JES2 Diagnosis
JES2 Diagnosis
Trace output samples

Trace ID=0 sample

Trace ID=1, ID=2, ID=18, and ID=19 sample

Trace ID=3 sample

Trace ID=4 sample

Trace ID=5 sample

Trace ID=6 and ID=7 sample.

Trace ID=8, ID=9 and ID=10 sample

Trace ID=11 and ID=12 sample

Trace ID=13 sample

Trace ID=14 and ID=15 sample

Trace ID=16 sample

Trace ID=17 sample

Trace ID=20 sample

Trace ID=21 sample

Trace ID=22 sample

Trace ID=23 sample

Trace ID=24 sample

Trace ID=25 sample

Trace ID=26 sample

Trace ID=27 sample

Trace ID=28 sample

Trace ID=29 sample

Trace ID=30 sample

Trace ID=31 sample

Trace ID=32 sample

Trace ID=33 sample

Trace ID=34 sample

Trace ID=35 sample

Trace ID=36 sample

Trace ID=37 sample

Trace ID=38 sample

Trace ID=39 sample

Trace ID=40 sample

Trace ID=41 sample

Installation-defined trace events.

Creating a trace table using the $TRACE macro

Storage considerations

Chapter 4. Using the JES2 DEBUG facility

Starting and stopping the DEBUG facility

Determine why JES2 issued a $HASP186 message

Chapter 5. Using IPCS for diagnosis

Provide for JES2 IPCS Support.

Dump level - diagnosing level considerations.

JES2 IPCS support install verification

Procedure to verify your JES2 IPCS support level

Using IPCS panels to analyze JES2 data in a dump

Using the CBFORMAT command to display JES2 control blocks

Using IPCS in batch or line mode

Assuring JES2 can be serviced using IPCS

Chapter 6. Using symptom records for diagnosis

Controlling operator notification of JES2 symptom records

Where to find JES2 symptom records
Figures

1. Message $HASP088 .. 5
2. Sample Output From Trace Identifier 0 .. 27
3. Sample Output From Trace Identifiers 1, 2, 18, and 19 27
4. Sample Output From Trace Identifier 3 .. 28
5. Sample Output From Trace Identifier 4 .. 29
6. Sample Output from Trace Identifier 5 .. 31
7. Sample Output from Trace Identifiers 6 and 7 33
8. Sample Output from Trace Identifiers 8, 9 and 10 34
9. Sample Output from Trace Identifiers 11 and 12 35
10. Sample Output from Trace Identifier 13 .. 35
11. Sample Output from Trace Identifiers 14 and 15 37
12. Sample Output from Trace Identifier 16 .. 40
13. Sample Output from Trace Identifier 17 .. 41
14. Sample Output from Trace Identifier 20 .. 49
15. Sample Output from Trace Identifier 21 .. 52
16. Sample Output from Trace Identifier 22 .. 53
17. Sample Output from Trace Identifier 23 .. 55
18. Sample Output from Trace Identifier 24 .. 57
19. Sample Output from Trace Identifier 25 .. 60
20. Sample Output from Trace Identifier 26 .. 61
21. Sample Output from Trace Identifier 27 .. 63
22. Sample Output from Trace Identifier 28 Before Call to JES2 64
23. Sample Output from Trace Identifier 28 After Call to JES2. 65
24. Sample Output from Trace Identifier 29 Before Call to JES2 66
25. Sample Output from Trace Identifier 29 After Call to JES2 67
26. Sample Output from Trace Identifier 30 .. 68
27. Sample Output from Trace Identifier 31 .. 71
28. Sample Output from Trace Identifier 32 .. 74
29. Sample Output from Trace Identifier 33 .. 76
30. Sample Output from Trace Identifier 34 .. 77
31. Sample Output from Trace Identifier 35 .. 77
32. Sample Output from Trace Identifier 36 .. 77
33. Sample Output from Trace Identifier 37 .. 78
34. Sample Output from Trace Identifier 38 .. 78
35. Sample Output from Trace Identifier 39 .. 78
36. Sample Output from Trace Identifier 40 .. 79
37. Sample Output from Trace Identifier 41 .. 80
38. Sample JES2 Symptom Record .. 98
Tables

1. Trace Identifiers and Their Meanings ... 25
2. Fields on Traces 1, 2, 18, and 19 .. 28
3. Fields on Trace 3 ... 28
4. Fields on Trace 4 ... 30
5. Sections in a Trace Identifier 5 .. 31
6. Header Line for Trace Identifier 5 .. 32
7. Description of Keywords That May Appear on the RPL Header Line .. 32
8. Fields on Traces 6 and 7 ... 34
9. Fields on Traces 8, 9, and 10 .. 34
10. Fields for Trace 13 ... 36
11. Fields for Traces 14 and 15 .. 37
12. FSS Orders By Trace Size ... 39
13. Fields for Trace 16 ... 40
14. Fields for Trace 17 ... 41
15. Description of Trace Identifier 17 READ1 Record 1 by Checkpoint Cycle 42
16. Description of Trace Identifier 17 READ2 Record 1 by Checkpoint Cycle 43
17. Description of Trace Identifier 17 READ2 Record 2 by Checkpoint Cycle 43
18. Description of Trace Identifier 17 READ2 Record 3 by Checkpoint Cycle 43
19. Description of Trace Identifier 17 READ2 Record 4 by Checkpoint Cycle 44
20. Description of Trace Identifier 17 PRIMARY WRITE Record 1 by Checkpoint Cycle 44
21. Description of Trace Identifier 17 PRIMARY WRITE Record 2 by Checkpoint Cycle 44
22. Description of Trace Identifier 17 PRIMARY WRITE Record 3 by Checkpoint Cycle 45
23. Description of Trace Identifier 17 PRIMARY WRITE Record 4 by Checkpoint Cycle 45
24. Description of Trace Identifier 17 INTERMEDIATE WRITE Record 1 by Checkpoint Cycle 45
25. Description of Trace Identifier 17 INTERMEDIATE WRITE Record 2 by Checkpoint Cycle 46
26. Description of Trace Identifier 17 INTERMEDIATE WRITE Record 3 by Checkpoint Cycle 46
27. Description of Trace Identifier 17 INTERMEDIATE WRITE Record 4 by Checkpoint Cycle 46
28. Description of Trace Identifier 17 FINAL WRITE Record 1 by Checkpoint Cycle 47
29. Description of Trace Identifier 17 FINAL WRITE Record 2 by Checkpoint Cycle 47
30. Description of Trace Identifier 17 FINAL WRITE Record 3 by Checkpoint Cycle 47
31. Description of Trace Identifier 17 FINAL WRITE Record 4 by Checkpoint Cycle 48
32. Fields for Trace 20 ... 49
33. Fields for Trace 21 ... 52
34. Fields for Trace 22 ... 53
35. Fields for Trace 23 ... 55
36. Fields for Trace 24 ... 57
37. Fields for Trace 26 ... 61
38. Fields for Trace 30 ... 68
39. Fields for Trace 31 ... 72
40. JES2-Related Control Blocks Supported by the IPCS CBFORMAT Command 90
41. Information to Collect from Symptom Record 101
42. JES2 Symptom Records .. 102
43. JES2 Health Monitor Alert Messages .. 110
44. JES2 Health Monitor Commands and Intended Use 112

© Copyright IBM Corp. 1988, 2009
About This Document

This document supports z/OS® (5694-A01).

This document provides information to help you:
- Use external symptoms to identify problems in JES2
- Use tools including JES2 traces, the JES2 DEBUG facility, and the interactive problem control system (IPCS) to collect problem data
- Use problem data to locate a JES2 problem or to report the problem to IBM®
- Correct the problem, when appropriate

This document is specifically designed for installations running z/OS JES2.

Who Should Use This Document

This document is intended for JES2 system programmers or for anyone responsible for locating and correcting problems in JES2.

The reader should have a detailed knowledge of:
- Assembler language
- Dynamic system dump procedures
- Generalized Trace Facility (GTF) tracing
- Interactive Problem Control System (IPCS) usage
- JES2 commands
- MVS™ commands
- Obtaining stand-alone dump procedures
- Programming techniques
- Setting SLIP traps.

How to Use This Document

Problem analysis and correction requires a knowledge of JES2, MVS, and various diagnostic tools and techniques. z/OS Problem Management User's Guide contains detailed information about how to diagnose problems. This document does not duplicate that information.

Use this document to diagnose JES2 problems only.

Read and become familiar with:
- Chapter 2, “Collecting problem data,” on page 21
- Table 1 on page 25, Trace Identifiers and Their Meanings
- Chapter 4, “Using the JES2 DEBUG facility,” on page 83
- Chapter 5, “Using IPCS for diagnosis,” on page 85

These chapters describe the problem data you need to collect and some of the tools used to collect and analyze problem data.

When analyzing problem data, see Chapter 1, “Identifying the problem,” on page 1 for a table that describes common symptoms and points to additional information about the problem to help resolve the error, or collect enough information about the error for the IBM Support Center.
Where to Find More Information

This document references the following publications using the shortened version of the document title. The following table lists the shortened titles, complete titles, and order numbers of the documents you might need while you are using this document.

<table>
<thead>
<tr>
<th>Short Title Used in This Document</th>
<th>Title</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS TSO/E REXX Reference</td>
<td>z/OS TSO/E REXX Reference</td>
<td>SA22-7790</td>
</tr>
<tr>
<td>z/OS MVS System Messages, Vol 5 (EDG-GFS)</td>
<td>z/OS MVS System Messages, Vol 5 (EDG-GFS)</td>
<td>SA22-7635</td>
</tr>
<tr>
<td>Principles of Operation</td>
<td>z/Architecture® Principles of Operation</td>
<td>SA22-7832</td>
</tr>
<tr>
<td>SDSF</td>
<td>System Display and Search Facility/MVS (SDSF/MVS) Guide and Reference</td>
<td>SC23-0408</td>
</tr>
<tr>
<td>System Network Architecture Formats</td>
<td>System Network Architecture Formats</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Most licensed documents were declassified in OS/390® V2R4 and are now included on the OS/390 Online Library Collection, SK2T-6700. The remaining licensed documents appear in unencrypted BookManager® softcopy and PDF form on the OS/390 Licensed Product Library, LK2T-2499.

The z/OS Basic Skills Information Center

The z/OS Basic Skills Information Center is a Web-based information resource intended to help users learn the basic concepts of z/OS, the operating system that runs most of the IBM mainframe computers in use today. The Information Center is designed to introduce a new generation of Information Technology professionals to basic concepts and help them prepare for a career as a z/OS professional, such as a z/OS system programmer.

Specifically, the z/OS Basic Skills Information Center is intended to achieve the following objectives:

- Provide basic education and information about z/OS without charge
- Shorten the time it takes for people to become productive on the mainframe
- Make it easier for new people to learn z/OS.

To access the z/OS Basic Skills Information Center, open your Web browser to the following Web site, which is available to all users (no login required):
http://publib.boulder.ibm.com/infocenter/zosbasics/index.jsp
Additional Information

Additional information about z/OS elements can be found in the following documents.

<table>
<thead>
<tr>
<th>Title</th>
<th>Order Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS Introduction and Release Guide</td>
<td>GA22-7502</td>
<td>Describes the contents and benefits of z/OS as well as the planned packaging and delivery of this new product.</td>
</tr>
<tr>
<td>z/OS Planning for Installation</td>
<td>GA22-7504</td>
<td>Contains information that lets users:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Understand the content of z/OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Plan to get z/OS up and running</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Install the code</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Take the appropriate migration actions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Test the z/OS system</td>
</tr>
<tr>
<td>z/OS Information Roadmap</td>
<td>SA22-7500</td>
<td>Describes the information associated with z/OS including OS/390 documents and documents for the participating elements.</td>
</tr>
<tr>
<td>z/OS Summary of Message and Interface Changes</td>
<td>SA22-7505</td>
<td>Describes the changes to messages for individual elements of z/OS. Note: This document is provided in softcopy only on the message bookshelf of the z/OS collection kit.</td>
</tr>
</tbody>
</table>

Determining If a Publication Is Current

As needed, IBM updates its publications with new and changed information. For a given publication, updates to the hardcopy and associated BookManager softcopy are usually available at the same time. Sometimes, however, the updates to hardcopy and softcopy are available at different times. Here’s how to determine if you are looking at the most current copy of a publication:

1. At the end of a publication’s order number there is a dash followed by two digits, often referred to as the dash level. A publication with a higher dash level is more current than one with a lower dash level. For example, in the publication order number GC28-1747-07, the dash level 07 means that the publication is more current than previous levels, such as 05 or 04.

2. If a hardcopy publication and a softcopy publication have the same dash level, it is possible that the softcopy publication is more current than the hardcopy publication. Check the dates shown in the Summary of Changes. The softcopy publication might have a more recently dated Summary of Changes than the hardcopy publication.

3. To compare softcopy publications, you can check the last two characters of the publication’s filename (also called the book name). The higher the number, the more recent the publication. Also, next to the publication titles in the CD-ROM booklet and the readme files, there is an asterisk that indicates whether a publication is new or changed.
Summary

Summary of changes
for GA22-7531-09
z/OS Version 1 Release 11

This book contains information previously presented in z/OS JES2 Diagnosis, GA22-7531-08, which supports z/OS Version 1 Release 10.

New information
• Added $JOA and $JOX for JES2-Related Control Blocks Supported by the IPCS CBFORMAT Command. See Table 40 on page 90.

Changed information
• Updated trace output sample for Trace ID=11 and ID=12. See Trace ID=11 and ID=12 sample on page 35.
• Updated trace description and output sample for Trace ID=25. See Trace ID=25 sample on page 59.

You may notice changes in the style and structure of some content in this document—for example, headings that use uppercase for the first letter of initial words only, and procedures that have a different look and format. The changes are ongoing improvements to the consistency and retrievability of information in our documents.

This document contains terminology, maintenance, and editorial changes. Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

Summary of changes
for GA22-7531-08
z/OS Version 1 Release 10

This book contains information previously presented in z/OS JES2 Diagnosis, GA22-7531-07, which supports z/OS Version 1 Release 9.

New information
• Added a new JES2 symptom record for APAR OA20195. See Table 42 on page 102.

Changed information
• None.

This document contains terminology, maintenance, and editorial changes, including changes to improve consistency and retrievability.

Summary of changes
for GA22-7531-07
z/OS Version 1 Release 9

This book contains information previously presented in z/OS JES2 Diagnosis, GA22-7531-06, which supports z/OS Version 1 Release 8.
New information

- None.

Changed information

- Updated the section Modifying the JES2 trace environment. See “Modifying the JES2 trace environment” on page 26.
- Updated the table JES2-Related Control Blocks Supported by the IPCS CBFORMAT Command. See Table 40 on page 90.

This document contains terminology, maintenance, and editorial changes, including changes to improve consistency and retrievability.
Chapter 1. Identifying the problem

JES2 issues messages for a variety of reasons. In some cases, JES2 may just be passing along information it received from another part of the system that encountered an error. Other times, what looks like an error may actually be confirmation of a normal occurrence. Consider the following questions before you collect any problem data:

- **Is the function not doing what is expected?**

 Sometimes what you expect to happen may not be what should happen. Before treating the situation as an error, look at [z/OS JES2 Introduction or z/OS MVS Initialization and Tuning Guide](#) to verify that the current design is working as expected.

- **Are there any other indications of the error?**

 There could be messages from other components that not only confirm an error, but identify where the error occurred. Use the messages from other components to pinpoint the problem before reporting the problem to the IBM Support Center.

- **Has this happened before?**

 Examining your installation’s documentation about previous JES2 problems could uncover a similar situation to help you solve the current problem.

- **Has anything changed?**

 Applying maintenance to your system might cause problems. If possible, after you collect any problem data, remove the changes and restart the system. If the problem does not recur, then determine what went wrong when you applied the maintenance. [“Problems applying maintenance” on page 19](#) contains information about what you need to determine the cause of the error.

- **Is JES2 running with the correct versions of the JES2 common storage modules, both from IBM and from the installation?**

 [z/OS MVS Initialization and Tuning Guide](#) discusses the placement of the IBM HASCxxxx load modules (CSA or LPA, above or below 16 megabytes of virtual storage); [z/OS JES2 Macros](#) discusses the placement of the installation modules that must be in common storage. If there are multiple versions or levels of JES2 at your installation, wrong levels of modules might be used (even though version checking is done during JES2 initialization). This can cause the system to perform differently than you expect.

- **Were any modifications applied that may have caused the error?**

 You may not be able to answer this particular question until after collecting all problem data and looking at it to determine the cause of failure. You will need a copy of any modifications made if you report the problem to the IBM Support Center.

- **Is the problem occurring all the time or only in some instances?**

 Do all commands receive the same error or only certain commands? Do all commands against devices receive the same error or only certain commands? Do all devices receive the same error?

If you suspect the problem is a JES2 problem, the following table directs you to the appropriate section for the problem symptom. Also, see [Chapter 2, “Collecting problem data,” on page 21](#) for information about problem data useful for diagnosing JES2 problems.
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Problem Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>• JES2 ends abnormally</td>
<td>“Abends” on page 3</td>
</tr>
<tr>
<td>• Message $HASP088</td>
<td></td>
</tr>
<tr>
<td>• Message $HASP095</td>
<td></td>
</tr>
<tr>
<td>• Checkpoint problems during JES2 initialization</td>
<td>“Initialization problems” on page 6</td>
</tr>
<tr>
<td>• Errors during JES2 initialization</td>
<td></td>
</tr>
<tr>
<td>• JES2 ends abnormally during initialization</td>
<td></td>
</tr>
<tr>
<td>• Message $HASP479</td>
<td></td>
</tr>
<tr>
<td>• Problem starting JES2</td>
<td></td>
</tr>
<tr>
<td>• JES2 enters checkpoint reconfiguration dialog</td>
<td>“Checkpoint reconfiguration diagnostic procedures” on page 8</td>
</tr>
<tr>
<td>• JES2 does not respond to commands</td>
<td>“Waits” on page 9</td>
</tr>
<tr>
<td>• JES2 waiting and jobs do not start</td>
<td></td>
</tr>
<tr>
<td>• Cannot purge an old output data set</td>
<td>“Output problems” on page 10</td>
</tr>
<tr>
<td>• Functional subsystem (FSS) address space abends</td>
<td></td>
</tr>
<tr>
<td>• I/O error on printer, punch, or reader</td>
<td></td>
</tr>
<tr>
<td>• Job on printer, but printer not processing</td>
<td></td>
</tr>
<tr>
<td>• Job output marked “non-selectable”</td>
<td></td>
</tr>
<tr>
<td>• Printed or punched output not what expected</td>
<td></td>
</tr>
<tr>
<td>• Print Services Facility™ (PSF) printer status is “draining” instead of “inactive”</td>
<td></td>
</tr>
<tr>
<td>• Wrong destination on output</td>
<td></td>
</tr>
<tr>
<td>• Functional subsystem (FSS)-controlled printer is not printing</td>
<td>“Print services facility (PSF) printer problems” on page 10</td>
</tr>
<tr>
<td>• FSS or functional subsystem application (FSA) abends</td>
<td></td>
</tr>
<tr>
<td>• JES2 looping</td>
<td>“Looping problems” on page 11</td>
</tr>
<tr>
<td>• Processor busy during initialization</td>
<td></td>
</tr>
<tr>
<td>• JES2 disastrous error ($DISTERR)</td>
<td>“Disastrous errors” on page 11</td>
</tr>
<tr>
<td>• Message $HASP096</td>
<td></td>
</tr>
<tr>
<td>• Resource shortages</td>
<td>“Resource shortages” on page 11</td>
</tr>
<tr>
<td>• Lack of $HASP100 message</td>
<td></td>
</tr>
<tr>
<td>• Message $HASP050 in system log (SYSLOG)</td>
<td></td>
</tr>
<tr>
<td>• Message $HASP304 for internal reader shortages</td>
<td></td>
</tr>
<tr>
<td>• Spool shortages</td>
<td></td>
</tr>
<tr>
<td>Symptom</td>
<td>Problem Area</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>• Bind image failure</td>
<td>“Remote (RJE) and node (NJE) problems” on page 15</td>
</tr>
<tr>
<td>• Incorrect or garbled output to node or remote</td>
<td></td>
</tr>
<tr>
<td>• I/O errors on nodes or remotes</td>
<td></td>
</tr>
<tr>
<td>• Message $HASP094</td>
<td></td>
</tr>
<tr>
<td>• Message $HASP223</td>
<td></td>
</tr>
<tr>
<td>• Message $HASP528</td>
<td></td>
</tr>
<tr>
<td>• Message $HASP676</td>
<td></td>
</tr>
<tr>
<td>• Message $HASP679</td>
<td></td>
</tr>
<tr>
<td>• Message $HASP686</td>
<td></td>
</tr>
<tr>
<td>• Node flooded</td>
<td></td>
</tr>
<tr>
<td>• Node or remote status “hung” or “draining”</td>
<td></td>
</tr>
<tr>
<td>• Unable to establish connection with a node</td>
<td></td>
</tr>
<tr>
<td>• Unable to transmit to a non-JES2 node</td>
<td></td>
</tr>
<tr>
<td>• Failure to create or delete data space</td>
<td>“Data space errors” on page 18</td>
</tr>
<tr>
<td>• Message $HASP477</td>
<td></td>
</tr>
<tr>
<td>• Access violations and warnings for JES2 output work selection</td>
<td>Chapter 4, “Using the JES2 DEBUG facility,” on page 83</td>
</tr>
<tr>
<td>• JES2 Device Work Selection Screening</td>
<td></td>
</tr>
<tr>
<td>• External Writer Work Selection Screening</td>
<td></td>
</tr>
<tr>
<td>• SYSSOUT Application Program Interface (SAPI) requests (SSI function code 79)</td>
<td></td>
</tr>
<tr>
<td>• Access logging for:</td>
<td></td>
</tr>
<tr>
<td>JES2 device work selection screening</td>
<td></td>
</tr>
<tr>
<td>External Writer work selection screening</td>
<td></td>
</tr>
<tr>
<td>SYSSOUT Application Program Interface (SAPI) requests (SSI function code 79)</td>
<td></td>
</tr>
<tr>
<td>• Message $HASP186</td>
<td></td>
</tr>
<tr>
<td>• Jobs running slower than usual</td>
<td>“Performance problems” on page 18</td>
</tr>
<tr>
<td>• Jobs taking a long time to enter the system from different sources</td>
<td></td>
</tr>
<tr>
<td>(including local input devices)</td>
<td></td>
</tr>
<tr>
<td>• Printers slowing down or pausing during output processing</td>
<td></td>
</tr>
<tr>
<td>• Slow response to commands</td>
<td></td>
</tr>
<tr>
<td>• Your customers complain of poor response time</td>
<td></td>
</tr>
<tr>
<td>• Holding checkpoint for extended periods</td>
<td></td>
</tr>
<tr>
<td>• Failure while applying maintenance</td>
<td>“Problems applying maintenance” on page 19</td>
</tr>
</tbody>
</table>

See [z/OS JES2 Messages](#) to obtain information about each message.

Abends

For MVS-type abends (abends not preceded by a dollar sign), respond as indicated in [z/OS MVS System Codes](#).

When JES2 detects an abend, or an abend occurs within JES2, JES2 issues a message and an error code. JES2 error codes are preceded by a dollar sign (for example, $Q04) and are part of the $HASP095 message. These error codes are documented in [z/OS JES2 Messages](#). If JES2 issues message $HASP088, use this
message as the starting point to determine the cause of the problem. Figure 1 on page 5 shows a sample of the $HASP088 message. See “Description of message $HASP088” on page 5 for more information about the $HASP088 message.

Reasons for a JES2 abend

JES2 can abnormally end because:

- Changes were applied to the system.

 Adding maintenance could cause existing installation modifications to fail because of incompatibilities. Check the documentation for the maintenance you applied to ensure your modifications are still compatible. Also ensure that you installed all corequisite and prerequisite software.

 Commands that can help you locate the cause of this type of problem are:

 - `$D OPTSDEF`. This command displays the last start type requested and the actual start JES2 performed. Certain changes will not occur across different types of starts. Changes that did not occur could cause incompatibilities with any changes you have applied. See z/OS MVS Initialization and Tuning Reference or z/OS MVS Initialization and Tuning Guide for descriptions of the parameters that cannot be changed across different start types.

 - `$D MODULE(jxxxxxxx)`. This command displays information about IBM and installation-defined modules. The display includes: the date and time the module was assembled, the storage address where the module is loaded, the JES2 processing environment(s) for the routines within the module, the containing load module, the module’s $MODULE SPLEVEL= specification, and the IBM maintenance level or installation/vendor version value. This information can be compared to the routine name list and JES2 processing environment displayed by the `$D EXIT(nnn)` command, local information about the levels of installation or non-IBM code required or maintenance applied.

 - `$D EXIT(nnn)`. This command displays the routines in use for an exit point within the load module. EXIT(nnn) routines are those routines named on the ROUTINE= parameter of the EXIT(nnn) initialization statement. Only routine names in installation-provided modules or in IBM-provided sample exit modules will be included.

 Use this information in conjunction with the `$D MODULE` and `$D LOADMOD` commands to confirm that modules and routines are in sync and at the correct level.

 - `$D LOADMOD(jxxxxxxx)`. This command displays where in storage the specified load module JES2 is using resides. Problems could arise from JES2 using a copy of a module other than the copy you actually intended. See z/OS MVS Initialization and Tuning Guide for a description of how to direct JES2 to use a particular copy of a load module.

- Parameters were incorrect in the initialization stream or the operator or JES2 start procedure pointed to a member of SYS1.SHASPARM that does not exist.

- JES2 does not have the proper authority for needed resources.

 An incorrect profile or insufficient authority for a resource could cause JES2 to abend. See your security product’s publications for details.

- An error occurred in an installation exit or table. Register 14 in the current save area in the dump contains the address of the code that called the failing service. This code typically indicates the cause of the problem. Remove the modification causing the failure, restart the system, and fix the modification.

For JES2 abends, the system log (SYSLOG) and a dump of the abending job are useful for diagnosis. System Management Facility (SMF) record 45 will also contain
the completion code when JES2 abends. See [z/OS MVS System Management Facilities (SMF)](https://www.ibm.com) for the format of SMF record 45. If you suspect that an abending job caused JES2 to abend, make sure you obtain the dump of the job and JES2, the most recent assembler listing for JES2, and the source for any modifications before calling the IBM Support Center.

When collecting dumps, ensure that all dumps related to a problem are obtained. JES2 utilizes the remote feature of SDUMP to obtain dumps of multiple MAS members for certain errors. These dumps may at first appear to be duplicate but they are all needed to determine the actual cause of the error.

Whenever you reference a line in the source code, use sequence numbers rather than offsets. Modifications change the offsets and the offset may not help your service representative locate the failing instruction in the copy of the source code the representative has.

Description of message $HASP088

By examining message $HASP088, you may eliminate the need to examine a dump. [Figure 1](#) illustrates message $HASP088.

<table>
<thead>
<tr>
<th>Line</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$HASP088 FMID = HJE6601 LOAD MODULE = HASJES20</td>
</tr>
<tr>
<td>2</td>
<td>$HASP088 SUBSYS = JESA OS 1.1.0</td>
</tr>
<tr>
<td>3</td>
<td>$HASP088 DATE = 1999.062 TIME = 15.14.52</td>
</tr>
<tr>
<td>4</td>
<td>$HASP088 DESC = PROTECTION EXCEPTION</td>
</tr>
<tr>
<td>5</td>
<td>$HASP088 MODULE NAME OF CALLED</td>
</tr>
<tr>
<td>6</td>
<td>$HASP088 NAME + OF CALL LEVEL CALLED ##</td>
</tr>
<tr>
<td>7</td>
<td>$HASP088 BASE NAME OF CALL LEVEL</td>
</tr>
<tr>
<td>8</td>
<td>$HASP088 HASPNATS 00053000 + 000572 NONE +ABEND SOC4</td>
</tr>
<tr>
<td>9</td>
<td>$HASP088 HASPSCAN 00085000 + 001C56 NONE PSTCONCT</td>
</tr>
<tr>
<td>10</td>
<td>$HASP088 HASPSCAN 00085000 + 001282 NONE PRTABENT</td>
</tr>
<tr>
<td>11</td>
<td>$HASP088 HASPSCAN 00085000 + 0002EC NONE PRKEYWRD</td>
</tr>
<tr>
<td>12</td>
<td>$HASP088 HASPSCAN 00025000 + 0058AC OY29334 SCAN 5</td>
</tr>
<tr>
<td>13</td>
<td>$HASP088 FAILING INSTR WAS 58A083F0</td>
</tr>
<tr>
<td>14</td>
<td>$HASP088 PSM = 071C2000 80053572 1LC = 4 IC = 10</td>
</tr>
<tr>
<td>15</td>
<td>$HASP088 ASID = 0010 (HOME) 0010 (PRIM) 0010 (SCND)</td>
</tr>
<tr>
<td>16</td>
<td>$HASP088 PCE = COMM (02912008)</td>
</tr>
<tr>
<td>17</td>
<td>$HASP088 R0 = 00000000 7FFD780 7FFD780 00000000</td>
</tr>
<tr>
<td>18</td>
<td>$HASP088 R4 = 00085CE0 00000000 00000001 0291220F</td>
</tr>
<tr>
<td>19</td>
<td>$HASP088 R8 = 0009F888 0009F90C 02901008 40404040</td>
</tr>
<tr>
<td>20</td>
<td>$HASP088 R12 = 00053548 02912008 00053548</td>
</tr>
<tr>
<td>21</td>
<td>$HASP088 ---</td>
</tr>
</tbody>
</table>

Figure 1. Message $HASP088

After the identifying header for the message, the information in the message contains:

<table>
<thead>
<tr>
<th>Line</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The function modification identifier (FMID) and load module in which the abend occurred.</td>
</tr>
<tr>
<td>2</td>
<td>SUBSYS is the name you used when starting JES2 and OS is the version of that JES2.</td>
</tr>
<tr>
<td>3</td>
<td>The date and time of error.</td>
</tr>
<tr>
<td>4</td>
<td>A description of error.</td>
</tr>
<tr>
<td>5 - 7</td>
<td>Headers for module-related information.</td>
</tr>
</tbody>
</table>
8 - 12 (in this example)
Column 1 contains the module name. Column 2 contains the hexadecimal starting address of the module. Column 3 contains the offset of the call to the routine. Column 4 contains any service applied to the routine. Column 5 contains the name of the routine called.

13 The address of the failing instruction.

14 The contents of the program status word (PSW), the instruction length counter (ILC), and the interruption code (IC).

15 The address space identifiers (ASID) for the home, primary, and secondary address spaces at the time of failure. If there was only one address space, these values are the same.

16 The name and entry address of the $PCE that was in control at the time of failure.

17 - 20 The contents of registers 0 through 15. If any of these registers are access list entry table (ALET)-qualified, a Q appears next to the address.

This message can have different texts and lengths depending on the type of error and in which environment the error occurred. \texttt{z/OS JES2 Messages} shows the format and explanation of the message.

\section*{Initialization problems}
Indications of initialization problems are:
\begin{itemize}
\item Initialization does not complete.
\item JES2 ends and issues an abend code.
\item JES2 does not start.
\item The system loops during JES2 initialization.
\item MVS enqueues on STCQUE.
\end{itemize}

\section*{For any error}
Any error that occurs during initialization requires that you save the initialization log, LIST data sets, and the last message JES2 issued before the problem occurred. At this point in processing, there is little else that indicates what caused a problem.

\section*{JES2 stops or loops}
If JES2 stops or loops during initialization, request a console dump by entering the following command from a console with master authority:

\begin{verbatim}
DUMP COMM=(JES2 HANG DURING INITIALIZATION)
\end{verbatim}

The system will respond with the message:

\begin{verbatim}
* id IEE94D SPECIFY OPERAND(S) FOR DUMP COMMAND
\end{verbatim}

Reply:
JES2 issues $HASP479

JES2 issues message $HASP479 when another member is probably holding the JES2 checkpoint lock or when
1. A cold start is in progress with a new checkpoint data set
2. An all-member warm start is in progress
3. An all-member warm start is being performed using the CKPTn option to restart JES.

Ensure that for the system identified, JES2 and MVS are inoperative before responding to the $HASP454 message. Entering the $D MEMBER command for all members of a multi-access spool identifies the member that has the checkpoint lock. You can then reset the jobs on the failed member to be available to other members by issuing the $E MEMBER command.

An abend occurs

For an initialization abend, obtain any logrec data set error records. You can use the interactive problem control system (IPCS) to view the LOGREC buffer in the dump, or use a reporting program such as Environmental Error Record Editing and Printing program (EREP) to view LOGREC records. If the abend occurs while JES2 is processing a job or output, restart JES2 with the REQ option. Starting with REQ differentiates the initialization process from actual JES2 processing and helps eliminate initialization processing as the cause of the problem. When you receive the $HASP400 message, try to hold ($HJ command) or purge ($PJ command) the job causing the abend before entering the $S command.

Initialization statement errors

If you are encountering initialization statement errors, you may have to restart JES2 with the LIST option to determine the failure. Initialization statement errors are most readily visible in the LIST output JES2 creates during initialization. To collect additional information about a problem, you should start JES2 traces 1, 2, 3, 6, 7, 11, 12, 13, 17, 18, 19, and 20 before starting JES2. However, you will not be able to start these traces if JES2 performs a hot start. For a loop, if you can determine where the loop is, set a SLIP trap to determine what processing occurred before JES2 started looping. After the first occurrence of the loop, you can determine where the loop is by examining the JES2 entries in the system trace table in the dump and using that information to set the SLIP trap. Start a GTF trace with the TIME=YES and SUB=MSTR parameters. See the following:

- z/OS Problem Management for more information about the system trace table and SLIP traps.
- z/OS MVS Diagnosis: Tools and Service Aids for more information about GTF and GTF traces.
- z/OS MVS System Commands for more information about the SLIP command.

JES2 does not start

If you cannot start JES2, make sure the JES2 procedure points to the correct initialization stream. If MVS appears to be enqueued on STCQUE, you might try respecifying the MVS START JES2 command. Typically, the enqueue on STCQUE occurs when MVS believes it is starting a task without JES available. The most
common cause of this enqueue is the misspelling of the JES2 procedure on the
START command or a command to start a secondary JES2 entered the system
before the primary JES2 completed initialization processing. If it seems the
initialization stream is correct, start another JES2 by changing your MVS
initialization to point to the JES2 you want to use.

Checkpoint reconfiguration diagnostic procedures

The JES2 checkpoint reconfiguration is entered for a number of reasons. JES2 can
initiate a reconfiguration to correct an I/O error, ask the operator to validate
checkpoint data set forwarding information, or move the checkpoint off a volatile
coupling facility structure. Also, you can initiate a reconfiguration dialog whenever
needed with a $T CKPTDEF,RECONFIG=YES command. The dialog is then both a
means to correct a problem situation and a way to maintain the coupling facility and
DASD. If problems occur during a reconfiguration, JES2 provides a number of
diagnostic messages to assist your understanding of the error condition.

JES2 checkpoint reconfiguration diagnostic messages

This section topic discusses JES2 error, tracking, and processing delay messages
issued during a checkpoint reconfiguration. These messages provide useful
information to assist your diagnosis after a JES2 checkpoint reconfiguration problem
occurs. Additionally, JES2 issues ‘delay’ messages, $HASP254 and $HASP257, to
suggest actions you can take to complete a JES2 checkpoint reconfiguration if
delays persist. See [z/OS JES2 Messages] for the full text of all the messages
discussed here.

Error messages

The $HASP095 messages provide a series of $Kxx error codes that point to
internal errors in JES2 and interface errors with other MAS members or with
JESXCF. Following an abend you will need to collect available problem
documentation; see “Information needed to debug a checkpoint reconfiguration
error” on page 9.

<table>
<thead>
<tr>
<th>Message</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>$HASP095</td>
<td></td>
</tr>
<tr>
<td>$K25</td>
<td>abend requested by testing and diagnostic problem recreation</td>
</tr>
<tr>
<td>$K26</td>
<td>received a $CKX with an incompatible control block version</td>
</tr>
<tr>
<td></td>
<td>because MAS members are at incompatible service levels</td>
</tr>
<tr>
<td>$K27</td>
<td>attempted to join a checkpoint reconfiguration already in progress</td>
</tr>
<tr>
<td>$K28</td>
<td>internal error within HASPCKDS or HASPCKRR</td>
</tr>
<tr>
<td>$K29</td>
<td>interface error with JESXCF</td>
</tr>
<tr>
<td>$K30</td>
<td>internal error within HASPCKRR or possibly an interface</td>
</tr>
<tr>
<td></td>
<td>error with JESXCF</td>
</tr>
<tr>
<td>$K31</td>
<td>internal error detected in HASPCKDS</td>
</tr>
<tr>
<td>$K32</td>
<td>internal error detected in HASPCKDS</td>
</tr>
<tr>
<td>$K33</td>
<td>internal error detected in HASPCKDS</td>
</tr>
<tr>
<td>$K34</td>
<td>unexpected return code from JESXCF IXZXIXcc macro processing</td>
</tr>
</tbody>
</table>
Tracking messages
Several messages, $HASP233, $HASP236, $HASP255, and $HASP285 provide reconfiguration processing status. These are not diagnostic messages, but provide the operator some indication of how the reconfiguration is progressing. None require a response. $HASP285 informs the operator that a reconfiguration is in progress for the reason stated in $HASP233. If issued, $HASP236 indicates a problem with the driving member, but JES2 recovers by selecting another driving member to replace the failed driving member that $HASP236 indicates and processing continues. These messages are issued to SYSLOG on every member to provide a complete set of messages for future reference.

Message	Meaning
$HASP233 | reconfiguration reason
$HASP236 | driving member (name) failed
$HASP255 | checkpoint reconfiguration completed reason
$HASP285 | checkpoint reconfiguration status

Processing delayed messages
Messages $HASP254 and $HASP257 indicate a delay in checkpoint reconfiguration processing. Either message can be informational only because the problem symptom might resolve itself or can offer information you need to diagnose and resolve a persistent problem. These messages and their explanations as presented in [z/OS JES2 Messages](https://www.ibm.com/support/knowledgecenter/SSG27H_2.3.0/com.ibm.jes2.messages.doc/tltt_input.html) suggest actions you can take to complete a JES2 checkpoint reconfiguration if delays persist.

Message	Meaning
$HASP254 | reconfiguration delayed - awaiting member information
$HASP257 | member delayed by another for reason

Information needed to debug a checkpoint reconfiguration error
It is important that you obtain information about every MAS member and MVS system in the XCF group. Perform the following:

- Collect the JES2-provided dump of the failing member (which includes a dump of the JESXCF address space and associated data space on this MVS system)
- Collect SYSLOGs of the systems on which the members of the MAS are
- Request a dump of all other MAS members and of the JESXCF address spaces and their data spaces on the MVS systems where the members are
- CTRACE JESXCF data for every member.

See [z/OS MVS Diagnosis: Tools and Service Aids](https://www.ibm.com/support/knowledgecenter/SSG27H_2.3.0/com.ibm.mvs.doc/ptmktm_f.htm) for further information on collecting JESXCF CTRACE data.

When you have collected this data, contact your IBM service representative for corrective actions.

Waits

JES2 waits have the same symptoms as MVS waits.

Use SYSLOG to determine the cause of the wait. If you determine that JES2 is the cause of a wait state, ensure that you dump JES2 by entering the following command from a console with master authority:
The system will respond with the message:

```
* id IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
```

Reply:

```
R id, JOBNAME=JES2, SDATA=(SERVERS, PSA, SQA, LSQA, RGN, TRT, LPA, CSA, GRSQ, SUM, XEDATA, COUPLE)
```

Waits can be caused by resource shortages. See "Resource shortages" on page 11 for additional information.

Output problems

Incorrect output could be caused by an improper load of the forms control block (FCB) or the universal character set (UCS). Ensure that the name of the image is spelled correctly and the image:

- Exists in SYS1.IMAGELIB
- Is correct
- Is proper for the device you are loading.

For an output problem, collect the SYSLOG for the period after a printer started. If the problem is related to a printer, collect the JCL for the job that created the output and dumps of any Print Services Facility (PSF) address spaces that abended. For Data Facility Product (DFP) printers, the output of the DFP error recovery program (ERP) could indicate the problem.

If SYSLOG contains message $HASP151 and this message is preceded by an input output supervisor (IOS) error message, the IOS error contains the actual problem. Follow the sequence of events from the time the job that created the output ran until the output is marked non-selectable to pinpoint why the output is ineligible for processing. Also, if a command was entered that incorrectly changed the destination of output, that command appears in the SYSLOG.

Print services facility (PSF) printer problems

As soon as possible after an error involving an FSS-controlled printer, you must dump the address space of the FSS and JES2. At least one of these dumps must contain the common storage area (CSA). A summary (SUM) dump is not sufficient for PSF problems. Make sure your dump data sets are large enough to hold these dumps. You should also save the soft-copy of SYSLOG for use in later problem analysis. Examining SYSLOG could give you an indication of why an FSS abended or the printer shows draining with a job still active. You might also find some indication of why JES2 marked a job as non-selectable.

In situations where the job status shows the job active on a printer but the printer is not processing the job, look for either of the following:

- A previous problem
• A canceled job that had problems on the printer. If this is the case, PSF treats the job as still active on the printer and that printer will be unavailable until the next warm start.

If you must recreate the problem, set the GTF functional subsystem interface (FSI) trace and JES2 traces 14, 15, 16, 18, and 19. These traces can help pinpoint the problem.

Looping problems

When your system is in a loop, you may see:

• The processor appears busy, but jobs do not start or end.
• JES2 issues the same message repetitively.
• All I/O appears to stop.
• Messages indicating that a job(s) has exceeded limits, but the job does not abend.

Besides a dump, SYSLOG is necessary in order to identify the current processor control element (PCE). The system trace table in the dump is also useful in identifying the PCE.

If it appears a batch job may be causing the loop, the dump of that job is also necessary for problem identification.

Disastrous errors

JES2 issues message $HASP096 when a job encountered a disastrous error. The message identifies the job that encountered the disastrous error.

A “disastrous” error can be:

• a JES2 logic error
• a critical I/O error has occurred on SYS1.HASPACE data set (if the $HASP096 message is accompanied by a I/O error message).

When the situation occurs a $HASP096 message is issued and based on the installation defined RECVOPTS a system dump may be obtained.

Examine the sequence of events in SYSLOG that lead up to the error. Check your RECVOPTS(DISTERR) initialization statement to see if you should change the count defined in the initialization stream. Enter the $D RECVOPTS(DISTERR) command to see the count and interval specified in the initialization statement. Too low a count for RECVOPTS(DISTERR) causes JES2 to suppress dumps when the number of disastrous errors exceeds the count in a 24-hour period; you will lose helpful diagnostic information.

Also determine if any initial program loads (IPL) occurred between the time the job ran and before output for the job was processed. If you must recreate the error, you should set JES2 trace 3.

Resource shortages

JES2 indicates resource shortages through a variety of ways, including the $HASP050 and $HASP304 messages. These messages can be helpful in determining and correcting a resource shortage.
$HASP050 message for resource shortages

JES2 issues message $HASP050 to indicate shortage(s) of one or more of the following resource types:

- BERT - Block Extension reuse tables
- BSCB - Bisynchronous buffers
- BUFX - Extended logical buffers
- CKVR - Checkpoint versions
- CMBS - Console message buffers
- CMDS - Console message buffers used for JES2 commands
- ICES - VTAM® sessions
- LBUF - Logical buffers
- JNUM - Job numbers
- JQES - Job queue elements
- JOES - Job output elements
- NHBS - NJE header/trailer buffers
- SMFB - System management facility buffers
- TGS - SPOOL space/track groups
- TTAB - Trace tables
- VTMB - VTAM buffers

JES2 resource shortages might be temporary and occur during periods of heavy utilization or the shortages might be permanent and impact JES2 processing. Typically, a resource shortage is the result of not specifying a large enough value for a resource in your JES2 initialization statements.

In general, take one or more of the following actions as appropriate for the resource type:

- Increase the quantity of the resource on its corresponding JES2 initialization statement.
- Increase the quantity of the resource with a $T command.
- Decrease demand for the resource (such as purging old held output to relieve a shortage of JOEs).
- Monitor temporary or non-impact shortages for possible future action.

Some resources, such as those described later, require specific actions to determine why there is a resource shortage.

$HASP050 message for CMBs - console message buffers

When a JES2 Console Message Buffer (CMB) shortage occurs, JES2 issues:

$HASP050 JES2 RESOURCE SHORTAGE OF CMBS

An operator may have issued a command that generated a large volume of messages. This type of shortage is typically temporary. Consider increasing the number of CMBs (specified with CONDEF BUFNUM=) if you encounter a temporary CMB shortage, even if the shortage occurs infrequently. You can determine your current CMB usage by issuing a $D CONDEF command. The $HASP830 message displays the number of CMBs defined (BUFNUM=) and the number of free CMBs (BUFFREE=).

Continuous, permanent growth in CMB utilization between JES2 restarts can mean a permanent shortage of CMBs. If you experience a permanent shortage of CMBs, the following procedures will help you determine how to resolve the problem.
Examine LOGREC Data: Examine LOGREC data in an EREP report or in a DUMP, using IPCS, to search for symptom records with the following text:

$WTO PARAMETER LIST ERROR

See “Diagnostic procedures for $WTO PARAMETER LIST ERROR symptom records” on page 105 for further information if you find $WTO PARAMETER LIST ERRORs.

Examine the $WTO parameter list for data that might cause JES2 to place an associated $CMB data area on a queue where the $CMB might remain indefinitely. Obtain a dump of the JES2 member producing the symptom records, if necessary, to continue analysis.

Analyze the Dump Using IPCS: CMBs may be found on a queue or in storage. By obtaining a dump of the JES2 address space, you can use IPCS to analyze the dump to search for CMBs.

- Confirm that a CMB shortage still existed at the time the dump was taken and that a sufficient number of CMBs were defined. To determine the number of CMBs defined, format the $HCT data area, where JES2 saves this information, and look at the following fields:
 - $NUMCMBS (half-word) the total number of static CMBs (specified by CONDEF BUFNUM=)
 - $CMBFREC (half-word) the number of free CMBs

 IBM suggests a minimum of CONDEF BUFNUM=1000. A larger value, up to 9999, can be specified if necessary.

- Search JES2 queues for static CMBs. The following $HCT fields are the queue headings for queues on which a CMB can be placed:

 $COMMQTP
 Queue (LIFO order) of commands from RJE, NJE, internal readers, or other MAS members.

 $BUSYQUE
 Queue (LIFO order) of messages or commands bound for the $HASPWTO subtask (the subtask issues most SVC 34’s and 35’s for JES2).

 $BUSYRQ
 Queue (CMB priority order) of messages, commands, or NMRs bound for RJE, NJE, or other MAS members.

 $COMMQUE
 Queue (FIFO order) of commands to be processed by this member. This queue is used by module HASPCOMM as a work queue and contains CMBs requeued from CCTCOMMQ, $COMMQTP, and also automatic commands that are ready to execute.

 $CONWKQ
 Work queue (CMB priority order) used by the $HASPWTO subtask. $HASPWTO re-chains CMBs from the $BUSYQUE to this queue for processing.

 $DOMQUE
 List (CMBDOMID order) of action messages waiting for eventual processing by a $DOM macro instruction.

 $DOMQUEA
 Queue (LIFO order) of action messages, issued by the $HASPWTO subtask, that are waiting to be requeued to the $DOMQUE by the $ASYNC processor.
Use the JES2 IPCS panels to see if a number of CMBs have accumulated on any of the preceding queues. These queue names are on the panel selected from option 7 ("Select JES2 control blocks") of the "JES2 COMPONENT DATA ANALYSIS" panel. See [Chapter 5, “Using IPCS for diagnosis,” on page 85](#). You can ignore GETMAINed CMBs (bit CMB2GETM is on in byte CMBFLAG2) because these CMBs are not counted for the HASP050 message.

If you find that many CMBs have accumulated on one of the preceding queues, determine why they were not being processed. For the following queue types, the reasons may include:

$COMMQTP
An internal reader, a remote, or node might be flooding JES2 with commands, or the command processor might be stopped.

$BUSYQUE
The $HASPWTO subtask might be stopped or looping because of a problem in SVC 34 or 35 processing. Issue the IPCS command

```plaintext
IP SUMM FORMAT JOBNAME(JES2)
```

to analyze the RB structure for the $HASPWTO subtask. You might, for instance, find problems in MVS exits or in WTO SSI broadcast function routines.

$BUSYRQ
Look for problems with $MASCOMM, the remote console processor, RJE or NJE. Check whether the remote console processor, multi-leaving line processor, or other NJE or RMT PCE has ended (see message $HASP068) or is stopped. Examine the CMBs on the queue for commonality such as:

- Command or message type CMBs
- The destination node, member, remote, or user
- The source node, member, remote, or user.

$COMMQUE
Check if the command processor PCE is stopped.

$CONWKQ
The $HASPWTO subtask might be stopped or looping because of a problem in SVC 34 or 35 processing. Issue the IPCS command

```plaintext
IP SUMM FORMAT JOBNAME(JES2)
```

to analyze the RB structure for the $HASPWTO subtask. You might, for instance, find problems in MVS exits or in WTO SSI broadcast function routines.

$DOMQUE
Look at the messages to determine where and how the messages might have been issued, or why the messages have not been deleted with a $DOM macro instruction.

$DOMQUEA
CMBs should not stay on this queue very long. See if the JES2 main task is stopped or if the asynchronous I/O processor PCE is stopped.

- Use IPCS BROWSE to search storage, using the FIND command:

  ```plaintext
  F 'CMB' NOB
  ```

 If you find a number of CMBs that are not on any queue, check their contents for information to:

 - Determine if a CMB queue chain might have been broken.
Determine if CMBs are obtained with $GETCMB and are not subsequently queued by a $WTO macro instruction with CMB=YES or freed with a $FRECMB macro instruction.

$HASP050 message for JQEs - job queue elements
If the message indicates there are not enough job queue elements ($JQEs) or if jobs are not starting, enter a $D JOBDEF command to determine the available $JQEs. If there are not enough $JQEs, purge unneeded jobs and start, or change, the selection characteristics of your printers so the printers select available work. Processing output for jobs could release $JQEs back to the free queues.

$HASP050 message for TGs - spool space and track groups
If the message indicates that there is a spool shortage, enter the $D JOBQ,SPOOL=(%>nnn) command to determine the percentage of spool that jobs are using. Either offload or purge the jobs using the highest amount of spool to alleviate the problem. All the output for the job must be removed, not just parts of it, because the job still uses spool and JES2 typically does not recover spool space that a job uses until a job purges.

$HASP304 message for internal reader shortages
If an internal reader is not available when a batch job, STC or TSO/E user attempts to allocate an internal reader to submit a job to JES2, JES2 issues message $HASP304 jobname WAITING FOR AN INTERNAL READER

You can use the $D INTRDR command to see whether the RDINUM parameter value is sufficient for the number of internal readers. You can also issue the $D RDI,L=Z command to see which applications have internal readers allocated. If one application uses a large number of internal readers, you might remove that application until the shortage situation ends.

Remote (RJE) and node (NJE) problems
Before doing anything that involves the network, request a dump. This action ensures that any indications of the problem that exist in the system are not changed by any attempts at recovery. For this discussion, problems are grouped into:

- Problems common to RJE and NJE
- NJE problems.

Problems common to RJE and NJE
The following are some of the most common problems that occur in a networking environment:

Node or remote status is draining for several minutes
This condition is commonly called the “hang” situation. Nothing appears to be happening on the line defined for the connection. Try the following to isolate the cause:

- Check the attributes for the remote. The definitions on both sides of the session should be the same. If this is a systems network architecture (SNA) session, make sure the JES2 and Virtual Telecommunications Access Method (VTAM) definitions are compatible.
- Enter the $T LINE(n),LOG=Y command to turn on event tracing. This command displays if there actually is any activity. You should see a $HASP094 message for each transaction across the line. Lack of the $HASP094 message confirms the problem.
- Enter a $P LINE(n) and a $E LINE(n) command to cause the line to drain.
- Enter a $P LOGON(n) and a $E LOGON(n) command to cause the logon to drain.

If the problem persists, you must cause JES2 to abend, using the $P JES2,ABEND command and warm start JES2 to clear the problem. Before restarting the nodes and remotes, set JES2 trace 4 (BSC) or 5 (SNA) to trace the problem if it recurs.

Erroneous I/O errors
When you start a line, a few I/O errors are normal. These indicate an exchange of information between the two ends of the session to establish communication. In certain situations, time-out errors messages are to be expected. For time-out errors, enter a JES2 $S command to get the session working as expected, again. Depending on the type of remote, you may have to restart the other end of the session.

An emulator can also cause I/O errors if it does not correctly emulate all hardware functions.

Bind image failure
Bind image failures are indicated by messages from VTAM.

You can examine the bind image by draining the line in error and enabling JES2 trace 5. The trace output contains the bind image. Inspect the bind parameters and correct them.

Unable to establish connection
The return feedback codes in message $HASP094 indicate what may be wrong and whether the failure is hardware, VTAM, JES2, or something else. You can start event logging by entering a $T LINE(n),LOG=Y command to determine what part of the connection sequence is failing. "NJE problems" describes other things to try in an NJE environment.

NJE problems
In addition to the problems common to RJE and NJE, the NJE environment creates other concerns.

Unable to establish connection
If JES2 does not make a number of connections, you can enter a $D NODE(*) command to list all the nodes and a $D CONNECT command to list their connections. Make sure you route the output of this command to the hard-copy log as it can be quite large and difficult to read on the console. Also, entering a $D PATH(nodename) command shows you the paths to one or more nodes as defined to JES2. See [z/OS JES2 Commands](https://www.ibm.com/support/docview.wss?uid=swg21743529) for more information about the $D PATH(nodename) command. If the connection was delayed or not completed, message $HASP501 is issued, listing the member that did not respond.

If the node involved is a non-JES2 node, you need to ensure that the initialization statements that define the connection are correct. [z/OS MVS Initialization and Tuning Guide](https://www.ibm.com/support/docview.wss?uid=swg21743529) discusses the considerations for connecting non-JES2 nodes.
Examine SYSLOG to see if JES2 issued any resource shortage messages. A shortage of teleprocessing (TP) buffers or lines can cause connection failures. Also, message $HASP676 indicates network-specific resource shortages. JES2 issues messages $HASP676 and $HASP679 on the system initiating the connection to indicate the cause of the connection failure. The node on the receiving end of the connection may receive message $HASP223, which indicates network-specific resource shortages on that node. In either case, the node with the shortage may require a warm start before the connection can complete.

You can increase the number of teleprocessing buffers available by using the $T TPDEF command. See z/OS MVS Initialization and Tuning Guide for more information about teleprocessing buffers.

Note: For the next section, output refers to both jobs and SYSOUT.

Output remains on your node

If output remains on your node, check the following:

- Ensure the node name on the statement that defines the output is correct. If you determine that the node is wrong, enter a $TO or a $R command against the output to reroute it and change the statement in error.
- Ensure the target node is connected.
- Ensure a SYSOUT transmitter is available to the node. You can view the definition of a node by entering a $D NODE(avvvvvvv) command:
 - If the display shows that the connection is made VIA SPOOL, reenter the command on the member of the multi-access spool, which is directly connected to the node.
 - If the status of the line shows the line is UNCONNECTED, start a line for that node.
 - If the status shows ACTIVE, enter a $DU,LINE(nnnn) command for the line displayed in the node display to determine the status of the transmitters.
 - Ensure that the SYSOUT transmitter’s work selection characteristics (line and page limits) are set to a range that allows it to select the output. To display or change a transmitter’s work selection characteristics, use the $D and $T L(nnnn).ST(n) commands.

If individual jobs are held, check the following:

1. Examine the SYSLOG for any $HASP528 messages.
2. Enter a $L or a $T O command for the held job. If this is SYSOUT received from another node and the HOLDRC=005, the number of nodes through which the SYSOUT has passed exceeded the value of MAXHOPS on the NJEDEF initialization statement.

These symptoms could indicate a loop in your network definitions. By using the $D PATH command to determine the paths to the target node for the output and $D NODE command to display the definition for the nodes in the path, you could locate an existing loop. If no loop exists, ensure that the value of MAXHOPS is large enough to send a job and receive the output from that job through the longest path in your network.

If your node is flooded, use VTAM and the network control program (NCP) with the virtual route extensions to route output past the node. You may also want to ensure that the destination node is operative, especially if your node is adjacent to the destination. Jobs and output destined for a node will travel as far as they can in the
network until they can go no further. If the destination is inoperative, you will continue to receive output for that destination until the node becomes operative.

If your node receives incorrect output, note the node from which the output came. Contact the sender, explain the problem, and request a retransmission. The sending node is responsible for the validity of output transmitted through the network and that node must determine their problem.

Recreating NJE problems
Before recreating a sequence of events that caused an NJE problem, set JES2 traces 21 through 24. These records trace the connection records and signon sequence between nodes. The records could be helpful when trying to establish why sessions are not established between nodes or why output is not leaving a node for another destination.

Activate these trace identifiers by using the TRACE parameter on any of the following:
- NODE(nnnn) initialization statement
- $T NODE command
- $T NODE command
- $T LINE command

The TRACE parameter specifies whether JES2 is to trace NCC records to and from a direct network connection to a specified member of the node. The $D NODE,TRACE command shows you whether the traces are active.

Data space errors
JES2 issues message $HASP477 when it cannot create or delete a data space.

To help identify the error, you need the reason code from the $HASP477 message, if the reason code is 12 or greater. You must also have logrec data set available when you call the IBM Support Center.

Performance problems
Some symptoms of JES2 performance problems include:
- Jobs run more slowly than usual
- End-users complain of poor response
- Jobs take a long time to enter the system from all sources
- Printers slow down or pause
- The system responds slowly to commands.
- A member of the MAS holds the checkpoint for extended periods.

SYSLOG is extremely helpful when analyzing a performance problem. If the system appears sluggish, look through SYSLOG and see if the DEBUG facility was enabled. Other items you may want to investigate:
- Active traces. Deactivating any active traces could improve performance.
- Dumps. Performance is affected if the system is currently writing a dump.
- Resource shortages. See [Resource shortages on page 11](#) for additional information on resource shortages.
- Checkpoint contention. If you suspect that the performance problem is checkpoint-related, set JES2 trace 17 and use the trace reduction program supplied in SYS1.SHASPARM to reduce the trace output before calling the IBM Support Center.
Work selection criteria. Selecting certain items in your work selection criteria could be detrimental to your performance. See z/OS MVS Initialization and Tuning Guide for more information about work selection criteria.

Problems applying maintenance

Problems applying maintenance to the system generally are not caused by JES2. Your IBM systems engineer (SE) should be able to assist you with these problems. When you do encounter problems, it is important to save the output from Systems Modifications Program/Extended (SMP/E) to aid service in locating the problem.

You should also make sure that you have the correct macro libraries specified when you install a new release.

When updating JES2 source code, ensure that you re-assemble all of the JES2 source modules. Changes to the macro libraries such as SYS1.MACLIB and SYS1.MODGEN could cause problems because some JES2 modules may have been assembled with different macro libraries and are no longer compatible with the remaining source.

To assemble or re-link-edit JES2 modules:

- Using SMP/E, you can use member HASISMPA in SYS1.SHASSAMP.
- Without using SMP/E, you can use member HASIBLD in SYS1.SHASSAMP.
Chapter 2. Collecting problem data

If you suspect the problem you have is a JES2 problem, get as much information about the environment at the time of the error as you can before doing any other task. Any attempt to resolve the problem can cause a change in the environment. That change can alter information and possibly destroy what could have been a key indicator to the problem.

Basic information to collect

Whether you decide to diagnose the problem yourself or call the IBM Support Center for assistance, collect:

- A dump of JES2. If JES2 did not write a dump, request one by entering the following command from a console with master authority:

```
DUMP COMM=(JES2 DUMP 9-1-94)
```

NOTE: The keyword value of `COMM=` that is in parenthesis is a descriptive title of your choosing.

The system will respond with the message:

```
* id IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
```

Reply:

```
R id,JOBNAME=JES2,SDATA=(SERVERS,PSA,LSQA,TRT,CSA,GRT,LSQA,SUM,XESDATA,COUPLE)
```

To have JES2 automatically dump its storage if a problem occurs twice in a 24-hour period, set the COUNT parameter on the RECVOPTS initialization statement to 2. This dump includes the same information as the previous SDATA requests and could prevent you from having to recreate the problem. JES2 utilizes the remote feature of SDUMP to capture dumps of all members or an MAS for certain types of errors. These remote dumps will have the same symptoms as the original problem and thus may at first appear to be duplicates. However, they are not duplicates in these cases. You must ensure that all dumps that are created for an error are retained for problem analysis.

- A dump of any suspect jobs. This is useful when JES2 ends abnormally and it appears that a job running on your system may have caused JES2 to stop running.

Enter the `$D I,LONG` command to display the address space identifier (ASID) of the initiator which the job is running. You can then specify `ASID=nn` in the SDATA when you request the dump to ensure the system dumps the address space which the failing job is running.

- A copy of the hard-copy log or the most current system log (SYSLOG) available. If you suspect that a job might be causing the problem, the SYSLOG should cover the period of the entire life of the suspect job. Ensure you save the soft-copy version of the SYSLOG for the failure period until you have resolved the problem.

- Logrec data set error records, if available. This is especially useful in hardware- and teleprocessing (TP)-related problems.

- Any installation modifications to JES2. Have the source for all exits, table pairs, and installation modifications to JES2.
Additional information you might need

Depending on the complexity of the problem, you may need the following additional information:

- Traces. Traces can complete the picture of the environment at the time of error. There are different types of traces you can run. See Table 1 on page 25 for more information about JES2 traces. Traces include:
 - JES2 traces. The $TRACE facility creates JES2 traces. Different situations can be traced with different trace identifiers. Table 1 on page 25 explains how to enable the traces, how the traces are related to specific functions, and the information in each trace.
 - CCWTRACE. These traces are useful for diagnosing I/O- or TP-related problems. For a hardware problem, CCWTRACE can supplement the information in logrec data set.
 - GTFTRACE. If a GTFTRACE is active for the area that gave you the problem, this trace can be helpful. The GTFTRACE is especially important for VTAM-related problems. If you must recreate the problem for any reason and you can trace the area with GTFTRACE, do so.
 - MTRACE. These traces are useful for diagnosing some problems, if SYSLOG is unavailable. However, MTRACE should not be used as a substitute for a copy of SYSLOG.

- LIST output of the initialization process. When the error occurs during JES2 initialization, restart JES2 with LIST or LOG to help you locate the cause of the problem. It is probably the easiest way to trace the initialization statements.

- Program event recording (PER) output. This is the information created from a SLIP trap. See z/OS Problem Management and z/OS MVS System Commands for information about using the MVS SLIP command to set SLIP traps.

- Environmental, Reporting, Editing, and Printing Program (EREP) output. Use EREP to format and print logrec data set error records. See EREP User's Guide for more information about EREP.

- Register contents when using the JES2 DEBUG facility. See Chapter 4, “Using the JES2 DEBUG facility,” on page 83 for more information about the JES2 DEBUG facility.

- Output from IPCS. See Chapter 5, “Using IPCS for diagnosis,” on page 85 for more information about IPCS.

- If you are experiencing JESXCF address space problems by system abend codes DC5 and EC5, JES2 $HASP501 or MVS IXZ0108E, see z/OS MVS Programming: JES Common Coupling Services for procedures on how to dump the JESXCF address space and all associated address spaces. That document also provides an example of how to end and restart the JESXCF address space.
Chapter 3. Establishing JES2 traces

In JES2, there are various processes that have trace points. When enabled, these points give information about JES2 registers, buffers, control blocks, and other pertinent items. During JES2 initialization, you direct JES2 to trace its activity by using the TRACE(n) and TRACEDEF initialization statements. Another way of establishing traces is by entering the $S_TRACE(n), $P_TRACE(n), and $T_TRACEDEF commands. See z/OS MVS Initialization and Tuning Reference and z/OS JES2 Commands for information about the syntax of initialization and z/OS JES2 Commands for statements and commands related to tracing.

You can access trace data in two ways: in a dump of unformatted trace tables residing in the extended common storage area (ECSA) and in formatted system output. Formatting the trace information for system output is known as “logging”.

Setting up a JES2 trace environment with CTRACE

JES2 provides a component tracing (CTRACE) function, SYSjes2, that is started automatically during initialization. SYSjes2 contains three sublevel traces that run continuously and concurrently; they are a JQE service trace, a JOE service trace, and a JES2 dispatcher service trace. Included in the various service traces for SYSjes2 are traces of calls to the JES2 macros, such as $#BUSY and $QBUSY. See z/OS MVS Diagnosis: Tools and Service Aids for a detailed description of this component trace.

Setting up a JES2 trace environment at initialization

At JES2 initialization, you can establish a trace environment by specifying:

- The amount of storage to use for trace data. On the TRACEDEF statement: the TABLES parameter specifies the number of trace tables; the PAGES parameter specifies the number of 4-kilobyte pages per TRACE table. When a trace table fills, JES2 switches to the next available table to write the trace records. When the last available trace table fills, JES2 switches to the first table and overwrites the entries at the beginning of the table. This process is known as “wrapping”. Ensure that your trace tables spin off for output processing to avoid the data lost caused by wrapping.

- Whether JES2 should automatically start the TRACE facility. On the TRACEDEF statement specify either YES or NO for the ACTIVE parameter.

- Whether JES2 should log trace data in a trace log data set for later printing. On the TRACEDEF statement specify either YES or NO on the START subparameter of the LOG parameter

- The maximum number of lines the trace log data set can contain before being spun off for output processing. On the TRACEDEF statement specify the value of the SIZE subparameter of the LOG parameter.

- The SYSOUT class of the trace log data set. On the TRACEDEF statement specify the CLASS subparameter of the LOG parameter. Consider the security attributes for the trace data sets and how those attributes affect the printing of the trace data sets.

- Which trace identifiers are active. Use the (n) form of the subscript on the TRACE(n) statement to specify individual trace identifiers, the (n-m) form for a range of identifiers, or the (n-*) form for a generic range to specify identifiers n to 255. Also, use the START={YES|NO} parameter on the TRACE(n) statement to start the specified identifier(s).
Setting up a JES2 trace environment using commands

You can use commands to begin tracing. For example, the following series of commands shows how you can start TRACE ID=4. It is a simple trace that is easy to run and will show the sequence of events.

Starting A BSC Trace

```
$TTRACEDEF, TABLES=20, LOG=(CLASS=H, SIZE=64000)
$TTRACEDEF, ACTIVE=Y, LOG=(START=YES)
$TLINEx, TR=Y
$STRACE(4)
```

After starting the trace, you then start the remote. At this point, any I/O activity on the specified line is being traced.

Stopping A BSC Trace

```
$TLINEx, TR=N
$TTRACEDEF, SPIN, ACTIVE=N
$TTRACEDEF, LOG=(START=NO)
```

The job, called $TRCLOG, in the class H output queue, has the trace data.

Note: $TRCLOG is the automatically generated job for trace data on the output queue.

Summary of trace identifiers

JES2 assigns each event eligible for tracing a numeric identifier used to reference the event. Each time an activated trace event occurs (such as processing of a $SAVE macro), JES2 writes information to the trace table. The standard trace table entry consists of the trace identifier, the time-of-day clock value, an 8-character symbol taken from the $TRACE macro, the job number or ASID (if available), and the processor control element (PCE) name and address (if available). The trace information is then produced in a formatted output. In addition, each trace event can record other unique information. For example, each traced $SAVE macro also records the contents of registers 14, 15, 0, and 1 and the EBCDIC name of the routine that issued the $SAVE macro.

Tracing requires at least 3 trace tables of equal size, which must be in ECSA. Specify the number of trace tables on the TABLES parameter of the TRACEDEF initialization statement and the size of each trace table, in units of 4-kilobyte pages, on the PAGES parameter of the TRACEDEF statement. If a TRACEDEF initialization statement or operator command requests logging by specifying LOG=(START=YES), JES2 formats the contents of the filled trace table and writes the formatted entries to spool while writing the new entries to the next table. Formatting routines in the event trace log processor perform any required formatting for each trace identifier.

If a TRACEDEF initialization statement or operator command requests no logging by specifying LOG=(START=NO), JES2 wraps data from the active log to the oldest log.

Table 1 on page 25 identifies the valid event identifiers and their meanings.
<table>
<thead>
<tr>
<th>Trace Identifier</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trace JES2 $SAVE macro calls for the JES2 main task and FSS environments. This identifier traces all JES2 processors. See trace ID 11 and ID 18.</td>
</tr>
<tr>
<td>2</td>
<td>Trace JES2 $RETURN macro calls for the JES2 main task and FSS environments. This identifier traces all JES2 processors. See trace ID 12 and ID 19.</td>
</tr>
<tr>
<td>3</td>
<td>Trace JES2 disastrous errors ($DISTERR macro).</td>
</tr>
<tr>
<td>4</td>
<td>Trace channel-end completions for BSC lines. A line is eligible for tracing if the associated LINE(nnnn) initialization statement specifies TRaceio=YES.</td>
</tr>
<tr>
<td>5</td>
<td>Trace SNA events on VTAM lines and the JES2/VTAM interface. A line or interface (LGNn) is eligible for tracing if the associated LINE(nnnn) initialization statement specifies TRaceio=YES.</td>
</tr>
<tr>
<td>6</td>
<td>Trace each time JES2 is initialized or reinitialized.</td>
</tr>
<tr>
<td>7</td>
<td>Trace each time JES2 ends along with the ending code.</td>
</tr>
<tr>
<td>8,9,10</td>
<td>These identifiers all perform the same function. They are provided so that local debugging may be done by tracing processor flow independently from other trace identifiers. Three identifiers are provided for independent tracing function. Unless JES2 $TRACE macros specifying these identifiers have been placed into JES2 modules, no tracing occurs as a result of enabling these trace identifiers.</td>
</tr>
<tr>
<td>11</td>
<td>Trace JES2 $SAVE macro calls. Only processors having TR=Yes option defined (see the $T PCE command), and device-related processors that have the TR=Yes option defined (see the device initialization statements and $T commands) are eligible for tracing with this identifier. The device-related TRACe setting also applies to tasks running in support of those devices in the FSS environment. In the user environment, tasks running with JES2 SSI function routines for which the SSI(nnn) setting is TRACe=YES are eligible for tracing with this identifier. See trace ID 1 and ID 18.</td>
</tr>
<tr>
<td>12</td>
<td>Trace JES2 $RETURN macro calls are to be traced. In the user environment, tasks running with JES2 SSI function routines for which the SSI(nnn) setting is TRACe=YES are eligible for tracing with this identifier. See trace ID 2 and ID 19.</td>
</tr>
<tr>
<td>13</td>
<td>Trace JES2 exit points. Exits to be traced are determined by the EXIT(nnn) initialization statement and the $T EXIT(nnnn) operator command.</td>
</tr>
<tr>
<td>14</td>
<td>Trace the FSIREqs (GETDS, RELDS, SEND) on behalf of functional subsystems only when the $DCT for the printer allows tracing. Use the $T PRT(nnnn),TR=Yes command to enable the trace.</td>
</tr>
<tr>
<td>15</td>
<td>Trace the FSIREqs (GETREC, FREEREC, CHKPT) on behalf of functional subsystems only when the $DCT for the printer allows tracing. Use the $T PRT(nnnn),TR=Yes command to enable the trace.</td>
</tr>
<tr>
<td>16</td>
<td>Trace the functional subsystem CONNECTs and DISCONNECTs only when the $DCT for the printer allows tracing. Use the $T PRT(nnnn),TR=Yes command to enable the trace.</td>
</tr>
<tr>
<td>17</td>
<td>Trace statistics associated with checkpoint performance. Trace records include values for each phase of the checkpoint cycle.</td>
</tr>
<tr>
<td>18</td>
<td>Trace JES2 $SAVE macro calls for the user environment. This identifier traces all JES2 processors. See trace ID 1 and ID 11.</td>
</tr>
<tr>
<td>19</td>
<td>Trace JES2 $RETURN macro calls for the user environment. This identifier traces all JES2 processors. See trace ID 2 and ID 12.</td>
</tr>
<tr>
<td>20</td>
<td>Trace the $#GET calls.</td>
</tr>
<tr>
<td>21</td>
<td>Trace the interchange between the local node and another node when the 2 nodes are establishing a session. JES2 sends network connect control records (NCC) I, J, K, L, and M during the exchange. See Network Job Entry (NJE) Formats and Protocols for a description of NCC records.</td>
</tr>
<tr>
<td>22</td>
<td>Trace the NCC “M” records JES2 received that add a node into the network. See Network Job Entry (NJE) Formats and Protocols for a description of NCC records.</td>
</tr>
<tr>
<td>23</td>
<td>Trace the NCC “M” “N” records JES2 received that remove a node into the network. See Network Job Entry (NJE) Formats and Protocols for a description of NCC records.</td>
</tr>
<tr>
<td>24</td>
<td>Trace the NCC “M” or “N” records JES2 has rejected that attempted to update the network topography. See Network Job Entry (NJE) Formats and Protocols for a description of NCC records.</td>
</tr>
<tr>
<td>25</td>
<td>Trace information about the functional subsystem (FSS) checkpoint.</td>
</tr>
<tr>
<td>26</td>
<td>Trace the automatic restart manager requests processed by the JES2 main task.</td>
</tr>
<tr>
<td>27</td>
<td>Trace information about PSO external writer processing.</td>
</tr>
<tr>
<td>28</td>
<td>Trace SYSOUT Application Program Interface (SAPI) information between the user address space and the JES2 main task.</td>
</tr>
<tr>
<td>29</td>
<td>Trace SSI information between the user address space and the JES2 main task concerning the SAPI.</td>
</tr>
</tbody>
</table>
Table 1. Trace Identifiers and Their Meanings (continued)

<table>
<thead>
<tr>
<th>Trace Identifier</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Trace identifier 30 traces all $#POST macro calls made by JES2 processing.</td>
</tr>
<tr>
<td>31</td>
<td>Trace identifier 31 traces all $QGET macro calls made by JES2 devices and initiators.</td>
</tr>
<tr>
<td>32</td>
<td>Trace identifier 32 traces all $#REM macro calls made by JES2 processing. It can be used to determine why a JOE was deleted.</td>
</tr>
<tr>
<td>33</td>
<td>Trace identifier 33 traces all NJE Headers, trailers and NMR records received and transmitted by JES2. A header is traced if tracing was requested for the line (TRACEIO=YES on the LINE statement) or for the adjacent node (TRACE=YES on the NODE statement).</td>
</tr>
<tr>
<td>34</td>
<td>Trace identifier 34 traces all data records passed between the JES2 address space and the NETSRV address space. These records are traced if tracing is requested on the line (TRACE=JES=YES on the LINE statement) or NETSRV (TRACE=JES=YES on the NETSRV statement).</td>
</tr>
<tr>
<td>35</td>
<td>Trace identifier 35 traces all control records passed between the JES2 address space and the NETSRV address space. These records are traced if tracing is requested on the line (TRACE=JES=YES on the LINE statement) or NETSRV (TRACE=JES=YES on the NETSRV statement).</td>
</tr>
<tr>
<td>36</td>
<td>Trace identifier 36 traces all data records passed between JES2 code in the NETSRV address space and IAZNJTCP. These records are traced if tracing is requested on the line (TRACE=JES=YES on the LINE statement) or NETSRV (TRACE=JES=YES on the NETSRV statement).</td>
</tr>
<tr>
<td>37</td>
<td>Trace identifier 37 traces all control records passed between JES2 code in the NETSRV address space and IAZNJTCP. These records are traced if tracing is requested on the line (TRACE=JES=YES on the LINE statement) or NETSRV (TRACE=JES=YES on the NETSRV statement).</td>
</tr>
<tr>
<td>38</td>
<td>Trace identifier 38 traces all data records passed between IAZNJTCP and TCP/IP. These records are traced if tracing is requested on the line (TRACE=COMMON=YES on the LINE statement) or NETSRV (TRACE=COMMON=YES on the NETSRV statement).</td>
</tr>
<tr>
<td>39</td>
<td>Trace identifier 39 traces TCP/IP API calls issued by IAZNJTCP. These records are traced if tracing is requested on the line (TRACE=JES=YES on the LINE statement) or NETSRV (TRACE=JES=YES on the NETSRV statement).</td>
</tr>
<tr>
<td>40</td>
<td>Trace identifier 40 traces the results of the WLM initiator balancing computation at the beginning of every checkpoint cycle.</td>
</tr>
<tr>
<td>41</td>
<td>Trace identifier 41 traces the results of the WLM initiator balancing computation at the end of every checkpoint cycle.</td>
</tr>
<tr>
<td>42-255</td>
<td>These trace identifiers are available for both IBM and customer use. To avoid an overlap of identifiers, begin numbering identifiers with 255 and progress downward.</td>
</tr>
</tbody>
</table>

Modifying the JES2 trace environment

The operator can alter the trace environment at any time through the use of the $T TRACEDEF, $S and $P TRACE(n) commands. The $T TRACEDEF command allows the operator to:

- Redefine the amount of storage dedicated to tracing
- Turn tracing on and off
- Cause logging of the traced data
- Stop the logging of traced data
- Cause JES2 to spin the trace log data set immediately
- Change the SYSOUT class for the trace log data set.

Enter the $D TRACEDEF or $D TRACE(n) command to display the status of the trace environment.

Enter the $S and $P TRACE(n) commands to activate and deactivate previously defined trace identifiers. You can specify the ASID, JOBNAME, or JOB_NUMBER and TCB_ADDRESS when filtering the JES2 trace point.
Trace output samples

The following topics include samples of JES2 trace output with an explanation of the output.

Note: JES2 formats its trace output so all output ends on a fullword boundary. Any extra bytes are added to the end of the trace information and contain zeros.

Trace ID=0 sample

Figure 2 is a sample of trace identifier 0. JES2 automatically starts trace identifier 0. It shows the number of trace tables in effect, and total and recent discards. TOTAL DISCARDS is the number of entries JES2 discarded since JES2 was warm-started or cold-started. RECENT DISCARDS is the number of entries JES2 discarded since the last event JES2 traced successfully. Be aware that adding the recent number to the total number does not always add up to the next total because the recent number is kept in the trace table page and the total number is kept in the $HCCT control block.

In addition to the tracing of $SAVE and $RETURN macros for the routines listed in the explanation of the fields at "Trace record contents."

Trace ID=1, ID=2, ID=18, and ID=19 sample

Figure 3 is a sample of trace output for trace identifiers 1, 2, 18, and 19. See an explanation of the fields at "Trace record contents."

In addition to the tracing of $SAVE and $RETURN macros for the routines listed in the figure, JES2 also traces $SAVEs and $RETURNs associated with a functional subsystem.

Trace record contents

Table 2 on page 28 is a sample record, which is broken into fields that are described after the table.

Chapter 3. Establishing JES2 traces
Table 2. Fields on Traces 1, 2, 18, and 19

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time-of-day clock value when JES2 created the trace record.</td>
</tr>
<tr>
<td>2</td>
<td>Trace identifier and function:</td>
</tr>
<tr>
<td></td>
<td>ID = 1 $SAVE issued from the JES2 main task and FSS environments.</td>
</tr>
<tr>
<td></td>
<td>ID = 2 $RETURN issued from the JES2 main task and FSS environments.</td>
</tr>
<tr>
<td></td>
<td>ID = 18 $SAVE issued from the user environment</td>
</tr>
<tr>
<td></td>
<td>ID = 19 $RETURN issued from the user environment.</td>
</tr>
<tr>
<td>3</td>
<td>Address space identifier (ASID) or job identifier associated with the program issuing the $TRACE macro, if available.</td>
</tr>
<tr>
<td>4</td>
<td>$PCE name associated with the $TRACE macro, if available.</td>
</tr>
<tr>
<td>5</td>
<td>$PCE address (JES2 main task) or TCB address (outside JES2 main task).</td>
</tr>
<tr>
<td>6</td>
<td>1- to 8-character name of the routine that issued the $SAVE or $RETURN macro.</td>
</tr>
<tr>
<td>7</td>
<td>Registers 14, 15, 0, and 1.</td>
</tr>
</tbody>
</table>

Table 3. Fields on Trace 3

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time-of-day clock value when JES2 created the trace record.</td>
</tr>
</tbody>
</table>

Trace ID=3 sample

Figure 4 is a sample of trace output for trace identifier 3. JES2 creates these records when processing a $DISTERR macro or when processing a error detected by $CBIO in the user environment. The record traces I/O errors or incorrect control blocks and contains the buffer at the time of error.

Figure 4. Sample Output From Trace Identifier 3

Trace record contents

Table 3 is the sample record broken into fields which are described after the table.
2 and 3 Identifier and function.
4 Job identifier associated with program issuing the $TRACE macro, if available.
5 $PCE name associated with the $TRACE macro, if available.
6 $PCE address.
7 - end Label and module from which JES2 issued the $DISTERR macro.

- Record 2:
 JQE/JCT Address (or zero) 03CE0464 MTTR (or zero) 00008D02

 provides the address in memory of the JQE or JCT of the job for which processing was being done at the time of the $DISTERR. The record also includes the MTTR that provides the spool extent (M), track (TT) and record (R) of the record associated with the $DISTERR.

- Record 3:
 The third record contains the contents of the first 256 bytes of the buffer, if available.

Trace ID=4 sample

Figure 5 is a sample of trace output for trace identifier 4, a bisynchronous communication (BSC) buffer trace. This trace can help you diagnose BSC problems. When active, this trace records both inbound and outbound buffers for network job entry (NJE) and remote job entry (RJE) lines.

The input to this trace is the input/output buffer (IOB) which contains the channel program running on the line being traced. See Principles of Operation for more information about channel command words (CCW) and channel status words (CSW).

This description does not discuss the trace header record because the format of the header is the same as the format for trace identifier 3. See "Trace ID=3 sample" on page 28 for the description the header of trace identifier 3. The trace header record is the record where ID=4 appears.

Trace record contents

Table 4 on page 30 is the sample record broken into fields which are described after the table.

Note: The text within the asterisks (*) at the end of each record is not described because that text is a translation of the EBCDIC codes in the first part of the record.
Table 4. Fields on Trace 4

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B7290</td>
<td>C2E4C640</td>
<td>00000000</td>
<td>00000000</td>
<td>E1000000</td>
<td>02716B50</td>
<td>00000000</td>
<td>42000000</td>
<td>7FBD48A0</td>
</tr>
<tr>
<td>B72B0</td>
<td>000B72F8</td>
<td>0C000206</td>
<td>000B72D8</td>
<td>009F4CC4</td>
<td>000B72D8</td>
<td>00000000</td>
<td>00000000</td>
<td>C5000001</td>
</tr>
<tr>
<td>B72D0</td>
<td>0700323D</td>
<td>00000000</td>
<td>140B72D0</td>
<td>60C20001</td>
<td>01048BF4</td>
<td>60CA0002</td>
<td>27000000</td>
<td>60C70001</td>
</tr>
</tbody>
</table>

Field	Contents
1 | The address of the I/O buffer or data this record traces. You will see trace entries with the same addresses as JES2 reuses IOBs.
2 - 7 | Trace buffer prefix.
8 - first 2 characters | I/O completion flags from the IOB. Successful completion = X'42'. Error = X'46'.
8 - last 4 characters | First 2 sense bytes of the I/O operation. See sense information for individual devices.
9 | Event control block (ECB) completion codes and the JES2 pointer to the ECB. Common completion codes are:
 X'41' | I/O error. Check the sense information.
 X'44' | IOB intercept. CSW is not valid.
 X'48' | I/O was purged.
 X'7F' | Normal completion.
 X'FF' | Requeued BSC buffer. This value only occurs on a JES2 system.

row 2, field 2 - last 6 characters
This is the beginning CSW without its first byte. This information is 7 bytes long. The first 3 bytes is an address that points 8 bytes past the last CCW completed. The count field in this CSW is the residual data count of the CCW just completed. The actual number of bytes read or written is the difference between this value and the CCW byte count in the CCW just completed.

row 2, field 4 - first 2 characters
The start I/O (SIO) condition code.

row 2, field 4 - next 4 characters
Address of the start of the channel program.

Row 3, field 4
Channel programs.

The output contains CCW entries preceded by the characters CCW. Data associated with a particular CCW immediately follows the CCW. See [z/OS MVS System Messages, Vol 5 (EDG-GFS)] for a complete list of completion codes and information about networking I/O.

See the description of message $HASP094 in [z/OS JES2 Messages](https://www.ibm.com) for additional information about some of the previous fields.

Trace ID=5 sample

Trace identifier 5 logs VTAM Request Parameter Lists (RPLs) sent over SNA lines. It can be used to diagnose SNA protocol problems and problems related to the data being sent. In addition to the VTAM RPL, this trace contains sessions status information and buffer control data. Trace identifier 5 records both inbound and outbound RPLs for network job entry (NJE) and remote job entry (RJE) sessions. A trace record is created whenever an RPL is completed (either by VTAM or JES2.
Figure 6 shows a sample of two trace identifier 5 records.

Table 5. Sections in a Trace Identifier 5

<table>
<thead>
<tr>
<th>Section name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header line</td>
<td>This contains information about the session and device associated with the RPL.</td>
</tr>
<tr>
<td>ICE values</td>
<td>The status information extracted from the ICE control block before processing the information received in the RPL. See the ICE control block for the meanings of the status bytes.</td>
</tr>
<tr>
<td>Buffer prefix</td>
<td>Control information for the JES2 buffer which contains the RPL. See the $BUFFER$ control block for an explanation of these fields.</td>
</tr>
<tr>
<td>RPL</td>
<td>The RPL associated with the request. This includes information passed to VTAM and a JES2 extension to the RPL. See the RPL control block description in VTAM Programming for an explanation of the RPL fields. The JES2 extensions to the RPL for SNA processing are defined in the $MODULE$ macro.</td>
</tr>
</tbody>
</table>
Table 5. Sections in a Trace Identifier 5 (continued)

<table>
<thead>
<tr>
<th>Section name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>The data that was sent or received by the RPL, if any. The meaning of this data is dependent on the RPL request type, the current state of the session and the type of session (NJE or RJE). If the RPL is not a SEND or RECEIVE DATA request, see VTAM Programming for the format of the data for the specific request type. If this is a SEND or RECEIVE DATA, and the RPL contains an FM header, then see System Network Architecture Formats to determine the format of the FM header. If the RPL is a SEND or RECEIVE DATA request and is not an FM header, then the format depends on the session type (NJE or RJE). For further information regarding NJE sessions, see NJE Formats and Protocols.</td>
</tr>
</tbody>
</table>

The fields that appear on the header line for trace identifier 5 are illustrated in Table 6.

Table 6. Header Line for Trace Identifier 5

<table>
<thead>
<tr>
<th>Time</th>
<th>Trace id</th>
<th>Trace name</th>
<th>PCE name</th>
<th>PCE addr</th>
<th>Buffer source</th>
<th>Device name</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.09.30.97</td>
<td>ID = 5</td>
<td>SNA-BUFR</td>
<td>MLLM</td>
<td>02F1E500</td>
<td>LU3774 ICESYMB</td>
<td>FOR R10.CON</td>
</tr>
</tbody>
</table>

In addition to the standard information provided in a JES2 trace header, trace identifier 5 also contains:

Buffer source

This indicates where the buffer came from. It contains either:

- session ICESYMB
 - ‘session’ is the SNA application identifier associated with the RPL. It is the application that the local JES2 is connected to.

- REQUEUED BUFFER
 - Indicates that this is not the first trace entry for this buffer. When the buffer was originally queued to JES2, it could not be processed and was requeued for later processing.

- SNA BUFFER TRACE
 - Indicates that JES2 could not associate a specific session with this buffer.

Device name

The device currently associated with this session. Depending on the state of the session, this can be either:

- a specific device (for example, R10.CON) when the device is active
- the line (for example, LINE10) when there are no active devices
- the logon (for example, LOGON1) when the session is in the process of logging on or off.

The sub header of the RPL contains additional information extracted from the RPL. This information is formatted to simplify interpreting the trace record. For a detailed explanation of these fields, see VTAM Programming. Table 7 describes the fields extracted from the RPL.

Table 7. Description of Keywords That May Appear on the RPL Header Line

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Source RPL Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE=t</td>
<td>RPLREQ</td>
<td>RPL request type</td>
</tr>
</tbody>
</table>
Table 7. Description of Keywords That May Appear on the RPL Header Line (continued)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Source RPL Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESPONSE</td>
<td>RPLSRTYP</td>
<td>For a RECEIVE, SEND, or SESSIONC request, when 'RESPONSE' is displayed, this RPL is a response.</td>
</tr>
<tr>
<td>SEQ=s</td>
<td>RPLSEQNO</td>
<td>For a RECEIVE, SEND, or SESSIONC request, the sequence number associated with the RPL.</td>
</tr>
<tr>
<td>RSP-TYPE=r</td>
<td>RPLVTFL2</td>
<td>If this is not a response ('RESPONSE' is not displayed), then it indicates the type of response the sender expects to receive. If this is a response ('RESPONSE' is displayed), it indicates the type of response sent by the receiver. RESP-TYPE is a combination of the following VTAM response types: EX: Exception or negative response, DR1: Definite response 1 (formerly known in SNA as an FME response), DR2: Definite response 2 (formerly known in SNA as an RRN response)</td>
</tr>
<tr>
<td>DEVCHAR</td>
<td>RPLOPT9</td>
<td>For an INQUIRE request, indicates device characteristics are to be retrieved.</td>
</tr>
<tr>
<td>SESSPARM</td>
<td>RPLOPT10</td>
<td>For an INQUIRE request, indicates session parameters are to be retrieved.</td>
</tr>
<tr>
<td>CONTROL=c</td>
<td>RPLCNTRL</td>
<td>Indicates the type of information being sent or received in this RPL.</td>
</tr>
<tr>
<td>FM-HEADER</td>
<td>RPLOPT12</td>
<td>For SEND and RECEIVE requests with CONTROL=DATA, indicates that the data contains an FM header. FM headers used by JES2 are mapped by $FMH.</td>
</tr>
<tr>
<td>x IN CHAIN</td>
<td>RPLCHN</td>
<td>For requests that can be chained, this indicates which segment in the chain (FIRST, MIDDLE, LAST, or ONLY) is contained in this RPL.</td>
</tr>
<tr>
<td>BRACKET=b</td>
<td>RPLRH3</td>
<td>Indicates whether this RPL is to begin or end a bracket. BB: indicates this RPL begins a bracket, EB: indicates this RPL ends a bracket, BB+EB: indicates this RPL both begins and ends a bracket.</td>
</tr>
<tr>
<td>RPLRTNCD=</td>
<td>RPLRTNCD</td>
<td>Displays the return code associated with this RPL.</td>
</tr>
<tr>
<td>RPLFDB2=</td>
<td>RPLFDB2</td>
<td>Displays additional return code information.</td>
</tr>
<tr>
<td>RPLFDBK2=</td>
<td>RPLFDBK2</td>
<td>Displays the sense data associated with this RPL.</td>
</tr>
</tbody>
</table>

Trace ID=6 and ID=7 sample

Figure 7 is a sample of output from trace identifiers 6 and 7. JES2 writes the trace 6 record at the beginning of JES2 initialization and the trace 7 record when JES2 is ending.

<table>
<thead>
<tr>
<th>Time</th>
<th>ID</th>
<th>Action</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.59.22.25</td>
<td>6</td>
<td>JES2UP</td>
<td>INIT 00A2F40 JES2 INITIALIZATION, OPTIONS= COLD,NOREQ</td>
</tr>
<tr>
<td>20.08.24.69</td>
<td>7</td>
<td>JES2DOWN</td>
<td>COMM 0260A840 JES2 TERMINATION, CODE = $PJ2</td>
</tr>
<tr>
<td>20.09.38.80</td>
<td>6</td>
<td>JES2UP</td>
<td>INIT 00A2F40 JES2 INITIALIZATION, OPTIONS= WARM,NOREQ</td>
</tr>
</tbody>
</table>

Figure 7. Sample Output from Trace Identifiers 6 and 7

Table record contents

Table 8 on page 34 is the sample record broken into fields which are described after the table.
Table 8. Fields on Traces 6 and 7

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.59.22.25</td>
<td>ID = 6</td>
<td>JES2UP</td>
<td>INIT</td>
<td>000A2F40</td>
<td>JES2 INITIALIZATION,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OPTIONS=COLD,NOREQ</td>
</tr>
</tbody>
</table>

Field Contents
1 Time-of-day clock value when JES2 created the trace record.
2 Trace identifier.
3 The internal label associated with the trace record.
4 $PCE name associated with the $TRACE macro.
5 $PCE address.
6 A description of the processing associated with this record.

Trace ID=8, ID=9 and ID=10 sample

JES2 provides three independent trace identifiers that you can use to create trace points in installation exits. If you specify these identifiers in $TRACE macros, JES2 writes records tracing data. You can specify variable data to be generated by using the DATA= and LEN= keyword on the $TRACE macro. Figure 8 is a sample of output from trace identifiers 8, 9, and 10. In this example, the DATA= keyword has been specified on a $TRACE macro for trace ID 9 to log the contents of a portion of storage.

```
14.40.04.52 ID = 8 SYMBOL COMM 0316F008 BEGIN HAS BEEN REACHED
14.40.04.52 ID = 9 SYMBOL COMM 0316F008 LOOP HAS BEEN REACHED
   0 00000000 0000050F BF000000 *
14.40.04.52 ID = 9 SYMBOL COMM 0316F008 LOOP HAS BEEN REACHED
   0 00000000 0000050F BF000000 *
14.40.04.52 ID = 9 SYMBOL COMM 0316F008 LOOP HAS BEEN REACHED
   0 00000000 0000050F BF000000 *
14.40.04.52 ID = 9 SYMBOL COMM 0316F008 LOOP HAS BEEN REACHED
   0 00000000 0000050F BF000000 *
14.40.04.52 ID = 9 SYMBOL COMM 0316F008 LOOP HAS BEEN REACHED
   0 00000000 0000050F BF000000 *
```

Figure 8. Sample Output from Trace Identifiers 8, 9 and 10

Trace record contents
Table 9 is the sample record broken into fields which are described after the table.

Table 9. Fields on Traces 8, 9, and 10

<table>
<thead>
<tr>
<th>Record 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>14.40.04.52</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

- Record 1:

Field Contents
1 Time-of-day clock value when JES2 created the trace record.
2 Trace identifier.
3 The internal label associated with the trace record.
4 $PCE name associated with the $TRACE macro.
5 $PCE address.
6 An acknowledgment that the trace point has been reached.

• Record 2:
The storage to be traced.

Trace ID=11 and ID=12 sample

Figure 9 is a sample of output from trace identifiers 11 and 12. These records trace the $SAVE macro for processors that have the TR=Yes option specified, and for the $RETURN macro. “Trace ID=1, ID=2, ID=18, and ID=19 sample” on page 27 describes the contents of the records.

Trace ID=13 sample

JES2 writes trace identifier 13 before and after passing control to exits with tracing enabled. Figure 10 is a sample of output from trace identifier 13.

Trace record contents

Table 10 on page 36 is the sample record broken into fields which are described after the table.
Table 10. Fields for Trace 13

<table>
<thead>
<tr>
<th>RECORD 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.36.42.44</td>
<td>ID = 13</td>
<td>$EXIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 2</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td># 6:</td>
<td>ENVRON= SUBTASK</td>
<td>LABEL= XCSTCUEF</td>
<td>PRE INVOCATION</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 3</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R0-R7 =</td>
<td>00000000</td>
<td>001344E0</td>
<td>83D33A4A</td>
<td>03A97810</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 4</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R8-R15 =</td>
<td>001340D0</td>
<td>00000000</td>
<td>03C49000</td>
<td>00006000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 5</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00360480</td>
<td>6E0107D7</td>
<td>C1D9D4D3</td>
<td>C9C24A01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 6</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>E2D62DC5</td>
<td>E8F0F046</td>
<td>0103E2C8</td>
<td>D9270105</td>
</tr>
</tbody>
</table>

- Record 1:
 - **Field**
 - **Contents**
 - 1 Time-of-day clock value when JES2 created the trace record.
 - 2 and 3 Identifier and function.
 - 4 Address space identifier (ASID) or job identifier associated with the program issuing the $TRACE macro, if available.
 - 5 $PCE name associated with the $TRACE macro, if available.
 - 6 $PCE address (JES2 main task) or TCB address (outside JES2 main task).

- Record 2:
 - **Field**
 - **Contents**
 - 1 Exit identifier.
 - 2 Environment in which the exit resides.
 - 3 Internal label associated with the exit.
 - 4 Indicates whether this trace occurred before control passed to the exit or when the exit returned control. This field contains either PRE_INVOCATION or POST_INVOCATION.

- Record 3 contains the contents of registers 0 through 7 at the time of the trace.
- Record 4 contains the contents of registers 8 through 15 at the time of the trace.
- Records 5 and 6 contain converter text information if the trace entries are for exit 6. Otherwise, records 5 and 6 contain the contents of the $XPL, if the contents of the $XPL are available.

Trace ID=14 and ID=15 sample

JES2 creates trace identifiers 14 and 15 to trace GETDS, RELDS, ORDER, ORDER RESPONSE, SEND, CHKP, GETREC, and FREEREC functional subsystem interface (FSI) requests. Figure 11 on page 37 is a sample of the output from traces 14 and 15. The record format is similar for these two traces.

The number of records for trace identifier 14 varies depending on the FSI request. Trace identifier 15 is three records long. All records after the first record contain trace information from the FSI including flags and other data.
These traces are only enabled for printers which have tracing turned on by the $T PRT(nnnn),TR=Yes command.

Figure 11. Sample Output from Trace Identifiers 14 and 15

Trace record contents

Table 11 is the sample record broken into fields which are described after the table.

Table 11. Fields for Traces 14 and 15

<table>
<thead>
<tr>
<th>RECORD 1</th>
<th>RECORD 2</th>
<th>RECORD 3</th>
<th>RECORD 4</th>
<th>RECORD 5</th>
<th>RECORD 6</th>
<th>RECORD 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.16.04.97 ID = 14 FSILINK1 J0B00026 PRT111</td>
</tr>
</tbody>
</table>

Chapter 3. Establishing JES2 traces
Trace identifier 14 consists of a differing number of records depending on the FSI request. Table 12 on page 39 shows the number of records for each FSI function traced.

Trace identifier 15, which is written for a GETREC and FREEREC request, is only three records long. The following describes the contents of all the records although some records may not appear for some of the requests.

- **Record 1:**

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time-of-day clock value when the $TRACE was processed.</td>
</tr>
<tr>
<td>2</td>
<td>Trace identifier.</td>
</tr>
<tr>
<td>3</td>
<td>FSI function name. This is FSILINK1 for trace 14 and FSILINK2 for trace 15.</td>
</tr>
<tr>
<td>4</td>
<td>ASID or job identifier associated with the functional subsystem.</td>
</tr>
<tr>
<td>5</td>
<td>Device name associated with the functional subsystem.</td>
</tr>
<tr>
<td>6</td>
<td>TCB address.</td>
</tr>
<tr>
<td>7</td>
<td>Internal label associated with this trace entry.</td>
</tr>
<tr>
<td>8</td>
<td>Contents of registers 14, 15, 0, and 1.</td>
</tr>
</tbody>
</table>

- **Records 2, 3, and 4:**

 Note: These records contain only the GETDS FSI parameter list when the trace occurs before the FSI allocates a data set.

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 3</td>
<td>Device control table (DCT) eyecatcher.</td>
</tr>
<tr>
<td>4 - 7</td>
<td>DCT flags DCTSTAT, DCTFLAGS, DCTFLAG2, and DCTFSSL.</td>
</tr>
<tr>
<td>8 - 10</td>
<td>FSS eyecatcher.</td>
</tr>
<tr>
<td>11 - 14</td>
<td>FSSCB flags FSSTYPE, FSSFLAG1, FSSFLAG2, and FSSFLAG3.</td>
</tr>
<tr>
<td>15 - 17</td>
<td>FSA eyecatcher.</td>
</tr>
<tr>
<td>18 - 25</td>
<td>FSACB flags FSAFLAG1, FSAFLAG2, FSAFLAG3, FSAFLAG4, FSAFLAG5, FSAFLAG1, and FSAFLAG2, and FSAFLAG3.</td>
</tr>
<tr>
<td>26 - 94</td>
<td>The remainder of the FSACB, which is X’42’ bytes long. Bytes 15 to 94 is the entire FSACB.</td>
</tr>
</tbody>
</table>

- **Records 5 and 6:**

 These records can contain either the FSI parameter list (FSIP) or FSWFLAGS. The eyecatcher is FSIP for the FSI parameter list or FSWFLAG for the FSWFLAGS.

 If the information is an FSIP, the data is:
Bytes Contents
1 - 4 FSIP eyecatcher.
8 The hexadecimal length of the FSI parameter list.
Remainder The remainder of the record is the FSI parameter list. The number of bytes depends on the value in byte 8.

If the information is an FSWFLAG, the data is:

Bytes Contents
1 - 8 FSWFLAG eyecatcher.
9 - 10 The FSWFLAG.
11 Not in use.
12 FSWORDID.

Bytes Contents
13 - 16 RETC eyecatcher.
17 - 20 The return code of the requested FSS function.
21 - 24 FSWK eyecatcher.
25 - 84 The functional subsystem work area, which contains the response to an order.
85 - 92 RETN JIB eyecatcher.
93 - 96 The address of the job information block (JIB) the FSS is returning.

For GETDS, RELDS, and SEND FSI requests after the FSS has allocated a data set, the trace contains the following information:

- Records 7, 8, and 9:

Bytes Contents
13 - 20 The FSACB flags, FSAFLAG1, FSAFLAG2, FSAFLAG3, FSAFLAG4, FSAFLAG5.
21 - 24 The JIB flags, JIBFLG1, JIBFLG2, JIBFLG3, and JIBFLG4.
25 - 26 The JIB job number, in hexadecimal.
27 - 34 The JIB job identifier. This is either JOB, STC, or TSU and the EBCDIC equivalent of the decimal job number.
35 - 38 The graphic control block (GCB) flags.
39 - 70 The GCB data set identifier. This information is the procedure name, stepname, ddname and data set priority.

Note: The number of records depends on whether records 5 and 6 contain the FSI parameter list or an FSWFLAG. If the output contains the parameter list, it may spill into record 7 causing the output to go to eight or nine records.

Table 12. FSS Orders By Trace Size

<table>
<thead>
<tr>
<th>Order Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSPORDER</td>
<td>Orders to an FSA. The FSA may be either active or inactive.</td>
</tr>
<tr>
<td>FSISEND</td>
<td>Communication between JES2 and the FSA or FSS.</td>
</tr>
<tr>
<td>FSICHKPT</td>
<td>Request to FSI to checkpoint the data set.</td>
</tr>
<tr>
<td>RSPRELDS</td>
<td>Response to a RELDS order.</td>
</tr>
<tr>
<td>FRSPORDR</td>
<td>Response to an FSPORDER when the FSA is not active.</td>
</tr>
</tbody>
</table>
Table 12. FSS Orders By Trace Size (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSPSTFSA</td>
<td>Response to a start FSA order when the FSA is not active.</td>
</tr>
<tr>
<td>FSMGETDS</td>
<td>Order to get a data set before the actual allocation.</td>
</tr>
<tr>
<td>FSMRELDS</td>
<td>Order to release a data set after the actual allocation.</td>
</tr>
<tr>
<td>FSMSEND</td>
<td>Send an order to an FSA before allocating a data set.</td>
</tr>
</tbody>
</table>

8 or 9 Record Output

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORDSTFSA</td>
<td>Order to start an FSA.</td>
</tr>
<tr>
<td>FSMGDSRT</td>
<td>Response to get data set order after data set allocation.</td>
</tr>
<tr>
<td>FSMRDSRT</td>
<td>Response to release data set order after data set allocation.</td>
</tr>
<tr>
<td>FSMSNDRT</td>
<td>Response to order sent to FSA after allocating a data set.</td>
</tr>
</tbody>
</table>

Trace ID=16 sample

JES2 creates trace identifier 16 every time it issues a connect or disconnect order to a functional subsystem. Figure 12 is a sample of the output from a trace identifier 16.

This trace is only enabled for printers that have tracing turned on by the $TPRT(nnnn),TR=Yes command.

<table>
<thead>
<tr>
<th>23.37.19.90</th>
<th>ID = 16</th>
<th>FSICONCT</th>
<th>ASID 0015</th>
<th>FSMCONCT</th>
<th>R14-R1 = 80BBB3F4</th>
<th>809E0808</th>
<th>008CF8E0</th>
<th>009F1E38</th>
</tr>
</thead>
<tbody>
<tr>
<td>9F1DF8</td>
<td>000000040</td>
<td>0000000FE</td>
<td>000100000</td>
<td>000000000</td>
<td>000000000000000000000080</td>
<td>009F1E38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9F1E18</td>
<td>009F1B90</td>
<td>000000020</td>
<td>000C074</td>
<td>D1C5E2F2</td>
<td>00000000000000000000000000000080</td>
<td>009F1E38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 12. Sample Output from Trace Identifier 16

Trace record contents

Table 13 is the sample record broken into fields which are described after the table.

<table>
<thead>
<tr>
<th>RECORD 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>23.37.19.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>9F1DF8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>9F1E18</td>
</tr>
</tbody>
</table>

• Record 1:

 Field **Contents**
 1 Time-of-day clock value when the $TRACE was executed.
 2 Trace identifier
 3 Functional subsystem interface function name.
 4 Address space identifier associated with the functional subsystem.
 5 Device name associated with the functional subsystem. This column is blank for this record. The column is separated from the previous column by two spaces and is eight characters long.
 6 Internal label associated with this trace entry.
 7 Contents of registers 14, 15, 0, and 1.

• Records 2 and 3:
Contain the trace FSI parameter, flags and miscellaneous data areas.

Trace ID=17 sample

Trace identifier 17 (CKPTPERF) provides information about checkpoint performance. The formatted output records appear in groups of at most five records unless the installation added checkpoint table entries (CTENT) to the checkpoint. The first field in the first record of each group contains one of the following values, and determines the meaning of the contents of the rest of the fields:

- **READ 1** This 1-record group describes information about the first read for this checkpoint cycle.
- **READ 2** This record group describes information about the second read for this checkpoint cycle.
- **PRIMARY** This record group describes information about the primary write for this checkpoint cycle.
- **INTERMED** This record group describes information about the intermediate write for this checkpoint cycle.
- **FINAL** This record group describes information about the final write for this checkpoint cycle.

Figure 13 is a sample of output from trace identifier 17.

![Sample Output from Trace Identifier 17](image)

Trace record contents

Table 14 is the sample record broken into fields which are described after the table.

<table>
<thead>
<tr>
<th>RECORD 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>12.10.17.99</td>
</tr>
</tbody>
</table>

| RECORD 2 - 5 |
Table 14. Fields for Trace 17 (continued)

<table>
<thead>
<tr>
<th>RECORD 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Field</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Time-of-day clock value when the $TRACE was processed.</td>
<td>READ2</td>
<td>00000000</td>
<td>00000004</td>
<td>00000014</td>
<td>000000BC</td>
<td>00000002</td>
<td>000000A4</td>
</tr>
<tr>
<td>Trace identifier.</td>
<td>00009FC</td>
<td>000097E1</td>
<td>00000009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function name.</td>
<td>00008040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eight blanks.</td>
<td>00000000</td>
<td>00000003</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000002</td>
<td>00000000</td>
</tr>
<tr>
<td>$PCE name associated with this trace.</td>
<td>00000000</td>
<td>00000001</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000004</td>
<td>00000000</td>
</tr>
</tbody>
</table>

- Record 1:

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time-of-day clock value when the $TRACE was processed.</td>
</tr>
<tr>
<td>2</td>
<td>Trace identifier.</td>
</tr>
<tr>
<td>3</td>
<td>Function name.</td>
</tr>
<tr>
<td>4</td>
<td>Eight blanks.</td>
</tr>
<tr>
<td>5</td>
<td>$PCE name associated with this trace.</td>
</tr>
<tr>
<td>6</td>
<td>$PCE address.</td>
</tr>
<tr>
<td>7</td>
<td>Eight blanks.</td>
</tr>
<tr>
<td>8</td>
<td>Eight blanks.</td>
</tr>
</tbody>
</table>

- Records 2 through 5, depending on the checkpoint cycle:

Table 15. Description of Trace Identifier 17 READ1 Record 1 by Checkpoint Cycle

<table>
<thead>
<tr>
<th>Cycle Name</th>
<th>Record</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ1</td>
<td>1</td>
<td>1</td>
<td>Contains the characters “READ1”.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Contains the time (in tenths of milliseconds) that passed from the $EXCP macro that began the READ1 I/O until the I/O completed and the checkpoint $PCE got dispatched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Contains the number of used pages in the change log.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Contains the current value of MINHOLD.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Contains the current value of MINDORM.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Contains the current value of MAXDORM.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Contains the number of change log records read in READ1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Contains the name of the data set that contained the current copy of the queues when READ1 was performed. This field contains either “CKPT1” or “CKPT2”.</td>
</tr>
</tbody>
</table>
Table 16. Description of Trace Identifier 17 READ2 Record 1 by Checkpoint Cycle

<table>
<thead>
<tr>
<th>Cycle Name</th>
<th>Record</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ2</td>
<td>1</td>
<td>1</td>
<td>Contains the characters “READ2”.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Contains the time (in tenths of milliseconds) that passed from the $EXCP that began the READ2 I/O until the I/O completed and the checkpoint $PCE got dispatched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Contains the total number of pages in the change log.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Contains the number of control blocks in the change log.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Contains the number of $PCEs defined to this member.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Contains the number of $PCEs waiting for access to the checkpoint.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Contains the maximum length of time (in tenths of milliseconds) that a $PCE was waiting for access to the checkpoint.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Contains the average length of time (in tenths of milliseconds) that the $PCEs were waiting for access to the checkpoint.</td>
</tr>
</tbody>
</table>

Table 17. Description of Trace Identifier 17 READ2 Record 2 by Checkpoint Cycle

<table>
<thead>
<tr>
<th>Cycle Name</th>
<th>Record</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ2</td>
<td>2</td>
<td>1</td>
<td>Contains the number of used bytes in the change log.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Contains the length of time (in tenths of milliseconds) that this member did not hold the checkpoint.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Contains the number of pages which would have been read if the complex had been in duplex mode. This field may be low if the change log overflows. The field is meaningless if the complex is in duplex mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Contains the name of the data set READ2 was performed against. This field will contain either “CKPT1” or “CKPT2”.</td>
</tr>
</tbody>
</table>

Table 18. Description of Trace Identifier 17 READ2 Record 3 by Checkpoint Cycle

<table>
<thead>
<tr>
<th>Cycle Name</th>
<th>Record</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ2</td>
<td>3</td>
<td>1</td>
<td>Contains the total length of PCE wait time (in microseconds).</td>
</tr>
</tbody>
</table>
Table 19. Description of Trace Identifier 17 READ2 Record 4 by Checkpoint Cycle

<table>
<thead>
<tr>
<th>Cycle Name</th>
<th>Record</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ2</td>
<td>4</td>
<td>1</td>
<td>Contains the number of pages read for the first CTENT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Contains the number of control blocks in the change log for the first CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Contains the number of pages read for the second CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Contains the number of control blocks in the change log for the second CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Contains the number of pages read for the third CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Contains the number of control blocks in the change log for the third CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Contains the number of pages read for the fourth CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Contains the number of control blocks in the change log for the fourth CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 - end</td>
<td>These records have the same format as record 4, but for the fifth through last CTENTs.</td>
</tr>
</tbody>
</table>

Table 20. Description of Trace Identifier 17 PRIMARY WRITE Record 1 by Checkpoint Cycle

<table>
<thead>
<tr>
<th>Cycle Name</th>
<th>Record</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMARY WRITE</td>
<td>1</td>
<td>1</td>
<td>Contains the characters “PRIMARY”.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Contains the time (in tenths of milliseconds) that passed from the $EXCP which started the primary write I/O until the I/O completed and the checkpoint $PCE was dispatched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Contains the number of used pages in the change log.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Contains the number of control blocks in the change log.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Contains the number of $PCEs defined to this member.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Contains the number of $PCEs that are waiting for the checkpoint write to complete.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Contains the maximum length of time (in tenths of milliseconds) that a $PCE was waiting for the checkpoint write to complete.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Contains the average length of time (in tenths of milliseconds) that the $PCEs were waiting for the checkpoint write to complete.</td>
</tr>
</tbody>
</table>

Table 21. Description of Trace Identifier 17 PRIMARY WRITE Record 2 by Checkpoint Cycle

<table>
<thead>
<tr>
<th>Cycle Name</th>
<th>Record</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMARY WRITE</td>
<td>2</td>
<td>1</td>
<td>Contains the number of used bytes in the change log.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Contains the characters “PRIO AGE” if priority aging contributed to this write.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Contains the number of times the checkpoint $PCE put itself at the bottom of the ready queue before performing this write.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Contains the number of pages that would have been written if the complex had been in duplex mode. This field may be low if the change log overflows. This field is meaningless if the complex is in duplex mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Contains the level number of the data set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Contains the name of the data set the primary write was performed against. This field will contain either “CKPT1” or “CKPT2”.</td>
</tr>
</tbody>
</table>
Table 22. Description of Trace Identifier 17 PRIMARY WRITE Record 3 by Checkpoint Cycle

<table>
<thead>
<tr>
<th>Cycle Name</th>
<th>Record</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMARY WRITE</td>
<td>3</td>
<td>1</td>
<td>Contains the number of $CKPTs issued during the checkpoint cycle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Contains the length of MVS wait time (in microseconds) during this checkpoint cycle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Contains the length of $QSUSE time (in microseconds) during this checkpoint cycle.</td>
</tr>
</tbody>
</table>

Table 23. Description of Trace Identifier 17 PRIMARY WRITE Record 4 by Checkpoint Cycle

<table>
<thead>
<tr>
<th>Cycle Name</th>
<th>Record</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMARY WRITE 4</td>
<td>4</td>
<td>1</td>
<td>Contains the number of pages written for the first CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Contains the number of control blocks in the change log for the first CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Contains the number of pages written for the second CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Contains the number of control blocks in the change log for the second CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Contains the number of pages written for the third CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Contains the number of control blocks in the change log for the third CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Contains the number of pages written for the fourth CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Contains the number of control blocks in the change log for the fourth CTENT.</td>
</tr>
<tr>
<td>5 - end</td>
<td></td>
<td></td>
<td>These records have the same format as Record 4, but for the fifth through last CTENTs.</td>
</tr>
</tbody>
</table>

Table 24. Description of Trace Identifier 17 INTERMEDIATE WRITE Record 1 by Checkpoint Cycle

<table>
<thead>
<tr>
<th>Cycle Name</th>
<th>Record</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERMEDIATE WRITE</td>
<td>1</td>
<td>1</td>
<td>Contains the characters “INTERMED”.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Contains the time (in tenths of milliseconds) that passed from the $SEXCP macro that started the intermediate write I/O until the I/O completed and the checkpoint $PCE got dispatched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Contains the number of used pages in the change log.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Contains the number of control blocks in the change log.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Contains the number of $PCEs defined to this member.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Contains the number of $PCEs that are waiting for the checkpoint write to complete.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Contains the maximum length of time (in tenths of milliseconds) that a $PCE was waiting for the checkpoint write to complete.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Contains the average length of time (in tenths of milliseconds) that the $PCEs were waiting for the checkpoint write to complete.</td>
</tr>
</tbody>
</table>
Table 25. Description of Trace Identifier 17 INTERMEDIATE WRITE Record 2 by Checkpoint Cycle

<table>
<thead>
<tr>
<th>Cycle Name</th>
<th>Record</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERMEDIATE WRITE</td>
<td>2</td>
<td>1</td>
<td>Contains the number of used bytes in the change log.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Contains the characters “PRIO AGE” if priority aging contributed to this write.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Contains the number of times the checkpoint PCE put itself at the bottom of the ready queue before performing this write.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Contains the number of pages that would have been written if the complex had been in duplex mode. This field may be low if the change log overflows. This field is meaningless if the complex is in duplex mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Contains the level number of the data set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Contains the name of the data set the intermediate write was performed against. This field will contain either “CKPT1” or “CKPT2”.</td>
</tr>
</tbody>
</table>

Table 26. Description of Trace Identifier 17 INTERMEDIATE WRITE Record 3 by Checkpoint Cycle

<table>
<thead>
<tr>
<th>Cycle Name</th>
<th>Record</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERMEDIATE WRITE</td>
<td>3</td>
<td>1</td>
<td>Contains the number of $CKPTs issued during this checkpoint cycle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Contains the length of MVS wait time (in microseconds) during this checkpoint cycle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Contains the length of $QSUSE time (in microseconds) during this checkpoint cycle.</td>
</tr>
</tbody>
</table>

Table 27. Description of Trace Identifier 17 INTERMEDIATE WRITE Record 4 by Checkpoint Cycle

<table>
<thead>
<tr>
<th>Cycle Name</th>
<th>Record</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERMEDIATE WRITE</td>
<td>4</td>
<td>1</td>
<td>Contains the number of pages written for the first CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Contains the number of control blocks in the change log for the first CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Contains the number of pages written for the second CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Contains the number of control blocks in the change log for the second CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Contains the number of pages written for the third CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Contains the number of control blocks in the change log for the third CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Contains the number of pages written for the fourth CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Contains the number of control blocks in the change log for the fourth CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 - end</td>
<td>These records have the same format as record 4, but for the fifth through last CTENTs.</td>
</tr>
</tbody>
</table>
Table 28. Description of Trace Identifier 17 FINAL WRITE Record 1 by Checkpoint Cycle

<table>
<thead>
<tr>
<th>Cycle Name</th>
<th>Record</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINAL WRITE</td>
<td>1</td>
<td>1</td>
<td>Contains the characters “FINAL”.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Contains the time (in tenths of milliseconds) that passed from the $EXCP macro that started the final write I/O until the I/O completed and the checkpoint $PCE got dispatched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Contains the number of used pages in the change log.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Contains the number of control blocks in the change log.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Contains the number of $PCEs defined to this member.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Contains the number of $PCEs that are waiting for the checkpoint write to complete.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Contains the maximum length of time (in tenths of milliseconds) that a $PCE was waiting for the checkpoint write to complete.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Contains the average length of time (in tenths of milliseconds) that the $PCEs were waiting for the checkpoint write to complete.</td>
</tr>
</tbody>
</table>

Table 29. Description of Trace Identifier 17 FINAL WRITE Record 2 by Checkpoint Cycle

<table>
<thead>
<tr>
<th>Cycle Name</th>
<th>Record</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINAL WRITE</td>
<td>2</td>
<td>1</td>
<td>Contains the number of used bytes in the change log.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Contains the length of time (in tenths of milliseconds) that this member held the checkpoint.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Contains the characters “PRIO AGE” if priority aging contributed to this write.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Contains the number of times the checkpoint $PCE put itself at the bottom of the ready queue before performing this write.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Contains the number of pages that would have been written if the complex had been in duplex mode. The field may be low if the change log overflows. This field is meaningless if the complex is in duplex mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Contains the level number of the data set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Contains the name of the data set the final write was performed against. This field will contain either “CKPT1” or “CKPT2”.</td>
</tr>
</tbody>
</table>

Table 30. Description of Trace Identifier 17 FINAL WRITE Record 3 by Checkpoint Cycle

<table>
<thead>
<tr>
<th>Cycle Name</th>
<th>Record</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINAL WRITE</td>
<td>3</td>
<td>1</td>
<td>Contains the number of $CKPTs issued during this checkpoint cycle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Contains the length of MVS wait time (in microseconds) during this checkpoint cycle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Contains the length of $QSUSE time (in microseconds) during this checkpoint cycle.</td>
</tr>
</tbody>
</table>
Table 31. Description of Trace Identifier 17 FINAL WRITE Record 4 by Checkpoint Cycle

<table>
<thead>
<tr>
<th>Cycle Name</th>
<th>Record</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINAL WRITE</td>
<td>4</td>
<td>1</td>
<td>Contains the number of pages written for the first CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Contains the number of control blocks in the change log for the first CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Contains the number of pages written for the second CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Contains the number of control blocks in the change log for the second CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Contains the number of pages written for the third CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Contains the number of control blocks in the change log for the third CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Contains the number of pages written for the fourth CTENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Contains the number of control blocks in the change log for the fourth CTENT.</td>
</tr>
<tr>
<td>5 - end</td>
<td></td>
<td></td>
<td>These records have the same format as record 4, but for the fifth through last CTENTs.</td>
</tr>
</tbody>
</table>

Trace ID=20 sample

Figure 14 on page 49 is a sample of output from trace identifier 20. Trace identifier 20 traces all $GET macro calls made by devices, including local and remote print and punch devices, spool offload SYSOUT transmitters, and NJE SYSOUT transmitters. The trace provides counts such as the number of elements searched before work is found, the total number of elements, the number of elements in use, and the work selection list. The trace is also generated for SYSOUT Application Programming Interface (SAPI) device calls. It provides the job number, class, and route code of the output selected.

For NJE transmitters the trace also displays the count of job output elements ($JOE) on the chain and the count of those the transmitter selected.

This record provides a means to analyze selection criteria and queue search overhead to tune work selection criteria.
Table 32 is the sample record broken into fields which are described after the table.

Table 32. Fields for Trace 20

<table>
<thead>
<tr>
<th>RECORD 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>11.40.09.43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS = (W,R,Q,PRM,LIM/P,F,UCS,FCB)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTGRPS DEFINED = 1250 OUTGRPS IN USE = 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTGRPS SCANNED = 1 OUTGRPS THRU WS = 1</td>
</tr>
</tbody>
</table>

| RECORD 5 |

Figure 14. Sample Output from Trace Identifier 20

Trace record contents

Table 32 is the sample record broken into fields which are described after the table.
The trace output contains the following:

- **Record 1:**

Field	Contents
 1 | Time-of-day clock value when the $TRACE was processed.
 2 | Trace identifier.
 3 | Function.
 4 | Job name, if available.
 5 | Three blanks.
 6 | Device name.
 7 | User identification associated with the job, if available.
 8 | Description of trace.

- **Record 2:**

 The WS= field contains the work selection list for the device.

- **Record 3:**

 OUTGRPS DEFINED - the total number of output groups. OUTGRPS IN USE - the number of output groups in use.

- **Record 4:**

 OUTGRPS SCANNED - the number of output groups searched before work is found. OUTGRPS THRU WS - the number of output groups actually compared to the work selection parameter list for this device.

- **Record 5:**

 OUTGRP MASK - the mask of the $JOE the device selected.

 Note: The mask is meaningless if CTOKEN is a selection criteria in the work selection list (Record 2 specifies the work selection list).

- **Record 6:**

 CLASS - the class of the $JOE the device selected. ROUTE - the route code for the $JOE the device selected. An 8-character user identification, if available. If not available, this field is blanks. FLAGS - characteristics of the $\#GET call and return codes. The $GTW mapping macro documents this flag.
• Record 7:
The following information is only present when the indicator (a flag bit in the $GTW work area) is set:
 – FAST EXIT INDICATOR SET - indicates that JES2 took a fast exit from the $GET processing.
 – FAST EXIT SUCCESSFUL - indicates either the element was selected without doing any queue scanning or JES2 determined that no elements were available for selection without doing any queue scanning.
 – FAST EXIT UNSUCCESSFUL - indicates that some sort of problem occurred and IBM JES2 service should be contacted.
• Record 8:
ELEMENT SELECTED - the element selected from the output groups that were scanned.
• Record 9:
CPU TIME USED (SEC) - the amount of CPU time spent doing processing for the $GET macro.
• Record 10:
$GET CALLED BY - the caller of the $GET macro and the offset where the call was made.

If the trace output represents an offload SYSOUT transmitter, the trace also contains:
• JOBS DEFINED - total number of jobs.
• JOBS SCANNED - the number of jobs searched before work is found.
• JOBS THRU WS instead of OUTGRPS THRU WS - the number of jobs that matched the work selection list.
• JOB MASK instead of OUTGRP MASK for offload devices that can select held output.

Notes:
1. If an offload device can select held output, the mask describes the $JQE for the job and the output includes the count of $JOEs for the job.
2. If an offload device can only select held output, and no work is found, the trace omits the job information from the output.
3. If an offload device can select non-held output, but does not select a $JQE, the information in the output describes the $JOE selected.

Trace ID=21 sample

Figure 15 on page 52 is a sample of output from trace identifier 21. This trace is active when:
• The initialization statement that defines an adjacent node has TRACE=YES specified
• The $T LINE(nnnn),TR=Yes command is specified
• The $T NODE(nnnn),TR=Yes command is specified.

These records trace the interchange between the local node and another node when the 2 nodes are establishing a session. See [z/OS MVS System Messages, Vol 5 (EDG-GFS)] for more information about the network connection control (NCC) records.
This trace is only enabled for printers that have tracing turned on by the $T PRT(nnnn),TR=Yes command.

Table 33 is the sample record broken into fields which are described after the table.

Figure 15. Sample Output from Trace Identifier 21

Trace record contents

The trace has the following format:

- **Record 1**

Field	Contents
 1 | Time-of-day clock value when the $TRACE was executed.
 2 | Trace identifier.
 3 | Function.
 4 | Twelve blanks.
 5 | Name of the $PCE. This field contains either NPM or CKPT for this record.
 6 | Eight blanks.
 7 | $PCE address.

- **Record 2**

 NCC=I RECV FROM NODE2 (01) VIA LINEx

- **Record 3**

 CES=90/054,015:38:34 REST= 100

 - NCC - the type of network communication control (NCC) record traced. Values for NCC are:
 - I is a signon record.
 - J is a response signon record.
 - K is a reset record.
 - L is a concurrence record.

 - RECV FROM or SENT TO - whether the record is coming from a node or going to a node.

 - The name of the node.
- The member of the node connected with this node. The member is enclosed in parenthesis.
- VIA LINE - names the line number through which the record traveled. VIA MLINE - if the record is sent from a member of this multi-access spool configuration. N/A - if this is not a path manager connection.

Record 3:
- CES - is the connection event sequence associated with the NCC record. The value of this field has the form:

 YYDDD,0HH:MM:SS

where:
- YY is the last 2 digits of the current year.
- DDD is the day of the year.
- HH:MM:SS is the time of the day, in 24-hour format.
- REST - is the resistance of the connection.

Trace ID=22 sample

Figure 16 is a sample output from trace identifier 22. JES2 creates this record to trace add NCC records, spooled nodes attached table entries, $ADD CONNECT commands, and $T CONNECT commands. This trace is active when:
- The initialization statement that defines an adjacent node has TRACE=YES specified
- The $T LINE(nnnn),TR=Yes command is specified
- The $T NODE(nnnn),TR=Yes command is specified.

See z/OS MVS System Messages, Vol 5 (EDG-GFS) for more information about the NCC records.

<table>
<thead>
<tr>
<th>RECORD 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>16.27.00.80</td>
</tr>
<tr>
<td>NCC=M SENT TO NODE2 (01) VIA LINE13 CONNECTS NODE1 (01) AND NODE3 (01) REST= 200 CES=90/054,015:39:34 STATUS=ACTIVE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCC=M SENT TO NODE2 (01) VIA LINE13</td>
</tr>
</tbody>
</table>

Figure 16. Sample Output from Trace Identifier 22

Trace record contents

Table 34 is the sample record broken into fields which are described after the table.

Table 34. Fields for Trace 22
Table 34. Fields for Trace 22 (continued)

<table>
<thead>
<tr>
<th>RECORD 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONNECTS NODE1 (01) AND NODE3 (01) REST= 200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CES=90/054,015:39:34 STATUS=ACTIVE</td>
</tr>
</tbody>
</table>

The trace has the following format:

- Record 1 has the same format as trace identifier 21.
- Record 2:
 - NCC - the type of network communication control (NCC) record traced. This value is always M for this record.
 - RECV FROM or SENT TO - whether the record is coming from a node or going to a node.
 - The name of the node.
 - The member of the node connected with this node. The member is enclosed in parenthesis.
 - VIA - indicates where this record originated from or was sent. Values for this field are:
 - LINEnnnn: The line to which JES2 sent this record or from which JES2 received this record.
 - MLINEn: The member of the MAS at this node to which this member sent the record or from which this member received the record.
 - console identifier: The console from which the operator entered the $ADD, $DEL, or $T CONNECT command.
- Record 3:
 - CONNECTS - contains the node names and member numbers on either side of the connection that this add record describes. The member number appears in parenthesis.
 - REST - the resistance of the connection.
- Record 4:
 - CES - the connection event sequence as described for trace identifier 21. This field is not available if the connection is a static connection.
 - STATUS - the current status of the connection this record represents. This value can either be ACTIVE or HELD.
- Record 5:
 - OLDCES - the connection event sequence associated with an existing NAT, which this record is replacing.
 - OLDSTATUS - the status of this connection before this record was created. This value can be either ACTIVE, INACTIVE, HELD, or NONE.

Note: This record is not created when receiving a record or when the connection is a static connection.

- Record 6:
 - FULLPATH determines whether JES2 updates the nodes attached table using the information from this record. This value can be either YES or NO.
Trace ID=23 sample

Figure 17 is a sample output from trace identifier 23. JES2 creates this record to trace subtract NCC records, spooled nodes attached table entries, disconnects generated by JES2 when it updates the nodes attached table (NAT), and $DEL CONNECT commands. This trace is active when:

- The initialization statement that defines an adjacent node has TRACE=YES specified
- The $T LINE(nnns),TR=Yes command is specified
- The $T NODE(nnns),TR=Yes command is specified.

See [z/OS MVS System Messages, Vol 5 (EDG-GFS)] for more information about the NCC records.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.03.27.08</td>
<td>ID = 23</td>
<td>NPMSUB</td>
<td>NPM</td>
<td>02934B90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCC=N</td>
<td>SENT TO NODE3 (01) VIA LINE10</td>
<td>DISCONNECTS NODE1 (01) AND NODE4 (01) REST= 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CES=90/054,019:51:28 STATUS=INACTIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 17. Sample Output from Trace Identifier 23

Trace record contents

Table 35 is the sample record broken into fields which are described after the table.

The trace has the following format:

- Record 1 has the same format as trace identifier 21.
- Record 2:
 - NCC - the type of network communication control (NCC) record traced. This value is always N for this record.
 - RECV FROM or SENT TO - whether the record is coming from a node or going to a node.
 - The name of the node.
 - The member of the node connected with this node. The member is enclosed in parenthesis.
 - VIA - indicates where this record originated from or was sent. Values for this field are:
LINEnnnn The line to which JES2 sent this record or from which JES2 received this record.

MLINEn The member of the MAS at this node to which this member sent the record or from which this member received the record.

console identifier The console from which the operator entered the $DEL CONNECT.

FULLPATH JES2 determined it could no longer reach this node and disconnected the node.

- **Record 3:**
 - DISCONNECTS - contains the node names and member numbers on either side of the connection that this subtract record describes. The member number appears in parenthesis.
 - REST - the resistance of the connection.

- **Record 4:**
 - CES - the connection event sequence as described for trace identifier 21. This field is not available if the connection is a static connection.
 - STATUS - the current status of the connection this record represents. This value can be INACTIVE or HELD.

- **Record 5:**
 - OLDCES - the connection event sequence associated with an existing NAT that this record is replacing.
 - OLDSTATUS - the status of this connection before this record was created. This value can be either ACTIVE, INACTIVE, HELD, or NONE.

Note: This record is not created when the connection is a static connection.

Trace ID=24 sample

Figure 18 on page 57 is a sample output from trace identifier 24. JES2 creates this record when it rejects:
- Add or subtract NCC records
- Spooled nodes attached table entries
- $ADD, $T, or $DEL CONNECT commands.

This trace is active when:
- The initialization statement that defines an adjacent node has TRACE=YES specified
- The $T LINE(nnnn),TR=Yes command is specified
- The $T NODE(nnnn),TR=Yes command is specified.
Table 36 is the sample record broken into fields which are described after the table.

Table 36. Fields for Trace 24

<table>
<thead>
<tr>
<th>RECORD 1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16.27.00.80</td>
<td>ID = 24</td>
<td>NPMERR</td>
<td></td>
<td>NPM</td>
<td></td>
<td>02933B90</td>
<td></td>
</tr>
</tbody>
</table>

RECORD 2

NCC=M RECV FROM NODE2 (01) VIA LINE13

RECORD 3

CONNECTS NODE1 (01) AND NODE3 (01) REST= 200

RECORD 4

CES=90/054,015:39:34 STATUS=ACTIVE

RECORD 5

OLDCES=90/054,015:39:34 OLDSTATUS=ACTIVE

RECORD 6

Figure 18. Sample Output from Trace Identifier 24

Trace record contents

Table 36 is the sample record broken into fields which are described after the table.
Table 36. Fields for Trace 24 (continued)

<table>
<thead>
<tr>
<th>RECORD 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGNORED BECAUSE: MORE RECENT CONNECT EXISTS</td>
</tr>
</tbody>
</table>

The trace has the following format:

- Record 1 has the same format as trace identifier 21.
- Record 2:
 - NCC - the type of network communication control (NCC) record traced. NCC can have a value of:
 - I is a signon record.
 - J is a response signon record.
 - K is a reset record.
 - L is a concurrence record.
 - M is an add NCC record.
 - N is a subtract NCC record.
 - RECV FROM or SENT TO - whether the record is coming from a node or going to a node.
 - The name of the node.
 - The member of the node connected with this node. The member is enclosed in parenthesis.
 - VIA - indicates where this record originated or was sent. Values for this field are:
 - LINEnnnn The line to which JES2 sent this record or from which JES2 received this record.
 - SPOOL The record was sent to or received from another member of the MAS at this node through spool communications.
 - console identifier The console from which the operator issued the $ADD, $DEL, or $ST CONNECT command.
- Record 3:
 - CONNECTS|DISCONNECTS - contains the node names and member numbers on either side of the connection that this add or subtract record describes. The member number appears in parenthesis.
 - REST - the resistance of the connection.
- Record 4:
 - CES - the connection event sequence as described for trace identifier 21.
 - STATUS - the current status of the connection this record represents. This value can be ACTIVE, INACTIVE, or HELD.
- Record 5:
 - OLDCES - the connection event sequence associated with an existing NAT which this record is replacing.
 - OLDSTATUS - the status of this connection before this record was created. This value can be either ACTIVE, INACTIVE, HELD, or NONE.
- Record 6:
 IGNORRED BECAUSE: explains briefly why JES2 rejected the record. Values for this are:
 - REASON UNKNOWN
 - NODE NAME NOT RECOGNIZED
 - MEMBER NUMBER NOT VALID
 - STORAGE NOT AVAILABLE
– RESISTANCE NOT VALID
– EVENT SEQUENCE (CES) NOT VALID
– NO DEVICES AVAILABLE
– TOD TOLERANCE EXCEEDED
– LINE PASSWORD NOT VALID
– NODE PASSWORD NOT VALID
– LINE NOT TRANSPARENT
– LINE ALREADY ACTIVE
– NCC RECORD TYPE UNRECOGNIZED
– ABEND PROCESSING RECORD
– MORE RECENT CONNECT EXISTS
– CONNECTION INCLUDES LOCAL SYSTEM
– UNSUPPORTED NJE FEATURE FLAGS
– INCORRECT VALUE FOR PATHMGR
– NON-PATH MANAGER CES
– MULTIPLE RECORDS IN SIGNON BUFFER
– OLD SUBTRACT RECORD RECEIVED
– RECEIVED FROM NON-PATH MANAGER NODE
– LINE ON WHICH RECORD RECEIVED NO LONGER ACTIVE
– DUPLICATE PRIMARY-SECONDARY NODES AND MEMBERS
– INCORRECT MULTI TRUNK PROTOCOL
– RECORD HAS DUPLICATE CES BUT UNIQUE RESISTANCE

Trace ID=25 sample

Figure 19 on page 60 is a sample of output from trace identifier 25. This trace gathers information from the following control blocks about the functional subsystem (FSS) checkpoint: FSACB, FSSCB, JIB (including WORK JOE, CHAR JOE, JSPA, JOX, SYSTEM BERT and USER BERT) GCB, PDDB, IAZFSIP AND IAZCHK(JES).

You can look at control blocks that SDSF uses to display information about a data set being printed on a FSS printer. For example, the CHKPAGE and CHKREC fields in the IAZCHK control block contain information about what the function subsystem is passing to JES2 to write to spool. This information would be useful to help determine why incorrect record counts are displayed on SDSF.

For a description of the control blocks and their fields see:

- z/OS MVS Data Areas, Vol 1 (ABEP-DALT)
- z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC)
- z/OS MVS Data Areas, Vol 3 (IVT-RCWK)
- z/OS MVS Data Areas, Vol 4 (RD-SRRA)
- z/OS MVS Data Areas, Vol 5 (SSAG-XTLST)
Figure 19. Sample Output from Trace Identifier 25 (Part 1 of 2)
Figure 19. Sample Output from Trace Identifier 25 (Part 2 of 2)

Trace ID=26 sample

JES2 creates a trace identifier 26 record for each automatic restart manager request it processes in the main task. Figure 20 is a sample of the output from two traces for trace identifier 26.

Figure 20. Sample Output from Trace Identifier 26

Trace record contents

Table 37 is the sample record broken into fields which are described after the table.

Table 37. Fields for Trace 26

<table>
<thead>
<tr>
<th>RECORD 1</th>
<th>RECORD 2</th>
<th>RECORD 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.26.48.97</td>
<td>ID = 26</td>
<td>JOB000020</td>
</tr>
<tr>
<td>18.26.48.97</td>
<td>JOEFLAG1=04</td>
<td>JOETYPE=41</td>
</tr>
<tr>
<td>18.29.18.90</td>
<td>ID = 26</td>
<td>JOB000020</td>
</tr>
<tr>
<td>18.26.48.97</td>
<td>JOEFLAG1=04</td>
<td>JOETYPE=41</td>
</tr>
<tr>
<td>........GT10*************</td>
<td>............*</td>
<td>............*</td>
</tr>
</tbody>
</table>

Chapter 3. Establishing JES2 traces 61
Table 37. Fields for Trace 26 (continued)

<table>
<thead>
<tr>
<th>RECORD 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>JQEFLAG1=04 JQETYPE=41 JQEBUSY=02 JQEDEVID=00 JQEARMID=02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>00300101 2E2D7D1 00000000 E6E2C340 40404040 00000014 A9210DAD 000004B4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000002 D1D6C2F0 F0F0F2F0</td>
</tr>
</tbody>
</table>

- Record 1:

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time-of-day clock value when the $TRACE was executed.</td>
</tr>
<tr>
<td>2</td>
<td>Trace identifier</td>
</tr>
<tr>
<td>3</td>
<td>Function being traced.</td>
</tr>
<tr>
<td>4</td>
<td>Job ID to which the request applies, if available.</td>
</tr>
<tr>
<td>5</td>
<td>PCE name</td>
</tr>
<tr>
<td>6</td>
<td>PCE address</td>
</tr>
<tr>
<td>7</td>
<td>The automatic restart manager function requested.</td>
</tr>
<tr>
<td>8</td>
<td>Return code and reason code</td>
</tr>
<tr>
<td>9</td>
<td>Contents of ARMFLAG1 in the $ARMWORK PCE</td>
</tr>
</tbody>
</table>

- Record 2:

Contents of the JQE fields at the start of request processing:

| JQEFLAG1 |
| JQETYPE |
| JQEBUSY |
| JQEDEVID |
| JQEARMID |

- Record 3:

Contents of the JQE fields at the end of request processing:

| JQEFLAG1 |
| JQETYPE |
| JQEBUSY |
| JQEDEVID |
| JQEARMID |

- Record 4:

Contents of the SSPJ control block.

Trace ID=27 sample

[Figure 21 on page 63] is a sample of output from trace identifier 27. Trace ID 27 gathers information about Process SYSOUT (PSO) external writer and conversational terminal systems processing. The trace gathers information from the $PSO control block at the start of request processing and at the end of request processing.
Figure 21. Sample Output from Trace Identifier 27

<table>
<thead>
<tr>
<th>Date</th>
<th>ID</th>
<th>PSO</th>
<th>ASID</th>
<th>Event</th>
<th>Source 1</th>
<th>Source 2</th>
<th>Source 3</th>
<th>Source 4</th>
<th>Source 5</th>
<th>Source 6</th>
<th>Source 7</th>
<th>Source 8</th>
<th>Source 9</th>
<th>Source 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.48.19.99</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11.48.19.99</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 3. Establishing JES2 traces
Figure 22 on page 64 and Figure 24 on page 66 show sample output for trace identifier 28. Trace ID 28 gathers information about the SSOB function-dependent area of the IAZSSS2 macro for SYSOUT application program interface before the macro call from the application's address space to JES2.

For a description of the SSOB extension for the SYSOUT application program interface macro see z/OS MVS Data Areas, Vol 5 (SSAG-XTLST).

![Trace ID=28 sample](image-url)
14.06.57.80	ID = 28 SAPIXM	ASID 0013	AFTER	0	95E2C0D7	00000000	00000000	00000000	04100100	E2E5C0F2	00000000	00000000	**$SAP**	...	SS2	...
20	00000000	00000000	00000000	00000000	01000000	04800078	00000000		
40	00000000	00000000	00000006	00000000	00000000	D1F2C0307	E9F2F4E7	00000000	**$J2CPZ24X**		
60	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	**$J2CPZ24X**		
80	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	**$J2CPZ24X**		
A0	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	**$J2CPZ24X**		
C0	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	**$J2CPZ24X**		
E0	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	**$J2CPZ24X**		
100	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	**$J2CPZ24X**		

60	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	**$J2CPZ24X**
80	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	**$J2CPZ24X**
A0	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	**$J2CPZ24X**
C0	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	**$J2CPZ24X**
E0	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	**$J2CPZ24X**
100	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	**$J2CPZ24X**

Figure 23. Sample Output from Trace Identifier 28 After Call to JES2
Trace ID=29 sample

Figure 24 and Figure 25 on page 67 show sample output from trace identifier 29. Trace 29 gathers information about the SSOB function-dependent area of the IAZSSS2 macro for SYSOUT application program interface before the macro call from the application’s address space to the JES2 main task.

For a description of the SSOB extension for the SYSOUT application program interface macro see z/OS MVS Data Areas, Vol 5 (SSAG-XTLST).

<table>
<thead>
<tr>
<th>14.06.56.97</th>
<th>ID = 29 SAPISSI</th>
<th>ASID 0013</th>
<th>BEFORE</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 04100100E2E2E2F200000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>*SSS2...</td>
</tr>
<tr>
<td>2000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>*JZCPP24X.......................................</td>
</tr>
<tr>
<td>4000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>6000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>8000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>A0000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>C0000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>E0000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>10000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>12000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>14000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>16000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>18000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>1A0000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>1C0000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>1E0000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>20000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>22000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>24000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>26000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>28000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>2A0000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>2C0000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>2E0000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>30000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>32000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>34000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>36000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>38000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>3A0000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>3C0000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>3E0000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
<tr>
<td>40000000000000000000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>...</td>
</tr>
</tbody>
</table>

Figure 24. Sample Output from Trace Identifier 29 Before Call to JES2
Figure 25. Sample Output from Trace Identifier 29 After Call to JES2

Trace ID=30 sample

Figure 26 on page 68 is a sample of output from trace identifier 30. Trace identifier 30 traces all $\#POST$ macro calls made by JES2 processing. The trace provides counts such as the number of devices scanned, the number of work selection calls made, and the amount of CPU time spent in the $\#POST$ service.

This record, in conjunction with trace identifier 20, provides a means to analyze selection criteria and queue search overhead to tune work selection criteria.
Table 38 is the sample record broken into fields which are described after the table.

Table 38. Fields for Trace 30

<table>
<thead>
<tr>
<th>RECORD 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>18.02.49.59 ID = 30 $#POST STC00424 SPIN 05ECB268 $#POST TYPE=JOE MASPOST=YES -------</td>
</tr>
<tr>
<td>18.02.49.59 JOB = $TRCLOG (STC00424) OUTGRP = 4.00001.00001</td>
</tr>
<tr>
<td>18.02.49.59 DEVICES SCANNED = 0 DEVICES POSTED = 0</td>
</tr>
<tr>
<td>18.02.49.59 PSO WRITERS SCANNED = 0 PSO WRITERS POSTED = 0</td>
</tr>
<tr>
<td>18.02.49.59 SAPI WRITERS SCANNED = 0 SAPI WRITERS POSTED = 0</td>
</tr>
<tr>
<td>18.02.49.59 WORK SELECTION CALLS = 0</td>
</tr>
<tr>
<td>18.02.51.09 CPU TIME USED (SEC) = 0.000003</td>
</tr>
<tr>
<td>18.02.51.09 $#POST CALLED BY = HASPJOS 0006D000 + 000F50</td>
</tr>
<tr>
<td>18.06.49.61 ID = 30 $#POST JOB00431 HOPE 05ECBB88 $#POST TYPE=JOE MASPOST=YES -------</td>
</tr>
<tr>
<td>18.06.49.61 CPU TIME USED (SEC) = 0.003435</td>
</tr>
<tr>
<td>18.06.49.61 $#POST CALLED BY = HASPJOS 000F9000 + 0015CE</td>
</tr>
<tr>
<td>18.06.49.63 ID = 30 $#POST JOB00431 HOPE 05ECBB88 $#POST TYPE=JQE MASPOST=YES -------</td>
</tr>
<tr>
<td>18.06.49.63 CPU TIME USED (SEC) = 0.002907</td>
</tr>
<tr>
<td>18.06.56.39 $#POST CALLED BY = HASPHOPE 0006C000 + 000A5A</td>
</tr>
<tr>
<td>18.06.56.39 CPU TIME USED (SEC) = 0.000010</td>
</tr>
<tr>
<td>18.06.56.39 $#POST CALLED BY = HASPCOMM 00048000 + 0001</td>
</tr>
</tbody>
</table>

Figure 26. Sample Output from Trace Identifier 30

Trace record contents

The figure shows the sample output from Trace Identifier 30, which includes the record with ID 30 and various fields such as ID, JOB, DEVICES SCANNED, DEVICES POSTED, PSO WRITERS SCANNED, SAPI WRITERS SCANNED, WORK SELECTION CALLS, CPU TIME USED, and $#POST CALLED BY.
Table 38. Fields for Trace 30 (continued)

RECORD 1	SAPI WRITERS SCANNED = 2 SAPI WRITERS POSTED = 0
RECORD 7	WORK SELECTION CALLS = 75
RECORD 8	CPU TIME USED (SEC) = 0.000003
RECORD 9	$#POST CALLED BY = HASPJOS 0006E000 + 000F50

The trace output contains the following:

- **Record 1:**
 - **Field** | **Contents**
 - 1 | Time-of-day clock value when the $TRACE was processed.
 - 2 | Trace identifier.
 - 3 | Function.
 - 4 | Job ID, if available.
 - 5 | Name of processor which issued the $#POST.
 - 6 | PCE address of processor which issued the $TRACE.
 - 7 | Description of $#POST call.

- **Record 2:**
 - The job name and job id (JOB=) and output group identifier (OUTGRP=) of the output which has just become available. OUTGRP= is only displayed for $#POST TYPE=JOE type records.

- **Record 3:**
 - JOES SCANNED - For $#POST TYPE=JQE, the number of JOEs associated with this JQE that will be posted.

- **Record 4:**
 - DEVICES SCANNED - The number of JES2 devices which were scanned to see if they could process this output.
 - DEVICES POSTED - The corresponding number of devices that were awakened because they are able to process the output.

- **Record 5:**
 - PSO WRITERS SCANNED - The number of PSO writers which were scanned to see if they could process this output.
 - PSO WRITERS POSTED - The corresponding number of writers that were awakened because they are able to process the output.

- **Record 6:**
 - SAPI WRITERS SCANNED - The number of SAPI writers which were scanned to see if they could process this output.
 - SAPI WRITERS POSTED - The corresponding number of writers that were awakened because they are able to process the output.

- **Record 7:**
 - WORK SELECTION CALLS - The total number of calls to the work selection routine on this $#POST.

- **Record 8:**
CPU TIME USED (SEC) - The amount of CPU time spent doing processing for the $#POST macro

• Record 9:
 $#POST CALLED BY - The caller of the $#POST macro and the offset where the call was made

Note: Most of the preceding information is issued only for $#POST TYPE=JQE and TYPE=JOE. Abbreviated $TRACE records are issued for $#POST TYPE=XMIT and $#POST TYPE=MSG.

Trace ID=31 sample

Figure 27 on page 71 is a sample of output from trace identifier 31. Trace identifier 31 traces all $QGET macro calls made by JES2 devices and initiators. The trace provides counts such as the number of jobs scanned, the number of $DOGJQE calls made, the amount of CPU time spent in the $QGET service, and the amount of CPU time spent in $EXITs 14, 49, or both. For initiators, the applicable initiator information such as initiator id and jobclass or service class information.

This record provides a means to analyze selection criteria and queue search overhead to tune work selection criteria.
Figure 27. Sample Output from Trace Identifier 31 (Part 1 of 2)
Figure 27. Sample Output from Trace Identifier 31 (Part 2 of 2)

Trace record contents

Table 39 is the sample record broken into fields which are described after the table.

Table 39. Fields for Trace 31

<table>
<thead>
<tr>
<th>RECORD 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>15.22.48.89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS = (/)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORK SELECTION MASK = FFFFFFFFF FFFFFFFFF FFFFFFFFF FFFFFFFFF FFFFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>JES INITIATOR CLASS LIST = AB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOES DEFINED = 500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOES SCANNED = 33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOES THROUGH WS = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$#GET RETURN CODE = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIMIZATION ALLOWED = YES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 10</th>
</tr>
</thead>
</table>

72 z/OS V1R11.0 JES2 Diagnosis
Table 39. Fields for Trace 31 (continued)

<table>
<thead>
<tr>
<th>RECORD 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU TIME USED (SEC) = 0.001346</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORD 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$QGET CALLED BY = HASPXEQ 00160000 + 000990</td>
</tr>
</tbody>
</table>

The trace output contains the following:

- **Record 1:**

<table>
<thead>
<tr>
<th>Field</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time-of-day clock value when the $TRACE was processed.</td>
</tr>
<tr>
<td>2</td>
<td>Trace identifier.</td>
</tr>
<tr>
<td>3</td>
<td>Function.</td>
</tr>
<tr>
<td>4</td>
<td>Job name, if available.</td>
</tr>
<tr>
<td>5</td>
<td>Name of processor or device which issued the $QGET</td>
</tr>
<tr>
<td>6</td>
<td>PCE address of processor which issued the $TRACE</td>
</tr>
<tr>
<td>7</td>
<td>Description of $QGET call</td>
</tr>
</tbody>
</table>

- **Record 2:**

 The WS= field contains the work selection list for the device. It is included only by those devices which use work selection lists, namely offload and network job transmitters.

- **Record 3:**

 WORK SELECTION MASK - the work selection mask corresponding to the $JQE selected. It is included only by those devices which use work selection lists, namely offload and network job transmitters, and then only when work is actually selected.

- **Record 4:**

 JES INITIATOR CLASS LIST - specifies the class list that was passed to the JES initiator on the $QGET call. Note that this list may not necessarily include all of the classes defined to the initiator for certain types of calls. The class list is only included in the trace for $QGET calls from JES initiators.

- **Record 5:**

 JOQES DEFINED - total number of JOQEs defined (JOBDEF JOBNUM) JOQES IN USE - total number of JOQEs currently in use.

- **Record 6:**

 JOQES SCANNED - number of jobs searched before work was found. $DOGJQE CALLS - number of jobs for which it was necessary to call the $DOGJQE service to determine whether the work is selectable.

- **Record 7:**

 JOQES THROUGH WS - The number of jobs for which the work selection routine was called. It is included only by those devices which use work selection lists, namely offload and network job transmitters.

- **Record 8:**

 $QGET RETURN CODE - The return code from the $QGET service. 0 indicates that work was was selected; 4 indicates that no work was found. ELEMENT SELECTED - The element selected out of all the jobs that were scanned. This is only included for return code 0.
• Record 9:
 OPTIMIZATION ALLOWED= indicates whether class list optimization is allowed for JES initiators, or service class optimization is allowed for WLM initiators. One of the following values will be displayed:
 – YES - indicates optimization is allowed.
 – YES (X14) - indicates that $EXIT 14 turned on class list optimization.
 – NO - indicates optimization is not allowed.
 – NO (X49) - indicates that $EXIT 49 turned off optimization.
 – NO (UNKNOWN) - indicates that optimization has been turned off for some unknown reason.

• Record 10:
 CPU TIME USED (SEC) - The amount of CPU time spent doing processing for the $QGET macro.

• Record 11:
 $QGET CALLED BY - The caller of the $QGET macro and the offset where the call was made.

The trace may also contain the following information about installation exits taken out of the $QGET service:

• CPU TIME USED (X14) - The amount of CPU time spent in installation $EXIT 14. This data does not appear if $EXIT 14 was not entered.

• EXIT 14 RETURN CODE - The return code that was returned by $EXIT 14. This data does not appear if $EXIT 14 was not entered.

• CPU TIME USED (X49) - The amount of CPU time spent in installation $EXIT 49. This data does not appear if $EXIT 49 was not entered.

• EXIT 49 SKIPPED JQES - The number of JQEs for which $EXIT 49 indicated that the job is not selectable. This data does not appear if $EXIT 49 was not entered.

Trace ID=32 sample

Figure 28 is a sample of output from trace identifier 32. Trace identifier 32 traces all $#REM macro calls made by any JES2 PCE. The trace provides the Work JOE (JOETYPE=X’80’) and an indication of whether the $#REM was done as part of user exit processing or by non-exit processing.

This record provides a means of determining when a JOE is removed and whether the code requesting the removal is likely to be IBM code or not.
Trace ID=33 sample

Figure 29 on page 76 is a sample of output from trace identifier 33. Trace identifier 33 traces all NJE and Spool Offload traffic either being transmitted/offloaded or received/reloaded. Specify TRACE=YES on the device and activate trace id 33 in order to have the data generated.

The field names in the record identify the sections of the record. The following sections are identified in the formatted trace output:

- JOB HEADER GENERAL SECTION
- JOB HEADER UNKNOWN GENERAL SECTION
- JES2 SECTION OF THE JOB HEADER
- JES2 SPOOL OFFLOAD SECTION OF THE JOB HEADER
- JES2 AFFINITY SECTION OF THE JOB HEADER
- UNKNOWN JES2 SECTION OF THE JOB HEADER
- JOB SCHEDULING SECTION OF THE JOB HEADER
- UNKNOWN JOB SCHEDULING SECTION OF THE JOB HEADER
- SECURITY SECTION OF THE JOB HEADER
- UNKNOWN SECURITY SECTION OF THE JOB HEADER
- ACCOUNTING SECTION OF THE JOB HEADER
- UNKNOWN ACCOUNTING SECTION OF THE JOB HEADER
- RSCS SECTION OF THE JOB HEADER
- JES3 SECTION OF THE JOB HEADER
- POWER SECTION OF THE JOB HEADER
- USER SECTION OF THE JOB HEADER
- UNKNOWN SECTION OF THE JOB HEADER
- DATA SET HEADER GENERAL SECTION
- 3800 SECTION OF THE DATA SET HEADER
- RECORD CHARACTERISTICS CHANGE SECTION
- DATA SET HEADER UNKNOWN GENERAL SECTION
- DATA STREAM CHARACTERISTICS SECTION OF THE DATA SET HEADER
- UNKNOWN DATA STREAM CHARACTERISTICS SECTION OF THE DATA SET HEADER
- SECURITY SECTION OF THE DATA SET HEADER
- UNKNOWN SECURITY SECTION OF THE DATA SET HEADER
- JES2 SPOOL OFFLOAD SECTION OF THE DATA SET HEADER
- JES2 TP OFFLOAD SECTION OF THE DATA SET HEADER
- UNKNOWN JES2 SECTION OF THE DATA SET HEADER
- RSCS SECTION OF THE DATA SET HEADER
- JES3 SECTION OF THE DATA SET HEADER
- POWER SECTION OF THE DATA SET HEADER
- USER SECTION OF THE DATA SET HEADER
- UNKNOWN SECTION OF THE DATA SET HEADER
- JOB TRAILER GENERAL SECTION
- JOB TRAILER UNKNOWN GENERAL SECTION
- JES2 SPOOL OFFLOAD SECTION OF THE JOB TRAILER
- UNKNOWN JES2 SECTION OF THE JOB TRAILER
ACCOUNTING SECTION OF THE JOB TRAILER
UNKNOWN ACCOUNTING SECTION OF THE JOB TRAILER
RSCS SECTION OF THE JOB TRAILER
JES3 SECTION OF THE JOB TRAILER
POWER SECTION OF THE JOB TRAILER
USER SECTION OF THE JOB TRAILER
UNKNOWN SECTION OF THE JOB TRAILER

Figure 29. Sample Output from Trace Identifier 33

Trace ID=34 sample

Figure 30 on page 77 is a sample of output from trace identifier 34. Trace identifier 34 traces all data records passed between the JES2 address space and the NETSRV address space. These records are traced if tracing is requested on the line (TRACE=JES=YES on the LINE statement) or NETSRV (TRACE=JES=YES on the NETSRV statement).
Figure 30. Sample Output from Trace Identifier 34

Trace ID=35 sample

Figure 31 is a sample of output from trace identifier 35. Trace identifier 35 traces all control records passed between the JES2 address space and the NETSRV address space. These records are traced if tracing is requested on the line (TRACE=JES=YES on the LINE statement) or NETSRV (TRACE=JES=YES on the NETSRV statement).

Note: The address after the ASID xxxx field is the TCB address of the task creating the trace record.

Figure 31. Sample Output from Trace Identifier 35

Trace ID=36 sample

Figure 32 is a sample of output from trace identifier 36. Trace identifier 36 traces all data records passed between JES2 code in the NETSRV address space and IAZNJTCP. These records are traced if tracing is requested on the line (TRACE=JES=YES on the LINE statement) or NETSRV (TRACE=JES=YES on the NETSRV statement).

Note: The address after the ASID xxxx field is the TCB address of the task creating the trace record.

Figure 32. Sample Output from Trace Identifier 36

Trace ID=37 sample

Figure 33 on page 78 is a sample of output from trace identifier 37. Trace identifier 37 traces all control records passed between JES2 code in the NETSRV address...
space and IAZNJTCP. These records are traced if tracing is requested on the line (TRACE=JES=YES on the LINE statement) or NETSRV (TRACE=JES=YES on the NETSRV statement).

Note: The address after the ASID xxxx field is the TCB address of the task creating the trace record.

![Figure 33. Sample Output from Trace Identifier 37](image)

Trace ID=38 sample

Figure 34 is a sample of output from trace identifier 38. Trace identifier 38 traces all data records passed between IAZNJTCP and TCP/IP. These records are traced if tracing is requested on the line (TRACE=COMMON=YES on the LINE statement) or NETSRV (TRACE=COMMON=YES on the NETSRV statement).

Note: The address after the ASID xxxx field is the TCB address of the task creating the trace record.

![Figure 34. Sample Output from Trace Identifier 38](image)

Trace ID=39 sample

Figure 35 is a sample of output from trace identifier 39. Trace identifier 39 traces TCP/IP API calls issued by IAZNJTCP. These records are traced if tracing is requested on the line (TRACE=JES=YES on the LINE statement) or NETSRV (TRACE=JES=YES on the NETSRV statement).

![Figure 35. Sample Output from Trace Identifier 39](image)

Trace ID=40 sample

Figure 36 on page 79 is a sample of output from trace identifier 40. Trace identifier 40 traces the results of the WLM initiator balancing computation at the beginning of every checkpoint cycle.
The trace output contains the following:

- Member is the member name for the line of data.
- QAFF is "Y" if the member is included in the QAFF for the service class.
- SATURATED is "Y" if the member is at or above its goal for multi-member-affinity jobs.
- MAFF is the number of jobs eligible for the member that also have affinity for other active members.
- SAFF if the number of jobs eligible for the member that do not have affinity for other active members.
- IACT is the number of WLM initiators active on the member.
- JACT is the number of WLM managed batch jobs active on the member.
- GACT is the goal for active jobs on the member (UNLIM means that the goal is not limited).
- STLN is the number of jobs that have affinity to the member and are "allowed" to be "stolen" by other members.
- MAFG is the number of multi-affinity jobs that can be selected on this member (UNLIM means not limited). This value shows only for the member writing the trace record.
- HOLD is from MASDEF HOLD=.
- MINDORM is from MASDEF DORMANCY=(xxxx).
- MAXDORM is from MASDEF DORMANCY=(,xxxx).
- ACTUAL HOLD and ACTUAL DORMANCY are the values for the current checkpoint cycle.

Trace ID=41 sample

Figure 36 on page 80 is a sample of output from trace identifier 41. Trace identifier 41 traces the results of the sampling data computation that is passed to WLM at the end of every checkpoint cycle.
The trace output contains the following:

Service Class
The service class name

Token
An internal value used by WLM

Registered
The JES2 MAS members on which the service class has been registered with WLM

Sampling data
Data used by WLM to manage the batch backlog. The sampling data is for the Service class named on the Service class line.

SYS_QUEUE
MAS queue delay. Jobs eligible to be initiated somewhere in the MAS.

SYS_INEL
MAX ineligible. Jobs not eligible to be initiated on any member in the MAS. This includes operator held jobs, jobs held because of duplicate Name, jobs busy on a JES transmitter (offload and keep).

SYS_LIMIT
MAX limited. Jobs are not eligible because the JES job queue or queues that are related to these jobs have reached their limit of executing jobs. See XEQCOUNT and XEQMEMBER on the JOBCLASS initialization statement.

LOCAL_QUEUE
Local queue delay. Jobs eligible to be initiated on this system.

CONSTRAINT_AFFINITY
Constraint affinity. Jobs eligible to be initiated on constraint systems only.

LOCAL_INEL
Local ineligible. Jobs not eligible to be initiated on this member.

Figure 37. Sample Output from Trace Identifier 41
This includes operator held jobs, jobs held because of duplicate name, jobs busy on a JES transmitter (offload and keep).

Installation-defined trace events

Trace identifier (TID) tables can define new event trace identifiers or override JES2-defined trace identifiers. Use the $TIDTAB macro to create JES2 installation tables and table elements. Normal table pair processing extends the JES2 TID table with the installation-supplied table.

For details about using JES2 table pairs, see [z/OS JES2 Installation Exits](#).

Creating a trace table using the $TRACE macro

Issue a $TRACE macro in an installation exit routine to record register information when the trace identifier is active, (assuming an entry in $TIDTAB for identifier 255) as follows:

```
STM R0,R15,$REGSAVE
label $TRACE ID=255,LEN=16*4,DATA=$REGSAVE,NAME=$USER
```

The STM instruction stores registers 0 through 15 in storage at location $REGSAVE. The DATA parameter passes the location of the registers to the $TRACE macro.

For information on the $TRACE macro keywords and defining JES2 tables, see [z/OS JES2 Macros](#).

Storage considerations

The PAGES and TABLES parameters of the TRACEDEF initialization statement specify the amount of storage that the trace facility can use. If you later determine that this amount of storage is inadequate, the operator can enter a $T TRACEDEF command to modify the number of trace tables ($T TRACEDEF,TABLES=n), or the size of the trace log data set ($T TRACEDEF,LOG=(SIZE=n)). You should be aware of the amount of storage being used for trace records to prevent total depletion of ECSA and CSA storage.

If, when logging trace information, JES2 cannot keep pace with the events being logged, JES2 discards the new data and the system issues message $HASP654. To correct this situation, either deactivate specific trace identifiers or increase the number of trace tables.

The LOG=(SIZE=n) subparameter on the TRACEDEF statement allows you to specify the maximum size that the trace log may attain before JES2 queues the log for printing. When JES2 logs a trace table, JES2 reuses the trace table.
You can use the DEBUG facility to trap unauthorized alterations of checkpoint-resident data, a job queue element (JQE), or a job output element (JOE) by specifying the $T DEBUG=Y|N command. It can also be used (if additional parameters are included with the command) to record certain JES2 events and activities. For example, you can specify whether to count certain events, provide certain $HASP095 error information to the operator, verify the integrity of a newly created checkpoint version, or, start or stop monitoring updates made to the checkpoint data set.

Because the DEBUG facility checks all checkpoint records before processing them, DEBUG causes performance degradation. Use the $T DEBUG=YIN command only when you experience problems that you suspect are checkpoint I/O problems. Also, because of performance degradation, IBM suggests that you do not use the DEBUG command with the CKPT or VERSION parameters specified in a production environment.

DEBUG can detect:

- A failure to issue a $QSUSE or a $CKPT macro by another member in the multi-access spool (MAS) configuration.
- Random overlays of the 4-kilobyte pages, the job queue, and job output table (JOT). However, the facility cannot detect all unauthorized alterations. DEBUG will not detect the error if a routine changes a checkpointed element either without:
 - Issuing a $QSUSE macro. It is possible that the routine already has exclusive control of the checkpoint data set.
 - First issuing a $CKPT macro, and another a checkpoint element in the same block was altered validly during the same checkpoint cycle.
- Unauthorized updates to the checkpoint in a multi-access spool environment.
- Problems with the application copy of the checkpoint subtask.
- Access logging including warnings for JES2 output work selection for:
 - JES2 devices (such as local and remote printers and punches, and NJE and offload SYSOUT transmitters).
 - External writer (XWTR) requests.
 - SYSOUT application program interface (SAPI) requests (SSI function code 79).
 - With SECURITY=YES specified, you will receive RACF® messages, but no $HASP186 message for profiles in warn mode.

Starting and stopping the DEBUG facility

Start the DEBUG facility by specifying DEBUG=YES in the initialization stream or by entering a $T command with the DEBUG=YES parameter. When you want to turn off the DEBUG facility, enter a $T DEBUG=NO command. Display the status of the DEBUG facility by entering the $D DEBUG command. JES2 responds to the $D command with message $HASP827, to display the status of DEBUG.

If an error occurs, JES2 issues a $K01 error code.

A JES2 dump contains output from the DEBUG facility. In the dump, register 1 contains the checkpoint this JES2 image expected and register 14 contains the
checkpoint as it appears on the checkpoint data set. The checkpoint on the data set should enable the installation to determine the cause of the error.

Determine why JES2 issued a $HASP186 message

Set the DEBUG facility to monitor security related processing by issuing a $TDEBUG,SECURITY=YES command when you receive a $HASP186 message with no corresponding ICH408I message. Perform the following action(s) as appropriate to generate another output selection:

- Modify the output group with an operator command.
- Drain the JES2 device. Start it again after the drain completes.
- Stop and restart the external writer address space.
- Stop and restart the JES2 address space.

If you do not perform any of the actions, JES2 will remember that the output group is not eligible and will not issue another SAF request. JES2 only reissues the SAF request when you take one of the appropriate actions listed and JES2 subsequently attempts to select the output group for the same device or devices.

After you’ve taken the appropriate action(s) and recreated the conditions while DEBUG SECURITY=YES is set, RACF will now log the access and issue messages such as the ICH408I message (RACF either issues the messages, or in cases requested by JES2, returns them to JES2 who then issues the messages). Use the RACF messages that accompany the $HASP186 message to determine why $HASP186 was issued.
Chapter 5. Using IPCS for diagnosis

The interactive problem control system (IPCS) provides an interactive, online facility for diagnosing software failures. IPCS formats and analyzes dumps to produce reports that can be viewed online or printed. A diagnostician can request specific information in the report based on:

- Class of output
- Control blocks
- Devices
- Job number
- Job queue
- Job output queue
- Job class
- Network characteristics
- Processors
- Subtasks
- MAS member data
- Checkpoint control blocks on both DASD and coupling facility structures.

JES2 support for IPCS is panel-driven, however, a few commands can be used in batch or in line mode.

Provide for JES2 IPCS Support

IPCS support is for dump analysis only and does not affect a running system. You can dynamically update or replace the JES2 IPCS parmlib member and IPCS panels and modules. If you make updates to these IPCS parts, and then actually use JES2 formatting options, you might need to return to TSO READY mode or even logon again, and you might also need to drop and re-initialize your dump.

Attention:

- You must be proactive to install JES2 IPCS.
- Make sure JES2 IPCS support works before you experience an emergency.
- Make sure you have JES2 IPCS support for all combinations of JES2 and MVS releases in production. (z/OS JES2 Diagnosis provides information about JES2 IPCS support.)

Dump level - diagnosing level considerations

- **Same MVS level, same JES2 level:** When you are diagnosing JES2 dumps on the same level of the system as the system on which the dumps were taken, do the following:
 1. Ensure that SHASPARM is specified in the MVS system PARMLIB concatenation.
 2. Ensure that SHASMIG is specified in the STEPLIB concatenation.
 3. Ensure that SHASPNL0 is specified in the ISPPLIB concatenation.

This ensures that IPCS can find the SMP/E-maintained copy of JES2 data.

- **Same MVS level, different JES2 levels:** If the JES2 levels differ between the system on which the dump was taken and the system on which the dump will be examined using IPCS, but the level of MVS is the same, do the following:
 1. Add an IPCSPARM DD statement to your LOGON PROC, and specify the SHASPARM library that corresponds to the JES2 level in the dump in the first
position in the IPCSPARM DD concatenation. Also specify the
SYS1.PARMLIB and the SYS1.IBM.PARMLIB data sets, plus any other data
sets containing IPCS parameters that you normally need when using IPCS.

2. Specify the SHASMIG library that corresponds to the JES2 level in the dump
in the first position in the STEPLIB concatenation.

3. Specify the SHASPNL0 library that corresponds to the JES2 level in the
dump in the first position in the ISPPLIB concatenation.

Different MVS levels, different JES2 levels: If both the JES2 and system levels
differ between the system on which the dump was taken and the system on
which the dump will be examined using IPCS, do the following:

1. Add an IPCSPARM DD statement to your LOGON PROC, and specify the
SHASPARM library that corresponds to the JES2 level in the dump in the first
position in the IPCSPARM DD concatenation. Also, specify the
SYS1.PARMLIB and SYS1.IBM.PARMLIB data sets, plus any other data sets
containing IPCS parameters that correspond to the system level in the dump.

2. Specify the SHASMIG and MIGLIB libraries that correspond to the system in
the dump in the first and second positions in the STEPLIB concatenation.

3. Specify the SHASPNL0 and SBLSPNL0 libraries that correspond to the
system in the dump in the first position in the ISPPLIB concatenation.

Notes:

1. IPCS requires libraries in addition to the libraries that JES2 uses. You might
need to provide other concatenations. For more information see [z/OS TSO/E Customization](#).

2. If dump analysis leads into data structures for other elements or products, you
might need to add more data sets to the concatenations to complete the
diagnosis. Refer to the appropriate product publications for information about
establishing the correct IPCS environments for diagnosing other elements and
products.

JES2 IPCS support install verification

Your JES2 IPCS support may be at the wrong level if you are unable to use JES2
IPCS support to analyze a dump and experience any of the following:

- JES2 control block structure names aren’t recognized
- Panels aren’t available or they’re out of date
- Dump data doesn’t line up with JES2 formatters
- Numerous error messages are issued

Procedure to verify your JES2 IPCS support level

Use the following procedure to verify your JES2 IPCS support level. This procedure
can detect many, but not all, install and service level problems.

Ensure you have the correct JES2 IPCS PARMLIB member

Go to IPCS option 2.6 (or issue `2.6;L JES2`) and scroll down until you find “JES2”
as shown in the following example:
Ensure the JES2 FMID in the panel matches the JES2 FMID in the dump you are diagnosing.

Ensure that the JES2 service level in the dump you’re diagnosing is within the service level range shown in the panel. See “Using IPCS panels to analyze JES2 data in a dump” on page 89 to determine the JES2 FMID and service level.

Note: The service level for a given JES2 release is set in the &J2SLVL assembly time variable. &J2SLVL is initially zero for each release and increases when significant changes are shipped in the service stream. See “Determining the JES2 Release Level” in [z/OS JES2 Installation Exits](https://www.ibm.com/support/knowledgecenter/SS5275_1.10.0/com.ibm.mvs.jes2.doc/r_determiningև_s2_level.html).

Ensure you have the correct JES2 IPCS panel library

Go to IPCS option 2.6 (or issue 2.6;S JES2) and select JES2 to display the primary JES2 panel as shown in the following example:
Ensure the JES2 FMID in the panel matches the JES2 FMID in the dump you are diagnosing.

Ensure that the JES2 service level in the dump you're diagnosing is within the service level range shown in the panel. See “Using IPCS panels to analyze JES2 data in a dump” on page 89 to determine the JES2 FMID and service level.

Note: The IPCS service level for a given JES2 release is set in the &J2_IPCS_LEVEL assembly time variable. &J2_IPCS_LEVEL is initially zero for each release and increases with changes to either the JES2 control block mappings, data structures, or IPCS formatters that are changed significantly in the service stream. See “Determining the JES2 release level” in z/OS JES2 Installation Exits.

Ensure you have the correct JES2 SHASMIG library

To Display the modules linked with HASMFMTM, issue the following IPCS command:

```
IP VERBX HASMFMTM 'JES2,999'
```

to obtain a display shown in the following example:
Ensure JES2 FMID in display matches JES2 FMID in the dump you're diagnosing.

Ensure JES2 service level in the dump you're diagnosing is within the usable range shown in the display. See "Using IPCS panels to analyze JES2 data in a dump" to determine the JES2 FMID and service level.

Note: The IPCS service level for a given JES2 release is set in the &J2_IPCS_LEVEL assembly time variable. &J2_IPCS_LEVEL is initially zero for each release and increases with changes to either the JES2 control block mappings, data structures, or IPCS formatters that are changed significantly in the service stream. See "Determining the JES2 release level" [z/OS JES2 Installation Exits.

Using IPCS panels to analyze JES2 data in a dump

Your Time Sharing Options/Extensions (TSO/E) logon procedure should include the data sets that contain the JES2 panels, models, and find routines. If the logon procedure does not contain these data sets, you can create a TSO/E CLIST or a Restructured Extended Executor Language (REXX™) exec to concatenate the needed data sets with other data sets you need for ISPF. See [z/OS MVS IPCS User's Guide](#) and [z/OS MVS IPCS Customization](#) for information about allocating these libraries.

From the JES2 Component Data Analysis menu, you can select the information you want to display from the dump. You can request dump information based on job and job output control blocks, devices, processors, subtasks, network control blocks, and MAS members. Most of the options will place you at another panel to request...
more information. All of the panels have help screens to aid you in data entry, and the details of those panels will not be repeated here.

Use the JES2 base display for every dump containing JES2 data, including dumps of jobs executing under JES2 control. This display includes information about the JES2 subsystem and reports numerous exception conditions.

The following example JES2 base display reports a common problem where the JES2 IPCS support doesn't match the JES2 in the dump:

```
*** JES2 Base Display ***
Subsystem "JES2" is in address space ASID(X'0017')
Dump for JES2 release="z/OS 1.5", Product level=35, Service level=0 (pointed to by SSCTSUSE); CVTPRODI=HBB7708
Maximum extended region size for "JES2" is 1,928M (per LDAELIM)
*** WARNING: ASCBSDP1=80
System set non-dispatchable and this ASCB is not exempt (per ASCBSSND bit)
*** WARNING: "JES2" abending, abended, or hot starting (per CTHASP in $HCCT)
*** NOTICE: $QSUSE is in effect (per $QSONDA bit in $STATUS in $HCT)
*** WARNING: This member is terminating (per $SYSEXIT bit in $STATUS in $HCT)
*** NOTICE: Checkpoint is reserved (per $CKPTRSV bit in $STATUS in $HCT)
*** NOTICE: Update mode $PREBERTs exist ($PBELST=0 in $HCT)
$HCCT: 00846630
+0000 CCTVRSN.. 0A RSV...... 00000000 000000
+0008 CCTOFSTB. 0729A050 CCTLMT1.. 07365080 CCTPVRSN. SP 5.3.0
+0018 CCTBLNKS.
+0038 CCTVERSOS. 00000000 00000000 00000000 00000000 00000000
+004C 00000000 00000000 00000000 00000000 00000000
+0060 00000000 00000000 00000000 00000000 00000000
+0074 00000000
+0078 CCTFFS... FFFFFFFFFFF FFFFFFFFFFF FFFFFFFFFFF FFFFFFFFFFF FFFFFFFFFFF
+008C FFFFFFFFFFF FFFFFFFFFFF FFFFFFFFFFF FFFFFFFFFFF FFFFFFFFFFF
+0090 FFFFFFFFFFF FFFFFFFFFFF FFFFFFFFFFF FFFFFFFFFFF FFFFFFFFFFF
+0094 FFFFFFFFFFF
+0098 CCTNEG1.. FFFFFFFFFFF CCTF1.... 00000001 CCTF2.... 00000002
+00C0 CCTF4.... 00000004 CCTF6.... 00000006 CCTF8.... 00000008
+00CC CCTF12... 0000000C CCTF16... 00000010 CCTF255.. 000000FF
```

Using the CBFORMAT command to display JES2 control blocks

You can use the CBFORMAT command to display the control blocks in Table 40 (using the STRUCTURE(structurename) parameter to specify the structure).

Note: In some cases, the structure name is actually the name of a DSECT within a macro (preceded by the "$" symbol). For example, $BERTIE corresponds to the BERTIE DSECT within the $BERT macro. In most cases, the structure name and the macro name are the same.

Table 40. JES2-Related Control Blocks Supported by the IPCS CBFORMAT Command

<table>
<thead>
<tr>
<th>IPCS Structure Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ACE</td>
<td>Automatic Command Element</td>
</tr>
<tr>
<td>$ACT</td>
<td>Automatic Command Table</td>
</tr>
<tr>
<td>$APT</td>
<td>NJE/SNA Application Table</td>
</tr>
<tr>
<td>$ARMG</td>
<td>ARM Support JESXCF Message</td>
</tr>
<tr>
<td>$BAT</td>
<td>Buffer Auxiliary Table</td>
</tr>
</tbody>
</table>
Table 40. JES2-Related Control Blocks Supported by the IPCS CBFORMAT Command (continued)

<table>
<thead>
<tr>
<th>IPCS Structure Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SBERT</td>
<td>Block Extension Reuse Table. Specify VIEW(X'0600') on the CBFORMAT command</td>
</tr>
<tr>
<td>$SBERTIE</td>
<td>Length and ID of BERT data (BERTIE DSECT in $SBERT macro)</td>
</tr>
<tr>
<td>$SBERTI0</td>
<td>Lock, chaining fields, key (BERTI0 DSECT in $SBERT macro)</td>
</tr>
<tr>
<td>$SBERTTAB</td>
<td>Table pairs to define BERTs (BERTTAB DSECT in module HASPTABS)</td>
</tr>
<tr>
<td>$SBRTMAP</td>
<td>Maps BERTIE name to ID (BRTMAP DSECT in $SBERT macro)</td>
</tr>
<tr>
<td>$SBRTTRANS</td>
<td>ECSA tables reflecting $SBERTTAB entries (BRTRANS DSECT in $SCATBERT macro)</td>
</tr>
<tr>
<td>$SBTE</td>
<td>Bad track group element</td>
</tr>
<tr>
<td>$BUFFER</td>
<td>Buffer DSECT</td>
</tr>
<tr>
<td>$SCADDR</td>
<td>Common Storage Address Table</td>
</tr>
<tr>
<td>$CAT</td>
<td>Class Attribute Table</td>
</tr>
<tr>
<td>$CATBERT</td>
<td>Collector Attribute Table for BERTs</td>
</tr>
<tr>
<td>$SCHARJOE</td>
<td>Job Output Element (Similar to $JOE, but forces the JOE to format as a Characteristic-JOE regardless of its type)</td>
</tr>
<tr>
<td>$CKB</td>
<td>Checkpoint Block (CKB DSECT in $CK macro)</td>
</tr>
<tr>
<td>$CKG</td>
<td>Checkpoint Generalized Parameter List (CKG DSECT in $CKGPAR macro)</td>
</tr>
<tr>
<td>$CKM</td>
<td>Checkpoint Inter-Member Communications Area</td>
</tr>
<tr>
<td>$CKPRECV</td>
<td>Checkpoint Recovery Parameter List</td>
</tr>
<tr>
<td>$CKW</td>
<td>Checkpoint Work Area</td>
</tr>
<tr>
<td>$CKX</td>
<td>Checkpoint Reconfiguration JESXCF Messages</td>
</tr>
<tr>
<td>$CMB</td>
<td>Console Message Buffer</td>
</tr>
<tr>
<td>$CPINDEX</td>
<td>Cell Pool Index Table</td>
</tr>
<tr>
<td>$CPMASTR</td>
<td>Cell Pool Master Element</td>
</tr>
<tr>
<td>$CVCB</td>
<td>Checkpoint Version Control Block</td>
</tr>
<tr>
<td>$DAS</td>
<td>Direct Access Spool Data Set On the CBFORMAT command specify one of the following VIEWs: - VIEW(X'0201') for a checkpoint resident $DAS - VIEW(X'0202') for a $DAS in common storage</td>
</tr>
<tr>
<td>$DCNT</td>
<td>Device Control Table</td>
</tr>
<tr>
<td>$DSB</td>
<td>Data Space Control Block</td>
</tr>
<tr>
<td>$DSCT</td>
<td>Data Set Control Table</td>
</tr>
<tr>
<td>$DTE</td>
<td>Daughter Task Element</td>
</tr>
<tr>
<td>$DWA</td>
<td>$DILBERT Work Area</td>
</tr>
<tr>
<td>$ERA</td>
<td>Error Recovery Area</td>
</tr>
<tr>
<td>$EVENT</td>
<td>PERFDATA Events</td>
</tr>
<tr>
<td>$EVT</td>
<td>ENF LISTEN Event</td>
</tr>
<tr>
<td>$EZA</td>
<td>EZASMI Work Area</td>
</tr>
<tr>
<td>$FMH</td>
<td>SNA Function Management Header</td>
</tr>
</tbody>
</table>
Table 40. JES2-Related Control Blocks Supported by the IPCS CBFORMAT Command (continued)

<table>
<thead>
<tr>
<th>IPCS Structure Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$FSACB</td>
<td>FSA Control Block</td>
</tr>
<tr>
<td>$FSAXB</td>
<td>FSA Control Block Extension</td>
</tr>
<tr>
<td>$FSSCB</td>
<td>FSS Control Block</td>
</tr>
<tr>
<td>$FSSXB</td>
<td>FSS Control Block Extension</td>
</tr>
<tr>
<td>$GPQE</td>
<td>General Purpose Subtask Queue Element</td>
</tr>
<tr>
<td>$HASXB</td>
<td>HASP Address Space Extension Block</td>
</tr>
<tr>
<td>$HASB</td>
<td>HASP Address Space Block</td>
</tr>
<tr>
<td>$HCCT</td>
<td>HASP Common-Storage Communication Table</td>
</tr>
<tr>
<td>$HCT</td>
<td>HASP Communication Table</td>
</tr>
<tr>
<td>$HFAM</td>
<td>HASP File Allocation Map</td>
</tr>
<tr>
<td>$HFAME</td>
<td>HASP File Allocation Map Entry</td>
</tr>
<tr>
<td>$HFCT</td>
<td>HASP FSS Communication Table</td>
</tr>
<tr>
<td>$HJCT</td>
<td>JES2 Monitor Communication Table</td>
</tr>
<tr>
<td>$ICE</td>
<td>Interface Control Element</td>
</tr>
<tr>
<td>$INITST</td>
<td>JES2 Initialization Statistics (INITSTAT DSECT in $PERFCB macro)</td>
</tr>
<tr>
<td>$IOT</td>
<td>Input/Output Table</td>
</tr>
<tr>
<td>$IRE</td>
<td>Internal Reader Tracking Element</td>
</tr>
<tr>
<td>$IRIS</td>
<td>Internal Reader Init Statement</td>
</tr>
<tr>
<td>$IRWD</td>
<td>Internal Reader Work DSECT</td>
</tr>
<tr>
<td>$JCT</td>
<td>HASP Job Control Table</td>
</tr>
<tr>
<td>$JCTX</td>
<td>Job Control Table Extension</td>
</tr>
<tr>
<td>$JIB</td>
<td>JOE Information Block</td>
</tr>
<tr>
<td>$JIBX</td>
<td>JOE Extended Information Block</td>
</tr>
<tr>
<td>$JNT</td>
<td>Job Number Table</td>
</tr>
<tr>
<td>$JOA</td>
<td>Artificial JOE</td>
</tr>
<tr>
<td></td>
<td>Formats either:</td>
</tr>
<tr>
<td></td>
<td>• An artificial JOE built by JES2 from its component parts using the $DOGJOE service</td>
</tr>
<tr>
<td></td>
<td>• A JOE residing in the in-storage copy of the checkpoint and built by JES2 IPCS support from its component parts and then formatted as a JOA</td>
</tr>
<tr>
<td>$JOE</td>
<td>Job Output Element</td>
</tr>
<tr>
<td>$JOX</td>
<td>Job Output Element Extension (Only JOE field names defined for the JOX CTENT are formatted)</td>
</tr>
<tr>
<td>$JQA</td>
<td>Artificial JQE</td>
</tr>
<tr>
<td></td>
<td>Formats either:</td>
</tr>
<tr>
<td></td>
<td>• An artificial JQE built by JES2 from its component parts using the $DOGJQE service</td>
</tr>
<tr>
<td></td>
<td>• A JQE residing in the in-storage copy of the checkpoint and built by JES2 IPCS support from its component parts and then formatted as a JQA</td>
</tr>
<tr>
<td>$JOB</td>
<td>The BERT Portion of an Artificial JQE</td>
</tr>
<tr>
<td>$JQE</td>
<td>Job Queue Element (Only JQE field names defined for the JQE CTENT are formatted)</td>
</tr>
</tbody>
</table>
Table 40. JES2-Related Control Blocks Supported by the IPCS CBFORMAT Command (continued)

<table>
<thead>
<tr>
<th>IPCS Structure Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$JQX</td>
<td>Job Queue Element Extension (Only JQE field names defined for the JQX CTENT are formatted)</td>
</tr>
<tr>
<td>$JRW</td>
<td>Job Receiver Work Area</td>
</tr>
<tr>
<td>$JTW</td>
<td>Job Transmitter Work Area</td>
</tr>
<tr>
<td>$JWEL</td>
<td>JOE/Writer Exclude List</td>
</tr>
<tr>
<td>$SKAC</td>
<td>Checkpoint Application Copy</td>
</tr>
<tr>
<td>$SKIT</td>
<td>Checkpoint Information Table</td>
</tr>
<tr>
<td>$SKITL</td>
<td>Checkpoint Information Table (Local version that resides in JES2 private area storage, not in checkpoint)</td>
</tr>
<tr>
<td>$SLMD</td>
<td>Limit Monitoring Data</td>
</tr>
<tr>
<td>$SLME</td>
<td>Limit Monitoring Data Element</td>
</tr>
<tr>
<td>$LMDE</td>
<td>Limit Monitoring Data Element</td>
</tr>
<tr>
<td>$SLMT</td>
<td>Load Module Table</td>
</tr>
<tr>
<td>$SMCT</td>
<td>Master Control Table</td>
</tr>
<tr>
<td>$MIT</td>
<td>Module Information Table</td>
</tr>
<tr>
<td>$MODMAP</td>
<td>Module Map for HASJES20 and HASPINIT</td>
</tr>
<tr>
<td>$MONCB</td>
<td>Monitor Address Space Control Table</td>
</tr>
<tr>
<td>$MSTDE</td>
<td>Monitor Sampling Data</td>
</tr>
<tr>
<td>$MSDCSD</td>
<td>Monitor CPU Sampling Data</td>
</tr>
<tr>
<td>$MTQH</td>
<td>Main Task Queue Header</td>
</tr>
<tr>
<td>$MTRB</td>
<td>Main Task Request Block</td>
</tr>
<tr>
<td>$MWT</td>
<td>Monitor Wait Table</td>
</tr>
<tr>
<td>$MWTHDR</td>
<td>Monitor Wait Table Header</td>
</tr>
<tr>
<td>$NAT</td>
<td>Nodes Attached Table Element</td>
</tr>
<tr>
<td>$NCPE</td>
<td>NETSRV Common POST Element</td>
</tr>
<tr>
<td>$NIT</td>
<td>Node Information Table</td>
</tr>
<tr>
<td>$NITP</td>
<td>Node Information Table Path Elements (NITP DSECT in $NIT macro)</td>
</tr>
<tr>
<td>$NSRCT</td>
<td>NETSRV Rolling Trace area</td>
</tr>
<tr>
<td>$NSACT</td>
<td>Network Subnet Anchor Table Entry</td>
</tr>
<tr>
<td>$NSCT</td>
<td>NETSRV Control Table</td>
</tr>
<tr>
<td>$SSST</td>
<td>NETSRV Socket Table</td>
</tr>
<tr>
<td>$NSWE</td>
<td>NETSRV Subtask Work Element</td>
</tr>
<tr>
<td>$SODPARM</td>
<td>Output Descriptor Parameter Block</td>
</tr>
<tr>
<td>$SPAD</td>
<td>PROCLIB Allocation Descriptor</td>
</tr>
<tr>
<td>$PADDR</td>
<td>Private Storage Routine Address Table</td>
</tr>
<tr>
<td>$PADE</td>
<td>PROCLIB Allocation Descriptor Element</td>
</tr>
<tr>
<td>$PREUSER</td>
<td>PREBERT User Stack Element</td>
</tr>
<tr>
<td>$PBBLK</td>
<td>HAM Protected Block</td>
</tr>
<tr>
<td>$PCE</td>
<td>Processor Control Element</td>
</tr>
<tr>
<td>$PCL</td>
<td>Persistent Collection Line Element</td>
</tr>
<tr>
<td>$PCLJT</td>
<td>PCL Job Transmitter area</td>
</tr>
<tr>
<td>IPCS Structure Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>$PCLJR</td>
<td>PCL Job Receiver area</td>
</tr>
<tr>
<td>$PCLST</td>
<td>PCL SYSOUT Transmitter area</td>
</tr>
<tr>
<td>$PCSR</td>
<td>PCL SYSOUT Receiver area</td>
</tr>
<tr>
<td>$PCT</td>
<td>Path Manager Control Table</td>
</tr>
<tr>
<td>$PDB</td>
<td>Peripheral Data Definition Block</td>
</tr>
<tr>
<td>$PERFCB</td>
<td>Performance Data Anchor Control Block</td>
</tr>
<tr>
<td>$PIT</td>
<td>Partition Information Table</td>
</tr>
<tr>
<td>$PPB</td>
<td>$PCE Performance Block (PPB DSECT in $PERFCB macro)</td>
</tr>
<tr>
<td>$PSCBD</td>
<td>$POST Performance Block (PSCBD DSECT in $PERFCB macro)</td>
</tr>
<tr>
<td>$PRE</td>
<td>Processor Recovery Element</td>
</tr>
<tr>
<td>$PREBERT</td>
<td>Prefix for BERT Processing</td>
</tr>
<tr>
<td>$PRMB</td>
<td>Monitor Probe Message Information Work Area</td>
</tr>
<tr>
<td>$PSO</td>
<td>Process SYSOUT Work Area</td>
</tr>
<tr>
<td>$PSV</td>
<td>Save Area</td>
</tr>
<tr>
<td>$PTPB</td>
<td>$PCE Type Performance Block (PTPB DSECT in $PERFCB macro)</td>
</tr>
<tr>
<td>$QSE</td>
<td>Shared Queue Element</td>
</tr>
<tr>
<td>$RAT</td>
<td>Remote Attribute Table</td>
</tr>
<tr>
<td>$RDT</td>
<td>Remote Destination Table</td>
</tr>
<tr>
<td>$RECY</td>
<td>DAS Recovery Element</td>
</tr>
<tr>
<td>$RJCB</td>
<td>Job Reader Card Buffer</td>
</tr>
<tr>
<td>$SAPID</td>
<td>SYSOUT API Data Area</td>
</tr>
<tr>
<td>$SAVEBEG</td>
<td>Checkpointed area of the $HCT</td>
</tr>
<tr>
<td>$SCANWA</td>
<td>$SCAN Facility Work Area</td>
</tr>
<tr>
<td>$SCID</td>
<td>Summary of Checkpoint Information</td>
</tr>
<tr>
<td>$SCK</td>
<td>NJE/TCP Socket</td>
</tr>
<tr>
<td>$SCQ</td>
<td>Shared Communications Queue Element</td>
</tr>
<tr>
<td>$SDB</td>
<td>Subsystem Data Set Block</td>
</tr>
<tr>
<td>$SFRB</td>
<td>Scheduler Facility Request Block</td>
</tr>
<tr>
<td>$SJB</td>
<td>Subsystem Job Block</td>
</tr>
<tr>
<td>$SJOB</td>
<td>Subsystem Job I/O Buffer</td>
</tr>
<tr>
<td>$SJBX</td>
<td>Subsystem Job Block Extension</td>
</tr>
<tr>
<td>$SPlUD</td>
<td>Space Utilization Description Block</td>
</tr>
<tr>
<td>$SQD</td>
<td>Subtask Queue Descriptor</td>
</tr>
<tr>
<td>$SRW</td>
<td>SYSOUT Receiver Work Area</td>
</tr>
<tr>
<td>$STAC</td>
<td>STATUS and CANCEL Work Element</td>
</tr>
<tr>
<td>$STW</td>
<td>SYSOUT Transmitter Work Area</td>
</tr>
<tr>
<td>$STWORK</td>
<td>General Purpose Subtask Work Area</td>
</tr>
<tr>
<td>$SXADD</td>
<td>Scan Exit Routine Address Table</td>
</tr>
<tr>
<td>$TBUF</td>
<td>TCP/IP Buffer</td>
</tr>
<tr>
<td>$TED</td>
<td>Trace Enablement Descriptor</td>
</tr>
</tbody>
</table>
Table 40. JES2-Related Control Blocks Supported by the IPCS CBFORMAT Command (continued)

<table>
<thead>
<tr>
<th>IPCS Structure Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$TGB</td>
<td>$TGB on the CCTIOERR error queue</td>
</tr>
<tr>
<td>$TGBBLOB</td>
<td>$TGB in the BLOB</td>
</tr>
<tr>
<td>$TRE</td>
<td>Timer Queue Element</td>
</tr>
<tr>
<td>$TRCA</td>
<td>Termination Recovery Control area</td>
</tr>
<tr>
<td>$TRE</td>
<td>JES2 TCB Recovery Element</td>
</tr>
<tr>
<td>$TRX</td>
<td>JES2 TCB Recovery Element Extension</td>
</tr>
<tr>
<td>$WAIT</td>
<td>$WAIT In-line Parameter List</td>
</tr>
<tr>
<td>$WAVE</td>
<td>Work Access Verification Element</td>
</tr>
<tr>
<td>$WLMD</td>
<td>Work Load Manager Data Bundle</td>
</tr>
<tr>
<td>$WORKJOE</td>
<td>Job Output Element (Similar to $JOE, but forces the JOE to format as a Work-JOE regardless of its type)</td>
</tr>
<tr>
<td>$WSA</td>
<td>Work Selection Work Area</td>
</tr>
<tr>
<td>$WSC</td>
<td>JES2 WLM Service Class Queue Anchor</td>
</tr>
<tr>
<td>$WSP</td>
<td>Work Selection Parameter List</td>
</tr>
<tr>
<td>$WTCB</td>
<td>$WAIT Performance Control Block (WTCB DSECT in $PERFCB macro)</td>
</tr>
<tr>
<td>$XECB</td>
<td>Extended Event Control Block</td>
</tr>
<tr>
<td>$XIT</td>
<td>Exit Information Table</td>
</tr>
<tr>
<td>$XMAE</td>
<td>JES2 XCF MAS Member Status Block (XMAQENT DSECT in $XMAS macro)</td>
</tr>
<tr>
<td>$XMAS</td>
<td>Cross MAS Coupling Block</td>
</tr>
<tr>
<td>$XRQ</td>
<td>JES2 XCF Request Block</td>
</tr>
<tr>
<td>$XRT</td>
<td>Exit Routine Table</td>
</tr>
<tr>
<td>JESCT</td>
<td>Job Entry Subsystem Communication Table</td>
</tr>
<tr>
<td>JESCTX</td>
<td>JESCT Pageable Extension (JESPEXT DSECT in JESCT data area)</td>
</tr>
<tr>
<td>JSAB</td>
<td>Job Scheduler Address Space Control Block</td>
</tr>
<tr>
<td>SSCT</td>
<td>Subsystem Communications Vector Table</td>
</tr>
<tr>
<td>SSPJ</td>
<td>Persistent JCL Interface SSOB Extension</td>
</tr>
<tr>
<td>SSVT</td>
<td>Subsystem Vector Table</td>
</tr>
</tbody>
</table>

Using IPCS in batch or line mode

The [Z/OS MVS IPCS User’s Guide](#) contains an example of how to invoke IPCS in a batch job or in line mode using subcommands. To access the JES2 information in the dump, you must enter the following subcommand:

```
VERBEXIT JES2VX 'jesname'
```

This subcommand formats and prints the following information from the dump:
- HCCT
- SHCT
- Current $PCE
- Save areas ($PSVs) related to the current $PCE
- Routine name associated with each SPSV
- JES2 module and offset of the caller, from which each routine was called
- $DCT related to the current $PCE
• $JQE related to the $DCT
• $JOEs related to the $PCE.

The optional parameter, JESNAME, allows the installation to specify the name of a particular JES2 address space to analyze. If JESNAME is not coded, the formatter analyzes the address space with the name JES2.

Assuring JES2 can be serviced using IPCS

CAUTION: IBM does not recommend or support modifications to JES2 source code. If you assume the risk of modifying JES2, then also assure your modifications do not impact JES2 serviceability using IPCS. Otherwise, IBM service LEVEL2 support might not be able to read JES2 dumps taken for problems unrelated to the modifications.

Avoid expanding JES2 control blocks. Use alternatives such as:
1. Use fields dedicated for installation use that appear in many major control blocks. Place your data, or a pointer to your data, in these fields. However, beware of setting storage address in checkpointed or SPOOL resident control blocks.
2. Use $JCTX services rather than modifying $JCT.
3. Use table pairs and dynamic tables. For example, use dynamic $BERTTABs with CBOFF=* instead of modifying $JQE.

This is a partial list. Evaluate your specific situation and take the appropriate action.
Chapter 6. Using symptom records for diagnosis

JES2 creates and writes symptom records to the logrec data set. These records are written for:
 • JES2-detected problems
 • Documenting non-error related JES2 spool space recovery actions

Controlling operator notification of JES2 symptom records

If you want JES2 to notify your installation operator that an error was detected and a symptom record created, specify the SYMREC=YES parameter on the DEBUG initialization statement or $T DEBUG command. Specifying SYMREC=YES, causes JES2 to issue the $HASP805 message when symptom records are created for JES2 detected problems. The message includes the issuing module and a description of the error.

Some JES2 symptom records report non-error related recovery actions such as recovering lost spool space. The $HASP805 message is not issued for non-error related recovery actions. If you create your own symptom records using the $SYMREC macro and want to suppress the $HASP805 message, specify DEBUGMSG=NO on your $SYMTAB macro.

Where to find JES2 symptom records

If you are experiencing JES2 problems or you have created a new JES2 exit, look for JES2 symptom records. Symptom records can be found in:
 • The logrec data set
 • Dumps

Using IPCS to analyze JES2 symptom records

Use the LOGDATA option of the IPCS Component Analysis panel of the IPCS dialog or the VERBEXIT LOGDATA line mode command to display all of the symptom records in the LOGREC buffer of a dump. To locate the JES2 symptom records, search the output for the component identifier of SC1BH. Figure 38 on page 98 shows a sample of a JES2 symptom record.
<table>
<thead>
<tr>
<th>Type:</th>
<th>Symptom Record</th>
<th>Report:</th>
<th>Software Edit Report</th>
<th>Day Year Report Date: 260 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCP:</td>
<td>VS 2 REL 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model:</td>
<td>3090</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial:</td>
<td>140471</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time:</td>
<td>06:41:03.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search Argument Abstract:</td>
<td>PIDS/SC1BH CSECT/SSISFS RIDS/HASCSJFS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Environment:

- CPU Model: 3090
- CPU Serial: 140471
- System: SYSA1
- BCP: MVS
- Release Level of Service Routine: HBB4420
- System Data at Architecture Level: 10
- Component Data at Architecture Level: 10
- System Data: 00000000 00000000 |........|

Component Information:

- Component ID: SC1BH
- Component Release Level: 420
- Service Release Level:
- Description of Function: SJFREQ SWBTU_MERGE FAILURE
- Problem ID: SWBTSYT
- Subsystem ID: JES2

Figure 38. Sample JES2 Symptom Record (Part 1 of 2)
The record contains:

SEARCH ARGUMENT ABSTRACT

The search argument to use when searching problem reporting data bases for a fix for this problem.

SYSTEM ENVIRONMENT

Information about the hardware and software on which the problem occurred.
COMPONENT INFORMATION
Information that identifies the component that detected the error and function
the component was performing when the error occurred.

PRIMARY SYMPTOM STRING
The search argument abstract with an explanation of each of the symptoms in
the abstract.

SECONDARY SYMPTOM STRING
Additional information about the error. This section of the record contains return
and reason codes.

FREE FORMAT COMPONENT INFORMATION
A variable area that contains other information to help isolate the cause of the
problem. Examples of the type of information in this area are:
• Parameter lists
• Input to the function
• Information in work areas.

HEX DUMP OF RECORD
The hexadecimal representation of the record in dump output format. This part
of the record contains the subsections:
• HEADER
• SYMPTOM RECORD

Use the search argument abstract from the record to search problem reporting data
bases for an existing fix for the problem. If no fix exists, report the problem to the
IBM Support Center.

Reporting information from the symptom record to IBM
For all problems report the following information from the record:
• System Environment
 – CPU Model
 – BCP
 – Release Level of Service Routine
 – System Data at Architecture Level
 – Component Data at Architecture Level
• Component Information
 – Component ID
 – Component Release Level
 – Service Release Level (if any)
 – Description of Function
 – Problem ID
 – Subsystem ID
• Primary Symptom String

Use Table 41 on page 101 to determine the other information to report to the IBM
Support Center.
Table 41. Information to Collect from Symptom Record

<table>
<thead>
<tr>
<th>Description of Function (appears under Component Information)</th>
<th>Information to Collect</th>
</tr>
</thead>
</table>
| NCC RECORD REJECTED | • Secondary Symptom String
| | • Free Format Component Information
| | – The Key value
| | – The free format data, which contains NCC the record that JES2 rejected. |
| SJFREQ SWBTU_MERGE FAILURE | • Secondary Symptom String
| | • The decimal return codes.
| | • Free Format Component Information
| | – The Key value
| | – The free format data, which contains the parameter list supplied to the SJFREQ service. |
| SWBTUREQ SPLIT REQUEST FAILURE | • Secondary Symptom String
| | • Free Format Component Information
| | – The Key value
| | – The free format data, which contains the parameter list supplied to the SWBTUREQ service. |
| SWB MODIFY SUBTASK FAILURE | • Secondary Symptom String
| | • Free Format Component Information
| | – The Key value
| | – The free format that which contains:
| | - The SJF services request block
| | - The subtask work area. |
| COPY COUNT OR COPY GROUP COUNT INVALID IN XIT | • Secondary Symptom String
| | • Free Format Component Information
| | – The Key value
| | – The free format data, which contains the copy count and copy group count. |
| $CPOOL ERROR GETTING SMF BUFFERS | • Secondary Symptom String
| | • Free Format Component Information
| | – The Key value
| | – The free format data which contains:
| | - The $CPOOL parameter list.
| | - The extent information parameter list. |
| $CPOOL ERROR IN QUESMFB | • Secondary Symptom String
| | • Free Format Component Information
| | – The Key value
| | – The free format data which contains the cell information parameter list. |
| $CPOOL ERROR IN FRESMFB | • Secondary Symptom String
| | • Free Format Component Information
| | – The Key value
| | – The free format data which contains the cell information parameter list. |
Table 41. Information to Collect from Symptom Record (continued)

<table>
<thead>
<tr>
<th>Description of Function (appears under Component Information)</th>
<th>Information to Collect</th>
</tr>
</thead>
</table>
| ICE FREE FAILED | • Secondary Symptom String
| | • Free Format Component Information
| | – The Key value
| | – The free format data which contains the Interface Control Element (ICE). |
| ICE HAS BEEN FROZEN | • Secondary Symptom String
| | • Free Format Component Information
| | – The Key value
| | – The free format data which contains the Interface Control Element ($ICE). |

JES2 symptom records

Table 42 provides the symptom records that JES2 writes to logrec data set.

Table 42. JES2 Symptom Records

<table>
<thead>
<tr>
<th>Description of Function (appears under Component Information)</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| ALLOCATION ATTEMPT ($STRAK) | A serious error was prevented. During spool allocation, not in the JES2 main task, JES2 determined that a track group marked as available in the track group map is potentially allocated by another job.
| | **System Action:** JES2 does not use the track group and attempts to allocate another.
| | **System Programmer Action:** Contact your IBM Support Center. |
| ALLOCATION ATTEMPT ($TRACK) | A serious error was prevented. During spool allocation, in the JES2 main task, JES2 determined that a track group marked as available in the track group map was still allocated by another job.
| | **System Action:** JES2 does not use the track group and attempts to allocate another.
| | **System Programmer Action:** Contact your IBM Support Center. |
| COPY OR COPY GROUP COUNT INVALID | The copy or copy group count returned from an installation Exit 15 call was too high.
| | **System Action:** JES2 sets the count(s) in error to one.
| | **System Programmer Action:** Correct your installation Exit 15. |
| $CPOOL ERROR GETTING SMF BUFFER | This symptom record accompanied by $ERROR $SG2.
| | $SG2 indicates that while processing a request to get an SMF buffer, $CPOOL services failed to return a cell.
| | **System Action:** If recovery is attempted from this error, SMF processing will be turned off.
<p>| | System Programmer Action: Contact your IBM Support Center. |</p>
<table>
<thead>
<tr>
<th>Description of Function (appears under Component Information)</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| SCPOOL ERROR IN $QUESMFB | This symptom record is accompanied by $DISTERR at label QSMFDIS in HASPNUC.
System Action: JES2 does not write the requested SMF record and the buffer for the SMF record is abandoned.
System Programmer Action: Contact your IBM Support Center. |
| DISTERR | A JES2 disastrous error occurred. This symptom record is issued whether or not a dump is provided. If a dump is provided, MVS recovery termination issues a second symptom record. This symptom record is accompanied by $ERROR $DIS.
$DIS indicates that JES2 encountered a disastrous error. See the preceding $HASP096 message for more diagnostic information.
System Action: JES2 recovers and continues. Other JES2 action is specific to the error identified in the accompanying $HASP095 message. There may also be additional messages describing JES2 actions.
System Programmer Action: Contact your IBM Support Center. |
| DISTERR W/ACTIVE LINKAGE STACK | A JES2 disastrous error occurred. See the preceding $HASP096 message for more diagnostic information.
System Action: JES2 recovers and continues. Other JES2 action is specific to the error identified in the accompanying $HASP095 message. There may also be additional messages describing JES2 actions.
System Programmer Action: Contact your IBM Support Center. |
| ICE FREE FAILED | A serious error was prevented. An attempt was made to free a $ICE that was already freed.
System Action: JES2 continues.
System Programmer Action: Contact your IBM Support Center. |
| ICE HAS BEEN FROZEN | A serious error was prevented. An attempt was made to process an $ICE that was not in a valid state.
System Action: JES2 does not attempt to use this $ICE.
System Programmer Action: Contact your IBM Support Center. |
| JQASUMSK DOES NOT REFLECT VOLSER | JES2 found a bit missing in the SPOOL used mask (JQASUMSK).
System Action: JES2 corrects the missing volumes it discovers in the SPOOL used mask.
System Programmer Action: Contact your IBM Support Center. |
| NCC RECORD REJECTED | The network path manager (NPM) received a non-valid network connection control (NCC) record.
System Action: JES2 ignores the non-valid NCC record.
System Programmer Action: Contact your IBM Support Center. |
<table>
<thead>
<tr>
<th>Description of Function (appears under Component Information)</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| NETWORK HEADER VALIDATION ERROR | JES2 detected a non-valid network job header or network data set header.
System Action: JES2 causes a negative close on the network device.
System Programmer Action: Contact your IBM Support Center. |
| NODAL MESSAGE RECORD INVALID | JES2 received a nodal message record (NMR) that is not valid.
System Action: JES2 ignores the non-valid NMR.
System Programmer Action: Contact your IBM Support Center. |
| SJFREQ SWBTU_MERGE FAILURE | An attempt to merge scheduler work blocks (SWBs) for an application (such as SDSF) failed.
System Action: JES2 aborts the merge request. A return code of 8 is returned in register 15 to the issuer of the merge request.
System Programmer Action: Contact your IBM Support Center. |
| SPOOL INVALID PURGE ATTEMPT | A serious error was prevented. During spool unallocation, a track group purportedly belonging to a job or output group being purged was found to be allocated to a different job or to be not allocated at all.
System Action: JES2 ignores the track group.
* If the track group does in fact belongs to a different job, it will be freed on behalf of that job at a later time. If the job purported to be the owner later purges without freeing the track group, then the track group will be recovered by JES2 spool examination and recovery processing within seven days from the time the purported owning job purges.
* If JES2 finds the track group is already marked “not allocated” in the master track group map, then no further action is needed.
System Programmer Action: Contact your IBM Support Center. |
| SPOOL TG RECOVERY (BLOB/PURGE) | JES2 found an unclaimed track group allocated to a cache (called the BLOB) for a member being warm started. This condition came about because the member did not end as a result of a $PJES2 or $PJES2,TERM command and could be precipitated by:
* An MVS system failure, system reset, or IPL while JES2 was active
* An IPL after a $PJES2,ABEND or $PJES2,ABEND,FORCE command
System Action: The track group is made available for allocation.
System Programmer Action: None. This is an informational record only, unless accompanied by other symptom records or disastrous errors. |
| SPOOL TRACKGROUP RECOVERY | JES2 found a track group that is not owned or listed in the master track group map.
System Action: JES2 makes the track group available for allocation.
System Programmer Action: None. This is an informational record only, unless accompanied by other SYMRECs or disastrous errors. |
Table 42. JES2 Symptom Records (continued)

<table>
<thead>
<tr>
<th>Description of Function (appears under Component Information)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWB MODIFY SUBTASK ERROR</td>
<td>An attempt to modify a scheduler work block (SWB) buffer for an application (such as SDSF) failed.</td>
</tr>
<tr>
<td>System Action: JES2 aborts the modify request. The target scheduler block will not be modified. A return code is returned in the Subsystem Option Block (SSOB), field SSORETN, and a reason code is returned in the Subsystem Option Block Extension (IAZSSSF), field SSSFREAS.</td>
<td></td>
</tr>
<tr>
<td>System Programmer Action: Contact your IBM Support Center.</td>
<td></td>
</tr>
<tr>
<td>SWBTUREQ SPLIT REQUEST FAILURE</td>
<td>An attempt to modify a scheduler work block (SWB) for an application (such as SDSF) failed.</td>
</tr>
<tr>
<td>System Action: JES2 aborts the modify request. The target scheduler block will not be modified. A return code is returned in the Subsystem Option Block (SSOB), field SSORETN, and a reason code is returned in the Subsystem Option Block Extension (IAZSSSF), field SSSFREAS.</td>
<td></td>
</tr>
<tr>
<td>System Programmer Action: Contact your IBM Support Center.</td>
<td></td>
</tr>
<tr>
<td>USER ADDRESS SPACE DISTERR</td>
<td>JES2 has encountered an I/O error reading or writing a control block to SPOOL from the user environment. The error could have been returned from IOS or it could be a logical error (such as the control block eyecatcher or job key does not match).</td>
</tr>
<tr>
<td>System Action: The error is returned to the caller of $CBIO. JES2’s response depends on the reason for the I/O.</td>
<td></td>
</tr>
<tr>
<td>System Programmer Action: If the error is the result of a problem with the SPOOL device, correct the problem with the device and retry the operation. If this is a logical problem with the data being processed, contact your IBM support center.</td>
<td></td>
</tr>
<tr>
<td>$WTO PARAMETER LIST ERROR</td>
<td>JES2 detected an incorrect $WTO parameter list.</td>
</tr>
<tr>
<td>System Action: JES2 continues with the incorrect $WTO parameter list. JES2 corrects the $WTO parameter list in some simple cases.</td>
<td></td>
</tr>
<tr>
<td>System Programmer Action: See Diagnostic procedures for $WTO PARAMETER LIST ERROR symptom records for more information on diagnosing the problem.</td>
<td></td>
</tr>
<tr>
<td>ZAPJOB Request Processed</td>
<td>A request for a ZAPJOB initialization statement or command was processed for the $JQE that appears in the record.</td>
</tr>
<tr>
<td>System Action: JES2 continues without the job represented by the JQE.</td>
<td></td>
</tr>
<tr>
<td>System Programmer Action: None.</td>
<td></td>
</tr>
</tbody>
</table>

Diagnostic procedures for $WTO PARAMETER LIST ERROR symptom records

$WTO PARAMETER LIST ERROR symptom records can be caused by problems in JES2 or in JES2 installation exits. Possible causes include the incorrect use of $WTO, $WTOR and $BLDMSG macro instructions and related data, or the incorrect manipulation of a $CMB data area by a JES2 installation exit 10 routine. Typically, multiple $WTO PARAMETER LIST ERROR symptom records are created for a given type of problem. Format log data from the logrec data set using EREP and...
search for "$WTO PARAMETER LIST ERROR". See the EREP User’s Guide for more information on formatting the log data set.

JES2 validates the $WTO parameter list at key points in JES2 processing and creates a $WTO PARAMETER LIST ERROR symptom record if it discovers an error. Additionally, JES2 corrects some errors. However, JES2 cannot detect or correct every possible error. Some errors cause problems in later processing, including causing JES2 to place CMBs on a queue where they could remain indefinitely. In some cases, this may result in a $HASP050 resource shortage message for CMBs. See “Resource shortages” on page 11 for more information on handling resource shortages.

Finding the data

You will need the secondary symptom string and the free format component information to diagnose the symptom records. The secondary symptom string includes one of the following keywords:

BEFEXIT
Indicates error found before entering EXIT 10.

AFTEXIT
Indicates error found after EXIT 10 returned.

SPOOLIN
Indicates error found in a parameter list passed from another member of the MAS.

The format component information contains data mapped starting at symbol CMBWTOPL in the $CMB data area. Subtract the offset of the CMBWTOPL symbol to the determine the offset of $CMB fields in the free format component information.

Determining why JES2 created a symptom record

Use the secondary symptom string keywords to help determine where the error first occurred. Multiple symptom records can be issued for a $WTO parameter list error as the $CMB data area that contains it moves through JES2 processing on one member of a MAS, on another member of the MAS, and on other nodes.

• If the secondary symptom string indicates SPOOLIN, the parameter list came from another member of your installation’s MAS. Check for parameter list error symptom records on the other members of the MAS and continue your diagnosis with those records.

• If the secondary symptom string indicates BEFEXIT and is not preceded by a corresponding record with SPOOLIN, the parameter list originated on this member or came from a NJE line connected to this member. Use the following guidelines when checking fields CMBFMNOD and CMBFMQUL in the parameter list (remember, the parameter list starts at symbol CMBWTOPL) to determine the origin node and member.
 – If the parameter list came from another node in a Nodal Message Record (NMR), use JES2 trace ID 4 or 5, as appropriate, to capture the NMR exactly as you received it, then contact the people at the sending node to continue diagnosing the problem.
 – If the parameter list originated on this node or if CMBFMNOD and CMBFMQUL are both zero, look at other parameter list fields including the message or command text to help determine who issued the message or command.

• If the secondary symptom string indicates AFTEXIT and is not preceded by a corresponding record with BEFEXIT, then installation exit 10 has corrupted the parameter list.
Correcting the error

When you determine the cause of the error, take one of the following steps, as appropriate:

- Contact your IBM Support Center.
- Correct your installation exit.
- If the $WTO parameter list came from another node, use JES2 trace ID 4 or 5 to capture the NMR containing the incorrect information. Contact the people at the site that sent the incorrect NMR for assistance.
Chapter 7. JES2 Health Monitor

The JES2 health monitor can assist in determining why JES2 is not responding to requests. It does this through the use of highlighted messages and operator commands. JES2 issues "monitor" messages when conditions exist that can seriously impact JES2 performance. These conditions could indicate problems with the operating system or JES2. They can also indicate transient conditions (such as a multi-address space dump) that is impacting JES2. Conditions that trigger messages are time related and are not otherwise reported by JES2. Other conditions that are the result of operator actions or shortages do not generate messages but are instead displayed in response to monitor commands.

When you suspect a JES2 problem, use the $JD STATUS command to determine if the monitor has detected a possible cause. This command displays information on any condition the monitor has detected that could impact JES2 including conditions for which a highlighted message has been issued. The monitor is single system in nature. Because some problems can have a multi-system impact, the command might need to be issued (or routed) to multiple member of the MAS.

Monitor processing

The JES2 health monitor runs in a separate address space from JES2. There is a corresponding monitor address space for every JES2 address space. The address space name is jes2MON where jes2 is the name of the subsystem that is being monitored. Within the monitor address space, a number of tasks perform the functions needed to determine how the JES2 address space is performing. Use the $JD MONITOR command to display the actual tasks and their current status. This command displays status information on each monitor task and documents the service level of each module that makes up the monitor.

Because most cases of JES2 not responding to requests are caused by the JES2 main task not operating correctly, that is the monitor's primary area of focus. There are some cases where subtasks can cause JES2 to not function properly. Most notable are cases when requests to the security product are not completing in a timely manner. The monitor does not monitor requests made to JES2 subtasks.

The monitor uses cross–memory services to examine data in the JES2 address space. The monitor collects data by sampling values at regular intervals and by extracting data needed to build command responses. This process is designed to have a minimal impact on JES2 operations. However, because the processing is not serialized, it is possible that minor discrepancies could arise in the data it collects and displays. Though rare, this can result in messages that display conditions that could not or did not occur. For example, the monitor collects the current instruction address, PCE address, and exit number in three separate operations. It is possible that the current PCE was in the process of transition and the address does not represent code being run by the exit, or the exit is not one that is used by the PCE. Although the condition that caused the message is valid, and each item of information was valid when collected, the combination of the specific information displayed is not correct. A subsequent $JD STATUS command should provide correct information.
Setting up the monitor

The monitor does not require any special setup. It is started automatically when JES2 is started and shuts down when JES2 terminates normally. There are no initialization statements, PARMLIB or PROCLIB statements that need to be updated. However, you may want to define the address space to your security product. The monitor does not access any RACF–protected resources; however, JES2 builds an ACEE based on attributes in the STARTED class. You should also ensure that it is classified to WLM consistent with your JES2 classification.

You cannot turn the monitor off. If the address space terminates because of error or operator command, the JES2 address space will restart the monitor. The overhead associated with the address space is minimal (less than 1% of a CPU). Repeated failures and restarts of the monitor address space will not impact normal system operations.

Monitor Alert Messages

The JES2 health monitor examines the activity of the JES2 main task looking for conditions that indicate a problem. The following table shows which conditions are monitored.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Monitor Message Number</th>
<th>Repeat interval</th>
<th>Condition Normal Message</th>
<th>Exclusive Alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main task in an MVS wait (other than the normal wait)</td>
<td>$HASP9201</td>
<td>30 Seconds</td>
<td>$HASP9301</td>
<td>Yes</td>
</tr>
<tr>
<td>Main task in a loop</td>
<td>$HASP9202</td>
<td>30 Seconds</td>
<td>$HASP9301</td>
<td>Yes</td>
</tr>
<tr>
<td>PCE dispatch for a long period</td>
<td>$HASP9203</td>
<td>30 Seconds</td>
<td>$HASP9301</td>
<td>Yes</td>
</tr>
<tr>
<td>Main task never entering normal MVS wait</td>
<td>$HASP9204</td>
<td>30 Seconds</td>
<td>$HASP9301</td>
<td>Yes</td>
</tr>
<tr>
<td>Main task waiting for the local lock</td>
<td>$HASP9208</td>
<td>30 Seconds</td>
<td>$HASP9301</td>
<td>Yes</td>
</tr>
<tr>
<td>Main task is non-dispatchable</td>
<td>$HASP9209</td>
<td>30 Seconds</td>
<td>$HASP9301</td>
<td>Yes</td>
</tr>
<tr>
<td>Main task waiting because of a page fault</td>
<td>$HASP9210</td>
<td>30 Seconds</td>
<td>$HASP9301</td>
<td>Yes</td>
</tr>
<tr>
<td>Main task not running (at normal wait for extended period of time)</td>
<td>$HASP9211</td>
<td>30 Seconds</td>
<td>$HASP9301</td>
<td>Yes</td>
</tr>
<tr>
<td>MVS not dispatching JES2 main task</td>
<td>$HASP9212</td>
<td>30 Seconds</td>
<td>$HASP9301</td>
<td>Yes</td>
</tr>
<tr>
<td>Checkpoint lock held for a long period</td>
<td>$HASP9207</td>
<td>30 Seconds</td>
<td>$HASP9302</td>
<td>No</td>
</tr>
<tr>
<td>PCE in a wait for a BERT lock</td>
<td>$HASP9205</td>
<td>120 Seconds</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>PCE in a wait for a JOB lock</td>
<td>$HASP9206</td>
<td>120 Seconds</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Long JES2 command processing</td>
<td>$HASP9213</td>
<td>120 Seconds</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>

These conditions can occur normally when JES2 is running. However, if the condition persists for a long enough period of time, that might indicate a problem. When JES2 detects a condition that needs monitoring, it is considered an incident. Incidents are divided into three categories depending on their duration.

- **Normal processing:** below a low time threshold (less than 5 seconds), incidents are considered part of normal processing.
• **Tracking:** If the low-time interval is exceeded, the monitor tracks it. Tracking involves creating a data element that describes the incident. These elements can be displayed on a $JD JES command. One condition can trigger multiple incidents to be tracked. For example, a PCE that is looping will trigger a main task loop, a long PCE dispatch, main task not entering normal MVS wait, and checkpoint lock held. The monitor tracks each of the incidents as they cross the low-time threshold.

• **Alerts:** JES2 issues alerts when an incident that is being tracked crosses a second threshold. This threshold is not a time threshold but rather a sampling threshold. Before an incident becomes an alert, a specific number of samples must be collected indicating the condition still exists. On a normally running system, this range is about 8-20 seconds depending on the condition being monitored. This prevents situations where nothing is running in the operating system (including the sampling code) from appearing as a problem specific to JES2. When an incident is considered an alert, JES2 issues a highlighted message to the console. If the alert persists, the highlighted message is re-issued at the interval specified in [Table 43 on page 110](#). When JES2 issues an alert, the monitor stops tracking other incidents if it considers the alert to be exclusive. This is intended to focus attention on the primary problem (for example, a JES2 loop) rather than the secondary effect (main task is not waiting). Alerts for the checkpoint lock being held are not exclusive because of the multi-system impact that the lock being held can have. This alert is designed to focus attention on the correct system when multiple members of a JES2 MAS are not responding.

When the condition that caused the alert no longer exists, JES2 deletes the highlighted message. For condition relating to the main task, JES2 issues a $HASP9301 message when all conditions being tracked or alerted have been cleared. Similarly, if the checkpoint lock was held for a long period, JES2 issues message $HASP9302 when the lock is released.

Monitor notices

In addition to alerts and tracking messages, the monitor can display information on conditions that are not time related in nature. These are called notices and they are only displayed in response to $JD STATUS and $JD JES commands. Notices are conditions that arise from operator commands, resource shortages, or system errors. Often, the information that is displayed in notices is available in message response to other commands and summarized in the notice. Following is a list of some example notices.

- $HASP9151 JES2 ADDRESS SPACE NOT ACTIVE– compare with $HASP095 JES2 CATASTROPHIC ERROR IABEND...
- $HASP9154 CKPT RECONFIGURATION IN PROGRESS – compare with $HASP285 JES2 RECONFIGURATION status
- $HASP9158 JES2 PROCESSING STOPPED, $S NEEDED – compared with $HASP623 MEMBER DRAINING
- $HASP9161 NOT ALL SPOOL VOLUMES ARE AVAILABLE – compare with $HASP424 MEMBER volser IS NOT MOUNTED

[More information](#) on the causes and responses to notices can be found in [z/OS JES2 Messages](#).
Resource monitoring

As part of monitor sampling, the monitor collects resource utilization information for the major JES2 resources. The monitor also collects the low, high, average, and current utilization of each resource and reset it at the start of every hour. Use the $JD DETAILS command to display this information. Though this command displays information similar to some JES2 display command, it provides a single command that can display the information even when JES2 is not responding to normal commands.

Similar to resource utilization, the monitor maintains statistics on JES2 main task CPU samples. The samples are broken down into a number of major categories. The sampling statistics for the current hour can also be displayed in response to the $JD DETAILS command.

Monitor commands

The monitor supports a number of commands to display information it is tracking. All monitor commands start with the JES2 command prefix followed by a ‘$’. These commands are routed directly to the monitor address space and are not seen by the JES2 address space. As a result, there are some limitations on monitor commands; following is a list of those limitations.

- JES2 Exit 5 is not called for monitor commands.
- JES2 Exit 10 is not called for monitor command responses.
- Monitor commands can only originate from MVS command sources (consoles, SVC 34, and so on).
- Monitor command are not accepted from JES2 command sources such as internal readers, initialization data sets, $M commands, or RJE and NJE sources.
- Console message display and limit definitions specified on the CONDEF initialization statement through CMDNUM=, RDIRAREA=, DISPLEN=, DISPNUM=, REDIRECT= parameters do not apply to monitor commands.
- Monitor commands can be the object of a JES2 automatic command.

Table 44 lists all the monitor commands and their intended use.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$JD DETAILS</td>
<td>Displays current hour statistics for resource utilization and CPU sample statistics. The MVS wait table is also displayed.</td>
</tr>
<tr>
<td>$JD HISTORY</td>
<td>Displays up to 72 hours worth of resource utilization and CPU sample statistics. The display from this command can be very large (up to 73 lines per resource monitored).</td>
</tr>
<tr>
<td>$JD JES</td>
<td>Displays current JES2 information including alerts, trackings, and notices.</td>
</tr>
<tr>
<td>$JD MONITOR</td>
<td>Displays status information for each of the monitor subtasks and service information for each module that makes up the monitor.</td>
</tr>
<tr>
<td>$JD STATUS</td>
<td>This is the primary diagnostic command for the monitor. It displays the current status of the JES2 being monitored. This display includes all alerts and notices that are current for the JES2 being monitored.</td>
</tr>
</tbody>
</table>
Table 44. JES2 Health Monitor Commands and Intended Use (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J STOP</td>
<td>This command shuts down the monitor address space. If the JES2 address space is active, the monitor address space is restarted within a few minutes. This command clears any history the monitor has been maintaining.</td>
</tr>
</tbody>
</table>
Chapter 8. Reporting the problem

Before calling the IBM Support Center, it could be advantageous to do the following:

- Try other formats of any commands you have entered or other commands to obtain more information about the failure.
- Look up all related messages and take the designated actions. A message you overlook could contain the key that helps you resolve your problem.
- Determine whether the failure only occurs for one job or output. Try changing the class of the job or output. If the problem goes away there could be an error in the class definition.
- If there are equivalent commands in other software, try entering them. Do those commands agree with the JES2 results?
- Change or remove operands from commands or initialization statements. This change or removal could narrow the problem down to a certain area.
- Examine SYSLOG to determine the sequence of events for the error. If the problem is job-related, examine the events for the entire life of the job.
- Examine the COUNT parameter for the RECOOPTS. With the exception of subtasks and disastrous (DISTERR) errors, too high a value for the count parameter could prevent the possibility of collecting a dump when an error occurs and force you to recreate the problem. Setting the count parameter too low for subtasks and disastrous errors causes JES2 to suppress automatic dumps that may help you find the cause of the problem.
- Disable the exit, if there is an exit in the failing processing area. If the exit is causing the problem, the failure should stop when you disable the exit.
- Make sure you understand all the considerations for an exit, if the problem is exit-related. Sometimes a slight misunderstanding may cause an unexpected error.
- Use SLIP traps to help collect more information if the situation warrants it. It explains in detail how and when to use SLIP traps.
- Search the problem data bases to see if a fix already exists for your problem. If the search argument you use fails to produce a match, try other variations of the arguments and see if you obtain a match.

When you call the IBM Support Center, follow these steps to help reduce the time you spend with service and minimize your outage:

- Be specific when describing the problem. Describe the details of the problem.
- List the sequence of events leading to the problem.
- Collect enough documentation to help locate the cause of the problem, if this is the first occurrence of the problem. Minimally this is a JES2 dump, SYSLOG, and logrec data set error records. Any additional information, such as traces, are also helpful. If you are sending a tape containing a dump, make sure to include a printed listing of the job used to create the tape.
- You may need a current assembler listing for JES2 and a copy of all exits, and modifications your installation has made to JES2.
- Collect any JCL pertinent to the problem.
- Have all the documentation within reach. You may be asked to look at various parts of a dump, to help locate the problem.
- Use sequence numbers instead of offsets when explaining where in the code the problem resides. Differences in maintenance levels make offsets impractical for relating the error to the source code.

- Identify your maintenance on all problems. This is especially important for JES2 and PSF-related problems. For security problems related to Resource Access Control Facility (RACF), identify the RACF level.
Appendix. Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision, to use software products successfully. The major accessibility features in z/OS enable users to:

- Use assistive technologies such as screen readers and screen magnifier software
- Operate specific or equivalent features using only the keyboard
- Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user interfaces found in z/OS. Consult the assistive technology documentation for specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E Primer, z/OS TSO/E User’s Guide and z/OS ISPF User’s Guide Vol I for information about accessing TSO/E and ISPF interfaces. These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library Server versions of z/OS books in the Internet library at:

http://www.ibm.com/systems/z/os/zos/bkserv/
This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and condition including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This publication primarily documents information that is NOT intended to be used as Programming Interfaces of JES2.

Policy for unsupported hardware

Various z/OS elements, such as DFSMS™, HCD, JES2, JES3, and MVS, contain code that supports specific hardware servers or devices. In some cases, this device-related element support remains in the product even after the hardware devices pass their announced End of Service date. z/OS may continue to service element code; however, it will not provide service related to unsupported hardware devices. Software problems related to these devices will not be accepted for service, and current service activity will cease if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be issued.
Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Other company, product, or service names may be trademarks or service marks of others.
Index

Special characters
$D command module
 characteristics 4
 information 4
 routines in use 4
 storage occupation 4
 start performed 4
 start type 4
$D DEBUG command 83
$D I,LONG command 21
$D TRACE(n) 26
$D TRACEDEF 26
$D RECOPT(DISTERR) command 11
$HASP050 11
$HASP088 message 4
description 5
example 5
$HASP095 8, 83
$HASP095 message
error code 3
$HASP096 11
$HASP151 10
$HASP186
 $T DEBUG command 84
 DEBUG facility 84
 ICH408I message 84
 RACF 84
$HASP233 9
$HASP236 9
$HASP254 9
$HASP255 9
$HASP257 8, 9
$HASP285 9
$HASP304 11
$HASP479 7
$HASP501 22
$HASP654 81
$HASP805
 controlling the message for specific symptom records 97
$HASP827 83
$P TRACE(n) 23, 26
$S TRACE(n) 23, 26
$T DEBUG 97
$T DEBUG command 83, 84
$T TRACEDEF 23, 26
$T TRACEDEF command 81
$TRACE macro 81
$TRCLOG job 24

B
basic information
collecting 21
BSC trace
starting 24
stopping 24

C
CBFORMAT command
 batch mode 95
 customize for JES2 96
 displaying control blocks 90
 line mode 95
check point
 cycle 42
 READ1 42
 reconfiguration problems 8
 tracing 41
check point lock 7
check point problem 8
detecting 83
use of DEBUG facility 83
CMB shortage 12
collecting problem data
 additional information to collect 22
 basic information to collect 21
 monitor processing 109
 setting up the monitor 110
command
$D I,LONG 21
$T DEBUG 97
DUMP 21
commands
$P TRACE(n) 23
$S TRACE(n) 23
$S TRACEDEF 23

D
data space error 18
DEBUG facility 83, 97
 function 83
 locating problem data 83
 starting 83
 stopping 83
diagnosing symptoms
 correct version levels 1
 erroneous functional operation 1
 error messages 1
 identifying problems 1
 reoccurring errors 1
 sporadic errors 1
 system changes 1
 system modifications 1

A
abend
detecting 3
abends 3
accessibility 117
diagnosis
 symptom records 102
diagnostic procedures
 $WTO PARAMETER LIST ERROR symptom records 105
disability 117
disastrous error 11
display command
 module
 characteristics 4
 information 4
displaying control blocks 90
DUMP command 21
dump of abending job 4

E
 environment
 modifying 26
 setting up a trace 23
 EREP output 22
 error code
 in message $HASP095
 as symptom of abend 3
 error message
 error code 3

H
 HASCSxxx load modules 1
 HASIBLD 19
 HASISMPA 19
 health monitor 109

I
 ICH408I 84
 identifier
 trace
 summary table 24
 initialization problem 6
 initialization statements 7
 JES2 does not start 7
 stops or loops 6
 initialization statement
 DEBUG 97
 trace definition 23
 TRACEDEF 81
 initialization statements
 TRACE(n) 23
 TRACEDEF 23
 interactive problem control system 85
 IPCS (interactive problem control system) 85
 analyzing JES2 data 89
 diagnosing JES2 IPCS formatting errors 86
 symptom record
 analysis 97
 verifying install of JES2 support 86

IPCS output 22

J
 JES2 102
 health monitor 109
 modifying a trace 26
 setting up a trace 23, 24
 symptom records 97, 102
 JES2 diagnosis
 abend 3
 additional information to collect 22
 basic information to collect 21
 checkpoint problem 8
 collecting problem data 21
 correct version levels 1
 data space error 18
 disastrous error 11
 erroneous functional operation 1
 error messages 1
 identifying problems 1
 initialization 6
 isolating 7
 JES2 health monitor 109
 looping problem 11
 monitor processing 109
 node (NJE) problem 15
 bind image failure 16
 erroneous I/O error 16
 output remains on node 17
 recreating NJE problem 18
 unable to establish connection 16
 unique to NJE 16
 output problem 10
 print services facility printer problem 10
 performance problem 18
 problem applying maintenance 19
 remote (RJE) problem 15
 reoccurring errors 1
 resource shortage 11
 setting up the monitor 110
 sporadic errors 1
 symptoms 2
 system changes 1
 system modifications 1
 wait state 9
 JESXCF address space problems 22
 JQE shortage 15

K
 keyboard 117

L
 LIST output 22
 LOG output 22
 logging
 trace
 definition 23
LOGREC data set
 symptom record 97

loop
 JES2 11

M
mainframe
 education xii

maintenance
 problem applying 19
 using HASIBLD 19

message
 $HASP088 4
 description 5
 example 5
 $HASP085
 error code 3

monitor
 health 109

N
NJE problems 15, 16
node (NJE) problem 15
 unique to NJE 16

O
output problem 10
output samples
 traces 27

P
PER output 22
performance problem 18
problem
 reporting 115
problem data
 collecting 21
problem reporting
 recommended action 115
problems detected by DEBUG 83
PSF problems 10

R
RACF 84
reason for abends 4
 $D EXIT(nnn) use 4
 $D LOADMOD(xxxxxxx) use 4
 $D MODULE(jxxxxxxxx) use 4
 $D OPTSDEF use 4
 incorrect authority 4
 incorrect parameters 4
 installation exit error 4
RECOVOPTS 115
remote (RJE) problem 15

report the problem
 recommended action 115
resource shortage 11, 15
 CMB shortage 11, 15
 RJE shortage 12

S
SDUMP 4
shortage of resources 11
shortages
 of CMBs 12
shortcut keys 117
SMF 4
SMP/E 19
storage
 considerations 81
 for traces 81
symptom records 97
 $WTO parameter list errors 105
 causes 106
 diagnostic procedures 105
 finding data 106
 for JES2 102
 in dumps 97
 in LOGREC 97
 IPCS usage 97
 records written by JES2 102
 reported to IBM 100
 sample 97
symptoms 2
SYSLIB 10
SYSSLIB 19
SYSTLIB 19
SYSLOG 4, 9, 10, 11, 21, 115
system log 4
System Modifications Program 19

T
toggle (TG) shortage 15
trace
 identifier 24
 modifying the environment 26
 sample 26
 ID=0 27
 setting up in JES2 23, 24
 summary of identifiers 24
trace enablement 23
trace environment
 establishing 23
 modifying 26
trace event
 $TIDTAB macro 81
 installation-defined 81
 table pair 81
trace identifier
 sample 27
 ID=1 27

Index 125
trace identifier *(continued)*

sample *(continued)*

ID=10 34
ID=11 35
ID=12 35
ID=13 35
ID=14 36
ID=15 36
ID=16 40
ID=17 41
ID=18 27
ID=19 27
ID=20 27
ID=21 48
ID=22 56
ID=23 59
ID=24 61
ID=25 62
ID=26 64
ID=28 66
ID=29 66
ID=30 28
ID=31 67
ID=32 70
ID=33 29
ID=34 30
ID=35 33
ID=36 33
ID=37 34
ID=38 34
ID=39 34

trace storage 81
trace table creation 81
traces 22, 23

W

wait state 9

Z

z/OS Basic Skills information center xii
Thank you for your support.
Submit your comments using one of these channels:
• Send your comments to the address on the reverse side of this form.
• Send your comments via e-mail to: mhvrdfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No.

E-mail address
Program Number: 5694-A01

Printed in USA