - -------
 - APPLICATION DATA
 - --------
 - SECLEVEL
 - ----------
 - NO SECLEVEL
 - CATEGORIES
 - ------------
 - NO CATEGORIES
 - SECLABEL
 - ----------
 - NO SECLABEL
 - AUDITING
 - -------
 - SUCCESS(READ),FAILURES(UPDATE)
 - GLOBALAUDIT
 - ------------
 - AUTOMATIC SINGLE DATA SET
 - --------
 - NO NO
 - NOTIFY

 - NO USER TO BE NOTIFIED
 - CREATION DATE LAST REFERENCE DATE LAST CHANGE DATE
 - (DAY) (YEAR) (DAY) (YEAR) (DAY) (YEAR)
 - 146 82 146 82 146 82
 - ALTER COUNT CONTROL COUNT UPDATE COUNT READ COUNT
 - ---------- -------------- ---------- ----------
 - 000000 000000 000005 000000
 - USER ACCESS COUNT
 - ----
 - RV2 ALTER 000000
 - ESH2S READ 000000
 - ID ACCESS ACCESS COUNT CLASS ENTITY NAME
 - --
 - NO ENTRIES IN CONDITIONAL ACCESS LIST
 - NO TVTOC INFORMATION AVAILABLE

Figure 59. Example 1: Output for the RLIST command
<table>
<thead>
<tr>
<th>RLIST TIMS T*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS NAME</td>
</tr>
<tr>
<td>TIMS (G)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GROUP CLASS NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIMS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESOURCE GROUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL owner</th>
<th>Universal Access</th>
<th>Your Access</th>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 IBMUSER</td>
<td>NONE</td>
<td>ALTER</td>
<td>NO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INSTALLATION DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPLICATION DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUDITING</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GGLOBALAUDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUCCESS(UPDATE),FAILURES(READ)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTIFY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO USER TO BE NOTIFIED</td>
</tr>
</tbody>
</table>

Figure 60. Example 2: Output for the RLIST command

<table>
<thead>
<tr>
<th>RLIST TERM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS NAME</td>
</tr>
<tr>
<td>TERMINAL TERM1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GROUP CLASS NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTERM1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESOURCE GROUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTERM1 GTERM2 GTERM3 GTERM4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL owner</th>
<th>Universal Access</th>
<th>Your Access</th>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 IBMUSER</td>
<td>NONE</td>
<td>ALTER</td>
<td>NO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INSTALLATION DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPLICATION DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUDITING</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAILURES(READ)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIMEZONE LOGON ALLOWED (DAYS) (TIME)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>NOTIFY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO USER TO BE NOTIFIED</td>
</tr>
</tbody>
</table>

Figure 61. Example 3: Output for the RLIST command with RESGROUP option

Chapter 5. RACF command syntax 565
Figure 62. Example 4: Output for RLIST command with masked application key

Figure 63. Example 5: Output for RLIST command with encrypted application key

Figure 64. Example 6: Output for RLIST command for the STDATA segment

Figure 65. Example 7: Output for RLIST command for the KERB segment
<table>
<thead>
<tr>
<th>CLASS</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTKTDATA</td>
<td>TSOIM13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>OWNER</th>
<th>UNIVERSAL ACCESS</th>
<th>YOUR ACCESS</th>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>IBMUSER</td>
<td>NONE</td>
<td>NONE</td>
<td>NO</td>
</tr>
</tbody>
</table>

Installation Data

- **Application Data**
- **No Replay Protection**

Auditing

- **Failures (Read)**
- **Notify**
- **No user to be notified**

Figure 66. Example 8: Output for RLIST command in the PTKTDATA class

```
RLIST FACILITY IRR.PROXY.DEFAULTS EIM NORACF
CLASS NAME
-------- ----
FACILITY IRR.PROXY.DEFAULTS

EIM INFORMATION
--------------
EIM OPTIONS= ENABLE
LOCALREGISTRY= SYS1SAF
KERBREGISTRY= MYCOMPANYREALM
X509REGISTRY= MYCOMPANYCERTS
```

Figure 67. Example 9: Output for RLIST command for the EIM segment
RLIST

```plaintext
RLIST CDT TSTCLAS8 NORACF CDTINFO
CLASS   NAME
-----   -----  
CDT    TSTCLAS8

CDTINFO INFORMATION
----------  ----------
CASE = UPPER
DEFAULTRC = 004
DEFAULTUACC = NONE
FIRST = ALPHA
GENERIC= DISALLOWED
GENLIST = DISALLOWED
GROUP =
KEYQUALIFIERS = 0000000000
MACPROCESSING = NORMAL
MAXLENGTH = 042
MAXLENX = NONE
MEMBER =
OPERATIONS = YES
OTHER = ALPHA NUMERIC SPECIAL
POSIT = 0000000303
PROFILESALLOWED = YES
RACLIST = REQUIRED
SECLABELSREQUIRED = YES
SIGNAL = NO
```

Figure 68. Example 10: Output for RLIST command for the CDTINFO segment

```plaintext
RLIST LDAPBIND IRR.ICTX.DEFAULTS ICTX NORACF
CLASS   NAME
-----   -----  
LDAPBIND IRR.ICTX.DEFAULTS

ICTX INFORMATION
----------------
USEMAP = NO
DOMAP = YES
MAPREQUIRED = YES
MAPPINGTIMEOUT = 01800
```

Figure 69. Example 11: Output for RLIST of the ICTX segment
Figure 70. Example 12: Output for RLIST of the AUTHUSER segment
RLIST

Figure 71. Example 13: Output for RLIST of the CFDEF segment

```plaintext
RLIST CFIELD USER.CSDATA.EMPSER CFDEF NORACF
CLASS    NAME
-------- ----
CFIELD   USER.CSDATA.EMPSER

CFDEF INFORMATION
-----------------
TYPE = NUM
MAXLENGTH = 00000008
MAXVALUE = 0099999999
MINVALUE = 0000100000
FIRST = NUMERIC
OTHER = NUMERIC
MIXED = NO
HELP = EMPLOYEE SERIAL NUMBER, 6-8 DIGITS
LISTHEAD = EMPLOYEE SERIAL =
```

Figure 72. Example 14: Output for RLIST of the SIGVER segment

```plaintext
RLIST PROGRAM XYZLIB64 SIGVER NORACF
CLASS    NAME
-------- ----
PROGRAM  XYZLIB64

SIGVER INFORMATION
------------------
SIGREQUIRED = YES
FAILLOAD = ANYBAD
SIGAUDIT = ANYBAD
```

Figure 73. Example 15: Output for RLIST of the ICSF segment

```plaintext
RLIST XCSFKEY * ICSF NORACF
CLASS    NAME
-------- ----
XCSFKEY  ATEST

ICSF INFORMATION
----------------
SYMEXPORTABLE = BYLIST
SYMEXPORTCERTS = DENICE/CertForDenice KEN/Cert for Ken
ASYMUSAGE = HANDSHAKE SECUREEXPORT
SYMCPACFWRAP = NO

CLASS    NAME
-------- ----
XCSFKEY  BTEST

ICSF INFORMATION
----------------
SYMEXPORTABLE = BYLIST
SYMEXPORTCERTS = *
SYMEXPORTKEYS = PKDS.LABEL1 PKDS.LABEL2
ASYMUSAGE = HANDSHAKE SECUREEXPORT
SYMCPACFWRAP = YES
```
RVARY (Change status of RACF database)

Purpose

Use the RVARY command to:

- Deactivate and reactivate the RACF function.
- Switch from using a specific primary data set to using its corresponding backup data set, perhaps because of a failure related to the primary data set.
- Deactivate or reactivate primary or backup RACF data sets. (Deactivating a specific primary data set causes all RACF requests for access to that data set to fail. Deactivating a specific backup data set causes RACF to stop duplicating information on that data set.)
- Deactivate protection for any resources belonging to classes defined in the class descriptor table while RACF is inactive.
- Select the mode of operation when RACF is enabled for sysplex communication.

While RACF is deactivated, utilities can be run to diagnose and repair logical errors in the RACF database. RACF installation exits can provide special handling for requests to access RACF-protected resources (for example, by prompting the operator to allow or deny access). If the RACF data set is itself RACF-protected, RACF failsoft processing, which can include installation exit routine processing, controls access to the RACF database. When you deactivate RACF using the RVARY command, only users defined in TSO SYS1.UADS can still log on to TSO, and RACF does not validate those user IDs. When RACF is inactive, failsoft processing takes effect.

Note: Failsoft processing occurs only when all primary RACF data sets are inactive. If you have multiple RACF data sets and only one is inactive, you are likely to experience ABENDs. See z/OS Security Server RACF System Programmer's Guide for more information on failsoft processing and using RVARY.

RACF logs each use of the RVARY command provided that the system has been IPLed with RACF active and the use of RVARY changes the status of RACF. For example, if you issue RVARY to deactivate a RACF database that is already inactive, you do not change the status of RACF. Therefore, RACF does not log this particular use of RVARY. When RACF is enabled for sysplex communication, logging of the RVARY commands occurs only on the system from which the command originated.

When you deactivate a RACF data set (using RVARY INACTIVE) or switch to a backup RACF data set (using RVARY SWITCH), RACF automatically deallocates that data set. To reactivate a data set, use the RVARY ACTIVE command. The RVARY SWITCH does not activate an inactive data set. RACF automatically reallocates that data set. This feature allows you to restore the data set from a copy on tape or recatalog the data set on another volume without having to re-IPL your system.

If you deactivate the primary RACF data set, and uncatalog it, and replace it with an alternate data set, the alternate data set must be cataloged and have the same name as the original data set before you can activate it. When you deactivate (and deallocate) a RACF data set, you can move the data set from one direct access storage device to another.

Before recataloging a data set, you must first deactivate the data set by issuing either the RVARY INACTIVE or the RVARY SWITCH command.
Using RVARY when RACF is enabled for sysplex communication: In addition to the RVARY DATASHARE and RVARY NODATASHARE commands, which are valid only when RACF is enabled for sysplex communication, the following RVARY commands are propagated when RACF is enabled for sysplex communication:

- RVARY ACTIVE
- RVARY INACTIVE
- RVARY SWITCH

When issued from any member of the RACF data sharing group, these commands are propagated in a controlled, synchronized manner to each of the other members in the group.

Note:
1. For RVARY INACTIVE(NOCLASSACT) and RVARY INACTIVE(NOTAPE) commands, only the RVARY INACTIVE portion of the command is propagated.
2. The MVS operator commands ROUTE *ALL and ROUTE system-group-name are allowed only with RVARY LIST.
3. RACF does not propagate commands if the system is operating in failsoft mode unless failsoft mode was entered because an RVARY INACTIVE command was issued.
4. RVARY INACTIVE DATASET, SWITCH, DATASHARE, and NODATASHARE require that RVARY quiesce RACF database I/O activity before proceeding. There can be no database I/O activity in progress while the status of the database is changed or the database could get corrupted. Consequently, RVARY must wait for previously scheduled database I/O to complete before proceeding. If there are problems with the DASD device the data set is on and the I/O is hung, those problems have to be cleared up before the command can complete. See the RVARY command documentation in the “Recovery Procedures” chapter of z/OS Security Server RACF System Programmer’s Guide for more information.

Issuing options

The following table identifies the eligible options for issuing the RVARY command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

Authorization required

No special authority is needed to issue the RVARY command. However, the operator (at the operator console or security console) must approve a change in RACF status or the RACF data sets - or a change in the operational mode if RACF is enabled for sysplex communication - before RACF allows the command to complete.
If the RVARY command changes RACF or database status (ACTIVE/INACTIVE), RACF issues an informational message and the operator is required to enter the password defined by RVARYPW STATUS(status-pw) to authorize the change. If the RVARY command switches the RACF data sets (SWITCH) or changes the RACF operating mode (DATASHARE/NODATASHARE), RACF issues an informational message and the operator is required to enter the password defined by RVARYPW SWITCH(switch-pw). When RVARY is issued as a RACF operator command from a console with master authority, the default password YES is also accepted for RVARY ACTIVE, RVARY NODATASHARE or RVARY SWITCH commands.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the RVARY command is:

```
[subsystem-prefix]RVARY
   [ ACTIVE
      | INACTIVE
         | INACTIVE NOCLASSACT(class-namelist | *)
         | INACTIVE(NOTAPE)
         | DATASHARE
         | NODATASHARE
         | SWITCH ]
   [ DATASET(data-set-name... | *) ]
   [ LIST | NOLIST ]
```

For information on issuing this command as a RACF TSO command, refer to Chapter 3, "RACF TSO commands," on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, "RACF operator commands," on page 21.

Parameters

`subsystem-prefix`

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

`ACTIVE`

Specifies that the RACF function for, and access to, the primary RACF database is to be reactivated.

If you want to reactivate a particular primary data set or if you want to activate or reactivate a backup data set, then you must specify the DATASET operand with the appropriate data set name.

When you reactivate any RACF data set it is automatically reallocated.
When RACF is enabled for sysplex communication and RVARY ACTIVE is issued from one member of a sysplex data sharing group, RACF attempts to connect every peer system that is in data sharing mode or in read-only mode to the coupling facility structures associated with each active database. If any connection attempt fails, the affected member enters read-only mode, although the data set will remain allocated and active. The system originating the command might be in either data sharing mode or in read-only mode.

INACTIVE NOCLASSACT(class-namelist | *) (NOTAPE)]

INACTIVE

Specifies that the RACF function for, and access to, the RACF database is to be deactivated.

To deactivate a particular primary data set or a backup data set, specify the DATASET operand with the appropriate data set name. If the DATASET operand is not specified, the default is all primary RACF data sets.

If your installation did not specify a backup database in the data set name table (ICHRDSNT), and you need to deactivate the primary database, you must use the RVARY INACTIVE command. If you have only a single data set, your system enters failsoft processing. If you have multiple data sets and only some are active, you are likely to experience ABENDs.

When you deactivate any RACF data set, it is automatically deallocated.

If RACF is enabled for sysplex communication, RACF disconnect from any coupling-facility-related structures that are in use by members of a RACF sysplex data sharing group running in data sharing mode or in read-only mode.

If the data set specified in the RVARY INACTIVE command is associated with a coupling facility structure failure, or with a connection failure and there is no other failed structure or connection, the system can be put into data sharing mode as a result of RVARY INACTIVE.

INACTIVE NOCLASSACT(class-namelist | *)

Specifies those classes for which RACF protection is not in effect while RACF is inactive. The variable class-namelist can contain any class defined in the class descriptor table, while * indicates that the operand applies to all classes defined in class descriptor table. This option takes effect immediately and is valid for the current IPL or until RVARY ACTIVE is issued. If you just want to deactivate the class(es) without deactivating the RACF database, you should use the command SETROPTS NOCLASSACT (class-namelist | *) because INACTIVE NOCLASSACT also deactivates the database. NOCLASSACT is not propagated when issued from a member of a sysplex data sharing group.

INACTIVE(NOTAPE)

Specifies that tape volume protection for volumes with IBM standard labels, ANSI labels, and nonstandard labels is no longer in effect while RACF is inactive. This option takes effect immediately and is valid for the current IPL or until RVARY ACTIVE is issued. If you just want to deactivate the tape volume without deactivating the RACF database, you should use the command SETROPTS NOCLASSACT(tapevol) because INACTIVE(NOTAPE) also deactivates the database. NOTAPE is not propagated when issued from a member of a sysplex data sharing group.
RVARY

DATASHARE

Specifies to begin data sharing mode. This operand applies only when RACF is enabled for sysplex communication.

If the mode was non-data sharing, RACF discontinues using the hardware RESERVE/RELEASE protocol and uses GRS to serialize access to the RACF database. Systems not already in data sharing mode attempts to connect to all RACF structures. For information on failure scenarios, see [z/OS Security Server RACF System Programmer’s Guide](#).

If RACF is enabled for sysplex communication, RACF propagates RVARY DATASHARE commands to the other systems in the data sharing group. Members in non-data sharing mode attempt to connect to all structures. If successful, the mode becomes data sharing. Otherwise, it becomes read-only mode.

Note: The current state of the RACF system (that is, ACTIVE or FAILSOFT) from which the command is issued has no effect on either the function or the propagation of the RVARY DATASHARE commands or vice versa, unless the system is in failsoft due to an error during IPL.

NODATASHARE

Suspends data sharing mode and enables an installation to update the RACF database even if the system is experiencing coupling facility failure or unavailability. This operand applies only when RACF is enabled for sysplex communication.

When sharing data among many systems, RACF relies on the coupling facility and an alternative serialization technique to provide higher performance. In this environment, RVARY NODATASHARE might result in degraded performance, because RACF discontinues using the coupling facility cache structures and serialization associated with RACF sysplex data sharing and employs the hardware RESERVE/RELEASE protocol. It should be used only to allow critical updates to the database.

If RACF is enabled for sysplex communication, RACF propagates RVARY NODATASHARE commands to the other systems in the data sharing group. The effect of the RVARY DATASHARE command on group members depends on the member’s previous database access mode. If the member’s previous database access mode was data sharing mode or read-only mode, the member disconnects from all structures and enters non-data sharing mode. If the members previous database access mode was non-data sharing mode, no action is taken.

Note: The current state of the RACF system (that is, ACTIVE or FAILSOFT) from which the command is issued has no effect on either the function or the propagation of the RVARY NODATASHARE commands or vice versa, unless the system is in failsoft due to an error during IPL.

SWITCH

Specifies that all processing is to switch from the primary RACF data sets (identified by the DATASET operand) to the corresponding backup data sets. When the switch occurs, the primary data sets are deactivated and deallocated.

If you specify DATASET(*) or omit DATASET, the command applies to all primary data sets. If you specify the name of a backup data set on the DATASET operand, RACF issues an error message and ignores the name. In order for the switch to take place, the corresponding backup data sets must be active.
When you issue RVARY SWITCH, RACF associates a set of buffers with the new primary database (the original backup database) and disassociates the buffers from the original primary database (the new backup database). The coupling facility structures associated with the primary and backup RACF databases are not switched, so IRRXC00_Pnnn structures always correspond to primary database and IRRXC00_Bnnn structures always correspond to backup database.

To return to the original primary database, you must first activate the backup data sets (the former primary data set) using an RVARY ACTIVE command. An RVARY SWITCH then returns the primary data sets to their original position.

If RACF is enabled for sysplex communication, RACF allocates buffers for backup data sets. The size of the buffer for the backup database is 20 percent of the primary database buffer size. When you issue RVARY SWITCH, RACF associates the larger buffer with the new primary database (the original backup database).

Note: If the data set specified in the SWITCH command is associated with a coupling facility structure failure or with a connection failure, and there is no other failed structure or connection, the system might be put into data sharing mode as a result of the RVARY SWITCH.

DATASET(data-set-name ... | *)

Specifies a list of one or more RACF data sets to be switched, reactivated, or deactivated, depending on the SWITCH, ACTIVE, or INACTIVE operands. If you specify DATASET(*) or omit DATASET, the command applies to all primary data sets.

DATASET can be specified with ACTIVE, INACTIVE, or SWITCH; it is not applicable with DATASHARE, NODATASHARE or LIST.

Note: As an exception to normal TSO parsing rules, RACF continues to recognize previously acceptable abbreviations (such as D, DA, DAT, DATA, DATAS) as aliases for DATASET. The shortest acceptable alias for DATASHARE is DATASH.

Do not enclose data set names in single quotation marks.

LIST | NOLIST

If you omit LIST and NOLIST, the default value is LIST.

LIST

Specifies that status information is to be listed for all RACF data sets. If you specify ACTIVE, INACTIVE, SWITCH, DATASHARE, or NODATASHARE, the status displayed is the status after the requested changes have been made if the changes were approved by the operator. If RACF is enabled for sysplex communication, the LIST output includes a line indicating the current operating mode. RVARY LIST does not require operator approval.

The volume information contains an *NA if the device on which the RACF data set resides has been dynamically reconfigured from the system. It contains *DEALLOC if the data set has been inactivated and deallocated.

If at least one RACF database volume is not shared, the SHR column is added to the volume information, and the unshared volume is marked N.
The N indicates that the RACF data set resides on a device that is not shared, or it resided on a nonshared device prior to inactivation and deallocation.

NOLIST
Specifies that status information for RACF data sets is not to be listed.

Examples

Example 1
Operation User wants to see if the backup data sets are activated.
Command RVARY LIST
Output See Figure 74 on page 578
Defaults None.

Example 2
Operation Operator wants to temporarily deactivate and deallocate RACF to make repairs to a particular primary RACF data set.
Known The RACF subsystem prefix is #.
Command #RVARY INACTIVE,DATASET(RACF.PRIM1)
Output See Figure 75 on page 578
Defaults LIST

Example 3
Operation Operator wants to activate the backup data set (RACF.BACK1).
Known The backup data set RACF.BACK1 is inactive, and the RACF subsystem prefix is #.
Command #RVARY ACTIVE,DATASET(RACF.BACK1)
Output See Figure 76 on page 578
Defaults LIST

Example 4
Operation Operator wants to switch from using the primary data set to using the backup data set.
Known The appropriate backup data set is active, and the RACF subsystem prefix is #.
Command #RVARY SWITCH,DATASET(RACF.PRIM1)
Output See Figure 77 on page 578
Defaults LIST

Example 5
Operation User wants to change the operating mode to non-data sharing mode for all members of the IRRXCF00 group, in order to allow an update of the RACF data set.
Known RACF is enabled for sysplex communication but RACF cache structures had not been defined in the coupling facility policy at the time the systems in the group were IPLed. All members of the group are currently in read-only mode.
Command RVARY NODATASHARE
Output See Figure 78 on page 579
Defaults LIST

Example 6
Operation User wants to change the operating mode from non-data sharing mode to data sharing mode in order to make use of coupling facility performance enhancements.
Known RACF is enabled for sysplex communication. The user IPLed the system in non-data sharing mode to make use of RVARY and SETROPTS propagation, and is now ready to make use of the coupling facility.
Command RVARY DATASHARE
Output See Figure 79 on page 579
Defaults LIST
RVARY

ICH150I3I RACF DATABASE STATUS:

<table>
<thead>
<tr>
<th>ACTIVE</th>
<th>USE</th>
<th>NUM</th>
<th>VOLUME</th>
<th>DATASET</th>
<th>SHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>PRIM</td>
<td>1</td>
<td>D94RF1</td>
<td>RACF.PRIM.R17.P1</td>
<td></td>
</tr>
<tr>
<td>YES</td>
<td>BACK</td>
<td>1</td>
<td>D94RF2</td>
<td>RACF.BACK.R17.B1</td>
<td>N</td>
</tr>
<tr>
<td>YES</td>
<td>PRIM</td>
<td>2</td>
<td>D94RF1</td>
<td>RACF.PRIM.R17.P2</td>
<td></td>
</tr>
<tr>
<td>YES</td>
<td>BACK</td>
<td>2</td>
<td>D94RF2</td>
<td>RACF.BACK.R17.B2</td>
<td>N</td>
</tr>
</tbody>
</table>

Figure 74. Example 1: Output for the RVARY LIST command

ICH150I3I RACF DATABASE STATUS:

<table>
<thead>
<tr>
<th>ACTIVE</th>
<th>USE</th>
<th>NUM</th>
<th>VOLUME</th>
<th>DATASET</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>PRIM</td>
<td>1</td>
<td>*DEALLOC</td>
<td>RACF.PRIM1</td>
</tr>
<tr>
<td>NO</td>
<td>BACK</td>
<td>1</td>
<td>D94RF1</td>
<td>RACF.BACK1</td>
</tr>
<tr>
<td>YES</td>
<td>PRIM</td>
<td>2</td>
<td>D94RF1</td>
<td>RACF.PRIM2</td>
</tr>
<tr>
<td>NO</td>
<td>BACK</td>
<td>2</td>
<td>D94RF1</td>
<td>RACF.BACK2</td>
</tr>
<tr>
<td>YES</td>
<td>PRIM</td>
<td>3</td>
<td>D94RF1</td>
<td>RACF.PRIM3</td>
</tr>
<tr>
<td>NO</td>
<td>BACK</td>
<td>3</td>
<td>D94RF1</td>
<td>RACF.BACK3</td>
</tr>
</tbody>
</table>

Figure 75. Example 2: Output following deactivation and deallocation of RACF.PRIM1

ICH150I3I RACF DATABASE STATUS:

<table>
<thead>
<tr>
<th>ACTIVE</th>
<th>USE</th>
<th>NUM</th>
<th>VOLUME</th>
<th>DATASET</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>PRIM</td>
<td>1</td>
<td>*DEALLOC</td>
<td>RACF.PRIM1</td>
</tr>
<tr>
<td>YES</td>
<td>BACK</td>
<td>1</td>
<td>D94RF1</td>
<td>RACF.BACK1</td>
</tr>
<tr>
<td>YES</td>
<td>PRIM</td>
<td>2</td>
<td>D94RF1</td>
<td>RACF.PRIM2</td>
</tr>
<tr>
<td>NO</td>
<td>BACK</td>
<td>2</td>
<td>D94RF1</td>
<td>RACF.BACK2</td>
</tr>
<tr>
<td>YES</td>
<td>PRIM</td>
<td>3</td>
<td>D94RF1</td>
<td>RACF.PRIM3</td>
</tr>
<tr>
<td>NO</td>
<td>BACK</td>
<td>3</td>
<td>D94RF1</td>
<td>RACF.BACK3</td>
</tr>
</tbody>
</table>

Figure 76. Example 3: Output following the activation of RACF.BACK1

ICH150I3I RACF DATABASE STATUS:

<table>
<thead>
<tr>
<th>ACTIVE</th>
<th>USE</th>
<th>NUM</th>
<th>VOLUME</th>
<th>DATASET</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>BACK</td>
<td>1</td>
<td>*DEALLOC</td>
<td>RACF.PRIM1</td>
</tr>
<tr>
<td>YES</td>
<td>PRIM</td>
<td>2</td>
<td>D94RF1</td>
<td>RACF.PRIM2</td>
</tr>
<tr>
<td>NO</td>
<td>BACK</td>
<td>2</td>
<td>D94RF1</td>
<td>RACF.BACK2</td>
</tr>
<tr>
<td>YES</td>
<td>PRIM</td>
<td>3</td>
<td>D94RF1</td>
<td>RACF.PRIM3</td>
</tr>
<tr>
<td>NO</td>
<td>BACK</td>
<td>3</td>
<td>D94RF1</td>
<td>RACF.BACK3</td>
</tr>
</tbody>
</table>

Figure 77. Example 4: Output following the RVARY SWITCH,DATASET(RACF.PRIM1) command
ICH15019I Initiating propagation of RVARY command to members of RACF data sharing group IRRXCF00
ICH15013I RACF DATABASE STATUS:
ACTIVE USE NUM VOLUME DATASET
------ --- --- ------ -------
YES PRIM 1 D94RF1 RACF.BACK1
NO BACK 1 *DEALLOC RACF.PRIM1
YES PRIM 2 D94RF1 RACF.PRIM2
NO BACK 2 D94RF1 RACF.BACK2
YES PRIM 3 D94RF1 RACF.PRIM3
NO BACK 3 D94RF1 RACF.BACK3
MEMBER SYS1 IS SYSPLEX COMMUNICATIONS ENABLED & IN NON-DATA SHARING MODE.
ICH15020 RVARY command has finished processing.

Figure 78. Example 5: Output following the RVARY NODATASHARE command

ICH15019I Initiating propagation of RVARY command to members of RACF data sharing group IRRXCF00
ICH15013I RACF DATABASE STATUS:
ACTIVE USE NUM VOLUME DATASET
------ --- --- ------ -------
YES PRIM 1 D94RF1 RACF.BACK1
NO BACK 1 *DEALLOC RACF.PRIM1
YES PRIM 2 D94RF1 RACF.PRIM2
NO BACK 2 D94RF1 RACF.BACK2
YES PRIM 3 D94RF1 RACF.PRIM3
NO BACK 3 D94RF1 RACF.BACK3
MEMBER SYS1 IS SYSPLEX COMMUNICATIONS ENABLED & IN DATA SHARING MODE.
ICH15020 RVARY command has finished processing.

Figure 79. Example 6: Output following the RVARY DATASHARE command
SEARCH

SEARCH (Search RACF database)

Purpose

Use the SEARCH command to obtain a list of RACF profiles, users, and groups. You can request one or more of the following:

- Profile names that contain a specific character string.
- Profiles for resources that have not been referenced for more than a specific number of days.
- Profiles that RACF recognizes as model profiles.
- Data set and general resource profiles that contain a level equal to or greater than the level you specify.
- User and resource profiles that contain a security label that matches the security label you specify.
- User and resource profiles that contain a security level that matches the security level that you specify.
- User and resource profiles that contain an access category that matches the access category that you specify.
- User profiles that contain an OMVS UID equal to the UID you specify.
- Group profiles that contain an OMVS GID equal to the GID you specify.
- Profiles for tape volumes that contain only data sets with an expiration date that matches the criteria you specify.
- Profiles for data sets that reside on specific volumes (or VSAM data sets that are cataloged in catalogs on specific volumes).
- Profiles for tape data sets, non-VSAM DASD data sets, or VSAM data sets.

You can display the selected profile names at your terminal.

You can also format the selected profile names with specific character strings into a series of commands or messages and retain them in a CLIST data set.

One of the following indicators might be displayed after the resource name in a profile listing:

- (G) indicates a generic profile.
- (UNUSABLE) indicates a discrete profile with a profile name containing generic characters that is defined in a general resource class for which SETROPTS GENERIC or GENCMD is enabled. RACF is unable to use this profile for authorization checking. **Tip:** Use the RDELETE command with the NOGENERIC option to delete this profile.

Restriction: When searching profiles in the IDIDMAP class, you cannot use the FILTER or MASK option to limit the results of the search. This is because IDIDMAP profile names are stored in UTF-8 format and are translated to EBCDIC for use with the SEARCH command.

RACF date handling: RACF interprets dates with 2-digit years as follows. (The yy value represents the 2-digit year.)

- If 70 < yy <= 99, the date is interpreted as 19yy.
- If 00 <= yy <= 70, the date is interpreted as 20yy.
Issuing options

The following table identifies the eligible options for issuing the SEARCH command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes. (See rule.)</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Rule: The SEARCH command is not eligible for command direction when the CLIST keyword is specified.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.

Related commands
- To obtain information on general resource profiles, see "RLIST (List general resource profile)” on page 550.
- To display a data set profile, see "LISTDSD (List data set profile)” on page 213.
- To display a user profile, see "LISTUSER (List user profile)” on page 235.
- To display a group profile, see "LISTGRP (List group profile)” on page 226.

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.

You must have a sufficient level of authority for each profile selected as the result of your request, such that one of the following conditions is met:

- You have the SPECIAL attribute,
- You have the system-AUDITOR attribute,
- The profile is within the scope of a group in which you have either the group-SPECIAL or group-AUDITOR attribute, or

If none of the above is true, one of the following must be true:

- If the profile is for a data set, the high-level qualifier of the data set name (or the qualifier supplied by a command installation exit) is your user ID.
- If the profile is in the FILE or DIRECTRY class, the second qualifier of the profile name is your user ID.
- You are on the access list for the profile and you have at least READ authority.
- Your current connect group (or, if list-of-groups checking is active, any group to which you are connected) is on the access list and has at least READ authority.
- You have the OPERATIONS attribute, or the profile is within the scope of a group in which you have the group-OPERATIONS attribute, and the class is
The universal access authority is at least READ (or GLOBAL when listing discrete profiles).

Note: If the SECLABEL class is active, your current security label must dominate the security label of the general resource profile or data set profile (unless the high-level qualifier of the data set profile matches your user ID).

In order to use the USER operand, one of the following must be true:
- You have the SPECIAL or system-AUDITOR attribute.
- You are the owner of the specified user profile.
- You enter your own user ID on the USER operand.
- You have the group-SPECIAL or group-AUDITOR attribute in a group that owns the user profile.

In addition to one of the other four conditions, RACF also checks your security level and categories against those in the specified user profile.

To specify the AT keyword, you must have READ authority to the DIRECT.node resource in the RRSFDATA class and a user ID association must be established between the specified node.userid pair(s).

To specify the ONLYAT keyword you must have the SPECIAL attribute, the userid specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified node.userid pair(s) if the user IDs are not identical.

Note that it is the authority of the user ID specified on the USER operand that is used to determine if SEARCH displays the profile name.

No authorization is required to the user or group profiles that are listed when the UID or GID keyword is specified.

Inactive SECLABEL profiles and profiles that contain inactive security labels may not be listed if SETROPTS SECLBYSYSTEM is active because only users with SPECIAL or AUDITOR authority are allowed to view inactive security labels.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the SEARCH command is:

```
[subsystem-prefix][SEARCH | SR]
  [ AGE(number-of-days) ]
  [ [ALL | GENERIC | NOGENERIC | MODEL | TAPE | VSAM | NONVSAM] ]
  [ AT([node].userid ...) | ONLYAT([node].userid ...) ]
  [ CATEGORY([category-name] ]
   | EXPIRES(number-of-days)
   | LEVEL(level-number)
   | SECLABEL([seclabel-name] ]
   | SECLEVEL([seclevel-name] ]
   | WARNING ]
  [ CLASS( [DATASET | class-name ] ) ]
```
For information on issuing this command as a RACF TSO command, refer to

For information on issuing this command as a RACF operator command, refer to
Chapter 4, “RACF operator commands,” on page 21.

Parameters

subsystem-prefix

Specifies that the RACF subsystem is the processing environment of the
cmdmand. The subsystem prefix can be either the installation-defined prefix
for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF
subsystem name followed by a blank. If the command prefix was registered
with CPF, you can use the MVS command D OPDATA to display it or you can
contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF
operator command. The subsystem prefix is required when issuing RACF
operator commands.

AGE(number-of-days)

Specifies the aging factor to be used as part of the search criteria.

Note: This operand works only for discrete profiles and requires that
STATISTICS is enabled system-wide.

Only resources that have not been referenced within the specified number of
days are selected, unless you specify CLASS(GROUP). In this case, the
SEARCH command uses the date on which the group was defined to
determine the age.

You can specify up to five digits for number-of-days.

ALL | GENERIC | NOGENERIC | MODEL | TAPE | VSAM | NONVSAM

ALL

Specifies that RACF is to select all data set profiles (tape, VSAM, and
non-VSAM DASD) including both generic and discrete profiles. RACF
ignores this operand for classes other than DATASET. ALL is the default if
you omit VSAM, NONVSAM, TAPE, GENERIC, NOGENERIC, MODEL,
and ALL.

GENERIC

Specifies that only generic profiles are to be selected. If neither GENERIC
nor NOGENERIC is specified, both profile types are selected. RACF
ignores this operand unless generic profile command processing is enabled.

RACF ignores this operand unless generic profile command processing is enabled.
SEARCH

NOGENERIC
 Specifies that no generic profiles (that is, only discrete profiles) are to be selected. If neither GENERIC nor NOGENERIC is specified, both profile types are selected.
 RACF ignores this operand unless generic profile command processing is enabled.

MODEL
 Specifies that only data set profiles having the MODEL attribute are to be selected. RACF ignores this operand for classes other than DATASET.

TAPE
 Specifies that only tape data sets are to be selected. RACF ignores this operand for classes other than DATASET.

VSAM
 Specifies that only VSAM data sets are to be selected. RACF ignores this operand for classes other than DATASET.

NONVSAM
 Specifies that only non-VSAM data sets are to be selected. RACF ignores this operand for classes other than DATASET.

AT | ONLYAT
 The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.

AT([node].userid ...)
 Specifies that the command is to be directed to the node specified by node, where it runs under the authority of the user specified by userid in the RACF subsystem address space.
 If node is not specified, the command is directed to the local node.

 Note: The SEARCH command is not eligible for command direction when the CLIST keyword is specified. Do not specify the AT and CLIST keywords together on a SEARCH command.

ONLYAT([node].userid ...)
 SEARCH is not eligible for automatic command direction. If you specify the ONLYAT keyword, the effect is the same as if you specified the AT keyword.

CATEGORY | EXPIRES | LEVEL | SECLEVEL | SECLABEL | WARNING

CATEGORY[(category-name)]
 Specifies that RACF is to select only profiles with an access category matching the category name that you specify, where category-name is an installation-defined name that is a member of the CATEGORY profile in the SECDATA class. If you specify CATEGORY and omit category-name, RACF selects only profiles that contain undefined access category names (names that were once known to RACF but that are no longer valid).
 RACF ignores this operand when CLASS(GROUP) is specified.

EXPIRES(number-of-days)
 Specifies that RACF is to select only tape volumes on which all of the data sets either have expired or will expire within the number of days that you specify. The variable number-of-days is a number of 1 - 5 digits in length in the range of 0 - 65533. For data sets that never expire, use 99999. RACF ignores this operand for classes other than TAPEVOL.
LEVEL(level-number)
Specifies that RACF is to select only profiles with an installation-defined level that equals the level number you specify. You can specify a value for level of 0 - 99.

RACF ignores this operand for classes other than DATASET or classes defined in the RACF class descriptor table.

SECLABEL[(seclabel-name)]
Specifies that RACF is to select only profiles with a security label name that matches the value you specify for seclabel.

SECLEVEL[(seclevel-name)]
Specifies that RACF is to select only profiles with a security level name that matches seclevel-name, where seclevel-name is an installation-defined name that is a member of the SECLEVEL profile in the SECDATA class. If you specify SECLEVEL and omit seclevel-name, RACF selects only profiles that contain undefined security level names (names that were once known to RACF but that are no longer valid).

RACF ignores this operand when you specify CLASS(GROUP).

WARNING
Specifies that only resources with the WARNING indicator are to be selected.
RACF ignores this operand when you specify CLASS as USER or GROUP.

CLASS(DATASET | class-name)
Specifies the name of the class of profiles to be searched. The valid resource classes are DATASET, USER, GROUP, and those specified in the class descriptor table. For a list of general resource classes defined in the class descriptor table supplied by IBM, see Appendix B, “Supplied RACF resource classes,” on page 693.

If you omit this operand, the default value is DATASET.

To search all RACF-defined user profiles, you must have either the SPECIAL or AUDITOR attribute.

SEARCH CLASS(USER) can be issued to obtain information about the irrcerta and irrsitec user IDs, which are the user IDs used by RACF to anchor digital certificates.

When searching with the CLASS(GROUP) option, groups are listed based upon the connect authority of the user, not READ or higher access to the profile. If CLASS(TAPEVOL) is specified, RACF processes all volumes that meet the search criteria independently, even if the volumes belong to a tape volume set.

CLIST[("string-1" [" string-2"])]
Specifies that the selected profile names are to be retained in a CLIST data set. One record is put into the data set for each selected profile name.

Profile names containing ampersands (&) appear in the CLIST data set with each occurrence of an ampersand (&) doubled (&&). When the CLIST is executed, double ampersands (&&) prevent the CLIST from performing symbolic substitution when encountering a variable. The CLIST removes only the first ampersand, leaving the second ampersand intact.

"string-1" [" string-2"]
Specifies strings of alphanumeric characters that are put into the CLIST records along with the selected profile names. Each string must be
enclosed in single quotation marks. In this way, you can build a set of commands that are similar except for the profile name.

Mixed-case strings are always accepted and preserved for the CLIST operand. If string-1 is specified, the resulting output CLIST will contain a CONTROL ASIS statement.

The format of the text portion of the CLIST record is as follows:

- `string-1'data-set name'string-2`
- `string-1volume-serial-numberstring-2`
- `string-1terminal-namestring-2`

Guideline: No blank is inserted after `string-1` or before `string-2`. To ensure that the commands execute correctly, use a blank character as the last character in `string-1` and the first character in `string-2`. For example, specify:

```
CLIST('DELDSD ' ' SET')
```

rather than:

```
CLIST('DELDSD 'SET')
```

An 8-position sequence number is placed on the front of the text.

If both strings are missing, the CLIST record contains only the profile name. If you want a string of data to appear only after the resource name, specify `string-1` as a double- quotation mark (`"`).

The DASD data set name for the CLIST data set is generated in the format:

```
'prefix.EXEC.RACF.CLIST`
```

where `prefix` is the default data set name prefix in your TSO profile. If you do not have a prefix specified in your TSO profile, (PROFILE NOPREFIX), the user ID from the SEARCH command issuer's ACEE is used as the qualifying prefix.

If this data set is partitioned rather than sequential, the CLIST records are placed in member TEMPNAME of the data set. In either case, you can execute the CLIST after SEARCH has finished by issuing the TSO/E command:

```
EXEC 'prefix.EXEC.RACF.CLIST'
```

If a CLIST data set is found through the catalog and is a sequential data set, the records it contains are replaced with the new records. If the CLIST data set is a partitioned data set, however, member TEMPNAME is created to hold the new records, or is replaced if the member already exists.

If the CLIST data set does not already exist, it is created and cataloged. If the CLIST data set created is a partitioned data set, member TEMPNAME is created.

The CLIST data set must have variable length records and a maximum logical record size of 255. This includes a 4-byte length field at the front of the record. The records are numbered in sequence by 10.

Note: The SEARCH command is not eligible for command direction when the CLIST keyword is specified. Do not specify the AT and CLIST keywords together on a SEARCH command.

FILTER(*filter-string*)

(Also see the **MASK** operand.)
Specifies the string of alphanumeric characters used to search the RACF database. The filter string defines the range of profile names you want to select from the RACF database. For a tape or DASD data set name, the filter string length must not exceed 44 characters. For a general resource class, the filter string length must not exceed the length of the profile name specified in the class descriptor table.

Mixed-case strings are accepted and preserved when CLASS refers to a class defined in the static class descriptor table with CASE=ASIS or in the dynamic class descriptor table with CASE(ASIS).

When you issue the SEARCH command with the FILTER operand, RACF lists profile names from the RACF database matching the search criteria specified in the filter string. Note that RACF lists only those profile names that you are authorized to see.

The following generic characters have special meaning when used as part of the filter string:

% You can use the percent sign to represent any one character in the profile name, including a generic character. For example, if you specify DASD%% as a filter string, it can represent profile names such as DASD01, DASD2A, and DASD%5. If you specify %%%% as a filter string, it can represent profile names DASD1, DASD2, DASD%, TAPE%, MY%%, TAPE*, and %%%*.

* You can use a single asterisk to represent zero or more characters in a qualifier, including generic characters. For example, AB*.CD can represent data set profile names such as AB.CD, ABEF.CD, and ABX.CD. ABC.D* can represent data set profile names such as ABC.DEFG, ABC.D%%, and ABC.D*%. If you specify a single asterisk as the only character in a qualifier, it represents the entire qualifier. For example, ABC.* represents data set profile names such as ABC.D, ABC.DEF, ABC.%%, and ABC.DE.

** For general resource and data set profile names, you can use a double asterisk to represent zero or more qualifiers in the profile name. For example, AB.**.CD represents data set profile names such as AB.CD, AB.DE.EF.CD, and AB.XYZ.CD. You cannot specify other characters with ** within a qualifier. (For example, you can specify FILTER(USER1.**), but not FILTER(USER1.A**). You can also specify ** as the only characters in the filter-string to represent any entire profile name.

Tip: Use FILTER for an alternative to MASK | NOMASK as a method for searching the RACF database. FILTER offers more flexibility than MASK. For example, when you use FILTER, you can generalize the character string you specify to match multiple qualifiers or multiple characters within a profile name. You can also specify a character string to match a single character regardless of its value or search for a character string anywhere in a profile name.

Restrictions:

- The SEARCH command might provide unpredictable results when searching on the DIGTCERT or DIGTRING classes. Because these classes contains names with mixed-case characters, the profile filter on the SEARCH command might not function correctly.
- You cannot use a generic character (*, **, or %) in the high-level qualifier when you define a generic profile for a data set. However, you can use a generic character in the high-level qualifier of a data set name when specifying a filter-string with the FILTER operand.
The FILTER and MASK | NOMASK operands are mutually exclusive; you cannot specify FILTER with either MASK or NOMASK on the same SEARCH command.

When searching profiles in the IDIDMAP class, you cannot use FILTER to limit the results of the search. This is because IDIDMAP profile names are stored in UTF-8 format and are translated to EBCDIC for use with the SEARCH command.

GID (group-identifier)
Specifies that RACF is to display all group profiles which contain the specified group-identifier for the GID in the OMVS segment. GID is ignored unless CLASS(GROUP) is specified. When GID is specified, all other keywords (except CLASS) are ignored.

LIST | NOLIST
LIST
Specifies that the selected data set names, volume serial numbers, or terminal names are to be displayed at your terminal. LIST is the default value when you omit both LIST and NOLIST.

NOLIST
Specifies that the selected data set names, volume serial numbers, or terminal names are not to be displayed at your terminal. You can use this operand only when you specify the CLIST operand. If you use NOLIST without CLIST, the command fails.

MASK | NOMASK
MASK(char-1 | * [char-2])
(Also see the FILTER operand.)
Specifies the strings of alphanumeric characters used to search the RACF database. This data defines the range of profile names selected. The two character strings together must not exceed 44 characters for a tape or DASD data set name, or, for general resource classes, the length specified in the class descriptor table.

char-1
Specifies the starting characters of names of profiles to be searched. The string can be any length up to the maximum allowable length of the resource name. All profiles that start with char-1 in their resource names are selected.

If an asterisk (*) is specified for char-1, it specifies that profiles of the search criteria are to be selected:

• For DATASET class, your user ID is used as the mask for the profiles to be selected.

• For other classes, all profiles of the specified class are selected.

char-2
Specifies a second string of characters to be included in the search for profiles. All profiles whose names start with char-1 and contain char-2 anywhere beyond char-1 are selected. This limits the list to a subset of the resource names identified with char-1.

If an asterisk (*) is specified instead of char-1, all profiles that contain char-2 anywhere in their resource names are selected.

If you omit both the MASK and NOMASK operands, this is the same as specifying MASK(*): for the DATASET class, your user ID is used as the
mask for profiles to be selected; for other classes, all profiles of the class are selected. (Note also that for classes other than DATASET, omitting both operands is the same as NOMASK.)

Mixed-case strings are accepted and preserved when CLASS refers to a class defined in the static class descriptor table with CASE=ASIS or in the dynamic class descriptor table with CASE(ASIS).

Restriction: When searching profiles in the IDIDMAP class, you cannot use MASK to limit the results of the search. This is because IDIDMAP profile names are stored in UTF-8 format and are translated to EBCDIC for use with the SEARCH command.

NOMASK

Specifies that RACF is to select all profiles (to which you are authorized) in the specified class.

Note: The MASK | NOMASK and FILTER operands are mutually exclusive. You cannot specify MASK or NOMASK with FILTER on the same SEARCH command.

UID(user-identifier)

Specifies that RACF is to display all user profiles which contain the specified user-identifier for the UID in the OMVS segment. UID is ignored unless CLASS(USER) is specified. When UID is specified, all other keywords (except CLASS) are ignored.

USER(userid)

Specifies that RACF is to list the profiles that the specified user has access to (READ authority or higher, or owner) for the class you specify on the CLASS operand. RACF lists only those profiles that the specified owner is allowed to see.

If you issue:

SEARCH USER(JONES) CLASS(ACCTNUM)

RACF lists all TSO account numbers that user ID JONES is allowed to use.

If you issue:

SEARCH USER(JONES) NOMASK

RACF lists profiles in the DATASET class that JONES has access to.

If you issue:

SEARCH USER(JONES) CLASS(GROUP)

RACF lists all groups that user ID JONES owns or, in which JONES has JOIN or CONNECT authority or the group-SPECIAL attribute.

Note:

1. If you omit the CLASS operand, the default class is DATASET. For more information, see the description of the CLASS operand.
2. You should not specify a user ID that has been revoked. If you need to display information about a user whose user ID is revoked, perform the following steps:
 a. Change the password for the user ID.
 b. Resume the user ID.
 c. Issue the SEARCH command to display the desired information.
d. Revoke the user ID.

3. You can only specify one user ID at a time on the USER operand. If you
need to display information about all users, first create a CLIST by issuing
the following command:

```
SEARCH CLASS(USER) CLIST('SEARCH USER(' ') CLASS(class-name)'
```

After you create a CLIST, issue:

```
EXEC 'prefix.EXEC.RACF.CLIST'
```

to display the desired information. (Note that `prefix` is the default data set
name prefix in your TSO profile.) For more information, see the description
of the CLIST operand.

VOLUME

Specifies that you want RACF to display volume information for each tape or
DASD data set that meets the search criteria specified by the MASK or FILTER
operand.

RACF ignores this operand if you specify GENERIC.

For non-VSAM data sets, the volume serial number displayed is the location of
the data set. For VSAM data sets, the volume serial number displayed is the
location of the catalog entry for the data set. For tape data sets, the volume
serial number displayed is the location of the TVTOC entry for the data set.

This operand is valid only for CLASS(DATASET). RACF ignores it for all other
class values.

VOLUME(volume-serial ...)

Specifies the volumes to be searched; the volume serial numbers become part
of the search criteria. Non-VSAM DASD data sets are selected if they reside on
the specified volumes. VSAM data sets are selected if the catalog entries for the
data sets reside on the specified volumes. Tape data sets are selected if the
TVTOC entries for the data set reside on the specified volumes.

RACF ignores this operand if you specify GENERIC.

If the selected data set names are displayed at your terminal, the volume
information is included with each data set name.

This operand is valid only for CLASS(DATASET). RACF ignores it for all other
class values.

Examples

Example 1

Operation User CD0 wants to list all of her RACF data set profiles.

Known User CD0 is RACF-defined. User CD0 wants to issue the command as a RACF
TSO command.

Command SEARCH

Defaults MASK(CD0) CLASS(DATASET) LIST ALL

Results A list of all profiles in the DATASET class beginning with CD0.
Example 2

Operation
User IA0 wants to remove the RACF profiles for all DATA-type data sets for the group RESEARCH that have not been referenced for 90 days. The user wants a CLIST data set to be created with DELDSD commands for each profile satisfying the search criteria. A list is not desired.

Known
User IA0 is connected to group RESEARCH (and is the owner of all profiles in group RESEARCH) with the group-SPECIAL attribute. User IA0 wants to issue the command as a RACF TSO command.

Command
SEARCH FILTER(RESEARCH.DATA) AGE(90) CLIST('DELDSD ') NOLIST
or
SEARCH MASK(RESEARCH.DATA) AGE(90) CLIST('DELDSD ') NOLIST

Defaults
CLASS(DATASET) ALL

Results
A CLIST data set with the name IA0.EXEC.RACF.CLIST is built, and the records in it are in the format:

DELDSD 'data-set-name'

Example 3

Operation
User ADMIN wants to obtain a list of all data set profiles, both discrete and generic, that have the word DATA as the second-level qualifier.

Known
User ADMIN has the SPECIAL attribute. User ADMIN wants to issue the command as a RACF operator command, and the RACF subsystem prefix is @.

Command
@SEARCH FILTER(*.DATA.**)

Defaults
CLASS(DATASET) LIST ALL

Results
A list of all profiles in the DATASET class with the word DATA as the second-level qualifier. For example, the list might include data sets with names such as RESEARCH.DATA, TEST.DATA, USER.DATA.WEEK1, or GROUP.DATA.TEST.ONE.

Example 4

Operation
User ADM1 wants to obtain a list of all data set profiles, both discrete and generic, having a qualifier (any level) that begins with the word TEST and contains only one additional character (such as TEST1, TEST2, or TESTA).

Known
User ADM1 has the SPECIAL attribute. User ADM1 wants to issue the command as a RACF TSO command.

Command
SEARCH FILTER(**.TEST%.**)

Defaults
CLASS(DATASET) LIST ALL

Results
A list of all profiles in the DATASET class having a qualifier of any level that begins with the word TEST and contains only one additional character. For example, the list might include data sets with names such as RESEARCH.TEST1, TEST2.DATA, MY.TEST4.DATA, MY.TEST%.*, USER.DATA.TEST5, USER.DATA.TEST%.*.*, or GROUP.DATA.TESTC.FUN.

Example 5

Operation
User ADMIN wants to find and revoke all user IDs of users who have not accessed the system in the last 90 days. For this to work, the INITSTATS option (specified on the SETROPTS command) must be in effect.

Known
User ADMIN has the SPECIAL attribute. User ADMIN wants to issue the command as a RACF TSO command.

Command
SEARCH CLASS(USER) AGE(90) CLIST('ALTUSER '' REVOKE')

Defaults
Process all user ID entries.

Results
A CLIST data set with the name ADMIN.EXEC.RACF.CLIST listing the user ID for each user that has not accessed the system within 90 days, with records in the following format:

ALTUSER userid REVOKE

Example 6

Operation
User ADM1 wants to get a list of all generic profiles for group SALES.

Known
User ADM1 has the SPECIAL attribute. User ADM1 wants to issue the command as a RACF TSO command.

Command
SEARCH MASK(SALES.*)

Defaults
CLASS(DATASET) LIST ALL

Results
A list of all profiles in the DATASET class beginning with SALES.*. (Because the string specified contains an asterisk, this list consists only of generic profiles.)
Example 7

Operation User ADM1 wants to get a list of all data set profiles that include a security level of CONFIDENTIAL. User ADM1 wants to direct the command to run at the local node under the authority of user HICKS.

Known User HICKS has the SPECIAL attribute. The CONFIDENTIAL security level has been defined to RACF. User ADM1 wants to issue the command as a RACF TSO command. Users ADM1 and HICKS have an already established user ID association.

Command SEARCH CLASS(DATASET) SECLEVEL(CONFIDENTIAL) AT(.HICKS)

Defaults LIST ALL

Command direction defaults to the local node.

Results A list of all profiles in the DATASET class with a security level of CONFIDENTIAL.
Purpose

Use the SET command to:

- List information related to RRSF on the local node
- Specify the name of a member of the RACF parameter library to be processed by RACF
- Set tracing on or off for specified RACF subsystem facilities
- Specify and enable options for automatic direction
- Improve performance for generic profiles by specifying options for generic anchors.

After an IPL, all SET command settings are reset to their default values. Once the RACF subsystem starts, reissue the SET command to specify your desired settings.

Between IPLs, if you stop and restart the RACF subsystem address space, the settings associated with only the TRACE and GENERICANCHOR operands remain in effect. All other settings are reset to their default values.

You might find it useful to fill out the “RRSF node configuration worksheet” in the z/OS Security Server RACF System Programmer’s Guide to help you determine the information you need to issue certain options of the SET command.

Issuing options

The following table identifies the eligible options for issuing the SET command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF operator command, see Chapter 4, “RACF operator commands,” on page 21.

Related commands

To define an RRSF node, see "TARGET (Manage RRSF nodes)” on page 664.

Authorization required

You might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see "Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands” on page 9. The complete syntax of the SET command is:

```
subsystem-prefix SET
```
For information on issuing this command as a RACF operator command, see "Rules for entering RACF operator commands" on page 22.

Parameters

subsystem-prefix

Specifies that the RACF subsystem is the processing environment of the
command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

You must specify the subsystem prefix when issuing the SET command.

AUTOAPPL | NOAUTOAPPL

AUTOAPPL

Specifies that automatic direction of application updates is to be activated. Profiles in the RRSFDATA class control which application updates get automatically directed to which remote nodes. See *z/OS Security Server RACF Security Administrator’s Guide* for more information on using the RRSFDATA class to control automatic direction of application updates and for planning information that is necessary before using it.

The operands on the AUTOAPPL keyword specify who gets the result and output from automatically directed application updates.

NOAUTOAPPL

Specifies that automatic direction of application updates is to be deactivated. This option prevents application update requests from being directed to remote nodes.

The initial value is NOAUTOAPPL.

When SET NOAUTOAPPL is issued, the settings of OUTPUT and NOTIFY are saved. Subsequently, if a SET AUTOAPPL command is issued with no other operands, those settings are restored.

AUTODIRECT | NOAUTODIRECT

AUTODIRECT

Specifies that automatic command direction is to be activated. Profiles in the RRSFDATA class control which commands and password synchronization requests get automatically directed to which remote nodes. See *z/OS Security Server RACF Security Administrator’s Guide* for more information on using the RRSFDATA class to control automatic direction and for planning information that is necessary before using automatic command direction.

The operands on the AUTODIRECT keyword specify who gets the results and output from automatically directed commands.

When SET AUTODIRECT is issued, the settings of OUTPUT and NOTIFY are saved. Subsequently, if a SET AUTODIRECT command is issued with no other operands, those settings are restored.

If you want to issue the SET AUTODIRECT command to activate both the NOTIFY and OUTPUT settings, both NOTIFY and OUTPUT must be specified on the same command for both to be in effect. If specified on two separate commands, the settings on the first invocation are lost when the second is issued. For example, if you issue SET AUTODIRECT OUTPUT and then enter SET AUTODIRECT NOTIFY, the OUTPUT setting is lost when the second command is processed. Note that AUTODIRECT NOTIFY and OUTPUT settings are independent of the AUTOAPPL, AUTOPWD, and PWSYNC settings. See the following examples for more information.
When the OUTPUT, NOOUTPUT, NOTIFY, or NONOTIFY keyword is specified, the previous values of all of these keywords is overwritten. For example, if the previous setting was:

```
OUTPUT(FAIL(NODEA.ANDREW)) NOTIFY(FAIL(NODEA.ANDREW))
```

and you wanted to also have the command issuer receive FAIL output and command results, you must use:

```
OUTPUT(FAIL(NODEA.ANDREW &RACUID)) NOTIFY(FAIL(NODEA.ANDREW &RACUID))
```

If you just specified:

```
OUTPUT(FAIL(&RACUID))
```

then NODEA.ANDREW would be removed from OUTPUT and NODEA.ANDREW would lose his NOTIFY(FAIL) setting and the value would return to NONOTIFY. Note, however, that these settings for AUTOAPPL, AUTODIRECT, AUTOPWD, and PWSYNC are independent of each other. Continuing the previous example, consider the subsequent settings for SET AUTOPWD:

```
OUTPUT(FAIL(NODEA.ANDREW)) NOTIFY(FAIL(NODEA.ANDREW))
```

This resets the table for AUTOPWD, but leaves the previously specified AUTODIRECT table with its &RACUID intact. AUTODIRECT, AUTOPWD, and PWSYNC are all independent in this way, with regard to the OUTPUT and NOTIFY settings and also about the request's processing.

NOTIFY(notify-level(list-of-notify-users))

Specifies that the user is to be notified (through TSO SEND command) of the results of this RRSF request. The information sent indicates whether the command was successful or unsuccessful, but does not include other details about the request's processing.

ALWAYS

Specifies that results or output from all requests of this RRSF function are to be returned to specified users. This option should be used if the users are interested in the results of every request. Output includes informational, warning, and error messages.

WARN

Specifies that, in the case of AUTODIRECT, results or output from automatically directed commands are to be returned to the specified users only when the return code from the command is 4 or greater. In the case of AUTOAPPL, AUTOPWD, and PWSYNC, WARN is equivalent to FAIL.

FAIL

Specifies that, in the case of AUTODIRECT, results or output from automatically directed commands are to be returned to the specified users only when the return code from the command is 8 or greater. For AUTOAPPL, AUTOPWD, and PWSYNC, results or output from the request are to be returned to the specified users whenever the return code from the request is non-zero.

The list-of-notify-users value specifies up to four users who are to receive output and/or notification of results. A user can be specified in one of the following ways:

```
node.userid
```

The node and user ID separated by a period.
.userid

The name of the user ID on the local node preceded by a period.

&RACUID

Original issuer with regard to node and user.

When &RACUID is specified, where the results and output are sent depend on the situation. Consider the following scenarios:

- For password synchronization, automatic password direction, and automatic direction of application updates, results and output go to the specific system. For automatic command direction, the results and output go to the MAIN system. For a multisystem node, the MAIN system might not necessarily be the specific system of that issuing node.
- A user on node A directs a command to node B which results in automatic command direction to node C. &RACUID specified on node C for AUTODIRECT NOTIFY or OUTPUT sends data to node A.
- A user on node A directs a command to node B which results in a password change. This password change is propagated by password synchronization to node C. &RACUID specified on node C for PWSYNC NOTIFY or OUTPUT sends data to node B.
- A user on node A changes a password, such that automatic password direction updates the corresponding user ID on node B. This user ID propagates the password change to a peer association on that same node B. &RACUID specified on node B for PWSYNC NOTIFY or OUTPUT would send data to the original user ID on node B (not A).

Note: If &RACUID is specified along with the user ID from which you are issuing the command, password change (covered by password synchronization or automatic password direction), or application update, that user ID receives the output or notification twice.

If you plan to use &RACUID for application updates, be aware of the following:

- Guideline: Do not use &RACUID for AUTOAPPL output or notification. This might allow application updates to be done for undefined users, revoked user IDs, or the user ID of the RACF address space, and produce unexpected results during output delivery, including lost output and error messages on the console.
- Ensure all possible user ID destinations through &RACUID have the authority to create data sets. For example, an installation would not want to use &RACUID for AUTOPWD or PWSYNC if the original issuer of a password change could be a CICS user, who is unlikely to have authority to create the RRSFLIST output data set.
- If the ACEE keyword is used on the RACROUTE request, the output goes to the user ID associated with the ACEE keyword, not to the user ID of the task or address space that issued the request.

The SET command does not perform existence checking for either the user ID or node.

The combination of users specified in the list of notify users variables can be up to a maximum of four different users. In other words, the cumulative total of unique users cannot exceed 4 in both the OUTPUT
and NOTIFY keywords. The same four users can be specified in each list; however, if four users are specified on one of the keywords, a fifth user cannot be specified on the other keyword. For example, if four users are specified on the OUTPUT keyword, a fifth user cannot be specified on the NOTIFY keyword.

NONOTIFY

Specifies that no TSO SEND commands are issued with the results of the RRSF request.

The initial value is NONOTIFY.

The allowed values for `notify-level` are:

OUTPUT(output-level(list-of-output-users))

Specifies that the output from the RRSF request should be put in the RRSFLIST data set for the user named on this keyword. If the output cannot be put in the RRSFLIST data set for any reason, the output is transmitted to the user.

Because LIST-type commands are ineligible for automatic command direction, the output usually contains messages issued during command processing, such as informational, warning, or error messages.

The valid values for `output-level` are the same as those described for `notify-level` with the NOTIFY keyword.

The valid values for `list-of-output-users` are the same as those described for `list-of-notify-users` with the NOTIFY keyword.

NOOUTPUT

Specifies that no output, warning, or error messages are kept or sent to anyone.

The initial value is NOOUTPUT.

NOAUTODIRECT

Specifies that automatic command direction is to be deactivated.

This option prevents commands from being automatically directed to remote nodes.

The initial value is NOAUTODIRECT.

When SET NOAUTODIRECT is issued, the settings of OUTPUT and NOTIFY are saved. Subsequently, if a SET AUTODIRECT command is issued with no other operands, those settings are restored.

AUTOPWD | NOAUTOPWD

AUTOPWD

Specifies that automatic password direction is to be activated. Profiles in the RRSFDATA class AUTODIRECT.nodename.USER.PWSYNC control which automatic password directed requests get directed to which remote nodes. See z/OS Security Server RACF Security Administrator’s Guide for more information on using the RRSFDATA class to control automatic password direction and for planning information that is necessary before using automatic password direction.

The operands on the AUTOPWD keyword specify who gets the result and output from automatically directed passwords. Refer to the descriptions of OUTPUT and NOTIFY under the AUTODIRECT keyword.
NOAUTOPWD

Specifies that automatic password direction is to be deactivated.

This option prevents passwords from being automatically directed to remote nodes.

The initial value is NOAUTOPWD.

When SET NOAUTOPWD is issued, the settings of OUTPUT and NOTIFY are saved. Subsequently, if a SET AUTOPWD command is issued with no other operands, those settings are restored.

GENERICANCHOR

Specifies the number of generic anchors that RACF maintains for each address space and for each MVS TCB that has its own ACEE.

A generic anchor is a list of generic profile names associated with either one of the following:

- The high-level qualifier (HLQ) of a data set
- A general resource class that is not processed in storage by the SETROPTS RACLST or GENLIST command.

If you do not specify GENERICANCHOR, RACF maintains four generic anchors for each address space and four for each MVS TCB that has its own ACEE.

SYSTEM | JOBNAME

You must specify SYSTEM or JOBNAME. Only one SYSTEM setting is in effect at a time. Multiple JOBNAME settings can be in effect at the same time.

SYSTEM

When you specify SYSTEM with a COUNT value, the COUNT value indicates the number of generic anchors RACF maintains for any job for which no applicable JOBNAME setting is in effect.

When you specify SYSTEM with RESET, the SYSTEM setting is reset to the default value of 4.

JOBNAME(jobname ...)

When you specify JOBNAME with a COUNT value, the COUNT value indicates the number of generic anchors RACF maintains for the specified job name.

The specified COUNT value applies separately to the ACEE for the address space and to each MVS TCB that has its own ACEE. For example, if the specified job has an address space ACEE and two MVS TCBs that each have an ACEE, and you specify a COUNT value of 5, RACF keeps up to 15 generic anchors for the job.

When you specify JOBNAME with RESET, the specified job name and its associated COUNT setting are removed, and the number of generic anchors maintained for the specified job name is determined by the SYSTEM setting.

Specify one or more job names. Include an asterisk (*) as the last character of a jobname value to specify a set of similarly named jobs. For example, to specify the number of generic anchors for a job named MAPES, MAPES2, or MAPES3, you might specify JOBNAME(MAPES*).

When you include an asterisk as the last character of a jobname, such as MAPES*, the COUNT setting applies to any job name beginning with
SET

MAPES, unless a more specific job name setting is in effect. For example, if you issue two SET GENERICANCHOR commands, one specifying JOBNAME(MAPES*) and another specifying JOBNAME(MAPES2), the COUNT setting specified for MAPES* applies to a job named MAPES3 but not to a job named MAPES2.

COUNT | RESET
You must specify a COUNT value or RESET.

COUNT(nn)
Specifies the number of generic anchors (4 - 99).

RESET
When specified with SYSTEM, the number of generic anchors is reset to the default value of 4 for any job for which no applicable JOBNAME setting is in effect.

When specified with JOBNAME, the specified job name and its associated COUNT setting are removed, and the number of generic anchors maintained for the specified job name is determined by the SYSTEM setting.

INCLUDE(member-suffix ...)
Provides the ability to specify that the contents of one or more members of the RACF parameter library are to be processed. The INCLUDE keyword provides a convenient mechanism to process a previously defined set of RACF commands, such as SET and TARGET.

One or more suffixes can be specified with the INCLUDE keyword. Each specified suffix must be:
• 1 - 2 characters in length
• In the alphanumeric character set (A - Z, 0 - 9, # (X'7B'), $ (X'5B') or @ (X'7C'))

such that when the suffix is appended to IRROPT it results in the name of a member of the RACF parameter library.

SET INCLUDE commands can be nested in members of the RACF parameter library. For example, if member IRROPT01 contains a SET INCLUDE IRROPT02 command, then member IRROPT02 can contain a SET INCLUDE IRROPT03 command.

Be careful to adhere to a hierarchical order when nesting SET INCLUDE commands. For example, if IRROPT01 contains a SET INCLUDE IRROPT02 command, then IRROPT01 cannot contain a SET INCLUDE IRROPT01 command. Also, if IRROPT02 contains a SET INCLUDE command for any other parameter library members, those members cannot contain a SET INCLUDE IRROPT01 command. This restriction exists to prevent a never-ending loop of inclusion.

If a suffix appended to IRROPT does not result in the name of a member of the RACF parameter library, a message is issued and that suffix is ignored.

If the INCLUDE keyword is specified with any other SET keywords, the included members are processed first. The values specified for the other keywords override any values specified for the keywords in the included members. For example, the values specified for TRACE override any trace values specified in the included members.

No authorization checking or auditing is done for the commands in included members.
SET

JESNODE(*nodename*)

Specifies the name of the node needed by RRSF in the cases where returned output from the directed commands must be transmitted to the user. RRSF queries the primary JES system during initialization in an attempt to obtain this name automatically. This keyword should be used in the cases where RRSF cannot automatically obtain this name.

No validity checking is done on the value specified with the JESNODE keyword.

LIST

Lists the attributes of an RRSF node and trace options.

The LIST keyword provides the ability to obtain information about the RRSF node's configuration, status related to the RACF subsystem, and status of TRACE and other options enabled by the SET command.

The LIST keyword can be specified alone or in combination with other SET command keywords. When used in combination with other SET command keywords, the information displayed reflects the results after processing the other keywords.

The information for the template version that the system is running with is displayed in the output. For details, see the "RACF database initialization utility program (IRRMIN00)" topic of [z/OS Security Server RACF System Programmer's Guide](https://www.ibm.com).

Note: LIST is the default if the SET command is issued with no keywords.

PWSYNC | NOPWSYNC

PWSYNC

Specifies that password synchronization is to be activated. See [z/OS Security Server RACF Security Administrator's Guide](https://www.ibm.com) for more information on using the RRSFDATA class to control password synchronization and for planning information that is necessary before using password synchronization. For information about how to establish password synchronization between user IDs, see the RA CLINK command.

The operands on the PWSYNC keyword specify who gets the result and output from password changes covered by password synchronization. Refer to the descriptions of OUTPUT and NOTIFY under the AUTODIRECT keyword.

NOPWSYNC

Specifies that synchronized password processing is to be deactivated.

The initial value is NOPWSYNC.

When SET NOPWSYNC is issued, the settings of OUTPUT and NOTIFY are saved. Subsequently, if a SET PWSYNC command is issued with no other operands, those settings are restored.

TRACE

 Specifies whether tracing is to take place for the following events, using the generalized trace facility (GTF).

If the TRACE keyword is specified, at least one subkeyword must be specified to indicate whether or not tracing is to be turned on or off for each of these events. There are no defaults for these event types. For example, if APPC is the only operand specified, then the current setting for tracing IMAGE events is...
not changed. If IMAGE tracing was in effect, it remains in effect. Likewise, if
NOIMAGE had been in effect, it would remain in effect.

The initial values are NOAPPC, NOASID, NOCALLABLE, NOCLASS,
NODATABASE, NOGENERICANCHOR, NOIMAGE, NOJOBNAME,
NORACROUTE, NOSYSTEMSSL, and NOUSERID.

The SET LIST command should always be used to verify the trace parameters
have been set as expected.

The trace records are intended for use in consultation with the IBM support
center when diagnosing potential RACF subsystem problems. For more
information, see z/OS Security Server RACF Diagnosis Guide

Important: Trace records might contain passwords and therefore trace output
data sets should be appropriately protected.

APPB | NOAPPB

APPC

Enables tracing for APPC events. The trace information contains the
APPC transaction return code and reason code.

NOAPPC

Disables tracing for APPC events.

ASID(asid ...) | NOASID | ALLASIDS

For CALLABLE, DATABASE, GENERICANCHOR, and RACROUTE event
traces, the following options enable and disable tracing based on one or
more address spaces.

ASID(asid ...)

Enables tracing for the specified address space. When ASID(asid ...) is
specified, by consecutive invocations of the SET command, the asid list
is deleted and rebuilt with the current specification each time the
command is issued.

ALLASIDS

Enables tracing for all address spaces.

NOASID

Disables tracing based on address space.

CALLABLE | NOCALLABLE

CALLABLE

Use to trace z/OS UNIX calls.

Tracing for events related to z/OS UNIX calls occurs only for jobs
selected by at least one of the following trace options:
• ASID or ALLASIDS
• JOBNAME or ALLJOBNAMES

ALL | NONE | TYPE

Use to control the degree of tracing.

ALL

Use to enable tracing of all z/OS UNIX calls.

NONE

Use to reset tracing.

TYPE(type ...)

Use to enable tracing of one or more specific z/OS UNIX calls.
The **TYPE** operand is cumulative; issuing **NOCALLABLE** or **CALLABLE(NONE)** will reset the trace.

The request types that are supported are listed in [Table 38](#).

Table 38. Callable services and associated function numbers

<table>
<thead>
<tr>
<th>Callable service</th>
<th>Function number</th>
<th>Callable service</th>
<th>Function number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRRSIU00</td>
<td>1</td>
<td>IRRSFIK00</td>
<td>28</td>
</tr>
<tr>
<td>IRRSDU00</td>
<td>2</td>
<td>IRRSMI00</td>
<td>29</td>
</tr>
<tr>
<td>IRRSMF00</td>
<td>3</td>
<td>IRRSK100</td>
<td>30</td>
</tr>
<tr>
<td>Reserved.</td>
<td>4</td>
<td>IRRSC100</td>
<td>31</td>
</tr>
<tr>
<td>IRRSMM00</td>
<td>5</td>
<td>IRRSC200</td>
<td>32</td>
</tr>
<tr>
<td>IRRSKA00</td>
<td>6</td>
<td>IRRSGE00</td>
<td>33</td>
</tr>
<tr>
<td>IRRSKP00</td>
<td>7</td>
<td>IRRSD100</td>
<td>34</td>
</tr>
<tr>
<td>IRRSUM00</td>
<td>8</td>
<td>IRRSDK00</td>
<td>35</td>
</tr>
<tr>
<td>IRRSGM00</td>
<td>9</td>
<td>IRRSU00</td>
<td>36</td>
</tr>
<tr>
<td>IRRSGG00</td>
<td>10</td>
<td>IRRSDD00</td>
<td>37</td>
</tr>
<tr>
<td>IRRSUI00</td>
<td>11</td>
<td>IRRSIA00</td>
<td>38</td>
</tr>
<tr>
<td>IRRSEU00</td>
<td>12</td>
<td>IRRSEQ00¹</td>
<td>39</td>
</tr>
<tr>
<td>IRRSSG00</td>
<td>13</td>
<td>IRRSIM00</td>
<td>40</td>
</tr>
<tr>
<td>IRRSEG00</td>
<td>14</td>
<td>IRRSDL00</td>
<td>41</td>
</tr>
<tr>
<td>IRRSC00</td>
<td>15</td>
<td>IRRSMK00</td>
<td>42</td>
</tr>
<tr>
<td>IRRSCF00</td>
<td>16</td>
<td>IRRSPK00</td>
<td>43</td>
</tr>
<tr>
<td>IRRSCA00</td>
<td>17</td>
<td>IRRSPX00</td>
<td>44</td>
</tr>
<tr>
<td>IRRSEX00</td>
<td>18</td>
<td>IRRSCH00</td>
<td>45</td>
</tr>
<tr>
<td>IRRSAU00</td>
<td>19</td>
<td>IRRSPY00</td>
<td>46</td>
</tr>
<tr>
<td>IRRSK00</td>
<td>20</td>
<td>IRRSCL00</td>
<td>47</td>
</tr>
<tr>
<td>IRRSQS00</td>
<td>21</td>
<td>IRRSB00</td>
<td>48</td>
</tr>
<tr>
<td>IRRSQF00</td>
<td>22</td>
<td>IRRSWP00</td>
<td>49</td>
</tr>
<tr>
<td>IRRSC00</td>
<td>23</td>
<td>IRRSGS00</td>
<td>50</td>
</tr>
<tr>
<td>IRRSKF00</td>
<td>24</td>
<td>IRRSAX00</td>
<td>51</td>
</tr>
<tr>
<td>IRRSMR00</td>
<td>25</td>
<td>IRRSG100</td>
<td>52</td>
</tr>
<tr>
<td>IRRSPT00</td>
<td>26</td>
<td>IRRSPS00</td>
<td>53</td>
</tr>
<tr>
<td>IRRSGU00</td>
<td>27</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

¹ Callable service IRRSEQ00 (R Admin) has its own trace facility. For more information, see [z/OS Security Server RACF Diagnosis Guide](#).

NOCALLABLE

Use **NOCALLABLE** to reset the trace; equivalent to **CALLABLE(NONE)**.

CLASS | ALLCLASSES | IFCLASS | NEVERCLASS | NOCLASS

For DATABASE and RACROUTE event traces, use the following options to enable and disable tracing based on the names of one or more general resource classes.
SET

CLASS(class-name ... | *)
Enables tracing for events associated with the specified class. The class-name value is an asterisk (*) or a list of one or more classes.

Specifying CLASS(*) enables tracing for events associated with any class. This option is equivalent to the ALLCLASSES option.

You can include an asterisk (*) as the last character of the class-name value to specify a set of similarly named classes. For example, to enable tracing for events associated with a class named CLS$D1, CLS$DS, or CLS$DPT, you might specify CLASS(CLS$D*).

When CLASS(class-name ...) is specified by consecutive invocations of the SET command, the class-name list is deleted and rebuilt with the current specification each time the command is issued.

ALLCLASSES
Enables tracing for events associated with any class. This option is equivalent to specifying CLASS(*).

IFCLASS(class-name ... | *)
Enables tracing only when the event is associated with the specified class.

Specifying IFCLASS(*) enables tracing only when the event is associated with a class, regardless of class name.

You can include an asterisk (*) as the last character of the class-name value to specify a set of similarly named classes. For example, to enable tracing only when the event is associated with a class named CLS$D1, CLS$DS, or CLS$DPT, you might specify IFCLASS(CLS$D*).

When IFCLASS(class-name ...) is specified by consecutive invocations of the SET command, the class-name list is deleted and rebuilt with the current specification each time the command is issued.

NEVERCLASS(class-name ... | *)
Disables tracing only when the event is associated with the specified class.

Specifying NEVERCLASS(*) disables tracing only when the event is associated with a class, regardless of class name.

You can include an asterisk (*) as the last character of the class-name value to specify a set of similarly named classes. For example, to disable tracing only when the event is associated with a class named CLS$D1, CLS$DS, or CLS$DPT, you might specify NEVERCLASS(CLS$D*).

When NEVERCLASS(class-name ...) is specified by consecutive invocations of the SET command, the class-name list is deleted and rebuilt with the current specification each time the command is issued.

NOCLASS
Disables tracing based on class name.

DATABASE | NODATABASE
DATABASE
Use to trace RACF database manager requests.

Tracing for events related to RACF database manager requests occurs only for jobs selected by at least one of the following trace options:
• ASID or ALLASIDS
• CLASS, ALLCLASSES, or IFCLASS
• JOBNAME or ALLJOBNAMES

ALL | NONE
 Use ALL to enable tracing of all requests.
 Use NONE to disable tracing.

ALTER | NOALTER
 Use ALTER to enable tracing all RACF database manager calls that change the database. Calls included are RENAMEs, ALTERs, ADDs and DELETEs. No further granularity is provided for calls that change the database.
 Use NOALTER to disable tracing of all RENAMEs, ALTERs, ADDs and DELETEs.

ALTERI | NOALTERI
 Use ALTERI to enable tracing all RACF database manager calls that change fields in the database that use ALTERI as the request.
 Use NOALTERI to prevent the tracing of these requests.

READ | NOREAD
 Use READ to enable tracing all RACF database manager RACF calls that locate profiles in the database.
 Use NOREAD to prevent the tracing of these requests.

NODATABASE
 Use NODATABASE to disable tracing database manager requests; equivalent to DATABASE(NONE).

GENERICANCHOR | NOGENERICANCHOR

GENERICANCHOR
 Enables tracing for events related to generic anchors. For each profile list that RACF creates for a generic anchor, RACF records a trace record that includes the high-level qualifier (HLQ) or class name, the number of profile names in the list, the number of generic anchors present for the job, and, if applicable, the HLQ or class name of the profile list that RACF is replacing.

 Tracing for events related to generic anchors occurs only for jobs selected by at least one of the following trace options:
 • ASID or ALLASIDS
 • JOBNAME or ALLJOBNAMES
 • USERID, ALLUSERIDS, or IFUSERID

NOGENERICANCHOR
 Disables tracing for events related to generic anchors.

IMAGE | NOIMAGE

IMAGE
 Enables tracing of IMAGE events. The trace information contains the command image being processed.

NOIMAGE
 Disables tracing for IMAGE events.

JOBNAME | ALLJOBNAMES | NOJOBNAME
 For CALLABLE, DATABASE, GENERICANCHOR, and RACROUTE event traces, the following options allow you to enable and disable tracing based on one or more job names.
SET

JOBNAME(jobname ...) | *)

Enables tracing for events associated with the specified job name. The *jobname* value is an asterisk (*) or a list of one or more job names.

Specifying JOBNAME(*) enables tracing for events associated with any job name. This option is equivalent to the ALLJOBNAMES option.

You can include an asterisk (*) as the last character of the *jobname* value to specify a set of similarly named jobs. For example, to enable tracing for events associated with a job named MAPES, MAPES2, or MAPES3, you might specify JOBNAME(MAPES*).

When JOBNAME(jobname ...) is specified, by consecutive invocations of the SET command, the *jobname* list is deleted and rebuilt with the current specification each time the command is issued.

ALLJOBNAMES

Enables tracing for events associated with *any* job name. This option is equivalent to specifying JOBNAME(*).

NOJOBNAME

Disables tracing by job name.

PDCALLABLE | NOPDCALLABLE

PDCALLABLE

Use to trace IBM Policy Director Authorization Services SAF calls.

ALL | NONE | TYPE

Use to control the degree of tracing.

ALL

Use to enable tracing of all IBM Policy Director Authorization Services SAF calls.

NONE

Use to reset tracing.

TYPE(type ...)

Use to enable tracing of one or more specific IBM Policy Director Authorization Services SAF calls. The request types that are supported are listed in the following table:

<table>
<thead>
<tr>
<th>Callable service</th>
<th>Service / type number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRRSZA00</td>
<td>1</td>
</tr>
<tr>
<td>IRRSZC00</td>
<td>2</td>
</tr>
</tbody>
</table>

The TYPE operand is cumulative; issuing NOPDCALLABLE or PDCALLABLE(NONE) will reset the trace.

NOPDCALLABLE

Use NOPDCALLABLE to reset the trace; equivalent to PDCALLABLE(NONE).

RACROUTE | NORACROUTE

RACROUTE

Use to trace RACROUTE calls.

Tracing for events related to RACROUTE calls occurs only for jobs selected by at least one of the following trace options:

- ASID or ALLASIDS
- CLASS, ALLCLASSES, or IFCLASS
SET

- JOBNAME or ALLJOBNAMES
- USERID, ALLUSERIDS, or IFUSERID

ALL | NONE | TYPE

Use to control the degree of tracing.

ALL

Use to enable tracing of all RACROUTE calls.

NONE

Use to reset tracing.

TYPE(type ...)

Use to enable tracing of one or more specific RACROUTE calls.

The request types that are supported are listed in the following table:

<table>
<thead>
<tr>
<th>RACROUTE REQUEST type</th>
<th>Service / type number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTH</td>
<td>1</td>
</tr>
<tr>
<td>FASTAUTH</td>
<td>2</td>
</tr>
<tr>
<td>LIST</td>
<td>3</td>
</tr>
<tr>
<td>DEFINE</td>
<td>4</td>
</tr>
<tr>
<td>VERIFY</td>
<td>5</td>
</tr>
<tr>
<td>EXTRACT</td>
<td>6</td>
</tr>
<tr>
<td>DIRAUTH</td>
<td>7</td>
</tr>
<tr>
<td>TOKENMAP</td>
<td>8</td>
</tr>
<tr>
<td>VERIFYX</td>
<td>9</td>
</tr>
<tr>
<td>TOKENXTR</td>
<td>10</td>
</tr>
<tr>
<td>TOKENBLD</td>
<td>11</td>
</tr>
<tr>
<td>EXTRACT, BR=YES</td>
<td>12</td>
</tr>
<tr>
<td>AUDIT</td>
<td>13</td>
</tr>
<tr>
<td>STAT</td>
<td>14</td>
</tr>
<tr>
<td>SIGNON</td>
<td>15</td>
</tr>
<tr>
<td>TOKENMAP, XMEM</td>
<td>16</td>
</tr>
<tr>
<td>TOKENXTR, XMEM</td>
<td>17</td>
</tr>
</tbody>
</table>

The TYPE operand is cumulative; issuing NORACROUTE or RACROUTE(NONE) will reset the trace.

NORACROUTE

Use NORACROUTE to reset the trace; equivalent to RACROUTE(NONE).

RRSF | NORRSF

RRSF

Enables tracing for RRSF events. The trace information contains the relevant API return code and reason code, where applicable.

NORRSF

Disables tracing for RRSF events.

SYSTEMSSL | NOSYSTEMSSL
SET

SYSTEMSSL
Use to trace RACF’s use of z/OS System Secure Sockets Layer (SSL) services. The actual trace records are created by the System SSL component itself; RACF only requests that the trace records be created. SSL services are used by RACF to create PKCS #7 envelopes for user passwords and password phrases. For more information, see **z/OS Security Server RACF Security Administrator’s Guide**.

When SET TRACE(SYSTEMSSL) is in effect, all trace functions except EBCDIC and ASCII data dumps are requested. The trace records are written to a UNIX file with the pathname /tmp/gskssl.racf.pid.trc, where pid is the UNIX process ID assigned to the RACF thread that attempted the enveloping operation (initial creation during password or password phrase change, or retrieval with the R_admin callable service). It is difficult to determine the pid for a given enveloping operation because it exists transiently. To debug a reproducible problem, look at the trace files that already exist in /tmp starting with gskssl.racf, or delete all the trace files, initiate the enveloping operation, find the new file that was created, and look within that file for the trace data. For more information on creating trace records, see **z/OS Cryptographic Services System SSL Programming**.

NOSYSTEMSSL
Deactivates tracing for RACF’s use of System SSL services.

USERID | ALLUSERIDS | IFUSERID | NEVERUSERID | NOUSERID
For GENERICANCHOR and RACROUTE event traces, use the following options to enable and disable tracing based on one or more user IDs.

The USERID trace options apply to RACROUTE requests of only the following types:
- RACROUTE REQUEST=AUTH (type 1)
- RACROUTE REQUEST=FASTAUTH (type 2)
- RACROUTE REQUEST=VERIFY (type 5)
- RACROUTE REQUEST=VERIFYX (type 9)

USERID(userid ... | *)
Enables tracing for events associated with the specified user ID. The userid value is an asterisk (*) or a list of one or more user IDs.

Specifying USERID(+) enables tracing for events associated with any user ID. This option is equivalent to the ALLUSERIDS option.

You can include an asterisk (*) as the last character of the userid value to specify a set of similarly named user IDs. For example, to enable tracing for events associated with user ID ADMIN1, ADMIN2, or ADMIN3, you might specify USERID(ADMIN*).

When USERID(userid ...) is specified by consecutive invocations of the SET command, the userid list is deleted and rebuilt with the current specification each time the command is issued.

ALLUSERIDS
Enables tracing for events associated with any user ID. This option is equivalent to specifying USERID(+)..

IFUSERID(userid ... | *)
Enables tracing only when the event is associated with the specified user ID.
Specifying IFUSERID(\ast) enables tracing only when the event is associated with a user ID, regardless of user ID.

You can include an asterisk (\ast) as the last character of the userid value to specify a set of similarly named user IDs. For example, to enable tracing only when the event is associated with user ID ADMIN1, ADMIN2, or ADMIN3, you might specify IFUSERID(ADMIN\ast).

When IFUSERID(userid ...) is specified by consecutive invocations of the SET command, the userid list is deleted and rebuilt with the current specification each time the command is issued.

NEVERUSERID(userid ... | \ast)
Disables tracing only when the event is associated with the specified user ID.

Specifying NEVERUSERID(\ast) disables tracing only when the event is associated with a user ID, regardless of user ID.

You can include an asterisk (\ast) as the last character of the userid value to specify a set of similarly named user IDs. For example, to disable tracing only when the event is associated with user ID ADMIN1, ADMIN2, or ADMIN3, you might specify NEVERUSERID(ADMIN\ast).

When NEVERUSERID(userid ...) is specified by consecutive invocations of the SET command, the userid list is deleted and rebuilt with the current specification each time the command is issued.

NOUSERID
Disables tracing based on user ID.

Examples

Example 1

Operation User ADMIN wants to enable automatic command direction and establish that LAURIE at POKMVS and the command issuer receives output and notification when an automatically directed command receives a return code of 8 or greater.

Known The RACF subsystem prefix is \@.

Command
\@SET AUTODIRECT (OUTPUT (FAIL (POKMVS.LAURIE &RACUID)) NOTIFY (FAIL (POKMVS.LAURIE &RACUID)))

Defaults None.

Example 2

Operation User ADMIN wants to enable automatic command direction and establish that:

- ACDERROR at POKMVS will receive warning and error output, but no TSO SEND messages.
- ANDREW at POKMVS will receive warning output, error output, and TSO SEND messages for error conditions.
- LAURIE at POKMVS will not receive any output, but will receive TSO SEND messages for error conditions.
- The command issuer gets no notification of automatically directed commands.

Known The RACF subsystem prefix is \@. LAURIE at POKMVS has the ability to browse the RRSFLIST data set of ACDERROR at POKMVS to determine what needs to be fixed.

Command
\@SET AUTODIRECT (OUTPUT (WARN (POKMVS.ACDERROR POKMVS.ANDREW)) NOTIFY (FAIL (POKMVS.LAURIE POKMVS.ANDREW)))

Defaults None.
Example 3

Operation User ADMIN wants to enable automatic direction, automatic password direction, automatic direction of application updates, but not password synchronization. User ADMIN wants to be notified and receive output for all failures. The command issuer needs to always receive notification and output for automatically directed commands (but not for automatic password direction or automatic direction of application updates).

Known The RACF subsystem prefix is `@`.

Commands

```
@SET AUTODIRECT(OUTPUT(FAIL(POKMVS.ADMIN &RACUID)) NOTIFY(FAIL(POKMVS.ADMIN &RACUID)))
@SET AUTOPWD(OUTPUT(FAIL(POKMVS.ADMIN)) NOTIFY(FAIL(POKMVS.ADMIN)))
@SET AUTOAPPL(OUTPUT(FAIL(POKMVS.ADMIN)) NOTIFY(FAIL(POKMVS.ADMIN)))
```

Defaults None.

Example 4

Operation User ADMIN wants to enable tracing for all VERIFY requests issued in a particular address space.

Known The RACF subsystem prefix is `@`.

Command

```
@SET TRACE(RACROUTE(TYPE(2,5,9)) ASID(17))
```

Defaults None.

Output See [Figure 80 on page 611](#).

Example 5

Operation User ADMIN wants to obtain information concerning the RRSF node’s configuration and status related to the RACF subsystem. User ADMIN also wants to turn on tracing for IMAGE events.

Known Because the LIST keyword is used in combination with the TRACE keyword, the information displayed reflects the results after processing the TRACE keyword.

The RACF subsystem prefix is `@`.

Command

```
@SET LIST TRACE(IMAGE)
```

Defaults None.

Output See [Figure 80 on page 611](#).

Example 6

Operation User ADMIN wants to enable tracing for the `znAccess` SAF callable service for job name IBMUSER.

Known The RACF subsystem prefix `@`.

Command

```
@SET TRACE(PDCALLABLE(TYPE(1)) JOBNAME(IBMUSER))
```

Defaults None.

Output IRRH004I (0) RACF SUBSYSTEM SET COMMAND HAS COMPLETED SUCCESSFULLY.

Example 7

Operation User ADMIN wants to verify that tracing has been enabled for the `znAccess` z/OS Policy Director SAF callable service.

Known The RACF subsystem prefix is `@`.

Command

```
@SET LIST
```

Defaults None.

Output SET LIST output indicates that tracing has been enabled for PDCALLABLE service request type 1 (`znAccess` SAF callable service). See [Figure 80 on page 611](#).

Example 8

Operation The system programmer wants to set the number of generic anchors to 10 for job names that begin with the characters MAPES, such as MAPES2 and MAPES3, to 8 for the job named MAPES9, and to 6 for all other jobs.

Known The RACF subsystem prefix `@`.

Commands The system programmer might enter the following operator commands:

```
@SET GENERICANCHOR (JOBNAME(MAPES*) COUNT(10))
@SET GENERICANCHOR (JOBNAME(MAPES9) COUNT(8))
@SET GENERICANCHOR (SYSTEM COUNT(6))
```

Defaults None.

Output IRRH004I (0) RACF SUBSYSTEM SET COMMAND HAS COMPLETED SUCCESSFULLY.
RACF RIRH005I (0) RACF SUBSYSTEM INFORMATION:
 TRACE OPTIONS
 - IMAGE
 - NOAPPC
 - SYSTEMSSL
 - RACROUTE
 2 5 9
 - NOCALLABLE
 - PDCALLABLE
 1
 - NODATABASE
 - NOGENERICANCHOR
 - ASID
 17
 - JOBNAME
 IBMUSER
 - NOCLASS
 - NOUSERID
 SUBSYSTEM USERID
 - IBMUSER
 JESNODE (FOR TRANSMITS)
 - POKNNPPOK
 AUTOMATIC COMMAND DIRECTION IS *NOT* ALLOWED
 AUTOMATIC PASSWORD DIRECTION IS *NOT* ALLOWED
 PASSWORD SYNCHRONIZATION IS *NOT* ALLOWED
 AUTOMATIC DIRECTION OF APPLICATION UPDATES IS *NOT* ALLOWED
 GENERICANCHOR:
 SYSTEM: COUNT(06)
 JOBNAME: MAPES9 COUNT(08)
 MAPES* COUNT(10)
 RACF STATUS INFORMATION:
 TEMPLATE VERSION - HRF7770 00000140.00000020
 DYNAMIC PARSE VERSION - HRF7770

Figure 80. Output for SET LIST command
SETROPTS

SETROPTS (Set RACF options)

Purpose

Use the SETROPTS command to set system-wide RACF options related to resource protection dynamically. Specifically, you can use SETROPTS to do the following:

- Gather and display RACF statistics
- Protect terminals
- Log RACF events
- Permit list-of-groups access checking
- Display options currently in effect
- Enable or disable the generic profile checking facility on a class-by-class basis
- Activate checking for previous passwords and password phrases
- Limit unsuccessful attempts to access the system using incorrect passwords and password phrases
- Control change intervals for passwords and password phrases
- Control mixed-case passwords
- Warn of expiring passwords and password phrases
- Establish password syntax rules
- Activate auditing for access attempts by class
- Activate auditing for security labels
- Require that all work entering the system, including users logging on and batch jobs, have a security label assigned
- Enable or disable the global access checking facility
- Refresh in-storage profile lists and global access checking tables
- Set the password the operator must supply in order for RACF to complete an RVARY command that changes RACF status or changes the RACF databases
- Enable or disable the sharing, in common storage, of discrete and generic profiles for general resource classes
- Activate or deactivate auditing of access attempts to RACF-protected resources based on installation-defined security levels
- Control the automatic data set protection (ADSP) attribute for users
- Activate profile modeling for GDG, group, and user data sets
- Activate protection for data sets with single-level names
- Control logging of real data set names
- Control the job entry subsystem options
- Activate tape data set protection
- Control whether RACF is to allow users to create or access data sets that do not have RACF protection
- Activate and control the scope of erase-on-scratch processing
- Activate program control, which includes both access control to load modules and program access to data
- Prevent users from accessing uncataloged permanent data sets
- Establish a system-wide VTAM session interval
- Set an installation-wide default for the RACF security retention period for tape data sets
- Activate enhanced generic naming for data sets and entries in the global access checking table
SETROPTS

- Set installation defaults for primary and secondary national languages
- Activate auditing for APPC transactions
- Use the dynamic class descriptor table.

If you specify the AUDIT operand, RACF logs all uses of the RACROUTE REQUEST=DEFINE SVC and all changes made to profiles by RACF commands.

Following are the classes that can be specified in the AUDIT operand and the commands and SVCs that are logged for each class.

<table>
<thead>
<tr>
<th>USER</th>
<th>GROUP</th>
<th>DATASET</th>
<th>CDT entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDUSER</td>
<td>ADDGROUP</td>
<td>ADDSD</td>
<td>PERMIT</td>
</tr>
<tr>
<td>ALTUSER</td>
<td>ALTGROU</td>
<td>ALTSD</td>
<td>REQUEST=DEFINE SVC</td>
</tr>
<tr>
<td>CONNECT</td>
<td>CONNECT</td>
<td>DELSD</td>
<td>RALTER</td>
</tr>
<tr>
<td>DELUSER</td>
<td>DELGROUP</td>
<td>PERMIT</td>
<td>RDEFINE</td>
</tr>
<tr>
<td>PASSWORD</td>
<td>REMOVE</td>
<td>REQUEST=DEFINE SVC</td>
<td>RDELETE</td>
</tr>
<tr>
<td>REMOVE</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Most RACF functions do not require special versions or releases of the operating system or operating system components. However, some do require that your system be at a certain level.

Using SETROPTS when RACF is enabled for sysplex communication: When RACF is enabled for sysplex communication, RACF propagates the following SETROPTS commands:

- GENERIC REFRESH
- GLOBAL
- GLOBAL REFRESH
- RACLIST
- NORACLST
- RACLIST REFRESH
- WHEN(PROGRAM)
- WHEN(PROGRAM) REFRESH

When issued from a member of the RACF data sharing group, these commands, if successful on the member that issues them, are propagated in a controlled, synchronized manner to the other members in the group. A system in read-only mode can participate if it receives a SETROPTS command propagated from another system, but a user on a system in read-only mode cannot issue any SETROPTS commands except for the SETROPTS LIST command. For propagated SETROPTS REFRESH commands, members of the data sharing group are notified to either create, update, or delete some in-storage information. These commands are coordinated to ensure that all systems begin to use the changed information simultaneously, and to always see a consistent view of this information.

RACF serializes propagated SETROPTS commands to prevent conflicting commands of the same type (for example, SETROPTS RACLIST and SETROPTS NORACLST) from processing simultaneously.

Refer to the specific parameter descriptions for additional information about using these parameters.
SETROPTS

Note:

1. The options you specify on SETROPTS are common on systems that share the RACF database. All the systems involved must have the required levels of software. If you activate SECLABEL and the multilevel security options on one system, they are activated on all systems.

2. If RACF is not enabled for sysplex communication, the SETROPTS commands that would be propagated to all members of a data sharing group must instead be issued on each system sharing the database. Although the command is not propagated, RACF does record the fact that a SETROPTS RACLIST was issued. The next time that any system sharing the database is IPLed, the SETROPTS RACLIST is done on that sharing system.

3. When the SETROPTS command is from ISPF, the TSO command buffer (including password data) is written to the ISPLOG data set. As a result, you should not issue the SETROPTS command from ISPF or you must control the ISPLOG data set carefully.

4. If the SETROPTS command is issued as a RACF operator command, the command and the password data is written to the system log. Therefore, use of SETROPTS as a RACF operator command should either be controlled or you should issue the command as a TSO command.

RACF date handling: RACF interprets dates with 2-digit years as follows. (The \(yy \) value represents the 2-digit year.)

- If \(70 < yy <= 99 \), the date is interpreted as \(19yy \).
- If \(00 <= yy <= 70 \), the date is interpreted as \(20yy \).

Issuing options

The following table identifies the eligible options for issuing the SETROPTS command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes (See rule.)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Rule: The SETROPTS LIST command without other keywords is not eligible for automatic command direction.

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

You must be logged on to the console to issue this command as a RACF operator command.

Authorization required

When issuing this command as a RACF operator command, you might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.
Most SETROPTS command functions require you to have the SPECIAL or AUDITOR attributes.

If you have the SPECIAL attribute you can use all of the operands except those listed below that require the AUDITOR attribute:

- APPLAUDIT | NOAPPLAUDIT
- AUDIT | NOAUDIT
- CMDVIOL | NOCMDVIOL
- LOGOPTIONS
- OPERAUDIT | NOOPERAUDIT
- SAUDIT | NOSAUDIT
- SECLABELAUDIT | NOSECLABELAUDIT
- SECLEVELAUDIT | NOSECLEVELAUDIT

If you have either the SPECIAL or AUDITOR attribute, you can use the LIST operand.

To specify the AT keyword, you must have READ authority to the DIRECT.node resource in the RRSFDATA class and a user ID association must be established between the specified node.userid pair(s).

To specify the ONLYAT keyword you must have the SPECIAL attribute, the userid specified on the ONLYAT keyword must have the SPECIAL attribute, and a user ID association must be established between the specified node.userid pair(s) if the user IDs are not identical.

In some situations, you can use SETROPTS even if you do not have the SPECIAL or AUDITOR attributes. These situations are:

- You can specify the LIST operand if you have the group-SPECIAL or group-AUDITOR attribute in the current connect group or if GRPLIST is active in any group that you are connected to.
- You can specify REFRESH together with GENERIC if you have the group-SPECIAL, AUDITOR, group-AUDITOR, OPERATIONS, group-OPERATIONS attribute, or CLAUTH authority for the classes specified.
- You can specify REFRESH together with GLOBAL if you have the OPERATIONS attribute or CLAUTH authority for the classes specified.
- You can specify REFRESH together with RAclist if you have CLAUTH authority to the specified class.
- You can specify REFRESH together with WHEN(PROGRAM) if you have the OPERATIONS attribute or CLAUTH authority for the program class.

Note: The syntax diagram does not indicate the defaults that are in effect when RACF is using a newly initialized database. You can find these defaults in the description of each operand. As you establish the system-wide defaults your installation needs, you might find it useful to mark the syntax diagram to reflect your choices.

Syntax

For the key to the symbols used in the command syntax diagrams, see “Syntax of RACF commands and operands” on page 9. The complete syntax of the SETROPTS command is:
SETROPTS

```
[subsystem-prefix][SETROPTS | SETR]
  [ ADDCREATOR | NOADDCREATOR ]
  [ ADSP | NOADSP ]
  [ APPLAUDIT | NOAPPLAUDIT ]
  [ AT((node.userid ... ) | ONLYAT((node.userid ... ) ]
  [ {AUDIT | NOAUDIT} (class-name ... | *) ]
  [ CATDSNS ( FAILURES | WARNING ) | NOCATDSNS ]
  [ CLASSACT | NOCLASSACT (class-name ... | *) ]
  [ CMDVIOL | NOCMDVIOL ]
  [ COMPATMODE | NOCOMPATMODE ]
  [ EGN | NOEGN ]

  [ ERASE(]
    [ ALL
      | SECLEVEL(seclevel-name) | NOSECLEVEL
    ) ]
  [ NOERASE ]
  [ GENCMD | NOGENCMD] (class-name ... | *) ]
  [ GENERIC | NOGENERIC] (class-name ... | *) ]
  [ GENERICOWNER | NOGENERICOWNER ]
  [ GENLIST | NOGENLIST] (class-name ... )
  [ GLOBAL | NOGLOBAL] (class-name ... )
  [ GRPLIST | NOGRPLIST ]
  [ INACTIVE(unused-userid-intervall) | NOINACTIVE ]
  [ INITSTATS | NOINITSTATS ]

  [ JES(]
    [ BATCHALLRACF | NOBATCHALLRACF ]
    [ EARLYVERIFY | NOEARLYVERIFY ]
    [ XBMALLRACF | NOXBMALLRACF ]
    [ NJEUSERID(userid) ]
    [ UNDEFINEDUSER(userid) ]
  ) ]
  [ KERBLVL(0|1) ]

  [ LANGUAGE(]
    [ PRIMARY(language) ]
    [ SECONDARY(language) ]
  ) ]
  [ LIST ]

  [ LOGOPTIONS(]
    [ ALWAYS(class-name, ...), ...]
    [ NEVER(class-name, ...), ...]
    [ SUCCESSES(class-name, ...), ...]
    [ FAILURES(class-name, ...), ...]
    [ DEFAUL((class-name, ... | *)) ]
  ) ]
  [ MLACTIVE [( FAILURES | WARNING ]] | NOMLACTIVE ]
  [ MLFSOBJ ( ACTIVE | INACTIVE ) ]
  [ MLIPCOBJ ( ACTIVE | INACTIVE ) ]
  [ MLNAMES | NOMLNNAMES ]
  [ MLQUIET | NOMLQUIET ]
  [ MLS [[ FAILURES | WARNING ]] | NOMLS ]
  [ MLSTABLE | NOMLSTABLE ]
```
SETROPTS

```plaintext
[ MODEL(
  [ GDG | NOGDG ]
  [ GROUP | NOGROUP ]
  [ USER | NOUSER ]
)
  | NOMODEL ]
[ OPERAUDIT | NOOPERAUDIT ]

[ PASSWORD(
  [ HISTORY(number-previous-values) | NOHISTORY ]
  [ INTERVAL(maximum-change-interval) ]
  [ MINCHANGE(minimum-change-interval) ]
  [ MIXEDCASE | NOMIXEDCASE ]
  [ REVOKE(number-incorrect-attempts) | NOREVOKE ]
  [ RULEn(LENGTH(m1:m2) content-keyword (position))
    | NORULEn
    | NORULES] ]
  [ WARNING(days-before-expiration) | NOWARNING ]
)
]

[ PREFIX(prefix) | NOPREFIX ]
[ PROTECTALL [( FAILURES | WARNING ]] | NOPROTECTALL ]
[ [ RACLST | NORACLST](class-name ...) ]
[ REALDSN | NOREALDSN ]
[ REFRESH ]
[ RETPD(nnnnn] ]
[ RVARYPW([ SWITCH(switch-pw) ] [ STATUS(status-pw) ] ]
[ SAUDIT | NOSAUDIT ]
[ SECLABELAUDIT | NOSECLABELAUDIT ]
[ SECLABELCONTROL | NOSECLABELCONTROL ]
[ SECLBYSYSTEM | NOSECLBYSYSTEM ]
[ SECLEVELAUDIT(security-level) | NOSECLEVELAUDIT ]
[ SESSIONINTERVAL(n) | NOSESSIONINTERVAL] ]
[ [ STATISTICS | NOSTATISTICS] (class-name ... | *) ]
[ TAPEDSN | NOTAPEDSN ]
[ TERMINAL( NONE | READ ) ]
[ WHEN | NOWHEN] (PROGRAM )]
```

For information on issuing this command as a RACF TSO command, refer to Chapter 3, “RACF TSO commands,” on page 15.

For information on issuing this command as a RACF operator command, refer to Chapter 4, “RACF operator commands,” on page 21.

Parameters

subsystem-prefix

Specifies that the RACF subsystem is the execution environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.
ADDCREATOR | NOADDCREATOR

ADDCREATOR
Specifies that if a user defines any new DATASET or general resource profile using ADDSD, RDEFINE or RACROUTE REQUEST=DEFINE, the profile creator's user ID is placed on the profile access list with ALTER authority.

NOADDCREATOR
Specifies that if a user defines any new DATASET or general resource profile using ADDSD, RDEFINE or RACROUTE REQUEST=DEFINE, or creates discrete profiles other than DATASET and TAPEVOL using RACROUTE REQUEST=DEFINE, RACF does not place the profile creator's user ID on the profile's access list. If the profile creator uses profile modeling, RACF copies the access list exactly. If the creator's user ID appears in the model's access list, RACF copies the authority to the new profile. For example, if the creator's user ID appears in the model's access list with READ, RACF copies that access authority to the new profile without changing it to ALTER.

An important exception for NOADDCREATOR occurs when the user creates a discrete DATASET or TAPEVOL profile using RACROUTE REQUEST=DEFINE. In this case, RACF ignores the NOADDCREATOR options and places the profile creator's user ID on the new profile's access list with ALTER authority. If the profile creator uses profile modeling to define a discrete DATASET or TAPEVOL and the creator's user ID appears in the model's access list, RACF creates the authority in the new profile with ALTER authority. This exception to NOADDCREATOR allows system components to allocate data sets and immediately access them without having an administrator manipulate the profile's access list in the interim.

Note: The initial setting of the ADDCREATOR/NOADDCREATOR keyword depends on whether your database is new or old. When IRRMIN00 is run with PARM=NEW, the initial setting is NOADDCREATOR. When IRRMIN00 is run with anything other than PARM=NEW, RACF retains the current value of ADDCREATOR/NOADDCREATOR. For compatibility and migration reasons, this value is set to ADDCREATOR if no prior specification of ADDCREATOR or NOADDCREATOR had occurred.

ADSP | NOADSP

ADSP
Specifies that data sets created by users who have the automatic data set protection (ADSP) attribute is RACF-protected automatically.

ADSP is in effect when RACF is using a newly initialized database. Because ADSP forces the creation of a discrete profile for each data set created by users who have the ADSP attribute, you should normally specify NOADSP if you specify GENERIC.

NOADSP
Cancels automatic RACF protection for users who have the ADSP attribute.

Because ADSP forces the creation of a discrete profile for each data set created by users who have the ADSP attribute, you should normally specify NOADSP if you specify GENERIC.

APPLAUDIT | NOAPPLAUDIT
SETROPTS

APPLAUDIT
Specifies that auditing of APPC transactions on your system be enabled. APPC transactions are audited when they receive authorization (start) or have authorization removed (end). You must request auditing for the appropriate APPL profile. Otherwise, turning APPLAUDIT on does not cause auditing of APPC transactions. See [z/OS Security Server RACF Auditor’s Guide](https://www.ibm.com/support/knowledgecenter/en/SK299A_7.3.0/com.ibm.zos.ez0308320.pdf) for more information on requesting auditing.

You must have the AUDITOR attribute to specify this option.

NOAPPLAUDIT
Specifies that auditing of APPC transactions on your system (starting and ending) be disabled. You must have the AUDITOR attribute to specify this option.

AT | ONLYAT
The AT and ONLYAT keywords are only valid when the command is issued as a RACF TSO command.

AT([node].userid ...)
Specifies that the command is to be directed to the node specified by node, where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed to the local node.

ONLYAT([node].userid ...)
Specifies that the command is to be directed only to the node specified by node where it runs under the authority of the user specified by userid in the RACF subsystem address space.

If node is not specified, the command is directed only to the local node.

Note: SETROPTS LIST with no other keywords specified is not eligible for automatic command direction. Do not specify the ONLYAT and LIST keywords together without any other keywords on a SETROPTS command.

AUDIT | NOAUDIT

AUDIT(class-name ... | *)
Specifies the names of the classes for which you want RACF to perform auditing. For the classes you specify, RACF logs all uses of the RACROUTE REQUEST=DEFINE SVC and all changes made to profiles by RACF commands. When the class specified is USER, RACF logs all password and password phrase changes made by RACROUTE REQUEST=VERIFY. (RACF adds the classes you specify to those already specified for auditing.)

The valid class names are USER, GROUP, DATASET, and those defined in the class descriptor table. For a list of general resource classes defined in the class descriptor table supplied by IBM, see Appendix B, “Supplied RACF resource classes,” on page 693.

If you specify an asterisk (*), logging occurs for all classes.

You must have the AUDITOR attribute to enter the AUDIT operand.

Note: If you activate auditing for a class using SETROPTS AUDIT, RACF activates auditing for all classes in the class descriptor table that have the same POSIT value as the class you specify. For example, the classes TIMS, GIMS, and AIMS all have a POSIT value of 4 in their respective class...
For more information on sharing a POSIT value, see the POSIT keyword of the RDEFINE command.

NOAUDIT(class-name . . . | *)

Specifies the names of the classes for which you no longer want RACF to perform auditing. For the classes you specify, RACF no longer logs all uses of the REQUEST=DEFINE SVC and all changes made to profiles by RACF commands. The valid class names are USER, GROUP, DATASET, and those classes defined in the class descriptor table. For a list of general resource classes defined in the class descriptor table supplied by IBM, see Appendix B, “Supplied RACF resource classes,” on page 693.

If you specify NOAUDIT(*), logging does not occur for any class.

You must have the AUDITOR attribute to enter the NOAUDIT operand.

Note: If you deactivate auditing for a class using SETROPTS NOAUDIT, RACF deactivates auditing for all classes in the class descriptor table that have the same POSIT value as the class you specify. For example, the classes TIMS, GIMS, and AIMS all have a POSIT value of 4 in their respective class descriptor table entries. If you deactivate auditing for any one of these classes, you deactivate auditing for all of them.

For more information on sharing a POSIT value, see the POSIT keyword of the RDEFINE command.

CATDSNS | NOCATDSNS

CATDSNS (FAILURES | WARNING)

Specifies that uncataloged data sets, new (and not cataloged), or system temporary data sets are not to be accessed by users.

The following exceptions apply:

1. The job that creates the data set can access it even if the data set is uncataloged. If the data set is still uncataloged when the job ends, it is inaccessible thereafter.
2. Data sets with discrete profiles can be accessed—even if uncataloged—if allowed by the profile.
3. For uncataloged data sets without discrete profiles, RACF constructs a resource name of ICHUNCAT.dsnane (only the first 30 characters of the dsnane is used). It checks the user’s authority to this resource in the FACILITY class. If the resource is protected by a FACILITY class profile, and the user has access to it, the access is allowed.
4. If the user has the SPECIAL attribute, the access is allowed even if the data set is uncataloged, but a warning message and SMF record is created.
5. If you use DFSMSrmm to manage your tape data sets and the TAPEAUTHF1 option is active (in the DEVSPUPxx member of SYS1.PARMLIB), an uncataloged tape data set might be read by a user who has access to the first file on the tape volume when the first file is cataloged. See z/OS DFSMSrmm Implementation and Customization Guide

(If you use a different tape management system, refer to your product documentation.)
6. Write requests to tape data sets are not denied because of SETROPTS CATDSNS.

CATDSNS might have a negative impact on RACF and system performance because RACF must verify that data sets are cataloged before it allows them to be opened.

Note: For additional information about accessing uncataloged data sets, refer to SETROPTS command in [z/OS Security Server RACF Security Administrator’s Guide](#).
improved when you RACLIST the DIGTCERT and DIGTCRIT classes if
you use resources in these classes. To RACLIST a class, you must
activate it.

NOCLASSACT(class-name ... | *)

Specifies those classes defined by entries in the class descriptor table for
which RACF protection is not to be in effect. If you specify an asterisk (*),
you deactivate RACF protection for all classes defined in the class
descriptor table. For a list of general resource classes defined in the class
descriptor table supplied by IBM, see Appendix B, “Supplied RACF
resource classes,” on page 693.

NOCLASSACT is in effect when RACF is using a newly initialized
database.

Rules:

- If you deactivate a class using SETROPTS NOCLASSACT, RACF
deactivates all classes in the class descriptor table that have the same
POSIT value as the class you specify. For example, the classes TIMS,
GIMS, and AIMS all have a POSIT value of 4 in their respective class
descriptor table entries. If you deactivate any one of these classes, you
deactivate all of them.

 For more information on sharing a POSIT value, see the POSIT keyword
 of the RDEFINE command.

- If MLACTIVE, MLS, MLPOCOBJ, MLFSOBJ or SECLBYSYSTEM is active,
you may not deactivate the SECLABEL class. Issuing SETROPTS
NOCLASSACT(SECLABEL) will fail.

CMDVIOL | NOCMDVIOL

Specifies whether RACF is to log violations detected by RACF commands. You
must have the AUDITOR attribute to specify these options.

CMDVIOL

Specifies that RACF is to log violations detected by RACF commands
(except LISTDSD, LISTGRP, LISTUSER, RLST, and SEARCH) during
RACF command processing. A violation might occur because a user is not
authorized to modify a particular profile or is not authorized to enter a
particular operand on a command.

CMDVIOL is in effect when RACF is using a newly initialized database.

NOCMDVIOL

Specifies that RACF is not to log violations detected by RACF commands
during RACF command processing (except RVARY and SETROPTS, which
are always logged).

COMPATMODE | NOCOMPATMODE

COMPATMODE

Allows users and jobs not using security labels to be on a system enforcing
security labels. The ACEEs of the user IDs or jobs must have been created
by a RACROUTE REQUEST=VERIFY that did not specify the RELEASE=1.9
keyword (or later).

NOCOMPATMODE

Users and jobs must be running with correct security labels to access data.
NOCOMPATMODE is in effect when RACF is using a newly initialized
database.
SETROPTS

EGN | NOEGN
Specifies whether or not to activate or deactivate enhanced generic naming (EGN).

EGN
Activates EGN. When you activate this option, RACF allows you to specify the generic character ** (in addition to the generic characters * and %) when you define data set profile names and entries in the global access checking table.

Note:
1. EGN changes the meaning of the generic character *.
2. When you first activate enhanced generic naming, the RACF-protection provided by existing data set profiles and global access checking table remains the same.

For information on EGN and its effect on profile names, see the description of generic profiles in Appendix A, “Naming considerations for resource profiles,” on page 681 of z/OS Security Server RACF Command Language Reference.

NOEGN
Specifies deactivation of EGN. When you deactivate this option, RACF does not allow you to specify the generic character ** when you define data set names and entries in the global access checking table.

NOEGN is in effect when RACF is using a newly initialized database.

Important:
If you protect data sets with generic profiles while EGN is active and then deactivate this option, your resources can no longer be protected. Table 43 on page 685 and Table 44 on page 685 show examples of generic profiles created with enhanced generic naming active.

Some of these profiles do not provide RACF protection when the option is deactivated. If a data set is unprotected when EGN is deactivated, you can protect the data set with a discrete profile—as described in Appendix A, “Naming considerations for resource profiles,” on page 681 of z/OS Security Server RACF Command Language Reference—either before or after the option is deactivated, or with a generic profile after the option is deactivated.

ERASE | NOERASE

ERASE(erase-indicator)
Specifies that data management is to physically erase the contents of deleted data sets and scratched or released DASD extents. Erasing the data set means overwriting its contents with binary zeroes so that it cannot be read.

Restriction: The ERASE option applies to DASD data sets only, not tape data sets, unless you set the TAPEAUTHDSN option in the DEVSETPxx member of SYS1.PARMLIB. See “Erasing Scratched or Release Data [ERASE Option]” in z/OS Security Server RACF Security Administrator’s Guide for more information. For details about customizing SYS1.PARMLIB, see z/OS MVS Initialization and Tuning Reference. For details about controlling authorization for tape volume overwriting, see z/OS DFSMSrmm Implementation and Customization Guide. (If you use a different tape management system, refer to your product documentation.)
If you specify ERASE without any suboperand, whether a scratched data set is erased depends on the status of the erase indicator in the data set profile. The SETROPTS ERASE suboperand allow you to override the erase indicator in the data set profile, to control the scope of erase-on-scratch on an installation level rather than leaving it to individual users.

The SETROPTS ERASE erase-indicator can be:

ALL
Specifies that data management is to erase all scratched data sets, including temporary data sets, regardless of the erase indicator, if any, in the data set profile.

SECLEVEL(seclevel-name)
Specifies that data management is to erase all scratched data sets that have a security level equal to or greater than the security level that you specify, where seclevel-name must be a member of the SECLEVEL profile in the SECDATA class.

Note: A scratched data set with a security level lower than the level you specify is not erased unless the erase indicator (if any) in the data set profile is on.

NOSECLEVEL
Specifies that RACF is not to consider the security level in the data set profile when it decides whether data management is to erase a scratched data set.

Note: A scratched data set, regardless of security level, is not erased unless the erase indicator (if any) in the data set profile is on.

NOSECLEVEL is the default if you do not specify erase-indicator when you specify ERASE.

NOERASE
Specifies that erase-on-scratch processing is not in effect. NOERASE means that no data sets are erased when deleted (scratched), even if the erase indicator in the data set profile is on.

NOERASE is in effect when RACF is using a newly initialized database.

GENCMD | NOGENCMD

GENCMD(class-name ... | *)
Activates generic profile command processing for the specified classes.
Valid class names are DATASET and all class names except grouping classes and classes defined with the GENERIC(DISALLOWED) attribute.

The following supplied classes in the static class descriptor table (CDT) are defined with the GENERIC(DISALLOWED) attribute:

<table>
<thead>
<tr>
<th>CDT</th>
<th>IDIDMAP</th>
<th>REALM</th>
<th>SECLABEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFIELD</td>
<td>KERBLINK</td>
<td>SECLMBR</td>
<td></td>
</tr>
</tbody>
</table>

To identify installation-defined classes in the dynamic CDT with the GENERIC(DISALLOWED) attribute, issue the RLIST CDT * CDTINFO command to list the attributes of all classes in the dynamic CDT.
If you specify an asterisk (*), you activate generic profile command processing for the DATASET class plus all general resource classes except grouping classes and classes defined with the GENERIC(DISALLOWED) attribute.

When GENCMD is in effect for a class, all the command processors can work on generic profiles, but the RACF SVC routines cannot perform generic profile checking. This operand allows the installation to temporarily disable generic profile checking (during maintenance, for example) and still use the RACF commands to maintain generic profiles.

Generic profile command processing is automatically activated for all classes for which generic profile checking is activated. Therefore, when you issue SETROPTS GENERIC for a class, you need not issue SETROPTS GENCMD for the same class.

Note: If you activate generic profile command processing for a class using SETROPTS GENCMD, RACF activates generic profile command processing for all classes in the class descriptor table that have the same POSIT value as the class you specify, except grouping classes. For example, the resource classes TIMS and AIMS and the grouping class GIMS all have a POSIT value of 4 in their respective class descriptor table entries. If you activate generic profile command processing for TIMS, you also activate it for AIMS. However, you cannot activate this option for GIMS because GIMS is a grouping class.

For more information on sharing a POSIT value, see the POSIT keyword of the RDEFINE command.

NOGENCMD(class-name ... | *)
Deactivates generic profile command processing for the specified classes. Valid class names are DATASET and all class names except grouping classes and classes defined with the GENERIC(DISALLOWED) attribute.

If you specify an asterisk (*), you deactivate generic profile command processing for the DATASET class plus all general resource classes except grouping classes and classes defined with the GENERIC(DISALLOWED) attribute.

NOGENCMD(*) is in effect when RACF is using a newly initialized database.

If generic profile checking is active (GENERIC is in effect), RACF ignores this operand because GENERIC both includes and overrides generic profile command processing.

Note: If you deactivate generic profile command processing for a class using SETROPTS NOGENCMD, RACF deactivates generic profile command processing for all classes in the class descriptor table that have the same POSIT value as the class you specify, except grouping classes. For example, the resource classes TIMS and AIMS and the grouping class GIMS all have a POSIT value of 4 in their respective class descriptor table entries. If you deactivate generic profile command processing for TIMS, you also deactivate it for AIMS. However, GIMS is unaffected because it is a grouping class.

For more information on sharing a POSIT value, see the POSIT keyword of the RDEFINE command.
SETROPTS

GENERIC | NOGENERIC

GENERIC(class-name ... | *)
Activates generic profile checking for the classes specified.

Note: Avoid activating generic profile checking for the DIGTCERT or DIGTRING class.

Valid class names are DATASET and all class names except grouping classes and classes defined with the GENERIC(DISALLOWED) attribute.

The following supplied classes in the static class descriptor table (CDT) are defined with the GENERIC(DISALLOWED) attribute:

<table>
<thead>
<tr>
<th>CDT</th>
<th>IDIDMAP</th>
<th>REALM</th>
<th>SECLABEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFIELD</td>
<td>KERBLINK</td>
<td>SECLMBR</td>
<td></td>
</tr>
</tbody>
</table>

To identify installation-defined classes in the dynamic CDT with the GENERIC(DISALLOWED) attribute, issue the RLIST CDT * CDTINFO command to list the attributes of all classes in the dynamic CDT.

Guidelines:

- When possible, use generic profiles to protect multiple resources and reduce administrative effort. Consider issuing SETROPTS GENERIC(classname) for the classes you use, so that generic profiles are usable in those classes.
- If you already have general resource profiles defined in your database, avoid issuing the SETROPTS GENERIC(*) command. This command activates generic profile checking for all classes except resource grouping classes and classes defined with the GENERIC(DISALLOWED) attribute. Some classes, such as DIGTCERT and DIGTRING, do not support generic profile checking. These and other classes might already have profile names that contain generic characters (*, &, and %).
- If a general resource class already has discrete profiles with names that contain generic characters (*, &, and %), enabling generic profile checking for the class prevents RACF from using those discrete profiles for authorization checking.

 If you enable SETROPTS GENERIC for a class that has a discrete profile name containing generic characters, the profile will be marked **UNUSABLE** in RLIST and SEARCH output listings.

Tip: Use the RDELETE command with the NOGENERIC option to delete this profile.

- In general, once you activate generic profile checking for a class and define generic profiles, avoid deactivating it with the NOGENERIC operand. RACF will not use your previously defined generic profiles for authorization checking while NOGENERIC is in effect.

Generic profile command processing is automatically activated for all classes for which generic profile checking is activated. Therefore, when you issue SETROPTS GENERIC for a class, you need not issue SETROPTS GENCMD for the same class.

If you specify GENERIC with REFRESH, only those currently active and authorized classes are refreshed.

Note:
1. If RACF is enabled for sysplex communication, RACF propagates SETROPTS GENERIC(class-name) REFRESH commands to other members of the data sharing group.

2. If RACF is not enabled for sysplex communication, a SETROPTS GENERIC(class-name) REFRESH command is effective only on the system where it is issued.

3. If you specify GENERIC, you should also specify NOADSP.

4. If you activate generic profile checking for a class using SETROPTS GENERIC, RACF activates generic profile checking for all classes in the class descriptor table that have the same POSIT value as the class you specify, except grouping classes. For example, the resource classes TIMS and AIMS and the grouping class GIMS all have a POSIT value of 4 in their respective class descriptor table entries. If you activate generic profile checking for TIMS, you also activate it for AIMS. However, you cannot activate this option for GIMS because GIMS is a grouping class.

For more information on sharing a POSIT value, see the POSIT keyword of the RDEFINE command.

NOGENERIC(class-name ... | *)

Deactivates the generic profile checking facility for the classes specified.

Guideline: In general, once you activate generic profile checking for a class and define generic profiles, avoid deactivating it with the NOGENERIC operand. RACF will not use your defined generic profiles for authorization checking while NOGENERIC is in effect.

Valid class names are DATASET and all class names except grouping classes and classes defined with the GENERIC(DISALLOWED) attribute.

If you specify an asterisk (*), you deactivate generic profile checking for the DATASET class plus all general resource classes except grouping classes and classes defined with the GENERIC(DISALLOWED) attribute.

NOGENERIC (*) is in effect when RACF is using a newly initialized database.

NOGENERIC does not automatically deactivate generic profile command processing. Therefore, when you issue SETROPTS NOGENERIC for a class, issue SETROPTS NOGENCMND if you want to deactivate generic profile command processing for the same class.

If you specify GENCMD with NOGENERIC, users can issue RACF commands to maintain generic profiles, but RACF does not use generic profile checking during authorization checking.

If you specify NOGENCMND with NOGENERIC, all generic profile command processing is deactivated.

Note: If you deactivate generic profile checking for a class using SETROPTS NOGENERIC, RACF deactivates generic profile checking for all classes in the class descriptor table that have the same POSIT value as the class you specify, except grouping classes. For example, the resource classes TIMS and AIMS and the grouping class GIMS all have a POSIT value of 4 in their respective class descriptor table entries. If you deactivate generic profile checking for TIMS, you also deactivate it for AIMS. However, GIMS is unaffected because it is a grouping class.

For more information on sharing a POSIT value, see the POSIT keyword of the RDEFINE command.
GENERICOWNER | NOGENERICOWNER

GENERICOWNER

Restricts creation of profiles in all general resource classes except the PROGRAM class.

To create a profile that is more specific than any existing profile protecting the same resource a user must:
- Have the SPECIAL attribute
- Be the owner of the existing profile
- Have the group-SPECIAL attribute if a group owns the profile
- Have the group-SPECIAL attribute if the owner of the profile is in the scope of the group.

Note:
1. GENERICOWNER provides protection only when there is an existing (less-specific) profile protecting the resource.
2. A less-specific profile must end in *, ** or trailing % characters. A more specific profile is a profile that matches the less-specific profile name, character for character, up to the ending *, or **, or trailing % characters in the less-specific name. If the less-specific profile ends in %, the characters in the more specific profile that correspond to the contiguous trailing % characters must not be either * or . characters. For more information, see “Permitting profiles for GENERICOWNER classes” on page 690.

For example: To allow USERX to RDEFINE A.B in the JESSPOOL class, you need profile A.* in the JESSPOOL class, which is owned by USERX. You also need profile **, owned by the system administrator, to prevent other CLAUTH users from being able to RDEFINE A.B.

3. GENERICOWNER does not prevent the creation of a more specific profile if the more specific profile is created in the grouping class and is specified on the ADDMEM operand. For example, profile A.* exists in the TERMINAL class and is owned by a group for which user ELAINE does not have group-SPECIAL. If the GENERICOWNER option is in effect, user ELAINE cannot define a more specific profile in the member class (such as, RDEF TERMINAL AA*), but user ELAINE can define a profile if it is specified on the ADDMEM operand for the grouping class profile—such as RDEF GTERMINL profile-name ADDMEM(AA*).

NOGENERICOWNER

Cancels the restriction on the creation of profiles for general resources.

NOGENERICOWNER is in effect when RACF is using a newly initialized database.

GENLIST | NOGENLIST

GENLIST(class-name ...)

Also see RACLIST operand.

Activates the sharing of in-storage generic profiles for the classes specified. When GENLIST is active for a class, the generic profiles for that class are loaded into common storage (ECSA) instead of being resident in the private storage (ELSQA) of each user who references the class. Before
activating GENLIST for a class, you should check with your system programmer to determine if your system is configured with enough ECSA to contain the profiles.

The "z/OS Security Server RACF System Programmer's Guide" contains information about the amount of virtual storage required for generic profiles, and other considerations about when to use RACLST or GENLIST. Generally, when you do not share the RACF database with RACF on a VM system, RACLST provides the best performance with the lowest usage of common storage.

The following classes supplied by IBM can be used with GENLIST:

```
APPL   FIELD   LOGSTRM   TMEADMIN   VMNODE
CPMSOBJ GXFACILI PRINTSRV VMBATCH VMDR
DASDYOL ILMADMIN RACFEVNT VMCMD VMSEGMT
DCEUUIDS INFORMAN RRSFDATA VMDEV XFACILIT
DSNR    JESJOBS  SDSF   VMLAN
FACILITY KEYSMSTR TERMINAL VMMDISK
```

When you activate GENLIST processing for a class, a generic profile in that class is copied from the RACF database into common storage the first time an authorized user requests access to a resource protected by the profile. The profile is retained in common storage and is available for all authorized users, thus saving real storage because the need to retain multiple copies of the same profile (one copy for each requesting user) in common storage is eliminated. Also, because RACF does not have to retrieve the profile each time a user requests access to a resource protected by it, this function saves processing overhead.

If you want to refresh shared in-storage generic profiles for a specific resource class, issue the SETROPTS command with the GENERIC(class-name) and REFRESH operands.

Note: RACF does not allow you to specify SETROPTS GENLIST and SETROPTS RACLST for the same general resource class.

For information on sharing a POSIT value, see the POSIT keyword of the RDEFINE command.

NOGENLIST(class-name ...)

Also see NORACLST operand.

Deactivates the sharing of in-storage generic profiles for the classes specified. Deactivate this function for general resource classes defined in the class descriptor table that are eligible for GENLIST processing. These classes are listed under the description for GENLIST.

When you specify NOGENLIST, RACF deletes in-storage generic profiles for the specified classes from common storage.

NOGENLIST is in effect for all classes defined in the class descriptor table when RACF is using a newly initialized database.

For information on sharing a POSIT value, see the POSIT keyword of the RDEFINE command.
GLOBAL(class-name ... | *)
Specifies those classes eligible for global access checking. If you specify an asterisk (*), you activate global access checking for all valid classes.

Valid classes you may specify are:
- The DATASET class
- The NODES grouping class
- The SECLABEL grouping class
- All other classes defined in the class descriptor table, except for the remaining grouping classes.

For a list of general resource classes defined in the class descriptor table supplied by IBM, see Appendix B, “Supplied RACF resource classes,” on page 693.

If you specify GLOBAL with REFRESH, only those currently active and authorized classes are refreshed. If you have deleted the GLOBAL profile for a class, you should issue the SETROPTS command with the NOGLOBAL operand specified, rather than GLOBAL with REFRESH specified.

Note:
1. If you activate global access checking for a class using SETROPTS GLOBAL, RACF activates global access checking for all classes in the class descriptor table that have the same POSIT value as the class you specify, except the excluded grouping classes. For example, the resource classes TIMS and AIMS and the grouping class GIMS all have a POSIT value of 4 in their respective class descriptor table entries. If you activate global access checking for TIMS, you also activate it for AIMS. However, you cannot activate this option for GIMS because GIMS is a grouping class.
 For more information on sharing a POSIT value, see the POSIT keyword of the RDEFINE command.

2. If RACF is enabled for sysplex communication, it propagates the SETROPTS GLOBAL and SETROPTS GLOBAL REFRESH commands to other systems in the sysplex if the command is successful on the system on which it was entered. If RACF is not enabled for sysplex communication, the command has to be issued on each system sharing the database.

3. Global access checking is bypassed if the user ID has the RESTRICTED attribute.

NOGLOBAL(class-name ... | *)
Deactivates global access checking for the specified classes. For more information on valid classes that are processed by the NOGLOBAL operand, see the GLOBAL operand description.

NOGLOBAL(*) is in effect when RACF is using a newly initialized database.

Note: If you deactivate global access checking for a class using SETROPTS NOGLOBAL, RACF deactivates global access checking for all classes in the class descriptor table that have the same POSIT value as the class you specify, except for the excluded grouping classes. For example, the resource classes TIMS and AIMS and the grouping class GIMS all have a POSIT value of 4 in their respective class descriptor table entries. If you deactivate
global access checking for TIMS, you also deactivate it for AIMS. However, GIMS is unaffected because it is a grouping class.

For more information on sharing a POSIT value, see the POSIT keyword of the RDEFINE command.

GRPLIST | NOGRPLIST

GRPLIST

Specifies that authorization checking processing is to perform list-of-groups access checking for all system users. When you specify GRPLIST, a user’s authority to access or define a resource is not based only on the authority of the user’s current connect group; access is based on the authority of any group to which the user is connected.

NOGRPLIST

Specifies that the user’s authority to access a resource is based on the authority of the user’s current connect group.

NOGRPLIST is in effect when RACF is using a newly initialized database.

INACTIVE | NOINACTIVE

INACTIVE *(unused-userid-interval)*

Specifies the number of days (1 - 255) that a user ID can remain unused and still be considered valid. RACF user verification checks the number of days since the last successful time the user accessed the system against the INACTIVE value and, if the former is larger, revokes the user’s right to use the system. INACTIVE applies to new users based on creation date. If you specify INACTIVE, INITSTATS must be in effect.

If the backup database is needed but does not contain current information, some user IDs can be revoked because they appear to have been unused beyond the number of days specified on the INACTIVE operand. For more information, see [z/OS Security Server RACF System Programmer’s Guide](#).

NOINACTIVE

Specifies that RACF user verification is not to check user IDs against an unused-userid-interval.

NOINACTIVE is in effect when RACF is using a newly initialized database.

INITSTATS | NOINITSTATS

INITSTATS

Specifies that statistics available during RACF user verification are to be recorded. These statistics include the date and time the user was verified by RACF, the number of user verifications that specified a particular group, and the date and time of the user last requested verification with a particular group. If you specify INACTIVE, REVOKE, HISTORY, or WARNING, INITSTATS must be in effect.

For applications that specify the APPL operand on the RACROUTE REQUEST=VERIFY macro, you can define a profile in the APPL class to specify that the application needs only daily statistics recorded for its users. To do this, specify the RACF-INITSTATS(DAILY) string in the APPLDATA field. For more information about statistics collection, see [z/OS Security Server RACF Security Administrator’s Guide](#).

INITSTATS is in effect when RACF is using a newly initialized database.
SETROPTS

NOINITSTATS
 Specifies that statistics available during user verification are not to be recorded.

JES
 Controls job entry subsystem (JES) options. The JES options are:

BATCHALLRACF | NOBATCHALLRACF
 BATCHALLRACF
 Specifies that JES is to test for the presence of a user ID and password on the job statement or for propagated RACF identification information for all batch jobs. If the test fails, JES is to fail the job.

 NOBATCHALLRACF
 Specifies that JES is not to test for the presence of a user ID and a password on the statement, or propagated RACF identification information for all batch jobs.

 NOBATCHALLRACF is in effect when RACF is using a newly initialized database.

EARLYVERIFY | NOEARLYVERIFY
 This setting is ignored.

XBMALLRACF | NOXBMALLRACF
 XBMALLRACF
 Specifies that JES is to test for the presence of either a user ID and password on the JOB statement, or JES-propagated RACF identification information for all jobs to be run with an execution batch monitor. If the test fails, JES is to fail the job.

 XBMALLRACF is only used on JES2.

 NOXBMALLRACF
 Specifies that JES is not to test for the presence of either a user ID and password on the JOB statement, or JES-propagated RACF identification information for all jobs to be run with an execution batch monitor.

 NOXBMALLRACF is in effect when RACF is using a newly initialized database.

NJEUSERID(userid)
 Defines the name (user ID) associated with SYSOUT or jobs that arrive through the network without an RTOKEN or UTOKEN.

 The initial user ID (default user ID) after RACF data set initialization is ???????? (eight question marks).

 Note: The variable userid cannot be a user ID defined in the RACF database. For more information, see the section on providing security for JES in z/OS Security Server RACF Security Administrator’s Guide.

UNDEFINEDUSER(userid)
 Defines the name (user ID) that is associated with local jobs that enter the system without a user ID.

 The initial user ID (default user ID) after RACF data set initialization is ++++++++ (eight plus signs).
SETROPTS

Note: The variable userid cannot be a user ID defined in the RACF database. For more information, see the section on providing security for JES in z/OS Security Server RACF Security Administrator’s Guide.

KERBLVL
Specifies what level of key encryption processing should occur when a KERB segment is being processed for user and realm profiles. Beginning with z/OS Version 1 Release 9, the KERBLVL setting is ignored.

See z/OS Integrated Security Services Network Authentication Service Administration for information about how z/OS Network Authentication Service uses keys and how to customize environment variables related to keys.

LANGUAGE
Specifies the system-wide defaults for national languages (such as American English or Japanese) to be used on your system. You can specify a primary language, a secondary language, or both. The languages you specify depend on which products, when installed on your system, check for primary and secondary languages (using RACROUTE REQUEST=EXTRACT).

- If this user establishes an extended MCS console session, the languages you specify should be the same as the languages specified on the LANGUAGE LANGCODE statements in the MMSLSTxx PARMLIB member. See your MVS system programmer for this information.
- If this is a CICS user, see your CICS administrator for the languages supported by CICS on your system.

The SETROPTS LANGUAGE operand does not affect the language in which the RACF ISPF panels are displayed. The order in which the RACF ISPF panel libraries are allocated determines the language used. If your installation ordered a translated feature of RACF, the RACF program directory gives instructions for setting up the ISPF panels.

PRIMARY/language
Specifies the installation’s default primary language.

The variable language can be a quoted or unquoted string.

If the PRIMARY suboperand is not specified, the primary language is not changed.

SECONDARY/language
Specifies the installation’s default secondary language.

The language name can be a quoted or unquoted string.

If the SECONDARY suboperand is not specified, the secondary language is not changed.

Note:
1. For both the PRIMARY and SECONDARY suboperands, specify the installation-defined name of a currently active language (a maximum of 24 characters) or one of the language codes (3 characters in length) that is installed on your system. For a list of valid codes, see National Language Design Guide, Volume 2, National Language Support Reference Manual, SE09-8002.
2. If the MVS message service is not active, the PRIMARY and SECONDARY values must be a 3-character language code.
3. The same language can be specified for both PRIMARY and SECONDARY.
4. RACF is shipped with both the primary and secondary language defaults set to ENU, meaning United States English.

LIST
Specifies that the current RACF options are to be displayed. If you specify operands in addition to LIST on the SETROPTS command, RACF processes the other operands before it displays the current set of options.

If RACF is enabled for sysplex communication and the system is in read-only mode, users on that system can issue the SETROPTS LIST command. All other operands are ignored.

You must have the SPECIAL, AUDITOR, group-SPECIAL, or group-AUDITOR attribute to enter the LIST operand.

If you have the SPECIAL or group-SPECIAL attribute, RACF displays all operands except these auditing operands:
- APPLAUDIT | NOAPPLAUDIT
- AUDIT | NOAUDIT
- CMDVIOL | NOCMDVIOL
- LOGOPTIONS
- OPERAUDIT | NOOPERAUDIT
- SAUDIT | NOSAUDIT
- SECLABELAUDIT | NOSECLABELAUDIT.

If you have the AUDITOR or the group-AUDITOR attribute, RACF displays all operands.

Note: SETROPTS LIST with no other keywords specified is not eligible for automatic command direction. Do not specify the ONLYAT and LIST keywords together without any other keywords on a SETROPTS command.

LOGOPTIONS (auditing-level (class-name ...) ...)
Audits access attempts to resources in specified classes according to the auditing level specified. You must have the AUDITOR attribute. You can specify the DATASET class and any classes in the class descriptor table. The resources need not have profiles created in order for auditing to occur. See z/OS Security Server RACF Auditor’s Guide for more information on when auditing occurs.

The SUCCESSES and FAILURES operands result in auditing in addition to any auditing specified in profiles in the class. In contrast, the ALWAYS and NEVER operands override any auditing specified in profiles in the class. Note that LOG=NONE, specified on a RACROUTE REQUEST=AUTH, takes precedence (auditing is not performed).

auditing-level
Specifies the access attempts to be logged for class-name. These options are processed in the order listed below. Thus, if class-name is specified with both SUCCESSES and ALWAYS in the same command, auditing takes place at the SUCCESSES level because option SUCCESSES is processed after ALWAYS.

ALWAYS
All access attempts to resources protected by the class are audited.

NEVER
No access attempts to resources protected by the class are audited. (All auditing is suppressed.)
SETROPTS

SUCCESSES
All successful access attempts to resources protected by the class are audited.

FAILURES
All failed access attempts to resources protected by the class are audited.

DEFAULT
Auditing is controlled by the profile protecting the resource, if a profile exists. You can specify DEFAULT for all classes by specifying an asterisk (*) with DEFAULT.

LOGOPTIONS(DEFAULT) is in effect when RACF is using a newly initialized database.

class-name
The RACF class to which **auditing-level** applies. The **class-name** value can be DATASET and any classes in the class descriptor table. Each class can have only one auditing level associated with it. The auditing levels are processed in the following order:
1. ALWAYS
2. NEVER
3. SUCCESSES
4. FAILURES
5. DEFAULT.

This processing order occurs independently of the order you specify the auditing levels. If you specify two or more auditing levels for a class in the same command, only the last option processed takes effect. Thus, if you specify the following command:

```
SETR LOGOPTIONS (FAILURES (DATASET,SECLABEL), ALWAYS (DATASET, APPL), DEFAULT (DATASET, GLOBAL))
```

The options in effect for the classes is:
- ALWAYS for the APPL class
- FAILURES for the SECLABEL class
- DEFAULT for the DATASET and GLOBAL classes

The DATASET and APPL classes are first assigned auditing-level ALWAYS. The DATASET class is then assigned auditing-level FAILURES, as is class SECLABEL. Finally, the DATASET class is assigned DEFAULT auditing-level, as is class GLOBAL.

If you specify one **auditing-level for class-name** and in a separate command specify a new auditing level for the same class name, the new auditing-level take effects.

SETROPTS LOGOPTIONS(DEFAULT(*)) is in effect when RACF is using a newly initialized database.

For information on sharing a POSIT value, see the POSIT keyword of the RDEFINE command.

MLACTIVE | NOMLACTIVE
For the relationships among the SECLABEL class and the MLS, MLACTIVE, MLNAMES, MLQUIET, and SECLBSYSTEM options, see [z/OS Security Server RACF Security Administrator’s Guide](#).
MLACTIVE (FAILURES | WARNING)
Causes security labels to be required on all work entering the system and on all resources defined to USER, DATASET, and all classes defined in the class descriptor table that require security labels.

Rules:
• This option is available only if the SECLABEL class is active. Activation of MLACTIVE will fail if the SECLABEL class is not active or being activated by the command activating MLACTIVE.
• With MLACTIVE, user tasks running in a server address space must have a security label that is equivalent to the address space’s security label.

Data set and general resource profiles in WARNING mode: A user or task can access a resource that is in WARNING mode and has no security label even when MLACTIVE(FAILURES) is in effect and the class requires security labels. The user or task receives a warning message and gains access. (A data set or general resource is in WARNING mode when you define or modify the profile that protects it and you specify the WARNING operand.)

FAILURES
Specifies that RACF is to reject any request to create or access any resource that requires a security label in the profile that protects it, and does not have one, and to reject any work entering the system that does not have a security label.

The only exception is if MLS(FAILURES) and MLACTIVE(FAILURES) are in effect, and a privileged started task or a user with the SPECIAL attribute and the SYSHIGH SECLABEL attempts to access a resource that requires a security label and does not have one. In this case, RACF allows the request as long as the request does not declassify data.

WARNING
Specifies that when a user requests access to a resource that does not have a security label and the resource belongs to a class that requires security labels, access is allowed but a warning is issued. Also, when work enters the system without a security label, access is allowed but a warning is issued.

MLACTIVE(WARNING) is the default value.

NOMLACTIVE
Allows work to enter the system without a security label and allows requests to access a resource that does not have a security label and the resource belongs to a class that requires security labels.

NOMLACTIVE is in effect when RACF is using a newly initialized database.

MLFSOBJ
MLFSOBJ (ACTIVE | INACTIVE)

ACTIVE
Specifies that security labels are required for files and directories. When the SECLABEL class is active, and MLFSOBJ is active, access to files and directories without security labels is denied except by trusted or privileged started tasks. This option cannot be activated if the SECLABEL class is not active.
SETROPTS

If you do not specify ACTIVE or INACTIVE, MLFSOBJ(ACTIVE) is the default.

INACTIVE
Specifies that security labels are not required for files and directories.
INACTIVE is in effect when RACF is using a newly initialized database.

MLPCOBJ

MLPCOBJ (ACTIVE | INACTIVE)

ACTIVE
Specifies that security labels are required for interprocess communication. When the SECLABEL class is active, and MLPCOBJ is active, access to semaphores, message queues and shared memory without associated security labels is denied except by trusted or privileged started tasks. This option cannot be activated if the SECLABEL class is not active.

If you do not specify ACTIVE or INACTIVE, MLPCOBJ(ACTIVE) is the default.

INACTIVE
Specifies that security labels are not required for interprocess communication.
INACTIVE is in effect when RACF is using a newly initialized database.

MLNAMES | NOMLNAMES

MLNAMES
Specifies that users are restricted to viewing only the names of files and directories that could be read from their current security label, and to viewing data set names that they have access to from their current security label. When MLNAMES is active, users listing catalogs or directories will not see names of resources that they cannot currently access.

NOMLNAMES
Specifies that users are not restricted to viewing only the names of files and directories that they cannot currently access.

If you do not specify MLNAMES or NOMLNAMES, NOMLNAMES is the default.
NOMLNAMES is in effect when RACF is using a newly initialized database.

MLQUIET | NOMQUIET

For the relationships among SECLABEL, MLS, MLACTIVE, and MLQUIET, see

z/OS Security Server RACF Security Administrator’s Guide

MLQUIET
Allows only started tasks, console operators, or users with the SPECIAL attribute to log on, start new jobs, or access resources. Actions requiring user verification, resource access checking, or resource definition are available only to the security administrator (SPECIAL user), a trusted computer base job (as indicated in the token), or the console operator.

When this option is enabled, the system is in a tranquil state.
SETROPTS

NOMLQUIET

Allows all users access to the system.

NOMLQUIET is in effect when RACF is using a newly initialized database.

MLS | NOMLS

For the relationships among SECLABEL, MLS, MLACTIVE, and MLQUIET, see "z/OS Security Server RACF Security Administrator’s Guide".

MLS (FAILURES |WARNING)

Prevents a user from declassifying data. In order to copy data, the security label of the target must encompass the security label of the source.

Rules:
• This option is available only if the SECLABEL class is active.
• Activation of MLS will fail if the SECLABEL class is not active or being activated by the command activating MLS.

FAILURES

Specifies that RACF is to reject any request to declassify data.

WARNING

Specifies that when a user attempts to declassify data, RACF is to allow the request but issue warning messages to the user and the security administrator.

MLS(WARNING) is the default value if you do not specify either FAILURES or WARNING.

NOMLS

Allows users to declassify data within the same CATEGORY.

NOMLS is in effect when RACF is using a newly initialized database.

MLSTABLE | NOMLSTABLE

MLSTABLE

Allows the installation to indicate that no one on the system is allowed to alter the security label of an object or alter the definition of the security label, unless MLQUIET is in effect.

NOMLSTABLE

Allows the alteration of security label definitions or the security labels within a profile without requiring MLQUIET to be in effect.

NOMLSTABLE is in effect when RACF is using a newly initialized database.

MODEL | NOMODEL

MODEL

Specifies, through the following suboperands, the model profile processing options. For information about automatic profile modeling, refer to the "z/OS Security Server RACF Security Administrator’s Guide".

GDG | NOGDG

Specifies that RACF should attempt to protect RACF-indicated members of a generation data group (GDG) using a base profile with the same name as the GDG data set base name. If a base profile exists for a particular RACF-indicated member, then RACF uses the base profile when determining whether the user can access or create the
member. Otherwise, RACF uses, or creates, an individual profile for
the model. MODEL(GDG) has no effect on GDG members that are
protected by generic profiles.

NOGDG specifies that GDG members should not be treated specially
by RACF; they are processed as any other data set would be.

GROUP | NOGROUP
Specifies that when creating a new profile for a group-named data set,
RACF should check whether a model profile is specified in the group
profile. If so, that model profile should be used to complete the
definition of the new data set profile.

NOGROUP specifies that RACF should not use model profiles to
complete the definition of new group-named data sets.

USER | NOUSER
Specifies that when creating a new profile for all user ID-named data
sets, RACF should check whether a model profile is specified in the
user profile. If so, that model profile should be used to complete the
definition of the new data set profile.

NOUSER specifies that RACF should not use model profiles to
complete the definition of new user ID-named data sets.

NOMODEL
Specifies that there is no model profile processing for GDG, GROUP, or
USER data sets.

NOMODEL is in effect when RACF is using a newly initialized database.

OPERAUDIT | NOOPERAUDIT
Specifies whether RACF is to log all actions allowed only because a user has
the OPERATIONS (or group-OPERATIONS) attribute. You must have the
AUDITOR attribute to enter these operands.

OPERAUDIT
Specifies that RACF is to log all actions, such as accesses to resources and
commands, allowed only because a user has the OPERATIONS or
group-OPERATIONS attribute.

NOOPERAUDIT
Specifies that RACF is not to log the actions allowed only because a user
has the OPERATIONS or group-OPERATIONS attribute.

NOOPERAUDIT is in effect when RACF is using a newly initialized
database.

PASSWORD (suboperands)
Specifies options to monitor and check passwords and password phrases:

HISTORY | NOHISTORY

HISTORY(number-of-previous-values)
Specifies the number (1 - 32) of previous passwords and password
phrases that RACF saves for each user and compares with each new
intended value. When RACF finds a match with a previous value, or
with the current password or password phrase, RACF rejects the new
intended value.

For passwords, RACF stores only previous passwords in each user's
history. For password phrases, RACF saves the user's current password
phrase in addition to the user's previous password phrases. Therefore, for password phrases, RACF saves one fewer previous value than the number you specify for history.

For example, if you specify 12 for your HISTORY number, RACF saves up to 12 previous passwords and up to 11 previous password phrases for each user.

SETROPTS PASSWORD(HISTORY(12))

If you increase the HISTORY number, RACF saves and compares that number of passwords and password phrases to the new intended value. If you subsequently reduce the HISTORY number, any previous passwords and password phrases stored in the user profile in excess of the newly specified HISTORY number are not deleted and continue to be used for comparison.

For example, if you specify 12 for your HISTORY number and subsequently reduce it to 8, RACF compares the old passwords and password phrases 9 - 12 with the new intended value.

If you specify HISTORY, INITSTATS must be in effect.

NOHISTORY

Specifies that new password and password phrase values are only compared with the current password or password phrase. If prior history information exists in the user profile, it is neither deleted nor changed.

NOHISTORY is in effect when RACF is using a newly initialized database.

INTERVAL(maximum-change-interval)

Specifies the maximum number of days (1 - 254) each user's password and password phrase are valid. For example, if you specify 90 for your INTERVAL number, each user's password is valid for 90 days and each user's password phrase (if set) is valid for 90 days.

RACF uses the value you specify for maximum-change-interval as both:

- The default value for new users defined to RACF through the ADDUSER command.
- The upper limit for users who specify the INTERVAL operand on the PASSWORD command.

When a user logs on to the system, RACF compares this INTERVAL value (the system interval) with the interval value specified in the user's profile (the user's interval). RACF uses the lower of the two values to determine if the user's password and password phrase have expired.

The initial default at RACF initialization is 30 days. The maximum change interval cannot be less than the minimum change interval set with the MINCHANGE keyword.

MINCHANGE(minimum-change-interval)

Specifies the number of days that must pass between a user's password and password phrase changes. Acceptable values are 0 - 254 (days), providing the number of days between changes does not exceed the maximum change interval specified by the INTERVAL keyword. For example, if you specify 5 for your MINCHANGE number, users cannot change their passwords more than once in 5 days, nor can they change their password phrases (if assigned) more than once in 5 days.
The initial default is 0 days, allowing users to change their passwords and password phrases more than once on the same day.

Users can *not* change their own passwords and password phrases within the minimum change interval. However, you can use the ALTUSER command to change another user's password within the minimum change interval if you have at least one of the following authorities:

- You have the SPECIAL attribute.
- The user is within the scope of a group in which you have the group-SPECIAL attribute.
- You are the owner of the user's profile.
- You have at least CONTROL authority to the IRR.PASSWORD.RESET resource in the FACILITY class, and the other user does not have the SPECIAL, OPERATIONS, AUDITOR, or PROTECTED attribute.
- You have at least CONTROL access to an appropriate resource in the FACILITY class (IRR.PWRESET.OWNER.OWNER or IRR.PWRESET.TREE.OWNER), and both of the following conditions are also true:
 - The other user does not have the SPECIAL, OPERATIONS, AUDITOR, or PROTECTED attribute.
 - You are not excluded from altering the user by the IRR.PWRESET.EXCLUDE.EXCLUDED-USER resource in the FACILITY class.

For more information about the IRR.PWRESET profiles, see **z/OS Security Server RACF Security Administrator's Guide**.

MIXEDCASE | NOMIXEDCASE

MIXEDCASE

Indicates that all applications on this system and those that share the RACF database support mixed-case and lowercase passwords. The syntax rules must be modified to allow mixed-case and lowercase characters. (See the RULE section on page 642 for more information.)

When this option is activated, the RACF ALTUSER, ADDUSER, PASSWORD and RACLNXK commands do not translate passwords to uppercase, nor do applications that provide mixed-case password support, such as TSO/E and z/OS UNIX Systems Services. This option is inactive by default.

If you are propagating passwords with RRSF, see “RRSF Considerations for Mixed-Case Passwords” in **z/OS Security Server RACF Security Administrator's Guide**.

Important: The MIXEDCASE option is intended to be activated—after evaluating and updating applications and implementing appropriate password syntax rules—and never deactivated. Deactivate it only if problems are encountered. If you deactivate MIXEDCASE after it was active, any users who changed their passwords to mixed or lower case (when MIXEDCASE was active) will no longer be able to enter the system until an authorized user resets their passwords to uppercase. If you subsequently reactivate MIXEDCASE, the same users must enter their passwords in upper case.

NOMIXEDCASE

Indicates that mixed-case and lowercase passwords are not supported. This is the default setting.
Important: If you issue SETR NOMIXEDCASE after MIXEDCASE was active, any users who changed their passwords to mixed-case or lowercase (when MIXEDCASE was active) can no longer enter the system until an authorized user resets their passwords to uppercase. See the important note for the MIXEDCASE operand.

REVOKE | NOREVOKE

REVOKE(number-of-unsuccessful-attempts)
Specifies the number of consecutive unsuccessful attempts (1 - 255) to access the system (using an incorrect password or password phrase) before RACF revokes the user ID on the next unsuccessful attempt. If you specify REVOKE, INITSTATS must be in effect.

The REVOKE number you specify applies to the combination of incorrect passwords and password phrases RACF allows. For example, if you specify 5 as your REVOKE number, a user will be revoked upon three consecutive incorrect passwords followed by three consecutive incorrect password phrases.

NOREVOKE
Specifies that RACF ignores the number of consecutive unsuccessful attempts to access the system using an incorrect password or password phrase.

RULEn | NORULEn | NORULES

Tip: You might find the ISPF panels easier to use for entering password rules.

RULEn (LENGTH (m1:m2) content-keyword (position))
Specifies an individual syntax rule for new passwords that users specify at logon, on JCL job cards, or on the PASSWORD command. Also applies to passwords specified on the ALTUSER commands that have the NOEXPIRED operand. Eight syntax rules are allowed. Therefore, for the RULEn suboperand, the value of n is 1 - 8.

These syntax rules do not apply to:
• Password phrases
• Logon passwords that are currently in effect for a user
• Logon passwords specified on the ADDUSER command
• Logon passwords specified on the ALTUSER command with the PASSWORD operand and with the EXPIRED operand either specified or defaulted
• Default passwords set by the PASSWORD USER(userid) command, which are set to the user's default group name.

If multiple rules are defined, a password that passes at least one rule is accepted.

Restriction: Changes to password syntax rules will not force users to immediately change their passwords. RACF does not apply new password rules to users until users change their passwords—either voluntarily or at password expiration.

LENGTH(m1:m2)
Specifies the minimum and maximum password lengths to which this particular rule applies (m2 must be greater than or equal to m1). Because RACF allows passwords no longer than 8
alphanumeric characters, the value for m2 must be less than or
equal to 8. If you omit the m2 value, the rule applies to a password
of one length only.

$content\text{-keyword}(position)$

Specifies the syntax rules for the positions indicated by the
LENGTH suboperand. Rules specifying mixed-case characters
should only be set when the MIXEDCASE option is in effect. New
passwords will not match these rules when mixed-case passwords
are not supported, either because the MIXEDCASE option is not in
effect or because an application is used that does not support
mixed-case passwords. The possible values for $content\text{-keyword}$ are:

ALPHA
Includes uppercase alphabetic characters and the national
characters # (X'7B'), $ (X'5B'), and @ (X'7C')

ALPHANUM
Includes the ALPHA characters—uppercase alphabetic
characters and the national characters # (X'7B'), $ (X'5B'),
and @ (X'7C')—and NUMERIC characters.

If the password syntax rule requires only one ALPHANUM
character, passwords must contain either one ALPHA
character or one NUMERIC character.

If the password syntax rule requires two or more
ALPHANUM characters, passwords must contain at least
one ALPHA character and at least one NUMERIC character in the
specified ALPHANUM positions.

VOWEL
Includes uppercase vowel characters, namely A, E, I, O, and U

NOVOWEL
Includes characters that are not vowels, such as
 * Uppercase alphabetic characters that are consonants, not
 vowels
 * National characters
 * Numeric characters

CONSONANT
Includes uppercase non-vowel characters

NUMERIC
Includes numeric characters

NATIONAL
Includes the national characters # (X'7B'), $ (X'5B'), and @
(X'7C')

MIXEDCONSONANT
Includes uppercase and lowercase non-vowel characters

MIXEDVOWEL
Includes the uppercase and lowercase vowel characters, A,
E, I, O, U, and a, e, i, o, u

MIXEDNUM
Includes all characters of the following three types of
MIXEDNUM characters:
SETROPTS

1. ALPHA characters—includes uppercase alphabetic characters and the national characters $ (X'7B'), # (X'7B'), and @ (X'7C')
2. Lowercase alphabetic characters
3. NUMERIC characters.

If the password syntax rule requires only one MIXEDNUM character, passwords must contain at least one character of any one of the three MIXEDNUM character types.

If the password syntax rule requires two MIXEDNUM characters, passwords must contain two characters of different MIXEDNUM character types, in one of the following valid combinations:
- An ALPHA character and a lowercase alphabetic
- An ALPHA character and a NUMERIC character
- A lowercase alphabetic character and a NUMERIC character.

If the password syntax rule requires three or more MIXEDNUM characters, passwords must contain three or more MIXEDNUM characters including at least one character of each MIXEDNUM character type in the specified MIXEDNUM positions.

If the values in the content-keywords do not define every position specified by the LENGTH value, the undefined positions can consist of any combination of alphanumeric characters.

Each content-keyword is followed by a position (in the form of k, not greater than 8), list of positions (form of k1,k2,k3... in any order), or a range (form of k4:k5, where k5 must be greater than or equal to k4).

- Example:
 RULE1(LENGTH(8) CONSONANT(1,3,5:8) NUMERIC(2,4))

- Result:
 Syntax RULE1 applies to passwords eight characters in length with consonants in positions 1, 3, 5, 6, 7, and 8 and numbers in positions 2 and 4. The password B2D2GGDD obeys RULE1, and C3P1B0L0 does not.

- Example:
 RULE2(LENGTH(6) NATIONAL(3) MIXEDNUM(4:6))

- Result:
 Syntax RULE2 applies to passwords 6 characters in length with a national character in position 3 and requires an uppercase alphabetic, a lowercase alphabetic, and a numeric in positions 4, 5, and 6. The password A801t0 obeys RULE2.

NORULE
Specifies that RACF is to delete the particular rule identified by n.

NORULES
Specifies that RACF is to delete all password syntax rules established by the installation.

NORULES is in effect when RACF is using a newly initialized database.
SETROPTS

WARNING | NOWARNING

WARNING(days-before-password-expires)
Specifies the number of days (1 - 255) before a password or password phrase expires, indicating that RACF is to issue a warning message to the TSO user or to the job log of a batch job that specified the expiring password or password phrase.

If you specify a WARNING value that exceeds the INTERVAL value, a warning message is issued at each logon. If you do not want the warning with each logon, specify a value for WARNING that is less than the value you specify for INTERVAL. If you specify WARNING, INITSTATS must be in effect.

NOWARNING
Specifies that RACF is not to issue the warning message for expiring passwords or password phrases.

NOWARNING is in effect when RACF is using a newly initialized database.

PREFIX | NOPREFIX

PREFIX(prefix)
Activates RACF protection for data sets that have single-qualifier names, and specifies the 1 - 8 character prefix to be used as the high-level qualifier in the internal form of the names. The variable prefix should be a predefined group name, and it must not be the high-level qualifier of any actual data sets in the system.

NOPREFIX
Deactivates RACF protection for data sets that have single-level names.

When EGN is active and NOPREFIX is in effect, a data set can be protected with a generic profile of the form ABC..**, where ABC equals the data set name.

NOPREFIX is in effect when RACF is using a newly initialized database.

PROTECTALL | NOPROTECTALL

PROTECTALL(FAILURES | WARNING)
Activates PROTECTALL processing. When PROTECTALL processing is active, the system automatically rejects any request to create or access a data set that is not RACF-protected. This processing includes DASD data sets, tape data sets, catalogs, and GDG basenames. Temporary data sets that comply with standard MVS temporary data set naming conventions are excluded from PROTECTALL processing.

Note that PROTECTALL requires all data sets to be RACF-protected. This includes tape data sets if your installation specifies the TAPEDSN operand on the SETROPTS command.

In order for PROTECTALL to work effectively, you must specify GENERIC to activate generic profile checking. Otherwise, RACF would allow users to create or access only data sets protected by discrete profiles. If your installation uses nonstandard names for temporary data sets, you must also predefine entries in the global access checking table that allow these data sets to be created and accessed.

The WARNING suboperand enables you to specify a warning message to the requestor in place of rejecting the request.
FAILURES
Specifies that RACF is to reject any request to create or access a data set that is not RACF-protected.

The default value is FAILURES.

If PROTECTALL(FAILURES) is in effect and a user with the SPECIAL attribute requests access to an unprotected data set, RACF accepts the request, audits the event, and issues a PROTECTALL warning message.

If PROTECTALL(FAILURES) is in effect and a trusted started task requests access to an unprotected data set, RACF accepts the request, audits the event, and no warning message is issued.

If PROTECTALL(FAILURES) is in effect and a privileged started task requests access to an unprotected data set, RACF accepts the request, the event is not audited, and no warning message is issued.

WARNING
Specifies that when a user requests creation of, or access to, a data set that is not RACF-protected, RACF is to allow the request but issue warning messages to the user and the security administrator.

NOPROTECTALL
Specifies that a user can create or access a data set that is not protected by a profile.

NOPROTECTALL is in effect when RACF is using a newly initialized database.

RACLIST | NORACLIST

RACLIST(class-name ...)
Activates the sharing of in-storage profiles, both generic and discrete, for the classes specified. Also see GENLIST operand.

Activate this function to improve the performance of resource access checking for a general resource class. With the profiles for the class in storage, RACF requires no database I/O when making an access decision.

A valid class-name is any member class for which the class descriptor table allows or requires RACLIST processing. Grouping classes are not valid, except for RACFVARS and NODES. If class-name is valid, not only the specified class-name, but all classes that share the same POSIT are processed. If some classes sharing the same POSIT do not allow RACLIST processing, those classes are skipped.

Only active classes are RAClisted. Be sure to activate each class you want to RAClIST. For example:

```
SETROPTS RACLIST(DIGTCERT) CLASSACT(DIGTCERT)
```

If REFRESH is also specified, member classes for which the class descriptor table does not allow RACLIST processing are also valid because the SETROPTS RACLIST(class-name) REFRESH command refreshes classes that were RAClisted by RACROUTE REQUEST=LIST,GLOBAL=YES or SETROPTS RACLIST. Likewise, classes for which SETROPTS GENLIST was specified are also valid.

You cannot SETROPTS RACLST and SETROPTS GENLIST for the same general resource class.

Rule: If the following supplied classes are active, you must issue the SETROPTS RACLST command to share them:
In-storage profiles for the following supplied classes can be optionally shared by using SETROPTS RACLIST.

ACCTNUM * DBNUM * DBNFORM JESINPUT PERFGRP * TERMINAL *
ALCSAUTH DCEUIDS JESJOBS PTKTVAL TMEADMIN
APPCPORT DIGTCERT * JESSPOOL PRINTSRV * TSOAUTH *
APPL * DLFCLASS LDAPBIND * TSOPROC *
APPCSI DIGTRING KEYSMSTR RRSFDATA * VMNODE
APPCSERV OPERCMS RDATALIB VTAMAPPL
CRIPTOZ FIELD PSFMP PL SERVAUTH
CSFKEYS FSACCESS PTKTDATA STARTED
CSSERV IDIDMAP RACFHC SYSMVIEW
DEVICES NODES RACFVARS UNIXPRIV

Important: For each class marked with an asterisk (*), you might incur performance degradation or missing function if you do not issue the SETROPTS RACLIST command when you define profiles in the class and activate it. For important details about each class, see [z/OS Security Server RACF Security Administrator’s Guide](https://www.ibm.com) (for classes used for RACF functions) or the appropriate program documentation.

If you have, or are considering, authorizing a large number of users for a resource in a class that can be processed to an in-storage profile using the SETROPTS RACLIST command, you must consider the number of entries in the access list, because RACLIST processing merges profiles and the access lists of each profile. The combined number of access-list entries might cause the profile to become too large to be processed, and RACLIST processing might fail. See [z/OS Security Server RACF Security Administrator’s Guide](https://www.ibm.com) for more information about limiting the size of access lists and profile sizes.

Note:
1. When you activate RACLIST processing for a class, RACF copies both discrete and generic profiles for that class into a data space.
2. When the RACGLIST class is active and `class-name` profiles have been specified in the RACGLIST class, SETROPTS RACLIST(`class-name`) stores the RACLISTed results from the data space in the RACGLIST `classname_nnnnn` profiles on the RACF database, enabling all systems sharing the database to access the same level of profile information.

For example if you issue the commands:

```
SETR CLASSACT(RACGLIST)
RDEFINE RACGLIST TERMINAL
```

Then either when you issue:

```
SETROPTS RACLIST(TERMINAL)
```

or at the next IPL, if the TERMINAL class was RACLISTed before the RACGLIST class was activated, RACF creates RACGLIST
SETROPTS

TERMINAL_00001, RACGLIST TERMINAL_00002, and so on, to hold the results of the SETROPTS RACLIST processing.

The profiles are available to all authorized users, thereby eliminating the need for RACF to retrieve a profile each time a user requests access to a resource protected by that profile. Thus, when you activate this function, you reduce processing overhead.

The SETROPTS RACLIST(class-name) command overrides a RACROUTE REQUEST=LIST,GLOBAL=YES request for the same class. The data space and RACGLIST class_name_nnnnn profiles, if any, are refreshed by the SETROPTS RACLIST. SETROPTS LIST output will list the class in the SETR RACLIST CLASSES = line rather than the GLOBAL=YES RACLIST ONLY = line.

3. If you specify RACLIST with REFRESH, RACF rebuilds the discrete and generic profiles for the class and places them in the new data space. If the RACLIST class is active and contains a profile for class-name, the class_name_nnnnn profiles for the class are also rebuilt, or are created if they had not been built previously.

SETROPTS RACLIST(class-name) REFRESH can also be used to refresh classes RACLISTed by RACROUTE REQUEST=LIST,GLOBAL=YES, as well as classes that are RACLISTed. It refreshes the class, but has no effect on SETROPTS LIST output. If the class was processed using SETROPTS RACLIST solely by RACROUTE REQUEST=LIST,ENVIR=CREATE,GLOBAL=YES, the class are listed in the GLOBAL=YES RACLIST ONLY = line. Regardless of whether the class was RACLISTed by GLOBAL=YES, if it was RACLISTed by SETROPTS RACLIST (class-name) then the class is listed only in the SETR RACLIST CLASSES = line.

SETROPTS RACLIST(classname) REFRESH can also be issued to create the RACGLIST profiles for the class, even if the class were not RACLISTed by either RACROUTE REQUEST=LIST,GLOBAL=YES or by SETROPTS RACLIST. Then the first RACROUTE REQUEST=LIST,GLOBAL=YES uses the RACLIST profiles to build the RACLIST data space, rather than accessing the database for each individual discrete and generic profile.

While the rebuild is in progress, RACF continues to use the old in-storage profiles for authorization requests until the new ones are created. When all systems have completed rebuilding the local data spaces, the coordinator signals the members of the data sharing group to discard the old ones, and to begin using the new one.

4. When RACF is enabled for sysplex communication, RACF propagates a SETROPTS RACLIST(class-name) or SETROPTS RACLIST(class-name) REFRESH command issued from any one system (coordinator) to other systems in the data sharing group (peers) if the command is successful on the system on which it was entered. If the RACGLIST class_name_nnnnn profiles were built for the class, peer members of the sysplex use the results to build the RACLIST data space on their system, but do not rebuild the RACGLIST profiles.

If a refresh is being done, RACF continues to use the old in-storage profiles for authorization requests until the new ones are created. When all systems have completed rebuilding the local data spaces, the coordinator signals the members of the data sharing group to discard the old ones, and to begin using the new one.
If RACF is not enabled for sysplex communication, you must issue the SETROPTS RACLIST(class-name) command and the SETROPTS RACLIST(class-name) REFRESH command on each system sharing the database.

5. When you activate RACLIST processing for the CDT class, the dynamic class descriptor table is built in a dataspace instead of in-storage profiles. The information in the dataspace is not used for authorization checking. If authorization checking using RACROUTE REQUEST=FASTAUTH is required for the CDT class, you must use RACROUTE REQUEST=LIST,GLOBAL=NO to locally RACLIST the CDT class profiles. Alternatively, RACROUTE REQUEST=AUTH may be used for the CDT class, and RACF will use CDT profiles in the RACF database for authorization checking. For more information on the dynamic CDT, see z/OS Security Server RACF Security Administrator’s Guide.

NORACLST(class-name ...)
Deactivates the sharing of in-storage profiles, both generic and discrete, for the classes specified. Also see the NOGENLIST operand.

When you specify NORACLST, RACF deletes the data space containing the generic and discrete profiles for the specified classes. The data space might have been created by specifying the class with either a SETROPTS RACLIST command or a RACROUTE REQUEST=LIST,GLOBAL=YES request. In the latter case, all applications that issued a RACROUTE REQUEST=LIST,ENVIR=CREATE,GLOBAL=YES for the class should issue a RACROUTE REQUEST=LIST,ENVIR=DELETE before a SETROPTS NORACLST is issued that processes the class. The SETROPTS NORACLST should be used to delete the data space only after all applications have relinquished their access to it.

For both the SETROPTS RACLIST and RACROUTE REQUEST=LIST,GLOBAL=YES cases, if RACGLIST classname_nnnnn profiles exist for the class, they are deleted. Even if the class was not RACLIS TED, SETROPTS NORACLST can be used to delete these profiles. In all cases, the RACGLIST classname profile remains.

A valid class-name is any member class in the class descriptor table. Grouping classes are not valid, except for RACFVARS and NODES. If class-name is valid, not only the specified class but all classes that share the same POSIT are processed. For a list of general resource classes defined in the class descriptor table supplied by IBM, see Appendix B, ”Supplied RACF resource classes,” on page 693.

Because SETROPTS NORACLST, like SETROPTS RACLIST REFRESH, operates on classes that are RACLIS TED by RACROUTE REQUEST=LIST,GLOBAL=YES, or SETROPTS RACLIST, member classes in the class descriptor table that do not allow RACLIST processing are now valid classes for the command. Both these conditions are still invalid for SETROPTS RACLST.

When RACF is enabled for sysplex communication, RACF propagates the SETROPTS NORACLST command to other systems in the data sharing group, if the command was successful on the system in which it was entered. If RACF is not enabled for sysplex communication, you must issue the SETROPTS NORACLST command on each system sharing the database.
SETROPTS

NORACLST is in effect for all classes defined in the class descriptor table when RACF is using a newly initialized database.

When SETROPTS NORACLST(CDT) is issued, the dataspace containing the dynamic class descriptor table is deactivated, but not deleted. The dataspace remains until the system is restarted. For more information on the dynamic CDT, see z/OS Security Server RACF Security Administrator's Guide.

REALDSN | NOREALDSN

REALDSN
Specifies that RACF is to record, in any SMF log records and operator messages, the real data set name (not the naming-conventions name) used on the data set commands and during resource access checking and resource definition.

NOREALDSN
Specifies that RACF is to record, in any SMF log records and operator messages, the data set names modified according to RACF naming conventions.

NOREALDSN is in effect when RACF is using a newly initialized database.

REFRESH
Refreshes the in-storage generic profiles when specified with GENERIC, GLOBAL or RAACLST, or the in-storage program control tables when specified with WHEN(PROGRAM).

RETPD(nnnnn)
Specifies the default RACF security retention period for tape data sets, where nnnnn is a 1-5 digit number in the range of 0 through 65533 or 99999 to indicate a data set that never expires. The security retention period is the number of days that RACF protection is to remain in effect for a tape data set; RACF stores the value in the tape data set profile.

If you specify RETPD, you must also specify TAPEDSN to activate tape data set protection. If you omit TAPEDSN, RACF records the value you specify for security retention period in the list of RACF options. However, without tape data set protection activated, this value is meaningless.

If you specify RETPD and TAPEDSN, the value you specify for security retention period is the default for your installation; RACF places the value in each tape data set profile unless the user specifies one of the following:
- An EXPDT in the JCL other than the current date
- An RETPD other than 0 on the ADDSD command.

If you specify TAPEDSN and do not specify RETPD, RACF uses a value of 0 for the default security retention period.

RVARYPW([SWITCH(switch-pw)] [STATUS(status-pw)])
Specifies the passwords that the operator is to use to respond to requests to approve RVARY command processing, where switch-pw is the response to a request to switch RACF databases or change the operating mode of RACF, and status-pw is the response to a request to change RACF or database status from ACTIVE to INACTIVE or from INACTIVE to ACTIVE. You can specify different passwords for each response. Note that NO is not a valid password for either SWITCH or STATUS.
When RACF is using a newly initialized database, the switch password and the status password are both set to YES.

SAUDIT | NOSAUDIT
Specifies whether RACF is to log RACF commands issued by users with the SPECIAL or group-SPECIAL attribute. You must have the AUDITOR attribute to specify these operands.

SAUDIT
Specifies that RACF is to log RACF commands (except LISTDSD, LISTGRP, LISTUSER, RLIST, and SEARCH) issued by users who either had the SPECIAL attribute or who gained authority to issue the command through the group-SPECIAL attribute.

SAUDIT is in effect when RACF is using a newly initialized database.

NOSAUDIT
Specifies that RACF is not to log the commands issued by users with the SPECIAL or group-SPECIAL attribute.

SECLABELAUDIT | NOSECLABELAUDIT
You must have the AUDITOR attribute to specify these options.

SECLABELAUDIT
Specifies that the SECLABEL profile's auditing options are to be used in addition to the auditing options specified for the user or resource. This additional auditing occurs whenever an attempt is made to access or define a resource protected by a profile, FSP, or ISP that has a security label specified, or when a user running with a security label attempts to access or define a resource.

The SECLABEL profile requires SETROPTS RACLIST processing. If SECLABEL profile audit options are not specified, SECLABEL auditing is not done.

NOSECLABELAUDIT
Disables auditing by SECLABEL.

NOSECLABELAUDIT is in effect when RACF is using a newly initialized database.

SECLABELCONTROL | NOSECLABELCONTROL

SECLABELCONTROL
Limits the users who can specify the SECLABEL operand on RACF commands. Those allowed to specify the operand are:
- Users with the SPECIAL attribute can specify the SECLABEL operand on any RACF command.
- Users with the group-SPECIAL attribute can specify the SECLABEL operand on the ADDUSER and ALTUSER commands when adding a user to a group within their scope of control (provided the group-SPECIAL is permitted to the SECLABEL).

NOSECLABELCONTROL
Allows any user to change the SECLABEL field in a profile, as long as the user has at least READ access authority to the associated SECLABEL profile.

NOSECLABELCONTROL is in effect when RACF is using a newly initialized database.
SECLBYSYSTEM | NOSECLBYSYSTEM

SECLBYSYSTEM
Specifies that security labels can be activated on a system image basis. When SECLBYSYSTEM is active, the SMF ID values specified in the member list of the profiles in the SECLABEL class will determine whether or not the security label is valid for each system. Security labels that are not valid for a system are considered inactive and cannot be used or listed by users without SPECIAL or AUDITOR on that system. After activating SECLBYSYSTEM, SETR RACLIST(SECLABEL) REFRESH must be issued to complete the activation of security labels by system. This option cannot be activated if the SECLABEL class is not active.

NOSECLBYSYSTEM
Specifies that security labels are not activated on a system image basis. NOSECLBYSYSTEM is in effect when RACF is using a newly initialized database.

SECLEVELAUDIT | NOSECLELEVELAUDIT
You must have the AUDITOR attribute to specify these operands.

SECLEVELAUDIT (security-level)
Activates auditing of access attempts to all RACF-protected resources based on the specified installation-defined security level. RACF audits all access attempts for the specified security level and higher.

You can specify only a security level name defined by your installation as a SECLEVEL profile in the SECDATA class. (For information on defining security levels, see the description of the RDEFINE and RALTER commands.)

NOSECLELEVELAUDIT
Deactivates auditing of access attempts to RACF-protected resources based on a security level.

NOSECLELEVELAUDIT is in effect when RACF is using a newly initialized database.

SESSIONINTERVAL | NOSESSIONINTERVAL

SESSIONINTERVAL(n)
Sets the maximum value that can be specified by RDEFINE or RALTER for session key intervals. This n value must be a number in the range of 1 - 32767 (inclusive).

The SESSIONINTERVAL value after RACF data set initialization is 30. This value is used for:
1. A default if SESSION is specified without INTERVAL on RDEFINE when defining an APPCLU class profile.
2. An upper limit if INTERVAL is specified on RDEFINE or RALTER for APPCLU class profiles.

NOSESSIONINTERVAL
Disables the global limit on the number of days before a session key expires. The internal value is set to zero.

STATISTICS | NOSTATISTICS
Use these operands to cause RACF to record or not record statistical information for the specified class name. The valid class names are DATASET and those classes defined in the class descriptor table. For a list of general
resource classes defined in the class descriptor table supplied by IBM, see Appendix B, “Supplied RACF resource classes,” on page 693.

Note: If you activate or deactivate statistics processing for a class, all other classes in the class descriptor table with the same POSIT number are also be activated or deactivated. If, for instance, you activate statistics processing for the TIMS class, statistics processing is activated for classes AIMS and GIMS because they share POSIT number 4.

For more information on sharing a POSIT value, see the POSIT keyword of the RDEFINE command.

STATISTICS(class-name ... | *)
Specifies that RACF is to record statistical information for class-name.

If you specify an asterisk (*), you activate the recording of statistical information for the DATASET class and all classes defined in the class descriptor table.

When RACF is using a newly initialized database, the recording of class statistics is turned off. Because statistics recording has an impact on system performance, it is recommended that you do not activate this option for any class until your installation evaluates the need to use it versus the potential performance impact. For more information, see z/OS Security Server RACF System Programmer’s Guide.

NOSTATISTICS(class-name ... | *)
Specifies the names of the classes to be deleted from those previously defined to have statistical information recorded.

If you specify an asterisk (*), you deactivate the recording of statistical information for the DATASET class and all classes defined in the class descriptor table.

TAPEDSN | NOTAPEDSN

TAPEDSN
Activates tape data set protection. When tape data set protection is in effect, RACF can protect individual tape data sets as well as tape volumes.

If you activate tape data set protection, you should also activate the TAPEVOL class. If you do not also activate TAPEVOL, RACF does not check the retention period before it deletes a tape data set, and you must provide your own protection for tape data sets that reside on a volume that contains more than one data set.

Before you activate tape data set protection, see z/OS Security Server RACF Security Administrator’s Guide for a complete description of the relationship between TAPEDSN and activating the TAPEVOL class.

NOTAPEDSN
Deactivates tape data set protection. When NOTAPEDSN is in effect, RACF cannot protect individual tape data sets, though it can protect tape volumes.

NOTAPEDSN is in effect when RACF is using a newly initialized database.

TERMINAL(READ | NONE)
Is used to set the universal access authority (UACC) associated with undefined terminals. If you specify TERMINAL but do not specify READ or NONE, the system prompts you for a value.
WHEN | NOWHEN

WHEN(PROGRAM)
Activates RACF program control, which includes both access control to load modules and program access to data sets.

To set up access control to load modules, you must identify your controlled programs by creating a profile for each in the PROGRAM class.
To set up program access to data sets, you must add a conditional access list to the profile of each program-accessed data set. Then, when program control is active, RACF ensures that each controlled load module is executed only by callers with the defined authority. RACF also ensures that each program-accessed data set is opened only by users who are listed in the conditional access list with the proper authority and who are executing the program specified in the conditional access list entry.

When RACF is enabled for sysplex communication, the SETROPTS WHEN(PROGRAM) command and the SETROPTS WHEN(PROGRAM) REFRESH command are propagated to other members of the data sharing group if the command was successful on the system on which it was entered. When RACF is not enabled for sysplex communication, you must issue the SETROPTS WHEN(PROGRAM) command and the SETROPTS WHEN(PROGRAM) REFRESH command on each system sharing the database.

For more information about program control, see z/OS Security Server RACF Security Administrator’s Guide.

Note: The PROGRAM class does not have to be active.

NOWHEN(PROGRAM)
Specifies that RACF program control is not to be active.
NOWHEN(PROGRAM) is in effect when RACF is using a newly initialized database.

Examples

Example 1

Operation User FRG34 wants to establish logging options that causes RACF to log all activity in the USER and GROUP classes, log the activities of users with the SPECIAL and group-SPECIAL attributes, log all accesses allowed only because the user has the OPERATIONS or group-OPERATIONS attribute, log all command violations, and audit all attempts to access RACF-protected resources based on the installation-defined security level SECRET.

Known User FRG34 has the AUDITOR attribute. SECRET is defined as a SECLEVEL profile in the SECDATA class.

Command SETROPTS AUDIT(USER GROUP) OPERAUDIT SECLEVELAUDIT(SECRET)

Defaults SAUDIT CMDVIOL
Example 2

Operation
User RVU03 wants to establish a set of syntax rules for passwords that obey the following rules:

- The minimum password length is 4 characters
- Four character passwords must have at least one numeric and one alphabetic character
- Five character passwords must contain at least one numeric character or be completely alphabetic
- Passwords of 6 or more characters consist of any combination of alphabetic and numeric characters.

Known
User RVU03 has the SPECIAL attribute.

User RVU03 wants to issue this command as a RACF TSO command.

Command
SETROPTS PASSWORD(RULE1(LENGTH(4:5) ALPHANUM(1:5)) RULE2(LENGTH(5) ALPHANUM(1:5)) RULE3(LENGTH(6:8) ALPHANUM(1:8)) RULE4(LENGTH(6:8) NUMERIC(1:8)) RULE5(LENGTH(6:8) ALPHA(1:8)))

Defaults
None.

Example 3

Operation
User ADM1 wants to display the RACF options currently in effect. MVS and VM systems share the RACF database.

Known
User ADM1 has the SPECIAL and AUDITOR attributes.

User ADM1 wants to issue this command as a RACF TSO command.

Command
SETROPTS LIST

Defaults
None.

Output
See Figure 81 on page 657 for a sample listing.

Example 4

Operation
User RVU02 wants to establish system-wide options for an installation. The installation requires tape data set protection and tape volume protection, and the maximum change interval is to be 60 days. The default RACF security retention period for tape data sets is to be 360 days.

Known
User RVU02 has the SPECIAL attribute.

User RVU02 wants to issue this command as a RACF TSO command.

Command
SETROPTS PASSWORD(INTERVAL(60)) CLASSACT(TAPEVOL) TAPEDSN RETPD(360)

Defaults
None.

Example 5

Operation
User ADM1 wants to enable the generic profile checking facility for the DATASET class.

Known
User ADM1 has the SPECIAL attribute.

User ADM1 wants to issue this command as a RACF TSO command.

Command
SETROPTS GENERIC(DATASET)

Defaults
None.

Example 6

Operation
User ADM1 wants to activate global access checking for the DATASET class.

Known
User ADM1 has the SPECIAL attribute.

User ADM1 wants to issue this command as a RACF TSO command.

Command
SETROPTS GLOBAL(DATASET)

Defaults
None.

Example 7

Operation
User ADM1 wants to activate erase-on-scratch processing for all resources with a security level of CONFIDENTIAL or higher and set the SWITCH and STATUS passwords for the RVARY command.

Known
User ADM1 has the SPECIAL attribute. The CONFIDENTIAL security level name is known to RACF.

User ADM1 wants to issue this command as a RACF TSO command.

Command
SETROPTS ERASE(SECLEVEL(CONFIDENTIAL)) RVARYPW(SWITCH(LINUS) STATUS(LUCY))

Defaults
None.
Example 8

Operation The RACF system administrator wants to activate installation defaults for the primary and secondary national languages. The primary language is Japanese and the secondary language is Canadian French.

Known The system administrator has the SPECIAL attribute. The MVS message service is not active. The 3-character language code for Japanese is JPN. The language code for Canadian French is FRC.

The system administrator wants to issue this command as a RACF TSO command.

Command SETROPTS LANGUAGE(PRIMARY(JPN) SECONDARY(FRC))

Defaults None.
The second line of this display, ATTRIBUTES =, refers to global RACF attributes in effect. These attributes can be set only with the SETROPTS command. They are different from, and should not be confused with, the RACF user attributes.

PASSWORD PROCESSING OPTIONS:
PASSWORD CHANGE INTERVAL IS 254 DAYS.
PASSWORD MINIMUM CHANGE INTERVAL IS 2 DAYS.
MIXED CASE PASSWORD SUPPORT IS IN EFFECT.
13 GENERATIONS OF PREVIOUS PASSWORDS BEING MAINTAINED.
AFTER 4 CONSECUTIVE UNSUCCESSFUL PASSWORD ATTEMPTS, A USERID WILL BE REVOKED.
PASSWORD EXPIRATION WARNING LEVEL IS 186 DAYS.
INSTALLATION PASSWORD SYNTAX RULES:
RULE 1 LENGTH(4:5) LLLLL
RULE 2 LENGTH(5) AAAAA
RULE 3 LENGTH(6:8) LLLLLLL
RULE 4 LENGTH(6:8) NNNNNNN
RULE 5 LENGTH(6:8) AAAAAAA

LEGEND:
A-ALPHA C-CONSONANT L-ALPHANUM N-NUMERIC V-VOWEL W-NOVOWEL $-ANYTHING
A-MIXED CONSONANT M-MIXED NUMERIC V-MIXED VOWEL $-NATIONAL
DEFAULT RVARY PASSWORD IS IN EFFECT FOR THE SWITCH FUNCTION.
DEFAULT RVARY PASSWORD IS IN EFFECT FOR THE STATUS FUNCTION.
SECLEVELAUDIT IS INACTIVE
SECLABEL AUDIT IS IN EFFECT
SECLABEL CONTROL IS IN EFFECT
GENERIC OWNER ONLY IS IN EFFECT
COMPATIBILITY MODE IS IN EFFECT
MULTI-LEVEL QUIET IS IN EFFECT.
SIGNOFF (Sign off sessions)

Background

Persistent verification allows users to sign on to a partner LU (logical unit) and have their authority persist. In other words, once a user has signed on, a password is not required for subsequent signon attempts.

APPC/MVS invokes RACF to create and maintain a list called the signed-on-from list. If persistent verification is being used, the signed-on-from list consists of the users currently signed on with Persistent Verification authority.

Purpose

The RACF SIGNOFF operator command removes user entries from the signed-on-from list. Entries in the signed-on-from list are selected by the SIGNOFF command using the following information:
- User ID
- Group
- APPL (the local LU name)
- POE (the partner LU name from which the user is signed on)

The SIGNOFF command has operands which correspond to the items above. You can use these operands to select which user entries to remove from the signed-on-from list.

To determine which user entries are signed off by issuing a particular SIGNOFF command, issue a DISPLAY command with corresponding selection criteria.

Issuing options

The following table identifies the eligible options for issuing the SIGNOFF command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF operator command, see Chapter 4, “RACF operator commands,” on page 21.

Related commands

Use the DISPLAY operator command to view the signed-on-from list.

Authorization required

You might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see Controlling the use of operator commands in z/OS Security Server RACF Security Administrator’s Guide.
SIGNOFF

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the SIGNOFF command is:

```
subsystem-prefix SIGNOFF
   APPL(local-luname | *)
   POE(partner-luname | *)
   USER(userid-name | *)
   [ GROUP(group-name | *) ]
   [ SECLABEL(security-label | *) ]
```

For information on issuing this command as a RACF operator command, see "Rules for entering RACF operator commands" on page 22.

Parameters

subsystem-prefix

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Only specify the subsystem prefix when issuing this command as a RACF operator command. The subsystem prefix is required when issuing RACF operator commands.

The operands listed below allow the operator to specify the user entries to be signed off. The **APPL**, **POE** and **USER** operands are required to uniquely identify a user entry to be signed off. The **GROUP** operand is optional and defaults to a **group-name** consisting of blanks.

APPL(local-luname | *)

This is a required operand. The **local-luname** is a 1 - 8 character name of the local LU to be searched for. An asterisk can occupy the last position of the **local-luname** in order to provide a partial generic selection capability. A character string consisting of a single asterisk is permitted as a full generic that matches any APPL name in the signed-on-from list.

POE(partner-luname | *)

This is a required operand. The **partner-luname** is a 1 - 7 character name of the partner LU to be searched for. A **partner-luname** consisting of a single asterisk is permitted as a full generic that matches any POE name in the signed-on-from list.

USER(userid-name | *)

This is a required operand. The **userid-name** is a 1 - 8 character specification which represents the RACF user ID to be searched for. A character string consisting of a single asterisk is permitted as a full generic that matches any user ID in the signed-on-from list.

GROUP(group-name | *)

This is an optional operand. The **group-name** is a 1 - 8 character name which represents the RACF group to be searched for. A character string consisting of a single asterisk is also permitted as a full generic which matches any
SIGNOFF

`group-name` in the signed-on-from list. If this operand is not specified, the default value is a `group-name` consisting of blanks.

Note that entries in the signed-on-from list might not always be added to that list with a `group-name` value. Such entries have `group-names` consisting of blanks.

SECLABEL(security-label | *)

This is an optional operand. The `security-label` is a 1 - 8 character name that represents the RACF security label to be searched for. This operand is currently ignored.

Examples

Example 1

Operation Sign off a user from a local/partner LU pair.

Known The local LU is `locallu`, the partner LU is `prtnrlu5`, and the `userid-name` is `jim`. The RACF subsystem prefix is `@`.

Command `@signoff user(jim),appl(locallu),poe(prtnrlu5)`

Defaults A `group-name` consisting of blank characters.

Example 2

Operation Sign off all of the users from a local/partner LU pair.

Known The local LU is `locallu`, the partner LU is `prtnrlu5`, and the RACF subsystem prefix is `@`.

Command `@signoff appl(locallu),poe(prtnrlu5),user(*)`

Defaults A `group-name` consisting of blank characters.

Example 3

Operation Sign off a user from all the local/partner LU pairs to which that user is signed on.

Known The `userid-name` is `Kurt`, and the RACF subsystem prefix is `@`.

Command `@signoff appl(*),poe(*),group(*),user(jim)`

Defaults None.

Example 4

Operation Sign off all users from all the partner LUs of a particular local LU.

Known The local LU is `locallu`, the RACF subsystem prefix is `@`.

Command `@signoff appl(locallu),poe(*),user(*),group(*)`

Defaults None.

Example 5

Operation Sign off all users of a particular group from a particular local LU.

Known The local LU is `locallu`, the group is `grp1`, and the RACF subsystem prefix is `@`.

Command `@signoff appl(locallu),poe(*),user(*),group(grp1)`

Defaults None.
STOP (Stop RACF subsystem)

Purpose

Use the STOP command to allow the MVS operator to stop the RACF subsystem address space if restarting a subtask is not sufficient to recover from a failure. This command shuts down the RACF subsystem address space and prevents the loss of any outstanding requests that are waiting for completion.

The STOP command can also be used to stop the RACF subsystem address space before an IPL.

Guidelines:

- If you are directing work to the RACF subsystem, stop the RACF subsystem address space before IPLing to prevent the loss of outstanding requests.
- If you are using automatic direction or password synchronization, do not stop the address space except immediately before an IPL. If you stop it at other times, updates that are made to the local node might not be sent to the other nodes.
- Ensure that all users or applications that update the RACF database are finished before issuing the STOP command.

Issuing options

The following table identifies the eligible options for issuing the STOP command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

For information on issuing this command as a RACF operator command, see Chapter 4, “RACF operator commands,” on page 21.

Related commands

- To restart the RACF subsystem address space, use the MVS START command.
- To restart a function in the RACF subsystem address space, see “RESTART (Restart RACF subsystem functions)” on page 547. You must restart the RACF subsystem address space before restarting functions within the RACF subsystem address space.

Authorization required

You might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.

Syntax

The complete syntax of the STOP command is:

```
subsystem-prefix STOP
```

For information on issuing this command as a RACF operator command, see “Rules for entering RACF operator commands” on page 22.
Parameters

subsystem-prefix

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

The subsystem prefix is a required keyword for RACF operator commands.

Examples

Example 1

Operation User AMT02 wants to shut down the RACF subsystem address space in an orderly manner without losing any remote RRSF requests.

Known The RACF subsystem prefix is @.

Command @STOP

Defaults None.
TARGET (Manage RRSF nodes)

Purpose

Use the TARGET command to:
- List the operational and network protocol attributes of one or more RRSF nodes.
- Add or modify an RRSF node.
- Convert a remote RRSF node from one network protocol to another.
- Add a network protocol or modify protocol attributes for an RRSF node.
- Activate or inactivate an RRSF node or a protocol instance for an RRSF node.
- Specify a prefix and other attributes for the workspace data sets allocated and used by each RRSF node.
- Purge a workspace data set for an RRSF node.
- Delete an RRSF node or a protocol instance for an RRSF node.

Before using the TARGET command for the first time, you should be familiar with the information in “RACF remote sharing facility (RRSF)” in z/OS Security Server RACF System Programmer’s Guide. To help you determine the information you will need to issue the TARGET command, complete the worksheet found in “RRSF initialization worksheet and scenario” in z/OS Security Server RACF System Programmer’s Guide.

Issuing options

The following table identifies the eligible options for issuing the TARGET command:

<table>
<thead>
<tr>
<th>As a RACF TSO command?</th>
<th>As a RACF operator command?</th>
<th>With command direction?</th>
<th>With automatic command direction?</th>
<th>From the RACF parameter library?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For general information about issuing RACF operator commands, see Chapter 4, “RACF operator commands,” on page 21.

Related commands

- To specify and enable options for automatic direction using RRSF, see “SET” on page 593.
- To restart functions of the RACF subsystem address space, see “RESTART (Restart RACF subsystem functions)” on page 547.
- To stop the RACF subsystem address space, see “STOP (Stop RACF subsystem)” on page 662.

Authorization required

You might require sufficient authority to the proper resource in the OPERCMDS class. For details about OPERCMDS resources, see “Controlling the use of operator commands” in z/OS Security Server RACF Security Administrator’s Guide.
TARGET

Syntax

For the key to the symbols used in the command syntax diagrams, see "Syntax of RACF commands and operands" on page 9. The complete syntax of the TARGET command is:

```
subsystem-prefixTARGET
         [ DELETE | DORMANT | OPERATIVE ]
         [ DESCRIPTION('description') ]
         [ LIST ]
         [ LISTPROTOCOL ]
         [ LOCAL ]
         [ MAIN ]
         [ NODE(nodename | * ) ]
         [ PREFIX(qualifier ... ) ]

         [ PROTOCOL(   
             [ APPC(      
                 [ LUNAME(luname) ]
                 [ TPNAME(profile-name) ]
                 [ MODENAME(mode-name) ]
             ) ]
             [ TCP(      
                 [ ADDRESS(address) ]
                 [ PORTNUM(number) ]
             ) ]
         ) ]
         [ PURGE(INMSG | OUTMSG) ]
         [ SYSNAME(sysname | * ) ]
         [ WDSQUAL(qualifier) ]

         [ WORKSPACE( 
             [ STORCLAS(class-name) ]
             [ DATACLAS(class-name) ]
             [ MGMTCLAS(class-name) ]
             [ VOLUME(volume-serial) ]
             [ FILESIZE( 500 ]
             [ "nnnnnnnn" ]
         ) ]
```

Parameters

subsystem-prefix

Specifies that the RACF subsystem is the processing environment of the command. The subsystem prefix can be either the installation-defined prefix for RACF (1 - 8 characters) or, if no prefix has been defined, the RACF subsystem name followed by a blank. If the command prefix was registered with CPF, you can use the MVS command D OPDATA to display it or you can contact your RACF security administrator.

Rule: You must specify the subsystem prefix when issuing the TARGET command.

DELETE | DORMANT | OPERATIVE

Specifies whether to delete, inactivate, or activate an RRSF node or a network protocol instance for an RRSF node.
TARGET

DELETE
Deletes an RRSF node or a protocol instance for the local node.

Subsequent attempts to perform operations requiring the existence of a deleted node fail and a message is issued.

When you delete a node, any workspace data sets for the node that are currently allocated are deallocated. If the workspace data sets are empty, they are also deleted.

The local node cannot be deleted until all target nodes are deleted.

The local system of a multisystem node cannot be deleted until all other targets are deleted. The TARGET command identifies the local system as the system with the SYSNAME that matches the CVTSNAME of the system the command is to run on.

For a multisystem node, the local MAIN system can be deleted only after all of its remote targets are deleted.

The MAIN system of a remote multisystem node can be deleted only after all other peer systems of that remote multisystem node are deleted.

You cannot delete a remote node with an active connection to the local node. You must first inactivate the connection using the DORMANT operand of the TARGET command.

The DELETE operand cannot be specified with DORMANT or OPERATIVE. The only operands that can be specified with DELETE are NODE, LOCAL, PROTOCOL, PURGE, and SYSNAME.

If the PURGE operand is specified with DELETE, the PURGE operand is processed first, regardless of the order in which the operands are specified.

DORMANT
Inactivates an RRSF node or a protocol instance for an RRSF node and places it in the DORMANT state.

While a node is dormant, all network communication with the node is stopped. No RRSF work or output is sent or received by the node. Existing work at the dormant node is completed but the resulting output, if any, is held in the workspace data set. Any RRSF work or output intended for a dormant node is held in the workspace data set of the sending node and is released when the dormant node becomes operative.

Once a node is dormant, the workspace data sets are allocated, if not already allocated. Therefore, no changes to the PREFIX or WORKSPACE characteristics of the data sets are allowed. See the descriptions of those operands for more information.

For the local node, if you specify a protocol name for which no protocol instance exists, it is created.

If either the remote node or local node is a multisystem node, you must define a MAIN system for the multisystem node before specifying DORMANT.

The DORMANT operand cannot be specified with DELETE or OPERATIVE.

If the PURGE operand is specified with DORMANT, the DORMANT operand is processed first, regardless of the order in which the operands are specified.
OPERATIVE
Activates an RRSF node or protocol instance for a node, places it in the OPERATIVE state, and sends any new or previously held requests to the node.

The OPERATIVE operand attempts to activate the node or protocol instance for the node only if the PREFIX for the node is defined and sufficient WORKSPACE and PROTOCOL attributes are defined.

When a node is made operative, the workspace data sets are allocated, if not already allocated. Once the node is operative, no changes to the PREFIX or WORKSPACE characteristics of the data sets are allowed. See the descriptions of those operands for more information.

If the node is already operative when the OPERATIVE operand is specified, the connection to that node is refreshed. No existing workspace or protocol information can be changed.
• If the node is the local node and the APPC server is already registered, the server is reregistered and the APPC transaction program (TP program) is restarted for local and remote nodes.
• If the node is the local node and the TCP listener process is already active, the listener is restarted.

For the local node, if you specify a protocol for which no protocol instance exists, it is created.

For a remote node, activating a second protocol converts its connection with the local node to the new protocol and, upon successful conversion, deletes the original protocol. For details about converting from one protocol to another, see the topic on changing the protocol for a connection in "z/OS Security Server RACF System Programmer’s Guide".

If either the remote node or the local node is a multisystem node, you must define a MAIN system to the multisystem node before specifying OPERATIVE.

The OPERATIVE operand cannot be specified with DELETE or DORMANT.

If the PURGE operand is specified with OPERATIVE, the PURGE operand is processed first, regardless of the order in which the operands are specified.

DESCRIPTION('description')
Specifies a comment that describes the node. The description is displayed in the TARGET LIST output for the node.

Rules:
• The maximum length of the description is 32 characters.
• If the description contains any lowercase characters, they are translated to uppercase characters.
• If parentheses, commas, blanks, or semicolons are part of the description, the character string must be enclosed in single quotation marks.
• If a single quotation mark is part of the description, and the entire character string is enclosed in single quotation marks, two single quotation marks must be entered together for each single quotation mark within the character string.
• If the first character of the description is a single quotation mark, then the string must be entered within single quotation marks and two single quotation marks must be entered for the first character.
LIST

Lists the current operational and protocol attributes of one or more nodes.

For a multisystem node, the LIST operand displays information about the node and about the member systems that comprise the node.

The LIST function is the default function of the TARGET command under any one of the following conditions. Note that when PROTOCOL(protocol) is indicated, the protocol name must be specified without protocol attributes.

- No other TARGET operand is specified.
- Only PROTOCOL(protocol) is specified.
- Only NODE(*) is specified.
- Only NODE(*) and PROTOCOL(protocol) are specified.
- Only NODE(nodename) is specified.
- Only NODE(nodename) and SYSNAME(sysname) are specified.
- Only NODE(nodename) and PROTOCOL(protocol) are specified for a remote node. (See Note.)
- Only NODE(nodename), SYSNAME(sysname), and PROTOCOL(protocol) are specified for a remote multisystem node. (See Note.)
- Only NODE(nodename) and SYSNAME(*) are specified.
- Only NODE(nodename), SYSNAME(*), and PROTOCOL(protocol) are specified for a remote multisystem node.

Note: When PROTOCOL(protocol) is specified with the name of the local node, LIST is not the default function. Instead, a protocol instance for the specified protocol, if not already established, is added to the local node. For information about adding a protocol instance to the local node, see [z/OS Security Server RACF System Programmer’s Guide](#).

When LIST is specified in combination with any other operand, LIST displays the operational and protocol attributes as they exist after RACF processes the other TARGET operands.

The LIST operand displays a summary or a detailed list of information for a node, depending on the options specified with NODE, if any, as shown in [Table 39].

When NODE is omitted, a summary is displayed for all nodes known to the node where the command executes.

Table 39. Type of output displayed when you specify LIST with the following TARGET options

<table>
<thead>
<tr>
<th>TARGET LIST options</th>
<th>Local node</th>
<th>Single-system node</th>
<th>Multisystem node</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Summary</td>
<td>Summary</td>
<td>Summary</td>
</tr>
<tr>
<td>PROTOCOL(protocol)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE(nodename)</td>
<td>Detailed</td>
<td>Detailed</td>
<td></td>
</tr>
<tr>
<td>NODE(nodename) PROTOCOL(protocol)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE(*)</td>
<td></td>
<td></td>
<td>Detailed</td>
</tr>
<tr>
<td>NODE(*) PROTOCOL(protocol)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE(nodename) SYSNAME(systemname)</td>
<td></td>
<td></td>
<td>Not applicable</td>
</tr>
<tr>
<td>NODE(nodename) SYSNAME(systemname) PROTOCOL(protocol)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE(nodename) SYSNAME(*)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE(nodename) SYSNAME(*) PROTOCOL(protocol)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROTOCOL(protocol)
Displays a summary of only nodes, including systems on multisystem
nodes, that contain an instance of the specified protocol.

NODE(nodename)
For a remote single-system node or the local node, displays a detailed
list of the specified node.
For a multisystem node, displays a summary for each member system
of the multisystem node.

NODE(nodename) PROTOCOL(protocol)
When specified with no other operands for a remote node, displays a
detailed list of the specified node only when it contains an instance of
the specified protocol. If it does not, no node information is displayed.
When specified with LIST and other operands for a remote node,
protocol information is displayed after all other operands are
processed. If the specified protocol instance does not exist for the
specified node, it is added and then listed.

Note: For the local node, these options add a protocol instance for the
specified protocol if it does not already exist.

NODE(*)
Displays a detailed list, sorted by node name, of all known nodes
including systems on multisystem nodes.

NODE(*) PROTOCOL(protocol)
Displays a detailed list, sorted by node name, of only nodes, including
systems on multisystem nodes, that contain an instance of the specified
protocol.

NODE(nodename) SYSNAME(systemname)
Displays a detailed list of the specified system.

NODE(nodename) SYSNAME(systemname) PROTOCOL(protocol)
Displays a detailed list of the specified system for a remote
multisystem node only if the system contains an instance of the
specified protocol. If it does not, no system information is displayed.

NODE(nodename) SYSNAME(*)
Displays a detailed list of each system in the multisystem node.

NODE(nodename) SYSNAME(*) PROTOCOL(protocol)
Displays a detailed list of only those systems in the specified node that
contain an instance of the specified protocol.

LISTPROTOCOL
Lists the current operational and protocol attributes of one or more nodes and
lists the protocol name of each listed node.

Specify LISTPROTOCOL when you have a mixed protocol network and want
to list protocol attributes with the summary information for each remote node.
By contrast, LIST displays a summary list that includes protocol information
only when the node has more than one protocol defined. The LISTPROTOCOL
option allows you to avoid displaying a detailed list of all nodes and systems
when you want to review protocol information.
LOCAL
Defines the node specified with the NODE operand as the local node and
defines any other TARGET operand as a local node attribute. You can define
only one local node.

If you omit LOCAL, the specified node is defined as a remote node.

Rule: You must define the local node before attempting to activate a remote
node. This is because information about the local node is used to allocate and
process the RRSF workspace data sets of the remote node.

Once you define a node as the local node, you need not specify LOCAL on
subsequent TARGET commands issued for the same node or for systems you
add to the local multisystem node.

MAIN
Defines the system specified with the SYSNAME operand as the main system
in a multisystem node.

Rules:
- Define the same main system on each system in the multisystem node and
 on each node that communicates with the multisystem node.
- Define the main system of a multisystem node before attempting to activate
 or inactivate any system in the multisystem node.
- For a remote node, you must specify MAIN and SYSNAME when adding
 another protocol to the main system of a multisystem node.

NODE(nodename | *)
Defines the name of a new RRSF node or specifies the name of the node being
listed or modified.

Rule: You must define a node name for the local node and any node that
communicates with the local node.

nodename
Specifies the name of the node.

Guideline: Choose a name that is meaningful because users frequently
specify node when issuing the RAACLK command and when specifying
the AT and ONLYAT operands of several RACF commands.

Syntax rules:
- The maximum length is 8 characters.
- The first character of the name must be one of the following:
 A - Z, # (X'7B'), $ (X'5B'), or @ (X'7C')
- Each remaining character of the name must be one of the following:
 A - Z, 0 - 9, # (X'7B'), $ (X'5B'), or @ (X'7C')

* Specifies all nodes and systems when specified with only the LIST
operand. If any other operand of the TARGET command is specified with
NODE(*), the command fails.

PREFIX(qualifier ...)
Defines the high-level qualifiers that RACF uses to determine the workspace
data set names for the specified node. (Use the WORKSPACE operand to
specify the other attributes of the workspace data sets.)

Rule: You must define the prefix for a node before using the OPERATIVE or
DORMANT operand.
Once the workspace data sets are allocated (when you issue OPERATIVE or DORMANT), you cannot change the prefix.

qualifier

Specifies one or more data set qualifiers as the highest level qualifiers of the workspace data set names. If you specify multiple qualifiers, they must be separated by periods.

The maximum length of the PREFIX value is 19 characters including periods.

Example:

PREFIX(RSFJ.WORK.NODE1)

Important: When selecting a prefix, ensure that the workspace data sets are protected by a data set profile, and that the user ID associated with the RACF subsystem address space has authority to create and access them.

Guideline: Define the same prefix for each member system in a local or remote multisystem node.

PROTOCOL

Specifies the name of the network protocol or defines protocol attributes for the specified node. You can change protocol attributes only when the node is in the initial, DORMANT, or DEFINED state.

The local node can support multiple protocol instances. For remote nodes, adding a second protocol instance is intended to convert the protocol of the node. For details about converting from one protocol to another, see the topic on changing the protocol for a connection in z/OS Security Server RACF System Programmer’s Guide.

For a remote node, you can specify the protocol name without protocol attributes to qualify other TARGET keywords when multiple protocols exist for the specified node. Specifying the protocol name is optional when the remote node has only one protocol instance.

Example:

TARGET NODE(NODE5) PROTOCOL(TCP) DESCRIPTION('MY TCP NODE')

If no protocol instance exists for the specified node and protocol, RACF attempts to create it unless one of the following conditions is found:

- LIST is the default function of the TARGET command.

 For details describing when LIST is the default function, see the LIST operand.

- PROTOCOL is specified with the DELETE or LIST operand.

Tip: When you specify PROTOCOL(TCP) with no protocol attributes for the local node, a usable protocol instance for the specified protocol is created based on default values for the local node. (The same does not apply when you specify PROTOCOL(APPC) because you must specify APPC protocol attributes.)

When you specify a protocol name with no other operands for a remote node, the TARGET LIST function displays information for only nodes that contain the specified protocol instance. (See the description of TARGET LIST for more details.)

Specify only one protocol name per TARGET command. If you specify more than one protocol, only the second one is processed. To define multiple protocols for a node, issue multiple TARGET commands.
Do not specify PROTOCOL for the local node when it is running in local mode.

APPC

Specifies that APPC is the network protocol for the node. This is the default value.

LUNAME(luname)

Defines or changes the logical unit (LU) name associated with the node. You can define or change the LU name when the node is in the initial or DEFINED state. For the local node, you can also change the LU name only if no remote APPC node is already using it and only when the local node is in the initial or DORMANT state.

The LU name can be found in the ACBNAME specification in the APPCPMxx member of SYS1.PARMLIB for the node.

Rule: You must define an LU name for the local node and an LU name for a remote node before making the connection between them dormant or operative.

luname

Specifies the LU name as either one of the following:

- An unqualified LU name of 1 - 8 characters.
- A qualified LU name of 1 - 17 characters in the form of `netid.luname`, where `netid` and `luname` are each 1 - 8 characters separated by a period.

The output of the TARGET LIST command contains the qualified LU name if it is defined.

The LUNAME value you specify is used to determine the names of the RRSF workspace data sets. See the description of the WORKSPACE operand for details.

RACF performs no validity checking on the specified LU name value. You must ensure that the specified LU name is correct.

TPNAME(profile-name)

Defines or changes the APPC transaction program (TP) profile for the node.

profile-name

Specifies a 1 - 64 character name.

If TPNAME is omitted, the default value is IRRRACF.

MODENAME(mode-name)

Defines or changes the APPC mode name that designates the network properties for the session to be allocated.

For information about APPC modes, see [z/OS Communications Server SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/support/knowledgecenter/S59GU2_2.4.0/com.ibm.zos.v2r1.sna攸/progru000000.htm).

mode-name

Specifies a 1 - 8 character name consisting of alphanumeric characters.

If MODENAME is omitted, the default is IRRMODE. If omitted, the MODENAME value is listed as `<NOT SPECIFIED>` in the TARGET LIST output.
TCP
Specifies that TCP/IP is the network protocol for the node. The TCP option is valid only for systems running z/OS V1R13 and higher.

ADDRESS(address)
Defines or changes the host name or IPv4 address of the remote node. You need not define ADDRESS for the local node.

address
Specifies a 1 - 255-character address expressed as a host name or a static IP address. Lowercase characters in the host name are translated to uppercase characters. An IP address may be specified as an IPv4 address or an IPv6 address (if TCP IPv6 is enabled on the system).

If omitted, the default value for the local node is 0.0.0.0, or :: if TCP IPv6 is enabled on the system. If omitted for a remote node, the address is listed as <NOT SPECIFIED> in the TARGET LIST output.

You must define ADDRESS for a remote node before activating it using the OPERATIVE operand.

RACF performs no validity checking on the specified ADDRESS value. You must ensure that the specified address is correct.

If IPv6 is enabled on the system, TARGET LIST detailed output will display resolved IPv6 addresses, where possible.

PORTNUM(number)
Defines or changes the port number.

number
Specifies the port on which the node establishes the TCP socket to listen for requests initiated by a node.

This value must be in the range of 1 to 65535. However, network conventions and existing port assignments will likely further restrict the value that you can choose.

If PORTNUM is omitted, the default value is 18136.

Guidelines:
• Accept the default value unless port 18136 is already in use.
• Use the same port for all RRSF nodes.

PURGE(INMSG)
PURGE(OUTMSG)
Specifies that all entries in the INMSG or OUTMSG workspace data set for the specified node are to be purged.

You can purge an INMSG or OUTMSG workspace data set only when the node is dormant.

When PURGE is specified with DORMANT, the DORMANT operand is processed first, regardless of the order in which the operands are specified.

When PURGE is specified with DELETE or OPERATIVE, the PURGE operand is processed first, regardless of the order in which the operands are specified.

SYSNAME(sysname | *)
Defines the name of a new system in a multisystem node or specifies the name
TARGET

of the system being modified or listed. You cannot change the name of a system. If the specified name does not exist for the node, it is created.

If the SYSNAME operand is specified, you must also specify NODE. The SYSNAME operand is required for multisystem nodes. If it is not specified, RACF assumes that the node is a single-system node. The SYSNAME operand is not required if LIST is specified or defaulted.

When the TARGET command is for the local node, and you specify OPERATIVE or DORMANT, RACF compares the SYSNAME you specified with the CVTSNAME of the system where the command is to run. If they do not match, RACF does not process the OPERATIVE or DORMANT operand.

The same is true for a SYSNAME value of a target system that does not match its CVTSNAME when you specify SYSNAME(*) with OPERATIVE or DORMANT for the local node. In addition, because a conversation should not exist between the systems of a multisystem node, RACF issues an informational message and places it in the SYSLOG. This message might help diagnose why an expected conversation was not established.

sysname

Specifies the name of the system in a multisystem node.

The `sysname` value must match the value in the CVTSNAME field of the system being modified or listed.

Syntax rules:

- The maximum length is 8 characters.
- The first character of the name must be one of the following:
 - `A - Z, # (X'7B'), $ (X'5B'), or @ (X'7C')`
- Each remaining character of the name must be one of the following:
 - `A - Z, 0 - 9, # (X'7B'), $ (X'5B'), or @ (X'7C')`

* Specifies all systems currently defined for the specified node but only when specified with the NODE, DORMANT, OPERATIVE, DELETE, PURGE, or LIST operand.

Tip: Use SYSNAME(*) to issue a common set of TARGET commands on all the systems in a multisystem node.

When specified with DORMANT, OPERATIVE, DELETE, or PURGE, the requested action is attempted for all systems defined for the specified node. If any other operand of the TARGET command is specified with SYSTEM(*), the command fails.

Specify SYSNAME(*) with LIST to display a detailed list of each system in a specified node. If NODE(*) is specified, SYSNAME must be specified as SYSNAME(*) or omitted.

WDSQUAL(qualifier)

Specifies a substitute qualifier for RACF to use to determine the names of the workspace data sets for the specified RRSF node.

qualifier

Specifies a data set name qualifier consisting of 1 - 8 characters. The first character must be alphabetic.

For details about the naming conventions for workspace data sets, see "Workspace data sets" in [z/OS Security Server RACF System Programmer's Guide](#).
Guideline: Specify WDSQUAL when the CVTSNAME of the local node or the LU name of a remote APPC node would not render syntactically valid names for the workspace data sets.

For the local node, WDSQUAL specifies the second qualifier of the workspace data set names. If you omit WDSQUAL, the second qualifier defaults to the CVTSNAME name of the local system. The WDSQUAL value also propagates as the second qualifier of the workspace data set names for remote TCP nodes, but not for APPC nodes.

For a remote node, WDSQUAL specifies the third qualifier of the workspace data set names, substituting for the remote qualifier value.

You can change WDSQUAL for a node that is either in the defined or initial state. You cannot change WDSQUAL for a node in the DORMANT nor OPERATIVE state. If you preallocated the workspace data sets, you cannot change the WDSQUAL value.

Important: When selecting a WDSQUAL qualifier, ensure that the workspace data sets are protected by a data set profile, and that the user ID associated with the RACF subsystem address space has authority to create and access them.

WORKSPACE

Specifies the data set characteristics of two workspace data sets for the specified node. RRSF uses these two message queues to control information and messages associated with work being processed for the node.

The values you supply with the PREFIX, WDSQUAL, and WORKSPACE operands are used to determine the fully qualified names, size, and data management characteristics of the workspace data sets.

For details about the naming conventions for workspace data sets, see "Workspace data sets" in z/OS Security Server RACF System Programmer's Guide. If you opt to preallocate the workspace data sets, see "Defining the workspace data sets" in z/OS Security Server RACF System Programmer's Guide for details.

Guideline: Allow RACF to allocate your workspace data sets for you.

Unless already allocated, RACF allocates two workspace data sets for each node whenever you activate or inactivate the node using the DORMANT or OPERATIVE operands. No workspace data sets are allocated for peer systems in the same multisystem node or for non-main members between two multisystem nodes.

Once the workspace data sets are allocated, you cannot change the data set characteristics by specifying options of the WORKSPACE operand, although you can modify WORKSPACE values. When you display WORKSPACE information using the TARGET LIST command, be aware that the values listed might not be values in effect at the time the data sets were allocated.

Guideline: For multisystem nodes, ensure that all workspace data sets are allocated on shared resources so that all member systems of the multisystem node can access each workspace data set.

With the WORKSPACE operand, you can specify that RACF allocate your workspace data sets on a particular volume or use system-managed storage (SMS). The STORCLAS, DATACLAS, and MGMTCLAS suboperands of WORKSPACE apply to an SMS allocation. The VOLUME suboperand applies to a non-SMS allocation. The FILESIZE suboperand applies to either.
STORCLAS(class-name)
 Specifies the SMS storage class name. For an SMS allocation, STORCLAS is required.

DATACLAS(class-name)
 Specifies the SMS data class name. For an SMS allocation, DATACLAS is optional.

MGMTCLAS(class-name)
 Specifies the SMS management class name. For an SMS allocation, MGMTCLAS is optional.

VOLUME(volume-serial)
 Specifies the volume serial number. For a non-SMS allocation, VOLUME is required. The volume-serial specified must be a valid volume on the system where the TARGET command is issued.

 You cannot specify VOLUME with either STORCLAS, MGMTCLAS, or DATACLAS.

FILESIZE(nnnnnnnnn |500)
 Specifies that the space allocated for the workspace data sets should be sufficient to contain nnnnnnnnn records in each data set. If you omit FILESIZE, the default value is 500 records.

 The allowable range of values for FILESIZE is 1 - 2147483647 records. RACF invokes Access Methods Services to issue the DEFINE CLUSTER command that allocates the RRSF work data sets and specifies your FILESIZE value as the RECORDS value. Note that your actual allocation might be less than specified if you specify a FILESIZE value that exceeds the current maximum RECORDS value.

Examples

Example 1
 Operation User ADMIN wants a summary list of the current operational attributes for all
 nodes in the RRSF configuration.
 Known The RACF subsystem prefix is <.
 Command <TARGET
 Defaults Because no operands are specified, LIST is the default. Because NODE is not
 specified, the command defaults to a summary listing for all target nodes
 known to the node the command runs on.
 Output See Figure 82 on page 678

Example 2
 Operation User ADMIN wants a summary list of protocol status information for all
 target nodes and a detailed list of protocol status information for the local
 node.
 Known The RACF subsystem prefix is <.
 Command <TARGET LISTPROTOCOL
 Defaults None.
 Output See Figure 83 on page 678
Example 3

Operation User ADMIN at POKMVSA wants to define POKMVSA as the local APPC node for an RRSF configuration, list the node, and make it operative.

Known
- The RACF subsystem prefix is @.
- POKMVSA has DFP non-SMS running.
- The volume that contains the workspace data sets is DASD01.
- The high-level qualifier for the workspace data sets is SYS1.RACF.
- The APPC LUNAME is MF1AP001.
- APPC and VTAM have been installed and configured.
- Because the LIST operand is specified in combination with other TARGET operands, the information displayed provides the operational and protocol attributes as they exist after the processing of the other operands.

Command
```
@TARGET NODE(POKMVSA) LOCAL DESCRIPTION('POUGHKEEPSIE MVS SYSTEM A')
PREFIX(SYS1.RACF) WORKSPACE(VOLUME(DASD01))
PROTOCOL(APPC(LUNAME(MF1AP001))) OPERATIVE LIST
```

Defaults
- The APPC TP name defaults to IRRRACF.
- FILESIZE defaults to 500.

Output
See Figure 84 on page 679.

Example 4

Operation User ADMIN at NODE1 wants a detailed list of the current operational attributes for the local node, which has both APPC and TCP protocol information defined.

Known The RACF subsystem prefix is <.

Command
```
<TARGET LIST NODE(NODE1)
```

Defaults None.

Output See Figure 85 on page 679.

Example 5

Operation User ADMIN at NODE1 wants to define NODE2 as a remote TCP/IP node for an RRSF configuration, list the node, and make it operative.

Known
- The RACF subsystem prefix is <.
- NODE1 has DFP non-SMS running.
- The volume that contains the workspace data sets is DASD01.
- The high-level qualifier for the workspace data sets is SYS1.RRSF.
- The TCP/IP host name is MVS5.POK.OURS.COM.
- Because the LIST operand is specified in combination with other TARGET operands, the information displayed provides the operational and protocol attributes as they exist after the processing of the other operands.

Command
```
<TARGET NODE(NODE2) PROTOCOL(TCP(ADDRESS(MVS5.POK.OURS.COM)))
PREFIX(SYS1.RRSF) WORKSPACE(VOLUME(DASD01)) OPERATIVE LIST
```

Defaults
- The TCP PORTNUM defaults to 18136.
- FILESIZE defaults to 500.

Output See Figure 86 on page 681.

Example 6

Operation User ADMIN wants to purge the OUTMSG workspace data set for node POKMVSB.

Known The RACF subsystem prefix is @. POKMVSB must be dormant to purge the workspace data sets. When the PURGE and DORMANT operands are specified together, the DORMANT operand is processed first.

Command
```
@TARGET NODE(POKMVSB) PURGE(OUTMSG) DORMANT
```

Defaults None.

Results User ADMIN receives an informational message.
```
@IRRM021I RACF SUBSYSTEM PURGE OF NODE POKMVSB OUTMSG FILE
SYS1.RACF.POKMVSA.OUTMSG IS COMPLETE.
@IRRM002I RACF SUBSYSTEM TARGET COMMAND HAS COMPLETED SUCCESSFULLY.
```
Example 7

Operation User ADMIN wants to delete node POKMVSC from the set of known target nodes.

Known The RACF subsystem prefix is @. POKMVSC is already dormant.

Command @TARGET NODE(POKMVSC) DELETE

Defaults None.

```
<TARGET
IRRM009I (<) LOCAL RRSF NODE NODE1 IS IN THE OPERATIVE ACTIVE STATE.
IRRM091I (<) - LOCAL NODE TCP LISTENER IS ACTIVE.
IRRM091I (<) - LOCAL NODE APPC LISTENER IS ACTIVE.
IRRM091I (<) REMOTE RRSF NODE NODE2 IS IN THE OPERATIVE ACTIVE STATE.
IRRM091I (<) REMOTE RRSF NODE NODE3 IS IN THE OPERATIVE PENDING CONNECTION STATE.
IRRM091I (<) REMOTE RRSF NODE NODE4 IS IN THE OPERATIVE PENDING CONNECTION STATE.
IRRM091I (<) REMOTE RRSF NODE NODE5 IS IN THE OPERATIVE PENDING CONNECTION STATE.

Figure 82. Summary TARGET LIST output

<TARGET LISTPROTOCOL
IRRM009I (<) LOCAL RRSF NODE NODE1 IS IN THE OPERATIVE ACTIVE STATE.
IRRM091I (<) - LOCAL NODE TCP LISTENER IS ACTIVE.
IRRM091I (<) - LOCAL NODE APPC LISTENER IS ACTIVE.
IRRM091I (<) REMOTE RRSF NODE NODE2 PROTOCOL APPC IS IN THE OPERATIVE ACTIVE STATE.
IRRM091I (<) REMOTE RRSF NODE NODE3 PROTOCOL APPC IS IN THE OPERATIVE PENDING CONNECTION STATE.
IRRM091I (<) REMOTE RRSF NODE NODE4 PROTOCOL TCP IS IN THE OPERATIVE PENDING CONNECTION STATE.
IRRM091I (<) REMOTE RRSF NODE NODE5 PROTOCOL TCP IS IN THE OPERATIVE PENDING CONNECTION STATE.

Figure 83. TARGET LISTPROTOCOL output
```
TARGET NODE(POKMVSA) LOCAL DESCRIPTION('POUGHKEEPSIE MVS SYSTEM A')
PREFIX(SYS1.RACF) WORKSPACE(VOLUME(DASD01)) PROTOCOL(APPC(LUNAME(MF1AP001)))

OPERATIVE LIST
IRRM0101I (@) RSWJ SUBSYSTEM PROPERTIES OF LOCAL RRSF NODE POKMVSA:
STATE - OPERATIVE ACTIVE
DESCRIPTION - "POKR MVS SYSTEM A"
PROTOCOL - APPC
LU NAME - MF1AP001
TP PROFILE NAME - IRRRACF
MODENAME - <NOT SPECIFIED>
LISTENER STATUS - ACTIVE
TIME OF LAST TRANSMISSION TO - <NONE>
TIME OF LAST TRANSMISSION FROM - <NONE>
WORKSPACE FILE SPECIFICATION
PREFIX - "SYS1.RACF"
WDSQUAL - <NOT SPECIFIED>
FILESIZE - 500
VOLUME - DASD01
FILE USAGE
"SYS1.RACF.NODE1.INMSG"
- CONTAINS 0 RECORD(S)
- OCCUPIES 1 EXTENT(S)
"SYS1.RACF.NODE1.OUTMSG"
- CONTAINS 0 RECORD(S)
- OCCUPIES 1 EXTENT(S)

Figure 84. Detailed TARGET LIST output for a local APPC node

<TARGET LIST NODE(NODE1)
IRRM0101I (<) RSWJ SUBSYSTEM PROPERTIES OF LOCAL RRSF NODE NODE1:
STATE - OPERATIVE ACTIVE
DESCRIPTION - <NOT SPECIFIED>
PROTOCOL - TCP
HOST ADDRESS - 0.0.0.0
IP ADDRESS - 9.57.1.243
LISTENER PORT - 18136
LISTENER STATUS - ACTIVE
PROTOCOL - APPC
LU NAME - MF1AP001
TP PROFILE NAME - IRRRACF
MODENAME - <NOT SPECIFIED>
LISTENER STATUS - ACTIVE
TIME OF LAST TRANSMISSION TO - <NONE>
TIME OF LAST TRANSMISSION FROM - <NONE>
WORKSPACE FILE SPECIFICATION
PREFIX - "SYS1.RRSF"
WDSQUAL - <NOT SPECIFIED>
FILESIZE - 500
VOLUME - TEMP01
FILE USAGE
"SYS1.RRSF.NODE1.INMSG"
- CONTAINS 0 RECORD(S)
- OCCUPIES 1 EXTENT(S)
"SYS1.RRSF.NODE1.OUTMSG"
- CONTAINS 0 RECORD(S)
- OCCUPIES 1 EXTENT(S)

Figure 85. Detailed TARGET LIST output for a local node that supports multiple protocols
Appendix A. Naming considerations for resource profiles

Profile definitions

In RACF, resource profiles contain a description of a resource, including the authorized users and the access authority of each user. Resource profiles can be discrete, generic, or, additionally for the DATASET class, fully qualified generic. Regardless of whether a resource profile name is discrete or generic, the format of the name must follow certain rules. For profiles that protect general resources these rules are described by the entries in the class descriptor table and vary from class to class. For profiles that protect data sets these rules are the same as those used by TSO except that the high-level qualifier must be a valid RACF-defined user ID or group name. Also, because the first qualifier is an id, RACF expects a data set name to have a minimum of two qualifiers. For a description of the TSO/E data set naming conventions, see z/OS TSO/E User’s Guide.

Discrete profiles

A discrete profile can protect a single resource that has unique security requirements. A discrete profile matches the name of the resource it protects and cannot exist independently of the resource. In the DATASET class, if you delete the resource, you delete the profile.

For example, a profile protecting a resource named SMITH.REXX.EXEC in class DATASET would protect the data set named SMITH.REXX.EXEC.
Generic profiles

A generic profile can protect several resources that have a similar naming structure and security requirements. Specify generic characters in the profile name if you want to protect more than one resource with the same security requirements.

One or more of the following generic characters are allowed:
- Percent sign (%)
- Single asterisk (*)
- Double asterisk (**)
- Ampersand (&)

Note:

1. The double asterisk (**) is not allowed with the DATASET class if enhanced generic naming (EGN) is inactive.

2. The ampersand (&) is only for general resource profile names and only if the RACFVARS class is active. Resource profiles can be created to protect resource names with unlike names. See z/OS Security Server RACF Security Administrator’s Guide for more information.

For example, a profile protecting a resource named SMITH.* in class DATASET would protect all of SMITH’s data sets that did not have a more specific profile defined (NOEGN is in effect).

Fully-qualified generic profiles (DATASET class only)

A fully-qualified generic profile matches exactly the name of the data set it protects.

One reason to choose a fully-qualified generic profile for data set protection is that the profile is not deleted if the data set is deleted. If the data set is deleted and then recreated, the protection is there without creating another profile. Another reason is to protect multiple copies with one profile.

Determining RACF protection

Although multiple generic profiles can match a general resource name, only the most specific profile actually protects it. For example, AB.CD*, AB.CD.**, and AB.*.CD all match the general resource name AB.CD, but AB.CD.** protects the resource.

The best way to determine which profile is protecting a given resource is to use one of the list commands.

To find out what profile is protecting a general resource, enter the RLIST command:

```
RLIST class-name resource-name
```

which looks for a discrete profile. If none is found, and generic profile checking is in effect for the class, the generic profile which protects the resource is displayed.

To find out what profile is protecting your data set, enter:

```
LISTDSD DA('data-set-name')
```

which looks for a discrete profile. If none is found, and generic profile checking is in effect for the DATASET class, enter:
LISTDSN DA('data-set-name') GENERIC

which looks for a generic profile.

The rest of the appendix discusses the rules governing:
- Profile names for data sets
- Profile names for general resources.

Profile names for data sets

For naming profiles in the DATASET class you can use discrete, generic, or fully qualified generic names.

Table 40 shows the rules for using asterisks in the profile names of data sets when enhanced generic naming (EGN) is enabled and when it is not.

Note: Depending on whether EGN is active, the ending * has different meanings. These are explained in more detail later in this section.

<table>
<thead>
<tr>
<th>Enhanced generic naming (EGN) option</th>
<th>Ending ** allowed</th>
<th>Middle **. allowed</th>
<th>Beginning * allowed</th>
<th>Middle * allowed</th>
<th>Ending * allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGN on</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>EGN off</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Discrete profiles

These are the same as TSO data set names (see z/OS TSO/E Command Reference), except that the high-level qualifier (or the qualifier supplied by a command installation exit) must be a valid RACF-defined user ID or group name.

Generic profile rules—enhanced generic naming inactive

In the DATASET class, you can use generic characters as follows:
- Specify % to match any single character in a data set name
- Specify * as follows:
 - As a character at the end of a data set profile name (for example, ABC.DEF*) to match zero or more characters until the end of the name, zero or more qualifiers until the end of the data set name, or both
 - As a qualifier at the end of a profile name (for example, ABC.DEF.*) to match one or more qualifiers until the end of the data set name
 - As a qualifier in the middle of a profile name (for example, ABC.*.DEF) to match any one qualifier in a data set name
 - As a character at the end of a qualifier in the middle of a profile name (for example, ABC.DE*.FGH) to match zero or more characters until the end of the qualifier in a data set name.

Note: For profiles in the DATASET class, the high-level qualifier of the profile name must not be, nor can it contain, a generic character—for example, *.ABC, AB%.B, and AB*.AB are not allowed.

Tables are provided to show the variety of profiles that can be created using generics, using enhanced generic naming, and what happens to the profile protection if enhanced generic naming is turned off.
Naming considerations for resource profiles

Table 41 and Table 42 provide examples of data set names using generic naming. Enhanced generic naming has not been turned on (SETROPTS NOEGN, the default, is in effect).

Table 43 on page 685 and Table 44 on page 685 provide examples of data set names with enhanced generic naming (SETROPTS EGN is on).

Table 45 on page 686 and Table 46 on page 686 provide examples of data set names if enhanced generic naming is turned off after being turned on. It is not recommended that you turn EGN off after you have turned it on.

Table 41. Generic naming for data sets with enhanced generic naming inactive—Asterisk at the end

<table>
<thead>
<tr>
<th>Profile name</th>
<th>AB.CD*</th>
<th>AB.CD.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources protected by the profile</td>
<td>AB.CD</td>
<td>AB.CD.EF</td>
</tr>
<tr>
<td></td>
<td>AB.CDEF</td>
<td>AB.CD.XY</td>
</tr>
<tr>
<td></td>
<td>AB.CD.EF</td>
<td>AB.CD.EF.GH</td>
</tr>
<tr>
<td>Resources not protected by the profile</td>
<td>ABC.DEF</td>
<td>ABC.CD</td>
</tr>
<tr>
<td></td>
<td>ABC.XY.XY.DEF</td>
<td>ABC.CDEF</td>
</tr>
</tbody>
</table>

Table 42. Generic naming for data sets with enhanced generic naming inactive—Asterisk or percent sign in the middle

<table>
<thead>
<tr>
<th>Profile name</th>
<th>ABC.%EF</th>
<th>AB.*.CD</th>
<th>AB.CD*.EF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources protected by the profile</td>
<td>ABC.DEF</td>
<td>AB.CD.CD</td>
<td>AB.CDEF.EF</td>
</tr>
<tr>
<td></td>
<td>ABC.XEF</td>
<td>AB.CD.EF</td>
<td>AB.CDE.EF</td>
</tr>
<tr>
<td>Resources not protected by the profile</td>
<td>ABC.DEFGHI</td>
<td>AB.CD</td>
<td>AB.CD.XY.EF</td>
</tr>
<tr>
<td></td>
<td>ABC.DEF.GHI</td>
<td>AB.CD.EF</td>
<td>AB.CD.XY.EF</td>
</tr>
<tr>
<td></td>
<td>ABC.DDEF</td>
<td>AB.CDEF</td>
<td>AB.CD.XY.EF</td>
</tr>
</tbody>
</table>

Generic profile rules—enhanced generic naming active

The enhanced generic naming option applies only to data sets and allows you to use double asterisk (**) in the DATASET class. It also changes the meaning of the single asterisk (*) at the end of a profile name.

Your RACF security administrator activates enhanced generic naming by issuing the SETROPTS command with the EGN operand. SETROPTS EGN makes the rules for data set and general resource profiles consistent with each other. Additionally, generic profiles can be more precise, and the generic profile names are more similar to other IBM products.

New installations should set EGN on immediately.

The following rules apply if you have enhanced generic naming in effect.

Specify * as follows:
Naming considerations for resource profiles

- As a character at the end of a data set profile name to match zero or more characters until the end of the qualifier.
- As a qualifier at the end of a profile name to match one qualifier until the end of the data set name.

The meaning of an ending asterisk depends on whether the installation is using generic profiles with or without EGN.

Specify ** as follows:
- As either a middle or end qualifier in a profile name to match zero or more qualifiers. Only one occurrence of a double asterisk is allowed in a profile name. For example, ABC.DE.** is allowed; ABC.DE** is not allowed; and A.**.B.** is not allowed.

RACF does not allow you to specify any generic characters in the high-level qualifier of a data set name.

Table 43 and Table 44 show examples of generic profile names you can create when enhanced generic naming is active, and the resources protected and not protected by those profiles.

Table 43. Generic data set profile names created with enhanced generic naming active—Asterisk and double asterisk at the end

<table>
<thead>
<tr>
<th>Profile name</th>
<th>AB.CD*</th>
<th>AB.CD.*</th>
<th>AB.CD.**</th>
<th>AB.CD*.**</th>
<th>AB.CD..</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB.CD</td>
<td>AB.CD</td>
<td>AB.CD</td>
<td>AB.CD</td>
<td>AB.CD</td>
<td>AB.CD.**</td>
</tr>
<tr>
<td>AB.CDEF</td>
<td>AB.CDE</td>
<td>AB.CDE</td>
<td>AB.CDE</td>
<td>AB.CDE</td>
<td>AB.CDE.**</td>
</tr>
<tr>
<td>Resources protected by the profile</td>
<td>AB.CD.EF</td>
<td>AB.CD.XY</td>
<td>AB.CD.EF</td>
<td>AB.CD.XY</td>
<td>AB.CD.XY</td>
</tr>
<tr>
<td>AB.CD.EF.GH</td>
<td>AB.CD.EF</td>
<td>AB.CD.EF</td>
<td>AB.CD.EF</td>
<td>AB.CD.EF</td>
<td>AB.CD.EF</td>
</tr>
<tr>
<td>AB.CD.XY</td>
<td>AB.CD.XY</td>
<td>AB.CD.XY</td>
<td>AB.CD.XY</td>
<td>AB.CD.XY</td>
<td>AB.CD.XY</td>
</tr>
<tr>
<td>Resources not protected by the profile</td>
<td>AB.CD</td>
<td>AB.CD</td>
<td>AB.CD</td>
<td>AB.CD</td>
<td>AB.CD</td>
</tr>
<tr>
<td>AB.CDEF</td>
<td>AB.CDEF</td>
<td>AB.CDEF</td>
<td>AB.CDEF</td>
<td>AB.CDEF</td>
<td>AB.CDEF</td>
</tr>
<tr>
<td>AB.CDE.FG</td>
<td>AB.CDE.FG</td>
<td>AB.CDE.FG</td>
<td>AB.CDE.FG</td>
<td>AB.CDE.FG</td>
<td>AB.CDE.FG</td>
</tr>
<tr>
<td>ABC.DEF</td>
<td>ABC.DEF</td>
<td>ABC.DEF</td>
<td>ABC.DEF</td>
<td>ABC.DEF</td>
<td>ABC.DEF</td>
</tr>
</tbody>
</table>

Table 44. Generic data set profile names created with enhanced generic naming active—Asterisk, double asterisk, or percent sign in the middle

<table>
<thead>
<tr>
<th>Profile name</th>
<th>ABC.%EF</th>
<th>AB.*.CD</th>
<th>AB.**.CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources protected by the profile</td>
<td>ABC.DEF</td>
<td>AB.CD.CD</td>
<td>AB.CD.CD</td>
</tr>
<tr>
<td>ABC.X.EF</td>
<td>AB.CD.CD</td>
<td>AB.CD.CD</td>
<td>AB.CD.CD</td>
</tr>
<tr>
<td>Resources not protected by the profile</td>
<td>ABC.DEFGHI</td>
<td>AB.CD.EF</td>
<td>AB.CD.EF</td>
</tr>
<tr>
<td>ABC.DEFGHI</td>
<td>AB.CD.EF</td>
<td>AB.CD.EF</td>
<td>AB.CD.EF</td>
</tr>
<tr>
<td>ABC.DEFGHI.GHI</td>
<td>AB.CD.EF</td>
<td>AB.CD.EF</td>
<td>AB.CD.EF</td>
</tr>
<tr>
<td>ABC.DEFGHI.ABC.DDEF</td>
<td>AB.CD.EF</td>
<td>AB.CD.EF</td>
<td>AB.CD.EF</td>
</tr>
<tr>
<td>AB.CD.X.Y.CD</td>
<td>AB.CD.X.Y.CD</td>
<td>AB.CD.X.Y.CD</td>
<td>AB.CD.X.Y.CD</td>
</tr>
</tbody>
</table>

Note: Although multiple generic profiles might match a data set name, only the most specific actually protects the data set. For example, AB.CD*, AB.CD.**, and AB.**.CD all match the data set AB.CD, but AB.CD.** protects the data set.

In general, given two profiles that match a data set, you can find the more specific one by comparing the profile name from left to right. Where they differ, a nongeneric character is more specific than a generic character. In comparing generics, a % is more specific than an *, and an * is more specific than **. Another
Naming considerations for resource profiles

way to determine the most specific is with the SEARCH command, as there are some rare exceptions to the general rule. SEARCH always lists the profiles in the order of the most specific to the least specific.

Data set profiles created before enhanced generic naming is activated continue to provide the same RACF protection after this option is activated.

If you protect resources with generic profiles while enhanced generic naming is active and then deactivate this option, your resources can no longer be protected. Table 45 and Table 46 show examples of generic profiles created with enhanced generic naming active and the protection after deactivation.

Table 45. After deactivating EGN—Asterisk and percent sign in the middle

<table>
<thead>
<tr>
<th>Profile name</th>
<th>ABC.%EF</th>
<th>ABC.*.DEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>How RACF displays the name after EGN is deactivated</td>
<td>ABC.%EF</td>
<td>ABC.*.DEF</td>
</tr>
<tr>
<td>Resources protected by the profile after EGN is deactivated</td>
<td>Same as before</td>
<td>Same as before</td>
</tr>
</tbody>
</table>

Table 46. After deactivating EGN—Asterisk and double asterisk at the end

<table>
<thead>
<tr>
<th>Profile name</th>
<th>AB.CD*</th>
<th>AB.CD.*</th>
<th>AB.CD.**</th>
<th>AB.CD*.**</th>
<th>AB.CD.*.**</th>
</tr>
</thead>
<tbody>
<tr>
<td>How RACF displays the name after EGN is deactivated</td>
<td>AB.CD*</td>
<td>AB.CD.*</td>
<td>AB.CD.</td>
<td>AB.CD*</td>
<td>AB.CD.*</td>
</tr>
<tr>
<td>Resources protected by the profile after EGN is deactivated</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Same as before</td>
<td>Same as before</td>
</tr>
</tbody>
</table>

Choosing between discrete and generic profiles

- Choose a **generic** profile for one of the following reasons:
 - To protect more than one data set with the same security requirements. The data sets protected by a generic profile must have some identical characters in their names. The profile name contains one or more generic characters (* or \%).
 - If you have a single data set that might be deleted, then recreated, and you want the protection to remain the same, you can create a fully qualified generic profile.
- Choose a **discrete** profile for the following reason:
 - To protect one data set with unique security requirements. The name of a discrete profile matches the name of the data set it protects.

While you could also use a fully qualified generic, you should do so with care. Generic profiles can cause performance problems if they are not used to protect several data sets.

If a data set is protected by both a generic profile and a discrete profile, the discrete profile takes precedence and sets the level of protection for the data set.
Naming considerations for resource profiles

If a data set is protected by more than one generic profile, the most specific profile takes precedence and sets the level of protection for the data set.

Note:
1. All the members of a partitioned data set (PDS) are protected by one profile (the profile that protects the data set).
2. For a generic profile, unit and volume information is ignored because the data sets that are protected under the generic profile can be on many different volumes.

Profile support
A generic profile might already exist under which the data set is protected. However, that profile might not provide the exact protection you want for your data set. In this case, you can create a more specific generic profile or a discrete profile for the data set.

All the components of a VSAM data set are protected by one profile (the profile that protects the cluster name). You do not need to create profiles that protect the index and data components of a cluster.

The protection offered by a generic profile is different, depending on the level of data management support installed on your system. Generic profiles protect all data sets that they apply to, including existing data sets and data sets to be created in the future.

A generic profile controls the creation of data sets. When a user creates a new tape or DASD data set that is protected by an existing generic profile, that profile must give the user ALTER authority. If the new data set is a group data set, the user must have either ALTER authority in the profile or CREATE authority in the group.

Data sets that are not RACF-indicated but are protected by a generic profile are not protected if they are transferred (in any way) or available (such as through shared DASD) to another system unless that system has all of the following:
- RACF protection
- The appropriate predefined generic profiles.

For more information, see z/OS Security Server RACF Security Administrator’s Guide.

Profile names for general resources
For naming general resources, you can use discrete or generic profiles. As mentioned before, discrete profile names exactly match the general resource name.

For the syntax required for profiles in the DIRECTRY and FILE classes, see RACF Command Language Reference for your VM system.

Table 47 on page 688 shows the rules for using asterisks in profile names for general resources.

Note: The ending asterisk has different meanings and is explained further in the appropriate sections.
Naming considerations for resource profiles

Table 47. Generic naming for general resources

<table>
<thead>
<tr>
<th>Double asterisk in the beginning, middle, or end</th>
<th>Middle asterisk</th>
<th>Beginning asterisk</th>
<th>Ending asterisk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowed</td>
<td>Allowed</td>
<td>Allowed</td>
<td>Allowed</td>
</tr>
</tbody>
</table>

Valid generic characters are a percent sign (%), asterisk (*), double asterisk (**), and ampersand (&):

- Specify a percent sign to match any single character in a resource profile name.
- Specify a double asterisk once in a profile name as follows:
 - As the entire profile name to match all resource names in a class.
 - As either a beginning, middle, or ending qualifier (for example, **.ABC, ABC..DEF, or ABC**) to match zero or more qualifiers in a resource name.

Note: ** is always available for general resources. The SETROPTS EGN setting is exclusively for data sets.

- Specify an asterisk as follows:
 - As a qualifier at the beginning of a profile name to match any one qualifier in a resource name.
 - As a character at the end of a profile name (for example, ABC.DEF*) to match zero or more characters until the end of the resource name, zero or more qualifiers until the end of the resource name, or both.
 - As a qualifier at the end of a profile name (for example, ABC.DEF.*) to match one or more qualifiers until the end of the resource name.
 - As a qualifier in the middle of a profile name (for example, ABC.*.DEF) to match any one qualifier in a resource name.
 - As a character at the end of a qualifier in the middle of a profile name (for example, ABC.DE*.FGH) to match zero or more characters until the end of the qualifier in a resource name.

- Specify an ampersand as follows:
 - In a profile name to indicate that RACF is to use a profile in the RACFVARS class to determine the actual values to use for that part of the profile name.

Note:

1. If a class in the class descriptor table specifies a value for key qualifiers other than zero, generic profiles created in that class cannot contain generic characters in the specified number of qualifiers at the beginning of a profile name in that class. For example, the VM DIRECTRY class specifies KEYQUAL=2, so no generic characters are allowed in the first 2 qualifiers of DIRECTRY profile names.

2. If a class in the class descriptor table specifies a value for key qualifiers other than zero, all discrete and generic profiles in that class must have at least $nnn+1$ qualifiers in the profile name. The number of qualifiers is determined by counting the number of period characters in the profile and adding one; the first character is not examined. Any generic characters must be in the $nnn+1$ qualifier or beyond. Examples of valid profile names for KEYQUALIFIERS(2) are:
 - A.B.C
 - A.B.**
 - A.B.C.D*
The FILE and DIRECTRY classes have different rules. For the syntax required for profiles in the DIRECTRY and FILE classes, see the appropriate RACF Command Language Reference for your VM system.

See z/OS Security Server RACF Security Administrator’s Guide for the unique naming conventions of specific classes and for a discussion of the RACFVARS class. See also the product documentation (such as PSF or CICS) for the naming conventions of specific classes.

Restricted Use of %* in General Resources

New profiles with an ending %* are not allowed, nor are profiles named %*. The RDEFINE command returns an error message.

Existing profiles with an ending %* are usable, but they should be deleted before creating any new profiles with a middle or beginning * or **. The RALTER and RDELETE commands accepts %* to enable you to make the changes.

Instead of using an ending %*, create new profiles ending with %,** or * for similar function (change AB.C%* to AB.C%,** or AB.C*).

If you have existing profiles named %*, you should create new profiles (suggested name **).

Note: When creating the new profiles, consider using the FROM operand for continued use of the same access list.

Tables 48, 49, and 50 on page 690 give examples of generic profile names for general resources.

Table 48. Generic naming for general resources—Percent sign, asterisk, or double asterisk at the beginning

<table>
<thead>
<tr>
<th>Profile name</th>
<th>%AB</th>
<th>*.AB</th>
<th>**.AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources protected by the profile</td>
<td>B.AB</td>
<td>A.BAB</td>
<td>AB</td>
</tr>
<tr>
<td></td>
<td>A.AB</td>
<td>A.ABAB</td>
<td>AB.ABAB</td>
</tr>
<tr>
<td>Resources not protected by the profile</td>
<td>AB.AB</td>
<td>AB.CAB</td>
<td>ABC.AB</td>
</tr>
<tr>
<td></td>
<td>ABC.AB</td>
<td>AB.CAB</td>
<td>AB.CAB</td>
</tr>
<tr>
<td></td>
<td>AB.AB</td>
<td>A.ABAB</td>
<td>AB.ABAB</td>
</tr>
</tbody>
</table>

Table 49. Generic naming for general resources—Asterisk or double asterisk at the end

<table>
<thead>
<tr>
<th>Profile name</th>
<th>AB.CD*</th>
<th>AB.CD.*</th>
<th>AB.CD.**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources protected by the profile</td>
<td>AB.CD</td>
<td>AB.CDE</td>
<td>AB.CD.CD</td>
</tr>
<tr>
<td></td>
<td>AB.CDEF</td>
<td>AB.CDE</td>
<td>AB.CD.CD</td>
</tr>
<tr>
<td></td>
<td>AB.CD.EF</td>
<td>AB.CDE</td>
<td>AB.CD.CD</td>
</tr>
<tr>
<td></td>
<td>AB.CD.XY</td>
<td>AB.CDE</td>
<td>AB.CD.CD</td>
</tr>
<tr>
<td></td>
<td>AB.CD.EF.XY</td>
<td>AB.CDE</td>
<td>AB.CD.CD</td>
</tr>
<tr>
<td>Resources not protected by the profile</td>
<td>ABC.DEF</td>
<td>ABC.DEF</td>
<td>ABC.DEF</td>
</tr>
<tr>
<td></td>
<td>ABC.DEF</td>
<td>ABC.DEF</td>
<td>ABC.DEF</td>
</tr>
<tr>
<td></td>
<td>ABC.DEF</td>
<td>ABC.DEF</td>
<td>ABC.DEF</td>
</tr>
</tbody>
</table>

Appendix A. Naming considerations for resource profiles 689
Naming considerations for resource profiles

Table 50. Generic naming for general resources—Asterisk, double asterisk, or percent sign in the middle

<table>
<thead>
<tr>
<th>Profile name</th>
<th>ABC.%EF</th>
<th>AB.*.CD</th>
<th>AB.**.CD</th>
<th>AB.***.CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources protected by the profile</td>
<td>ABC.DEF</td>
<td>AB.CD.CD</td>
<td>AB.CD.CD</td>
<td>AB.CD.CD</td>
</tr>
<tr>
<td>Resources not protected by the profile</td>
<td>ABC.DEFGHI</td>
<td>AB.CD.CD</td>
<td>AB.CD.XY</td>
<td>AB.CD.EF</td>
</tr>
</tbody>
</table>

Although multiple generic profiles might match a general resource name, only the most specific actually protects the resource. For example, AB.CD*, AB.CD.**, and AB.**.CD all match the general resource AB.CD, but AB.CD** protects it.

In general, given two profiles that match a general resource, you can find the more specific one by comparing the profile name from left to right. Where they differ, a nongeneric character is more specific than a generic character. In comparing generics, a percent sign is more specific than an asterisk, and an asterisk is more specific than double asterisk. Another way to determine the most specific is with the SEARCH command, as there are some rare exceptions to the general rule. SEARCH always lists the profiles in the order of the most specific to the least specific.

Permitting profiles for GENERICOWNER classes

GENERICOWNER gives an installation the ability of restricting CLAUTH users from creating profiles in a class. In order to do this, a top-level ** profile is defined. This profile is owned by the system administrator and this profile blocks all non-SPECIAL users from creating profiles. A permitting profile must be defined for each CLAUTH user. Each profile defines the subset of resources in the class that the user is allowed to create.

When a CLAUTH user attempts to define a resource, a search is made for a less-specific (permitting) profile that covers the profile being defined. This less-specific profile is a profile that matches the more specific profile name, character for character, up to the ending * or ** or ending contiguous % characters in the less-specific name.

This definition might appear simple, but is not exactly what you might expect in comparison to the preceding section.

Table 51. Permitting profile names containing asterisks (*)

<table>
<thead>
<tr>
<th>Profile name</th>
<th>AA.*</th>
<th>AA.**</th>
<th>AA*</th>
<th>A..</th>
</tr>
</thead>
<tbody>
<tr>
<td>covered</td>
<td>AA.BB</td>
<td>AA.B.C</td>
<td>AA.%</td>
<td>AA.*</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>AA.BB</td>
<td>AA.B.C</td>
<td>AA.**</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>AA.BB</td>
<td>AA.B.C</td>
<td>A.A.C.BB</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>AA.BB</td>
<td>AA.B.C</td>
<td>AA.%</td>
</tr>
<tr>
<td>not covered</td>
<td>AA.**</td>
<td>AA</td>
<td>ABC.BB</td>
<td>ABC.BB</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>ABC.BB</td>
<td>%A.%</td>
<td>A.A.B.CC</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>A.A.B.CC</td>
<td>A.A.B.%</td>
<td>A..</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>A.A.B.CC</td>
<td>A.A.B.%</td>
<td>A..</td>
</tr>
</tbody>
</table>
Table 52. Permitting profile names containing percent signs (%)

<table>
<thead>
<tr>
<th>Profile name</th>
<th>AA.%</th>
<th>AA.%%</th>
<th>AA%</th>
<th>A.*.B.%%</th>
</tr>
</thead>
<tbody>
<tr>
<td>covered</td>
<td>AA.B</td>
<td>AA.BB</td>
<td>AAC</td>
<td>A.*.B.CC</td>
</tr>
<tr>
<td>not covered</td>
<td>AA.**</td>
<td>A%.A</td>
<td>AA.B</td>
<td>A.A.B.CC</td>
</tr>
<tr>
<td></td>
<td>A.A.CC</td>
<td></td>
<td>A%A</td>
<td>A.A.B.%%</td>
</tr>
</tbody>
</table>

Commands to administer VM shared file system profiles

In z/OS, you cannot use the twelve RACF commands that were added for VM to manipulate shared file system (SFS) FILE and DIRECTRY profiles. However, you can use the existing general resource commands (RDEFINE, RALTER, RDELETE, RLIST, PERMIT, and SEARCH), to manipulate FILE and DIRECTRY profiles.

The profile name that you enter on the general resource commands must be in RACF format. The RACF format name contains periods as separators between all qualifiers (no colon), and no punctuation following the last qualifier. For FILE profiles, the file name and file type are the last two qualifiers in the name.

The following table summarizes the commands for administering SFS FILE and DIRECTRY profiles.

Table 53. Commands to administer shared file system (SFS) profiles

<table>
<thead>
<tr>
<th>Function</th>
<th>Command to be used on z/OS</th>
<th>Command provided on z/VM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a DIRECTRY profile</td>
<td>RDEFINE DIRECTRY</td>
<td>ADDDIR ADIR</td>
</tr>
<tr>
<td>Add a FILE profile</td>
<td>RDEFINE FILE</td>
<td>ADDFILE AF</td>
</tr>
<tr>
<td>Alter a DIRECTRY profile</td>
<td>RALTER DIRECTRY</td>
<td>ALTDIR</td>
</tr>
<tr>
<td>Alter a FILE profile</td>
<td>RALTER FILE</td>
<td>ALTFILE ALF</td>
</tr>
<tr>
<td>Delete a DIRECTRY profile</td>
<td>RDELETE DIRECTRY</td>
<td>DELDIR DDIR</td>
</tr>
<tr>
<td>Delete a FILE profile</td>
<td>RDELETE FILE</td>
<td>DELFILE DF</td>
</tr>
<tr>
<td>List a DIRECTRY profile</td>
<td>RLIST DIRECTRY</td>
<td>LDIRECT LDIR</td>
</tr>
<tr>
<td>List a FILE profile</td>
<td>RLIST FILE</td>
<td>LFILE LF</td>
</tr>
<tr>
<td>Change access list in a DIRECTRY profile</td>
<td>PERMIT profile-name CLASS(DIRECTRY)</td>
<td>PERMDIR PDIR</td>
</tr>
<tr>
<td>Change access list in a FILE profile</td>
<td>PERMIT profile-name CLASS(FILE)</td>
<td>PERMFILE PF</td>
</tr>
<tr>
<td>Search for a DIRECTRY profile</td>
<td>SEARCH CLASS(DIRECTRY)</td>
<td>SRDIR</td>
</tr>
<tr>
<td>Search for a FILE profile</td>
<td>SEARCH CLASS(FILE)</td>
<td>SRFILe SRF</td>
</tr>
</tbody>
</table>

Appendix A. Naming considerations for resource profiles 691
Naming considerations for resource profiles
Appendix B. Supplied RACF resource classes

This appendix describes the general resource classes you can find in the supplied class descriptor table (CDT) and contains the following sections:

- “Supplied resource classes for z/OS systems”
- “Supplied resource classes for z/VM systems” on page 701

See z/OS Security Server RACF Macros and Interfaces to find the details (such as POSIT values) associated with the supplied CDT entry for each class.

Supplied resource classes for z/OS systems

Table 54 lists the supplied CDT classes that can be used on z/OS systems. Several classes are listed in categories based on their usage. See restrictions at the end of the table.

Table 54. Resource classes for z/OS systems

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RACF, MVS, and miscellaneous classes</td>
<td></td>
</tr>
<tr>
<td>ALCSAUTH</td>
<td>Supports the Airline Control System/MVS (ALCS/MVS) product.</td>
</tr>
<tr>
<td>APPCLU</td>
<td>Verifying the identity of partner logical units during VTAM session establishment.</td>
</tr>
<tr>
<td>APPCPORT</td>
<td>Controlling which user IDs can access the system from a given LU (APPC port of entry). Also, conditional access to resources for users entering the system from a given LU.</td>
</tr>
<tr>
<td>APPCSERV</td>
<td>Controlling whether a program being run by a user can act as a server for a specific APPC transaction program (TP).</td>
</tr>
<tr>
<td>APPCSI</td>
<td>Controlling access to APPC side information files.</td>
</tr>
<tr>
<td>APPCTP</td>
<td>Controlling the use of APPC transaction programs.</td>
</tr>
<tr>
<td>APPL</td>
<td>Controlling access to applications.</td>
</tr>
<tr>
<td>CACHECLS</td>
<td>Contains profiles used for saving and restoring cache contents from the RACF database.</td>
</tr>
<tr>
<td>CBIND</td>
<td>Controlling the client's ability to bind to the server.</td>
</tr>
<tr>
<td>CDT</td>
<td>Contains profiles for installation-defined classes for the dynamic CDT.</td>
</tr>
<tr>
<td>CFIELD</td>
<td>Contains profiles that define the installation's custom fields.</td>
</tr>
<tr>
<td>CONSOLE</td>
<td>Controlling access to MCS consoles. Also, conditional access to other resources for commands originating from an MCS console.</td>
</tr>
<tr>
<td>DASDVOL</td>
<td>DASD volumes.</td>
</tr>
<tr>
<td>DBNFORM</td>
<td>Reserved for future IBM use.</td>
</tr>
<tr>
<td>DEVICES</td>
<td>Used by MVS allocation to control who can allocate devices such as:</td>
</tr>
<tr>
<td></td>
<td>• Unit record devices (printers and punches) (allocated only by PSF, JES2, or JES3)</td>
</tr>
<tr>
<td></td>
<td>• Graphics devices (allocated only by VTAM)</td>
</tr>
<tr>
<td></td>
<td>• Teleprocessing (TP) or communications devices (allocated only by VTAM)</td>
</tr>
<tr>
<td>DIGTCERT</td>
<td>Contains digital certificates and information related to them.</td>
</tr>
</tbody>
</table>
CDT classes

Table 54. Resource classes for z/OS systems (continued)

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIGTCRIT</td>
<td>Specifies additional criteria for certificate name filters.</td>
</tr>
<tr>
<td>DIGTNMAP</td>
<td>Mapping class for certificate name filters.</td>
</tr>
<tr>
<td>DIGTRING</td>
<td>Contains a profile for each key ring and provides information about the</td>
</tr>
<tr>
<td></td>
<td>digital certificates that are part of each key ring.</td>
</tr>
<tr>
<td>DIRAUTH</td>
<td>Setting logging options for RACROUTE REQUEST=DIRAUTH requests. Also, if the</td>
</tr>
<tr>
<td></td>
<td>DIRAUTH class is active, security label authorization checking is done</td>
</tr>
<tr>
<td></td>
<td>when a user receives a message sent through the TPUT macro or the TSO</td>
</tr>
<tr>
<td></td>
<td>SEND, or LISTBC commands.</td>
</tr>
<tr>
<td>DLFCLASS</td>
<td>The data lookaside facility.</td>
</tr>
<tr>
<td>FACILITY</td>
<td>Miscellaneous uses. Profiles are defined in this class so resource managers</td>
</tr>
<tr>
<td></td>
<td>typically elements of z/OS or z/VM can check a user's access to the</td>
</tr>
<tr>
<td></td>
<td>profiles when the user takes some action. Examples are the profiles used</td>
</tr>
<tr>
<td></td>
<td>to control execution of RACDCERT command functions and the profiles used</td>
</tr>
<tr>
<td></td>
<td>to control privileges in the z/OS UNIX environment.</td>
</tr>
<tr>
<td></td>
<td>RACF does not document all of the resources used in the FACILITY class by</td>
</tr>
<tr>
<td></td>
<td>other products. For information on the FACILITY class resources used by</td>
</tr>
<tr>
<td></td>
<td>a specific product (other than RACF itself), see that product's documentation.</td>
</tr>
<tr>
<td>FIELD</td>
<td>Fields in RACF profiles (field-level access checking).</td>
</tr>
<tr>
<td>GDASD Vol</td>
<td>Resource group class for DASDVOL class.</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>Global access checking table entry.</td>
</tr>
<tr>
<td>GMBR</td>
<td>Member class for the GLOBAL class.</td>
</tr>
<tr>
<td>GSDSF</td>
<td>Resource group class for SDSF class.</td>
</tr>
<tr>
<td>GTERMINL</td>
<td>Resource group class for TERMINAL class.</td>
</tr>
<tr>
<td>GFXACILI</td>
<td>Grouping class for XFACILIT resources.</td>
</tr>
<tr>
<td>IBMOPC</td>
<td>Controlling access to OPC/ESA subsystems.</td>
</tr>
<tr>
<td>IDIDMAP</td>
<td>Contains distributed identity filters created with the RACMAP command.</td>
</tr>
<tr>
<td>JESINPUT</td>
<td>Conditional access support for commands or jobs entered into the system</td>
</tr>
<tr>
<td></td>
<td>through a JES input device.</td>
</tr>
<tr>
<td>JESJOBS</td>
<td>Controlling the submission and cancellation of jobs by job name.</td>
</tr>
<tr>
<td>JESSPOOL</td>
<td>Controlling access to job data sets on the JES spool (that is, SYSIN and</td>
</tr>
<tr>
<td></td>
<td>SYSOUT data sets).</td>
</tr>
<tr>
<td>KEYSMSTR</td>
<td>Contains profiles that hold keys to encrypt data stored in the RACF</td>
</tr>
<tr>
<td></td>
<td>database, such as LDAP BIND passwords, DCE passwords, and Distribution</td>
</tr>
<tr>
<td></td>
<td>File Service (DFS) Server Message Block (SMB) passwords.</td>
</tr>
<tr>
<td>LDAP</td>
<td>Controls authorization roles for LDAP administration.</td>
</tr>
<tr>
<td>LDAPBIND</td>
<td>Contains the LDAP server URL, bind distinguished name, and bind password.</td>
</tr>
<tr>
<td>LOGSTRM</td>
<td>Controls system logger resources, such as log streams and the coupling</td>
</tr>
<tr>
<td></td>
<td>facility structures associated with log streams.</td>
</tr>
<tr>
<td>NODES</td>
<td>Controlling the following on MVS systems:</td>
</tr>
<tr>
<td></td>
<td>• Whether jobs are allowed to enter the system from other nodes</td>
</tr>
<tr>
<td></td>
<td>• Whether jobs that enter the system from other nodes have to pass</td>
</tr>
<tr>
<td></td>
<td>user identification and password verification checks</td>
</tr>
</tbody>
</table>
CDT classes

Table 54. Resource classes for z/OS systems (continued)

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODMBR</td>
<td>Member class for the NODES class.</td>
</tr>
<tr>
<td>OPERCMDS</td>
<td>Controlling who can issue operator commands (for example, JES and MVS, and operator commands).</td>
</tr>
<tr>
<td>PMBR</td>
<td>Member class for the PROGRAM class.</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>Protects executable programs.</td>
</tr>
<tr>
<td>PROPCNTL</td>
<td>Controlling if user ID propagation can occur, and if so, for which user IDs (such as the CICS or IMS main task user ID), user ID propagation is not to occur.</td>
</tr>
<tr>
<td>PSFMPL</td>
<td>Used by PSF to perform security functions for printing, such as separator page labeling, data page labeling, and enforcement of the user printable area.</td>
</tr>
<tr>
<td>PTKTDATA</td>
<td>PassTicket key class enables the security administrator to associate a RACF secured signon secret key with a particular mainframe application that uses RACF for user authentication. Examples of such applications are IMS, CICS, TSO, z/VM, APPC, and MVS batch.</td>
</tr>
<tr>
<td>RACFVARS</td>
<td>RACF variables. In this class, profile names, which start with & (ampersand), act as RACF variables that can be specified in profile names in other RACF general resource classes.</td>
</tr>
<tr>
<td>RACGLIST</td>
<td>Class of profiles that hold the results of RACROUTE REQUEST=LIST,GLOBAL=YES or a SETROPTS RACLIST operation.</td>
</tr>
<tr>
<td>RCHCMBR</td>
<td>Used by IBM Health Checker for z/OS. Member class for the RACFHC class.</td>
</tr>
<tr>
<td>RDATA LIB</td>
<td>Used to control use of the _dataLib callable service (IRRSDL00 or IRRSDL64).</td>
</tr>
<tr>
<td>RRSFDATA</td>
<td>Used to control RACF remote sharing facility (RRSF) functions.</td>
</tr>
<tr>
<td>RVARSMBR</td>
<td>Member class for the RACFVARS class.</td>
</tr>
<tr>
<td>SCDMBR</td>
<td>Member class for the SECDATA class.</td>
</tr>
<tr>
<td>SDSF</td>
<td>Controls the use of authorized commands in the System Display and Search Facility (SDSF). See also GSDSF class.</td>
</tr>
<tr>
<td>SECDATA</td>
<td>Security classification of users and data (security levels and security categories).</td>
</tr>
<tr>
<td>SECLABEL</td>
<td>If security labels are used, and, if so, their definitions.</td>
</tr>
<tr>
<td>SECLMBR</td>
<td>Member class for the SECLABEL class.</td>
</tr>
<tr>
<td>SERVAUTH</td>
<td>Contains profiles used by servers to check a client’s authorization to use the server or to use resources managed by the server. Also, can be used to provide conditional access to resources for users entering the system from a given server.</td>
</tr>
<tr>
<td>SERVER</td>
<td>Controlling the server’s ability to register with the daemon.</td>
</tr>
<tr>
<td>SMESSEMGAGE</td>
<td>Controlling to which users a user can send messages (TSO only).</td>
</tr>
<tr>
<td>SOMDOBJS</td>
<td>Controlling the client’s ability to invoke the method in the class.</td>
</tr>
<tr>
<td>STARTED</td>
<td>Used in preference to the started procedures table to assign an identity during the processing of an MVS START command.</td>
</tr>
</tbody>
</table>
CDT classes

Table 54. Resource classes for z/OS systems (continued)

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURROGAT</td>
<td>If surrogate submission is allowed, and if allowed, which user IDs can act as surrogates.</td>
</tr>
<tr>
<td>SYSMVIEW</td>
<td>Controlling access by the SystemView for MVS Launch Window to SystemView for MVS applications.</td>
</tr>
<tr>
<td>TAPEVOL</td>
<td>Tape volumes.</td>
</tr>
<tr>
<td>TEMPDSN</td>
<td>Controlling who can access residual temporary data sets.</td>
</tr>
<tr>
<td>TERMINAL</td>
<td>Terminals (TSO or z/VM). See also GTERMINL class.</td>
</tr>
<tr>
<td>VTAMAPPL</td>
<td>Controlling who can open ACBs from non-APF authorized programs.</td>
</tr>
<tr>
<td>WRITER</td>
<td>Controlling the use of JES writers.</td>
</tr>
<tr>
<td>XFACILIT</td>
<td>Miscellaneous uses. Profile names in this class can be longer than 39 characters in length. Profiles are defined in this class so that resource managers (typically elements of z/OS) can check a user's access to the resources when the users take some action.</td>
</tr>
</tbody>
</table>

CICS classes

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACICSPCT</td>
<td>CICS program control table.</td>
</tr>
<tr>
<td>BCICSPCT</td>
<td>Resource group class for the ACICSPCT class.</td>
</tr>
<tr>
<td>CCICSCMD</td>
<td>Used to verify that a user is permitted to use CICS system programmer commands such as INQUIRE, SET, PERFORM, and COLLECT.</td>
</tr>
<tr>
<td>CPSMOBJ</td>
<td>Used by CICSPlex® System Manager, which provides a central point of control when running multiple CICS systems, to determine operational controls within a CICS complex.</td>
</tr>
<tr>
<td>CPSMXMP</td>
<td>Used by CICSPlex System Manager to identify exemptions from security controls within a CICS complex.</td>
</tr>
<tr>
<td>DCICSDCT</td>
<td>CICS destination control table.</td>
</tr>
<tr>
<td>ECICSDCT</td>
<td>Resource group class for the DCICSDCT class.</td>
</tr>
<tr>
<td>FCICSFCT</td>
<td>CICS file control table.</td>
</tr>
<tr>
<td>GCICSTRN</td>
<td>Resource group class for TCICSTRN class.</td>
</tr>
<tr>
<td>GCPSMOBJ</td>
<td>Resource grouping class for CPSMOBJ.</td>
</tr>
<tr>
<td>HCICSFCT</td>
<td>Resource group class for the FCICSFCT class.</td>
</tr>
<tr>
<td>JCICSJCT</td>
<td>CICS journal control table.</td>
</tr>
<tr>
<td>KCICSJCT</td>
<td>Resource group class for the JCICSJCT class.</td>
</tr>
<tr>
<td>MCICSPPT</td>
<td>CICS processing program table.</td>
</tr>
<tr>
<td>NCICSPPT</td>
<td>Resource group class for the MCICSPPT class.</td>
</tr>
<tr>
<td>PCICSPSB</td>
<td>CICS program specification blocks (PSBs).</td>
</tr>
<tr>
<td>QCICSPSB</td>
<td>Resource group class for the PCICSPSB class.</td>
</tr>
<tr>
<td>RCICSRRES</td>
<td>CICS document templates.</td>
</tr>
<tr>
<td>SCICSTST</td>
<td>CICS temporary storage table.</td>
</tr>
<tr>
<td>TCICSTRN</td>
<td>CICS transactions.</td>
</tr>
<tr>
<td>UCICSTST</td>
<td>Resource group class for SCICSTST class.</td>
</tr>
<tr>
<td>VCICSCMD</td>
<td>Resource group class for the CCICSCMD class.</td>
</tr>
<tr>
<td>WCICSRRES</td>
<td>Resource group class for the RCICSRRES class.</td>
</tr>
</tbody>
</table>

DB2 classes

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSNADM</td>
<td>DB2 administrative authority class.</td>
</tr>
<tr>
<td>Class name</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DSNR</td>
<td>Controls access to DB2 subsystems.</td>
</tr>
<tr>
<td>GDSNBP</td>
<td>Grouping class for DB2 buffer pool privileges.</td>
</tr>
<tr>
<td>GDSNCL</td>
<td>Grouping class for DB2 collection privileges.</td>
</tr>
<tr>
<td>GDSNDB</td>
<td>Grouping class for DB2 database privileges.</td>
</tr>
<tr>
<td>GDSNJR</td>
<td>Grouping class for Java™ archive files (JARs).</td>
</tr>
<tr>
<td>GDSNPK</td>
<td>Grouping class for DB2 package privileges.</td>
</tr>
<tr>
<td>GDSNPN</td>
<td>Grouping class for DB2 plan privileges.</td>
</tr>
<tr>
<td>GDSNSC</td>
<td>Grouping class for DB2 schemas privileges.</td>
</tr>
<tr>
<td>GDSNSG</td>
<td>Grouping class for DB2 storage group privileges.</td>
</tr>
<tr>
<td>GDSNSM</td>
<td>Grouping class for DB2 system privileges.</td>
</tr>
<tr>
<td>GDSNSP</td>
<td>Grouping class for DB2 stored procedure privileges.</td>
</tr>
<tr>
<td>GDSNSQ</td>
<td>Grouping class for DB2 sequences.</td>
</tr>
<tr>
<td>GDSNTB</td>
<td>Grouping class for DB2 table, index, or view privileges.</td>
</tr>
<tr>
<td>GDSNTS</td>
<td>Grouping class for DB2 tablespace privileges.</td>
</tr>
<tr>
<td>GDSNUF</td>
<td>Grouping class for DB2 user-defined function privileges.</td>
</tr>
<tr>
<td>GDSNUT</td>
<td>Grouping class for DB2 user-defined distinct type privileges.</td>
</tr>
<tr>
<td>MDSNBP</td>
<td>Member class for DB2 buffer pool privileges.</td>
</tr>
<tr>
<td>MDSNCL</td>
<td>Member class for DB2 collection privileges.</td>
</tr>
<tr>
<td>MDSNDB</td>
<td>Member class for DB2 database privileges.</td>
</tr>
<tr>
<td>MDSNJR</td>
<td>Member class for Java archive files (JARs).</td>
</tr>
<tr>
<td>MDSNPK</td>
<td>Member class for DB2 package privileges.</td>
</tr>
<tr>
<td>MDSNPN</td>
<td>Member class for DB2 plan privileges.</td>
</tr>
<tr>
<td>MDSNSC</td>
<td>Member class for DB2 schema privileges.</td>
</tr>
<tr>
<td>MDSNSG</td>
<td>Member class for DB2 storage group privileges.</td>
</tr>
<tr>
<td>MDSNSM</td>
<td>Member class for DB2 system privileges.</td>
</tr>
<tr>
<td>MDSNSP</td>
<td>Member class for DB2 stored procedure privileges.</td>
</tr>
<tr>
<td>MDSNSQ</td>
<td>Member class for DB2 sequences.</td>
</tr>
<tr>
<td>MDSNTB</td>
<td>Member class for DB2 table, index, or view privileges.</td>
</tr>
<tr>
<td>MDSNTS</td>
<td>Member class for DB2 tablespace privileges.</td>
</tr>
<tr>
<td>MDSNUF</td>
<td>Member class for DB2 user-defined function privileges.</td>
</tr>
<tr>
<td>MDSNUT</td>
<td>Member class for DB2 user-defined distinct type privileges.</td>
</tr>
</tbody>
</table>

CDT classes

DCE class

- **DCEUUIDS**: Used to define the mapping between a user’s RACF user ID and the corresponding DCE principal UUID. Also, used to enable encrypted password support for Distributed File Service (DFS) Server Message Block (SMB) users.

Enterprise Identity Mapping (EIM) class

- **RAUDITX**: Controls auditing for Enterprise Identity Mapping (EIM).

Enterprise Java Beans classes

- **EJBROLE**: Member class for Enterprise Java Beans authorization roles.
- **GEJBROLE**: Grouping class for Enterprise Java Beans authorization roles.
CDT classes

Table 54. Resource classes for z/OS systems (continued)

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAVA</td>
<td>Contains profiles that are used by Java for z/OS applications to perform authorization checking for Java for z/OS resources.</td>
</tr>
</tbody>
</table>

IMS classes

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIMS</td>
<td>Application group names (AGN).</td>
</tr>
<tr>
<td>CIMS</td>
<td>Command.</td>
</tr>
<tr>
<td>DIMS</td>
<td>Grouping class for command.</td>
</tr>
<tr>
<td>FIMS</td>
<td>Field (in data segment).</td>
</tr>
<tr>
<td>GIMS</td>
<td>Grouping class for transaction.</td>
</tr>
<tr>
<td>HIMS</td>
<td>Grouping class for field.</td>
</tr>
<tr>
<td>IIMS</td>
<td>Program specification block (PSB).</td>
</tr>
<tr>
<td>JIMS</td>
<td>Grouping class for program specification block (PSB).</td>
</tr>
<tr>
<td>LIMS</td>
<td>Logical terminal (LTERM).</td>
</tr>
<tr>
<td>MIMS</td>
<td>Grouping class for logical terminal (LTERM).</td>
</tr>
<tr>
<td>OIMS</td>
<td>Other.</td>
</tr>
<tr>
<td>PIMS</td>
<td>Database.</td>
</tr>
<tr>
<td>QIMS</td>
<td>Grouping class for database.</td>
</tr>
<tr>
<td>RIMS</td>
<td>Open Transaction Manager Access (OTMA) transaction pipe (TPIPE).</td>
</tr>
<tr>
<td>SIMS</td>
<td>Segment (in database).</td>
</tr>
<tr>
<td>TIMS</td>
<td>Transaction (trancode).</td>
</tr>
<tr>
<td>UIMS</td>
<td>Grouping class for segment.</td>
</tr>
<tr>
<td>WIMS</td>
<td>Grouping class for other.</td>
</tr>
</tbody>
</table>

Integrated Cryptographic Service Facility (ICSF) classes

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRYPTOZ</td>
<td>Controls access to PKCS #11 tokens.</td>
</tr>
<tr>
<td>CSFKEYS</td>
<td>Controls access to ICSF cryptographic keys.</td>
</tr>
<tr>
<td>CSFSERV</td>
<td>Controls access to ICSF cryptographic services.</td>
</tr>
<tr>
<td>GCSFKEYS</td>
<td>Resource group class for the CSFKEYS class.</td>
</tr>
<tr>
<td>GXCSFKEY</td>
<td>Resource group class for the XCSFKEY class.</td>
</tr>
<tr>
<td>XCSFKEY</td>
<td>Controls the exportation of ICSF cryptographic keys.</td>
</tr>
</tbody>
</table>

Infoprint Server class

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINTSRV</td>
<td>Controls access to printer definitions for Infoprint Server.</td>
</tr>
</tbody>
</table>

Information/Management (Tivoli Service Desk) classes

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GINFOMAN</td>
<td>Grouping class for Information/Management (Tivoli Service Desk) resources.</td>
</tr>
<tr>
<td>INFOMAN</td>
<td>Member class for Information/Management (Tivoli Service Desk) resources.</td>
</tr>
</tbody>
</table>

LFS/ESA classes

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFSCLASS</td>
<td>Controls access to file services provided by LFS/ESA.</td>
</tr>
</tbody>
</table>

License Manager class

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILMADMIN</td>
<td>Controls access to the administrative functions of IBM License Manager.</td>
</tr>
</tbody>
</table>

Lotus Notes for z/OS and Novell Directory Services for OS/390 classes

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDSLINK</td>
<td>Mapping class for Novell Directory Services for OS/390 user identities.</td>
</tr>
<tr>
<td>Class name</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NOTELINK</td>
<td>Mapping class for Lotus Notes for z/OS user identities.</td>
</tr>
</tbody>
</table>

MQSeries® classes

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMQADMIN</td>
<td>Grouping class for MQSeries administrative options.</td>
</tr>
<tr>
<td>GMQCHAN</td>
<td>Reserved for MQSeries.</td>
</tr>
<tr>
<td>GMQNLIST</td>
<td>Grouping class for MQSeries namelists.</td>
</tr>
<tr>
<td>GMQPROC</td>
<td>Grouping class for MQSeries processes.</td>
</tr>
<tr>
<td>GMQQUEUE</td>
<td>Grouping class for MQSeries queues.</td>
</tr>
<tr>
<td>MQADMIN</td>
<td>Protects MQSeries administrative options.</td>
</tr>
<tr>
<td>MQCHAN</td>
<td>Reserved for MQSeries.</td>
</tr>
<tr>
<td>MQCMDS</td>
<td>Protects MQSeries commands.</td>
</tr>
<tr>
<td>MQCONN</td>
<td>Protects MQSeries connections.</td>
</tr>
<tr>
<td>MQNLIST</td>
<td>Protects MQSeries namelists.</td>
</tr>
<tr>
<td>MQPROC</td>
<td>Protects MQSeries processes.</td>
</tr>
<tr>
<td>MQQUEUE</td>
<td>Protects MQSeries queues.</td>
</tr>
</tbody>
</table>

NetView classes

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NETCMDS</td>
<td>Controlling which NetView commands the NetView operator can issue.</td>
</tr>
<tr>
<td>NETSPAN</td>
<td>Controlling which NetView commands the NetView operator can issue against the resources in this span.</td>
</tr>
<tr>
<td>NVASAPDT</td>
<td>NetView/Access Services.</td>
</tr>
<tr>
<td>PTKTVAL</td>
<td>Used by NetView/Access Services Secured Single Signon to store information needed when generating a PassTicket.</td>
</tr>
<tr>
<td>RMTOPS</td>
<td>NetView Remote Operations.</td>
</tr>
<tr>
<td>RODMMGR</td>
<td>NetView Resource Object Data Manager (RODM).</td>
</tr>
</tbody>
</table>

z/OS Network Authentication Service classes

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KERBLINK</td>
<td>Contains profiles that map local and foreign principals to RACF user IDs. Also controls which users are authorized to use the SKRBKDC started procedure to decrypt service tickets for a given principal.</td>
</tr>
<tr>
<td>REALM</td>
<td>Used to define the local and foreign realms.</td>
</tr>
</tbody>
</table>

SMS (DFSMSdfp) classes

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMTCLAS</td>
<td>SMS management classes.</td>
</tr>
<tr>
<td>STORCLAS</td>
<td>SMS storage classes.</td>
</tr>
<tr>
<td>SUBSYSNM</td>
<td>Authorizes a subsystem (such as a particular instance of CICS) to open a VSAM ACB and use VSAM record level sharing (RLS) functions.</td>
</tr>
</tbody>
</table>

Tivoli classes

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROLE</td>
<td>Specifies the complete list of resources and associated access levels that are required to perform the particular job function this role represents and defines which RACF groups are associated with this role.</td>
</tr>
<tr>
<td>TMEADMIN</td>
<td>Maps the user IDs of Tivoli administrators to RACF user IDs.</td>
</tr>
</tbody>
</table>

TSO classes

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCTNUM</td>
<td>TSO account numbers.</td>
</tr>
<tr>
<td>PERFGRP</td>
<td>TSO performance groups.</td>
</tr>
<tr>
<td>TSOAUTH</td>
<td>TSO user authorities such as OPER and MOUNT.</td>
</tr>
</tbody>
</table>
Table 54. Resource classes for z/OS systems (continued)

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSOPROC</td>
<td>TSO logon procedures.</td>
</tr>
</tbody>
</table>

WebSphere MQ classes

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMXADMIN</td>
<td>Grouping class for WebSphere MQ administrative options.</td>
</tr>
<tr>
<td>GMXNLIST</td>
<td>Grouping class for WebSphere MQ namelists.</td>
</tr>
<tr>
<td>GMXPROC</td>
<td>Grouping class for WebSphere MQ processes.</td>
</tr>
<tr>
<td>GMXQUEUE</td>
<td>Grouping class for WebSphere MQ queues.</td>
</tr>
<tr>
<td>GMXTOPIC</td>
<td>Grouping class for WebSphere MQ topics.</td>
</tr>
<tr>
<td>MXADMIN</td>
<td>Protects WebSphere MQ administrative options.</td>
</tr>
<tr>
<td>MXNLIST</td>
<td>Protects WebSphere MQ namelists.</td>
</tr>
<tr>
<td>MXPROC</td>
<td>Protects WebSphere MQ processes.</td>
</tr>
<tr>
<td>MXQUEUE</td>
<td>Protects WebSphere MQ queues.</td>
</tr>
<tr>
<td>MXTOPIC</td>
<td>Protects WebSphere MQ topics.</td>
</tr>
</tbody>
</table>

z/OSMF classes

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZMFAPLA</td>
<td>Member class for z/OSMF authorization roles.</td>
</tr>
<tr>
<td>GZMFAPLA</td>
<td>Grouping class for z/OSMF authorization roles.</td>
</tr>
</tbody>
</table>

z/OS UNIX classes

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRACC</td>
<td>Controls auditing (using SETROPTS LOGOPTIONS) for access checks</td>
</tr>
<tr>
<td>DIRSRCH</td>
<td>Controls auditing (using SETROPTS LOGOPTIONS) of z/OS UNIX directory searches.</td>
</tr>
<tr>
<td>FSACCESS</td>
<td>Controls access to z/OS UNIX file systems.</td>
</tr>
<tr>
<td>FSOBJ</td>
<td>Controls auditing (using SETROPTS LOGOPTIONS) of all access checks</td>
</tr>
<tr>
<td>FSSEC</td>
<td>Controls auditing (using SETROPTS LOGOPTIONS) of changes to the security data (FSP) for z/OS UNIX file system objects. This class need not be active to control auditing. When this class is active, it also controls whether ACLs are used during authorization checks to z/OS UNIX files and directories.</td>
</tr>
<tr>
<td>IPCOBJ</td>
<td>Controls auditing (using SETROPTS LOGOPTIONS) of access checks for interprocess communication (IPC) objects and changes to security information of IPC objects. Controls auditing (using SETROPTS AUDIT) of the creation and deletion of IPC objects. This class need not be active to control auditing.</td>
</tr>
<tr>
<td>PROCACT</td>
<td>Controls auditing (using SETROPTS LOGOPTIONS) of functions that look at data from, or affect the processing of, z/OS UNIX processes. This class need not be active to control auditing.</td>
</tr>
<tr>
<td>PROCESS</td>
<td>Controls auditing (using SETROPTS LOGOPTIONS) of changes to UIDs and GIDs of z/OS UNIX processes. Controls auditing (using SETROPTS AUDIT) of dubbing and undubbing of z/OS UNIX processes. This class need not be active to control auditing.</td>
</tr>
<tr>
<td>UNIXMAP</td>
<td>Contains profiles that are used to map z/OS UNIX UIDs to RACF user IDs and z/OS UNIX GIDs to RACF group names.</td>
</tr>
</tbody>
</table>
Table 54. Resource classes for z/OS systems (continued)

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIXPRIV</td>
<td>Contains profiles that are used to grant z/OS UNIX privileges.</td>
</tr>
</tbody>
</table>

Restrictions:
1. Do not specify this class name on the GENCMD, GENERIC, and GLOBAL/N OGLOBAL operands of the SETROPTS command.
2. Do not specify this class name on the GLOBAL operand of SETROPTS or, if you do, the GLOBAL checking is not performed.
3. Do not specify this class name on the GEN CMD and GENERIC operands of the SETROPTS command.
4. Do not specify this class name with any RACF command. This is a member class associated with a grouping class that has a special use.
5. Profiles are not allowed in this class.

Supplied resource classes for z/VM systems

Table 55 lists the supplied classes you can use on z/VM systems. These classes are primarily relevant if you share your RACF database with a z/VM system. See restrictions at the end of the table.

Table 55. Resource classes for z/VM systems

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRECTRY</td>
<td>Protection of shared file system (SFS) directories.</td>
</tr>
<tr>
<td>FACILITY</td>
<td>Miscellaneous uses. Profiles are defined in this class so resource managers (typically elements of z/OS or z/VM) can check a user’s access to the profiles when the user takes some action. Examples are the profiles used to control execution of RACDCERT command functions and the profiles used to control privileges in the z/OS UNIX environment. RACF does not document all of the resources used in the FACILITY class by other products. For information on the FACILITY class resources used by a specific product (other than RACF itself), see that product’s documentation.</td>
</tr>
<tr>
<td>FIELD</td>
<td>Fields in RACF profiles (field-level access checking).</td>
</tr>
<tr>
<td>FILE</td>
<td>Protection of shared file system (SFS) files.</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>Global access checking.</td>
</tr>
<tr>
<td>GMBR</td>
<td>Member class for GLOBAL class.</td>
</tr>
<tr>
<td>GTERMINL</td>
<td>Terminals whose IDs do not fit into generic profile naming conventions.</td>
</tr>
<tr>
<td>PSFAMPL</td>
<td>When class is active, PSF/VM performs separator and data page labeling as well as auditing.</td>
</tr>
<tr>
<td>PTKTDATA</td>
<td>PassTicket key class.</td>
</tr>
<tr>
<td>PTKTVAL</td>
<td>Used by NetView/Access Services Secured Single Signon to store information needed when generating a PassTicket.</td>
</tr>
<tr>
<td>RACFVARS</td>
<td>RACF variables. In this class, profile names, which start with & (ampersand), act as RACF variables that can be specified in profile names in other RACF general resource classes.</td>
</tr>
<tr>
<td>RVARSMBR</td>
<td>Member class for RACFVARS.</td>
</tr>
<tr>
<td>SCDMBR</td>
<td>Member class for SECDATA class.</td>
</tr>
<tr>
<td>Class name</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SECDATA</td>
<td>Security classification of users and data (security levels and security categories). 1</td>
</tr>
<tr>
<td>SECLABEL</td>
<td>If security labels are used and, if so, their definitions. 2</td>
</tr>
<tr>
<td>SFSCMD</td>
<td>Controls the use of shared file system (SFS) administrator and operator commands.</td>
</tr>
<tr>
<td>TAPEVOL</td>
<td>Tape volumes.</td>
</tr>
<tr>
<td>TERMINAL</td>
<td>Terminals (TSO or z/VM). See also GTERMINL class.</td>
</tr>
<tr>
<td>VMBATCH</td>
<td>Alternate user IDs.</td>
</tr>
<tr>
<td>VMBR</td>
<td>Member class for VMEVENT class. 3</td>
</tr>
<tr>
<td>VMCMD</td>
<td>Certain CP commands and other requests on z/VM.</td>
</tr>
<tr>
<td>VMDEV</td>
<td>Controls access to z/VM real devices.</td>
</tr>
<tr>
<td>VMEVENT</td>
<td>Auditing and controlling security-related events (called z/VM events) on z/VM systems.</td>
</tr>
<tr>
<td>VMLAN</td>
<td>Controls access to z/VM guest LANs and virtual switches.</td>
</tr>
<tr>
<td>VMMAC</td>
<td>Used in conjunction with the SECLABEL class to provide security label authorization for some z/VM events. 4</td>
</tr>
<tr>
<td>VMMDISK</td>
<td>z/VM minidisks.</td>
</tr>
<tr>
<td>VMNODE</td>
<td>RSCS nodes.</td>
</tr>
<tr>
<td>VMRDR</td>
<td>z/VM unit record devices (virtual reader, virtual printer, and virtual punch).</td>
</tr>
<tr>
<td>VMSEGMT</td>
<td>Restricted segments, which can be named saved segments (NSS) and discontiguous saved segments (DCSS).</td>
</tr>
<tr>
<td>VXMBR</td>
<td>Member class for VMXEVENT class. 3</td>
</tr>
<tr>
<td>VMXEVENT</td>
<td>Auditing and controlling security-related events (called z/VM events) on z/VM systems.</td>
</tr>
<tr>
<td>VMPOSIX</td>
<td>Contains profiles used by OpenExtensions for z/VM.</td>
</tr>
<tr>
<td>WRITER</td>
<td>z/VM print devices.</td>
</tr>
</tbody>
</table>

Restrictions:
1. Do not specify this class name on the GENCMD, GENERIC, and GLOBAL/NOGLOBAL operands of the SETROPTS command.
2. Do not specify this class name on the GLOBAL operand of SETROPTS or, if you do, the GLOBAL checking is not performed.
3. Do not specify this class name with any RACF command. This is a member class associated with a grouping class that has a special use.
4. Profiles are not allowed in this class.
Appendix C. Accessibility

Accessible publications for this product are offered through the z/OS Information Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please send a detailed message to mhvrdfs@us.ibm.com or to the following mailing address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision, to use software products successfully. The major accessibility features in z/OS enable users to:

- Use assistive technologies such as screen readers and screen magnifier software
- Operate specific or equivalent features using only the keyboard
- Customize display attributes such as color, contrast, and font size.

Using assistive technologies

Assistive technology products, such as screen readers, function with the user interfaces found in z/OS. Consult the assistive technology documentation for specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for information about accessing TSO/E and ISPF interfaces. These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their functions.

Dotted decimal syntax diagrams

Syntax diagrams are provided in dotted decimal format for users accessing the z/OS Information Center using a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or more syntax elements are always present together (or always absent together), they can appear on the same line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers correctly, make sure that your screen reader is set to read out punctuation. All the syntax elements that have the same dotted decimal number (for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the syntax elements. Occasionally, these words and symbols might occur at the beginning of the element itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the backslash (\) character. The * symbol can be used next to a dotted decimal number to indicate that the syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the syntax just before the items they separate. These characters can appear on the same line as each item, or on a separate line with the same dotted decimal number as the relevant items. The line can also show another symbol giving information about the syntax elements. For example, the lines 5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax elements, the elements must be separated by a comma. If no separator is given, assume that you use a blank to separate each syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is defined elsewhere. The string following the % symbol is the name of a syntax fragment rather than a literal. For example, the line 2.1 %OP1 means that you should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

- ? means an optional syntax element. A dotted decimal number followed by the ? symbol indicates that all the syntax elements with a corresponding dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax elements NOTIFY and UPDATE are optional; that is, you can choose one or none of them. The ? symbol is equivalent to a bypass line in a railroad diagram.

- ! means a default syntax element. A dotted decimal number followed by the ! symbol and a syntax element indicates that the syntax element is the default option for all syntax elements that share the same dotted decimal number. Only one of the syntax elements that share the same dotted decimal number can specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword. In this example, if you include the FILE keyword but do not specify an option, default option KEEP will be applied. A default option also applies to the next higher dotted decimal number. In this example, if the FILE keyword is omitted, default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!
(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next higher dotted decimal number, 2.1 (which does not have an associated keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

- * means a syntax element that can be repeated 0 or more times. A dotted decimal number followed by the * symbol indicates that this syntax element can be used zero or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data area, you know that you can include one data area, more than one data area, or no data area. If you hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include HOST, STATE, both together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted decimal number, you can repeat that same item more than once.
2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal number, you can use more than one item from the list, but you cannot use the items more than once each. In the previous example, you could write HOST STATE, but you could not write HOST HOST.
3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.

- + means a syntax element that must be included one or more times. A dotted decimal number followed by the + symbol indicates that this syntax element must be included one or more times; that is, it must be included at least once and can be repeated. For example, if you hear the line 6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the + symbol can only repeat a particular item if it is the only item with that dotted decimal number. The + symbol, like the * symbol, is equivalent to a loop-back line in a railroad syntax diagram.
Notices

This information was developed for products and services offered in the U.S.A. or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.
Notices

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware

Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code that supports specific hardware servers or devices. In some cases, this device-related element support remains in the product even after the hardware devices pass their announced End of Service date. z/OS may continue to service element code; however, it will not provide service related to unsupported hardware devices. Software problems related to these devices will not be accepted.
for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware

The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently change when service for particular servers or devices is withdrawn. Likewise, the levels of other software products supported on a particular release of z/OS are subject to the service support lifecycle of those products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and product documentation) can include references to hardware and software that is no longer supported.

- For information about software support lifecycle, see: [IBM Lifecycle Support for z/OS](http://www.ibm.com/software/support/systemsz/lifecycle/)
- For information about currently-supported IBM hardware, contact your IBM representative.

RSA Secure code

This product contains code licensed from RSA Data Security Incorporated.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at [Copyright and trademark information](http://www.ibm.com/legal/copytrade.shtml).

Adobe is a registered trademark of Adobe Systems Incorporated in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle, its affiliates, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names might be trademarks or service marks of others.
Index

Numerics

64-bit Data Encryption Standard
SESSKEY operand 466, 525

A
access attempt
changing for data set profile 99, 101
access authority
changing in resource profiles 265
data sets 13
access checking
field-level 489
list-of-groups 631
access list
conditional 261
copying from another profile 266
deleting from profile 267
deleting names from 265
displaying for data set profile 217
displaying for general resource profile 556
standard 261
ACCESS operand
PERMIT command 265
access to system
controlling
for existing user 179
for new user 86
restoring for user 170, 171, 191, 192
revoking for user 171, 172, 192, 193
terminals 477, 533
accessibility 703
contact IBM 703
features 703
account number for TSO
changing for user 176
for existing user 173, 174, 177
for new user 83
ACCTNUM class
description 699
ACCTNUM suboperand
ADDCUSER command 83
ALTUSER command 173
ACICSPECT class
description 696
activating
general resource classes 621
JES options 632
RACF system-wide options 612
ACTIVE operand
RVARY command 573
ADD function
RACDCERT command 287
ADDCATEGORY operand
ADDSDB command 37
ADDCUSER command 53
ALTDSDB command 97
ALTUSER command 128
ADDCATEGORY operand (continued)
ALTER command 428
RDEFINE command 490
ADDCREATOR operand
SETROPTS command 618
ADDDIR 1
ADDDOMAINS suboperand
ALTUSER command 146
ADDFILE 1
ADDGROUP command
authorization required 24
description 24
examples 31
syntax 24, 25
ADDMEM operand
ALTER command 428
RDEFINE command 490
ADDMSCAPE suboperand
ALTUSER command 161
ADDOPCLASS suboperand
ALTUSER command 129, 147
address lines
ADDSER command 87
ADDRING function
RACDCERT command 293
ADDSN command
authorization required 33
description 33
examples 46
syntax 35
ADDTOKEN function
RACDCERT command 295
ADDSER command
authorization required 49
description 48
examples 89
syntax 50
ADDVOL operand
ALTDSDB command 98
ALTER command 432
administration, RACF
classroom courses ix
ADSP (automatic data set protection) attribute
activating or deactivating
system-wide 618
adding to user profile 128
deleting from user profile 128
for new user 54
in user's connect profile 189
ADSP operand
ADDSER command 54
ALTUSER command 128
CONNECT command 189
SETROPTS command 618
AGE operand
SEARCH command 583
AIMS class
description 698
ALCSAUTH class
description 693
alias data set name
RACF restriction on using 16
ALL operand
HELP command 212
LISTDSB command 217
RLIST command 556
SEARCH command 583
ALTDIR 1
ALTDSDB command
authorization required 94
description 93
examples 105
syntax 95
ALTER function
RACDCERT command 297
ALTFIELD 1
ALTGROUP command
authorization required 108
description 108
examples 118
syntax 109
ALTGRP suboperand
ADDSER command 73
ALTUSER command 156
ALTMAP function
RACDCERT command 300
ALTNAME operand
RACDCERT GENCERT command 344
ALTUSER command
authorization required 121
changing in user profile 138
description 120
examples 182
operator information 156
primary language 142
secondary language 142, 143
syntax 123
ALTVOl operand
ALTDSDB command 98
APPCLI class
target command 672
APPCLU class
description 693
APPDCPORT class
description 693
APPCPSERV class
description 693
APPCSI class
description 693
APPCTP class
description 693
APPL class
description 693
APPL operand
DISPLAY command 207
SIGNOFF command 660
APPLAUDIT operand
SETROPTS command 619
APPLDATA operand
RALTER command 433
RDEFINE command 496
application data
changing for general resource profile 433
defining for general resource profile 496
deleting from general resource profile 434
application key
encrypting 469, 528
masking 469, 528
assistance technologies 703
ASSIZE MAX operand
ADDUSER command 66
ASSIZE MAX suboperand
ALTUSER command 148
AT operand
ADDS GROUP command 26
ADDS D command 38
ADDS USER command 54
ALTDS D command 98
ALTGROUP command 111
ALTUSER command 129
CONNECT command 189
DELD S D command 197
DELGROUP command 201
DELUSER command 204
LISTDS D command 217
LISTG R P command 229
LISTUSER command 240
PASSWORD command 257
PERMIT command 265
PH R AE command 257
RAL TEr command 435
RDEFINE command 498
REDE L ETE command 542
REMOVE command 546
RLIST command 556
SEARCH command 584
SE TROPTS command 619
attribute
AUDITOR
for existing user 129
for new user 54
CLAUTH (class authority)
for existing user 132
for new user 56
EIM (Enterprise Identity Mapping)
for existing user 138
for new user 60
group-AUDITOR
in user's connect profile 190
group-OPERATIONS
in user's connect profile 191
logging activities for 639
group-SPECIAL
in user's connect profile 193
logging activities for 651
G R PACC (group access)
for existing user 139
for new user 61
in user's connect profile 190
OPERATIONS
for existing user 155
for new user 72
attribute (continued)
OPERATIONS (continued)
logging activities for 639
SPECIAL
for existing user 173
for new user 83
logging activities for 651
audit access level
adding to new data set profile 38
changing for data set profile 99, 101
changing for general resource profile 435, 452
defining for general resource profile 499
AUDIT operand
ADDS D command 38
ALTDS D command 99
RAL TEr command 435
RDEFINE command 499
SE TROPTS command 619
AUDITOR attribute
for existing user 129
for new user 54
AUDITOR operand
ADDS USER command 54
ALTUSER command 129
CONNECT command 190
AUTH suboperand
ADDS USER command 73
ALTUSER command 156
authority
required to issue RACF commands 2
summary 2
AUTHORITY operand
ADDS USER command 54
ALTUSER command 129
CONNECT command 190
AUTHUSER operand
LISTDS D command 218
RLIST command 556
AUTO request reception
delete from user profile 157
AUTO suboperand
ADDS USER command 73
ALTUSER command 157
AUTOAPPL operand
SET command 595
AUTODIRECT operand
SET command 595
AUTOGID suboperand
ALTGROUP command 114
automatic data protection (ADSP) attribute 54
automatic direction of application updates 595
automatic TAPEVL profile altering 421
permitting access to 262
AUTOUID suboperand
ADDS USER command 67
ALTUSER command 148
B
batch
submitting RACF TSO commands from 16
BCICSPCT class
description 696
BIND function
RACDCERT command 304
BINDDN suboperand
ADDS USER command 81
ALTUSER command 168
RAL TEr command 462
RDEFINE command 522
BINDPW suboperand
ADDS USER command 81
ALTUSER command 169
RAL TEr command 463
RDEFINE command 523
BPECC operand
RACDCERT GENCERT command 341
RACDCERT REKEY command 388
bypassing
recording of statistics 632
C
CACHECLS class
description 693
canceling
syntax rules for passwords 644
system-wide ADSP (automatic data set protection) attribute 618
CATDSNS operand
SETROPTS command 620
CATEGORY operand
SEARCH command 584
CBIND class
description 693
CCICSCMD class
description 696
CDT class
description 693
CDTINFO
listing class descriptor table profiles 557
CDTINFO operand
RAL TEr command 435
RDEFINE command 499
RLIST command 557
CDTINFO segment
altering 435
defining 499
CERTSIGN operand
RACDCERT GENCERT command 344
CFDEF operand
RAL TEr command 444
RDEFINE command 506
RLIST command 557
CFDEF segment
changing 444
defining 506
CFILED class
description 693
changing for existing data set profile 473
password interval 257
password phrase interval 257
CHECK ADDRS operand
RALTER command 457
RDEFINE command 518
CHECKCERT function
RACDCERT command 308
choosing between discrete and generic profiles
using commands on MVS 686
CICS
general resource classes 696
CICS operand
ADDUSER command 55
ALTUSER command 129
LISTUSER command 240
CICS segment
user profile defining 55
displaying 240
CIMS class
description 698
class descriptor table (CDT)
protecting classes 1
supplied classes for z/OS systems 693
supplied classes for z/VM systems 701
class name
activating or deactivating general resource class 621
changing general resource profile 427
deleting general resource profile 541
displaying general resource profile 555
specifying for general resource profile 487
CLASS operand
PERMIT command 265
SEARCH command 585
CLASSACT operand
SETROPTS command 621
classes
activating 612
names of supplied general resource classes for z/OS 693
names of supplied general resource classes for z/VM 701
recording statistics 652
classroom courses, RACF ix
CLAUTH (class authority) attribute for existing user 132
for new user 56
CLAUTH operand
ADDUSER command 56
ALTUSER command 132
CLIST data set
creating 585
CLIST operand
SEARCH command 585
CMDSYS suboperand
ADDUSER command 74
ALTUSER command 157
CMDFIOVL operand
SETROPTS command 622
command response logging for new user profile 75
for user profile 159
COMMAND suboperand
ADDUSER command 84
ALTUSER command 174
command usage logging for a user 178
commands summary 2
COMPATMODE operand
SETROPTS command 622
conditional access list 261
CONNECT command
authorization required 187
description 187
examples 194
syntax 188
CONNECT function
RACDCERT command 316
connect group
ALTUSER command 139
CONNECT command 190
CONNECT group authority
description 13
connect profile
assigning group-related attributes 187
changing 120, 187
creating 48, 187
deleting 202
displaying with group profile 226
displaying with user profile 236
CONSNAME suboperand
ADDUSER command 65
ALTUSER command 145
CONSOLE class
description 693
console command system for new user profile 74
for user profile 157
console message format for new user profile 75
for user profile 159, 160
console message storage for new user profile 77
for user profile 162
console operator command authority for new user 73
console search key for new user profile 74
for user profile 158
controlled program defining 428, 489
specifying access for 270
controlling access to system for existing user 179
access to system for new user 86
access to system for terminal 476, 533
copying access lists 266
courses about RACF ix
CPXMOBJ class
description 696
CPXMS class
description 696
CPUTIMEMAX suboperand
ADDUSER command 68
ALTUSER command 150
CREATE group authority
description 13
creating
CLIST data set 585
model profile 41
CRITERIA operand
RACDCERT MAP command 381
critical extensions
RACDCERT ADD command 283
CRYPTOZ class
description 698
CSDATA operand
ADDCGROUP command 26
ADDUSER command 56
ALTGROUP command 111
ALTUSER command 132
LISTGRP command 229
LISTUSER command 240
CSDATA segment
defining
for existing group profile 111
for existing user profile 132
for new group profile 26
for new user profile 56
displaying
for group profile 229
for user profile 240
CSFKEYS class
description 698
CSFSERV class
description 698
CTL suboperand
ADDCUSER command 65
ALTUSER command 145
current password
changing 258
current password phrase
changing 258
current RACF options
displaying 634
custom fields
changing CFDEF segment 444
defining
for existing group profile 111
for existing user profile 132
for new group profile 27
for new user profile 56
defining CFDEF segment 506
deleting
for existing group profile 111
for existing user profile 133
listing CFDEF profiles 557
D
DASD data set
displaying volume information for 590
erase-on-scratch processing
activating 623
deactivating system-wide 624
for existing data set 100
Index 713
DASD data set (continued)
erase-on-scratch processing (continued)
for new data set 39
searching a volume for 590
DASDVOL class
description 693
data application for DFP
changing
for group profile 112
for user profile 136
defining
for new group profile 27
for new user profile 59
data application for LNOTES
changing
for user profile 143
data application for NDS
changing
for user profile 144
data class for DFP
changing
in group profile 112
in user profile 137
defining
for new group profile 27
for new user profile 59
DATA operand
ADDGROUP command 27
ADDSD command 39
ADDUSER command 57
ALTDSD command 99
ALTGROUP command 112
ALTUSER command 133
RALTER command 449
RDEFINE command 512
data set
creating CLIST data set 585
default TSO prefix 18
DFP-managed data set
displaying owner 219
specifying owner 39, 99
logging real data set names 650
protecting single-qualifier named data sets 645
data set profile
caching 93
defining 683
deleting 195
determining RACF protection 683
displaying 213
generic profile 41, 100
model profile
defining 41
model for group data sets 28, 113
using existing profile as model 40
OMVS profile
OMVS for group data sets 28
OVM profile
OVM for group data sets 30
permitting access to 261
searching for all profiles 583
based on last reference 583
selected profiles 586
tape data set profile 41
DATAAPPL suboperand
ADDGROUP command 27
DATAAPPL suboperand (continued)
ADDGROUP command 59
ALTUSER command 112
ALTGROUP command 136
data base
deactivating or reactivating
RACF 571
DATACLAS suboperand
ADDGROUP command 27
ADDUSER command 59
ALTGROUP command 112
ALTUSER command 137
TARGET command 676
DATAENCRYPT operand
RACDCERT GENCERT command 344
DATASET class
auditing for 619
defining fully-qualified generic profile 682
generic profile checking 626
generic profile command processing 624
global access checking 630
recording statistics for 653
DATASET operand
LISTDSD command 218
RVARY command 576
DATASHARE operand
RVARY command 575
date
syntax 11
days of week
existing user can access system 179
new user can access system 87
terminal can access system 477, 533
DAYS operand
ADDUSER command 87
ALTUSER command 179
RALTER command 476
RDEFINE command 533
DB2
general resource classes 696, 697
DCE
general resource class 697
DCE operand
ALTUSER command 133, 136
LISTUSER command 241
DCICSDCT class
description 696
deactivating
general resource classes 622
RACF resource protection using
RVARY command 571
unused user ID 631
default group
for existing user 136
for new user 59
DEFAULT operand
RACDCERT CONNECT command 316
DEFTXTLIFE operand
RALTER command 457
DELCATEGORY operand
ALTDSD command 97
ALTUSER command 128
RALTER command 429
DELDIR 1
DELDOMAINS suboperand
ALTUSER command 146
DELDS command
authorization required 196
description 195
examples 198
syntax 196
DELETE function
RACDCERT command 320
DELETE operand
PERMIT command 265
TARGET command 666
deleting
access lists from profile 267
console command system
from user profile 157
console search key
from user profile 158
data set profile 195
general resource profile 539
group profile 199
message level from user profile 159
names from access list 265
operator command authority from user profile 157
primary language 142
secondary language 143
security category
from data set profile 97
from general resource profile 429
security level
from data set profile 104
from general resource profile 464
from user profile 173
user profile 202
volume
from tape volume profile 432
deleting the distinguished name used by the LDAP proxy server
ALTUSER command 168
RALTER command 463
deleting the LDAP proxy server
information
ALTUSER command 169
RALTER command 464
deleting the password used by the LDAP proxy server
ALTUSER command 169
RALTER command 464
deleting the URL of the LDAP proxy server
ALTUSER command 168
RALTER command 462
DELFILE 1
DELGROUP command
authorization required 199, 200
description 200
example 201
syntax 200
DELMAP function
RACDCERT command 322
RACMAP command 413
DELMEM operand
RALTER command 431
DELMSCOPE suboperand
ALTUSER command 161
DELOPCCLASS suboperand
ALTUSER command 129, 147
DELRING function
RACDCERT command 325
DELTOKEN function
RACDCERT command 327
DELUSER command
authorization required 203
description 202
element 205
syntax 204
DELVOL operand
ALTDSD command 98
RALTER command 432
DESCRIPTION operand
TARGET command 667
DEST suboperand
ADDUSER command 84
ALTUSER command 174
destination of SYSOUT data set
for existing user 174
for new user 84
DEVICES class
description 693
DFTGRP operand
ADDUSER command 59
ALTUSER command 136
DFP operand
ADDGROUP command 27
ADDSD command 39
ADDUSER command 59
ALTGROUP command 112
ALTUSER command 136
LISGROUP command 219
LISTGRP command 229
LISTUSER command 241
DFP segment
changing
in group profile 112
in user profile 136
defining
for new group profile 27
for new user profile 136
displaying
for group profile 229
for user profile 241
DFP-managed data set
displaying owner 219
specifying owner 39, 99
DFSMSdfp
general resource classes 699
DIGTCERT class
description 693
DIGTCRT class
description 694
DIGTRNMAP class
description 694
DIGTRING class
description 694
DIMS class
description 694
DIRACC class
description 700
DIRAUTH class
description 694
DIRECTORY class
description 701
DIREC class
description 700
discrete profile
choosing between discrete and generic profiles 686
data set
defining 683
deleting 197
displaying 220, 557
general resource
defining 488, 687
deleting 541
displaying 557
name 681
searching for 584
DISPLAY command
authorization required 206
description 206
examples 208
syntax 207
displaying
current RACF options 634
data set profile 213
general resource profile 550
user profile 235
distributed identity filter
using the RACMAP command 408
DLF object
listing
general resource profiles 557
retain after use 512
specifying which can be accessed 512
DLCLASS class
description 694
DLDATA object
retaining after use 449
DLDATA operand
RALTER command 449
RDEFINE command 512
RLIST command 557
DLDATA segment
defining 512
DOCSIGN operand
RACDCERT GENCERT command 344
DOM request reception
deleting from user profile 158
for new user profile 74
for user profile 157
DOM suboperand
ADDUSER command 74
ALTUSER command 157
DOMAIN operand
RACDCERT GENCERT command 345
DOMAINS suboperand
ADDUSER command 65
ALTUSER command 145
DORMANT operand
TARGET command 666
DSA operand
RACDCERT GENCERT command 341
DSN operand
RACDCERT EXPORT command 330
DSNADM class
description 696
DSNR class
description 697
dynamic class descriptor table 435, 499, 557, 613
E
ECICSDCT class
description 696
EGN operand
SETROPTS command 623
EIM
general resource class 697
EIM (Enterprise Identity Mapping)
for existing user 138
for new user 60
EIM domain
altering resource options 450
options 513
EIM operand
ADDUSER command 60
ALTUSER command 138
LISTUSER command 241
RALTER command 450
RDEFINE command 513
EIM segment
altering 450
defining 513
displaying
for user profile 241
EJBROLE class
description 697
EMAIL operand
RACDCERT GENCERT command 345
ENCRYPT operand
ADDUSER command 61
RALTER command 457
RDEFINE command 519
ENCRYPT suboperand
ALTUSER command 140
enhanced generic naming
activating or deactivating 623
for data set profile 684
Enterprise Identity Mapping
general resource class 697
Enterprise Java Beans
general resource classes 697
envelopes
listing user information about 236
ERASE operand
ADDSD command 39
ALTUSER command 100
SETROPTS command 623
erase-on-scratch processing
activating 623
deactivating 624
for existing DASD data set 100
for new DASD data set 39
event display information
for new user profile 75
for user profile 160
exit routine
RACF commands that provide
FCICSFCT class
description 694, 701
FCCLASS class
description 696
FIELD class
description 694, 701
FIELDSEQ operand
description 694, 701
FILE class
description 701
FILEPROCMAX suboperand
ADDUSER command 49
ALTUSER command 138
ADDSD command 39
PERMIT command 266
RDEFINE command 514
GET generic operand
ADDSD command 39
PERMIT command 266
RDEFINE command 514
GET generic class
definition 698
GET generic profile for
activating model profile for 638
GET generic profile as model
for 514
GENCERT function
RACDCERT command 337
GENCMDF operand
SETROPTS command 624
general resource class
(continued)
generic profile command
processing 624
global access checking 494, 630
product use of
CICS 696
DB2 696
DCE 697
DFSMSdip 699
EIM 697
Enterprise Identity Mapping 697
Enterprise Java Beans 697
ICSF 698
IMS 698
Infoprint Server 698
Information/Management 698
LFS/ESA 698
License Manager 698
Lotus Notes for z/OS 698
miscellaneous 693
MQSeries 699
NetView 699
Novell Directory Services for
OS/390 698
RACF 693
SMS 699
Tivoli 699
Tivoli Service Desk 698
TSO 699
WebSphere MQ 700
z/OS Integrated Security Services
Network Authentication Service 699
z/OS UNIX 700
z/OSMF 700
recording statistics for 653
supplied for z/OS 693
supplied for z/VM 701
general resource profile
changing 421
defining 482, 687
deleting 539
determining RACF protection 682
displaying 550
permitting access to 261
searching for based on last
reference 583
searching RACF database for 586
using existing profile as model
for 514
generic character
defining generic profile name 682
GENERIC operand in place of 41
GENERIC operand
ADDSD command 41
ALTSDS command 100
DELDSD command 197
LISTSDS command 220
PERMIT command 267
RLIST command 557
SEARCH command 583
SETROPTS command 626
generic profile
choosing between discrete and generic
profiles 686
ICSF operand
RACDCERT ADD command 289
RACDCERT GENCERT command 341
RACDCERT IMPORT command 354
RACDCERT REKEY command 388
RALTER command 453
RDEFINE command 515
RLIST command 558
ICSF segment
altering 453
defining 515
ICTX operand
RALTER command 455
RDEFINE command 517
RLIST command 558
ICTX segment
altering 455
defining 517
ID operand
LISTDSD command 218
PERMIT command 267
IDNFILTER operand
RACDCERT MAP command 379
IIMS class
description 698
ILMADMIN class
description 698
IMPORT function
RACDCERT command 353
IMS (Information Management System)
general resource classes 698
in-storage profile
SETROPTS GENLIST processing for 628
SETROPTS RACLST processing for 646
INACTIVE operand
RVARY command 574
SETROPTS command 631
INCLUDE operand
SET command 600
indirect or symbolic VOLSER 37
INFORMAN class
description 698
Infoprint Server
general resource class 698
Information/Management
general resource classes 698
INITSTATS operand
SETROPTS command 631
installation exit routine
RACF commands that provide 12
installation-defined data
changing
in data set profile 99
in general resource profile 449
in group profile 112
in user profile 133
defining
for data set profile 39
for general resource profile 512
for group profile 27
for new user profile 57
deleting
from data set profile 213
from group profile 226
user profile 236
INTERVAL operand
PASSWORD command
PHRASE command 257
INTERVAL suboperand
PASSWORD operand 640
INITDS suboperand
ADDUSER command 74
ALTUSER command 158
IP operand
RACDCERT GENCERT command 345
IPCOBJ class
description 700
ISearchByClassReference 693, 701
ISPF panels
advantages 16
authorization, additional 16
compared to RACF TSO commands 16
not affected by SETROPTS
LANGUAGE setting 633
sample for password rules 17
J
JAVA class
description 698
JCICSJCT class
description 696
JES (job entry subsystem)
activating or deactivating options for 632
JES operand
SETROPTS command 632
JESINPUT class
description 694
JESJOBS class
description 694
JESSPOOL class
description 694
JIMS class
description 698
job class for TSO
for existing user 175
for new user 85
job entry subsystem (JES) 632
JOBCLASS suboperand
ADDUSER command 85
ALTUSER command 175
JOBNAME suboperand
DLFDATA operand 512
JOIN group authority
description 13
K
KCICSJCT class
description 696
KERB operand
ADDUSER command 61
KERB operand (continued)
ALTUSER command 139
LISTUSER command 241
RALTER command 457
RDEFINE command 518
RLIST command 559
KERB segment
displaying
for user profile 241
KERBLINK class
description 699
KERBLVL operand
SETROPTS command 633
KERBNAME operand
ADDUSER command 61
RALTER command 458
RDEFINE command 519
KERBNAME suboperand
ALTUSER command 140
key 528
KEY suboperand
ADDUSER command 74
ALTUSER command 158
KEYAGREE operand
RACDCERT GENCERT command 344
keyboard
navigation 703
PF keys 703
shortcut keys 703
KEYENCRYPTED suboperand
RALTER command 469
RDEFINE command 528
KEYMASKED suboperand
RALTER command 469
RDEFINE command 528
key/Usage operand
RACDCERT GENCERT command 344
L
LABEL operand
RACDCERT CONNECT command 316
RACDCERT REMOVE command 393
LAN File Services/ESA (LFS/ESA) 698
LANGUAGE operand
ADDUSER command 63
ALTUSER command 142
LISTUSER command 241
LANGUAGE segment
alter primary language 142
alter secondary language 142
delete primary language 142
delete secondary language 143
NOPRIMARY suboperand 142
NOSECONDARY suboperand 143
PRIMARY suboperand 142
SECONDARY suboperand 142
user profile
displaying 241
last reference
searching for profile based on 583
LDAP class
description 694
OVM operand (continued)
 ADDUSER command 77
 ALTGROUP command 116
 LISTUSER command 243
OVM for group data sets 30
OVM segment
 changing
 in group profile 116
 displaying for user profile 243
OVM suboperand
 ALTUSER command 163
OWNER operand
 ADDGROUP command 30
 ADDSD command 42
 ADDUSER command 79
 ALTGROUP command 102
 ALTGROUP command 117
 ALTUSER command 165
 CONNECT command 191
 RALTER command 461
 RDEFINE command 522
 REMOVE command 546

P

PADCHK suboperand
 RDEFINE command 496
password
 canceling syntax rules 644
 change interval 257, 640
 changing
 current 258
 number of passwords to be saved 639
 system-wide options 639
 envelope, listing user information about 236
 for password-protected data sets 37, 97
 for RVARY command processing 650
 initial logon for new user 79
 logon for existing user 165
 never expiring 258
 specifying
 consecutive unsuccessful attempts 642
 new 258
 warning message for password phrase expiration 645
 password rules
 ISPF panel for 17
 password-protected data set
 password when altering profile 97
 specifying password for 37
 PCICCC operand
 RACDCERT ADD command 289
 RACDCERT GENCERT command 341
 RACDCERT IMPORT command 354
 RACDCERT REKEY command 388
 PCICSPSB class
 description 696
 PERFGRP class
 description 699
 PERMDIR 1
 PERMFILE 1
 PERMIT command
 authorization required 263
 description 261
 examples 271
 syntax 263
 permitting access to profiles 263
 persistent verification 206, 525, 659
 PHRASE operand
 ADDUSER command 79
 ALTUSER command 166
 PASSWORD command 258
 PHRASE command 258
 PIMSL class
 description 698
 PKDS operand
 RACDCERT ADD command 289
 RACDCERT GENCERT command 341
 RACDCERT IMPORT command 354
 PMBR class
 description 695
 POE operand
 DISPLAY command 207
 SIGNOFF command 660
 PREFIX operand
 LISTDSD command 218
 SETROPTS command 645
 TARGET command 670
 preventing
 access to profiles 263
 PROFILE operand
 ADDGROUP command 30
 CONNECT command 191
 OWNER operand 165
 PERMDIR 1
 PERMFILE 1
 PERMIT command 263
 PHRASE command 258
 PROFILE operand
 ADDGROUP command 30
 ADDSD command 42
 ADDUSER command 79
 ALTGROUP command 102
 ALTGROUP command 117
 ALTUSER command 165
 CONNECT command 191
 RALTER command 461
 RDEFINE command 522
 REMOVE command 546
 PROPCNTL class
 description 695
 PROGRAM class
 description 695
 program control
 activating 654
 conditional access list 261, 270
 controlled program
 access for 270
 defining 428, 489
 deactivating 654
 in-storage table
 changing 495
 refreshing 650
 PROGUSER suboperand
 ADDUSER command 71, 78
 ALTUSER command 154
 PROPCNTL class
 description 695
 PROTCERT operand
 SETROPTS command 645
 PROTECTALL operand
 SETROPTS command 645
 PROTECTALL processing
 activating or deactivating 645
 protected user ID 79, 166

724 z/OS V2R1.0 Security Server RACF Command Language Reference
RACF segment
 group profile
 changing 108
 defining 24
 displaying 229
 suppressing display 229
 user profile
 changing 120
 defining 49
 displaying 240
 suppressing display 242
RACF TSO commands
 compared to ISPF panels 16
 entering
 background 18
 foreground 17
RACFEVNT class
 description 695
RACFHC class
 description 695
RACFVARS class
 description 695, 701
RACGLIST class
 description 695
RACHCMBR class
 description 695
RACLINK command
 authorization required 401
 description 401
 examples 416
 syntax 409
RACLST operand
 SETROPTS command 646
RACMAP command
 authorization required 409
 description 408
 examples 416
 syntax 409
RACPRIV command
 authorization required 419
 description 419
 examples 420
 syntax 419
RALTER command
 authorization required 422
 description 421
 examples 478
 syntax 423
RAUDITX class
 description 697
RCICSLRES class
 description 696
RDATALIB class
 description 695
RDEFINE command
 authorization required 482
 description 481
 examples 534
 syntax 484
RDELETE command
 authorization required 540
 description 539
 examples 542
 syntax 540
reactivating
 RACF resource protection
 using RVARY command 571
REALDSN operand
 SETROPTS command 650
REALM class
 description 699
 recording
 RACROUTE REQUEST=VERIFY
 statistics 631
 real data set names 650
 statistics for resources 653
REFRESH operand
 SETROPTS command 650
refreshing
 generic profile checking 627
 global access checking 630
 in-storage generic profiles and
 program control tables 650
region size for TSO
 maximum
 for existing user 175
 for new user 85
 minimum
 defining for user 85
 for existing user 176
REKEY function
 RACDCERT command 386
REMOVE command
 authorization required 544
 description 544
 examples 546
 syntax 545
REMOVE function
 RACDCERT command 393
removing
 authority to access a profile 263
 names from access list 263
 RACF protection from data set
 profile 195
 user's access to system 171, 172, 192, 193
RESET operand
 PERMIT command 267
RESET(ALL) operand
 PERMIT command 267
RESET(WHEN) operand
 PERMIT command 268
RESGROUP operand
 RLIST command 559
resource access authority
 specifying in access list 265
 resource group
 adding
 resource names as members 429
 resource profile
 naming 681
RESOWNER suboperand
 ADDSD command 39
 ALTSDS command 59
 SETROPTS command 650
RESTRICTED operand
 ADDUSER command 82
 ALTUSER command 169
restrictions
 logon for existing user 82, 169
RESUME operand
 ALTUSER command 170
 CONNECT command 191
resuming a revoked user 170, 172
RETAIN suboperand
 ADDSD command 43
 ALTSDS command 102
 SETROPTS command 650
return codes 11
REVOKE operand
 ALTUSER command 171
 CONNECT command 192
REVOKE suboperand
 PASSWORD operand 642
revoking
 user ID based on consecutive
 unsuccessful attempts 642
 user's access to system 171, 172, 192, 193
 user's TSO authority 178
RIMS class
 description 698
RING operand
 RACDCERT CONNECT
 command 316
 RACDCERT REMOVE command 393
RLIST command
 authorization required 552
 description 550
 examples 561
 syntax 554
RMTOPS class
 description 699
RDOMMGR class
 description 699
ROLE class
 description 699
ROLES operand
 ALTSDS command 118
ROLLOVER function
 RACDCERT command 396
ROUTCODE suboperand
 ADDUSER command 76
 ALTUSER command 161
RROSDATA class
 description 695
RSA operand
 RACDCERT GENCERT
 command 341
 RACDCERT REKEY command 388
RSLKEY suboperand
 ALTUSER command 130
RULE suboperand
 PASSWORD operand 642
 rules
 establishing password syntax
 ISPF panel 17
RVARSMBR class
 description 695, 701
segment (continued)
 WORKATTR segment
 displaying for group profile 244
sending comments to IBM xiii
SERVAUTH class
description 695
SESSION operand
 RALTER command 465
 RDEFINE command 524
 RLIST command 560
SESSION segment
 displaying general resource profile 560
SET command
 authorization required 593
callable service trace types
IBM Policy Director 606
RACROUTE 607
z/OS UNIX 603
description 593
examples 609
syntax 593
SFSCMD class
description 702
shared file system profiles 691
shared in-storage profile
SETPORTS GENLIST processing for 628
SETPORTS RACLST processing for 646
SHARED suboperand
 ALTGROUP command for GID suboperand 29, 115
 UID suboperand
ADDUSER command 68
ALTUSER command 150
SHMEMMAX suboperand
ADDUSER command 71
ALTUSER command 154
shortcut keys 703
signed-on-from list 206, 659
SIGNOFF command
 authorization required 659
description 659
examples 661
syntax 660
SIGNON operand
DISPLAY command 207
SIGNWITH operand
RACDCERT GENCERT command 341
SIGVER operand
 RALTER command 466
 RDEFINE command 526
SIGVER operand (continued)
 RLIST command 560
SIGNON operand
 ADDUSER command 85
 ALTUSER command 176
SMMESSAGE class
description 695
SMS (Storage Management Subsystems) general resource classes 699
SNAME suboperand
 ALTUSER command 143
SOMDOBJ class
description 695
SPECIAL attribute
 for existing user 173
 for new user 83
logging activities for 651
SPECIAL operand
ADDUSER command 83
ALTUSER command 173
CONNECT command 193
specifying the distinguished name the LDAP proxy server will use
ADDUSER command 81
ALTUSER command 168
RALTER command 462
RDEFINE command 522
specifying the password the LDAP proxy server will use
ADDUSER command 81
ALTUSER command 169
RALTER command 463
RDEFINE command 523
specifying the URL of the LDAP proxy server
ADDUSER command 80
ALTUSER command 167
RALTER command 462
RDEFINE command 522
SRDIR 1
SRFILE 1
SIGNON operand
 KEY ENCRYPTED suboperand 469, 528
 KEY MASKED suboperand 469, 528
RALTER command 469
RDEFINE command 528
RLIST command 560
SIGNON segment
 displaying general resource profile 560
 standard access list 261
STARTED class
description 695
STARTED task
 security category checking
 RALTER command 429
 RDEFINE command 490
 security level checking 464
statistics
 bypassing recording of 632
displaying for data set profile 221
general resource profile 560
recording for classes 653
for REQUEST=VERIFY processing 631
STATISTICS operand
LISTDSN command 221
RLIST command 560
SETROPTS command 653
STATUS suboperand
 RVARYPW operand (SETROPTS command) 650
STDATA operand
 RALTER command 470
 RDEFINE command 528
 RLIST command 561
STDATA segment
displaying general resource profile 561
 RALTER command 470
 RDEFINE command 528
 STOP command
 authorization required 662
description 662
examples 663
syntax 662
storage class for DFP
 adding to new group profile 28
 changing for group profile 113
 in user profile 137
defining for user profile 60
STORAGE suboperand
ADDUSER command 77
ALTUSER command 162
STORCLAS class
description 699
STORCLAS suboperand
ADDGROUP command 28
ADDSD command 36
ADDUSER command 53
ALTDSD command 96
ALTGROUP command 102
ALTGROUP command 127
CONNECT command 188
subsystem prefix
ADDGROUP command 26
ADDSD command 36
ADDUSER command 53
ALTDSD command 96
ALTGROUP command 110
ALTUSER command 127
CONNECT command 188
 begun
TSLKEY suboperand
ALTUSER command 131
TSO default prefix for data set 18
TSO logon information
changing
default for user profile 173
defining
default for user profile 83
deleting
from user profile 178
TSO operand
ADDUSER command 83
ALTUSER command 173
LISTUSER command 244
TSO segment
deleting from user profile 178
displaying for user profile 244
for existing user profile 173
for new user profile 83
TSO SUBMIT command 19
TSO/E
general resource classes 699
TSOAUTH class
description 699
TSOPROC class
description 699
TVTOC (tape volume table of contents)
creating entry for tape data set 42
TVTOC operand
ALTER command 475
RDEFINE command 532
RLIST command 561
type of broadcast messages
for new user profile 75
for user profile 158

U
UACC (universal access authority)
changing
default for user profile 178
default in user's connect profile 193
for data set profile 104
for general resource profile 475
defining
default for user profile 86
default in user's connect profile 193
for data set profile 45
for general resource profile 532
for undefined terminals 653
UACC operand
ADDS command 45
ADDUSER command 86
ALTDSD command 105
ALTDSD command 105
ALTUSER command 178
CONNECT command 193
RDEFINE command 532
UAUDIT operand
ALTUSER command 178
UCICSTST class
description 696
UD suboperand
ADDUSER command 77
ALTUSER command 162
UID operand
SEARCH command 589
UID suboperand
ADDUSER command 67, 78
ALTUSER command 149
UIMS class
description 698
UNAME suboperand
ALTUSER command 144
UNBIND function
RACDCERT command 399
undelivered message reception
changing for user profile 162
defining for user profile 77
unit devices for TSO
for existing user 177
for new user 86
UNIT operand
ADDS command 45
ALTDSD command 105
ALTUSER command 177
UNIT suboperand
ADDUSER command 86
ALTUSER command 177
unit type
changing for data set profile 105
defining for data set profile 45
universal group
for new group 31
UNIVERSAL operand
ADDGROUP command 31
UNIXMAP class
description 700
UNIXPRIV class
description 701
UNKNIDS suboperand
ADDUSER command 77
ALTUSER command 162
URI operand
RACDCERT GENCERT command 345
USAGE operand
RACDCERT CONNECT command 316
USE group authority
description 13
user
limiting access to system 86, 179
user data for TSO
changing 177
defining 86
user ID
as new owner
of data set profiles of removed user 546
as owner
of connect profile 191
of data set profile 102
of general resource profile 461
of group profile 117
of new data set profile 42
of new general resource profile 522
of new group profile 30
of new user profile 79
of user profile 165
changing access to resource for
deactivating an unused 631
user ID (continued)
displaying data set profiles for 218
displaying user profile for 239
no password 79, 166
protected 79, 166
removing user from group 545
revoking based on consecutive unsuccessful attempts 642
syntax 10
to add new user profile 53
to alter user profile 128
to change password 259
to change password phrase 259
to connect to group 189
to receive notify message
for existing data set profile 102
for general resource profile 461, 521
for new data set profile 42
translating in inbound jobs or SYSOUT 495
when deleting user profile 204
user interface
ISPF 703
TSO/E 703
user name
changing 144
defining 64
USER operand
DISPLAY command 208
PASS WORD command 259
PHRASE command 259
RALTER command
=MEMBER operand 470
RDEFINE command
=MEMBER operand 529
SEARCH command 589
SIGNOFF command 660
user profile
changing 120
defining 48
deleting 203
displaying 235
listing envelope information 236
RACF segment 49
removing from group 544
searching for based on last reference 583
USERDATA suboperand
ADDUSER command 86
ALTUSER command 177
userid-named data set
activating model profile for 639
user ID
changing access to resource for
deactivating an unused 631
valid values
FORMAT operand 330
VCICSCMD class
description 696
VMBATCH class
description 702
VMBR class
description 702
VMCMD class
description 702
VMDEV class
description 702
VMEVENT class
description 702
VMLAN class
description 702
VMMAC class
description 702
VMMDISK class
description 702
VMMNODE class
description 702
VMPOSIX class
description 702
VMRDR class
description 702
VMSEGMT class
description 702
VMXEVENT class
description 702
VOLUME operand
ADDSD command 45
ALTDSD command 105
DELDSD command 198
LISTDSD command 221
PERMIT command 268
SEARCH command 268
VOLUME suboperand
TARGET command 676
VOLUME operand
adding volume to tape volume profile 432
deleting a data set 198
deleting volume from tape volume profile 432
displaying data set profile 221
for controlled program 496
for existing data set 105
for multivolume data set 98
for new data set 45
indirect or symbolic VOLSER 37
specifying when creating access list 268
using as search criteria 590
using to locate model profile 40, 515
VOLUME suboperand
TARGET command 676
VSAM data set
protecting 687
searching for 584
VSAM operand
SEARCH command 584
VTAM (Virtual Telecommunications Access Method)
general resource class 696
VTAMAPPL class
description 696
VXMBR class
description 702
W
WAACCNT suboperand
ADDUSER command 87
ALTUSER command 180
WAADDR suboperand
ADDUSER command 87
WABLDG suboperand
ADDUSER command 88
ALTUSER command 181
WADEPT suboperand
ADDUSER command 88
ALTUSER command 181
WANAME suboperand
ADDUSER command 88
ALTUSER command 181
warning indicator
searching for resources with 585
warning message
number of days before password expires 645
WARNING operand
ADDSD command 45
ALTDSD command 105
RALTER command 476
RDEFINE command 533
SEARCH command 585
WARNING suboperand
PERMIT command 268
WARNING operand
PASSWORD operand 645
WAROOM suboperand
ADDUSER command 89
ALTUSER command 182
WCICSRES class
description 696, 702
WDSQUAL operand
TARGET command 674
WebSphere MQ
general resource classes 700
WHEN DAYS operand
ADDUSER command 87
ALTUSER command 179
RALTER command 476
RDEFINE command 533
WHEN TIME operand
ADDUSER command 87
ALTUSER command 179
RALTER command 476
RDEFINE command 533
WHEN(APPCPORT) operand
PERMIT command 268
WHEN(CONSOLE) operand
PERMIT command 268
WHEN(CRITERIA) operand
PERMIT command 269
WHEN(JESINPUT) operand
PERMIT command 270
WHEN(PROGRAM) operand
PERMIT command 270
SETROPTS command 654
WHEN(SERVAUTH) operand
PERMIT command 270
WHEN(SYSID) operand
PERMIT command 271
WHEN(TERMINAL) operand
PERMIT command 271
WIMS class
description 698
WITHLABEL operand (continued) 390
RACDCERT REKEY command 390
WORKATTR operand
ADDUSER command 87
ALTUSER command 180, 182
LISTUSER command 244
WORKATTR segment
group profile
displaying 244
WORKSPACE operand
TARGET command 675
WRITER class
description 696, 702
X
XCSFKEY class
description 698
XFACILIT class
description 696
XRFSOFF suboperand
ALTUSER command 131
Z
z/OS Network Authentication Service
general resource classes 699
z/OS UNIX
general resource classes 700
z/OSMF
general resource class 700
ZMFAPLA class
description 700
DASD data set

erase-on-scratch processing

for new data set

searching a volume for

DASDVOL class
description

data application for DFP
changing
for group profile
for user profile

defining
for new group profile
for new user profile

data application for LNOTES
changing
for user profile

data application for NDS
changing
for user profile

data class for DFP
changing
in group profile
in user profile
defining
for new group profile
for new user profile

data set
creating CLIST data set
default TSO prefix
DFP-managed data set
displaying owner
specifying owner
logging real data set names
protecting single-qualifier named data sets

data set profile
changing
for existing profile

defining
model profile
defining model for group data sets
using existing profile as model

OMVS profile
OMVS for group data sets
OVM profile
OVM for group data sets

permitting access to

searching for

all profiles
based on last reference
selected profiles
tape data set profile

DATAAPPL suboperand
ADDDGROUP command

DATAAPPL suboperand (continued)
ADDDUSER command
ADDDUSER command
ADDDUSER command
ATTUSER command
database
deactivating or reactivating
RACF

DATAEXEC suboperand
ADDDGROUP command
ADDDUSER command
ADDDUSER command
ADDDUSER command
ATTUSER command
TARGET command

DATAACLAS suboperand
ADDDGROUP command
ADDDUSER command
ADDDUSER command
ATTUSER command
ATTUSER command
TARGET command

DATAAPPL suboperand
ADDDGROUP command

DATAENCRYPT operand
RACDCERT GENCERT

DATASET class
auditing
for

defining fully-qualified generic profile
generic profile checking
generic profile command
processing
global access checking
target statistics

DATASET operand
LISTDSD command
RVARY command

DATASHARE operand
RVARY command
date

syntax

days of week

DB2
general resource classes
DCE
general resource class
DCE operand

DCICSDCT class
description

deactivating
general resource classes
RACF resource protection using
RVARY command
unused user ID

default group
for existing user
for new user

DEFAULT operand
RACDCERT CONNECT

DELTDS operand
ALTUSER command
ATTUSER command
RALTER command

DELCATEGORY operand
ALTUSER command
RALTER command

DELDIR

DELDOMAINS suboperand

DELGROUP command

authorization required
description
examples
syntax

DELETE function
RACDCERT command

DELETE operand
PERMIT command
TARGET command
deleting
access lists from profile
console command system
console search key
from user profile
data set profile
general resource profile
message level from user profile
operator command authority
primary language
secondary language
security category
security level
from data set profile
from general resource profile
from user profile
user profile
volume
from tape volume profile

deleting the distinguished name used by the LDAP proxy server

ALTTUSER command
RALTER command
deleting the LDAP proxy server information

ALTTUSER command
RALTER command
deleting the LDAP proxy server

ALTTUSER command
RALTER command
deleting the URL of the LDAP proxy server

ALTTUSER command
RALTER command
deleting the URL of the LDAP proxy server

ALTTUSER command
RALTER command

DELFIL

DELFILE

DELMAP function
RACDCERT command
RACMAP command
deleting
DELMEM operand
RALTER command
deleting
DELMSCOPE suboperand

ALTTUSER command
ALTTUSER command
DELOPCCLASS suboperand
ALTUSER command 129, 147
DELRING function
RACDCERT command 325
DELTOKEN function
RACDCERT command 327
DELUSER command
authorization required 203
description 202
extample 205
syntax 204
DELYOL operand
ALTDS command 98
RALTER command 432
DESCRIPTION operand
TARGET command 667
DEST suboperand
ADDUSER command 84
ALTUSER command 174
destination of SYSOUT data set
for existing user 174
for new user 84
DEVICES class
description 693
DFTLGRP operand
ADDUSER command 59
ALTUSER command 136
DFP operand
ADDGROUP command 27
ADDSD command 39
ADDUSER command 59
ALTDS command 99
ALTGROUP command 112
ALTUSER command 136
LISTDS command 219
LISTGRP command 229
LISTUSER command 241
DFP segment
changing
in group profile 112
in user profile 136
defining
for new group profile 27
for new user profile 136
displaying
for group profile 229
for user profile 241
DFP-managed data set
displaying owner 219
specifying owner 39, 99
DFSMdftp
general resource classes 699
DIGTCERT class
description 693
DIGTRCRIT class
description 694
DIGTRCINMAP class
description 694
DIGTRRING class
description 694
DIRSIG class
description 694
DRAUTH class
description 700
DRAUTH class
description 694
DIRECTY class
description 701
DIRSRCH class
description 700
discrete profile
choosing between discrete and generic profiles 686
data set
defining 683
deleting 197
displaying 220, 557
general resource
defining 488, 687
deleting 541
displaying 557
naming 681
searching for 584
DISPLAY command
authorization required 206
description 206
extamples 208
syntax 207
displaying
current RACF options 634
data set profile 213
general resource profile 550
group profile 226
user profile 235
distributed identity filter
using the RACMAP command 408
DLF object
listing
general resource profiles 557
retaining after use 512
specifying which can be accessed 512
DLFCCLASS class
description 694
DLFDATA object
retaining after use 449
DLFDATA operand
RALTER command 449
RDEFINE command 512
RLIST command 557
DLFDATA segment
defining 512
DOCSIGN operand
RACDCERT GENCERT command 344
DOM request reception
deleting from user profile 158
for new user profile 74
for user profile 157
DOM suboperand
ADDUSER command 74
ALTUSER command 157
DOMAIN operand
RACDCERT GENCERT command 345
DOMAINS suboperand
ADDUSER command 65
ALTUSER command 145
DORMANT operand
TARGET command 666
DS operand
RACDCERT GENCERT command 341
DSN operand
RACDCERT EXPORT command 330
DSNADM class
description 696
DSNR class
description 697
dynamic class descriptor table 435, 499, 557, 613
E
ECICSDCT class
description 696
EGN operand
SETROPTS command 623
EIM
general resource class 697
EIM (Enterprise Identity Mapping)
for existing user 138
for new user 60
EIM domain
altering resource options 450
options 513
EIM operand
ADDUSER command 60
ALTUSER command 138
LISTUSER command 241
RALTER command 450
RDEFINE command 513
EIM segment
altering 450
defining 513
displaying
for user profile 241
EJBROLE class
description 697
EMAIL operand
RACDCERT GENCERT command 345
ENCRYPT operand
ADDUSER command 61
RALTER command 457
RDEFINE command 519
ENCRYPT suboperand
ALTUSER command 140
enhanced generic naming
activating or deactivating 623
for data set profile 684
Enterprise Identity Mapping
general resource class 697
Enterprise Java Beans
general resource classes 697
envelopes
listing user information about 236
ERASE operand
ADDSD command 39
ALTDS command 100
SETROPTS command 623
erase-on-scratch processing
activating 623
deactivating 624
for existing DASD data set 100
for new DASD data set 39
event display information
for new user profile 75
for user profile 160
exit routine
RACF commands that provide 12
EXPIRED operand
ALTUSER command 138
EXPIRES operand
SEARCH command 584
EXPORT function
RACDCERT command 329
extension logic
authorityKeyIdentifier extension 332
basicConstraints extension 332
issuerAltName extension 332
keyUsage extension 332
subjectAltName extension 332
subjectKeyIdentifier extension 332
F
FACILITY class
description 694, 701
FCICSFCT class
description 696
FCCLASS operand
ADDS command 39
PERMIT command 266
RDEFINE command 514
FGENERIC operand
ADDS command 39
PERMIT command 266
RDEFINE command 514
FIELD class
description 694, 701
field-level access checking 489
FILE class
description 701
file sequence number for tape data set 39
FILEPROCMA suboperand
ADDS command 69
ALTUSER command 151
FILESEQ operand
ADDS command 39
FILESIZE suboperand
TARGET command 676
FILTER operand
SEARCH command 586
FIMS class
description 698
FORCE operand
RACDCERT DLETOKEN command 327
RACDCERT ROLLOVER command 396
RACDCERT UNBIND command 400
FORMAT operand
RACDCERT EXPORT command 330
FROM operand
ADDS command 40
PERMIT command 266
RDEFINE command 514
FROMICSF operand
RACDCERT GENCERT command 341
FSACCESS class
description 700
FSOBJ class
description 700
FSROOT suboperand
ADDS command 77
FSSEC class
description 700
fully-qualified generic profile naming 682
FUNCTION operand
HELP command 212
FVOLUME operand
ADDS command 40
PERMIT command 266
RDEFINE command 515
G
GCICSTRN class
description 696
GCPSSMOBJ class
description 696
GCSFKEYS class
description 696
GDASDVOL class
description 694
GDG (generation data group)
activating model profile for 638
GDGBP class
description 697
GDGNCL class
description 697
GDGSNDB class
description 697
GDGNJR class
description 697
GDGSNPK class
description 697
GDGSNPN class
description 697
GDGSNCL class
description 697
GDGSNC class
description 697
GDGSNSG class
description 697
GDGSNSM class
description 697
GDGSNTP class
description 697
GDGSNSQ class
description 697
GDGSNTB class
description 697
GDGSNTS class
description 697
GDGSNUF class
description 697
GDGSNUV class
description 697
GDGSNUT class
description 697
GEJBROLE class
description 697
GENCERT function
RACDCERT command 337
GENCMD operand
SETROPTS command 624
general resource class (continued)
genetic profile command
processing 624
global access checking 494, 630
product use of
CICS 696
DB2 696
DCE 697
DFSMsdip 699
EIM 697
Enterprise Identity Mapping 697
Enterprise Java Beans 697
ICSF 698
IMS 698
Infoprint Server 698
Information/Management 698
LFS/ESA 698
License Manager 698
Lotus Notes for z/OS 698
miscellaneous 693
MQSeries 699
NetView 699
Novell Directory Services for
OS/390 698
RACF 693
SMS 699
Tivoli 699
Tivoli Service Desk 698
TSO 699
WebSphere MQ 700
z/OS Integrated Security Services
Network Authentication Service 699
z/OS UNIX 700
z/OMSF 700
recording statistics for 653
supplied for z/OS 693
supplied for z/VM 701
general resource profile
changing 421
defining 482, 687
deleting 539
determining RACF protection 682
displaying 550
permitting access to 261
searching for based on last reference 583
searching RACF database for 586
using existing profile as model for 514
genetic character
defining generic profile name 682
GENERIC operand in place of 41
GENERIC operand
ADDS command 41
ALTDS command 100
DELDSD command 197
LISTDS command 220
PERMIT command 267
RLIST command 557
SEARCH command 583
SETROPTS command 626
genetic profile
choosing between discrete and generic profiles 686
generic profile (continued)
data set
defining, enhanced generic naming
active 684
defining, enhanced generic naming
inactive 683
deleting 197
displaying 220
using existing profile as
generic 100
using new profile as generic 41
displaying for a data set 213

general resource
defining 488, 688
deleting 541
displaying 557
naming 682
refreshing in-storage profiles 650
searching for 583
generic profile checking 628
activating or deactivating 626
generic profile command processing
activating or deactivating 624

GENERICOWNER operand
SETROPTS command 628

GENLIST operand
SETROPTS command 628

GENREQ function
RACDCERT command 350

GID operand
SEARCH command 588

GID suboperand
ADDDGROUP command 30
ALTGROUP command 29, 115, 116

GIMS class
description 698

GINFOMAN class
description 698

global access checking
activating or deactivating 630
defining entry in table 493
refreshing in-storage table 650

GLOBAL class
description 694, 701

GLOBAL operand
SETROPTS command 630

GLOBALAUDIT operand
ALTDSD command 101
RALTER command 452

GMBR class
description 694, 701

GMQADMIN class
description 699

GMQLIST class
description 699

GMQPROC class
description 699

GMQQUEUE class
description 699

GMXADMIN description 700

GMXNLIST description 700

GMXPPROC description 700

GMXQUEUE description 700

GMXTOPIC
description 700
group
default for existing user 136
default for new user 59
group-related user attributes
assigning for user 187
maximum number of users in 189
group authority
description 13
for existing user 129
for new user 54
in user's connect profile 190
group data set
model profile processing 639
group name
as new owner
of data set profiles of removed user 546
as owner
of connect profile 191
of data set profile 102
of general resource profile 461
of group profile 117
of new data set profile 42
of new general resource profile 522
of new group profile 30
of new user profile 79
of user profile 165
changing access to resource for 267
deleting group profile 201
displaying
data set profiles for 218
profile for 228
for existing group 110
for new group 26
for removing user from group 546
syntax 10

GROUP operand
ALTUSER command 139
CONNECT command 190
DISPLAY command 208
RALTER command
=MEMBER operand 470
RDEFINE command
=MEMBER operand 529
REMOVE command 546
SIGNOFF command 660
group profile
changing 108
defining 24
deleting 199
displaying 226
searching for based on last reference 583
group-AUDITOR attribute
in user's connect profile 190
group-OPERATIONS attribute
in user's connect profile 191
logging activities for 639
group-SPECIAL attribute
in user's connect profile 193
logging activities for 651
GRPACC (group access) attribute
for existing user 139
for new user 61

H

HANDSHAKE operand
RACDCERT GENCERT command 344

HC suboperand
ADDDUSER command 74
ALTUSER command 158

HCICSFCT class
description 696

HELP command
description 211
examples 212
syntax 211

hierarchical storage manager (HSM)

TVTOC operand
RALTER command 475

HIGHERTRUST operand
RACDCERT ADD command 288
RACDCERT ALTER command 298
RACDCERT IMPORT command 354

HIMS class
description 698

HISTORY operand
LISTDSD command 221
RLIST command 558

HISTORY suboperand
PASSWORD operand 639
hold class for TSO
for existing user 175
for new user 84

HOLDCLASS suboperand
ADDDUSER command 84
ALTUSER command 175

HOME suboperand
ADDDUSER command 69, 77
ALTUSER command 151

IC suboperand
ADDDUSER command 65
ALTUSER command 146

ICSF (Integrated Cryptographic Service Facility)
general resource classes 698
ICSF operand
 RACDCERT ADD command 289
 RACDCERT GENCERT command 341
 RACDCERT IMPORT command 354
 RACDCERT REKEY command 388
 RALTER command 453
 RDEFINE command 515
 RLIST command 558

ICSF segment
 altering 453
 defining 515

ICTX operand
 RALTER command 455
 RDEFINE command 517
 RLIST command 558

ICTX segment
 altering 455
 defining 517

ID operand
 LISTDSD command 218
 PERMIT command 267

IDNFILTER operand
 RACDCERT MAP command 379

IIMS class
 description 698

ILMADMIN class
 description 698

IMPORT function
 RACDCERT command 353

IMS (Information Management System)
 general resource classes 698
 in-storage profile
 SETROPTS GENLIST processing for 628
 SETROPTS RACLST processing for 646

INACTIVE operand
 RVARY command 574
 SETROPTS command 631

INCLUDE operand
 SET command 600
 indirect or symbolic VOLSER 37

INFORMAN class
 description 698

Infoprint Server
 general resource class 698

Information/Management
 general resource classes 698

INITSTATS operand
 SETROPTS command 631

installation exit routine
 RACF commands that provide 12 installation-defined data
 installation-defined data (continued)
 changing
 in data set profile 99
 in general resource profile 449
 in group profile 112
 in user profile 133
defining
 for data set profile 39
 for general resource profile 512
 for group profile 27
defining
 for new user profile 57
deleting
 from general resource profile 449

INSTALL operand
 RACDCERT ADD command 289
 RACDCERT GENCERT command 341
 RACDCERT IMPORT command 354
 RACDCERT REKEY command 388
 RALTER command 453
 RDEFINE command 515
 RLIST command 558

KEEP operand
 RACDCERT command 353

KERS operand
 ADDUSER command 61

KERS segment
 displaying
 for user profile 241

KERBLINK class
 description 699

KERBLVL operand
 ADDUSER command 74
 ALTUSER command 158
 RALTER command 457
 RDEFINE command 518
 RLIST command 559

KERBNAME suboperand
 ALTUSER command 140
 key 528

KEY suboperand
 ADDUSER command 74
 ALTUSER command 158
 RALTER command 458
 RDEFINE command 519

KEYAGREE operand
 RACDCERT GENCERT command 345

KEYENCRYPTED suboperand
 RALTER command 469
 RDEFINE command 528

KEYMASKED suboperand
 RALTER command 469
 RDEFINE command 528

KEYUSAGE operand
 RACDCERT GENCERT command 344

LABEL operand
 RACDCERT CONNECT command 316
 RACDCERT REMOVE command 393

LANGUAGE operand
 ADDUSER command 63
 ALTUSER command 142
 LISTUSER command 241

LANGUAGE segment
 alter primary language 142
 alter secondary language 142
delete primary language 142
delete secondary language 143

LDAP class
 description 694

last reference
 searching for profile based on 583

LFSDATA operand
 DLFPDATA operand 512

J
 JAVA class
 description 698
 JCICSJCT class
 description 696

JES (job entry subsystem)
 activating or deactivating options for 632
 JES operand
 SETROPTS command 632
 JESINPUT class
 description 694
 JESJOBS class
 description 694
 JESSPOOL class
 description 694
 JIMS class
 description 698
 job class for TSO
 for existing user 175
 for new user 85
 job entry subsystem (JES)
 632
 JOBClass suboperand
 ADDUSER command 85
 ALTUSER command 175
 JOBNAME suboperand
 DLFPDATA operand 512
 JOIN group authority
description 13

K
 KCICSJCT class
 description 698
 KERB operand
 ADDUSER command 61

KERB operand (continued)
 ALTUSER command 139
 LISTUSER command 241
 RALTER command 457
 RDEFINE command 518
 RLIST command 559

KERB segment
 displaying
 for user profile 241

KERBLINK class
 description 699

KERBLVL operand
 ADDUSER command 74
 ALTUSER command 158

KEYAGREE operand
 RACDCERT GENCERT command 345

KEYENCRYPTED suboperand
 RALTER command 469
 RDEFINE command 528

KEYMASKED suboperand
 RALTER command 469
 RDEFINE command 528

KEYUSAGE operand
 RACDCERT GENCERT command 344

keyboard
 navigation 703
 shortcut keys 703

KEY operand
 ADDUSER command 61
 ALTUSER command 140

LABEL operand
 RACDCERT CONNECT command 316
 RACDCERT REMOVE command 393

LAN File Services/ESA (LFS/ESA) 698

LANGUAGE operand
 ADDUSER command 63
 ALTUSER command 142
 LISTUSER command 241

LANGUAGE segment
 alter primary language 142
 alter secondary language 142
delete primary language 142
delete secondary language 143

LDAP class
 description 694
MESSAGE (continued)
for new general resource profile 522
MESSAGE class for TSO changing for user 176
defining for user 85
Message routing codes for new user profile 76
for user profile 161
MFORM suboperand ADDUSER command 75
ALTUSER command 159
MGMTCLAS class description 699
MGMTCLAS suboperand ADDGROUP command 27
ADDSER command 60
ALTGROUP command 112
ALTSER command 137
TARGET command 676
MIGID suboperand ADDUSER command 75
ALTUSER command 160
migration id assignment for new user profile 75
migration ID assignment for user profile 160
Model data set profile
authorizing required to specify 35
copying fields from 35
defining 41
displaying name 226
for existing user 143
for group data sets 113
for new user 64
locating volume for 40
model for group data sets 28
searching for 584
system-wide processing options 638
using existing profile as model 40
Model general resource profile using existing profile as 514
using volume to locate 515
MODEL operand
ADDSER command 28
ADDSER command 41
ADDSER command 64
ALTGROUP command 113
MODEL operand (continued)
ALTUSER command 143
SEARCH command 584
SETROPTS command 638
SPECIAL operand ADDUSER command 75
ALTUSER command 160
MQADMIN class description 699
MQCMD class description 699
MQCONN class description 699
MQNLIST class description 699
MQPROC class description 699
MQQUEUE class description 699
MQSeries general resource classes 699
MSCOPE suboperand ADDUSER command 66
ALTUSER command 146
MXADMIN description 700
MXLIST description 700
MXNLIST description 700
MXPROC description 700
MXQUEUE description 700
MXTOPIC description 700
NAME operand
ADDUSER command 64
ALTUSER command 144
navigation keyboard 703
NCICSPPT class description 696
NDP operand
ADDUSER command 64
ALTUSER command 144
LISTUSER command 242
NDS operand changing in user profile 144
user profile displaying 242
NDSLINK class description 698
NETCMDS class description 698
NETSPAN class description 699
NetView general resource classes 699
NETVIEW operand
ADDUSER command 65
ALTUSER command 145
LISTUSER command 242
NETVIEW segment ADDDOMAINS suboperand 146
ADDOPCLASS suboperand 147
changing in user profile 145
CONSNAME suboperand 145
CTL suboperand 145
DELDOMAINS suboperand 146
DELOPCLASS suboperand 147
DOMAINS suboperand 145
group profile displaying 242
IC suboperand 146
MSGRECVR suboperand 146
NGMFADMN suboperand 147
NOCONSNAME suboperand 145
NOCTL suboperand 145
NODOMAINS suboperand 146
NOIC suboperand 146
NOMSGRECVR suboperand 146
NOMAFCMD suboperand 147
NOOPCLASS suboperand 147
OPCLASS suboperand 147
NEW operand
DEFUSER command 24
new keyword specifying 258
new password phrase specifying 258
new user defining 48
NEWLABEL operand
RACDCERT ALTER command 298
RACDCERT ALTMAP command 300
RACDCERT ROLLOVER command 396
NGMFADMN suboperand
ADDSER command 66
ALTUSER command 147
NGMFVSPN suboperand
ADDSER command 66
ALTUSER command 147
NISTECC operand
RACDCERT GENCERT command 341
RACDCERT REKEY command 388
no security label for TSO
for existing user 176
NOACCTNUM suboperand
ALTUSER command 174
NOADDCREATOR operand
SETROPTS command 618
NOADSP operand
ADDSER command 54
ALTUSER command 128
CONNECT command 189
SETROPTS command 618
NOALTGRP suboperand
ALTUSER command 156
NOAPPLAUDIT operand
SETROPTS command 619
NOAPPLDATA operand
RALTER command 434
<table>
<thead>
<tr>
<th>Suboperand</th>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOASSIZEMAX</td>
<td>ALTUSER</td>
<td>148</td>
</tr>
<tr>
<td>NOAUDIT</td>
<td>ALTUSER</td>
<td>148</td>
</tr>
<tr>
<td>ALTUSER</td>
<td>SETROPTS</td>
<td>326</td>
</tr>
<tr>
<td>ADDUSER</td>
<td>ALTUSER</td>
<td>129</td>
</tr>
<tr>
<td>CONNECT</td>
<td>ALTUSER</td>
<td>157</td>
</tr>
<tr>
<td>NOAUTH</td>
<td>ALTUSER</td>
<td>157</td>
</tr>
<tr>
<td>ALTUSER</td>
<td>SETROPTS</td>
<td>326</td>
</tr>
<tr>
<td>NOAUTODIRECT</td>
<td>ALTUSER</td>
<td>145</td>
</tr>
<tr>
<td>RALTER</td>
<td>ALTUSER</td>
<td>146</td>
</tr>
<tr>
<td>NOBINDDDN</td>
<td>ALTUSER</td>
<td>168</td>
</tr>
<tr>
<td>RALTER</td>
<td>ALTUSER</td>
<td>169</td>
</tr>
<tr>
<td>NOBINDPW</td>
<td>ALTUSER</td>
<td>169</td>
</tr>
<tr>
<td>NOCHECKADDRS</td>
<td>RALTER</td>
<td>457</td>
</tr>
<tr>
<td>NOCICS</td>
<td>ALTUSER</td>
<td>132</td>
</tr>
<tr>
<td>NOCLASSACT</td>
<td>RVARY</td>
<td>574</td>
</tr>
<tr>
<td>SETROPTS</td>
<td>622</td>
<td></td>
</tr>
<tr>
<td>NOCLAUTH</td>
<td>ALTUSER</td>
<td>132</td>
</tr>
<tr>
<td>ADDUSER</td>
<td>ALTUSER</td>
<td>56</td>
</tr>
<tr>
<td>NOCOMPATMODE</td>
<td>ALTUSER</td>
<td>174</td>
</tr>
<tr>
<td>SETROPTS</td>
<td>622</td>
<td></td>
</tr>
<tr>
<td>NOCMDSYS</td>
<td>ALTUSER</td>
<td>175</td>
</tr>
<tr>
<td>NOCVMIVIOL</td>
<td>SETROPTS</td>
<td>622</td>
</tr>
<tr>
<td>NOCOMMAND</td>
<td>ALTUSER</td>
<td>174</td>
</tr>
<tr>
<td>ALTUSER</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>NOCONSMNAME</td>
<td>ALTUSER</td>
<td>145</td>
</tr>
<tr>
<td>RALTER</td>
<td>ALTUSER</td>
<td>470</td>
</tr>
<tr>
<td>NOCPUTIMEMAX</td>
<td>ALTUSER</td>
<td>151</td>
</tr>
<tr>
<td>ALTUSER</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>NOCSDATA</td>
<td>ALTGROUP</td>
<td>112</td>
</tr>
<tr>
<td>ALTMOD</td>
<td>ALTGROUP</td>
<td></td>
</tr>
<tr>
<td>ALTUSER</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>ALTUSER</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>NODATA</td>
<td>ALTDSD</td>
<td>99</td>
</tr>
<tr>
<td>ALTGROUP</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>ALTUSER</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>ALTGROUP</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>ALTUSER</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>NODATARSHARE</td>
<td>RVARY</td>
<td>575</td>
</tr>
<tr>
<td>NODE</td>
<td>575</td>
<td></td>
</tr>
<tr>
<td>NODEFTKTLFE</td>
<td>RALTER</td>
<td>457</td>
</tr>
<tr>
<td>NODES</td>
<td>description</td>
<td>694</td>
</tr>
<tr>
<td>NODET</td>
<td>ALTUSER</td>
<td>146</td>
</tr>
<tr>
<td>NO Может быть полезно для вас?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NOWARNING operand (continued)
 RALTER command 476
NOWARNING suboperand
PASSWORD operand 645
NOWHEN(PROGRAM) operand
SETROPTS command 654
NOXRFSOFF suboperand
ALTUSER command 131
NOYOURACC operand
NOWHEN(PROGRAM) operand
NOWARNING suboperand

OMVS segment
OMVS profile
OMVS operand
OMVS for group data sets 28
OMVS segment
changing
 in group profile 114
 in user profile 148
defining
 for new user profile 66
group profile
 displaying 230
user profile
 displaying 242
ONLYAT operand
ADDGROUP command 26
ADDS command 38
ADDUSER command 54
ALTDSD command 98
ALTGROUP command 111
ALTUSER command 129
CONNECT command 189
DELDSD command 197
DELGROUP command 201
DELUSER command 204
LISTDSD command 217
LISTGRP command 229
LISTUSER command 240
PASSWORD command 257
PERMIT command 265
PHRASE command 257
RALTER command 435
RDEFINE command 498
DELETE command 542
REMOVE command 546
RLIST command 556
SEARCH command 584
SETROPTS command 619
OPCLASS suboperand
ADDUSER command 66
OPCLASS operand (continued)
 ALTUSER command 129, 147
OPERANDS operand
 HELP command 212
 OPERATIONS attribute
 for existing user 155
 for new user 72
 logging activities for 639
 OPERATIONS operand
 ADDUSER command 72
 ALTUSER command 155
 CONNECT command 191
OPERATIVE operand
 TARGET command 667
operator identification card (OIDCARD)
 for existing user 147
 for new user 66
operator information
 changing command authority 156
 delete from profile 162
 for user profile 156
OPERAUDIT operand
 SETROPTS command 639
OPERCMDS class
description 695
OPERPARM operand
 ADDUSER command 72
 ALTUSER command 156
 LISTUSER command 243
OPERPARM segment
alter operator command authority
 for user profile 156
 for user profile 147
AUTO request reception
 delete from profile 157
 for new user profile 73
 for new user 157
CMDSYS suboperand 74, 157
command response logging
 for new user profile 75
 for user profile 159
case
 console command system
 for new user profile 74
 for user profile 157
case
 console message format
 for new user profile 75
 for user profile 159
case
 console message storage
 for new user profile 77
 for user profile 162
case
 console operator command authority
 for new user 73
 console search key
 for new user profile 74
 for user profile 158
deleting
 console command system from
 user profile 157
 console search key from user
 profile 158
 from profile 162
 message level from user
 OPERATIONS operand
 operator command authority from
 user profile 157
displaying for user profile 243
 for user profile 158
OPERPARM segment (continued)
 DOM request reception (continued)
 for new user profile 74
 for user profile 157
 event display information
 for new user profile 75
 for user profile 160
 HC suboperand 74, 158
 INTIDS suboperand 74, 158
 KEY suboperand 74, 158
 LEVEL suboperand 75, 158
LOGCMDRESP suboperand 75, 159
message routing codes
 for new user profile 76
 for user profile 161
MFORM suboperand 75, 159
MIGID suboperand 75, 160
migration ID assignment
 for user profile 160
 migration ID assignment
 for new user profile 75
 MONITOR suboperand 75, 160
 MOSCOPE suboperand 76, 161
 NOAUTH suboperand 157
 NOAUTO suboperand 157
 NOCMDSYS suboperand 157
 NODOM suboperand 158
 NOHOM suboperand 158
 NOINTIDS suboperand 158
 NOKEY suboperand 158
 NOLEVEL suboperand 159
 NLOGCMDRESP suboperand 159
 NOMFORM suboperand 160
 NOMIGID suboperand 160
 NOMONITOR suboperand 160
 NOMOSCOPE suboperand 161
 NORTCODE suboperand 162
 NOSTORAGE suboperand 162
 NOUD suboperand 162
 NOUNKNIDS suboperand 162
 ROUTCODE suboperand 76, 161
 STORAGE suboperand 77, 162
 system message reception
 for new user profile 76
 for user profile 157
type of broadcast messages
 for new user profile 75
 for user profile 158
 UD suboperand 77, 162
undelivered message reception
 for new user profile 77
 for user profile 162
 UNKNIDS suboperand 77, 162
 user profile
 for new user 72
 OPIDENT suboperand
 ALTUSER command 130
 OPPRTY suboperand
 ALTUSER command 130
 options
 displaying current RACF 634
 setting system-wide RACF 612
 OUTPUT suboperand
 SET command 598
 OVM operand
 ADDGROUP command 30
 ADDUSER command 66
 ADDSD command 38
 ADDUSER command 54
 ALTUSER command 129
 ALTGROUP command 111
 ALTUSER command 148
 CONNECT command 189
 DELDSD command 197
 DELGROUP command 201
 DELUSER command 204
 LISTDSD command 217
 LISTGRP command 229
 LISTUSER command 240
 PASSWORD command 257
 PERMIT command 265
 PHRASE command 257
 RALTER command 435
 RDEFINE command 498
 DELETE command 542
 REMOVE command 546
 RLIST command 556
 SEARCH command 584
 SETROPTS command 619
password phrase
canceling syntax rules 644
change interval 257, 640
changing
current 258
number of password phrases to be saved 639
envelope, listing user information
about 236
logon for existing user 166
ever expiring 258
specifying
consecutive unsuccessful
 attempts 642
new 258
warning message for password phrase
expiration 645
password rules
ISPF panel for 17
password-protected data set
password when altering profile 97
specifying password for 37
PCICCC operand
RACDCERT ADD command 289
RACDCERT GENCERT
command 341
RACDCERT IMPORT command 354
RACDCERT REKEY command 388
PCICSFSB class
description 696
PERFGRP class
description 699
PERMDIR 1
PERMFILE 1
PERMIT command
authorization required 263
description 261
examples 271
syntax 263
permitting access to profiles 263
persistent verification 206, 525, 659
PHRAISE command
authorization required 256
description 255
examples 260
syntax 257
PHRAISE operand
ADDUSER command 79
ALTUSER command 166
PASSWORD command 258
PHRAISE command 258
PIMS class
description 698
PDKS operand
RACDCERT ADD command 289
RACDCERT GENCERT
command 341
PMBR class
description 695
POE operand
DISPLAY command 207
SIGNOFF command 660
PREFIX operand
LISTDSD command 218
SETROPTS command 645
TARGET command 670
predicting
access to profiles 263
preventing
user from accessing system 171, 172, 192, 193
PRIMARY suboperand
ALTUSER command 142
Print Services Facility (PSF) for z/OS
PSFMP, general resource class 695
PRINTSRV class
description 698
PRIVILEGED operand
ALTER command 471
RDEFINE command 529
PROC suboperand
ADDUSER command 85
ALTUSER command 176
PROCACT class
description 700
PROCESS class
description 700
PROCUSER suboperand
ADDUSER command 70
PROCUSERMAX suboperand
ALTUSER command 153
profile
defining with enhanced generic
 naming 684
locating in the RACF database 580
profile for a specific resource
displaying 550
profile name
data set profile
changing 96
defining new 36
deleting 197
displaying 218
using as model 40
general resource profile
changing 428
defining 488
deleting 541
displaying 555
using for model profile 514
modifying access list for 264
syntax 11
PROGRAM class
description 695
program control
activating 654
conditional access list 261, 270
controlled program
access for 270
defining 428, 489
deactivating 654
in-storage table
changing 495
refreshing 650
PROGRAM suboperand
ADDUSER command 71, 78
ALTUSER command 154
PROPCNTL class
description 695
PROTECTALL operand
SETROPTS command 645
PROTECTALL processing
activating or deactivating 645
protected user ID 79, 166
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Target command</th>
<th>671</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy</td>
<td>ADDUSER command</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>ALTUSER command</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>LISTUSER command</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>RALTER command</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>RDEFINE command</td>
<td>522</td>
</tr>
<tr>
<td></td>
<td>RLIST command</td>
<td>559</td>
</tr>
<tr>
<td>Proxy segment</td>
<td>Displaying for user profile</td>
<td>244</td>
</tr>
<tr>
<td>PSFMPL class</td>
<td>Description</td>
<td>695, 701</td>
</tr>
<tr>
<td>PTKTDATA class</td>
<td>Description</td>
<td>695, 701</td>
</tr>
<tr>
<td>PTKTVAL class</td>
<td>Description</td>
<td>699, 701</td>
</tr>
<tr>
<td>Purge</td>
<td>TARGET command</td>
<td>673</td>
</tr>
<tr>
<td>PWSYNC operand</td>
<td>Set command</td>
<td>601</td>
</tr>
</tbody>
</table>

Q

QCICSPSB class	Description	696
QIMS class	Description	698
QUERY function	RACMAP command	414

R

RACDCERT ADD command	Authorization required	286
RACDCERT ADDRING command	Authorization required	292
RACDCERT ADDTOKEN command	Authorization required	294
RACDCERT ALTER command	Authorization required	296
RACDCERT ALTERMAP command	Authorization required	299
RACDCERT BIND command	Authorization required	302
RACDCERT CHECKCERT command	Authorization required	307
RACDCERT CHECKCERT command (continued)	Examples	308
RACDCERT CONNECT command	Authorization required	314
RACDCERT DEL command	Authorization required	319
RACDCERT DELRING command	Authorization required	324
RACDCERT DELTOKEN command	Authorization required	326
RACDCERT DELMAP command	Authorization required	321
RACDCERT GENCERT command	Authorization required	334
RACDCERT GENREQ command	Authorization required	349
RACDCERT IMPORT command	Authorization required	354
RACDCERT LIST command	Authorization required	357, 364
RACDCERT LISTCHAIN command	Description	363
RACDCERT LISTMAP command	Authorization required	368
RACDCERT LISTMAP command (continued)	Description	368
RACDCERT REMOVE command	Authorization required	392
RACDCERT UNBIND command	Authorization required	395

RACF commands

Basic information for issuing RACF	Commands	7
Logging usage by a user	178	
Obtaining help for	211	
Operator commands	21	
Return codes	11	
Symbols used in syntax diagrams	11	
Syntax	9	

RACF indication

| for existing data set profile | 101 |
| for new data set profile | 41 |

RACF options

| Displaying current | 634 |
| Example of display | 657 |

RACF protection

| Removing from data set profile | 195 |
| RACF resource protection | 571 |

Index 747
security category (continued)
changing
for data set profile 97
general resource profile 428
defining 494
for data set profile 37
for general resource profile 490
for user profile 53, 66, 68, 69, 70,
72
deleting 431
from general resource profile 429
from user profile 128
undefined category names 429
searching on
for general resource profiles 584
security classification of users and data
defining categories and levels 494
in data set profile 38, 97
in general resource profile 429, 490
in user profile 54, 67, 69, 70, 72, 128
security label
changing
for user profile 172
defining
for user profile 82
for new user 85
for TSO 85
for user profile 43, 524
translating on inbound jobs or
SYSOUT 495
security level
changing
for data set profile 103
defining 494
deleting 431
for existing data set profile 103
for existing general resource
profile 464
for existing user profile 172
for new data set profile 44
for new general resource profile 524
for new user profile 83
for resource profile 464
in user profile 172
logging access attempts based on 652
searching on
general resource profiles 585
using as search criteria 585
security retention period
for existing tape data set profile 102
for new tape data set profile 43
system-wide for tape data sets 650
security topics for RACF
classroom courses ix
segment
CICS segment
displaying for a user profile 240
for new user profile 55
CSDATA segment
displaying for group profile 229
displaying for user profile 240
for existing group profile 111
for existing user profile 132
for new group profile 26
for new user profile 56
DFP segment
class (continued)
changing in group profile 112
DFP segment (continued)
changing in user profile 136
displaying for a user profile 241
displaying for group profile 229
existing user profile, deleting
from 138
for new group profile 27
for new user profile 59
EIM segment
displaying for a user profile 241
KERB segment
undisplaying for a user profile 241
LANGUAGE segment
displaying for a user profile 241
LNOTES segment
changing in user profile 143
displaying for a user profile 242
NDS segment
changing in user profile 144
displaying for a user profile 242
NITVIEW segment
changing in user profile 145
displaying for group profile 242
OMVS segment
changing in group profile 114
changing in user profile 148
displaying for group profile 230
displaying for user profile 242
for new user profile 66
OPERPARM segment
displaying for user profile 243
for new user profile 72
OVM segment
changing in group profile 116
displaying for user profile 243
PROXY segment
displaying for a user profile 244
RACF segment
changing for a group profile 108
defining for group profile 24
displaying for group profile 229
displaying for user profile 240
for existing user profile 120
for new user profile 49
suppressing display for group
profile 229
suppressing display for user
profile 242
SESSION segment
displaying for general resource
profile 560
for general resource profiles 524
SIGVER segment
displaying for general resource
profile 560
for general resource profiles 526
SIGNON segment
displaying 560
STDATA segment
defining 528
modifying 470
TSO segment
deleting from user profile 178
displaying for a user profile 244
for existing user profile 173
for new user profile 83
segment (continued)
 WORKATTR segment
 displaying for group profile 244
 sending comments to IBM xiii
 SERVAUTH class
 description 695
 SESSION operand
 RALTER command 465
 RDEFINE command 524
 RLIST command 560
 SESSION segment
 displaying
 general resource profile 560
 SET command
 authorization required 593
 callable service trace types
 IBM Policy Director 606
 RACROUTE 607
 z/OS UNIX 603
 description 593
 examples 609
 syntax 593
 SFSCMD class
 description 702
 shared file system profiles 691
 shared in-storage profile
 SETROPTS GENLIST processing
 for 628
 SETROPTS RACLST processing
 for 646
 SHARED suboperand
 ALTGROUP command
 for GID suboperand 29, 115
 UID suboperand
 ADDUSER command 68
 ALTUSER command 150
 SHMEMMAX suboperand
 ADDUSER command 71
 ALTUSER command 154
 shortcut keys 703
 signed-on-from list 206, 659
 SIGNOFF command
 authorization required 659
 description 659
 examples 661
 syntax 660
 SIGNON operand
 DISPLAY command 207
 RACDCERT GENCERT
 command 341
 SIGVER operand
 RALTER command 466
 RDEFINE command 526
 SIGVER operand (continued)
 RLIST command 560
 SIGVER segment
 displaying
 general resource profile 560
 SIMS class
 description 698
 SINGLEDSN operand
 RALTER command 469
 RDEFINE command 528
 SIZE operand
 RACDCERT GENCERT
 command 339
 RACDCERT REKEY command 386
 SIZE suboperand
 ADDUSER command 85
 ALTUSER command 176
 SMESAGE class
 description 695
 SMS (Storage Management Subsystems)
 general resource classes 699
 SNAME suboperand
 ALTUSER command 143
 SOMDOBJ class
 description 695
 SPECIAL attribute
 for existing user 173
 for new user 83
 logging activities for 651
 SPECIAL operand
 ADDUSER command 83
 ALTUSER command 173
 CONNECT command 193
 specifying the distinguished name the
 LDAP proxy server will use
 ADDUSER command 81
 ALTUSER command 168
 RALTER command 462
 RDEFINE command 522
 specifying the password the LDAP proxy
 server will use
 ADDUSER command 81
 ALTUSER command 169
 RALTER command 463
 RDEFINE command 523
 specifying the URL of the LDAP proxy
 server
 ADDUSER command 80
 ALTUSER command 167
 RALTER command 462
 RDEFINE command 522
 STATISTICS operand
 LISTDSD command 221
 RLIST command 560
 SETROPTS command 653
 STATUS suboperand
 RVARYPW operand (SETROPTS
 command) 650
 SDATA operand
 RALTER command 470
 RDEFINE command 528
 RLIST command 561
 SDATA segment
 displaying
 general resource profile 561
 RALTER command 470
 RDEFINE command 528
 STOP command
 authorization required 662
 description 662
 examples 663
 syntax 662
 storage class for DFP
 adding
 to new group profile 28
 changing
 for group profile 113
 in user profile 137
 defining
 for user profile 60
 STORAGE suboperand
 ADDUSER command 77
 ALTUSER command 162
 STORCLAS class
 description 699
 STORCLAS suboperand
 ADDGROUP command 28
 ADDSD command 36
 ADDUSER command 53
 ALTGROUP command 110
 ALTUSER command 127
 TARGET command 676
 SUBJECTSDN operand
 RACDCERT GENCERT
 command 338
 SUBSYSNM class
 description 699
 SUBSYSNM operand
 ADDGROUP command 26
 ADDSD command 36
 ADDUSER command 53
 ALTGROUP command 96
 ALTUSER command 110
 ALTUSER command 127
 CONNECT command 188

750 z/OS V2R1.0 Security Server RACF Command Language Reference
Index 751

subsystem prefix (continued)
 DELDSN command 197
 DELGROUP command 201
 DELUSER command 204
 DISPLAY command 207
 LISTDSN command 217
 LISTGRP command 228
 LISTUSER command 239
 PASSWORD command 257
 PERMIT command 264
 PHRASE command 257
 RACLINK command 403
 RALTER command 427
 RDEFINE command 487
 RDELETE command 541
 REMOVE command 546
 RESTART command 548
 RLIST command 554
 RVARY command 573
 SEARCH command 583
 SET command 595
 SETROPTS command 617
 SIGNOFF command 660
 STOP command 663
 TARGET command 665

summary
 of RACF authorities 2
 of RACF commands 2
Summary of changes xv
 superior group
 for existing group 117
 for new group 30
 SUPGROUP operand
 ADDGROUP command 30
 ALTGROUP command 117
 suppressing display of RACF segment
 group profile 229
 user profile 242
 SURROGAT class
 description 696
 SVFMR operand
 RALTER command 471
 RDEFINE command 530
 RLST command 561
 SWITCH operand
 RVARY command 575
 SWITCH suboperand
 RVARYPW operand (SETROPTS command) 650
 SYNTAX operand
 HELP command 212
 syntax rules
 for commands 9
 for passwords 642
 SYS suboperand
 ADDUSER command 86
 ALTUSER command 177
 SYMVW class
 description 696
 SYNAME operand
 TARGET command 673
 SYSDS class
 for TSO
 for existing user 177
 for new user 86
 SYSOUT data set destination
 for existing user 174
 for new user 84
 syplex communication
 data sharing option 4
 example of RACGLIST
 processing 535
 example of RVARY
 NODATASHARE 577
 logging RVARY commands 571
 RVARY ACTIVE command 573
 RVARY INACTIVE command 574
 RVARY SWITCH command 576
 System Display and Search Facility
 (SDSF) 695
 system message reception
 for new user profile 76
 for user profile 161
 system-wide options
 activating 612
 displaying current RACF 634
 example of display 657

T
 tape data set
 creating entry in TVTOC 42
 defining a new profile to protect 41
 erase-on-scratch processing
 activating 623
 deactivating system-wide 624
 file sequence number 39
 searching for profile 584
 security retention period for existing
 profile 102
 security retention period for new
 profile 43
 specifying tape volume to contain
 single data set 469, 528
 system-wide security retention period 650
 tape data set protection
 activating or deactivating 653
 TAPE operand
 ADDDSN command 41
 SEARCH command 584
 tape volume
 creating TVTOC for 475, 532
 deactivating protection 574
 displaying volume information
 for 590
 searching for expired 584
 specifying to contain single data set 469, 528
 TAPEDSN operand
 SETROPTS command 653
 TAPEVOL class
 description 696, 702
 TAPEVOL profile
 changing to nonautomatic 262
 TARGET command
 authorization required 664
 description 664
 examples 676
 syntax 665
 TICICSTRN class
 description 696
 TCP suboperand
 TARGET command 673
 TEMPDSN class
 description 696
 terminal
 limiting access to 476, 533
 time zone 472, 530
 UACC for undefined terminals 653
 terminal authorization checking
 for users in a new group 31
 for users in an existing group 117
 TERMINAL class
 description 696, 702
 terminal id
 syntax 11
 TERMINAL operand
 SETROPTS command 653
 TERMINUACC operand
 ADDGROUP command 31
 ALTGROUP command 117
 THREADS MAX suboperand
 ADDUSER command 72
 ALTUSER command 154
 time of day
 existing user can access system 179
 new user can access system 87
 terminal can access system 477, 534
 TIME operand
 ADDUSER command 87
 ALTUSER command 179
 RALTER command 476
 RDEFINE command 533
 TIMEOUT suboperand
 ADDUSER command 55
 ALTUSER command 131
 TIMEZONEx operand
 RALTER command 472
 RDEFINE command 530
 TIMS class
 description 698
 Tivoli
 general resource class 699
 Tivoli Service Desk
 general resource classes 698
 TME operand
 ADDGROUP command 31
 ADDDSN command 44
 ALTGROUP command 104
 ALTUSER command 117
 LISTDSN command 221
 LISTGRP command 561
 RALTER command 473
 RDEFINE command 531
 RLST command 230
 TMEADMIN class
 description 699
 TRACE operand
 RALTER command 471
 RDEFINE command 529
 SET command 601
 Trademarks 709
 TRUST operand
 298, 354
 RACDCERT ADD command 288
 RACDCERT ALTMAP command 301
 RACDCERT MAP command 382
 TRUSTED operand
 RALTER command 471
 RDEFINE command 530
VMDEV class
 description 702
VMEVENT class
 description 702
VMLAN class
 description 702
VMMAC class
 description 702
VMMDISK class
 description 702
VMNODE class
 description 702
VMPOSIX class
 description 702
VMRDR class
 description 702
VMSEGMT class
 description 702
VOLUME operand
 ADDSD command 45
 ALTDSD command 105
 DELDSD command 198
 LISTDSD command 221
 PERMIT command 268
 SEARCH command 585
 volume serial
 indirect or symbolic VOLSER 37
 syntax 11
 volume serial number
 adding volume to tape volume profile 432
 deleting a data set 198
 deleting volume from tape volume profile 432
 displaying data set profile 221
 for controlled program 496
 for existing data set 105
 for multivolume data set 98
 for new data set 45
 indirect or symbolic VOLSER 37
 specifying when creating access list 268
 using as search criteria 590
 using to locate model profile 40, 515
VOLUME suboperand
 TARGET command 676
VSAM data set
 protecting 687
 searching for 584
VSAM operand
 SEARCH command 584
VTAM (Virtual Telecommunications Access Method)
 general resource class 696
VTAMAPPL class
 description 696
VXMBR class
 description 702
W
WAACCNT suboperand
 ADDUSER command 87
 ALTUSER command 180
WAADDR suboperand
 ADDUSER command 87
WABLDG suboperand
 ADDUSER command 88
 ALTUSER command 181
WADEPT suboperand
 ADDUSER command 88
 ALTUSER command 181
WANAME suboperand
 ADDUSER command 88
 ALTUSER command 181
 warning indicator
 searching for resources with 585
 warning message
 number of days before password expires 645
WARNING operand
 ADDSD command 45
 ALTDSD command 105
 RALTER command 476
 RDEFINE command 533
 SEARCH command 585
 WARNING suboperand
 PASSWORD operand 645
 WAROOM suboperand
 ADDUSER command 89
 ALTUSER command 182
WCICSRES class
 description 696
WDSQUAL operand
 TARGET command 674
WebSphere MQ
WARNING (continued)
 PASSWORD operand 645
 WAROOM (continued)
 ADDUSER command 89
 ALTUSER command 182
X
XCSFKEY class
 description 698
XFACILIT class
 description 696
XRFSOFF suboperand
 ALTUSER command 131
Z
z/OS Network Authentication Service
 general resource classes 699
z/OS UNIX
 general resource classes 700
z/OSMF
 general resource class 700
ZMFAPLA class
 description 700
WARNING operand (continued)
 ADDUSER command 87
 ALTUSER command 181, 182
 LISTUSER command 244
 WARNING segment
 group profile
 displaying 244
 WORKSPACE operand
 TARGET command 675
 WRITER class
 description 696, 702
WITHLABEL operand
 RACDCERT ADD command 289
 RACDCERT GENCERT
 command 341
 RACDCERT MAP command 382