IBM Ported Tools for z/OS: OpenSSH
User's Guide
Before using this information and the product it supports, read the general information under "Notices" on page 353.
Contents

Figures ix
Tables xi

About this document xiii
Who should use this document? xiii
Where to find more information xiii
Softcopy publications xiii
IBM Ported Tools for z/OS home page xiii
Discussion list xiii

How to send your comments to IBM xv
If you have a technical problem xv

Summary of changes xvii
Changes made in IBM Ported Tools for z/OS: OpenSSH Version 1 Release 2, as updated February 2012 xvii
Changes made in IBM Ported Tools for z/OS: OpenSSH Version 1 Release 2 xvii

Chapter 1. Introduction to IBM Ported Tools for z/OS: OpenSSH 1
What is OpenSSH? 1

Chapter 2. What's new or changed in Version 1 Release 2 of IBM Ported Tools for z/OS: OpenSSH 3
Summary of changes to commands 3
New and changed configuration files 7
New environment variables 9
Summary of changes to SYS1.MACLIB 10
Summary of changes to non-configuration files in /samples 10

Chapter 3. How does IBM Ported Tools for z/OS: OpenSSH differ from the open source version? 11
What IBM Ported Tools for z/OS: OpenSSH supports 11
What IBM Ported Tools for z/OS: OpenSSH does not support 12

Chapter 4. Migrating to Version 1 Release 2 of IBM Ported Tools for z/OS: OpenSSH 13
Considerations when migrating from IBM Ported Tools for z/OS: OpenSSH Version 1 Release 1 13
Consideration for z/OS release 6.1 13
 Consideration for z/OS release 7.1 13
 Migration actions for IBM Ported Tools for z/OS: OpenSSH Version 1 Release 2 14
 Changes to OpenSSH heap management that might require a migration action 14
 Setting up the XPLINK environment for use by IBM Ported Tools for z/OS: OpenSSH 14
 Changes to the sftp command that might require a migration action 15
 Changes to the ssh command that might require a migration action 15
 Changes to the sshd command that might require a migration action 16
 Changes to the sshd_config file that might require a migration action 16
 Changes to the sshd_config file that might require a migration action 17
 Changes to the ssh-keygen command that might require a migration action 18
 Changes to the ssh-keygen command that might require a migration action 19
 Changes to the ssh-rand-helper command that might require a migration action 20
 Preventing message numbers from being associated with OpenSSH error messages 20

Chapter 5. For system administrators 21
Differences between sftp and FTP 21
What you need to verify before using OpenSSH 21
Figures

1. How the known_hosts file is created when keys are stored in UNIX files 29
2. How the server's host keys are set up when they are stored in real key rings 37
3. CSFIQUA debug statements ... 55
4. Using scp when LC_ALL is set through shell profiles .. 65
5. Using scp when LC_ALL is set through ENV in CEEPRMxx .. 65
6. Accessing a remote system using ssh with public key authentication when keys are stored in UNIX files 72
7. Accessing a remote system using ssh with public key authentication when keys are stored in real key rings 78
8. OpenSSH - without TCP port forwarding .. 345
9. The ssh client is listening on port 2001 for a connection ... 346
10. The application is connecting to port 2001 on the local host (Host A) 346
11. The ssh client accepts the connection on port 2001, forwards the application's data to sshd on Host B, sshd then forwards the data to the application's server, listening on Port 27 .. 347
Tables

1. Summary of changes to commands in V1R2 of IBM Ported Tools for z/OS: OpenSSH .. 3
2. Summary of changes to configuration files in V1R2 of IBM Ported Tools for z/OS: OpenSSH 7
3. List of new environment variables in V1R2 of IBM Ported Tools for z/OS: OpenSSH ... 9
4. Summary of changes to SYS1.MACLIB in V1R2 of IBM Ported Tools for z/OS: OpenSSH 10
5. Summary of changes to /samples in V1R2 of IBM Ported Tools for z/OS: OpenSSH ... 10
6. Changes to the sftp command that might require a migration action ... 15
7. Changes to the ssh command that might require a migration action ... 16
8. Changes to the ssh_config file that might require a migration action .. 17
9. Changes to the sshd command that might require a migration action ... 18
10. Changes to the sshd_config file that might require a migration action ... 18
11. Changes to the ssh-keygen command that might require a migration action ... 19
12. Changes to the ssh-rand-helper command that might require a migration action ... 20
13. List of directories and needed permissions ... 22
14. Values for the _ZOS_OPENSSH_MSGCAT environment variable ... 38
15. Setup and configuration problems that can prevent users from logging in using ssh, scp, or sftp 48
16. Summary of support provided by OpenSSH V1R2 .. 61
17. Configuration files to copy into /etc (including permissions) .. 169
18. Program-generated files (including permissions) .. 169
19. Administrator-generated files (including permissions) .. 170
20. User-generated files (including permissions) .. 170
21. Records types and subtype information .. 173
22. OpenSSH SMF Type 119 record subtype information and record type .. 174
23. Common TCP/IP identification section for OpenSSH ... 175
24. Common security section .. 175
25. Server transfer completion record self-defining section ... 177
26. Server transfer completion record specific section ... 178
27. Server transfer completion record section: Host name .. 179
28. Server transfer completion record section: First associated path name .. 179
29. Server transfer completion record section: Second associated path name .. 179
30. Client transfer completion record self-defining section ... 180
31. Client transfer completion record specific section ... 180
32. Client transfer completion host name section ... 181
33. Client transfer completion user name section ... 181
34. Client transfer completion associated path name section ... 181
35. Login failure record self-defining section .. 182
36. Login failure specific section ... 182
37. List of vulnerabilities reported against OpenSSH applications .. 193
38. List of vulnerabilities reported against OpenSSL applications .. 194
About this document

This document presents the information you need to set up and use IBM Ported Tools for z/OS: OpenSSH.

Who should use this document?

This document is for system programmers who run a z/OS system with z/OS UNIX System Services (z/OS UNIX), and for their users who use IBM Ported Tools for z/OS: OpenSSH. On other open systems, some system programmer tasks might be done by an administrator.

This document assumes the readers are familiar with z/OS systems as well as with the information for it and its accompanying products.

Where to find more information

Where necessary, this document references information in other documents about the elements and features of z/OS®. For complete titles and order numbers for all z/OS documents, see [z/OS Information Roadmap](http://www.ibm.com/systems/z/os/zos/bkserv/).

Softcopy publications

IBM Ported Tools for z/OS home page

Discussion list

A mailing list (discussion list) that is not sponsored by IBM might be helpful to users of OpenSSH. It is at http://www.openssh.org/list.html. It contains instructions on subscribing to the OpenSSH mailing list.

To search through past discussions, go to http://marc.theaimsgroup.com/.
How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and completeness of the information or give us any other feedback that you might have.

Use one of the following methods to send us your comments:
1. Send an email to mhvrcfs@us.ibm.com
3. Mail the comments to the following address:
 IBM Corporation
 Attention: MHVRCFS Reader Comments
 Department H6MA, Building 707
 2455 South Road
 Poughkeepsie, NY 12601-5400
 U.S.A.
4. Fax the comments to us as follows:
 From the United States and Canada: 1+845+432-9405
 From all other countries: Your international access code +1+845+432-9405

Include the following information:
• Your name and address
• Your email address
• Your telephone or fax number
• The publication title and order number:
 IBM Ported Tools for z/OS User’s Guide
 SC23-2246-01
• The topic and page number related to your comment
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you.

IBM or any other organizations will only use the personal information that you supply to contact you about the issues that you submit.

If you have a technical problem

Do not use the feedback methods listed above. Instead, take one of the following actions:
• Contact your IBM service representative
• Call IBM technical support
• Visit the IBM support portal at http://www.ibm.com/systems/z/support/
Summary of changes

This document contains terminology, maintenance, and editorial changes to improve consistency and retrievability. Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

Changes made in IBM Ported Tools for z/OS: OpenSSH Version 1
Release 2, as updated February 2012

This document contains information that was previously presented in IBM Ported Tools for z/OS: OpenSSH, SA23-2246-00.

New information:

- OpenSSH can be set up to use Integrated Cryptographic Service Facility (ICSF) to implement certain ciphers and MAC (message authentication code) algorithms. This extension, which is provided via the PTF for APAR OA37278, enables OpenSSH to use hardware support when applicable. See “Setting up OpenSSH to use ICSF ciphers and MAC algorithms” on page 52 for more information.
- Information from APAR OA34378 was added; see “Changes to the ssh-rand-helper command that might require a migration action” on page 20.
- Information from APAR OA34819 was added; see the following topics:
 - “Changes to OpenSSH heap management that might require a migration action” on page 14
 - Table 6 on page 15
 - “Managing OpenSSH user heap” on page 56
- Information from APAR OA33914 was added; see Table 6 on page 15 and “sftp — Secure file transfer program” on page 83
- A new term, Integrated Cryptographic Service Facility (ICSF), was added to the glossary.

Changes made in IBM Ported Tools for z/OS: OpenSSH Version 1
Release 2

New information:

IBM Ported Tools for z/OS: OpenSSH has been upgraded to these Open Source Software releases, resulting in changes to various commands, messages, and configuration files.
- OpenSSH 5.0p1
- OpenSSL 0.9.8k
- zlib 1.2.3

These topics are new for this release.

- Chapter 2, “What’s new or changed in Version 1 Release 2 of IBM Ported Tools for z/OS: OpenSSH,” on page 3
The following sections are new for this release.

- “What you need to verify before using OpenSSH” on page 21
- “Steps for verifying the prerequisites for using OpenSSH” on page 21
- “Steps for setting up server authentication when keys are stored in key rings” on page 29
- “Limiting file system name space for sftp users” on page 45
- “Setting up OpenSSH to collect SMF records” on page 50
- “Steps for setting up user authentication when using key rings to store keys” on page 72
- “zos_ssh_config” on page 145
- “zos_user_ssh_config” on page 147
- “zos_sshd_config” on page 164
- “List of past vulnerabilities that affected IBM Ported Tools for z/OS: OpenSSH in Version 1 Release 1” on page 196

Two new graphics have been added.
- Figure 2 on page 37
- Figure 7 on page 78

New terms have been added to the glossary.

Updated information:

- “Steps for creating or editing configuration files” on page 24
- “Steps for setting up server authentication when keys are stored in UNIX files” on page 27
- “Steps for setting up user authentication when using UNIX files to store keys” on page 70
- “Authentication” on page 123
- “User-generated files” on page 170
- “RFCs and Internet drafts” on page 349

The OpenSSH files are now organized in Chapter 10, “OpenSSH files,” on page 133 as follows:

- “OpenSSH client configuration files” on page 133
- “OpenSSH daemon configuration files” on page 150
- “Other OpenSSH files” on page 167

Chapter 14, “OpenSSH vulnerabilities,” on page 193 contains new and updated OpenSSH vulnerability information.

Information from the following APARs have been added:
The term *internationalization* has been replaced with *globalization*. The new term has been added to the glossary.

Deleted information:

The chapter “What’s new or changed in OpenSSH for 3.8.1p1?” has been deleted because the updates are now part of the OpenSSH 5.0p1 base.
Chapter 1. Introduction to IBM Ported Tools for z/OS: OpenSSH

The OpenSSH program product is one of the ported applications provided by IBM Ported Tools for z/OS. The current version, which is Version 1 Release 2, can be installed on z/OS 1.10 and later. Users of the previous release (Version 1 Release 1) must migrate to the new release as described in Chapter 4, “Migrating to Version 1 Release 2 of IBM Ported Tools for z/OS: OpenSSH,” on page 13 before using the information in this book.

In this document, OpenSSH refers to the z/OS implementation of OpenSSH. For the open source documentation, see http://www.openssh.org.

What is OpenSSH?

OpenSSH provides secure encryption for both remote login and file transfer. Some of the utilities that it includes are:

- **ssh**, a z/OS client program for logging into a z/OS shell. It can also be used to log into other platform’s UNIX shells. It is an alternative to rlogin.
- **scp** for copying files between networks. It is an alternative to rcp.
- **sftp** for file transfers over an encrypted ssh transport. It is an interactive file transfer program similar to ftp.
- **sshd**, a daemon program for ssh that listens for connections from clients. The IBM Ported Tools for z/OS: OpenSSH implementation of sshd supports both SSH protocol versions 1 and 2 simultaneously.

The default sshd configuration only runs protocol version 2.

Other basic utilities such as ssh-add, ssh-agent, ssh-keysign, ssh-keyscan, ssh-keygen and sftp-server are also included.

To ensure secure encrypted communications, OpenSSH uses ciphers such as Blowfish and 3DES.

IBM Ported Tools for z/OS: OpenSSH provides the following z/OS extensions:

- System Authorization Facility (SAF) key ring. OpenSSH can be configured to allow OpenSSH keys to be stored in SAF key rings. See “Choosing between UNIX files and key rings” on page 57 for more information.
- Multilevel security. It is a security policy that allows the classification of data and users based on a system of hierarchical security levels combined with a system of non-hierarchical security categories. See “Running the sshd daemon in a multilevel-secure environment” on page 44.
- System Management Facility (SMF). OpenSSH can be configured to collect SMF Type 119 records for both the client and the server. See “Setting up OpenSSH to collect SMF records” on page 50 for more information.
- ICSF ciphers and MAC algorithms. OpenSSH can be set up to use Integrated Cryptographic Service Facility (ICSF) to implement certain ciphers and MAC (message authentication code) algorithms. This extension enables OpenSSH to use hardware support when applicable and is provided via the PTF for APAR OA37278. See “Setting up OpenSSH to use ICSF ciphers and MAC algorithms” on page 52 for more information.
The Internet Engineering Task Force (http://www.ietf.org/) has a Secure Shell (SECSH) working group whose goal is to update and standardize the popular SSH protocol. For information about OpenSSH compliancy to SECSH RFCs and internet drafts, see "RFCs and Internet drafts" on page 349.
Chapter 2. What's new or changed in Version 1 Release 2 of IBM Ported Tools for z/OS: OpenSSH

This topic documents changes that were introduced in Version 1 Release 2 of IBM Ported Tools for z/OS: OpenSSH, which includes OpenSSH 5.0p1, OpenSSL 0.9.8k, and zlib 1.2.3. It includes these sections:

- “Summary of changes to commands”
- “New and changed configuration files” on page 7
- “New environment variables” on page 9
- “Summary of changes to SYS1.MACLIB” on page 10
- “Summary of changes to non-configuration files in /samples” on page 10

Summary of changes to commands

Table 1 lists commands that were changed in Version 1 Release 2 of IBM Ported Tools for z/OS: OpenSSH.

<table>
<thead>
<tr>
<th>Command</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>scp</td>
<td>With the PTF for APAR OA37278, OpenSSH can be set up to use ICSF to implement certain ssh ciphers and MAC algorithms. This extension enables scp (via ssh) to use hardware support when applicable. See “Setting up OpenSSH to use ICSF ciphers and MAC algorithms” on page 52 for more information. Some of the keywords for the -o option have changed. Table 2 on page 7 has a list of the keyword changes for ssh_config. OpenSSH can be configured to collect SMF client and server transfer completion records that are associated with scp. See “Setting up OpenSSH to collect SMF records” on page 50 for more information. A new environment variable used during SMF-related processing, _ZOS_SMF_FD, is available; it is intended for internal use only. See Table 3 on page 9 for more information. The scp executable is shipped as an APF-authorized program.</td>
</tr>
</tbody>
</table>

References:
- “scp” on page 81
- “ssh_config” on page 133
- “zos_ssh_config” on page 145
- “zos_user_ssh_config” on page 147
Table 1. Summary of changes to commands in V1R2 of IBM Ported Tools for z/OS: OpenSSH (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>sftp</td>
<td>With the PTF for APAR OA37278, OpenSSH can be set up to use ICSF to</td>
</tr>
<tr>
<td></td>
<td>implement certain ssh ciphers and MAC algorithms. This extension enables sftp</td>
</tr>
<tr>
<td></td>
<td>(via ssh) to use hardware support when applicable. See Setting up OpenSSH to use ICSF ciphers and MAC algorithms on page 52 for more information.</td>
</tr>
<tr>
<td></td>
<td>Some of the keywords for the -o option have changed. Table 2 on page 2 has a list of the keyword changes for ssh_config.</td>
</tr>
<tr>
<td></td>
<td>New options were added for ls: -a -f -n -r -S -t</td>
</tr>
<tr>
<td></td>
<td>OpenSSH can be configured to collect SMF client transfer completion records that are associated with sftp. For more information, see Setting up OpenSSH to collect SMF records on page 50.</td>
</tr>
<tr>
<td></td>
<td>A new environment variable used during SMF-related processing, _ZOS_SMF_FD, is available; it is intended for internal use only. See Table 3 on page 9 for more information.</td>
</tr>
<tr>
<td></td>
<td>The sftp executable is shipped as an APF-authorized program.</td>
</tr>
<tr>
<td></td>
<td>References:</td>
</tr>
<tr>
<td></td>
<td>• “sftp” on page 83</td>
</tr>
<tr>
<td></td>
<td>• “ssh_config” on page 133</td>
</tr>
<tr>
<td></td>
<td>• “zos_ssh_config” on page 145</td>
</tr>
<tr>
<td></td>
<td>• “zos_user_ssh_config” on page 147</td>
</tr>
<tr>
<td>sftp-server</td>
<td>With the PTF for APAR OA37278, OpenSSH can be set up to use ICSF to implement certain sshd ciphers and MAC algorithms. This extension enables sftp-server (via sshd) to use hardware support when applicable. See Setting up OpenSSH to use ICSF ciphers and MAC algorithms on page 52 for more information.</td>
</tr>
<tr>
<td></td>
<td>New options (specified on the Subsystem specification) were added : -e, -f log_facility, -h, -l log_level</td>
</tr>
<tr>
<td></td>
<td>OpenSSH can be configured to collect SMF server transfer completion records that are associated with sftp-server. See Setting up OpenSSH to collect SMF records on page 50 for more information.</td>
</tr>
<tr>
<td></td>
<td>A new environment variable used during SMF-related processing, _ZOS_SMF_FD, is available; it is intended for internal use only. See Table 3 on page 9 for more information.</td>
</tr>
<tr>
<td></td>
<td>The sftp-server executable is shipped as an APF-authorized program.</td>
</tr>
<tr>
<td></td>
<td>References:</td>
</tr>
<tr>
<td></td>
<td>• “sftp-server” on page 88</td>
</tr>
<tr>
<td></td>
<td>• “sshd_config” on page 150</td>
</tr>
<tr>
<td></td>
<td>• “zos_sshd_config” on page 164</td>
</tr>
</tbody>
</table>
Table 1. Summary of changes to commands in V1R2 of IBM Ported Tools for z/OS: OpenSSH (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssh</td>
<td>With the PTF for APAR OA37278, OpenSSH can be set up to use ICSF to implement certain ssh ciphers and MAC algorithms. This extension enables ssh to use hardware support when applicable. See "Setting up OpenSSH to use ICSF ciphers and MAC algorithms" on page 52 for more information. Some of the keywords for the -o option have changed. Table 2 on page 7 has a list of the keyword changes for ssh_config. A new [bind_address] argument was added for the -D, -L, -R option (IPv6 addresses). Two new environment variables, _ZOS_SMF_FD (intended for internal use only) and _ZOS_USER_SSH_CONFIG, are available; see Table 3 on page 9 for more information. Two new ciphers ("arcfour128" and "arcfour256") were added for the -c option. A new MAC ("umac64@openssh.com") was added for the -m option. Two new configuration files, zos_ssh_config and zos_user_ssh_config, are available; see "New and changed configuration files" on page 7. New options were added: -K -M -O -S -w (The -K and -w options are not supported on z/OS UNIX.) New escape command-line options were added: -KR -h !command</td>
</tr>
<tr>
<td>ssh-add</td>
<td>New environment variables were added; see Table 3 on page 9 for more information. _ZOS_SSH_KEY_RING _ZOS_SSH_KEY_RING_LABEL</td>
</tr>
<tr>
<td>ssh-keygen</td>
<td>New command-line options were added: -F, -H, -R New environment variables have been added; see Table 3 on page 9 for more information. _ZOS_SSH_KEY_RING_LABEL</td>
</tr>
<tr>
<td>ssh-keyscan</td>
<td>A new command-line option was added: -H</td>
</tr>
<tr>
<td>ssh-rand-helper</td>
<td>A new environment variable, _ZOS_SSH_PRNG_CMDS_TIMEOUT, was added; see Table 3 on page 9 for more information.</td>
</tr>
</tbody>
</table>

References:
- "ssh" on page 90
- "ssh_config" on page 133
- "zos_ssh_config" on page 145
- "zos_user_ssh_config" on page 147

Chapter 2. What’s new or changed in Version 1 Release 2 of IBM Ported Tools for z/OS: OpenSSH 5
Table 1. Summary of changes to commands in V1R2 of IBM Ported Tools for z/OS: OpenSSH (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Changes</th>
</tr>
</thead>
</table>
| sshd | With the PTF for APAR OA37278, OpenSSH can be set up to use ICSF to implement certain sshd ciphers and MAC algorithms. This extension enables sshd to use hardware support when applicable. See “Setting up OpenSSH to use ICSF ciphers and MAC algorithms” on page 52 for more information. Some of the keywords for the -o option have changed. Table 2 on page 7 has a list of the keyword changes for sshd_config. A new option was added to the authorized_keys and ssh_known_hosts file formats: zos-key-ring-label="KeyRingOwner/KeyRingName label". A new configuration file, zos_sshd_config, is available; see “New and changed configuration files” on page 7. The authorized_keys file has new option keywords:
 • no-user-rc, which is documented in “no-user-rc” on page 126.
 • tunnel, which is ignored on z/OS UNIX. Support was added to the ssh_known_hosts file format for hashed host names and [host]:port formatting. Two new environment variables, _ZOS_SMF_FD (intended for internal use only) and _ZOS_SSHD_CONFIG, are available; see Table 3 on page 9 for more information. OpenSSH can be configured to collect SMF login failure records for sshd as well as server transfer completion records that are associated with “internal-sftp”. See “Setting up OpenSSH to collect SMF records” on page 50 for more information. The sshd executable is shipped as an APF-authorized program. References:
 • “sshd” on page 121
 • “sshd_config” on page 150
 • “zos_sshd_config” on page 164 |
New and changed configuration files

Table 2 lists configuration files that were added or changed in Version 1 Release 2 of IBM Ported Tools for z/OS: OpenSSH.

Table 2. Summary of changes to configuration files in V1R2 of IBM Ported Tools for z/OS: OpenSSH

<table>
<thead>
<tr>
<th>Configuration file</th>
<th>Changes</th>
</tr>
</thead>
</table>
| ssh_config | New keywords have been added: | ControlMaster
| | ControlPath | ExitOnForwardFailure
| | HashKnownHosts | KbdInteractiveDevices (not supported on z/OS UNIX)
| | KbdInteractiveAuthentication (not supported on z/OS UNIX) | LocalCommand
| | PermitLocalCommand | SendEnv
| | Tunnel (not supported on z/OS UNIX) | TunnelDevice (not supported on z/OS UNIX)
| | Two new ciphers ("arcfour128" and "arcfour256") were added for the Ciphers keyword. |
| | A new MAC ("umac64@openssh.com") was added for the MACs keyword. |
| | A new [bind_address] argument for the DynamicForward, LocalForward, and RemoteForward keywords were added. |
| | These keywords have been changed: | Ciphers
| | DynamicForward | HostbasedAuthentication
| | LocalForward | MACs
| | RekeyLimit | RhostsRSAAuthentication
| | Identityfile | IdentitiesOnly
| | Identityfile | |

Reference:
- "ssh_config" on page 133
<table>
<thead>
<tr>
<th>Configuration file</th>
<th>Changes</th>
</tr>
</thead>
</table>
| sshd_config | New keywords have been added:
| | AcceptEnv
| | AddressFamily
| | ChrootDirectory
| | ForceCommand
| | HostbasedUsesNameFromPacketOnly
| | Match
| | MaxAuthTries
| | PermitOpen
| | PermitTunnel (not supported on z/OS UNIX)
| | A new value ("delayed") was added for the Compression keyword.
| | A new value ("clientspecified") was added for the GatewayPorts keyword.
| | A new value ("internal-sftp") was added for the Subsystem keyword.
| | Two new ciphers ("arcfour128" and "arcfour256") were added for the Ciphers keyword.
| | A new MAC ("umac64@openssh.com") was added for the MACs keyword.
| | These keywords have been changed:
| | AllowTcpForwarding
| | ChallengeResponseAuthentication (not supported on z/OS UNIX)
| | Ciphers
| | Compression
| | GatewayPorts
| | HostKey
| | MACs
| | PrintLastLog (not supported on z/OS UNIX)
| | Subsystem
| | Reference:
| | "sshd_config" on page 150 |
| zos_ssh_config | This new configuration file contains system-wide client configuration data that is specific to the z/OS platform.
| | Reference:
| | "zos_ssh_config" on page 145 |
| zos_sshd_config | This new configuration file contains daemon configuration data that is specific to the z/OS platform.
| | Reference:
| | "zos_sshd_config" on page 164 |
| zos_user_ssh_config | This new configuration file contains per-user client configuration data that is specific to the z/OS platform.
| | Reference:
| | "zos_user_ssh_config" on page 147 |
New environment variables

Table 3 lists environment variables that are new for Version 1 Release 2 of IBM Ported Tools for z/OS: OpenSSH.

Table 3. List of new environment variables in V1R2 of IBM Ported Tools for z/OS: OpenSSH

<table>
<thead>
<tr>
<th>Environment variable</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>_ZOS_OPENSSH_DEBUG</td>
<td>This new environment variable contains z/OS-specific debug information. It is only used internally and is not for external specification.</td>
</tr>
<tr>
<td></td>
<td>Reference: None</td>
</tr>
<tr>
<td>_ZOS_OPENSSH_MSGCAT</td>
<td>This new environment variable identifies the OpenSSH message catalog to be used when sending OpenSSH error messages.</td>
</tr>
<tr>
<td></td>
<td>Reference: "Setting up the message catalog for IBM Ported Tools for z/OS: OpenSSH" on page 38</td>
</tr>
<tr>
<td>_ZOS_SMF_FD</td>
<td>This new environment variable is set to the file descriptor number that is used for interprocess communication during SMF-related processing. It is only used internally and is not for external specification.</td>
</tr>
<tr>
<td></td>
<td>Reference: None</td>
</tr>
<tr>
<td>_ZOS_SSH_PRNG_CMDS_TIMEOUT</td>
<td>This new environment variable specifies the timeout value used by ssh-rand-helper when running a command from the /etc/ssh/ssh_prng_cmds file.</td>
</tr>
<tr>
<td></td>
<td>Reference: "ssh-rand-helper — Gather random numbers for OpenSSH" on page 120</td>
</tr>
<tr>
<td>_ZOS_SSHD_CONFIG</td>
<td>This new environment variable specifies the path name of the user-defined z/OS-specific daemon configuration file.</td>
</tr>
<tr>
<td></td>
<td>References: "sshd" on page 121, "zos_sshd_config" on page 164</td>
</tr>
<tr>
<td>_ZOS_SSH_KEY_RING</td>
<td>This new environment variable specifies the SAF key ring owner and key ring name to use as input.</td>
</tr>
<tr>
<td></td>
<td>Reference: "ssh-add" on page 104</td>
</tr>
<tr>
<td>_ZOS_SSH_KEY_RING_LABEL</td>
<td>This new environment variable specifies the SAF key ring owner, key ring name, and certificate label to use as input.</td>
</tr>
<tr>
<td></td>
<td>References: "ssh-add" on page 104, "ssh-keygen" on page 110</td>
</tr>
<tr>
<td>_ZOS_USER_SSH_CONFIG</td>
<td>This new environment variable specifies the path name of the z/OS-specific per-user OpenSSH client configuration file.</td>
</tr>
<tr>
<td></td>
<td>References: "sshd" on page 121, "zos_user_ssh_config" on page 147</td>
</tr>
</tbody>
</table>
Summary of changes to SYS1.MACLIB

Table 4 lists members of SYS1.MACLIB that were added in Version 1 Release 2 of IBM Ported Tools for z/OS: OpenSSH.

Table 4. Summary of changes to SYS1.MACLIB in V1R2 of IBM Ported Tools for z/OS: OpenSSH

<table>
<thead>
<tr>
<th>Sample</th>
<th>Changes</th>
</tr>
</thead>
</table>
| FOTSMF77 | This new member contains assembler mapping macros for OpenSSH SMF Type 119 records.
This member was updated with the PTF for APAR OA37278.
Reference:
• Chapter 12, “SMF Type 119 records for OpenSSH,” on page 173 |

Summary of changes to non-configuration files in /samples

Table 5 lists files in the /samples directory that were added in Version 1 Release 2 of IBM Ported Tools for z/OS: OpenSSH.

Table 5. Summary of changes to /samples in V1R2 of IBM Ported Tools for z/OS: OpenSSH

<table>
<thead>
<tr>
<th>Sample</th>
<th>Changes</th>
</tr>
</thead>
</table>
| ssh_smf.h| This new file contains C mapping macros for OpenSSH SMF Type 119 records.
This file was updated with the PTF for APAR OA37278.
Reference:
• Chapter 12, “SMF Type 119 records for OpenSSH,” on page 173 |
Chapter 3. How does IBM Ported Tools for z/OS: OpenSSH differ from the open source version?

This topic describes how IBM Ported Tools for z/OS: OpenSSH differs from the open source version.

What IBM Ported Tools for z/OS: OpenSSH supports

sftp can treat files as binary or text. By default, `sftp` assumes that files are binary. Files transferred between EBCDIC and ASCII platforms are not converted. For file transfers between z/OS and ASCII UNIX platforms, you might need to convert your files (treat them as text). The `sftp` ascii subcommand can be used to transfer files in ASCII between the local host and a remote UNIX host. This subcommand assumes that the file data on the network should be encoded in ISO/IEC 8859-1. The `sftp` binary subcommand can be used to disable this conversion and return to performing binary file transfers.

scp treats files as text. By default, `scp` performs ASCII/EBCDIC conversion on files. For more information about how `scp` performs conversion, see Chapter 7, "Globalization on z/OS systems," on page 59.

ssh, sftp and scp are restricted from running in a 3270 environment. The OpenSSH client (ssh) cannot be run from OMVS (which is a 3270 session). ssh has been disabled under OMVS because passwords are visible while they are being typed by the user in some situations. `sftp` and `scp` invoke `ssh` as part of their processing, so they have the same restriction.

IBM Ported Tools for z/OS: OpenSSH has different default settings. IBM Ported Tools for z/OS: OpenSSH has different default settings than the open source level of OpenSSH. If you share OpenSSH configuration files among platforms, then you should be aware of these differences. The differences are:

- The daemon configuration (`sshd_config`) file has both the AllowTcpForwarding keyword and the Compression keyword set to "no".
- Both the client configuration (`ssh_config`) and the daemon configuration (`sshd_config`) files list the RhostsAuthentication keyword with a default value of "no".
- The daemon configuration (`sshd_config`) file has the Protocol keyword set to 2 as the default setting, which specifies that only protocol version 2 connections are allowed.
- The client configuration (`ssh_config`) file has the Protocol keyword set to 2, which specifies that only protocol version 2 connections are allowed.
- The default locations of z/OS executables might differ than on other platforms, so the Subsystem specification of `sftp` might contain a different path on z/OS. On z/OS it is set to:
  ```
 Subsystem sftp /usr/lib/ssh/sftp-server
  ```

Provides support unique to z/OS. IBM Ported Tools for z/OS: OpenSSH provides the following z/OS extensions:

- System Authorization Facility (SAF) key ring. OpenSSH can be configured to allow OpenSSH keys to be stored in SAF key rings. See "Choosing between UNIX files and key rings" on page 57 for more information.
• Multilevel security. It is a security policy that allows the classification of data and users based on a system of hierarchical security levels combined with a system of non-hierarchical security categories. See “Running the sshd daemon in a multilevel-secure environment” on page 44.

• System Management Facility (SMF). OpenSSH can be configured to collect SMF Type 119 records for both the client and the server. See “Setting up OpenSSH to collect SMF records” on page 50 for more information.

• ICSF ciphers and MAC algorithms. OpenSSH can be set up to use Integrated Cryptographic Service Facility (ICSF) to implement certain ciphers and MAC (message authentication code) algorithms. This extension enables OpenSSH to use hardware support when applicable and is provided via the PTF for APAR OA37278. See “Setting up OpenSSH to use ICSF ciphers and MAC algorithms” on page 52 for more information.

What IBM Ported Tools for z/OS: OpenSSH does not support

IBM Ported Tools for z/OS: OpenSSH does not support the following functionality:

• AFS token passing
• Kerberos
• Pluggable Authentication Module (PAM)
• Print last log
• GSS-API
• Smart cards
• “Keyboard-interactive” user authentication
• TCP wrappers
• Tunnel device forwarding

User-defined subsystems treat data as binary. Subsystems are a feature of SSH protocol version 2 which facilitate the use of ssh as a secure transport for other applications such as sftp. However, you can define your own subsystem using the Subsystem keyword of sshd_config. The subsystem is then invoked as a remote command. For example:

```
Subsystem backups /home/billyjc/backups.sh
```

Because network data for a subsystem is treated as binary, any output generated by a subsystem will not be displayed correctly between z/OS systems unless steps are taken to convert the data.

IBM Ported Tools for z/OS: OpenSSH does not support multibyte locales. IBM Ported Tools for z/OS: OpenSSH does not support running in multibyte locales. It currently only supports single-byte locales that are compatible with ASCII coded character set ISO/IEC 8859-1. For more information, see Chapter 7, “Globalization on z/OS systems,” on page 59.
Chapter 4. Migrating to Version 1 Release 2 of IBM Ported Tools for z/OS: OpenSSH

This information assumes that you are migrating from Version 1 Release 1 of IBM Ported Tools for z/OS: OpenSSH and that it has been upgraded to OpenSSH 3.8.1p1 with all the available PTFs applied.

If you are currently using Version 1 Release 1 of IBM Ported Tools for z/OS: OpenSSH and the OpenSSH level is 3.5p1, you must migrate to 3.8.1p1 first before you can migrate to IBM Ported Tools for z/OS: OpenSSH Version 1 Release 2, which uses the 5.0p1 level of OpenSSH. For information about migrating to 3.8.1p1, refer to IBM Ported Tools for z/OS User’s Guide, SA22-7985.

If you are migrating from an unsupported version, you must first migrate to IBM Ported Tools for z/OS: OpenSSH Version 1 Release 1 that has been upgraded to OpenSSH 3.8.1p1 before migrating to IBM Ported Tools for z/OS: OpenSSH Version 1 Release 2.

Considerations when migrating from IBM Ported Tools for z/OS: OpenSSH Version 1 Release 1

This section describes coexistence and compatibility considerations when migrating from IBM Ported Tools for z/OS: OpenSSH Version 1 Release 1.

Coexistence considerations

In a sysplex environment, some systems might share the same configuration. They might also share the ssh_known_hosts or authorized_keys files. However, those systems might have different versions of ssh or sshd. In that situation, the previous version of the command might exit with an error message because it does not support the new features. For a list of the configuration keywords that were introduced in IBM Ported Tools for z/OS: OpenSSH Version 1 Release 2, see Table 2 on page 7. For a list of the ssh known hosts or authorized keys files options that were introduced, see “Summary of changes to commands” on page 3.

Tips: When sharing files, consider these tips:

• To avoid sharing the same configuration file, the user can specify the local configuration file using '-F config_file' for ssh and '-f config_file' for sshd on the command line.
• To avoid sharing the same ssh_known_hosts file, the user can specify the local file using the ssh_config GlobalKnownHostsFile or UserKnownHostsFile keywords.
• To avoid sharing the same authorized_keys file, the user can specify the local file using the sshd_config AuthorizedKeysFile keyword.

Compatibility considerations

When a newer version of the SSH client is trying to connect to a previous version of the sshd daemon, connection might not be established due to incompatibility of the new configuration options. For a list of the configuration keywords that were introduced in IBM Ported Tools for z/OS: OpenSSH Version 1 Release 2, see Table 2 on page 7.
Migration actions for IBM Ported Tools for z/OS: OpenSSH Version 1 Release 2

Migration to IBM Ported Tools for z/OS: OpenSSH Version 1 Release 2 might require certain actions, which are listed as follows:

- "Changes to OpenSSH heap management that might require a migration action" on page 15
- "Setting up the XPLINK environment for use by IBM Ported Tools for z/OS: OpenSSH" on page 15
- "Changes to the sftp command that might require a migration action" on page 15
- "Changes to the ssh command that might require a migration action" on page 15
- "Changes to the ssh_config file that might require a migration action" on page 15
- "Changes to the sshd command that might require a migration action" on page 15
- "Changes to the sshd_config file that might require a migration action" on page 15
- "Changes to the ssh-keygen command that might require a migration action" on page 15
- "Changes to the ssh-rand-helper command that might require a migration action" on page 15
- "Preventing message numbers from being associated with OpenSSH error messages" on page 20

Changes to OpenSSH heap management that might require a migration action

Description: Beginning in Version 1 Release 2, IBM Ported Tools for z/OS: OpenSSH changed how it manages user heap storage for data transfer.

Is the migration action required? Yes, if you limit the amount of storage available to the processes that are running OpenSSH commands.

Steps to take: See "Managing OpenSSH user heap" on page 56 for details.

Reference information: None.

Setting up the XPLINK environment for use by IBM Ported Tools for z/OS: OpenSSH

Description: Beginning in Version 1 Release 2, IBM Ported Tools for z/OS: OpenSSH is an XPLINK application. XPLINK (Extra Performance Linkage) is a type of call linkage that can improve performance in an environment of frequent calls between small functions.

Is the migration action required? Yes, to ensure optimal performance.

Steps to take: To set up the XPLINK environment (that is, to initialize the resources necessary to run an XPLINK application), take the following steps:

- Put the Language Environment® run-time library SCEERUN2 in the LNKLST member of SYS1.PARMLIB.
- Put the XPLINK modules in SCEERUN2 in the dynamic LPA.
- Mark the run-time library SCEERUN2 as program controlled.
Reference information: The following list provides reference information that might be helpful.

- For more information about XPLINK, see z/OS Language Environment Programming Guide.
- For more information about placing SCEERUN2 in LNKLST, see z/OS Language Environment Customization Reference.
- For more information about LNKLST, see z/OS MVS Initialization and Tuning Reference.

Changes to the sftp command that might require a migration action

Table 6 lists the changes to the sftp command that might require a migration action and the accompanying actions.

Table 6. Changes to the sftp command that might require a migration action

<table>
<thead>
<tr>
<th>What changed</th>
<th>Migration action needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>The -b option</td>
<td>Yes, if you use the sftp command with the -b option and require password, passphrase or host key prompts during authentication. For example, if you use the SSH_ASKPASS environment variable for user authentication, this migration action is required because using SSH_ASKPASS requires a passphrase prompt. Action: Run the sftp command with -oBatchMode=no as the first option.</td>
</tr>
<tr>
<td>When the sftp command is run with the -b option, the -oBatchMode=yes argument is now passed to the ssh command. For more information, see “-b option” on page 84.</td>
<td>Yes, if you use special characters on sftp subcommands. Action: Escape special characters with the backslash character.</td>
</tr>
<tr>
<td>Previously, sftp subcommand parsing handled certain special characters (for example, # and glob characters) differently. Now sftp subcommand parsing is more consistent with shell command parsing. For more information about glob characters (also called wildcard characters), refer to the section on file name generation in the sh command description in z/OS UNIX System Services Command Reference.</td>
<td>Yes, if you parse the sftp ls subcommand output and expect files beginning with a dot (.) or numeric user and group information to be displayed when listing the contents of a directory. Action: Run the sftp ls subcommand with the -a option to display files beginning with a dot (.) and with the -n option to display numeric user and group information when listing the contents of a directory.</td>
</tr>
</tbody>
</table>

Changes to the ssh command that might require a migration action

Table 7 on page 16 lists the changes to the ssh command that might require a migration action and the accompanying actions.
<table>
<thead>
<tr>
<th>What changed</th>
<th>Migration action needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previously, if the user was using the default configuration file ("~/.ssh/config"), the owner or permissions on the file was not checked. Now ssh issues an error message and exits if the file is not owned by the user or if the file is writable by the world or the file's group.</td>
<td>Yes, if your file has incorrect owner or permissions. More information about the requirements for those can be found in Table 20 on page 170. Action: Correct the settings so they adhere to the new requirements.</td>
</tr>
<tr>
<td>The <code>-c</code> option</td>
<td>Yes, if you use the previous default list and do not want to allow the new ciphers or the new order of the preferred ciphers. The previous default list was aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,arcfour,aes192-cbc,aes256-cbc,aes128-ctr,aes192-ctr,aes256-ctr. (Typically the ciphers are one long unbroken line; in the preceding example, the ciphers are not shown as one unbroken line due to space limitations.) Action: Specify the previous default list.</td>
</tr>
<tr>
<td>The <code>-L</code>, <code>-R</code> options</td>
<td>Yes, if you use an address that contains delimiter characters. Action: Enclose the address in square brackets.</td>
</tr>
</tbody>
</table>
| Previously, addresses containing a colon (:) character could be parsed using the forward slash (/) character and vice versa. Now addresses containing delimiter characters (:\ or /:) must be enclosed in square brackets. | For more information, see:
 - ```-L option``` on page 94
 - ```-R option``` on page 95 |
| The `-m` option | Yes, if you use the previous default list and do not want to allow the new MAC. The previous default list was hmac-md5,hmac-sha1,hmac-ripemd160,hmac-ripemd160@openssh.com,hmac-sha1-96,hmac-md5-96. (Typically the MACs are one long unbroken line; in the preceding example, the MACs are not shown as one unbroken line due to space limitations.) **Action:** Specify the previous default list. |
| Previously, the default MACs list did not contain umac64@openssh.com. Now the default MACs list contains umac64@openssh.com. Most customers will not be affected by the changed default. | The complete list of MACs used by ssh can be found in ssh_config (see ```MACs``` on page 140). |
| The `-o` option | Yes, if you use one of the keywords that has changed. For a list of the keywords that have changed and corresponding migration actions (if any), see ```Changes to the ssh_config file that might require a migration action``` |
| Some of the keywords have had changes. | **Table 8 on page 17** lists the changes to the ssh_config file that might require a migration action and the accompanying actions. |
Table 8. Changes to the ssh_config file that might require a migration action

<table>
<thead>
<tr>
<th>What changed</th>
<th>Migration action needed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Ciphers keyword</td>
<td>Yes, if you use the previous default list and do not want to allow the new ciphers or the new order of the preferred ciphers. The previous default list was aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,arcfour,aes128-cbc,aes256-cbc,aes128-ctr,aes128-ctr,aes256-ctr. (Typically the ciphers are one long unbroken line; in the preceding example, the ciphers are not shown as one unbroken line due to space limitations.) Action: Specify the previous default list.</td>
</tr>
<tr>
<td>Previously, the default cipher list did not contain arcfour128 and arcfour256. Now the default cipher list contains arcfour128 and arcfour256. The order was also changed to prefer ciphers that are not susceptible to security vulnerability CVE-2008-5161. Most customers will not be affected by the changed default. The complete list of ciphers can be found in ssh_config (see “Ciphers” on page 134).</td>
<td></td>
</tr>
<tr>
<td>The LocalForward, RemoteForward keywords</td>
<td>Yes, if you use an address that contains delimiter characters. Action: Enclose the address in square brackets.</td>
</tr>
<tr>
<td>Previously, addresses containing a colon (:) character could be parsed using the forward slash (/) character and vice versa. Now addresses containing delimiter characters (: or /) must be enclosed in square brackets. For more information, see: • “LocalForward” on page 140 • “RemoteForward” on page 142</td>
<td></td>
</tr>
<tr>
<td>The MACs keyword</td>
<td>Yes, if you use the previous default list and do not want to allow the new MAC. The previous default list was hmac-md5,hmac-sha1,hmac-sha1-96,hmac-md5-96. (Typically the MACs are one long unbroken line; in the preceding example, the MACs are not shown as one unbroken line due to space limitations.) Specifying the previous default list.</td>
</tr>
<tr>
<td>Previously, the default MACs list did not contain umac64@openssh.com. Now the default MACs list contains umac64@openssh.com. Most customers will not be affected by the changed default. The complete list of MACs can be found in ssh_config (see “MACs” on page 140).</td>
<td></td>
</tr>
<tr>
<td>The ProxyCommand keyword</td>
<td>Yes, if you use a shell other than /bin/sh (for example, tcsh). Action: Make sure that ProxyCommand conforms to your shell's syntax. The description of the ssh_config keyword “ProxyCommand” on page 141 has more information about specifying the command to connect to the server.</td>
</tr>
<tr>
<td>Instead of running ProxyCommand with /bin/sh, the user's shell as set in the SHELL environment variable is used.</td>
<td></td>
</tr>
<tr>
<td>The RekeyLimit keyword</td>
<td>Yes, if you use a RekeyLimit value that is less than 16. Action: Change the value so that the RekeyLimit value is greater than or equal to 16. The description of the ssh_config keyword “RekeyLimit” on page 141 has more information about specifying the values.</td>
</tr>
<tr>
<td>Previously, the minimum value was 0. Now the minimum value is 16.</td>
<td></td>
</tr>
</tbody>
</table>

Changes to the sshd command that might require a migration action

Table 9 on page 18 lists the changes to the sshd command that might require a migration action and the accompanying actions.
Table 9. Changes to the sshd command that might require a migration action

<table>
<thead>
<tr>
<th>What changed</th>
<th>Migration action needed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previously, the sshd daemon could be started using a relative path name (for example, ./sshd). Now a full path name must be used instead of the relative path name.</td>
<td>Yes, if you use a relative path name when starting the sshd daemon. Otherwise, sshd issues an error message and exits. Action: Change the startup process to use the full path name instead of a relative path name.</td>
</tr>
<tr>
<td>The permitopen authorized keys file option</td>
<td>Yes, if you use an address that contains delimiter characters. Action: Enclose the address in square brackets.</td>
</tr>
<tr>
<td>Previously, addresses containing a colon (:) character could be parsed using the forward slash (/) character and vice versa. Now addresses containing delimiter characters (: or /) must be enclosed in square brackets.</td>
<td></td>
</tr>
<tr>
<td>"permitopen" on page 126 describes the file option in more detail.</td>
<td></td>
</tr>
<tr>
<td>The -o option</td>
<td>Yes, if you use one of the keywords that has changed. For a list of the keywords that have changed and corresponding migration actions (if any), see "Changes to the sshd_config file that might require a migration action."</td>
</tr>
<tr>
<td>Some of the keywords have had changes.</td>
<td></td>
</tr>
</tbody>
</table>

Changes to the sshd_config file that might require a migration action

Table 10 lists the changes to the sshd_config file that might require a migration action and the accompanying actions.

Table 10. Changes to the sshd_config file that might require a migration action

<table>
<thead>
<tr>
<th>What changed</th>
<th>Migration action needed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>The AllowTCPForwarding keyword</td>
<td>Yes, if you want to continue to allow port forwarding. This default was changed to reduce exposure to a vulnerability reported as CVE-2004-1653. The keyword is described in "AllowTcpForwarding" on page 151. Action: Set AllowTCPForwarding to "yes".</td>
</tr>
<tr>
<td>Previously, the default value was "yes". Now it is "no".</td>
<td></td>
</tr>
<tr>
<td>The ChallengeResponseAuthentication keyword</td>
<td>No, because ChallengeResponseAuthentication is not supported on z/OS systems.</td>
</tr>
<tr>
<td>Previously, the default value was "yes". Now it is "no".</td>
<td></td>
</tr>
<tr>
<td>The keyword is described in "ChallengeResponseAuthentication" on page 152</td>
<td></td>
</tr>
<tr>
<td>The Ciphers keyword</td>
<td>Yes, if you use the previous default list and do not want to allow the new ciphers or the new order of the preferred ciphers. The previous default list was aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,arcfour,aes192-cbc,aes256-cbc,aes128-ctr,aes192-ctr,aes256-ctr. The previous default list was (Typically the ciphers are one long unbroken line; in the preceding example, the ciphers are not shown as one unbroken line due to space limitations.) Action: Specify the previous default list.</td>
</tr>
<tr>
<td>Previously, the default cipher list did not contain arcfour128 and arcfour256. Now the default cipher list contains arcfour128 and arcfour256. The order was also changed to prefer ciphers that are not susceptible to security vulnerability CVE-2008-5161. Most customers will not be affected by the changed default.</td>
<td></td>
</tr>
<tr>
<td>The complete list of ciphers used by sshd can be found in sshd_config (see "Ciphers" on page 152)</td>
<td></td>
</tr>
</tbody>
</table>
Table 10. Changes to the sshd_config file that might require a migration action (continued)

<table>
<thead>
<tr>
<th>What changed</th>
<th>Migration action needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>The MACs keyword</td>
<td>Yes, if you use the previous default list and do not want to allow the new MAC. The previous default list was hmac-md5,hmac-sha1,hmac-ripemd160,hmac-ripemd160@openssh.com,hmac-sha1-96,hmac-md5-96. (Typically the MACs are one long unbroken line; in the preceding example, the MACs are not shown as one unbroken line due to space limitations.) Specify the previous default list.</td>
</tr>
<tr>
<td>Previously, the default MACs list did not contain umac64@openssh.com. Now the default MACs list contains umac64@openssh.com. Most customers will not be affected by the changed default.</td>
<td></td>
</tr>
<tr>
<td>The complete list of MACs used by sshd can be found in sshd_config (see “MACs” on page 158).</td>
<td></td>
</tr>
<tr>
<td>The PrintLastLog keyword</td>
<td>No, because PrintLastLog is not supported on z/OS systems.</td>
</tr>
<tr>
<td>Previously, the default value was “yes”. Now it is “no”.</td>
<td></td>
</tr>
<tr>
<td>The keyword is described in “PrintLastLog” on page 161.</td>
<td></td>
</tr>
</tbody>
</table>

Changes to the ssh-keygen command that might require a migration action

Table 11 lists the changes to the ssh-keygen command that might require a migration action and the accompanying actions.

Table 11. Changes to the ssh-keygen command that might require a migration action

<table>
<thead>
<tr>
<th>What changed</th>
<th>Migration action needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>-b option (for RSA)</td>
<td>Yes, if you are using ssh-keygen to generate RSA keys with a size that is less than 768 bits. Action: Use ssh-keygen to generate new RSA keys based on the new minimum size. If improved security is desired, regenerate existing RSA keys if their size is less than 768 bits.</td>
</tr>
<tr>
<td>Previously, the minimum RSA key size on the ssh-keygen -b option was 512 bits and the default was 1024 bits. Now the minimum RSA key size is 768 bits and the default is 2048 bits. The maximum remains 32768 bits.</td>
<td></td>
</tr>
<tr>
<td>For more information, see “-b option” on page 112.</td>
<td></td>
</tr>
<tr>
<td>-b option (for DSA)</td>
<td>Yes, if you are using ssh-keygen to generate DSA keys with a size that is not equal to 1024 bits. Action: Use ssh-keygen to generate new DSA keys based on the new size requirement. If FIPS 186-2 compliance is required, regenerate existing DSA keys if their size is not 1024 bits.</td>
</tr>
<tr>
<td>Previously, the DSA key size on the ssh-keygen -b option was allowed to be between 512 and 32768 bits. Now the DSA key size must be 1024 bits.</td>
<td></td>
</tr>
<tr>
<td>For more information, see “-b option” on page 112.</td>
<td></td>
</tr>
<tr>
<td>-f option</td>
<td>No, because long file names will continue to be invalid.</td>
</tr>
<tr>
<td>Instead of truncating a long file name at 1023 characters, a message is issued.</td>
<td></td>
</tr>
<tr>
<td>For more information, see “-f option” on page 112.</td>
<td></td>
</tr>
<tr>
<td>-r option</td>
<td>Yes, if you did not specify a file name.</td>
</tr>
<tr>
<td>Previously, if the file name was not specified, a prompt for the file name was issued. Now the default file names for RSA and DSA keys are used instead.</td>
<td>Action: Specify the file name on the ssh-keygen command.</td>
</tr>
<tr>
<td>For more information, see “-r option” on page 113.</td>
<td></td>
</tr>
</tbody>
</table>
Changes to the ssh-keygen command that might require a migration action

Table 11. Changes to the ssh-keygen command that might require a migration action (continued)

<table>
<thead>
<tr>
<th>What changed</th>
<th>Migration action needed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssh-keygen without the -d or -t options</td>
<td>No, because previously successful ssh-keygen commands will continue to be successful.</td>
</tr>
</tbody>
</table>

Previously, if **ssh-keygen** was issued without the -d or -t options, a message was issued. Now RSA is used as the default key type.

For more information, see “-d option” on page 112 and “-t option” on page 114.

Changes to the ssh-rand-helper command that might require a migration action

Table 12 lists the changes to the **ssh-rand-helper** command that might require a migration action and the accompanying actions.

Table 12. Changes to the ssh-rand-helper command that might require a migration action

<table>
<thead>
<tr>
<th>What changed</th>
<th>Migration action needed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>The ssh-rand-helper command now fails if a user’s ~/.ssh/ directory does not exist and cannot be created.</td>
<td>Yes, if you use ssh-rand-helper to generate random numbers for OpenSSH and an OpenSSH user does not have a ~/.ssh/ directory and cannot create it. For example, a user that starts the sshd daemon might have a home directory in a read-only file system and thus is unable to create a ~/.ssh/ directory. Such a user might be affected by this migration action.</td>
</tr>
</tbody>
</table>

Action: Ensure that all OpenSSH users have a ~/.ssh/ directory or can create one.

Preventing message numbers from being associated with OpenSSH error messages

Description: Previously, to associate message numbers (for example, FOTSn annunci) with OpenSSH error messages, the NLS_PATH environment variable had to include the following path: /usr/lib/nls/msg/%L/%N.cat. Starting in Version 1 Release 2, message numbers for IBM Ported Tools for z/OS: OpenSSH are associated with OpenSSH error messages by default.

Is the migration action required? Yes, if you do not want message numbers to be associated with OpenSSH error messages.

Steps to take: If you do not want message numbers to be associated with OpenSSH error messages, then set environment variable

`_ZOS_OPENSSH_MSGCAT="NONE"` before running an OpenSSH command. If you have previously modified the NLS_PATH environment variable, you do not need to make any changes to it.

Reference information: For more information, see “Setting up the message catalog for IBM Ported Tools for z/OS: OpenSSH” on page 38.
Chapter 5. For system administrators

This topic describes the various tasks that the system administrator handles.

Rule: All files used by IBM Ported Tools for z/OS: OpenSSH (such as key files and configuration files) must be in the IBM-1047 code set, except for the rc files (/etc/ssh/sshrc and ~/.ssh/rc). Those files are parsed by /bin/sh and should be in the code set of the current locale. Do not use the /etc/ssh/sshrc file if there is a possibility of the users on the system running in different locales.

Restriction: IBM Ported Tools for z/OS: OpenSSH does not run in multibyte locales.

Differences between sftp and FTP

OpenSSH’s sftp and IBM Communications Server’s FTP with System SSL differ from each other. OpenSSH’s sftp is an Open Source implementation of the IETF Secure Shell (SECSH) “SSH File Transfer Protocol” Internet Draft. OpenSSH uses a statically linked OpenSSL cryptographic library, System SSL, or ICSF to perform its cryptographic functions. OpenSSH provides some key management facilities with the ssh-keygen command. However, this support is not integrated with System SSL support provided by IBM. OpenSSH uses the security product when performing password authentication and when extracting keys from certificates associated with SAF key rings. The public key authentication processing itself is overseen by the OpenSSH daemon.

For information about the IETF SECSH internet drafts, see “RFCs and Internet drafts” on page 349.

The Communications Server FTP server and client support Transport Layer Security (TLS). The FTP client and server negotiate the use of TLS based on a subset of the FTP security negotiation functions documented in RFC 2228. FTP uses z/OS System SSL, and therefore can use the cryptographic hardware. For more information about FTP, see z/OS Communications Server: IP Configuration Guide.

Because sftp and FTP with System SSL do not use the same protocol, they cannot communicate with each other to establish a secure session.

Restriction: OpenSSH’s sftp support does not include built-in support for MVS™ data sets. For alternate ways to access MVS data sets within sftp, see “Accessing MVS data sets within sftp” on page 343.

What you need to verify before using OpenSSH

Before using OpenSSH, the system administrator should check that all prerequisites have been met.

Steps for verifying the prerequisites for using OpenSSH

Before you begin: Perform the following steps to verify that the prerequisites for using OpenSSH have been met.

1. Using Table 13 on page 22 as a reference, check that certain directories were set up correctly when IBM Ported Tools for z/OS: OpenSSH was installed.
Table 13. List of directories and needed permissions

<table>
<thead>
<tr>
<th>Directory</th>
<th>Permission</th>
<th>Owner</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>/var/empty</td>
<td>755</td>
<td>UID(0)</td>
<td>Must be empty. It is used as the home directory for the SSHD (unprivileged) user. For more information about privilege separation, see "Step for creating the sshd privilege separation user" on page 38.</td>
</tr>
<tr>
<td>/var/run</td>
<td>755</td>
<td>UID(0)</td>
<td>Holds the sshd.pid file, which contains the process ID of the most recently started OpenSSH daemon. If another directory is preferred, the PidFile configuration option can be specified in the daemon’s sshd_config file. For more information, see "sshd_config" on page 150. Also holds the sshd.mm.XXXXXXXX temporary files which are used for compression with privilege separation.</td>
</tr>
<tr>
<td>/etc/ssh</td>
<td>755</td>
<td>UID(0)</td>
<td>Holds the configuration files for ssh and sshd.</td>
</tr>
</tbody>
</table>

2. If running on z/OS 1.10 or z/OS 1.11, check that the PTFs for the following APARs have been applied:
 - PK86329
 - OA29401

3. Check that the sshd daemon has been installed with the program control, APF-authorized, and noshareas extended attributes. To verify that these extended attributes have been set properly, issue the following shell command:
 `ls -El /usr/sbin/sshd`

 The output should be similar to the following example:
   ```
   -rwxr--r-- ap-- 2 SYSADM 1 5783552 Jul 9 08:24 /usr/sbin/sshd
   ```

 The ‘p’ indicates that the program control extended attribute is set. The ‘a’ indicates that the APF-authorized extended attribute is set. The lack of an ‘s’ after the ‘p’ indicates that the noshareas extended attribute is set. If the output is not correct, then you must set the attributes as follows:
 - To set the noshareas extended attribute, issue the following shell command:
 `extattr -s /usr/sbin/sshd`
 - If you are a UID(0) user with at least READ access to the BPX.FILEATTR.PROGCTL resource in the FACILITY class, you can set the program control extended attribute by issuing the following shell command:
 `extattr +p /usr/sbin/sshd`
 - If you are a UID(0) user with at least READ access to the BPX.FILEATTR.APF resource in the FACILITY class, you can set the APF-authorized extended attribute by issuing the following shell command:
 `extattr +a /usr/sbin/sshd`

 In addition, ensure that the Language Environment run-time libraries are defined to program control, the standard Language Environment library is HLQ.CEE.SCEERUN and the XPLINK is HLQ.CEE.SCEERUN2.
4. Check that the **scp**, **sftp**, and **sftp-server** programs have been installed with the APF-authorized attribute. To verify that this extended attribute is set properly, issue the following shell command for each program:

```
ls -El proname
```

where `proname` is `/bin/scp`, `/bin/sftp`, or `/usr/lib/ssh/sftp-server`. The output should be similar to the following example:

```
-rwxr-xr-x a-s- 2 SYSADM 1 5783552 Jul 9 08:24 proname
```

The 'a' indicates that the APF-authorized extended attribute is set. If the output is not correct, then you must set the attribute as follows.

- If you are UID(0) user with at least READ access to the BPX.FILEATTR.APF resource in the FACILITY class, you can set the APF-authorized extended attribute by issuing the following shell command:

```
extattr +a proname
```

5. Check that the **ssh** and **ssh-keysign** programs have been installed with the noshareas extended attribute. To verify that this extended attribute is set properly, issue the following shell command for each program:

```
ls -El proname
```

where `proname` is `/bin/ssh` or `/usr/lib/ssh/ssh-keysign`. The output should be similar to the following example:

```
-rwxr-xr-x ---- 2 SYSADM 1 5783552 Jul 9 08:24 proname
```

The third - in '----' indicates that the noshareas extended attribute is set. If the output is not correct, then you must set the noshareas extended attribute. For example, to set the noshareas extended attribute for `/bin/ssh`, issue the following shell command:

```
extattr -s /bin/ssh
```

When you are done, you have verified that the prerequisites for using OpenSSH have been met.

For more information about program control, see `z/OS UNIX System Services Planning`.

Setting up the sshd daemon

Before the system administrator can start the **sshd** daemon, the following setup tasks must be done:

- The configuration files must be created or edited, as described in “Steps for creating or editing configuration files” on page 24.
Server authentication must be set up as described in “Steps for setting up server authentication when keys are stored in UNIX files” on page 27 and “Steps for setting up server authentication when keys are stored in key rings” on page 29.

The sshd privilege separation user must be created as described in “Step for creating the sshd privilege separation user” on page 38.

Setting up the message catalog for IBM Ported Tools for z/OS: OpenSSH is an optional task. The task is described in “Setting up the message catalog for IBM Ported Tools for z/OS: OpenSSH” on page 38.

Steps for creating or editing configuration files

Perform the following steps to create or edit the configuration files.

1. Copy the configuration files from the /samples directory to the /etc/ssh directory. Store them in the IBM-1047 (EBCDIC) code set. Additionally, set the appropriate mode for some of the copied files.

   ```
   cp -p /samples/sshd_config /etc/ssh/sshd_config
   cp -p /samples/ssh_config /etc/ssh/ssh_config
   cp -p /samples/moduli /etc/ssh/moduli
   cp -p /samples/ssh_prng_cmds /etc/ssh/ssh_prng_cmds
   cp -p /samples/zos_sshd_config /etc/ssh/zos_sshd_config
   cp -p /samples/zos_ssh_config /etc/ssh/zos_ssh_config
   chmod 600 /etc/ssh/sshd_config
   chmod 600 /etc/ssh/zos_sshd_config
   ```

 Table 17 on page 169 lists the permission and UID settings for each configuration file.

2. Modify the /etc/ssh/sshd_config file to control the SSH server's authentication methods allowed, protocols, and ciphers supported, port forwarding, and session control options. For more details, see “sshd” on page 121 and “sshd_config” on page 150.

 “OpenSSH - port forwarding examples” on page 345 has examples of port forwarding.

3. Modify the /etc/ssh/ssh_config file to control the SSH client-side authentication methods, protocols, ciphers, port forwarding settings and session control options. For more details, see “ssh” on page 90 and “ssh_config” on page 133.

 Notes:
 a. The settings in this configuration file provide system defaults. They can be overridden by the user's ssh configuration in ~/.ssh/config file or by command-line options.
 b. The ssh_config file can be shared across multiple systems with client configuration options that are tailored to the specific local system being used. To share the file, preface groups of configuration options with the Host keyword.

4. Configure the TCP port. By default, sshd listens on TCP port 22. Because this is in the range of ports numbered 1–1023, it is considered to be a privileged TCP port. Only daemons running as a superuser are allowed to listen on these ports unless TCP is configured to unrestrict low ports.

 You can configure sshd to listen on a different port with the Port keyword or the -p command-line option (see “sshd_config” on page 150).
Example: An example of an `sshd_config` entry is:

```
Port 1022
```

If you want to reserve the port for `sshd` daemon use, add the following lines to `PROFILE.TCPIP` within the Port statements:

```
PORT
22 TCP SSHD* ; port for sshd daemon
```

The job name must have the wildcard format of `SSHD*` because as the `sshd` daemon starts, it creates child tasks starting with `SSHDn` where `n` is a number between 1 and 9. Depending on your system, the resulting daemon task will be one of these child tasks so a `D OMVS,A=ALL` will show `SSHDn` as the daemon task. Use of this wildcard means that TCP/IP cannot automatically restart the daemon if it goes down. See "Starting the sshd daemon" on page 39 for information about starting the OpenSSH daemon.

5. Set up random number generation. You have two choices.
 - You can use `sshd-rand-helper` to gather random numbers. The sample file copied into the `/etc/ssh/ssh_prng_cmds` file, which is used by `sshd-rand-helper` to gather random numbers of cryptographic quality, should provide enough entropy for most installations. To produce random numbers, the OpenSSH entropy collector runs the commands listed in this file and adds the output to other sources of entropy. OpenSSH depends on unpredictable random numbers for generating keys, performing digital signatures, and forming cryptographic challenges. For more information about `sshd-rand-helper`, see "sshd-rand-helper" on page 120.

 OpenSSH users might be required to have special authority to successfully run some of the commands listed in the `/etc/ssh/ssh_prng_cmds` file. As a result, you might want to remove these commands from the file to avoid authority failures or you might need to replace these commands to ensure that enough entropy is generated. For example, the SERVAUTH NETSTAT profile controls access to the `netstat` command.

 Rule: `sshd-rand-helper` must generate at least 48 random bytes to ensure enough entropy is generated for OpenSSH.

 Tip: To provide more randomness, add more commands to the `/etc/ssh/ssh_prng_cmds` file. However, OpenSSH performance might be affected.

 - If Integrated Cryptographic Service Facility (ICSF) is available, you can use hardware support (/dev/random or /dev/urandom) to generate random numbers. For more information about using hardware support, see "Using hardware support to generate random numbers" on page 49.

6. (Optional step.) Create an `sshrc` file. If you need to run host-specific commands whenever a user logs in to this host, create an `/etc/ssh/sshrc` file. It is a shell script run only for SSH logins, not for non-SSH logins (such as rlogin or telnet). Examples of use are logging or running `ssh-agent`. If you do not need to do this, then do not create the file. If you create the file, it must be a shell script in `/bin/sh` syntax.

7. If the TCPIP.DATA file on the system is located in the UNIX file system, for example, named `/etc/resolv.conf`, copy `/etc/resolv.conf` to `/var/empty/etc/resolv.conf`.

   ```
cp -p /etc/resolv.conf /var/empty/etc/resolv.conf
   ```
The OpenSSH daemon runs with privilege separation enabled by default. During privilege separation, the daemon cleaves itself into two processes, one with privileges and one without. The unprivileged user (the SSHD privilege separation user) handles network traffic and everything not requiring special privileges. This unprivileged process runs in a chroot jail of /var/empty. The chroot service changes the root directory from the current one to a new one; in this case, /var/empty. The root directory is the starting point for path searches of path names beginning with a slash. At some point, the privilege separation user invokes a TCP/IP system call which requires access to the TCPIP.DATA file. If this file is stored in the UNIX file system as /etc/resolv.conf, the privilege separation user will not have access to the file because it is not located off the new root file system of /var/empty. To make this file visible to the privilege separation user, the system administrator should copy /etc/resolv.conf to /var/empty/etc/resolv.conf.

Tip: Every time the installation changes the TCPIP.DATA statements, the TCPIP.DATA file must be recopied to the path name located off the /var/empty root, so that the updated information is found by the privilege separation user.

8. If your system is set up to run in another locale, see Chapter 7, “Globalization on z/OS systems,” on page 59 for information about setting up your system or user environment.

When you are done, you have either created or edited the configuration files.

Setting up server authentication

The following are important notes for setting up server authentication.

1. To run ssh-keyscan against a host, the sshd daemon must be running on that host.
2. Verify all keys gathered via ssh-keyscan by displaying the key fingerprint with ssh-keygen.
3. For additional security, all host names and addresses can be hashed in the ssh_known_hosts file. The ssh-keygen and ssh-keyscan commands provide options for hashing host names and addresses.
4. If ssh-keyscan was not used to gather the host keys, then prepend the host name or address (for which the keys belong) to each key entry in the ssh_known_hosts file. ssh-keyscan automatically includes the host name or address in its output.
5. The system-wide ssh_known_hosts file is in the /etc/ssh directory.

Before the system administrator can start the sshd daemon, server authentication must be set up. During server authentication, when a client attempts to establish a secure connection with the server, keys are used to determine the trustworthiness of the server. Those keys can be stored in either UNIX files or SAF key rings, or both. For more information about storing the key rings, see “Choosing between UNIX files and key rings” on page 57.

You need to know whether you want to use SSH protocol version 1, protocol version 2, or both. Protocol version 2 is the default. Both protocols support similar authentication methods, but protocol version 2 is preferred because it provides additional mechanisms for confidentiality and integrity. Protocol version 1 lacks a strong mechanism for ensuring the integrity of the connection.
Restriction: If you are using SSH protocol version 1, you cannot use key rings to hold your keys. You must use UNIX files to hold RSA keys used for SSH protocol version 1.

The procedures for setting up server authentication are described in the following sections:

- "Steps for setting up server authentication when keys are stored in UNIX files"
- "Steps for setting up server authentication when keys are stored in key rings" on page 29

Steps for setting up server authentication when keys are stored in UNIX files

Perform the following steps to perform setup for server authentication if you are storing the keys in UNIX files.

1. Generate the host keys for the SSH server based on the protocol that you plan to use. (Host keys allow a client to verify the identity of the server.) The key files must be stored in the IBM-1047 (EBCDIC) code set. Assuming that the superuser running these commands is running in the default C locale, the key files are automatically stored in that code set.

 If you are using SSH protocol version 1, issue:

 `ssh-keygen -t rsa1 -f /etc/ssh/ssh_host_key -N ""`

 If you are using SSH protocol version 2, issue:

 `ssh-keygen -t dsa -f /etc/ssh/ssh_host_dsa_key -N ""

 `ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key -N ""`

 The use of the -N option in the examples creates an empty passphrase for the host key. Host keys cannot have passphrases associated with them, because the daemon would have no way of knowing which passphrase to use with which host key.

2. Copy the local host's public keys to the ssh_known_hosts file at the remote host. The client uses the ssh_known_hosts file to verify the identity of the remote host.

 a. Log into the remote host.

 b. Append the local host's public keys to the /etc/ssh/ssh_known_hosts file at the remote host.

 If you are using SSH protocol version 1, use:

 `/etc/ssh/ssh_host_key.pub`

 If you are using SSH protocol version 2, use:

 `/etc/ssh/ssh_host_dsa_key.pub`
 `/etc/ssh/ssh_host_rsa_key.pub`

 You can use cut and paste to append the keys. Because a key is a long line, verify that the keys were not split across lines. Each key should be exactly one line of the file.

 If you use FTP to move your public key files to another system, treat the files as text to enable any necessary conversion between ASCII and EBCDIC.

 c. For each public key added to the remote ssh_known_hosts file, add the host name of the key to the start of the line. For more information, see "ssh_known_hosts file format" on page 127. All host names and addresses
in this file can be hashed for additional security. The `ssh-keygen` command provides the `-H` option for this purpose.

d. Log off the system. Clients logging into the host can now verify the identity of that host.

3. Gather the public host keys of remote hosts and store them in either a file or a certificate.

 a. If the remote hosts are not z/OS systems or if they are z/OS systems that do not use key ring support, use `ssh-keyscan` to redirect the resulting output to a file. Verify the keys in that file and add them to the previously created `/etc/ssh/ssh_known_hosts` file. If you do not verify the keys before creating the `/etc/ssh/ssh_known_hosts` file, users might be vulnerable to attacks. For additional security, the `ssh-keyscan` command provides the `-H` option to hash all host names and addresses in the output. See "`ssh-keyscan`" on page 116 for more information.

 b. If any remote hosts are z/OS systems with the host keys in a key ring, two methods of gathering and storing those keys on the local host are available. Either the public key is stored in the `/etc/ssh/ssh_known_hosts` file, or the public key is stored in a certificate associated with a key ring on the local host. That certificate is identified in the `/etc/ssh/ssh_known_hosts` file.

 1) Use `ssh-keyscan` as described earlier in this step, or
 2) Extract the public host keys from the remote host key ring as follows:

 - Use `ssh-keygen -e` on the remote host to export the public host key. For example:

        ```
        export _ZOS_SSH_KEY_RING_LABEL="SSHDAEM/SSHDring host-ssh-type"
        ssh-keygen -e > host-ssh-type.out
        ```

 - FTP the exported key to the local system.

 - Use `ssh-keygen -i` on the local system to import the public host key into a UNIX file. For example:

        ```
        ssh-keygen -i -f host-ssh-type.out >> /etc/ssh/ssh_known_hosts
        ```

When you are done, you have performed setup for server authentication in which keys will be stored in UNIX files. Each time the host keys are regenerated, they must be redistributed and added to the key ring of the remote system.

Figure 1 on page 29 shows how the known_hosts file is created when keys are stored in UNIX files.
Steps for setting up server authentication when keys are stored in key rings

The setup procedure has been divided into three steps:

- **Step 1: Generate the host keys for the SSH server** on page 30. Host keys allow a client to verify the identity of the server.
- **Step 2: Distribute the public keys from the local host to the remote hosts** on page 32. Clients use the `ssh_known_hosts` file to verify the identity of the remote host.
- **Step 3: Gather the public host keys of remote hosts** on page 34. Keys are verified and then added to the `/etc/ssh/ssh_known_hosts` file.

Use RACF® or a similar security product that supports key rings when storing key rings. SSH protocol version 2 is the only version that can be used when storing keys in key rings. If you want to use protocol version 1, then you must store the keys in UNIX files as described in "Steps for setting up server authentication when keys are stored in UNIX files" on page 27. Protocol version 2 provides additional mechanisms for confidentiality and integrity while protocol version 1 lacks a strong mechanism for ensuring the integrity of the connection. The key files must be stored in the IBM-1047 (EBCDIC) code set.
About the examples in this section

The examples provided for managing key rings and associated objects use the RACF RACDCERT command. If a different security product is used, consult that product's documentation to determine if it contains compatible support. For more information about the RACDCERT command, the necessary authority required to use the command, and any other options not described in this documentation, refer to z/OS Security Server RACF Command Language Reference.

In the examples, input names that are given in italics are variables that you can choose. Some of these names in italics contain hyphen characters (-) separating portions of the name. These hyphens are variable and are not required. The names given are merely suggestions and are consistently used throughout the examples. If you customize your own version in one step, that name will likely need to be used on other command steps as well.

The examples demonstrate using a self-signed certificate. Using a certificate chain, such as with root and intermediate certificate authority certificates, is supported. If you will be using more advanced certificate chains than the examples demonstrate, see “Validating certificates when using key rings” on page 58 for important considerations.

Step 1: Generate the host keys for the SSH server

Before you begin: You need to do the following tasks:

- Make sure that a unique user ID that will be used to start the OpenSSH daemon has already been set up on your system. A unique user ID is necessary because RACF uses the user ID, not the UNIX UID, for access control to key rings. The examples in this step use SSHDAEM as the user ID that starts the daemon and that also owns the associated host key rings. For more information about setting up the user ID that will be used to start the OpenSSH daemon, see “Starting sshd as a stand-alone daemon” on page 39.

- Determine whether you are working with real or virtual key rings because the setup steps vary depending on the type of key ring is being used. See z/OS Security Server RACF Security Administrator’s Guide for more information about real and virtual key rings.

Perform the following steps to generate the host keys for the SSH server.

1. Create a real key ring if you do not yet have one to use for the host public keys. Omit this step if you plan to use a virtual key ring. Use the RACDCERT ADDRING command to create the new key ring, specifying the owning user ID and the key ring name. The ID keyword must specify the user ID that will be starting sshd. The key ring name can be any unique name for this user ID. For example:

 RACDCERT ID(SSHDAEM) ADDRING(SSHDring)

2. Using the RACDCERT GENCERT command, generate a host certificate with public and private keys based on the algorithms that are supported on the server (either RSA, DSA, or both). For RSA keys, the minimum size is 768 bits and the maximum size is 32768 bits. Typically, 2048 bits are considered
sufficient. DSA keys must be exactly 1024 bits as specified by FIPS 186-2. DSA keys larger than 1024 bits associated with certificates in a key ring are not supported by OpenSSH.

Do not use variant characters in the label name for the certificate. The sshd daemon must run only in the C locale and therefore interprets the key files (that is, the known host and authorized key files) as encoded in code set IBM-1047.

Although the following examples demonstrate how to create non-ICSF (Integrated Cryptographic Storage Facility) certificates in the RACF database, ICSF can also be used to store the certificate and associated keys for RSA only. These keys can be generated by software using ICSF or by hardware using PCI Cryptographic Coprocessor (PCICC). For more information, see

```
CRYPTOGRAPHIC SERVICES ICSF ADMINISTRATOR'S GUIDE
```

- To generate a certificate and an RSA public/private key pair, storing the private key in the RACF database as a non-ICSF key:

  ```
  RACDCERT GENCERT ID(SSHDAEM) SUBJECTSDN(CN('host-ssh-rsa-cn'))
  SIZE(2048) WITHLABEL('host-ssh-rsa')
  ```

- To generate a certificate and a DSA public/private key pair, storing the private key in the RACF database as a non-ICSF key:

  ```
  RACDCERT GENCERT ID(SSHDAEM) SUBJECTSDN(CN('host-ssh-dsa-cn'))
  SIZE(1024) DSA WITHLABEL('host-ssh-dsa')
  ```

The SUBJECTSDN parameter offers several more customizable keywords, which are not shown in the preceding examples, that can be included in the distinguished name. The label assigned to the certificate must be chosen to be unique within the RACF database. The user ID must match the owner of the key ring.

3. If real key rings are being used, use the RACDCERT CONNECT command to connect the certificate to the host key ring. Omit this step if you plan to use virtual key rings. You must identify the user ID that owns the certificate and the user ID that owns the key ring. These are typically the same for this connect command. For example:

  ```
  RACDCERT CONNECT(ID(SSHDAEM) LABEL('host-ssh-type')
  RING(SSHDring) USAGE(PERSONAL)) ID(SSHDAEM)
  ```

4. Add a line in the z/OS-specific zos_sshd_config file for each certificate being used for a host key.
 - For real key rings, add the following line:
     ```
     HostKeyRingLabel "SSHDAEM/SSHDring host-ssh-type"
     ```
 - For virtual key rings, add the following line:
     ```
     HostKeyRingLabel "SSHDAEM/* host-ssh-type"
     ```

5. Restrict access to the key ring. To prevent access to the host private keys by any other user, permit only the user ID (for example, SSHDAEM) that starts the sshd daemon. See “Managing key rings and restricting access to them” on page 57 for more information. For example:

   ```
   RDEFINE RDATALIB SSHDAEM,SSHDring,LST UACC(NONE)
   PERMIT SSHDAEM,SSHDring,LST CLASS(RDATALIB) ID(SSHAEM) ACCESS(READ)
   ```

Chapter 5. For system administrators 31
If the RDATALIB class is not yet active and RACLISTed:
SETROPTS RACLIST(RDATALIB) CLASSACT(RDATALIB)

Refresh the class:
SETROPTS RACLIST(RDATALIB) REFRESH

To prohibit universal access to the SSHDAEM user's virtual key ring, using
ring-specific profile checking:
RDATALIB SSHDAEM.IRR_VIRTUAL_KEYRING_LST UACC(NONE)
PERMIT SSHDAEM.IRR_VIRTUAL_KEYRING_LST CLASS(RDATALIB) ID(SSHDAEM) ACCESS(READ)

If the RDATALIB class is not yet active and RACLISTed:
SETROPTS RACLIST(RDATALIB) CLASSACT(RDATALIB)

Refresh the class:
SETROPTS RACLIST(RDATALIB) REFRESH

To prohibit universal access to any key ring on the system, using global
profile checking:
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)

If the FACILITY class is not yet active and RACLISTed:
SETROPTS RACLIST(FACILITY) CLASSACT(FACILITY)

Refresh the class:
SETROPTS RACLIST(FACILITY) REFRESH

When you are done with Step 1, you have generated the host keys for the SSH
server. Now go to "Step 2: Distribute the public keys from the local host to the
remote hosts."

Step 2: Distribute the public keys from the local host to the
remote hosts
Step 2 is intended for remote hosts that use key rings. If a remote host does not
use key rings, then use ssh-keygen to distribute the public host keys as described
in Step 3 in "Steps for setting up server authentication when keys are stored in
UNIX files" on page 27.

Perform the following steps to distribute the public keys from the local host to the
ssh_known_hosts file on the remote host.

1. Export each certificate in DER format without the private key into a data set
 using the RACDCERT EXPORT command. Specify the certificate identification
 and request CERTDER for the export format. Choose a data set to store the
 exported certificate and specify it on the DSN parameter. If the data set
 specified for DSN already exists, it is deleted and reallocated by the
 RACDCERT EXPORT command.
 For example:
 RACDCERT EXPORT(LABEL('host-ssh-type')) ID(SSHDAEM)
 FORMAT(CERTDER) DSN('host.sshcert.type')

2. Use FTP to distribute each exported certificate data set in binary format to the
 remote hosts.
3. On the remote host, if real key rings are being used, create a new key ring if you do not yet have a key ring to use for the known host public keys. Omit this step if you plan to use virtual key rings. Use the RACDCERT ADDRING command, specifying the owning user ID and the key ring name. If you have not yet created the user ID that will be starting the `sshd` daemon on this remote host, do that first. The user ID specified here must be the user ID that will be running the `sshd` daemon on this remote host which is assumed to be SSHDAEM in the following examples. The key ring name can be any unique name for this user ID.
 For example:
   ```
   RACDCERT ID(SSHDAEM) ADDRING(SSHKnownHostsRing)
   ```

4. On the remote host, use the RACDCERT ADD command to add the exported certificate on the remote host. Specify the data set that you distributed to this remote host by using FTP. Also specify the user ID that should own the certificate and indicate that this certificate is trusted. The user ID specified here must be the user ID that will be running the `sshd` daemon on this remote host which is assumed to be SSHDAEM in the following examples. You will also specify the label for this certificate on this remote host. This label must be unique for the user ID within the RACF database and is used to identify this certificate on future commands and for reference as a known host certificate. This certificate contains only the public key.
 For example:
   ```
   RACDCERT ADD('host.sshcert.type') ID(SSHDAEM)
   WITHLABEL('host-ssh-type') TRUST
   ```

5. On the remote host, if real key rings are being used, use the RACDCERT CONNECT command to connect each certificate into the known hosts key ring. Omit this step if you plan to use virtual key rings. You must identify the user ID that owns the certificate and the user ID that owns the key ring. These will typically be the same for this connect command.
 For example:
   ```
   RACDCERT CONNECT(ID(SSHDAEM) LABEL('host-ssh-type')
   RING(SSHKnownHostsRing)) ID(SSHDAEM)
   ```

6. On the remote host, edit the system-wide known_hosts file `/etc/ssh/ssh_known_hosts` to add a line for each host certificate connected in Step 4. The line must contain the host name or host names followed by `zos-key-ring-label="KeyRingOwner/KeyRingName label.`` For example:
 - **For a real key ring** (for example, SSHKnownHostsRing), add:
     ```
     host zos-key-ring-label="SSHDAEM/SSHKnownHostsRing host-ssh-type"
     ```
 - **For a virtual key ring** (for example, one owned by SSHDAEM), add:
     ```
     host zos-key-ring-label="SSHDAEM/* host-ssh-type"
     ```
 For more information, see the `sshd` command section `ssh_known_hosts file format` on page 127.

7. On the remote host, permit user access to the known hosts key ring. All OpenSSH client users on this system must have authority to read the public
keys from this key ring. For details about the methods of permitting access, see "Managing key rings and restricting access to them" on page 57. For example:

- To define universal access to the real key ring, SSHKnownHostsRing, using ring-specific profile checking:

 RDEFINE RDATALIB SSHDAEM.SSHKnownHostsRing.LST UACC(READ)

If the RDATALIB class is not yet active and RACLISTed:

 SETROPTS RACTION(RDATALIB) CLASSACT(RDATALIB)

Refresh the class:

 SETROPTS RACTION(RDATALIB) REFRESH

- To define universal access to the SSHDAEM user's virtual key ring, using ring-specific profile checking:

 RDEFINE RDATALIB SSHDAEM.IRR_VIRTUAL_KEYRING_LST UACC(READ)

If the RDATALIB class is not yet active and RACLISTed:

 SETROPTS RACTION(RDATALIB) CLASSACT(RDATALIB)

Refresh the class:

 SETROPTS RACTION(RDATALIB) REFRESH

- To define (and permit) universal access to any key ring on the system, using global profile checking:

 RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(UPDATE)

If the FACILITY class is not yet active and RACLISTed:

 SETROPTS RACTION(FACILITY) CLASSACT(FACILITY)

Refresh the class:

 SETROPTS RACTION(FACILITY) REFRESH

8. Log off the remote host.

When you are done with Step 2, you have distributed the public keys on the local host to the remote hosts. Now go to "Step 3: Gather the public host keys of remote hosts."

Step 3: Gather the public host keys of remote hosts

Step 3 is intended for remote hosts that use key rings. If a remote host does not use key rings, then use `ssh-keyscan` to gather the public host keys, as described in Steps for setting up server authentication when keys are stored in UNIX files.

1. Create a new key ring if you do not yet have one to use for the host public keys on your local host. Omit this step if you plan to use virtual key rings. Use the RACDCERT ADDRING command, specifying the owning user ID and the key ring name. The ID keyword should specify the user ID that will be starting `sshd`. The key ring name can be any unique name for the specified user ID. For example:

 RACDCERT ID(SSHDAEM) ADDRING(SSHKnownHostsRing)
2. On the remote host, export each host key certificate in DER format without the private key and use FTP to distribute it in binary format to the local host. The RACDCERT EXPORT command can perform this type of export. Specify the certificate identification and request CERTDER for the export format. Choose a data set to store the exported certificate and specify it on the DSN parameter. If the data set specified for DSN already exists, it is deleted and reallocated by the RACDCERT EXPORT command. For example:

\[
\text{RACDCERT EXPORT(LABEL('host-ssh-type')) ID(SSHDAEM) FORMAT(CERTDER) DSN('host.sshcert.type')}
\]

3. Use FTP to distribute each data set in binary format from the remote host to the local host.

4. On the local host, add each certificate into the SAF database. Use the RACDCERT ADD command to add the exported certificate on the remote host. Specify the data set that you copied from the local host using FTP, the user ID that should own the certificate, and indicate that this certificate is trusted. The user ID specified here must be the user ID that will be running the sshd daemon on this local host. You will also be specifying the label for this certificate on this local host. This label must be unique for the user ID within the RACF database, and will be used to identify this certificate on future commands and for reference as a known host certificate. This certificate will contain only the public key. For example:

\[
\text{RACDCERT ADD('host.sshcert.type') ID(SSHDAEM) WITHLABEL('host-ssh-type') TRUST}
\]

5. Connect each certificate into the known hosts key ring if a real key ring is being used. Omit this step if you plan to use virtual key rings. The RACDCERT CONNECT command can be used. You must identify the user ID that owns the certificate and the user ID that owns the key ring. These will typically be the same for this connect command. For example:

\[
\text{RACDCERT CONNECT(ID(SSHDAEM) LABEL('host-ssh-type') RING(SSHKnownHostsRing)) ID(SSHDAEM)}
\]

6. Edit the local host's system-wide known_hosts file /etc/ssh/ssh_known_hosts to add a line for each of the host certificates imported in Step 4. The line must contain the host name or host names followed by zos-key-ring-label="KeyRingOwner/KeyRingName label". For example:

- If a real key ring is being used (for example, SSHKnownHostsRing), issue:
 \[
 \text{mvshost zos-key-ring-label="SSHDAEM/SSHKnownHostsRing host-ssh-type"}
 \]

- If a virtual key ring is being used (for example, one owned by SSHDAEM), issue:
 \[
 \text{mvshost zos-key-ring-label="SSHDAEM/* host-ssh-type"}
 \]

For more information, see the sshd command section "ssh_known_hosts file format" on page 127.

7. On the local host, permit user access to the known hosts key ring. For details about the methods of permitting access, see Step 7 on page 33 in "Step 2: Distribute the public keys from the local host to the remote hosts" on page 32.
When you are done with Step 3, you have gathered the public host keys of remote hosts and edited the local `/etc/ssh/ssh_known_hosts` file to include the imported host certificates. Now clients can verify the identity of remote hosts. Each time the host keys are regenerated in the key ring, they must be redistributed and added to the key ring of the remote system.

Figure 2 on page 37 shows a high-level view of the operations performed to set up the server's host keys when they are stored in real key rings.
1. Create host keys for HOST1.
 >RACDCERT ADDRING SSHDring
 >RACDCERT GENCERT ...
 >RACDCERT CONNECT to SSHDring
 >Specify zos_sshd_config option HostKeyRingLabel

2. Distribute public host keys for HOST1 to client (HOST2).
 >RACDCERT EXPORT ...
 >FTP the exported certificate to HOST2

6. Add host keys for HOST2 to /etc/ssh/ssh_known_hosts.
 If adding to key ring:
 >RACDCERT ADDRING SSHKnownHostsRing
 >RACDCERT ADD ...
 >RACDCERT CONNECT to SSHKnownHostsRing
 >Edit /etc/ssh/ssh_known_hosts to identify the imported certificate

 If not adding to key ring:
 >Add the key to /etc/ssh/ssh_known_hosts

 Now users from HOST2 can identify HOST1 when they use ssh to log into it.

HOST2

2. Run ssh-keyscan against HOST1 to gather its public host keys.

3. Add keys for HOST1 to /etc/ssh/ssh_known_hosts.
 If adding to key ring:
 >RACDCERT ADDRING SSHKnownHostsRing
 >RACDCERT ADD ...
 >RACDCERT CONNECT to SSHKnownHostsRing
 >Edit /etc/ssh/ssh_known_hosts to identify the imported certificate

 If adding directly to file:
 >Add the key to /etc/ssh/ssh_known_hosts

 Now users from HOST2 can identify HOST1 when they use ssh to log into it.

4. Create host keys for HOST2.
 If storing hosts in key ring:
 >RACDCERT ADDRING SSHDring
 >RACDCERT GENCERT ...
 >RACDCERT CONNECT to SSHDring

 If storing keys in UNIX files, use ssh-keygen.

5. Distribute public host keys for HOST2 to client.
 >RACDCERT EXPORT ...
 >FTP either the exported certificate or UNIX key file to HOST1

 Now users from HOST1 can identify HOST2 when they use ssh to log into it.

Figure 2. How the server's host keys are set up when they are stored in real key rings
Step for creating the sshd privilege separation user

Privilege separation (where the OpenSSH daemon creates an unprivileged child process to handle incoming network traffic) is enabled in the default configuration for sshd.

Before you begin: You need to know the new group ID and unused nonzero user ID that you want to use. The user ID and group ID for the privilege separation user “SSHD” is not the same user ID that will be used to start the OpenSSH daemon. The user ID you choose for the SSHD user should be unprivileged.

You must also be logged onto TSO/E with RACF SPECIAL authority. (Instead of using RACF, you could use an equivalent security product if it supports the SAF interfaces required by z/OS UNIX, which are documented in RACF Callable Services)

Perform the following step to create the sshd privilege separation user.

- Set up a user account for the sshd privilege separation user by issuing the following commands where `xxx` is an unused group ID, and `yyy` is an unused nonzero user ID.

  ```
  ADDGROUP SSHDG OMVS(GID(xxx))
  ADDUSER SSHD DFLTGRP(SSHDG) OMVS(UID(yyy) HOME('/var/empty') PROGRAM('/bin/false')) NOPASSWORD
  ```

 Tip: If you have a user ID naming policy that does not allow you to assign this user as “SSHD”, you can create an “sshd” entry in the user ID alias table, and map it to the user ID that was actually defined. See z/OS UNIX System Services Planning for more information about the user ID alias table.

When you are done, you have created the sshd privilege separation user.

Setting up the message catalog for IBM Ported Tools for z/OS: OpenSSH

Setting up the message catalog for IBM Ported Tools for z/OS: OpenSSH is an optional task. To see message numbers (for example, FOTSnnnn) associated with OpenSSH error messages, no special OpenSSH message catalog setup is required. If you do not want to see message numbers, then you must set the environment variable `ZOS_OPENSSHD_MSGCAT="NONE"` before running an OpenSSH command. This setting can be applied to all shell users by exporting it from the default system-wide user environment files, `/etc/profile` and `/etc/csh.cshrc`. The `ZOS_OPENSSHD_MSGCAT` environment variable identifies the OpenSSH message catalog to be used when sending OpenSSH error messages.

<table>
<thead>
<tr>
<th>Value</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>"openssh.cat"</td>
<td>Message numbers are associated with OpenSSH error messages by default.</td>
</tr>
<tr>
<td>"openssh"</td>
<td>Message numbers are associated with OpenSSH error messages if the NLS_PATH environment variable includes the following path: <code>/usr/lib/nls/msg/%L/%N.cat</code>.</td>
</tr>
<tr>
<td>"NONE"</td>
<td>Message numbers are not associated with OpenSSH error messages.</td>
</tr>
<tr>
<td>Unset or set to an invalid value</td>
<td>Message numbers are associated with OpenSSH error messages by default.</td>
</tr>
</tbody>
</table>
Starting sshd daemon

You can start the sshd daemon in one of two ways:

- As a stand-alone daemon, as described in "Starting sshd as a stand-alone daemon." As a stand-alone daemon, sshd listens for TCP connections on a port (default 22), and starts child processes to handle the requested connections.

- As a daemon running under inetd, as described in "Starting sshd as a daemon running under inetd" on page 42. The inetd program listens on the specified port and starts an instance of the sshd daemon for each requested connection.

Starting sshd as a stand-alone daemon

The sshd daemon can be started as a stand-alone daemon.

This setup assumes that RACF is used as your security product. If you use a different security product, you need to determine the equivalent setup for that product. You also need RACF SPECIAL (administrator) authority to perform the RACF setup.

You need to decide which user ID will be used to start the daemon. The user ID might already have been set up on your system. Follow these rules:

- The user ID must have a UID of 0 and ACCESS(READ) permission to BPX.DAEMON.
- Do not choose “SSHD” as the user name to assign to the daemon. The user name “SSHD” is reserved for the privilege separation user, which is not a UID(0) user ID.
- If the host system has the BPX.POE resource in the FACILITY class defined, the UID invoking the OpenSSH daemon must have ACCESS(READ) permission.
- If ssh-rand-helper is used to generate random numbers, the user ID must have write access to its home directory in order to store temporary seed files generated by ssh-rand-helper. Refer to "Using hardware support to generate random numbers" on page 49 for more information about random number generation.
- If the SERVAUTH class is active, the user ID might need to be authorized to some of the network resources protected by the SERVAUTH class. For more information about the SERVAUTH class, see z/OS Communications Server: IP Configuration Guide.

Example: The following example assumes that the SSHDAEM user ID is defined as UID(0) and has READ access to the BPX.DAEMON profile in the FACILITY class. It also assumes that the SSHDAEM user ID was set up like the OMVSKERN user ID. For more information about how to set up OMVSKERN, see the section on preparing RACF in z/OS UNIX System Services Planning.

```
SETROPTS CLASSACT(FACILITY)
SETROPTS RACLST(FACILITY)
RDEFINE FACILITY BPX.DAEMON UACC(NONE)
PERMIT BPX.DAEMON CLASS(FACILITY) ID(SSHDAEM) ACCESS(READ)
SETROPTS RACLST(FACILITY) REFRESH
```

The section on establishing the correct level of security for daemons in z/OS UNIX System Services Planning discusses the z/OS UNIX level of security.
Ways to start sshd as a stand-alone daemon

There are several ways to start and restart sshd. The method used depends on the level of control that the installation has chosen for daemons.

Using BPXBATCH

You can start sshd with a cataloged procedure by using BPXBATCH to invoke a daemon program located in the z/OS UNIX file system. If you use BPXBATCH as a started procedure to initiate the SSHD job, it will complete typically with a return code of CC=0. A forked copy of the daemon will be left running, which is normal.

These steps explain what to do.

1. Create a cataloged procedure.

 Example: Following is a sample procedure:

   ```sh
   //SSHD PROC
   //SSHD EXEC PGM=BPXBATCH,REGION=0M,TIME=NOLIMIT,
   //   PARM='PGM /bin/sh -c /etc/ssh/sshd.sh'
   //* STDIN and STDOUT are both defaulted to /dev/null
   //STDERR DD PATH='/tmp/sshd.stderr',
   //   PATHOPTS=(OWRONLY,OCREAT,OAPPEND),PATHMODE=(SIRWXU)
   ```

 The following is the sample shell script to be used with the preceding sample procedure. The sample procedure assumes that this sample shell script is stored in `/etc/ssh/sshd.sh` and is executable by the caller (for example, `chmod 700 /etc/ssh/sshd.sh`).

   ```sh
   #!/bin/sh
   export _EDC_ADD_ERRNO2=1
   nohup /usr/sbin/sshd -f /etc/ssh/sshd_config &
   sleep 1
   ```

 Specifying REGION=0M in the JCL is equivalent to specifying MEMLIMIT=NOLIMIT. Options for altering this behavior include utilizing IEFUSI to set MEMLIMIT ceilings for your system because IEFUSI settings override the JCL. Alternatively, you can use SMFPRMxx system default settings, but this works only if there are no REGION or MEMLIMIT specifications in the JCL.

2. For this sshd cataloged procedure to obtain control with superuser and daemon authority, you must add it to the STARTED class.

 The procedure in this example is named “SSHD” because it starts the sshd daemon. It should not be confused with the SSHD privilege separation user, which is an unprivileged user ID that the daemon uses to execute unprivileged areas of code.

 Example: This example assumes that the SSHDAEM user ID is defined as UID(0), and has READ access to the BPX.DAEMON profile in the FACILITY class. For more information about how to set up SSHDAEM, see “Starting sshd as a stand-alone daemon” on page 39. Following is an example of a cataloged procedure:

   ```sh
   SETROPTS GENERIC(STARTED)
   RDEFINE STARTED SSHD.* STDATA(USER(SSHDAEM)
   GROUP(OMVSGRP) TRUSTED(NO)
   SETROPTS RACLST(STARTED) REFRESH
   ```

 The section about using started procedures in z/OS Security Server RACF Security Administrator’s Guide contains more information about using started procedures and the STARTED class.

3. To start sshd, issue the following command from the MVS console:

 `S SSHD`
You should see the message IEF695I on the MVS syslog. The user ID indicated in the message should be defined as UID(0) with READ access to the BPX.DAEMON profile in the FACILITY class. The group indicated in the message should have an OMVS segment containing a GID value. With the default values from Step 2 on page 40 (SSHDAEM and OMVSGRP), the message would look like the following output:

```
IEF695I START SSHD WITH JOBNAME SSHD IS ASSIGNED TO
USER SSHDAEM ,GROUP OMVSGRP
```

The user ID and group must not be SSHD and SSHDG because this would indicate that the daemon was started with the SSHD privilege separation user. If the sshd daemon is terminated, you can issue $SSHD to restart it.

Using the /etc/rc shell script

You can put the command in the /etc/rc shell script to start the daemon automatically during initialization. For information about starting programs from /etc/rc, see the section on customizing /etc/rc in z/OS UNIX System Services Planning.

When UNIX systems are initialized (IPLeed or restarted), the /etc/rc shell script is run to perform system initialization functions and to start daemons. If a daemon terminates, a superuser must restart the daemon.

To start sshd from the /etc/rc shell script, add the following to the /etc/rc file:

```sh
_BPX_JOBNAME=SSHD /usr/sbin/sshd &
```

In this example, the _BPX_JOBNAME environment variable is set to assign a job name of SSHD to the sshd daemon. Doing so allows the operator to have better control over managing the sshd daemon.

When started from the /etc/rc shell script, stdin and stdout are set to /dev/null and stderr is set to /etc/log for recording any errors. If you want to separate the standard error of sshd from that of all /etc/rc error output, you can specify the sshd command to redirect standard error as follows:

```sh
_BPX_JOBNAME=SSHD /usr/sbin/sshd 2>/tmp/sshd.stderr &
```

If the sshd daemon process is stopped, it must be started by a user ID with appropriate privileges. For more information about setting up the user ID that will be used to start the OpenSSH daemon, see “Starting sshd as a stand-alone daemon” on page 39.

From the shell

If you are running with UNIX-level security, (for example, without BPX.DAEMON), you can start sshd from a superuser ID in the UNIX shell. This security level is not generally adequate for z/OS systems.

Issue:

```sh
_BPX_JOBNAME=SSHD /usr/sbin/sshd &
```

For an explanation about using & see z/OS UNIX System Services Planning.

Restarting the sshd daemon without bringing it down

If the server configuration files are changed after the sshd daemon is running, the changes do not affect the daemon, unless a SIGHUP signal is sent to the daemon.
process. To restart the sshd daemon, reading the configuration files, including z/OS-specific files, without terminating existing SSH connections, issue

```
kill -s HUP $(cat /var/run/sshd.pid)
```

The name of the /var/run/sshd.pid file can be changed by using the sshd_config keyword PidFile.

SIGHUP does not reset command-line options (which might override the configuration files). If you want to change a command-line option, the daemon will have to be stopped and then restarted with the new command-line option.

Starting sshd as a daemon running under inetd

You can start the sshd daemon as a daemon running under inetd.

Steps for starting the sshd daemon under inetd

Before you begin: You need to be familiar with inetd configuration. You should also be aware that starting sshd through inetd could decrease performance of ssh connection startup time on your system. For every ssh connection started, inetd will start a new sshd. The sshd daemon startup incurs some overhead due to basic initialization and protocol version 1 server key generation.

Perform the following steps to start the sshd daemon under inetd.

1. In the TCP/IP services configuration file, add an entry to establish the connection between TCP/IP and z/OS UNIX. This is the /etc/services file or the hlq.ETC.SERVICES data set, where hlq is the prefix defined by DATASETPREFIX in the TCP/IP profile “TCPIP” by default). The format is:

```
ssh 22/tcp
```

2. In the /etc/inetd.conf file, add a line similar to the following example:

```
ssh stream tcp nowait SSHDAEM /usr/sbin/sshd sshd -i
```

The -i option specifies inetd behavior, with a single connection on a TCPIP socket attached to sshd’s stdin and stdout.

When you are done, you have started the sshd daemon under inetd.

Restarting the sshd daemon under inetd without bringing it down

If inetd is currently running, send it a SIGHUP signal to allow the new configuration files with sshd settings to be read.

Stopping the sshd daemon

To stop the sshd daemon from the MVS console, follow these steps:

1. Determine the address space ID (ASID) of the sshd process. Issue:

```
D A,SSHDAEM
```

 The ASID of the SHHD daemon will be returned.

2. Using the ASID obtained in Step 1, determine the process ID (PID) of the sshd process. Issue:

```
D OMVS,ASID=aaaa
```
where `aaaaa` is the ASID obtained in Step 1 on page 42. The PID of the daemon will be returned.

3. Using the PID obtained in Step 2 on page 42, stop the `sshd` daemon. Issue:

   ```
   F BPX0INIT,TERM=pppppppp
   ```

 where `pppppppp` is the PID obtained in Step 2 on page 42.

To stop `sshd` from z/OS UNIX, follow these steps:

1. Determine the process ID (PID) of the `sshd` daemon by looking at the contents of the file `/var/run/sshd.pid`. By default, the `sshd` PID is written to `/var/run/sshd.pid` when `sshd` is started. The name of the `/var/run/sshd.pid` file can be changed by using the `sshd_config` keyword `PidFile`. To find the PID, issue:

   ```
   cat /var/run/sshd.pid
   ```

 The PID of the `sshd` daemon will be returned.

2. Issue the z/OS UNIX `kill` command against the PID that was obtained in Step 1. For example:

   ```
   kill $(cat /var/run/sshd.pid)
   ```

 or

   ```
   kill ppppppppp
   ```

 where `pppppppp` is the PID obtained in Step 1.

To stop the `sshd` daemon with a cataloged procedure using BPXBATCH, follow these steps:

1. Create a cataloged procedure. For example:

   ```
   //STOPSSHD PROC
   //STOPSSHD EXEC PGM=BPXBATCH,
   // PARM='PGM /bin/sh -c /etc/ssh/stopsshd.sh'
   //STDIN and STDOUT are both defaulted to /dev/null
   //STDERR DD PATH='/tmp/sshd.stderr',
   // PATHOPTS=(OWRONLY,OCREATE,OAPPEND),PATHMODE=(SIRWXU)
   ```

 The following is the sample shell script to be used with the preceding sample procedure. The sample procedure assumes that this sample shell script is stored in the `/etc/ssh/stopsshd.sh` file and is executable by the caller (for example, `chmod 700 /etc/ssh/stopsshd.sh`).

   ```bash
   #!/bin/sh
   kill $(cat /var/run/sshd.pid)
   ```

 By default, the `sshd` PID is written to the `/var/run/sshd.pid` file when `sshd` is started. If the name of the `sshd` PID file was changed by using the `sshd_config` `PidFile` keyword then this sample shell script must be changed accordingly. (The keyword is described in "PidFile" on page 160.)

2. For the cataloged procedure to obtain control with superuser and daemon authority, you must add it to the STARTED class.

 Example: This example assumes that the SSHDAEM user ID is defined as UID(0) and has READ access to the BPX.DAEMON profile in the FACILITY class. For more information about how to set up SSHDAEM, see "Starting sshd as a stand-alone daemon" on page 39.

   ```
   SETROPTS GENERIC(STARTED)
   RDEFINE STARTED STOPSSHD.* STDATA(USER(SSHDAEM)
   GROUP(OMVSGRP) TRUSTED(NO))
   SETROPTS RACLIST(STARTED) REFRESH
The section about using started procedures in *z/OS Security Server RACF Security Administrator's Guide* contains more information about using started procedures and the STARTED class.

3. To stop the *sshd* daemon, issue the following command from the MVS console:
   ```
 S STOPSSHD
   ```
   Whenever the sshd daemon is started, you can issue S STOPSSHD to stop it.

**Running the sshd daemon in a multilevel-secure environment**

The OpenSSH daemon (*sshd*) can be used on a multilevel-secure system to control a user's security label at login. Review *z/OS Planning for Multilevel Security and the Common Criteria* before using the daemon on a multilevel-secure system.

The OpenSSH daemon will attempt to derive a security label from the user's port of entry, as defined in a NetAccess profile. To successfully login to a multilevel-secure system, the login user ID must be permitted to the security label defined in the NetAccess profile for the client IP address. These checks are performed for any user invoking *ssh*, *scp*, or *sftp* to perform remote operations on the multilevel-secure system. For more information about NetAccess profiles and running daemons in a multilevel-secure environment, see *z/OS Communications Server: IP Configuration Guide*.

**Verifying security labels for directories**

Verify that the following directories have been assigned the appropriate security labels.

<table>
<thead>
<tr>
<th>Directory</th>
<th>Permission</th>
<th>Owner</th>
<th>Security label</th>
</tr>
</thead>
<tbody>
<tr>
<td>/var/empty</td>
<td>755</td>
<td>UID(0)</td>
<td>SYSHIGH</td>
</tr>
<tr>
<td>/var/run</td>
<td>755</td>
<td>UID(0)</td>
<td>SYSLOW</td>
</tr>
<tr>
<td>/usr/lib/ssh</td>
<td>755</td>
<td>UID(0)</td>
<td>SYSLOW</td>
</tr>
<tr>
<td>/etc/ssh</td>
<td>755</td>
<td>UID(0)</td>
<td>SYSLOW</td>
</tr>
</tbody>
</table>

**Configuring sshd for multilevel security**

The OpenSSH daemon must be started by a UID(0) user ID running with a security label of SYSMULTI, and the user ID must be authorized to the SERVAUTH NETACCESS profiles. The privilege separation user ("SSHD") must be assigned and permitted to the SYSMULTI seclabel. Assign a security label of SYSHIGH to the /var/empty directory.

If the host system has the BPX.POE resource in the FACILITY class defined, the UID invoking the OpenSSH daemon must have ACCESS(READ) permission.

**Guidelines:** In a multilevel-secure environment:

1. *sshd* should not be invoked through *inetd*.
2. Port forwarding should be disabled because it could allow a user to bypass NetAccess profile settings. It is disabled by default. See the description of the *sshd_config* keywords "AllowTcpForwarding" on page 151 and "X11Forwarding" on page 163.

If users are attempting login with password authentication and do not have authorization to log in from their IP address, then the login will fail at password
entry and a message should be written to the MVS console by the security product. If they are attempting login via public key authentication and do not have authorization to log in from their IP address, the attempted login will be terminated before the users enter a passphrase.

The following output is a sample failure of a client public key authentication in a multilevel-secure environment:

```
debug3: send_pubkey_test
debug2: we sent a publickey packet, wait for reply
Connection closed by UNKNOWN
```

The OpenSSH daemon writes an error message to the UNIX syslog for these failures.

**Considerations for running the OpenSSH daemon when TERMINAL classes are defined**

The OpenSSH daemon recognizes TERMINAL class settings.

- If the user is attempting login with password authentication and does not have authorization to log in from their terminal, then the login will fail at password entry and a message should be written to the MVS console by the security product.
- If the user is attempting login via public key authentication and does not have authorization to log in from their terminal, the attempted login will be terminated before the user enters a passphrase.

The following output is a sample client public key authentication failure when a TERMINAL class is enabled:

```
debug3: send_pubkey_test
debug2: we sent a publickey packet, wait for reply
Connection closed by UNKNOWN
```

The OpenSSH daemon writes an error message to the UNIX syslog for these failures.

**Limiting file system name space for sftp users**

Some administrators might want to limit the file system name space that is accessible by users during file transfer operations. This task can be accomplished by configuring the `sshd` daemon to change the root directory of the `sftp` user connection. The administrator uses the `sshd_config` keyword `ChrootDirectory` to set up the environment. The keyword is described in “ChrootDirectory” on page 152.

After the environment has been set up, searches for file system objects (files and directories) are relative to the user's new root directory. If the new root directory does not contain a duplicate of the required programs or support files needed by the user, then the session might not be usable. The "internal-sftp" subsystem can be used to overcome this setup problem for `sftp` users. Specifying "internal-sftp" on either the `sshd_config` keywords Subsystem or ForceCommand causes the `sshd` daemon to implement an in-process `sftp` server. Such a server does not require duplication of the `sftp-server` command or other support files in the new root directory in order to connect via `sftp`. Thus, combining the use of the `sshd_config`
keyword ChrootDirectory and the "internal-sftp" subsystem enables full sftp file transfer functionality, while limiting the file system objects that are accessible to the user. (The two keywords are described in "Subsystem" on page 162 and “ForceCommand” on page 155.)

Note that specifying "internal-sftp" on the sshd_config keyword ForceCommand enables an in-process sftp server to be the only command to be run, regardless of the command specified by the user. For example, this prevents the user from running scp or from starting an interactive shell session via ssh on the server. In addition, the in-process sftp server allows users without shell access on the server to still transfer files via sftp. Using the ForceCommand keyword in this manner allows the administrator to apply this restriction to a limited set of users when placed inside a Match keyword as described in “Match” on page 158.

Public key authentication can also be used with the sshd_config keyword ChrootDirectory. However, the sshd daemon will search for the user's public keys (see the sshd_config keyword "AuthorizedKeysFile" on page 152) starting from the original root directory, not the new root directory specified by the ChrootDirectory keyword. Therefore, depending on the location of the new root directory, the user might not have access to their own public keys used during authentication.

Example 1: Use the sshd_config keyword ChrootDirectory and "internal-sftp" subsystem to cause the sshd daemon to set a user's root directory to the user's home directory.

Server (name is "server1") sshd_config keywords:

```
Subsystem sftp internal-sftp
ChrootDirectory %h
```

Client (user "employee1", home directory is /u/employee1):

```
> sftp server1
Connecting to server1...

sftp> pwd
Remote working directory: /
sftp> ls -a
.
..
.profile .sh_history
.ssh myfile
```

After connecting and setting the root directory, the sshd daemon also attempts to change the user's current working directory to the user's home directory, relative to the root directory that is now in effect. For example, if the user's home directory were /u/employee1, then the sshd daemon would attempt to set the user's current working directory relative to the root directory (which also happens to be /u/employee1). Therefore, the sshd daemon sets the user's current working directory to /u/employee1/u/employee1, if the directory exists. This action might or might not be what is desired.

Example 2: An example of using the sshd keyword ChrootDirectory and the "internal-sftp" subsystem for a specific group of users. Users who are members of the group SFTPUSERS will have their root directory set to "/files/repository" and be forced into using sftp, regardless of the command they are attempting to run. If they are not members, their root directory will not be changed when connecting.
They will also not be limited to only using *sftp* unless other *sshd* keywords were in effect for those users, such as a different ForceCommand in another Match block.

Server (name is "server1") *sshd_config* keywords:

```
Subsystem sftp internal-sftp
Match group SFTPUSERS
 ChrootDirectory /files/repository
 ForceCommand internal-sftp
```

Client (user "employee1" in group SFTPUSERS, home directory is /u/employee1):

```
> sftp server1
Connecting to server1...
sftp> pwd
Remote working directory: /
sftp> ls -a
... file1 file2
```

---

**Configuring the system for X11 forwarding**

X11 forwarding allows users who have an account on a UNIX machine to open a connection to the X11 interface remotely from another computer. Because this connection uses SSH, the communication between the systems is encrypted. X11 forwarding works only if the system being connected to has both SSH and X11 forwarding enabled.

**Guideline:** Enable X11 forwarding with caution. Users with the ability to bypass file permissions on the remote host (for the user's X authorization database) can access the local X11 display through the forwarded connection. Unauthorized users might then be able to perform activities such as keystroke monitoring.

**Steps for configuring the system for X11 forwarding**

**Before you begin:** You need to know what local directory you want to copy the files from /usr/lpp/tcpip/X11R6/Xamples/clients/xauth to.

Perform the following steps to configure your system for X11 forwarding. The first two steps explain how to install the xauth sample program.

1. Copy the files from the /usr/lpp/tcpip/X11R6/Xamples/clients/xauth directory to a local directory.
   
   **Example:** Copy the files from the /usr/lpp/tcpip/X11R6/Xamples/clients/xauth directory to the local directory /u/Billy/XauthBuild.
   
   ```
 cp -R /usr/lpp/tcpip/X11R6/Xamples/clients/xauth /u/Billy/XauthBuild
   ```

2. Edit the Makefile in your copied directory.
   
   a. Change CFLAGS to:
      ```
 CFLAGS = -D_ALL_SOURCE -DTCPCONN -DUNIXCONN -I/usr/lpp/tcpip/X11R6/include
      ```
   
   b. Change SYSLIBS to:
      ```
 SYSLIBS = -lXaw -lXmu -lXt -lSM -lICE -lXext -lX11 -lXau
      ```
      These changes enable the xauth program to run without using DLLs. If you want xauth to use DLLs, enable the PermitUserEnvironment *sshd* configuration option so that LIBPATH can be read from the user's
environment file. However, because enabling might allow users to bypass access restrictions, enabling it is not recommended.

c. Compile the code by issuing `make`. You will need the `_C89_CCMODE` environment variable set. To enable it only for this command invocation, issue `make` as follows:

```
_C89_CCMODE=1 make
```

d. Move the xauth binary to the desired installation location.

3. Configure the server for X11 forwarding.
   a. Verify that the `sshd` configuration variable `UseLogin` is disabled. It is disabled by default.
   b. Change the `sshd` configuration variable `X11Forwarding` to "yes".
   c. Verify that the `sshd` configuration variable `X11UseLocalhost` is set to "yes". (The default setting is "yes".)
   d. Set the `sshd` and `ssh` configuration variable `XAuthLocation` to the full path name of the new xauth executable in both the system-wide `ssh` and `sshd` configuration files. The xauth program might need to support the generate command in order to allow `ssh` to successfully set up untrusted X11 forwarding.

   Optionally, you can set `X11DisplayOffset` to a desired value.

When you are done, you have configured your system for X11 forwarding. Users will have to configure their setup for X11 forwarding, as described in “Steps for configuring your setup for X11 forwarding” on page 78.

### When users cannot log in using ssh, scp or sftp

Certain setup problems or configurations might prevent a user from using `ssh`, `scp` or `sftp` to login.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The user's files and directories are not sufficiently protected from others.</td>
<td>In the <code>sshd_config</code> description, see “StrictModes” on page 161 and “ChrootDirectory” on page 152.</td>
</tr>
<tr>
<td>The system administrator limited the number of concurrent connection attempts (unauthenticated users).</td>
<td>In the <code>sshd_config</code> description, see “MaxStartups” on page 159. The default is 10. You might want to change the MaxStartups value because 10 connection attempts at once might not be enough for your z/OS system.</td>
</tr>
<tr>
<td>The system administrator denied a particular user, group, or IP address to the system.</td>
<td>In the <code>sshd_config</code> description, see “AllowUsers” on page 151, “DenyUsers” on page 154, “AllowGroups” on page 150, and “DenyGroups” on page 154. In the <code>sshd</code> description, see “from=pattern-list” on page 126. In the <code>sshd</code> description, see “/etc/nologin” on page 130. In the <code>sshd_config</code> description, see “MaxAuthTries” on page 159.</td>
</tr>
<tr>
<td>The user waited too long to enter the password.</td>
<td>In the <code>sshd_config</code> description, see “LoginGraceTime” on page 158.</td>
</tr>
</tbody>
</table>
Using hardware support to generate random numbers

If Integrated Cryptographic Service Facility (ICSF) is available, OpenSSH uses hardware support (/dev/random or /dev/urandom) to generate random numbers instead of using the OpenSSH software algorithm ssh-rand-helper. This improvement eliminates any timeout issues that might occur while using ssh-rand-helper.

OpenSSH checks for the hardware support (/dev/random or /dev/urandom) first and will use the hardware support if it is available. If ICSF is not available or if /dev/random and /dev/urandom are not available, OpenSSH reverts to using ssh-rand-helper. For more information about ICSF, see z/OS Cryptographic Services ICSF Overview.

Rule: In order for OpenSSH to use the hardware support (/dev/random or /dev/urandom) to collect random numbers, the ICSF started task must be running and the user ID must have READ access to the CSFRNG (random number generate service) profile in the RACF CSFSERV class. If the user ID does not have READ access to the CSFRNG profile, a RACF warning is issued on the MVS console.

Example: A warning for user WELLIE1 would look like the following output:

ICH408I USER(WELLIE1 ) GROUP(SYS1 ) NAME(WELLIE1) CSFRNG CL(CSFSERV ) INSUFFICIENT ACCESS AUTHORITY FROM CSFRNG (G) ACCESS INTENT(READ) ACCESS ALLOWED(NONE)

Steps for authorizing users to the random number generate service (CSFRNG)

Before you begin: You need to be sure that the CSFRNG resource profile has been defined. If it hasn’t, then issue the following command where CSFSERV is the class name and CSFRNG is the profile name:

RDEFINE CSFSERV CSFRNG UACC(NONE)

Perform the following steps to authorize users to the random number generate service (CSFRNG):

1. Use one of the following commands to give READ access to the CSFRNG profile, based on your site’s security policy:
   • To give a user READ access to the CSFRNG profile, where userid is the UID for the specified user, issue:
     PERMIT CSFRNG CLASS(CSFSERV) ID(userid) ACCESS(READ)

     If you choose to give READ access to individual users, you need to repeat this step for each user who requires access.
To give READ access for a specific group to the CSFRNG profile where \textit{groupid} is the GID for the specified group, issue:

\texttt{PERMIT CSFRNG CLASS(CSFSERV) ID(groupid) ACCESS(READ)}

Verify that the intended user IDs are added to the group.

To give READ access for all RACF-defined users and groups to the CSFRNG profile, issue:

\texttt{PERMIT CSFRNG CLASS(CSFSERV) ID(*) ACCESS(READ)}

Giving all users and groups READ access to the CSFRNG profile is an unconditional way to authorize users. The security administrator must take the site's security policy into consideration when deciding whether to give all RACF-defined users and groups access to CSFRNG. \texttt{z/OS Cryptographic Services ICSF Administrator's Guide} has information about the CSFRNG profile.

2. Verify that all user IDs given access to this class have an OMVS segment defined and are not using the default OMVS segment.

3. Refresh the CSFSERV class.

\texttt{SETROPTS RACLIST(CSFSERV) REFRESH}

When you are done, you have authorized users to the random number generate service (CSFRNG).

\textbf{Verifying if hardware support is being used}

The simplest way to verify if OpenSSH is using hardware support (/dev/random or /dev/urandom) to collect random numbers, is to start \texttt{ssh} in debug mode.

- If the debug statement shows “Seeding PRNG from /usr/lib/ssh/ssh-rand-helper”, then the software algorithm \texttt{ssh-rand-helper} was used.
  
  For example:
  
  \texttt{> ssh -vvv user@host}
  
  \texttt{Result:}
  
  \texttt{OpenSSH 5.0p1, OpenSSL 0.9.8k 25 Mar 2009}
  
  \texttt{debug1: Reading configuration data /etc/ssh/ssh_config}
  
  \texttt{debug3: Seeding PRNG from /usr/lib/ssh/ssh-rand-helper}

- If the debug statement shows “RNG is ready, skipping seeding”, then hardware support (/dev/random or /dev/urandom) was used.
  
  For example:
  
  \texttt{> ssh -vvv user@host}
  
  \texttt{Result:}
  
  \texttt{OpenSSH 5.0p1, OpenSSL 0.9.8k 25 Mar 2009}
  
  \texttt{debug1: Reading configuration data /etc/ssh/ssh_config}
  
  \texttt{debug3: RNG is ready, skipping seeding}

\textbf{Setting up OpenSSH to collect SMF records}

You can set up the system and OpenSSH to collect SMF Type 119 records for both the client and the server.
Steps for setting up the system to collect OpenSSH SMF records

Perform the following steps to set up the system to collect OpenSSH SMF records.

1. Update the SMFPRMxx parmlib member to activate SMF data collection for Type 119 and subtype 96, 97, and 98 records. For example:
   
   ```
 SYS(TYPE(119(96:98)))
   ```

2. Update the SMFPRMxx parmlib member to indicate which SMF exits (IEFU83 or IEFU84) are desired. For example:
   
   ```
 SYS(EXITS(IEFU83,IEFU84))
   ```

When you are done, you have set up the system to collect SMF records. For more information, see:

- [z/OS MVS System Management Facilities (SMF)]
- [z/OS MVS Initialization and Tuning Reference]

Steps for setting up OpenSSH to collect SMF records

Before you begin: You need to make sure that the system has been set up to collect OpenSSH SMF records as described in “Steps for setting up the system to collect OpenSSH SMF records.” You also need to ensure that you have done the steps listed in “What you need to verify before using OpenSSH” on page 21.

Perform the following steps to set up OpenSSH to collect SMF records.

1. To enable SMF recording for the client side, in the `/etc/ssh/zos_ssh_config` file, set the keyword:
   
   ```
 ClientSMF TYPE119_U83
   ```

   or
   ```
 ClientSMF TYPE119_U84
   ```

   **Restriction:** The ClientSMF keyword can only be set in the z/OS-specific system-wide OpenSSH client configuration file. See “zos_ssh_config” on page 145 for more information.

2. To enable SMF recording for the server side, in the `/etc/ssh/zos_sshd_config` file, set the keyword:
   
   ```
 ServerSMF TYPE119_U83
   ```

   or
   ```
 ServerSMF TYPE119_U84
   ```

   **Restriction:** The ServerSMF keyword can only be set in the z/OS-specific OpenSSH daemon configuration file. See “zos_sshd_config” on page 164 for more information.

When you are done, you have set up OpenSSH to collect SMF records.
Setting up OpenSSH to use ICSF ciphers and MAC algorithms

OpenSSH can be set up to use Integrated Cryptographic Service Facility (ICSF) to implement certain ciphers and MAC (message authentication code) algorithms. This extension enables OpenSSH to use hardware support when applicable. For more information about ICSF, see z/OS Cryptographic Services ICSF Overview.

Steps for setting up OpenSSH to use ICSF ciphers and MAC algorithms

Before you begin: You need to have the PTF for OpenSSH APAR OA37278 and ICSF FMID HCR7770 or later installed.

Perform these steps to use ICSF to implement the following OpenSSH ciphers:
- aes128-cbc
- aes192-cbc
- aes256-cbc
- rijndael-cbc@lysator.liu.se (same as aes256-cbc)
- 3des-cbc
- blowfish-cbc
- arcfour
- arcfour128
- arcfour256

ICSF will use CP Assist for Cryptographic Function (CPACF) hardware support when applicable for the aes128-cbc, aes192-cbc, aes256-cbc, rijndael-cbc@lysator.liu.se and 3des-cbc ciphers. Any cipher not in the previous list is not supported by ICSF.

1. Verify that ICSF has been started.

2. Verify that the OpenSSH users, including the sshd privilege separation user and the user that starts the sshd daemon, have READ access to the CSFIQA, CSF1TRC, CSF1TRD, CSF1SKE and CSF1SKD profiles in the RACF CSFSERV general resource class. See z/OS Cryptographic Services ICSF Administrator's Guide for more information about setting up profiles in the CSFSERV general resource class.

3. To use ICSF on the client side, set the CiphersSource keyword to "any" or "ICSF" in the z/OS-specific OpenSSH client configuration files, zos_ssh_config or zos_user_ssh_config. For example:

   CiphersSource any
   
   or
   
   CiphersSource ICSF

4. To use ICSF on the server side, set the zos_sshd_config keyword CiphersSource to "any" or "ICSF". For example:

   CiphersSource any
   
   or
   
   CiphersSource ICSF
5. Modify the client and server side ciphers lists according to the following requirements:
   
a. If the CiphersSource keyword is set to "ICSF", modify the ciphers list to contain only ciphers supported by ICSF.
   
b. If the CiphersSource keyword is set to "ICSF" and if privilege separation is enabled, remove the arcfour, arcfour128 and arcfour256 ciphers from the server side ciphers list.
   
c. ICSF PKCS #11 services can be configured to operate in compliance with FIPS 140-2 specifications via the ICSF FIPSMODE installation option. If FIPS 140-2 compliance is required and OpenSSH is not exempt from compliance, remove the blowfish-cbc, arcfour, arcfour128 and arcfour256 ciphers and all ciphers not supported by ICSF from the ciphers list. In addition, the CiphersSource keyword must be set to "ICSF" to ensure that ICSF FIPS 140-2 compliant ciphers are used.
   
d. (Optional step.) Modify the ciphers list to prefer ciphers that are implemented by ICSF with hardware support when applicable to those that are not.

Example ciphers list when setting the CiphersSource keyword to "any" but note that while the ciphers list is typically one long unbroken line, it is not shown as one unbroken line due to space limitations:

Ciphers aes128-cbc,3des-cbc,aes192-cbc,aes256-cbc,aes128-ctr,
aes192-ctr,aes256-ctr,arcfour256,arcfour128,blowfish-cbc,cast128-cbc,arcfour

Example client side ciphers list when setting the CiphersSource keyword to "ICSF" but note that while the ciphers list is typically one long unbroken line, it is not shown as one unbroken line due to space limitations:

Ciphers aes128-cbc,3des-cbc,aes192-cbc,aes256-cbc,arcfour256,
arcfour128,blowfish-cbc,arcfour

Example server side ciphers list when setting the CiphersSource keyword to "ICSF":

Ciphers aes128-cbc,3des-cbc,aes192-cbc,aes256-cbc,blowfish-cbc

Example ciphers list when ICSF FIPS 140-2 compliant ciphers are required:

Ciphers aes128-cbc,3des-cbc,aes192-cbc,aes256-cbc

For more information about ciphers lists, refer to the ssh_config and sshd_config keyword Ciphers.

When you are done, you have set up OpenSSH to use ICSF to implement the applicable ciphers.

Perform these steps to use ICSF to implement the following OpenSSH MAC algorithms:

hmac-md5
hmac-md5-96
hmac-sha1
hmac-sha1-96
hmac-ripemd160
hmac-ripemd160@openssh.com

ICSF will use CP Assist for Cryptographic Function (CPACF) hardware support when applicable for the hmac-sha1 and hmac-sha1-96 MAC algorithms. Any MAC algorithm not in the previous list is not supported by ICSF.

1. Verify that ICSF has been started.
2. Verify that the OpenSSH users, including the sshd privilege separation user and the user that starts the sshd daemon, have READ access to the CSFIQA, CSFITRC, CSF1TRD, and CSFOWH profiles in the RACF CSFSERV general resource class. See [z/OS Cryptographic Services ICSF Administrator's Guide](#) for more information about setting up profiles in the CSFSERV general resource class.

3. To use ICSF on the client side, set the MACsSource keyword to "any" or "ICSF" in the z/OS-specific OpenSSH client configuration files `zos_ssh_config` or `zos_user_ssh_config`. For example:

   ```
 MACsSource any

 or

 MACsSource ICSF
   ```

4. To use ICSF on the server side, set the `zos_sshd_config` keyword MACsSource to "any" or "ICSF". For example:

   ```
 MACsSource any

 or

 MACsSource ICSF
   ```

5. Modify the client and server side MAC algorithms lists according to the following requirements:
   
a. If the MACsSource keyword is set to "ICSF", modify the MAC algorithms list to contain only MAC algorithms supported by ICSF.
   
b. ICSF PKCS #11 services can be configured to operate in compliance with FIPS 140-2 specifications via the ICSF FIPSMODE installation option. If FIPS 140-2 compliance is required and OpenSSH is not exempt from compliance, remove the hmac-md5, hmac-md5-96, hmac-ripemd160 and hmac-ripemd160@openssh.com MAC algorithms and all MAC algorithms not supported by ICSF from the MAC algorithms list. In addition, the MACsSource keyword must be set to "ICSF" to ensure ICSF FIPS 140-2 compliant MAC algorithms are used.
   
c. (Optional step.) Modify the MAC algorithms list to prefer MAC algorithms that are implemented by ICSF with hardware support when applicable to those that are not.

   Example MAC algorithms list when setting the MACsSource keyword to "any" but note that while the MAC algorithms list is typically one long unbroken line, it is not shown as one unbroken line due to space limitations:

   ```
 MACs hmac-sha1,hmac-sha1-96,hmac-md5,umac-64@openssh.com,
 hmac-ripemd160,hmac-md5-96
   ```

   Example MAC algorithms list when setting the MACsSource keyword to "ICSF":

   ```
 MACs hmac-sha1,hmac-sha1-96,hmac-md5,hmac-ripemd160,hmac-md5-96
   ```

   Example MAC algorithms list when ICSF FIPS 140-2 compliant MAC algorithms are required:

   ```
 MACs hmac-sha1,hmac-sha1-96
   ```
For more information about MAC algorithms, refer to the `ssh_config` and `sshd_config` keyword MACs.

When you are done, you have set up OpenSSH to use ICSF to implement the applicable MAC algorithms.

To determine the cipher and MAC algorithm source used by OpenSSH, start `ssh` in debug mode and look for debug statements like the following examples:

```bash
debug1: mac_setup_by_id: hmac-sha1 from source ICSF
debug1: cipher_init: aes128-cbc from source ICSF
```

When OpenSSH is set up to use ICSF to implement applicable ciphers or MAC algorithms, the debug mode also provides ICSF Query Algorithm (CSFIQA) debug statements to help determine how (for example, by using software or CPACF) ICSF is implementing the ciphers and MAC algorithms. For example:

```
debug2: -----------------------------------
debug2: CRYPTO SIZE KEY SOURCE
debug2: -----------------------------------
debug2: AES 256 SECURE COP
debug2: AES 256 SECURE CPU
debug2: DES 56 SECURE COP
debug2: DES 56 SECURE CPU
debug2: MDC-2 128 NA CPU
debug2: MDC-4 128 NA CPU
debug2: MD5 128 NA SW
debug2: RNGL 8192 NA COP
debug2: RIPEMD-160 160 NA SW
debug2: RSA-GEN 4096 SECURE COP
debug2: RSA-KM 4096 SECURE COP
debug2: RSA-SIG 4096 SECURE COP
debug2: SHA-1 160 NA CPU
debug2: SHA-2 512 NA CPU
debug2: TDES 168 SECURE COP
debug2: TDES 168 SECURE CPU
```

**Figure 3. CSFIQUA debug statements. An example of CSFIQA debug statements**

For more information about the CSFIQA utility and the information that it returns, see z/OS Cryptographic Services ICSF Application Programmer’s Guide. Refer to z/OS Cryptographic Services ICSF System Programmer’s Guide for more information about the available cryptographic hardware features.

When modifying the client and server ciphers and MAC algorithms lists, it is important to note that the client selects the cipher and MAC algorithm to use during an SSH session from the lists offered by the server. If the client and server fail to negotiate a cipher or MAC algorithm, the SSH session will end. In addition, the client can choose any cipher and MAC algorithm from the servers lists even if the cipher and MAC algorithm is at the end of a list.

ICSF PKCS #11 services can be configured to operate in compliance with FIPS 140-2 specifications via the ICSF FIPSMODE installation option. When FIPS 140-2 compliance is required, OpenSSH can use ICSF to implement the aes128-cbc, aes192-cbc, aes256-cbc, rijndael-cbc@lysator.liu.se and 3des-cbc ciphers and the hmac-sha1 and hmac-sha1-96 MAC algorithms. Other ciphers and MAC algorithms cannot be implemented using ICSF unless OpenSSH is exempt from FIPS 140-2 compliance. If OpenSSH is not exempt, OpenSSH will fail at runtime if it uses ICSF to implement a cipher or MAC algorithm that is not FIPS 140-2 compliant. See
OpenSSH is not a full FIPS 140-2 compliant application even if ICSF is used to implement the ciphers and MAC algorithms in compliance with FIPS 140-2 specifications.

Usage notes:
- OpenSSH uses the session object token, SYSTOK-SESSION-ONLY, to exploit the ICSF PKCS #11 support.
- This support applies to SSH protocol version 2 only.
- ssdh will not use ICSF to implement the arcfour, arcfour128 and arcfour256 ciphers when privilege separation is enabled.
- The ssdh -t option can be used to determine if the required PTF for OpenSSH APAR OA37278 is installed by checking the validity of the zos_sshd_config keywords CiphersSource and MACsSource.
- ssh and ssdh will fail if ICSF ciphers or MAC algorithms are required but ICSF is not available.
- ICSF ciphers and MAC algorithms are not supported when the ssh -f option or the ssh ~& escape character are used.

Managing OpenSSH user heap

While using OpenSSH, you may encounter situations where the user heap is exhausted when running with a limited amount of storage. This can be caused by certain code paths (for example, file transfers via sftp) in OpenSSH making repeated use of the XL C/C++ runtime library realloc() function. In certain situations, heap fragmentation can occur, causing future requests to allocate user heap to fail and causing OpenSSH commands to fail with the following error message:

"FOTS2050 xrealloc: out of memory"

If you encounter this problem, you can take one of the following actions:
- Set the _CEE_RUNOPTS="HEAP(,,FREE)" environment variable when invoking OpenSSH commands. Language Environment will free all unused storage after a call to the XL C/C++ Run-time Library realloc() function, making it unlikely that the user heap will be exhausted during normal use. However, application performance might be affected. For more information about heap tuning, see z/OS Language Environment Programming Reference
- If running on z/OS 1.12 or later, set the _CEE_REALLOC_CONTROL="256K,25" environment variable when invoking OpenSSH commands. Language Environment will optimize heap storage reallocation for OpenSSH. See z/OS XL C/C++ Programming Guide for more information about the _CEE_REALLOC_CONTROL environment variable.
- Increase the amount of storage available to the processes running OpenSSH commands. For example, use a REGION of 32MB or larger and ensure that the IEFUSI or IERALIMIT exits are not further restricting the region size.
- Apply the PTF for APAR OA37278. This PTF modified the buffer reallocation in OpenSSH to minimize heap fragmentation.
Chapter 6. Security topics when using key rings for key management

This topic discusses security topics in connection with key rings. OpenSSH can be configured to support keys in both UNIX files and key rings for both server and user authentication.

Choosing between UNIX files and key rings

Using UNIX files to store the keys is the common method supported on all OpenSSH implementations. Consider what other OpenSSH hosts you will be communicating with; that is, are they z/OS or non-z/OS? Also consider whether the z/OS systems are using key rings.

On the other hand, key rings provide commonality with other z/OS products that store keys in the security product. They can be real or virtual key rings. To use SAF key rings, you must have RACF or an alternative security product with compatible support. Authority must also be given to user IDs to manage the key rings. For more information about key rings, see z/OS Security Server RACF Security Administrator’s Guide.

Restriction: If you are using SSH protocol version 1, you cannot use key rings to hold your keys. You must use UNIX files to hold RSA keys used for SSH protocol version 1.

Managing key rings and restricting access to them

Authorized applications use commands or system services provided by the security product to manage key rings. This documentation typically refers to RACF commands when presenting examples of how to set up key rings. If a different security product is used, consult that product’s documentation to determine whether it contains compatible support. For more information about the RACF commands referred to in this documentation, the necessary authority required to use the commands, and any other options not described in this documentation, see z/OS Security Server RACF Command Language Reference.

To restrict access to key rings, two methods are available: global profile checking and ring-specific profile checking.

- **Ring-specific profile checking**, which has precedence over global profile checking, uses a resource with one of the following formats to provide access control to a specific key ring.
  - For real key rings: <KeyRingOwner>.<KeyRingName>.LST
  - For virtual key rings: <KeyRingOwner>.IRR_VIRTUAL_KEYRING_LST

  For more details about name restrictions and other considerations for using ring-specific profile checking, see the description of RACF authorization in the R_datalib interface section in z/OS Security Server RACF Callable Services.

- **Global profile checking** uses the IRR.DIGTCERT.LISTRING resource in the FACILITY class and applies to all key rings.

  **Guideline**: Global profile checking applies to all key rings. Ring-specific profile checking applies to a specific key ring. Ring-specific checking has precedence over
global profile checking. The method that is chosen must work with the methods of permitting and securing access to other key rings being used for OpenSSH key management or other key ring usage on your system. Because of the wide scope of coverage that global profile checking provides, ring-specific profile checking is typically the more appropriate method to use.

**Validating certificates when using key rings**

Each time a certificate is accessed to retrieve a public or private key, OpenSSH asks System SSL to validate the certificate first. Some of the checks performed on the certificate and all certificates in the certification chain include verifying that the current time is within the validity period, checking that the certificate is not revoked, and ensuring that the certification chain leads to a certificate obtained from a trusted data source. For a complete list of the items being validated, see the usage information for the `gsk_validate_certificate` system call in [z/OS Cryptographic Services System SSL Programming](#).

Although the examples used in this book do not demonstrate using root and intermediate certificate authority (CA) certificates, they are supported in the certification chain of certificates used by z/OS OpenSSH key ring support. OpenSSH treats the key ring as a trusted certificate source. Because of this, for OpenSSH to successfully validate the certification chain, all certificates in the chain must be connected to the same key ring as the end entity certificate.
Chapter 7. Globalization on z/OS systems

This topic discusses globalization on z/OS systems and the changes that must be made in order for OpenSSH to fit the globalization model.

Setting up for globalization on z/OS systems

Setting up your system or user environment for globalization on z/OS systems is a little different from what most users are accustomed to when setting up globalization on ASCII platforms. On z/OS systems, an extra step is typically needed when changing the locale. This step involves setting the character set conversion for the controlling terminal to use the correct ASCII and EBCDIC coded character sets. This action is necessary because most PC terminal emulators require ASCII data, but the z/OS shells use EBCDIC data.

For example, when using a PC emulator to interactively log into an ASCII UNIX operating system, a user will:

- On the PC, change the emulator's coded character set to match the coded character set of the remote session's locale.
- In the UNIX shell, assign the environment variable LC_ALL to a new locale, where the ASCII coded character set of that locale matches the emulator's setting.

When interactively logging into an EBCDIC z/OS UNIX operating system, the user will:

- On the PC, change the emulator's coded character set to match the ASCII coded character set of the remote session's locale. For example, the user might change the translation settings in their emulator to use coded character set ISO/IEC 8859-2 (Latin-2).
- In the UNIX shell:
  - Assign the environment variable LC_ALL to a new locale, whose EBCDIC coded character set is compatible with the ASCII coded character set used in the emulator. To determine if a coded character set is compatible with a particular locale, refer to the section in z/OS XL C/C++ Programming Guide that discusses locales supplied with z/OS XL C/C++.
  - Export LC_ALL=Hu_HU.IBM-1165

For example, a user might issue:

```
export LC_ALL=Hu_HU.IBM-1165
```

LC_ALL can be assigned after making the ssh connection by using the SendEnv ssh keyword to send the client's LC_ALL environment variable to the server. The server must be configured to accept this variable using the AcceptEnv sshd keyword. Before using this support, the client's LC_ALL variable must be set to a locale that is a valid locale name on the z/OS server. Refer to the descriptions of the ssh_config keyword “SendEnv” on page 142 and the sshd_config keyword “AcceptEnv” on page 150 for more information about these options.

- If a terminal type (tty) is allocated, issue the chcp command to assign the EBCDIC and ASCII coded character sets, as appropriate. The specified ASCII coded character set should match that of the client emulator's setting.

For example, a user might issue:

```
chcp -a 1508859-2 -e IBM-1165
```
On z/OS systems, in daemons such as rlogind, telnetd, and sshd, conversion between ASCII and EBCDIC occurs in the forked daemon process which handles the user's connection. This process allocates the terminal (tty) for the end user. On ASCII platforms, no conversion is necessary.

OpenSSH and globalization

OpenSSH assumes that all text data traveling across the network is encoded in ISO/IEC 8859-1 (Latin-1). Specifically, OpenSSH treats data as text and performs conversion between the ASCII Latin-1 coded character set and the EBCDIC-coded character set of the current locale in the following scenarios:

- ssh login session
- ssh remote command execution
- scp file transfers
- sftp file transfers when the ascii subcommand is specified

The OpenSSH daemon (sshd) can understand and handle non-Latin-1 coded character sets on the network for interactive sessions, specifically sessions with a tty allocated. However, not all EBCDIC-coded character sets are compatible with ISO 8859-1. To determine if a coded character set is compatible with a particular locale, see the information about locales supplied with z/OS XL C/C++ in [z/OS XL C/C++ Programming Guide](https://www.ibm.com/support/knowledgecenter/SSEPGG_1.2.0/com.ibm.zos.v2r11.ssepgg_1.2.0/r_pcmn_xlcxtpg.html).

**Warning:** If there is no one-to-one mapping between the EBCDIC coded character set of the session data and ISO 8859-1, then nonidentical conversions might occur. Specifically, substitution characters (for example, IBM-1047 0x3F) are inserted into the data stream for those incompatible characters. See “Configuring the OpenSSH daemon” on page 61] and [“Configuring the OpenSSH client” on page 61] for more information.

Sessions that are considered interactive include:

- The ssh login session when a tty is allocated. This is the default behavior.
- The ssh remote command execution, when the -t option is used to allocate a tty.

The following scenarios are considered noninteractive and continue to interpret network data as ISO 8859-1:

- The ssh login session when the -T option is specified (which disables tty allocation.)
- The ssh remote command execution when the -t option is not specified. The default behavior is not to allocate a tty for remote command execution.
- The scp file transfers
- The sftp file transfers when the ascii subcommand is specified

The support provided by IBM Ported Tools for z/OS: OpenSSH is summarized in [Table 16 on page 61]. It lists the expected coded character set for the network data during both interactive and noninteractive OpenSSH sessions with various peers.
Table 16. Summary of support provided by OpenSSH V1R2

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Session is:</th>
<th>Client is running:</th>
<th>Server is running:</th>
<th>Coded character set of network data is:</th>
</tr>
</thead>
</table>
| 1        | Interactive | z/OS               | z/OS              | ASCII coded character set as defined by the chcp setting.  
Restriction: The z/OS client expects Latin-1, so the ASCII coded character set must be handled accordingly on the server side. See "Configuring the OpenSSH daemon" for more information. |
| 2        | Interactive | Non-z/OS UNIX (such as AIX®, Linux) or PC | z/OS              | ASCII coded character set as defined by the chcp setting. |
| 3        | Interactive | z/OS               | Non-z/OS UNIX (such as AIX, Linux) or PC | ISO 8859-1 |
| 4        | Noninteractive | z/OS              | z/OS              | ISO 8859-1 |
| 5        | Noninteractive | Non-z/OS UNIX (such as AIX, Linux) or PC | z/OS              | ISO 8859-1 |
| 6        | Noninteractive | z/OS              | Non-z/OS UNIX (such as AIX, Linux) or PC | ISO 8859-1 |

Note that some OpenSSH sessions transfer data as binary. In other words, no character translation is performed. These include:
- **sftp** sessions (when the ascii subcommand is not used)
- Port-forwarded sessions
- X11-forwarded sessions

**Limitation:** IBM Ported Tools for z/OS: OpenSSH does not support multibyte locales.

**Configuring the OpenSSH daemon**

The OpenSSH daemon (**sshd**) must be run in the POSIX C locale. In most cases, this occurs without any action on behalf of the user. However, an alternate locale could inadvertently be picked up through the shell profile of the user ID invoking the daemon, or through the ENVAR run-time option in CEEPRMxx member of SYS1.PARMLIB. You can enforce LC_ALL=C by using STDENV in the BPXBATCH job that starts the daemon.

For more information about the POSIX C locale, see **z/OS XL C/C++ Programming Guide**

**Configuring the OpenSSH client**

The OpenSSH daemon (**sshd**) can understand and handle non-Latin-1 coded character sets for interactive sessions, specifically those with a tty allocated. However, the OpenSSH client (**ssh**) still expects network data to be encoded in ISO 8859-1.
If the EBCDIC coded character set for your sessions is compatible with ISO 8859-1, the following setup is not required. To determine if a coded character set is compatible with a particular locale, refer to the section on locales supplied with z/OS XL C/C++ in z/OS XL C/C++ Programming Guide.

If chcp is issued in your environment, verify that the SSH peer supports the specified ASCII coded character set.

For example, if you are using a PC to connect directly to z/OS, you issue the chcp command in the remote z/OS shell to assign the ASCII-coded character set for the terminal to match that of the PC emulator. The daemon inherits the chcp setting to translate the network data accordingly. The SSH peer, the PC emulator, must also support the new ASCII coded character set. This can be determined by checking your emulator’s configuration.

If you are issuing the ssh client from z/OS to connect to a z/OS platform running in another locale, you need to verify that the ASCII coded character set of the remote session (set by chcp) is ISO 8859-1, which is what the z/OS ssh client expects.

**Warning:** If there is no one-to-one mapping between the EBCDIC coded character set of the session data and ISO 8859-1, then nonidentical conversions might occur. Specifically, substitution characters (for example, IBM-1047 0x3F) may be inserted into the data stream for those incompatible characters.

If the EBCDIC coded character set of your target locale is not compatible with ISO 8859-1, then nonidentical conversions may occur in either of these scenarios:
- You are running in the target locale when issuing the ssh command locally.
- You are running in the target locale in your remote ssh session.

To avoid nonidentical conversions, you can force the ssh client process to run in the C locale. Note also that the remote session’s shell must also be configured to run in either the C locale or a locale with a coded character set that is compatible with ISO 8859-1.

To force the local ssh client process to run in a C locale, you can run ssh as follows:

```
LC_ALL=C ssh [arguments]
```

where arguments represents the remainder of the arguments passed to ssh.

You can set up a shell alias to avoid repeatedly typing the previous command. For example:

```
alias ssh="LC_ALL=C ssh"
```

**Configuring ssh when LC_ALL is set through shell profiles**

If all the following are true for your environment:
- Your system is configured to run in a locale other than the default C locale
- The corresponding ASCII coded character set for your locale is not ISO 8859-1
- You changed the system-wide locale by setting LC_ALL through shell profiles (for example, /etc/profile or $HOME/.profile)

then perform the following steps as part of your OpenSSH system-wide setup.
If you have changed the locale at a system-wide level, consider defining this alias in an area where it can be picked up by all users and inherited by all subshells. Shell aliases are typically defined through the file named by the ENV variable of /bin/sh. Users may have defined their own ENV setting in one of their shell profiles. For this setup, the ENV variable should be exported so it is inherited by subshells.

- For /bin/sh users, this alias should be defined in the ENV file.
- For /bin/tcsh users, this alias should be defined in /etc/csh.cshrc.

**Steps to follow for setting up a system-wide alias for ssh**

The steps assume that you are using the /bin/sh shell.

1. Create a UNIX file /etc/ssh/.sshalias that contains the following line:
   ```bash
 alias ssh="LC_ALL=C ssh"
   ```
2. Ensure that the UNIX permissions for this file are world-readable. From the UNIX prompt, issue:
   ```bash
 chmod 744 /etc/ssh/.sshalias
   ```
3. Notify users to either add the ssh alias to their ENV file or read in the previous ENV file from their user-defined ENV file. For example, users can add to their ENV file the following line, which reads in (or “sources”) the new ssh alias file using the `.` command:
   ```bash
 . /etc/ssh/.sshalias
   ```
4. Verify that the ssh alias is set properly. From a new UNIX shell, issue:
   ```bash
 > alias ssh
 ssh="LC_ALL=C ssh"
 >
   ```

**Configuring ssh when LC_ALL is set through the ENVAR run-time option in CEEPRMxx**

If all the following statements are true for your environment

- Your system is configured to run in a locale other than the default C locale
- The corresponding ASCII code page for your locale is not ISO 8859-1
- You changed the system-wide locale by setting LC_ALL through the ENVAR run-time option in a CEEPRMxx member of SYS1.PARMLIB or through the operator command SETCEE.
  - For information about SETCEE, see [z/OS MVS System Commands](https://www.ibm.com/support/docview.wss?uid=swg27044632)
  - [z/OS MVS Initialization and Tuning Reference](https://www.ibm.com/support/docview.wss?uid=swg27044632) contains information about the ENVAR run-time option for CEEPRMxx.

then perform the following steps as part of your OpenSSH system-wide setup.

Create an alias for the ssh command which forces ssh to run in a C locale. This alias should be defined in an area where it will be picked up by all users and all subshells, even when a login shell is not used. Shell aliases are typically defined through the file named by the ENV variable of /bin/sh. The ENVAR run-time option in CEEPRMxx can also be used to set a shell alias.

**Steps to follow for setting up a system-wide alias for ssh through the ENVAR run-time option of CEEPRMxx**

1. Create a UNIX file /etc/ssh/.sshalias which contains the following line:
   ```bash
 alias ssh="LC_ALL=C ssh"
   ```
2. Ensure that the UNIX permissions for this file are world-readable. From the UNIX prompt, issue:
chmod 744 /etc/ssh/.sshalias

3. Notify users to define this alias if they already have created their own ENV file. Users might have defined their own ENV setting in one of their shell profiles. Their ENV setting is not inherited for remote command execution or remote ssh processes, because these are not login shells. However, ENV will be initialized to their own setting for interactive shells, where users might later be issuing the ssh command. Their ENV setting overrides the ENVAR setting through CEEPRMxx, so they need to pick up your alias for local ssh command invocations.

- For /bin/sh users, this alias should be defined in the file specified by the ENV variable.
- For /bin/tcsh users, this alias should be defined in /etc/csh.cshrc.

The subsequent examples all assume that one is working with /bin/sh users. Notify users to either add the ssh alias to their ENV file or read in your ENV file from their ENV file. For example, users might add to their ENV file the following line, which reads in (or “sources”) the new ssh alias file using the dot command:
```
. /etc/ssh/.sshalias
```

4. Issue the operator command SETCEE to change the CEEPRMxx setting dynamically. For example:
```
SETCEE CEEOPT,ENVAR('LC_ALL=Hu_HU.IBM-1165','ENV=/etc/ssh/.sshalias')
```

5. Verify that the ssh alias is set properly. From a new UNIX shell, issue:
```
> echo $ENV
/etc/ssh/.sshalias
> alias ssh
ssh="LC_ALL=C ssh"
>
```

### Configuring sftp

By default, sftp treats files as binary. Use sftp if you do not want your data files altered. If you want your data files translated between ASCII and EBCDIC, use iconv to convert the files at the start or end of the sftp transfer.

**If you have existing sftp jobs that use the ascii sftp subcommand:** The ascii sftp subcommand converts between ASCII ISO 8859-1 and the EBCDIC of the current locale. If the file data on the network is in a coded character set that is not ISO 8859-1, then you must adjust existing jobs to transfer files as binary and use iconv for the data conversion.

### Configuring scp

By default, scp treats files as text. It assumes that all data going over the network is encoded in ASCII coded character set ISO 8859-1. The EBCDIC coded character set of the current locale is used for data conversion. On the remote system, the locale of the scp process is determined by how LC_ALL is initialized on that system. If LC_ALL is set through a shell profile (for example, /etc/profile), then it will not be inherited by the remote scp process. Specifically, the remote scp process will run in a C locale. Figure 4 on page 65 shows the change in locales; for example, if a user on Host GERMANY running in locale De_DE.IBM-273 uses scp to transfer a file to a remote host, the file contents are converted from IBM-273 to ISO 8859-1 to go over the network and from ISO 8859-1 to IBM-1047 on the target system.
If LC_ALL is set through the ENVAR run-time option in the CEEPRMxx member, then the new locale is inherited by the remote scp process. Specifically, the EBCDIC coded character set of that locale is used. See Figure 5 for an example of using scp when LC_ALL is set through ENV in CEEPRMxx. If a user on Host GERMANY running in locale De_DE.IBM-273 uses scp to transfer a file to a remote host, the file contents are converted from IBM-273 to ISO 8859-1 to go over the network, and from ISO 8859-1 to IBM-273 on the target system.

Warning: If a file is encoded in an EBCDIC coded character set whose compatible ASCII coded character set is not ISO 8859-1, then nonidentical conversions might occur. Specifically, substitution characters (for example, IBM-1047 0x3F) might replace characters that do not have a mapping between the specified EBCDIC coded character set and ISO 8859-1. To determine if a coded character set is compatible with a particular locale, see the information about locales supplied with z/OS XL C/C++ in z/OS XL C/C++ Programming Guide.

If the EBCDIC coded character set for your sessions is compatible with ISO 8859-1 and the preceding text conversions are satisfactory for your environment, the following setup is not required.

**If you have existing scp jobs**

If you are changing the locale on a system whose ASCII coded character set is not Latin-1 and you have existing scp jobs configured, you can:
Converting those jobs to use sftp.

Force scp to treat files as though they are encoded in IBM-1047, so substitution characters are not introduced. This can be done through a shell alias, as described in "Configuring scp when LC_ALL is set through shell profiles."

- If you intend to configure a new locale through a shell profile, then continue to "Configuring scp when LC_ALL is set through shell profiles."
- If you intend to configure a new locale using CEEPRMxx to specify run-time options, then continue to "Configuring scp when LC_ALL is set through the ENVAR run-time option in CEEPRMxx."

**Configuring scp when LC_ALL is set through shell profiles**

If all the following are true for your environment:

- Your system is configured to run in a locale other than the default C locale
- The corresponding ASCII coded character set for your locale is not ISO 8859-1
- You changed the system-wide locale by setting LC_ALL through shell profiles (for example, /etc/profile or $HOME/.profile)
- You do not want to convert existing scp workloads to sftp workloads

then perform the following steps as part of your OpenSSH system-wide setup.

If you have changed the locale at a system-wide level, consider defining this alias in an area where it can be picked up by all users and inherited by all subshells. Shell aliases are typically defined through the file named by the ENV variable of /bin/sh. Users might have defined their own ENV setting in one of their shell profiles. For this setup, the ENV variable should be exported so it is inherited by subshells.

- For /bin/sh users, this alias should be defined in the ENV file.
- For /bin/tcsh users, this alias should be defined in /etc/csh.cshrc.

**Steps to follow for setting up a system-wide alias for scp**

The steps assume that you are using the /bin/sh shell.

1. Create a UNIX file, /etc/ssh/.sshalias, that contains the following line:
   
   ```
 alias scp="LC_ALL=C scp"
   ```

2. Ensure that the UNIX permissions for this file are world-readable. From the UNIX prompt, issue:
   
   ```bash
 chmod 744 /etc/ssh/.sshalias
   ```

3. Notify users to either add the scp alias to their ENV file or read in the previous ENV file from their user-defined ENV file. For example, users can add to their ENV file the following line, which reads in (or “sources”) the new scp alias file using the dot command:
   
   ```bash
 . /etc/ssh/.sshalias
   ```

4. Verify that the scp alias is set properly. From a new UNIX shell, issue:
   
   ```bash
 > alias scp
 scp="LC_ALL=C scp"
 >
   ```

**Configuring scp when LC_ALL is set through the ENVAR run-time option in CEEPRMxx**

If all the following are true for your environment:

- Your system is configured to run in a locale other than the default C locale
The corresponding ASCII code page for your locale is **not** ISO 8859-1.

You changed the system-wide locale by setting LC_ALL through the ENVAR run-time option in a CEEPRMxx member or through the SETCEE operator command.

- For information about SETCEE, see [z/OS MVS System Commands](#).
- [z/OS MVS Initialization and Tuning Reference](#) contains information about the ENVAR run-time option for CEEPRMxx.

You do not want to convert existing scp workloads to sftp workloads then perform the following steps as part of your OpenSSH system-wide setup.

**Steps to follow for setting up a system-wide alias for scp through the ENVAR run-time option of CEEPRMxx**

1. Create a UNIX file `/etc/ssh/.sshalias` that contains the following line:
   ```
 alias scp="LC_ALL=C scp"
   ```

2. Ensure the UNIX permissions for this file are world-readable. From the UNIX prompt, issue:
   ```
 chmod 744 /etc/ssh/.sshalias
   ```

3. Notify users to define this alias if they already have created their own ENV file. Users might have defined their own ENV setting in one of their shell profiles. Their ENV setting is not inherited for remote command execution or remote scp processes, because these are not login shells. However, ENV is initialized to their own setting for interactive shells, where users might later be issuing the scp command. Their ENV setting overrides the ENVAR setting through CEEPRMxx, so they need to pick up your alias for local scp command invocations.
   - For /bin/sh users, this alias must be defined in the file specified by the ENV variable.
   - For /bin/tcsh users, this alias must be defined in `/etc/csh.cshrc`.

   The subsequent examples all assume that you are working with /bin/sh users.

   Notify users to either add the scp alias to their ENV file or read in your ENV file from their ENV file. For example, users can add to their ENV file the following line, which reads in (or “sources”) the new scp alias file using the dot command:
   ```
 . /etc/ssh/.sshalias
   ```

4. Issue the SETCEE operator command to change the CEEPRMxx setting dynamically. For example:
   ```
 SETCEE CEEOPT,ENVAR('LC_ALL=Hu_HU.IBM-1165','ENV=/etc/ssh/.sshalias')
   ```

5. Verify that the scp alias is set properly. From a new UNIX shell, issue:
   ```
 > echo $ENV
 /etc/ssh/.sshalias
 > alias scp
 scp="LC_ALL=C scp"
   ```

**Customizing your UNIX environment to run in another locale**

To configure your UNIX environment to run in another locale, see the section on customizing for your national code page in [z/OS UNIX System Services Planning](#).

**Rule:** All files used by OpenSSH (such as key files and configuration files) must be in the IBM-1047 coded character set, with the exception of the rc files (`/etc/ssh/sshrpc and `~/ssh/rc`). The rc files are parsed by /bin/sh and should be...
in the coded character set of the current locale. Do not use the /etc/ssh/sshrc file if there is a possibility of the users on the system running in different locales.

**Warning:** While it is possible to set LC_ALL through the ENVAR run-time option of the CEEPRMxx member, configuring the locale in this way might cause unexpected results. Specifically, it is possible that daemons or long-running processes might expect to run in a C locale. Verify that all these processes support running in your alternate locale. Additionally, some system administration user IDs might need to run in a C locale, for editing configuration files which expect to be encoded in IBM-1047.
Chapter 8. Getting ready to use OpenSSH

This topic discusses the setup tasks that the user must do. It includes the steps for generating user keys, which is a required step, and also discusses how to set up the system for X11 forwarding, which is an optional step.

**Requirement:** All files used by OpenSSH (such as key files and configuration files) must be in the IBM-1047 code set, with the exception of the rc files (`/etc/ssh/sshrc` and `~/.ssh/rc`). The rc files are parsed by `/bin/sh` and must be in the code set of the current locale. Do not use the `/etc/ssh/sshrc` file if users on the system might be running in different locales.

**Restriction:** OpenSSH does not run in multibyte locales.

In this chapter

This chapter covers the following subtasks.

<table>
<thead>
<tr>
<th>Subtasks</th>
<th>Associated procedure (see ...)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting up the OpenSSH client configuration</td>
<td>&quot;Steps for setting up the OpenSSH client configuration files&quot;</td>
</tr>
<tr>
<td>files</td>
<td></td>
</tr>
<tr>
<td>Setting up user authentication</td>
<td>&quot;Steps for setting up user authentication when using UNIX files to store keys&quot; on page 70</td>
</tr>
<tr>
<td></td>
<td>&quot;Steps for setting up user authentication when using key rings to store keys&quot; on page 72</td>
</tr>
<tr>
<td>Configuring your setup for X11 forwarding</td>
<td>&quot;Steps for configuring your setup for X11 forwarding&quot; on page 78</td>
</tr>
</tbody>
</table>

Setting up the OpenSSH client configuration files

The settings in the OpenSSH client configuration files (`ssh_config` and `zos_user_ssh_config`) provide system defaults and can be overridden by command-line options. By prefacing groups of configuration options with the Host keyword, you can share these configuration files across multiple systems with client configuration options that are tailored to the specific local system being used.

Steps for setting up the OpenSSH client configuration files

Before you begin: You must be running in the default C locale before performing these steps.

1. Customize the OpenSSH client configuration file.
   a. Copy the sample `ssh_config` configuration file from the `/samples` directory to your `~/.ssh` directory.
      ```bash
 cp /samples/ssh_config ~/.ssh/config
 chmod 644 ~/.ssh/config
      ```
2. Customize the z/OS-specific per-user client configuration file.

   a. Copy the sample `zos_user_ssh_config` file from the `/samples` directory to the `~/.ssh` directory:

   ```
 cp -p /samples/zos_user_ssh_config ~/.ssh/zos_user_ssh_config
 chmod 644 ~/.ssh/zos_user_ssh_config
   ```

   b. Modify the `zos_user_ssh_config` file to control the z/OS-specific per-user client options. For details, see "ssh" on page 90 and "ssh_config" on page 133.

When you are done, you have set up the OpenSSH client configuration files.

Setting up user authentication

Before clients can verify their identities to the server using public key authentication, user authentication must be set up first. Public key authentication is the most secure authentication method available in SSH. A user creates both a public and private key and then transfers a copy of the public key to the ssh server being accessed. The private key is kept on the user's local machine and is used to verify the identity of the user when the user attempts to connect to the ssh server. The public and private keys must be correct for the server to allow the connection. Those keys can be stored in either UNIX files or SAF key rings, or both. For more information about storing the key rings, see "Choosing between UNIX files and key rings" on page 57.

Restriction: If you are using SSH protocol version 1, you cannot use key rings to hold your keys. You must use UNIX files to hold RSA keys used for SSH protocol version 1.

The procedures for setting up user authentication are described in the following sections:

- "Steps for setting up user authentication when using UNIX files to store keys"
- "Steps for setting up user authentication when using key rings to store keys" on page 72

Steps for setting up user authentication when using UNIX files to store keys

Perform the following steps to set up user authentication.

1. Generate public and private key pairs, based on the SSH protocol you plan to use, protocol version 1 or protocol version 2.

   a. If you are using SSH protocol version 1, issue:

   ```
 ssh-keygen -t rsa
   ```

   b. If you are using SSH protocol version 2, issue:

   ```
 ssh-keygen -t rsa
 ssh-keygen -t dsa
   ```
2. On the remote host, distribute the public keys to all remote hosts that you plan to log in to, using public key authentication. By default, OpenSSH uses the `authorized_keys` file to store these public keys. Figure 6 on page 72 shows an example of the steps to follow in order to create an `authorized_keys` file when keys are stored in UNIX files.
   a. Create or edit the `~/.ssh/authorized_keys` file for your accounts on both local and remote systems.
   b. Append the public keys to the `~/.ssh/authorized_keys` file as follows:
      - To enable local users to log into a remote account, append the local user's public keys (those ending with a "pub" suffix) to the remote user's `~/.ssh/authorized_keys` file.
      - To enable remote users to log into a local account, append the remote user's public keys (those ending with a "pub" suffix) to the local user's `~/.ssh/authorized_keys` file.

   You can append the public keys by using cut and paste. Because a key is a long line, make sure that the keys are not split across lines. Each key should be exactly one line of the file.

   If you use FTP to copy your public key files to another system, treat the files as text to enable any necessary conversion between ASCII and EBCDIC.

3. On the remote host that you plan to log into, verify that your home directory (for example, `~/`), the `.ssh` subdirectory, and the `authorized_keys` file are not writable by other users. The default configuration of the OpenSSH daemon enables StrictModes, which verifies these settings before allowing public key authentication.

When you are done, you have set up user authentication. Every time you regenerate the keys, you must update the `authorized_keys` file on remote systems.

**Example of user authorization when using UNIX files to store keys**

An employee named Bill has two accounts on two systems where UNIX files are used to store keys. His user name on HOST1 is BILLY. On HOST2, his user name is WILLIAM. While logged into HOST1, he wants to be able to access HOST2 using `ssh` with public key authentication. Figure 6 on page 72 shows how the process would work.
Steps for setting up user authentication when using key rings to store keys

The setup procedure has been divided into two steps:

- “Step 1. Construct the key ring” on page 73
- “Step 2. Distribute the public keys to all remote hosts” on page 75
Notes about the command examples
The examples for managing key rings and associated objects use the RACDCERT RACF command. If you are using an alternate security product, consult that product's documentation to determine if it contains compatible support. For more information about the RACDCERT command, the necessary authority required to use the command, and any other options not described, see [z/OS Security Server RACF Command Language Reference](https://www.ibm.com/support/docview/it?uid=swg21364607).

In the examples, input names that are given in italics are variables, which you can choose. Some of these names in italics contain hyphen characters (-) separating portions of the name. These hyphens are variable and are not required. The names given are suggestions and are consistently used throughout the examples (for example, if you customize your own version in one step, that name will likely need to be used on other command steps as well).

The examples demonstrate using a self-signed certificate. Using a certificate chain, such as with root and intermediate certificate authority certificates, is supported. If you will be using more advanced certificate chains than the examples demonstrate, see “Validating certificates when using key rings” on page 58 for important considerations.

Step 1. Construct the key ring
In this step, you will construct a key ring, if one is needed, generate certificates, connect them to the user’s key ring, and set up permission to access the key ring.

Before you begin: You need to know the following facts:

- Which protocol version you will be using. If you are using SSH protocol version 1, you cannot use key rings to hold your keys. You must use UNIX files to hold RSA keys used for SSH protocol version 1.
- Whether you are working with real or virtual key rings because the setup steps vary depending on the type of key ring is being used. See [z/OS Security Server RACF Security Administrator’s Guide](https://www.ibm.com/support/docview/it?uid=swg21364607) for more information about real and virtual key rings.

1. Create a real key ring if you do not yet have one for your keys. Omit this step if you plan to use a virtual key ring. If you already have a key ring or are using a virtual key ring, go to Step 2. Use the RACDCERT ADDRING command to create the new key ring, specifying the owning user ID and the key ring name. The ID keyword must specify the user ID that will be authenticating with the keys within it. The key ring name can be any unique name for this user ID.

   **Example:** To define the SSHring key ring, issue:

   ```
 RACDCERT ADDRING(SSHring) ID(userID)
   ```

   On this command example, and all that follow, the ID() keyword can be omitted if the invoking user is the same as the authenticating user ID.

2. Using the RACDCERT GENCERT command, generate a certificate with public and private keys, based on the algorithms that are supported on the server (either RSA, DSA, or both.) For RSA keys, the minimum size is 768 bits, the maximum size is 32768 bits. Typically, 2048 bits is considered sufficient. DSA
keys must be exactly 1024 bits as specified by FIPS 186-2. OpenSSH does not support DSA keys larger than 1024 bits that are associated with certificates in a key ring.

Do not use variant characters in the label name for the certificate.

Although the examples demonstrate how to create non-ICSF (Integrated Cryptographic Storage Facility) certificates in the RACF database, ICSF can also be used to store the certificate and associated keys for RSA only. These can be generated by software using ICSF or by hardware using a PCI Cryptographic Coprocessor (PCICC). For more information, refer to [z/OS Cryptographic Services ICSF Administrator’s Guide](#).

- To generate a certificate and an RSA public/private key pair, storing the private key in the RACF database as a non-ICSF key:
  ```bash
 RACDCERT GENCERT SUBJECTSDN(CN('uniq-ssh-rsa-cn')) SIZE(2048) WITHLABEL('uniq-ssh-rsa') ID(userID)
  ```

- To generate a certificate and a DSA public/private key pair, storing the private key in the RACF database as a non-ICSF key:
  ```bash
 RACDCERT GENCERT SUBJECTSDN(CN('uniq-ssh-dsa-cn')) SIZE(1024) DSA WITHLABEL('uniq-ssh-dsa') ID(userID)
  ```

The SUBJECTSDN parameter offers additional customizable keywords, which are not documented in this section, that can be included in the distinguished name. The label assigned to the certificate must be unique within the RACF database.

3. If real key rings are being used, use the RACDCERT CONNECT command to connect the certificate to the user's key ring. Omit this step if virtual key rings are being used. If you are not the certificate owner, you must identify the user ID that owns the certificate. If you are not the key ring owner, you must identify the user ID that owns the key ring. These will normally be the same for this connect command.

   ```bash
 RACDCERT CONNECT(ID(userID) LABEL('uniq-ssh-type') RING(SSHring) USAGE(PERSONAL)) ID(userID)
   ```

4. Update the user's z/OS-specific per-user client configuration file (`~/.ssh/zos_user_ssh_config`) to indicate the location of the user's keys when using key rings.

   - **If real key rings are being used**, add the following line:
     ```bash
 IdentityKeyRingLabel "userID/SSHring uniq-ssh-type"
     ```

   - **If virtual key rings are being used**, add the following line:
     ```bash
 IdentityKeyRingLabel "userID/* uniq-ssh-type"
     ```

5. Permit access to the key ring for the user, using either ring-specific profile checking or global profile checking. These are discussed in "Managing key rings and restricting access to them" on page 57.

   For example:

   - To define individual user access to the real key ring, SSHring, using ring-specific profile checking:
     ```bash
 RDEFINE RDATALIB userID.SSHring.LST UACC(NONE)
 PERMIT userID.SSHring.LST CLASS(RDATALIB) ID(userID) ACCESS(READ)
     ```

     If the RDATALIB class is not yet active and RACLISTed:
     ```bash
 SETROPTS RACLIST(RDATALIB) CLASSACT(RDATALIB)
     ```
Step 2. Distribute the public keys to all remote hosts

In this step, you will distribute the public keys to all remote hosts that you plan to log in to, using public key authentication. Figure 7 on page 78 shows an example of the steps to follow in order to create an authorized_keys file when keys are stored in key rings.

1. Export the public keys to remote hosts that store user's keys in a UNIX file (the authorized_keys file).
   - On the local host, use `ssh-keygen -e` to export the public key into a UNIX file.
     
     Example:
     ```
 _ZOS_SSH_KEY_RING_LABEL=“userID/SSHring uniq-ssh-type” ssh-keygen -e > uniq-ssh.type
     ```
   - Use FTP to distribute the `uniq-ssh.type` file to the remote host.
   - On the remote host, use `ssh-keygen -i` to import the public key, appending it to the authorized_keys file:
     ```
 ssh-keygen -i -f uniq-ssh.type >> ~/.ssh/authorized_keys
     ```
   - You have now completed distribution of the public keys to remote hosts that store user keys in a UNIX files. If you have other remote hosts that store user keys in key rings, then continue on to the next step to export the public keys to remote hosts. Otherwise, you have completed Step 2.

2. Export the public keys to remote hosts that store users’s keys in a certificate associated with a key ring. First, the public keys must be exported from the certificate. The RACDCERT EXPORT command can perform this type of export. Specify the certificate identification and request CERTDER for the export format. Choose a data set to store the exported certificate and specify it on the DSN parameter. If the data set specified for DSN already exists, it is deleted and reallocated by the RACDCERT EXPORT command.
If the public key will be stored in a certificate associated with a key ring on the remote host, then export the certificate in DER format (without the private key) into a data set for each public key that needs to be distributed to remote hosts.

For example:

```
RACDCERT EXPORT(LABEL('uniq-ssh-type')) ID(userID)
 FORMAT(CERTDER) DSN('userid.sshcert.type')
```

3. Use FTP to distribute the exported certificate data set in binary format to the remote hosts.

4. On the remote host, create a real key ring if you do not yet have one for your keys. Omit this step if you plan to use a virtual key ring.

```
RACDCERT ID(userID) ADDRING(SSHAuthKeysRing)
```

5. On the remote hosts, add each user certificate into the user’s SAF database.

The RACDCERT ADD command can be used to add the exported certificate on the remote host. Specify the data set that you copied to the remote host using FTP, the user ID that should own the certificate, and indicate that this certificate is trusted. The specified user ID must be the user ID that you want to be able to connect to from the local host with the matching key. You will specify the label for this certificate on this remote host. This label must be unique for the user ID within the RACF database, and is used to identify this certificate on future commands and in authorized key files.

This certificate only contains the public key.

Example:

```
RACDCERT ADD('userid.sshcert.type') ID(userID)
 WITHLABEL('uniq-ssh-type') TRUST
```

6. On the remote hosts, connect each certificate to the user’s key ring.

The RACDCERT CONNECT command can be used to connect each certificate to the user’s key ring if real key rings are being used. Omit this step if virtual key rings are being used and go to Step 7. You must identify both the user ID that owns the certificate and the user ID that owns the key ring. These will normally be the same for this connect command.

Example:

```
RACDCERT CONNECT(ID(userID) LABEL('uniq-ssh-type')
 RING(SSHAuthKeysRing) USAGE(PERSONAL)) ID(userID)
```

7. On the remote host, edit the `authorized_keys` file to add one line containing the `zos-key-ring-label` option for each public key that was added to the key ring. (See “Format of the `authorized_keys` file” on page 125 in the `sshd` command section for more information.)

For example:

- If a real key ring is being used, add the following line:

```
 zos-key-ring-label="userID/SSHAuthKeysRing uniq-ssh-type"
```

- If a virtual key ring is being used, add the following line:

```
 zos-key-ring-label="userID/* uniq-ssh-type"
```
On the remote host, permit access to this key ring for the user. There are two ways to provide access: ring-specific profile checking and global profile checking. Both are discussed in "Managing key rings and restricting access to them" on page 57.

For example:

- To define individual user access to the real key ring, SSHAuthKeysRing, using ring-specific profile checking:

  ```shell
 RDEFINE RDATALIB userID.SSHAuthKeysRing.LST UACC(NONE)
 PERMIT userID.SSHAuthKeysRing.LST CLASS(RDATALIB) ID(userID) ACCESS(READ)
  ```

  If the RDATALIB class is not yet active and RACLISTed:

  ```shell
 SETROPTS RACLIST(RDATALIB) CLASSACT(RDATALIB)
  ```

  Refresh the class:

  ```shell
 SETROPTS RACLIST(RDATALIB) REFRESH
  ```

- To define individual user access to the virtual key ring, using ring-specific profile checking:

  ```shell
 RDEFINE RDATALIB userID.IRR_VIRTUAL_KEYRING.LST UACC(NONE)
 PERMIT userID.IRR_VIRTUAL_KEYRING.LST CLASS(RDATALIB) ID(userID) ACCESS(READ)
  ```

  If the RDATALIB class is not yet active and RACLISTed:

  ```shell
 SETROPTS RACLIST(RDATALIB) CLASSACT(RDATALIB)
  ```

  Refresh the class:

  ```shell
 SETROPTS RACLIST(RDATALIB) REFRESH
  ```

- To define individual user access, using global profile checking:

  ```shell
 RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(READ)
  ```

  If the FACILITY class is not yet active and RACLISTed:

  ```shell
 SETROPTS RACLIST(FACILITY) CLASSACT(FACILITY)
  ```

  Refresh the class:

  ```shell
 SETROPTS RACLIST(FACILITY) REFRESH
  ```

When you are done, you have set up user authentication when using key rings to store keys. Every time the user keys are regenerated in the key ring, they must be redistributed and added to the key ring on the remote systems that contain the authorized keys.

**Example of user authorization when keys are stored in key rings**
Steps for configuring your setup for X11 forwarding

X11 forwarding allows users who have an account on a UNIX machine to open a connection to the X11 interface remotely from another computer. Because this connection uses SSH, the communication between the systems is encrypted. X11 forwarding will only work if the system being connected to has both SSH and X11 forwarding enabled.

Before you begin: You need to know whether the system administrator has configured sshd on the remote host for X11 forwarding as described in “Steps for configuring the system for X11 forwarding” on page 47.

Perform the following steps to configure your system for X11 forwarding.

1. Bill logs into HOST1 as BILLY.

2. Create a public and private key pair via certificate management and associate it with a key ring for BILLY.
   >RACDCERT ADDRING ...
   >RACDCERT GENCERT ...
   >RACDCERT CONNECT ...

3. Identify the key ring and certificate to OpenSSH by editing the local ~/.ssh/zos_user_ssh_config file.

4. Distribute the certificate to other z/OS hosts.
   >RACDCERT EXPORT
   >FTP the exported certificate to HOST2

5. Bill logs into HOST2 as WILLIAM.

6. Import the exported certificate that was sent from HOST1.
   >RACDCERT ADDRING ...
   >RACDCERT ADD ...
   >RACDCERT CONNECT ...

7. Edit WILLIAM’s ~/.ssh/authorized_keys file to identify the imported certificate.

Now BILLY from HOST1 can ssh to WILLIAM on HOST2.

>ssh WILLIAM@HOST2

Figure 7. Accessing a remote system using ssh with public key authentication when keys are stored in real key rings
1. Enable X11 forwarding for your local SSH client. You can do this in one of two ways:
   a. Set the ForwardX11 configuration variable to yes in your 
      ~/.ssh/config file. This can be done on a per-host basis. This is useful if you want to 
      always enable X11 forwarding.
   b. Invoke ssh with the -X option. Use this if you want to enable X11 
      forwarding for this session only.

2. In your local SSH configuration file (~/.ssh/config), specify the location of the 
   xauth program on the remote system. This step is required only if the xauth 
   program is installed somewhere other than the default location 
   (/usr/X11R6/bin/xauth). The xauth program might need to support the 
   generate command in order to allow ssh to successfully set up untrusted X11 
   forwarding.
   Provided is an example of a ssh configuration file entry, using the default 
   xauth location:
   
   ```
 XAuthLocation /usr/X11r6/bin/xauth
   ```

3. In your remote user account, if xauth is compiled to use DLLs, then set 
   LIBPATH in ~/.ssh/environment to include /usr/lib. 
   For example:
   
   ```
 LIBPATH=/usr/lib
   ```

When you are done, you have configured your setup for X11 forwarding.
Chapter 9. OpenSSH command descriptions

scp — Secure copy (remote file copy program)

Format

scp [-1246BCpqrv] [-c cipher] [-F ssh_config] [-i identity_file] [-l limit] [-o ssh_option] [-P port] [-S program] [(user@host1:)]file1 ... [(user@host2:)]file2

Description

scp copies files between hosts on a network. It uses ssh for data transfer and uses the same authentication and provides the same security as ssh. rcp (remote copy) is a traditional UNIX utility that allows a user to copy files between remote hosts. Copies between two remote hosts are also permitted. When copying between two remote hosts, only options -v, -r and -p are passed to the remote host regardless of what the user specifies on the command line. Unlike rcp, scp asks for passwords, password phrases, or passphrases if they are needed for authentication.

File names can contain a user and host specification to indicate that the file is to be copied to the host or from the host. To prevent scp from treating the names containing ':' as specifiers, local file names can be made explicit by using absolute or relative path names.

IPv6 addresses can be specified by enclosing the address in square brackets.

scp assumes that files are text. Files copied between EBCDIC and ASCII platforms are converted.

If the source path name is a symbolic link, scp copies the file to which the symbolic link points. In other words, symbolic links are followed.

OpenSSH can be configured to collect SMF client and server transfer completion records that are associated with scp. See “Setting up OpenSSH to collect SMF records” on page 50 for more information. See Chapter 12, “SMF Type 119 records for OpenSSH,” on page 173 for more information about the SMF client and server transfer completion records (subtypes 97 and 96 respectively). SMF records are not collected for local-to-local copies.

With the PTF for APAR OA37278, OpenSSH can be set up to use ICSF to implement certain ssh ciphers and MAC algorithms. This extension enables scp (via ssh) to use hardware support when applicable. See “Setting up OpenSSH to use ICSF ciphers and MAC algorithms” on page 52 for more information.

Restriction: The maximum full path name length is 1023 bytes for files processed by scp. Exceeding this maximum might result in unexpected behavior.

Options

-1 Specifies that scp is to use protocol version 1 only.

-2 Specifies that scp is to use protocol version 2 only.

-4 Forces scp to use IPv4 addresses only. If both -4 and -6 are specified, scp uses the option that appears last on the command line.
Forces `scp` to use IPv6 addresses only. If both `–4` and `–6` are specified, `scp` uses the option that appears last on the command line.

`–B` Selects batch mode; while in batch mode, prompts are not issued for passwords, password phrases, or passphrases, but they are still required for OpenSSH. To avoid password prompts, use public-key authentication with an `ssh-agent` or host-based authentication.

`–c cipher` Selects the cipher to use for encrypting the data transfer. This option is directly passed to `ssh`. For more information, see the `ssh` "–c option" on page 92 or the `ssh_config` keyword "Ciphers" on page 134.

`–C` Enables compression. Passes the `–C` flag to `ssh` to enable compression.

`–F ssh_config` Specifies an alternative per-user configuration file for `ssh`. This option is directly passed to `ssh`. This option has no effect on the z/OS-specific configuration files.

`–i identity_file` Selects the file from which the identity (private key) for RSA or DSA authentication is read. This option is directly passed to `ssh`. For more information, see "ssh" on page 90.

`–l` Limits the used bandwidth, specified in Kbits.

`–o ssh_option` Can be used to pass options to `ssh` in the format used in the `ssh_config` configuration file. This option is useful for specifying options for which there is no separate `scp` command-line flag. For full details of the available options and their values, see "ssh_config" on page 133. The z/OS-specific per-user OpenSSH client configuration options (see "zos_user_ssh_config" on page 147) can be specified on `-o`, but the z/OS-specific system-wide options (see "zos_ssh_config" on page 145) cannot.

For example:
1. To use protocol version 1:
   ```bash
 scp -oProtocol=1
   ```
2. To disable password authentication:
   ```bash
 scp -oPasswordAuthentication=no
   ```

`–p` Preserves modification times, access times, and modes from the original file.

`–P port` Specifies the port to connect to on the remote host.

`–q` Quiet. Disables the progress meter as well as the warning and diagnostic messages from `ssh`.

`–r` Recursively copies entire directories.

`–S program` Name of program to use for the encrypted connection. The program must understand `ssh` options.

`–v` Verbose mode. Causes `scp` and `ssh` to print debugging messages about their progress, which is helpful in debugging connection, authentication, and configuration problems.
Environment variables

_ZOS_OPENSSH_DEBUG
Contains z/OS-specific debug information. This environment variable is only used internally and is not for external specification.

_ZOS_OPENSSH_MSGCAT
Identifies the OpenSSH message catalog to be used when sending OpenSSH error messages.

_ZOS_SMF_FD
Set to the file descriptor number used for interprocess communication during SMF-related processing. This environment variable is only used internally and is not for external specification.

Exit values

0  Successful completion
>0  An error occurred.

Related information

sftp, ssh, sshd, ssh-add, ssh-agent, ssh_config, ssh-keygen, zos_ssh_config, zos_user_ssh_config

Authors

Timo Rinne and Tatu Ylonen

sftp — Secure file transfer program

Format


sftp [[user@]host[:file [file]]]

sftp [[user@]host[:dir[/]]]

sftp -b batchfile [user@]host

Description

sftp is an interactive file transfer program similar to ftp which performs all operations over an encrypted ssh transport. It uses many features of ssh, such as public key authentication and compression.

sftp connects and logs into the specified host and then enters a subcommand mode.
• The second usage format retrieves files automatically if a non-interactive authentication method is used; otherwise it does so after successful interactive authentication.
• The third usage format allows sftp to start in a remote directory.
• The fourth usage format allows for automated sessions using the -b option. In such cases, you might have to configure public key authentication to eliminate...
the need to enter a password at connection time. For more information, see “sshd” on page 121 and “ssh-keygen” on page 110.

IPv6 addresses can be specified by enclosing the address in square brackets.

By default, **sftp** assumes files are binary. Files copied between EBCDIC and ASCII platforms are not converted. Use the ascii subcommand to transfer files in ASCII between the local host and the remote host.

OpenSSH can be configured to collect SMF client transfer completion records that are associated with **sftp**. See “Setting up OpenSSH to collect SMF records” on page 50 for more information. See Chapter 12, “SMF Type 119 records for OpenSSH,” on page 173 for more information about the SMF client transfer completion records (subtype 97).

With the PTF for APAR OA37278, OpenSSH can be set up to use ICSF to implement certain **ssh** ciphers and MAC algorithms. This extension enables **sftp** (via **ssh**) to use hardware support when applicable. See “Setting up OpenSSH to use ICSF ciphers and MAC algorithms” on page 52 for more information.

**Restriction:** The maximum full path name length is 1023 bytes for files processed by **sftp**. Exceeding this maximum might result in unexpected behavior.

### Options

- **–1** Specifies the use of SSH protocol version 1. Because SSH protocol version 1 does not support subsystems, you must specify –s with an **sftp-server** path when using this option. This option is only supported if both the local and remote hosts are z/OS systems.

- **–b batchfile**

  Batch mode reads a series of commands from an input batchfile instead of stdin. Because it lacks user interaction, use it in conjunction with noninteractive authentication. A batchfile of ‘-’ can be used to indicate standard input. **sftp** ends and the exit value is set to nonzero only if any of the following commands fail: **get**, **put**, **rename**, **ln**, **rm**, **rmdir**, **mkdir**, **cd**, **ls**, **lcd**, **chmod**, **chown**, **chgrp**, **lpwd** and **lmkdir**. For an exception, see “Limitations” on page 85. This option causes **sftp** to pass `-oBatchMode=yes` to **ssh**.

  Ending on error can be suppressed on a command-by-command basis by prefixing the command with a ‘-’ character.

  For example:
  ```
 -rm /tmp/file*
  ```

- **–B buffer_size**

  Specifies the size of the buffer that **sftp** uses when transferring files. Larger buffers require fewer round trips at the cost of higher memory consumption. The default is 32768 bytes. If specifying buffer_size > INT_MAX, **sftp** only allocates INT_MAX at most. For more information, see “Limitations” on page 85.

- **–C** Enables compression. This option is passed to **ssh**.

- **–F ssh_config**

  Specifies an alternative per-user **ssh_config** configuration file for **ssh**. This option is directly passed to **ssh**. It has no effect on the z/OS-specific configuration files.
-o ssh_option
Can be used to pass options to ssh in the format used in the ssh_config and zos_user_ssh_config configuration files. This is useful for specifying options for which there is no separate sftp command-line flag. For full details of the available options and their values, see “ssh_config” on page 133 and “zos_user_ssh_config” on page 147. The z/OS-specific per-user OpenSSH client configuration options can be specified on -o, but the z/OS-specific system-wide options (see “zos_ssh_config” on page 145) cannot.

Example: To specify an alternate port, use:
sftp -oPort=24

sftp always passes the following options to ssh:
  • ForwardX11=no
  • ForwardAgent=no
  • PermitLocalCommand=no
  • ClearAllForwardings=yes

-P sftp_server_path
Connects directly to the local sftp-server (instead of via ssh). This option might be useful in debugging the client and server.

Restriction: When this option is specified, SMF client transfer completion records (subtype 97) are not collected.

-R num_requests
Specifies the number of requests that can be outstanding at any one time. Increasing this might slightly improve file transfer speed, but increases memory usage. The default is 16 outstanding requests.

-s subsystem 1 sftp_server
Specifies the SSH protocol version 2 subsystem or the path for an sftp server on the remote host. An sftp-server path is useful for using sftp over SSH protocol version 1 or when the remote sshd does not have an sftp subsystem configured.

-S program
Name of the program to use for the encrypted connection. The program must understand ssh options.

-v
Enables verbose mode. This option is also passed to ssh. Multiple -v options increase the verbosity. You can specify up to three -v options.

Limitations
Due to limitations in the SECSH protocol with regards to EBCDIC platforms, sftp used with SSH protocol version 1 is only supported from z/OS to z/OS. (For information about the IETF SECSH internet drafts, see “RFCs and Internet drafts” on page 349).

The biggest buffer size that can be allocated is 2147483647(INT_MAX) bytes. INT_MAX is defined in limits.h.

When using put -p in conjunction with -b, if a failure occurs when preserving permissions or access time on the remote system, sftp will not exit and the exit value will not be set to nonzero.
Subcommands

sftp understands a set of commands (subcommands) similar to those of ftp.

The following rules apply:
- Commands are not case sensitive.
- Path names that contain spaces must be enclosed in quotes.
- Glob characters (also called wildcard characters) in path names must be escaped with backslash characters (\). For more information about wildcard characters, refer to the section on file name generation in the \sh\ command description in \zsos unix system services command reference\.
- Characters preceded by an unescaped pound sign (#) are treated as a comment.
- Input up to but not including the next newline is discarded.

ascii Changes the data transfer type to ASCII.

For outgoing files, convert from EBCDIC code page of the current locale into ASCII before transferring them to the remote host. For incoming files, convert from ASCII into the code page of the current locale before restoring them on the local host.

Restriction: The ascii subcommand is only valid for file transfers between UNIX platforms. It is not valid for file transfers between Windows and UNIX platforms.

binary Changes the data transfer type to binary. This is the default.

bye Quits sftp.

cd path

Changes the remote directory to path.

lcd path

Changes the local directory to path.

chgrp grp path

Changes group of file path to grp. grp must be a numeric GID. path can contain glob characters and match multiple files.

chmod mode path

Changes permissions of file path to mode. path can contain glob characters and match multiple files.

chown own path

Changes owner of file path to own. own must be a numeric UID. path can contain glob characters and match multiple files.

exit Quits sftp.

get [–Pp] remote-path [local-path]

Retrieves the remote-path and stores it on the local machine. If the local path name is not specified, it is given the same name it has on the remote machine. remote-path can contain glob characters and match multiple files. If it matches multiple files and local-path is specified, then local-path must specify a directory. If the –P or –p flag is specified, then the file's full permissions and access time are copied as well.

help Displays help text.

lls [ls-options [path]]

Displays local directory listing of either path or current directory if path is
not specified. *ls-options* is case sensitive. *ls-options* can contain any flags supported by the local system’s *ls* command. *path* can contain glob characters and match multiple files.

**Imkdir** *path*

Creates local directory specified by *path*.

**In** *oldpath newpath*

Creates a symbolic link from *oldpath* to *newpath* on the remote host. Same as *symlink*.

**Lpwd**

Prints local working directory.

**Ls** [*-1aflnrSt*] [*path*]

Displays remote directory listing of either *path* or current directory if *path* is not specified. *path* can contain glob characters and match multiple files.

The following flags are recognized and the behavior of *ls* is altered accordingly:

- **-1** Produces single-column output.
- **-a** Lists files beginning with a dot (.)
- **-f** Does not sort the listing. The default sort order is lexicographical.
- **-l** Displays additional details including permissions and ownership information.
- **-n** Produces a long listing with user and group information presented numerically.
- **-r** Reverses the sort order of the listing.
- **-S** Sorts the listing by file size.
- **-t** Sorts the listing by last modification time.

**Lumask** *umask*

Sets local umask to *umask*.

**Mkdir** *path*

Creates remote directory specified by *path*.

**Progress**

Toggles display of progress meter.

**Put** [*-Pp*] *local-path* [*remote-path*]

Uploads *local-path* and stores it on the remote machine. If the *remote-path* name is not specified, it is given the same name it has on the local machine. *local-path* can contain glob characters and match multiple files. If it matches multiple files and *remote-path* is specified, then *remote-path* must specify a directory. If the *-P* or *-p* flag is specified, then the file’s permissions and access time are copied as well.

When using *put -p* with *-b*, if a failure occurs when preserving permissions or access time on the remote system, *sftp* will not exit and the exit value will not be set to nonzero.

**Pwd**

Displays the remote working directory.

**Quit**

Quits *sftp*.

**Rename** *oldpath newpath*

Renames the remote file from *oldpath* to *newpath*. 

---

**Chapter 9. OpenSSH command descriptions** 87
**sftp**

- **rmdir path**  
  Removes the remote directory specified by *path*.

- **rm path**  
  Deletes the remote file specified by *path*.

- **symlink oldpath newpath**  
  Creates a symbolic link from *oldpath* to *newpath* on the remote host. Same as `ln`.

- **version**  
  Displays the sftp version.

- **!**  
  Escapes to local shell.

- **! command**  
  Executes *command* in the local shell.

- **?**  
  Synonym for `help`.

**Environment variables**

- **_ZOS_OPENSSH_DEBUG**  
  Contains z/OS-specific debug information. This environment variable is only used internally and is not for external specification.

- **_ZOS_OPENSSH_MSGCAT**  
  Identifies the OpenSSH message catalog to be used when sending OpenSSH error messages.

- **_ZOS_SMF_FD**  
  Set to the file descriptor number used for interprocess communication during SMF-related processing. This environment variable is only used internally and is not for external specification.

**Exit values**

- **0**  
  Successful completion

- **>0**  
  An error occurred. This exit value only occurs when `-b batchfile` is used and any of the following commands fail: `get`, `put`, `rename`, `ln`, `rm`, `rmdir`, `mkdir`, `cd`, `ls`, `lcd`, `chmod`, `chown`, `chgrp`, `lpwd`, and `lmkdir`. For an exception, see "Limitations" on page 85.

**Related information**

- `scp`, `ssh`, `ssh-add`, `ssh_config`, `ssh-keygen`, `sftp-server`, `sshd`, `zos_ssh_config`, `zos_user_ssh_config`

**Author**

Damien Miller

---

**sftp-server — SFTP server subsystem**

**Format**

```
sftp-server [-eh] [-f log_facility] [-l log_level]
```
sftp-server

Description

sftp-server is a program that implements the server side of the SFTP protocol. It expects client requests from standard input and writes responses to standard output. sftp-server is not intended to be called directly, but by specifying the sshd_config keyword Subsystem. See “Subsystem” on page 162 for more information about the keyword.

OpenSSH can be configured to collect SMF server transfer completion records that are associated with sftp-server. See “Setting up OpenSSH to collect SMF records” on page 50 for more information. See Chapter 12, “SMF Type 119 records for OpenSSH,” on page 173 for more information about the SMF server transfer completion records (subtype 96).

With the PTF for APAR OA37278, OpenSSH can be set up to use ICSF to implement certain sshd ciphers and MAC algorithms. This extension enables sftp-server (via sshd) to use hardware support when applicable. See “Setting up OpenSSH to use ICSF ciphers and MAC algorithms” on page 52 for more information.

Restriction: The maximum full path name length is 1023 bytes for files processed by sftp-server. Exceeding this maximum might result in unexpected behavior.

Options

-e sftp-server sends log messages to standard error instead of the system log.

-f log_facility

Specifies the facility code that is used when logging messages from sftp-server. The possible values are: DAEMON, USER, AUTH, LOCAL0, LOCAL1, LOCAL2, LOCAL3, LOCAL4, LOCAL5, LOCAL6, LOCAL7. The default is AUTH.

For more information about these log facilities, see the syslog daemon section in z/OS Communications Server: IP Configuration Reference.

-h Displays a summary of options.

-l log_level

Specifies which messages will be logged by sftp-server. The possible values are: QUIET, FATAL, ERROR, INFO, VERBOSE, DEBUG, DEBUG1, DEBUG2, and DEBUG3. INFO and VERBOSE log transactions that sftp-server performs on behalf of the client. DEBUG and DEBUG1 are equivalent. DEBUG2 and DEBUG3 each specify higher levels of debugging output. The default is ERROR.

These logging levels are similar to the syslog daemon priority codes, which are described in the syslog daemon section in z/OS Communications Server: IP Configuration Reference.

Environment variables

_ZOS_OPENSSH_DEBUG

Contains z/OS-specific debug information. This environment variable is only used internally and is not for external specification.

_ZOS_OPENSSH_MSGCAT

Identifies the OpenSSH message catalog to be used when sending OpenSSH error messages.
ssh — OpenSSH client (remote login program)

Format

```
ssh [-1246AaCfgKkMNnqsT(VvXxY] [-b bind_address] [-c cipher_spec] [-D
bind-address:port] [-e escape_char] [-F configfile] [-i identity_file] [-L
bind-address:port:host:hostport] [-l login_name] [-m mac_spec] [-O ctl_cmd] [-o option]
[-p port] [-R [bind-address:port:host:hostport] [-S ctl_path] [-w local_tun [remote_tun]]
[user@] hostname [command]
```

Description

ssh (SSH client) is a program for logging into a remote machine and for executing commands on a remote machine. It is an alternative to rlogin and rsh and provides secure encrypted communications between two untrusted hosts over an insecure network. X11 connections and arbitrary TCP ports can also be forwarded over the secure channel.

ssh connects and logs into the specified host name (with optional user name). If command is specified, instead of a login shell being executed, command is executed on the remote host. Users must prove their identity to the remote machine using one of several methods, depending on the protocol version used.

Tip: To avoid problems when running as a user that shares a UID, run ssh with the -F option to specify a user-specific ssh_config file. The file should set the IdentityFile, User, and UserKnownHostsFile keywords to the proper user-specific values. You should also specify a user-specific zos_user_ssh_config file using the _ZOS_USER_SSH_CONFIG environment variable.

With the PTF for APAR OA37278, OpenSSH can be set up to use ICSF to implement certain ssh ciphers and MAC algorithms. This extension enables ssh to use hardware support when applicable. See “Setting up OpenSSH to use ICSF ciphers and MAC algorithms” on page 52 for more information.

Options

-1 Forces ssh to try protocol version 1 only. If both -1 and -2 are specified, ssh uses the option that appears last on the command line.

-2 Forces ssh to try protocol version 2 only. If both -1 and -2 are specified, ssh uses the option that appears last on the command line.

-4 Forces ssh to use IPv4 addresses only. If both -4 and -6 are specified, ssh uses the option that appears last on the command line.
-6 Forces ssh to use IPv6 addresses only. If both -4 and -6 are specified, ssh uses the option that appears last on the command line.

-a Disables forwarding of the authentication agent connection.

-A Enables forwarding of the authentication agent connection. This can also be specified on a per-host basis in a ssh_config configuration file.

**Guideline:** Enable agent forwarding with caution. Users with the ability to bypass file permissions on the remote host (for the agent’s UNIX-domain socket) can access the local agent through the forwarded connection. Attackers cannot obtain key material from the agent. However, they can perform operations on the keys that enable them to authenticate using the identities loaded into the agent.

-b bind_address
Use bind_address on the local machine as the source address of the connection. This option is useful only on systems with more than one address.

**Rule:** The bind_address must be the same address family (IPv4 or IPv6) as the remote host name specified on the ssh command line.

-c cipher_spec
Selects the cipher to use for encrypting the session.

For protocol 1 specifications:

**3des**
3des (Triple-DES) is an encrypt-decrypt-encrypt triple with three different keys. It is the default.

**blowfish**
Blowfish is a secure fast block cipher.

**des**
Specifying des is strongly discouraged due to cryptographic weakness. It is supported only in ssh for interoperability with legacy protocol 1 implementations that do not support the 3DES cipher.

For protocol version 2 specifications, ciphers can be specified in order of preference in a comma-separated list. Valid ciphers include:

**3des-cbc**
Triple-DES (3DES) algorithm

**acss@openssh.org**
OpenSSH acss@openssh.org cipher

**aes128-cbc**
Advanced Encryption Standard (AES) CBC mode with 128-bit key

**aes128-ctr**
Advanced Encryption Standard (AES) CTR mode with 128-bit key

**aes192-cbc**
Advanced Encryption Standard (AES) CBC mode with 192-bit key

**aes192-ctr**
Advanced Encryption Standard (AES) CTR mode with 192-bit key

**aes256-cbc**
Advanced Encryption Standard (AES) CBC mode with 256-bit key

**aes256-ctr**
Advanced Encryption Standard (AES) CTR mode with 256-bit key

**arcfour**
Arcfour algorithm
The cipher is typically one long unbroken line; in the following example the cipher is not shown as one unbroken line due to space limitations. The default is:

```
arcfour128,arcfour256,blowfish-cbc,cast128-cbc,rijndael-cbc@lysator.liu.se
```

The ciphers list might need to be modified based on the ciphers source used. For more information, see the CiphersSource keyword in the z/OS-specific OpenSSH client configuration files `zos_ssh_config` or `zos_user_ssh_config`.

**–C**
Requests compression of all data (including stdin, stdout, stderr, and data for forwarded X11 and TCP connections). The compression level can be controlled by the CompressionLevel option for protocol version 1. The default value can be set on a per-host basis in the `ssh_config` configuration file; for more information about the Compression and CompressionLevel options, see “`ssh_config`” on page 133.

**–D** `[bind_address:]port`
Specifies a local dynamic application-level port forwarding. This type of dynamic port forwarding works by allocating a socket to listen to port on the local side, optionally bound to the specified `bind_address`. Whenever a connection is made to this port, it is forwarded over the secure channel and the application protocol is used to determine where to connect from the remote machine. Currently, the SOCKS4 and SOCKS5 protocol are supported and `ssh` will act as a SOCKS server. Only a superuser can forward privileged ports. Dynamic port forwardings can also be specified in the `ssh_config` configuration file.

IPv6 addresses can be specified with an alternative syntax: `[bind_address/]port` or by enclosing the address in square brackets. Only the superuser can forward privileged ports. By default, the local port is bound in accordance with the GatewayPorts setting. However, an explicit `bind_address` can be used to bind the connection to a specific address. The `bind_address` of "localhost" indicates that the listening port is to be bound for local use only, while an empty address or "*" indicates that the port should be available from all interfaces.

"OpenSSH - port forwarding examples" on page 345 has examples of port forwarding.

**–e escape_char**
Sets the escape character for sessions with a pty (the default is " `~` "). The escape character is only recognized at the beginning of a line. The escape character followed by a dot ( "." ) closes the connection, followed by Control-Z suspends the connection, and followed by itself sends the escape character once. Setting the character to "none" disables any escape characters and makes the session fully transparent.
Requests ssh to go to the background before command execution. This is useful if ssh is going to ask for passwords, password phrases, or passphrases, but the user wants it in the background. This implies –n. The recommended way to start X11 programs at a remote site is ssh –f host xterm.

Restriction: This option is not supported if ciphers or MAC algorithms are implemented using ICSF.

–F configfile
Specifies an alternative per-user ssh_config configuration file. If an ssh_config configuration file is given on the command line, the system-wide ssh_config configuration file (/etc/ssh/ssh_config) will be ignored. The default for the per-user ssh_config configuration file is “/.ssh/config. This option has no effect on the z/OS-specific configuration files.

–g Allows remote hosts to connect to local forwarded ports.

–i identity_file
Selects a file from which the identity (private key) for RSA or DSA authentication is read. The default is “/.ssh/identity for protocol version 1. For protocol version 2, the default is “/.ssh/id_rsa and “/.ssh/id_dsa. Identity files can also be specified on a per-host basis in the ssh_config configuration file. It is possible to have multiple –i options (and multiple identities specified in the ssh_config configuration file).

For a given protocol, identity files are tried in the order they are specified. If key ring certificates have been separately specified, then they will always be tried before identity files. The certificates are used in the order they were specified, followed by the identity files in the order they were specified. The key ring certificates could be specified either via a command-line option by specifying one or more IdentityKeyRingLabel options on the -o option, or by specifying the IdentityKeyRingLabel keyword in the zos_user_ssh_config file (the z/OS-specific per-user client configuration file).

However, if an identity is loaded in an agent, regardless of whether it originated from a key ring certificate or from a file, then that identity will be tried first.

To sum it up, the order that identities are tried are as follows:
1. Identities in the agent.
2. The key ring certificates on the command-line option
3. Key ring certificates specified in a zos_user_ssh_config file
4. Identity files on the command-line option, and then
5. Identity files specified in an ssh_config configuration file.

–I smartcard_device
(–I is the uppercase – i). Not supported on z/OS UNIX. Specifies which smart card device to use. The argument is the device that ssh should use to communicate with a smart card used for storing the user’s private RSA key.

-k Not supported on z/OS UNIX. Disables forwarding (delegation) of GSS-API credentials to the server.

GSS-API stands for Generic Security Services Application Programming Interface. It is a generic API for handling client-server authentication. Because it provides security services to callers in a generic way.
supportable with a range of underlying mechanisms and technologies, it allows for source-level portability of applications to different environments. For more details, check IETF standard RFC 2743 at [http://www.ietf.org/rfc/rfc2743.txt](http://www.ietf.org/rfc/rfc2743.txt).

-K  Not supported on z/OS UNIX. Enables GSS-API authentication and forwarding (delegation) of GSS-API credentials to the server

-1 login_name
   Specifies the user to log in as on the remote machine. This option can also be specified on a per-host basis in the ssh_config configuration file.

-L [bind-address:]port:host:port
   Specifies that port on the local (client) host is to be forwarded to the given host and port on the remote side. This works by allocating a socket to listen to port on the local side, optionally bound to the specified bind_address. When a connection is made to this port, it is forwarded over the secure channel and a connection is made to host port hostport from the remote machine. Port forwardings can also be specified in the ssh_config configuration file. Only a superuser can forward privileged ports.

IPv6 addresses can be specified with an alternative syntax:
[bind_address/]port/host/hostport or by enclosing the address in square brackets.

By default, the local port is bound in accordance with the GatewayPorts setting. However, an explicit bind_address can be used to bind the connection to a specific address. The bind_address of "localhost" indicates that the listening port be bound for local use only, while an empty address or "*" indicates that the port should be available from all interfaces.

"OpenSSH - port forwarding examples" on page 345 has examples of port forwarding.

-m mac_spec
   For protocol version 2, a comma-separated list of MAC (message authentication code) algorithms can be specified in order of preference. ssh_config contains a description of "MACs" on page 140.

   The MAC algorithms list might need to be modified based on the MAC algorithm source used. For more information, see the MACsSource keyword in the z/OS-specific OpenSSH client configuration files, zos_ssh_config or zos_user_ssh_config.

-M Places the ssh client into master mode for connection sharing. Multiple -M options puts ssh into master mode with confirmation required before slave connections are accepted. ssh_config contains a description of "ControlMaster" on page 135.

-n Redirects stdin from /dev/null (prevents reading stdin). This option must be used when ssh is run in the background. A common trick is to use this to run X11 programs on a remote machine.

For example:
   ssh -n shadows.cs.hut.fi emacs &

Result: An emacs session is started on shadows.cs.hut.fi and the X11 connection is automatically forwarded over an encrypted channel. The ssh program is put in the background. This does not work if ssh needs to ask for a password, password phrase, or passphrase; see the -f option.
**-N** Specifies that a remote command not be executed. This is useful for just forwarding ports (protocol version 2 only). This option overrides the -t option.

**-o** option
Can be used to give options in the format used in the ssh_config and zos_user_ssh_config configuration files. This is useful for specifying options for which there is no separate command-line flag. For full details of the available options and their values, see "ssh_config" on page 133 and "zos_user_ssh_config" on page 147. The z/OS-specific per-user OpenSSH client configuration options can be specified on -o, but the z/OS specific system-wide options (see "zos_ssh_config" on page 145) cannot.

For example:
```
ssh -oHostbasedAuthentication=no Billy@us.pok.ibm.com
```

**-O** ctl_cmd
Controls the master process of a multiplexed connection. When the -O option is specified, the ctl_cmd argument is interpreted and passed to the master process. Valid commands are "check" (check that the master process is running) and "exit" (request the master to exit).

**-p** port
Port to connect to on the remote host. This can be specified on a per-host basis in the ssh_config configuration file.

**-q** Quiet mode. Suppresses most warning and diagnostic messages.

**-R** [bind_address:]port:host:hostport
Specifies that the given port on the remote (server) host is to be forwarded to host and port on the local side. A socket is allocated to listen to port on the remote side; when a connection is made, it is forwarded over the secure channel and a connection is made to host port hostport from the local machine. Port forwardings can also be specified in the ssh_config configuration file. Privileged ports can be forwarded only when logging in as superuser on the remote machine. IPv6 addresses can be specified by enclosing the address in square brackets or using an alternative syntax: [bind_address/]port/host/hostport.

By default, the listening socket on the server is bound to the loopback interface only. The default can be overridden by specifying a bind_address. An empty bind_address, or the address ",", indicates that the remote socket should listen on all interfaces. Specifying a remote bind_address will only succeed if the server's GatewayPorts option is enabled as described in "GatewayPorts" on page 137.

**-s** Can be used to request invocation of a subsystem on the remote system. Subsystems are a feature of SSH protocol version 2, which facilitates the use of ssh as a secure transport for other applications such as sftp. The subsystem is specified as the remote command.

For example:
```
ssh -s host subsystem_name
```

User-defined subsystems (those that are not built-in) are only supported when both the OpenSSH client and server are running on a z/OS system. See "Limitations" on page 100 for more information.

**-S** ctl_path
Specifies the location of a control socket for connection sharing. For more
-t Forces pty allocation. This option can be used to execute arbitrary screen-based programs on a remote program, which can be very useful, for example, when implementing menu services. Multiple -t options force pty allocation, even if ssh has no local tty. Both single and multiple uses of -t will be overridden by either the -T or -N options.

-T Disables pty allocation. This option overrides the -t option.

-v Verbose mode. Causes ssh to print debugging messages about its progress. This is helpful in debugging connection, authentication, and configuration problems. Multiple -v options increase the verbosity. You can specify up to three -v options.

-V Displays the current OpenSSH and OpenSSL version information and exits.

-w local_tun[remote_tun]
Not supported on z/OS UNIX. Requests tunnel device forwarding with the specified devices between the client (local_tun) and the server (remote_tun).

The devices can be specified by numerical ID or the keyword "any", which uses the next available tunnel device. If remote_tun is not specified, it defaults to "any". See also the descriptions of the ssh_config options "Tunnel" on page 144 and "TunnelDevice" on page 144. If the Tunnel option is unset, it is set to the default tunnel mode, which is "point-to-point".

-x Disables X11 forwarding.

-X Enables X11 forwarding. This can also be specified on a per-host basis in the ssh_config configuration file.

X11 forwarding should be enabled with caution. Users with the ability to bypass file permissions on the remote host (for the user's X authorization database) can access the local X11 display through the forwarded connection. An attacker may then be able to perform activities such as keystroke monitoring.

For this reason, X11 forwarding is subjected to X11 SECURITY extension restrictions by default. See the description of the ssh -Y option and the ssh_config option "ForwardX11Trusted" on page 137 for more information.

-Y Enables trusted X11 forwarding. Trusted X11 forwardings are not subjected to the X11 SECURITY extension controls.

ssh can additionally obtain ssh_config configuration data from a per-user configuration file and a system-wide ssh_config configuration file. For file format and configuration options, see "ssh_config" on page 133. ssh can also obtain z/OS-specific configuration data from a system-wide zos_ssh_config configuration file and per-user zos_user_ssh_config configuration file. For file format and configuration options, see "zos_ssh_config" on page 145 and "zos_user_ssh_config" on page 147.

Host key checking
In host key checking, ssh automatically maintains and checks a database containing identification for all hosts it has ever been used with. Host keys are stored in "/.ssh/known_hosts" in the user's home directory. Additionally, the /etc/ssh/ssh_known_hosts file is automatically checked for known hosts. Any new hosts can be automatically added to the user's file. If a host's identification
changes, ssh warns about this and disables password authentication to prevent server spoofing or man-in-the-middle attacks, which could otherwise be used to circumvent the encryption. The ssh_config keyword StrictHostKeyChecking can be used to control logins to machines whose host key is not known or has changed. The keyword is described in “StrictHostKeyChecking” on page 143.

**Authentication**

The OpenSSH SSH client supports SSH protocol version 1 and protocol version 2. Protocol version 2 is the default. These settings can be altered using the ssh_config Protocol option (described in “Protocol” on page 141), or enforced using the -1 and -2 options. Both protocols support similar authentication methods, but protocol version 2 is preferred because it provides additional mechanisms for confidentiality (the traffic is encrypted using, for example, AES, 3DES, Blowfish, CAST128, or Arccfour) and integrity (for example, hmac-md5, hmac-sha1, umac-64, hmac-ripemd160). Protocol version 1 lacks a strong mechanism for ensuring the integrity of the connection.

The methods available for authentication are:

* Host-based authentication (disabled by default). See “Host-based authentication.”
* Public key authentication. See “Public key authentication.”
* Challenge-response authentication (not supported on z/OS UNIX). See “Challenge-response authentication” on page 98.
* Password authentication. See “Password authentication” on page 98.

Authentication methods are tried in the order listed previously, though protocol version 2 has a configuration option to change the default order: the sshd_config keyword PreferredAuthentications. The keyword is described in “PreferredAuthentications” on page 141.

**Host-based authentication**

In host-based authentication, if the machine the user logs in from is listed in /etc/hosts.equiv or /etc/shosts.equiv on the remote machine, and the user names are the same on both sides, or if the files ~/.rhosts or ~/.shosts exist in the user's home directory on the remote machine and contain a line containing the name of the client machine and the name of the user on that machine, the user is considered for login. Additionally, the server must be able to verify the client's host key for the login to be permitted. (See the description of “~/.ssh/known_hosts” on page 102 and “/etc/ssh/ssh_known_hosts” on page 102.) This authentication method closes security holes due to IP spoofing, DNS spoofing, and routing spoofing.

For more information about host-based authentication, refer to the ssh_config keyword “HostbasedAuthentication” on page 138.

**Guideline:** The /etc/hosts.equiv, ~/.rhosts, and rlogin/rsh protocol in general, are inherently insecure and the administrator should disable them if security is desired.

**Public key authentication**

In public key authentication, the scheme is based on public key cryptography, using cryptosystems where encryption and decryption are done using separate keys, and it is not feasible to derive the decryption key from the encryption key. Each user creates a public/private key pair for authentication purposes. The server knows the public key, and only the user knows the private key. ssh implements
public key authentication protocol automatically, using either the RSA or DSA algorithms. Protocol version 1 is restricted to using only RSA keys, but protocol version 2 can use either.

The “/.ssh/authorized_keys” file lists the public keys that are permitted for logging in. When the user logs in, ssh tells the server which key pair it would like to use for authentication. The client proves that it has access to the private key and the server checks that the corresponding public key is authorized to accept the account.

One method of creating a key pair is by running `ssh-keygen`. This action stores the private key in “/home/identity” (protocol version 1), “/home/id_dsa” (protocol version 2 DSA), or “/home/id_rsa” (protocol version 2 RSA) and stores the public key in “/home/identity.pub” (protocol version 1), “/home/id_dsa.pub” (protocol version 2 DSA), or “/home/id_rsa.pub” (protocol version 2 RSA) in the user’s home directory. The user then copies the public key to the “/home/authorized_keys” file in the home directory on the remote machine. The authorized_keys file corresponds to the conventional “/home/rhosts” file, and has one key per line, though the lines can be very long. After this, the user can log in without giving the password.

Another method of creating a key pair is by using digital certificates associated with a SAF key ring, either real or virtual. See “Steps for setting up user authentication when using key rings to store keys” on page 72 for more information about using SAF key rings to manage your keys.

The most convenient way to use public key authentication might be with an authentication agent. See “ssh-agent” on page 107 for more information.

**Challenge-response authentication**

In challenge-response authentication, the server sends an arbitrary challenge text and prompts for a response. Protocol version 2 allows multiple challenges and responses; protocol version 1 is restricted to just one challenge and response. Examples of challenge-response authentication include BSD Authentication and PAM (on some non-OpenBSD systems).

Challenge-response authentication is not supported on z/OS UNIX.

**Password authentication**

Finally, if other authentication methods fail, ssh prompts the user for a password and password phrase. The password and password phrase are sent to the remote host for checking; however, because all communications are encrypted, the password and password phrase cannot be seen by anyone listening on the network.

**Login session and remote execution**

When the user’s identity has been accepted by the server, the server either executes the given command or logs into the machine and gives the user a normal shell on the remote machine. All communication with the remote command or shell is automatically encrypted.

If a pseudo terminal (pty) has been allocated (normal login session), the user can use the escape characters in “Escape characters” on page 99.

If no pty has been allocated, the session is transparent (escape characters are not recognized) and can be used to reliably transfer binary data. Setting the escape character to “none” will also make the session transparent even if a tty is used.
The session terminates when the command or shell on the remote machine exits and all X11 and TCP/IP connections have been closed. The exit status of the remote program is returned as the exit status of ssh.

Escape characters

When a pty has been requested, ssh supports a number of functions through the use of an escape character.

A single tilde character can be sent as "~~" or by following the tilde by a character other than those described later in this section. The escape character must always follow a newline to be interpreted as a special character. The escape character can be changed in configuration files using the EscapeChar configuration option or on the command line by the -e option.

The supported escape characters (assuming the default "~") are:

~. Disconnect.

~^Z Background ssh.

~& Background ssh at logout when waiting for forwarded connections or X11 sessions to terminate.

Restriction: The ~& escape character is not supported if ciphers or MAC algorithms are implemented using ICSF.

~# List forwarded connections.

~? Display a list of escape characters.

~B Send a BREAK to the remote system.

Restriction: The ~B escape character is useful only for protocol version 2 and if the peer supports it.

~C Open command line. Use this option to do the following tasks:

- Add port forwardings using the -L and -R options (see "-L option" on page 94 and "-R option" on page 95).
- Cancel existing remote forwardings using the -KR option (for example, -KR[bind_address]:port).
- Execute a local command if the ssh_config keyword PermitLocalCommand enables the feature (for example, !command).
- Get basic help using the -h option.

~R Request rekeying of the connection.

Restriction: The ~R escape character is useful only for protocol version 2 and if the peer supports it.

X11 forwarding

If the ForwardX11 keyword is set to "yes" (or see the description of the -X, -x, and -Y options described in "Options" on page 90) and X11 is in use (the DISPLAY environment variable is set), then the connection to the X11 display is automatically forwarded to the remote side. As a result, any X11 program that is started from the shell (or command) goes through the encrypted channel and the connection to the real X server is made from the local machine. The user should not manually set DISPLAY. Forwarding of X11 connections can be configured on the command line or in configuration files. For more information about OpenSSH client configuration files, see "ssh_config" on page 133.
The DISPLAY value set by ssh points to the server machine, but with a display number greater than zero. This is normal and happens because ssh creates a proxy X server on the server machine for forwarding the connections over the encrypted channel. In other words, the ssh server masquerades as an X server.

ssh also automatically sets up Xauthority data on the server machine. For this purpose, it generates a random authorization cookie, stores it in Xauthority on the server, and verifies that any forwarded connections carry this cookie and replace it with the real cookie when the connection is opened. The real authentication cookie is never sent to the server machine (and no cookies are sent without encryption).

If the ForwardAgent variable is set to "yes" (or, see the description of the -A and -a options) and the user is using an authentication agent, the connection to the agent is automatically forwarded to the remote side.

TCP forwarding
Forwarding of arbitrary TCP connections over the secure channel can be specified either on the command line or in a configuration file. One possible application of TCP forwarding is a secure connection to a mail server; another is going through firewalls. For more information, see “OpenSSH - port forwarding examples” on page 345.

Running OpenSSH in other locales
Rule: All files used by OpenSSH (such as key files and configuration files) must be in the IBM-1047 code set, with the exception of the rc files (/etc/ssh/sshrc and ~/.ssh/rc). The rc files are parsed by /bin/sh and should be in the code set of the current locale. Do not use the /etc/ssh/sshrc file if there is a possibility of the users on the system running in different locales.

Limitations
User-defined subsystems are only supported when both the OpenSSH client and server are running on z/OS. This is due to a limitation in the SECSH protocol with regards to EBCDIC platforms; for more information about the IETF SECSH RFCs and internet drafts, see “RFCs and Internet drafts” on page 349. User-defined subsystems are specified by using the sshd_config Subsystem keyword. Only the built-in sftp subsystem is supported for transfers between all platforms.

Restrictions: Some restrictions apply.
• OpenSSH does not run in multibyte locales.
• The SSH client cannot be run from OMVS (which is a 3270 session). ssh has been disabled under OMVS because in some situations, passwords are visible while they are being typed by the user.

Examples
When passing shell commands on the SSH invocation line, the backslash escape character is needed to handle the characteristics of specifying a sequential data set or member of a partitioned data set (PDS).
• Copying from the z/OS UNIX file system to a PDS:
  ssh user@ibm.com "cp ssh.log \""USER.SSH.LOG(1)\"" "
• Copying from the z/OS UNIX file system to a sequential data set:
  ssh user@ibm.com "cp ssh.log \""USER.SSH.LOG2\"" " 
Files

~/.rhosts
This file is used for host-based authentication. On some machines, this file may need to be world-readable if the user's home directory is on an NFS partition, because sshd reads it as a super-user. Additionally, this file must be owned by the user and must not have write permissions for anyone else. The recommended permission for most machines is read/write for the user and not accessible by others.

~/.ssh
This directory is the default location for all user-specific configuration and authentication information. There is no general requirement to keep the entire contents of this directory secret, but the recommended permissions are read/write/execute for the user, and not accessible by others.

~/.ssh/authorized_keys
Lists the public keys (RSA/DSA) that can be used for logging in as this user. For the format of this file, see "Format of the authorized_keys file" on page 125. The content of this file is not highly sensitive, but the recommended permissions are read/write for the user, and not accessible by others.

If this file, the ~/.ssh/ directory, or the user's home directory are writable by other users, then the file could be modified or replaced by unauthorized users. In this case, sshd will not allow it to be used unless the value for the sshd_config keyword StrictModes has been set to "no".

~/.ssh/config
The per-user ssh_config configuration file. The file format and configuration options are described in "ssh_config" on page 133. Because of the potential for abuse, this file must have strict permissions: read/write for the user, and not writable by others.

~/.ssh/environment
Contains additional definitions for environment variables. For more information, see "Environment variables" on page 103.

~/.ssh/identity, ~/.ssh/id_dsa, ~/.ssh/id_rsa
Contains the private key for authentication. These files contain sensitive data and should be readable by the user but not accessible by others (read/write/execute). Note that ssh ignores a private key file if it is accessible by others. It is possible to specify a passphrase when generating the key; the passphrase will be used to encrypt the sensitive part of this file using 3DES.

~/.ssh/identity.pub, ~/.ssh/id_dsa.pub, ~/.ssh/id_rsa.pub
Contains the public key for authentication. These files are not sensitive and can (but need not) be readable by anyone. The contents of the ~/.ssh/identity.pub file must be added to ~/.ssh/authorized_keys on all machines where the user wants to log in using protocol RSA authentication. The contents of the ~/.ssh/id_dsa.pub and ~/.ssh/id_rsa.pub file must be added to ~/.ssh/authorized_keys on all machines where the user wants to log in using protocol version 2 DSA/RSA authentication. These files are never used automatically and are not necessary; they are only provided for the convenience of the user.
~/.ssh/known_hosts
Contains a list of host keys for all hosts that the user has logged into that
are not already in the system-wide list of known host keys,
/etc/ssh/ssh_known_hosts, which is described in "ssh_known_hosts file
format" on page 127. This file should be writable only by the owner and
the owner must be the user. It can be, but need not be, world-readable.

~/.ssh/rc
Commands in this file are executed by ssh when the user logs in, just
before the user's shell (or command) is started. For more information about
the format, see "Files" on page 129.

~/.ssh/zos_user_ssh_config
The z/OS-specific per-user client configuration file. The file format and
configuration options are described in "zos_user_ssh_config" on page 147.
Because of the potential for abuse, this file must have strict permissions:
read/write for the user, and not writable by others.

/etc/hosts.equiv
This file is for host-based authentication. It should only be writable by a
superuser. For more information about the format, see "Files" on page 129.

/etc/shosts.equiv
This file is used in exactly the same way as /etc/hosts.equiv but allows
host-based authentication without permitting login with rlogin or rsh.

/etc/ssh/ssh_config
System-wide ssh_config configuration file. For file format and
configuration information, see "ssh_config" on page 133.

/etc/ssh/ssh_host_key, /etc/ssh/ssh_host_dsa_key, /etc/ssh/ssh_host_rsa_key
These three files contain the private parts of the host keys and are used for
host-based authentication. If protocol version 1 is used, ssh must be setuid
0 because the host key is readable only by a superuser. For protocol
version 2, ssh uses ssh_keysign to access the host keys. This eliminates
the requirement that ssh be setuid 0 when the host-based authentication is
used. By default, ssh is not setuid 0.

/etc/ssh/ssh_known_hosts
System-wide list of known host keys. This file must be prepared by the
system administrator to contain the public host keys of all machines in the
organization, and it must be world-readable. For more information about
the format, see "ssh_known_hosts file format" on page 127.

The canonical system name (as returned by name servers) is used by sshd
to verify the client host when logging in; other names are needed because
ssh does not convert the user-supplied name to a canonical name before
checking the key, because someone with access to the name servers would
then be able to fool host authentication.

/etc/ssh/sshrc
Commands in this file are executed by ssh when the user logs in, just
before the user's shell (or command) is started. For more information about
the format, see "Files" on page 129.

/etc/ssh/zos_ssh_config
z/OS-specific system-wide client configuration file. For file format and
configuration information, see "zos_ssh_config" on page 145.
Environment variables

**ssh** typically sets or uses the following environment variables:

**_ZOS_OPENSSH_DEBUG**
Contains z/OS-specific debug information. This environment variable is only used internally and is not for external specification.

**_ZOS_OPENSSH.MSGCAT**
Identifies the OpenSSH message catalog to be used when sending OpenSSH error messages.

**_ZOS_SMF_FD**
Set to the file descriptor number used for interprocess communication during SMF-related processing. This environment variable is only used internally and is not for external specification.

**_ZOS_USERSSH_CONFIG**
Specifies the path name of the z/OS-specific per-user OpenSSH client configuration file. The system-wide default is `/etc/ssh/zos_ssh_config` and the user's default is `~/.ssh/zos_user_ssh_config`. If this variable is specified, it replaces the user's default file but not the system-wide default file. See “zos_ssh_config” on page 145 and “zos_user_ssh_config” on page 147 for the available keywords. The recommended permissions of the specified file are read/write for the user and not writable by others.

**DISPLAY**
Indicates the location of the X11 server. It is automatically set by **ssh** to point to a value of the form `hostname:n` where `hostname` indicates the host where the shell runs, and `n` is an integer greater than or equal to 1. **ssh** uses this special value to forward X11 connections over the secure channel. The user should normally not set DISPLAY explicitly, as that will render the X11 connection insecure (and require the user to manually copy any required authorization cookies).

**HOME**
Set to the path for the user's home directory.

**LOGNAME**
Synonym for USER.

**MAIL**
Set to the path of the user's mailbox.

**PATH**
Set to the default PATH, as compiled into **ssh**.

**SSH_ASKPASS**
If **ssh** needs a passphrase, it reads the passphrase from the current terminal if it was run from a terminal. If **ssh** does not have a terminal associated with it, but DISPLAY and SSH_ASKPASS are set, it executes the program specified by SSH_ASKPASS and opens an X11 window to read the passphrase. This is particularly useful when calling **ssh** from an .Xsession or related script. It is necessary to redirect the input from /dev/null to make this work.

**SSH_AUTH_SOCK**
Identifies the path of a UNIX-domain socket used to communicate with the agent.

**SSH_CONNECTION**
Identifies the client and server ends of the connection. The variable contains four space-separated values: client ip-address, client port number, server ip-address and server port number.
**ssh**

**SSH ORIGINAL COMMAND**
Contains the original command line if a forced command is executed. It can be used to extract the original arguments.

**SSH_TTY**
Set to the name of the tty (path to the device) associated with the current shell or command. If the current session has no tty, this variable is not set.

**TZ**
Set to indicate the present time zone if it was set when the daemon was started (the daemon passes the value on to new connections).

**USER**
Set to the name of the user logging in.

Additionally, *ssh* reads `~/.ssh/environment` and adds lines of the format `VARNAME=value` to the environment if the file exists and if users are allowed to change their environment. For more information, see [“PermitUserEnvironment” on page 160](#).

**Exit values**
*ssh* exits with the exit status of the remote command or with 255 if an error occurred.

**Related information**
*scp*, *sftp*, *ssh-add*, *ssh-agent*, *ssh_config*, *ssh-keygen*, *ssh-keysign*, *sshd*,
*zos_ssh_config*, *zos_user_ssh_config*

**Authors**
OpenSSH is a derivative of the original and free *ssh* 1.2.12 release by Tatu Ylonen. Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song removed many bugs, re-added newer features and created OpenSSH. Markus Friedl contributed the support for SSH protocol versions 1.5 and 2.0.

---

**ssh-add — Add RSA or DSA identities to the authentication agent**

**Format**
```
ssh-add [-cDdILXx] [-t life] [file ...]
ssh-add -s reader
ssh-add -e reader
```

**Description**
*ssh-add* adds RSA or DSA identities to the authentication agent, *ssh-agent*. When run without arguments and when neither of the key ring environment variables is set, it adds the files `~/.ssh/id_rsa`, `~/.ssh/id_dsa`, and `~/.ssh/identity`. Alternative file names can be given on the command line, or identities can be gathered from the user's key ring (real or virtual). To obtain them from SAF key rings, use either the `_ZOS_SSH_KEY_RING` or `_ZOS_SSH_KEY_RING_LABEL` environment variables. For more information about them, see [“Environment variables” on page 105](#).

**Tip:** Users sharing a UNIX UID should always run *ssh-add* with arguments to specify the identities to be added or removed. If any file requires a passphrase, *ssh-add* asks for the passphrase from the user. The passphrase is read from the user's tty. *ssh-add* retries the last passphrase if multiple identity files are given.
**ssh-add**

**Requirement:** The authentication agent must be running and the SSH_AUTH_SOCK environment variable must contain the name of its socket for ssh-add to work.

**Options**

- `-c` Specifies that added identities are subject to confirmation by the SSH_ASKPASS program before being used for authentication. You can press Enter or type 'yes' to confirm use of the identities. The SSH_ASKPASS program is described in "Environment variables."

- `-d` Removes the identity from the agent. When run without specifying an identity to remove, it removes `~/.ssh/id_rsa`, `~/.ssh/id_dsa`, and `~/.ssh/identity`. If the default identities are not present, ssh-add ends with return code 1.

  When the identity is specified, ssh-add needs to load the public key of the identity first in order to remove it. It looks for the public key in the path name of the identity. If the key is not found, the error message Bad key file is given.

- `-D` Deletes all identities from the agent.

- `-e reader` Not supported in z/OS UNIX. Removes key in the smart card reader.

- `-l` Lists fingerprints of all identities currently represented by the agent.

- `-L` Lists public key parameters of all identities currently represented by the agent.

- `-s reader` Not supported in z/OS UNIX. Adds key in smart card reader.

- `-t life` Sets a maximum lifetime when adding identities to an agent. The lifetime can be specified in seconds or in a time format specified in sshd_config.

- `-x` Locks the agent with a password.

- `-X` Unlocks the agent.

**Files**

- `~/.ssh/identity` Contains the protocol version 1 RSA authentication identity of the user.

- `~/.ssh/id_dsa` Contains the protocol version 2 DSA authentication identity of the user.

- `~/.ssh/id_rsa` Contains the protocol version 2 RSA authentication identity of the user.

Identity files should not be readable by anyone but the user. ssh-add ignores identity files if they are accessible by others.

**Environment variables**

- `_ZOS_OPENSSH_DEBUG` Contains z/OS-specific debug information. This environment variable is only used internally and is not for external specification.
**_ZOS_OPENSSH_MSGCAT_**
Identifies the OpenSSH message catalog to be used when sending OpenSSH error messages.

**_ZOS_SSH_KEY_RING_**
Specifies the key ring owner, followed by that user's SAF key ring name to be used as input, rather than the default or specified file names. The owner and key ring name must be separated by a '/'. All RSA and DSA identities that are in this key ring will be added to the authentication agent. The key ring can be either real or virtual.

For example:
KeyRingOwner/KeyRingName

If both _ZOS_SSH_KEY_RING and _ZOS_SSH_KEY_RING_LABEL are set, then only _ZOS_SSH_KEY_RING_LABEL is used.

**_ZOS_SSH_KEY_RING_LABEL_**
Specifies the key ring owner, followed by that user's SAF key ring and certificate label within the key ring containing the input key, rather than the default or specified file names. The owner and key ring name must be separated by a '/'. One or more blanks separate the key ring name from the certificate label. Labels can contain embedded blanks. When setting the variable on a shell command line, the value must be enclosed in double quotes to preserve the blanks. The key ring can be either real or virtual.

For example:
KeyRingOwner/KeyRingName CertLabel

If both _ZOS_SSH_KEY_RING and _ZOS_SSH_KEY_RING_LABEL are set, then only _ZOS_SSH_KEY_RING_LABEL is used.

**DISPLAY, SSH_ASKPASS**
If ssh-add needs a passphrase, it will read the passphrase from the current terminal if it was run from a terminal. If ssh-add does not have a terminal associated with it, but DISPLAY and SSH_ASKPASS are set, it will execute the program specified by SSH_ASKPASS and open an X11 window to read the passphrase. This is particularly useful when calling ssh-add from an .Xsession or a script. It is necessary to redirect the input from /dev/null to make this work.

For example:
ssh-add < /dev/null

**SSH_AUTH_SOCK**
Identifies the path of a UNIX-domain socket used to communicate with the agent.

**Exit values**

0  Successful completion  
1  An error occurred. The specified command failed.  
2  An error occurred. ssh-add is unable to contact the authentication agent.

**Related information**

ssh, ssh-agent, ssh-keygen, sshd

**Authors**
OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen. Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug
Song removed many bugs, re-added newer features and created OpenSSH. Markus Friedl contributed the support for SSH protocol versions 1.5 and 2.0.

**ssh-agent — Authentication agent**

**Format**

```
ssh-agent [-c | -s] [-d] [-a bind_address] [-t life] [command_string [args ...]]
ssh-agent [-c | -s] -k
```

**Description**

`ssh-agent` is a program to hold private keys used for public key authentication (RSA, DSA). The idea is that `ssh-agent` is started in the beginning of an X-session or a login session and all other windows or programs are started as clients to the `ssh-agent` program. Through the use of environment variables, the agent can be located and automatically used for authentication when logging in to other machines using `ssh`.

The agent initially does not have any private keys. Keys are added using `ssh-add`. When executed without arguments, `ssh-add` adds the files `~/.ssh/id_rsa`, `~/.ssh/id_dsa`, and `~/.ssh/identity`. If the identity has a passphrase, `ssh-add` asks for the passphrase (using a small X11 application if running under X11 or from the terminal if running without X11). It then sends the identity to the agent. Several identities can be stored in the agent; the agent can automatically use any of these identities. `ssh-add -l` displays the identities currently held by the agent. Identities stored in the agent will take precedence over an identity specified through `ssh`'s `–i` option or IdentityFile keyword. Refer to the `–i identity_file` description in "ssh" on page 90 for a summary of the order that identities are tried during public key authentication.

The concept is that the agent run is in the user's local machine. Authentication data need not be stored on any other machine and authentication passphrases never go over the network. However, the connection to the agent is forwarded over SSH remote logins and the user can thus use the privileges given by the identities anywhere in the network in a secure way.

There are two main ways to set up an agent. Either the agent starts a new subcommand into which some environment variables are exported or the agent prints the needed shell commands (either `sh` or `tcsh` syntax can be generated) which can be run with `eval` in the calling shell. Later, `ssh` looks at these variables and uses them to establish an agent. The agent will never send a private key over its request channel. Instead, operations that require a private key will be performed by the agent and the result will be returned to the requester. This way, private keys are not exposed to clients using the agent. For example:

For the `sh` syntax:
1. `ssh-agent $SHELL`
2. `eval 'ssh-agent -s'`

For `tcsh` syntax:
1. `ssh-agent $SHELL`
2. `eval 'ssh-agent -c'`
**ssh-agent**

A UNIX-domain socket is created and the name of this socket is stored in the SSH_AUTH_SOCK environment variable. The socket is owned by the current user and is thereby accessible to processes running under the same user ID and superusers.

The SSH_AGENT_PID environment variable holds the agent's process ID. The agent exits automatically when the command given on the command line terminates.

**Options**

- `-a bind_address` Binds the agent to the UNIX-domain socket `bind_address`. The default is `/tmp/ssh-XXXXXXXXX/agent.<ppid>`.

- `-c` Generates C-shell (`tcsh`) commands on stdout. This is the default if SHELL looks like it is a csh style of shell.

- `-d` Debug mode. When this option is specified, `ssh-agent` will not fork.

- `-k` Kills the current agent given by the SSH_AGENT_PID environment variable. This is only necessary when `ssh-agent` is run with `eval` in the calling shell. If the agent started a new subshell then exiting the subshell will also kill the agent.

- `-s` Generates Bourne shell (`sh`) commands on stdout. This is the default if SHELL does not look like it is a csh style of shell.

- `-t life` Sets a default value for the maximum lifetime of identities added to the agent. The lifetime can be specified in seconds or in a time format specified in `sshd`. A lifetime specified for an identity with `ssh-add` overrides this value. Without this option, the default maximum lifetime is forever.

If a `command_string` is given, this is executed as a subprocess of the agent. When the command ends, so does the agent.

**Files**

- `~/.ssh/identity` Contains the protocol version 1 RSA authentication identity of the user.

- `~/.ssh/id_dsa` Contains the protocol version 2 DSA authentication identity of the user.

- `~/.ssh/id_rsa` Contains the protocol version 2 RSA authentication identity of the user.

- `/tmp/ssh-XXXXXXXXX/agent.<ppid>` UNIX-domain sockets used to contain the connection to the authentication agent. `ppid` is the process ID of the agent's parent process. The last eight characters of “`XXXXXXXX`” will match `ppid` if the `ppid` is eight characters. Otherwise, “`XXXXXXXX`” is a system-generated string. These sockets should be readable only by the owner. The sockets should be automatically removed when the agent exits.
**Environment variables**

_ZOS_OPENSSH_DEBUG_
Contains z/OS-specific debug information. This environment variable is only used internally and is not for external specification.

_ZOS_OPENSSH_MSGCAT_
Identifies the OpenSSH message catalog to be used when sending OpenSSH error messages.

SHELL
Contains the full path name of the current shell.

SSH_AGENT_PID
Holds the process ID of the agent.

SSH_AUTH_SOCK
Holds the name of the socket through which the agent is accessible.

**Exit values**

0  Successful completion
> 0  Failure

**Related information**

ssh, ssh-add, ssh-keygen, ssdh

**Authors**

OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen. Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song removed many bugs, re-added newer features and created OpenSSH. Markus Friedl contributed the support for SSH protocol versions 1.5 and 2.0.

**ssh-askpass — X11-based passphrase dialog for OpenSSH**

**Description**

ssh-askpass is an X11-based passphrase dialog for use with OpenSSH. It is intended to be called from the ssh-add program and not invoked directly.

The user interface has a series of LED-like areas which light up one-by-one with each passphrase character entered, beginning from the left-hand edge of the dialog. When they reach the right hand edge, they go dark one-by-one again. This gives the user feedback that passphrase characters have been entered, but does not provide onlookers with a cue as to the length of the passphrase.

Pressing the OK button accepts the passphrase (even if it is empty), which is written to standard output and the dialog exits with a status of zero (success). Pressing the Cancel button discards the passphrase and the dialog exits with nonzero status.

The following keystrokes are accepted:

[Backspace] or [Delete]
Erases previous character

[Control+U] or [Control+X]
Erases entire passphrase
ssh-askpass

[Enter], [Control+M], or [Control+J]
Accepts passphrase (OK)

[Escape]
Discards passphrase (Cancel)

Files

/usr/lib/X11/app-defaults
The definition and files for x11-ssh-askpass are available at
http://www.jmknoble.net/software/x11-ssh-askpass/

Environment variables

_ZOS_OPENSSH_DEBUG
Contains z/OS-specific debug information. This environment variable is
only used internally and is not for external specification.

_ZOS_OPENSSH_MSGCAT
Identifies the OpenSSH message catalog to be used when sending
OpenSSH error messages.

Exit values

0  Successful completion
> 0  Bad passphrase entered or an error occurred

Related information

ssh, ssh-add, sshd

Authors

Jamie Zawinski, Jim Knoble

ssh-keygen — Authentication key generation, management, and conversion

Format

output_keyfile]
ssh-keygen -i [-f input_keyfile]
ssh-keygen -e [-f input_keyfile]
ssh-keygen -y [-f input_keyfile]
ssh-keygen -c [-P passphrase] [-C comment] [-f keyfile]
ssh-keygen -I [-f input_keyfile]
ssh-keygen -B [-f input_keyfile]
ssh-keygen -F hostname [-f known_hosts_file] [-H ]
ssh-keygen -H [-f known_hosts_file]
ssh-keygen -R hostname [-f known_hosts_file]
ssh-keygen -r hostname [-f input_keyfile] [-g]
ssh-keygen -G output_file [-v] [-b bits] [-M memory] [-S start_point]
ssh-keygen -T output_file [-f input_file] [-v] [-a num_trials] [-W generator]
ssh-keygen

Description

**ssh-keygen** generates, manages, and converts authentication keys for **ssh**. It can create RSA keys for use by SSH protocol version 1 and RSA or DSA keys for use by SSH protocol version 2. The type of key to be generated is specified with the **–t** option. If invoked without any arguments, **ssh-keygen** generates an RSA key for use in SSH protocol 2 connections.

**ssh-keygen** supports the extraction and conversion of keys that are stored in digital certificates associated with SAF key rings.

**ssh-keygen** is also used to generate groups for use in Diffie-Hellman Group Exchange (DH-GEX). It is a key agreement method that allows two parties to derive a shared secret key securely over an open (unprotected) network. For more details, check the IETF Internet draft “Diffie–Hellman Group Exchange for the SSH Transport Layer Protocol” at [http://www.ietf.org/rfc/rfc4253.txt](http://www.ietf.org/rfc/rfc4253.txt). For additional information, see “Moduli generation” on page 114.

If not using SAF key rings, each user who wants to use SSH with RSA or DSA authentication runs **ssh-keygen** once to create the authentication key in “~/.ssh/identity,” “~/.ssh/id_dsa,” or “~/.ssh/id_rsa.” The system administrator might also use **ssh-keygen** to generate host keys.

This program generates the key and asks for a file in which to store the private key. The public key is stored in a file with the same name but with “.pub” appended. The program also asks for a passphrase. A passphrase is similar to a password, except it can be a phrase with a series of words, punctuation, numbers, white space, or any string of characters you want. Unless it is empty, the passphrase must be greater than 4 characters long. However, good passphrases are 10 to 30 characters long, are not simple sentences or otherwise guessable (English prose has only 1 or 2 bits of entropy per character and provides very bad passphrases), and contain a mix of uppercase and lowercase letters, numbers, and non-alphanumeric characters. The passphrase length must also be less than 1024 characters, or it will be truncated. The passphrase can be changed later using the **–p** option.

You cannot recover a lost passphrase. If the passphrase is lost or forgotten, a new key must be generated and copied to the corresponding public key to other machines.

For RSA1 keys, there is also a comment field in the key file that is only for convenience to the user to help identify the key. The comment can tell what the key is for or whatever is useful. The comment is initialized to “user@host” when the key is created, but can be changed using the **–c** option.

When a change is made to the key (such as a comment or passphrase), the change is applied to the key file only. For the loaded keys in the SSH agent, one has to unload and reload the changed keys.

When attempting to change a key, **ssh-keygen** first tries to load the key without a passphrase if one is not specified. If that fails, it will prompt for the passphrase.

**Tip:** To avoid problems when running as a user that shares a UID, the **-f** option can be used to specify the location of the file to process.
**ssh-keygen**

**Options**

- **-a num_trials**
  Specifies the number of primality tests or trials to perform when screening DH-GEX candidates using the -T command. The minimum number of trials is 4.

- **-b bits**
  Specifies the number of bits in the key to create. For RSA keys, the minimum size is 768 bits, the maximum size is 32768 bits, and the default is 2048 bits. Generally, 2048 bits is considered sufficient. DSA keys must be exactly 1024 bits as specified by FIPS 186-2.

- **-B**
  Shows the bubble babble digest of specified private or public key file. Bubble Babble is a text format for fingerprint. For example: 1024 xekib-ridyd-mybuh-fpun-bybir-nagak-netoc-nogib-zacev-sotim-luxex user@host.pok.ibm.com.

- **-c**
  Requests changing the comment in the private and public key files. This operation is only supported for RSA1 keys. The program will prompt for the file containing the private keys, for the passphrase if the key has one, and for the new comment, when -P, -C, and -f are not specified. It updates both public and private keys. This option is mutually exclusive with the -p option. Comments are truncated after 1023 characters. In addition, the comment length is limited by the terminal interface. For long comments up to 1023 characters, use the -C option.

- **-C comment**
  Provides the new comment. The comment is truncated after 1023 characters.

- **-d**
  Specifies that the DSA type key be created. Same as the -t dsa option. It is recommended that -t dsa be used instead of -d.

- **-e**
  Reads a private or public OpenSSH key file and prints a public key in RFC 4716 SSH Public Key File Format to stdout. This option allows exporting public keys for use by several commercial SSH implementations.

  If using a SAF key ring on the local system, but not on a remote system, this option can be used with the _ZOS_SSH_KEY_RING_LABEL environment variable to export your public key from the key ring. The public key can then be copied to the remote system and imported with ssh-keygen -i.

  **Restriction:** This option applies to protocol version 2 only.

- **-f filename**
  If -F, -H, or -R is specified, filename specifies the file name of the known_hosts file. For other options, filename specifies the file name of the key file. The filename is limited to 1023 characters including the 4 characters for ".pub" for the public keys.

  For some of the options allowing [-f input_keyfile], the _ZOS_SSH_KEY_RING_LABEL environment variable can be used to specify a key ring and certificate label to be used, overriding the -f option. For more information about how the environment variable is used, see "/_ZOS_SSH_KEY_RING_LABEL" on page 116.

- **-F hostname**
  Searches for the specified hostname in a known_hosts file, listing any occurrences found. Use this option to find hashed host names or addresses. It can also be used in conjunction with the -H option to print found keys in a hashed format If -f is not specified, ~/.ssh/known_hosts is used.
**ssh-keygen**

- **g** Uses generic DNS resource record format when printing fingerprint resource records using the `-r` command.

- **G output_file**
  Generates candidate primes for DH-GEX.
  
  **Rule:** These primes must be screened for safety (using the `-T` option) before use.

- **H** Hashes a `known_hosts` file. This option replaces all host names and addresses with hashed representations within the specified file; the original contents are moved to a file with a `.old` suffix. These hashes can be used normally by ssh and sshd, but they do not reveal identifying information if the file's contents are disclosed. This option will not modify existing hashed host names and is therefore safe to use on files that mix hashed and non-hashed names. If `-f` is not specified, `~/.ssh/known_hosts` is used.

- **i** Reads an unencrypted private (or public) key file in SSH protocol version 2 format and prints an OpenSSH compatible private (or public) key to stdout. ssh-keygen also reads the RFC 4716 SECSH Public Key File Format. This option allows importing keys from several commercial SSH implementations.

- **l** Shows the fingerprint of specified public key file. Private protocol version 1 RSA1 keys are also supported. For RSA and DSA keys, ssh-keygen tries to find the matching public key file and prints its fingerprint. For example:
  ```
 user@host.pok.ibm.com
  ```

- **M memory**
  Specifies the amount of memory (in megabytes) to use when generating candidate moduli for DH-GEX. The number of specified megabytes must be an integer value greater than 7 and less than 128.

- **N new_passphrase**
  Provides the new passphrase. When `-t type` or `-d` options are used, the `-P` value will be used for passphrase regardless if `-N` is specified. If `-P` is not specified with `-t type` or `-d`, the `-N` value will be used for the passphrase.

  **Rule:** Do not specify passphrases on the command line because this method allows the passphrase to be visible (for example, when the ps utility is used).

- **p** Requests changing the passphrase of a private key file instead of creating a new private key. The program will prompt for the file containing the private key, for the old passphrase (if not empty), and twice for the new passphrase. This option is mutually exclusive with the `-c` option.

- **P passphrase**
  Provides the old passphrase. When the `-t type` or `-d` options are used, the `-P` value is used for the passphrase regardless if `-N` is specified. When the `-t type` or `-d` options are used, it is recommended that `-N new_passphrase` be used instead of `-P passphrase`.

  **Rule:** Do not specify passphrases on the command line because this method allows the passphrase to be visible (for example, when the ps utility is used).

- **q** Suppresses messages. Useful when called from a script.

- **r hostname**
  Prints the SSHFP fingerprint resource record named `hostname` for the
specified public key file. If -f is not specified, the default files /etc/ssh/ssh_host_rsa_key and /etc/ssh/ssh_host_dsa_key are used in sequence.

-R hostname
Removes all keys belonging to hostname from a known_hosts file. Use this option to delete hashed hosts (see the -H option). If -f is not specified, ~/.ssh/known_hosts is used.

-S start
Specifies the start point in hexadecimal format when generating candidate moduli for DH-GEX. The specified start point must be a valid hexadecimal value.

-t type
Specifies the type of the key to create. The possible values are "rsa1" for protocol version 1 and "rsa" or "dsa" for protocol version 2. The program will prompt for the file name to contain the private keys and passphrase, if -P or -N, and -f is not specified.

-T output_file
Tests Diffie-Hellman Group Exchange candidate primes (generated using the -G option) for safety.

-U reader
Not supported in z/OS UNIX. Uploads an existing RSA private key into the smart card in reader.

-v
Verbose mode. Causes ssh-keygen to print debugging messages about its progress. The messages are helpful for debugging moduli generation. Multiple -v options increase the verbosity. You can specify up to three -v options.

-W generator
Specifies the desired generator when testing candidate module for DH-GEX. Valid generator values are 2, 3, or 5.

-x
Same as -e. It is recommended that -e be used instead of -x.

-X
Same as -i. It is recommended that -i be used instead of -X.

-y
Reads a private OpenSSH format file and prints an OpenSSH public key to stdout.

Moduli generation
You can use ssh-keygen to generate groups for the Diffie-Hellman Group Exchange (DH-GEX) protocol. DH-GEX is a key agreement method that allows two parties to derive a shared secret key securely over an open (unprotected) network.

Generating these groups is a two-step process. First, candidate primes are generated using a fast, but memory-intensive process. These candidate primes are then tested for suitability, which is a CPU-intensive process.

Use the -G option to generate the primes. You can specify the length of the primes using the -b option.

For example:
ssh-keygen -G moduli-2048.candidates -b 2048
By default, the search for primes begins at a random point in the desired length range. You can override this using the -S option, which specifies a different start point (in hex).

After a set of candidates has been generated, the candidates must be tested for suitability using the -T option. In this mode, ssh-keygen reads the candidates from standard input (or a file specified using the -f option).

For example:

```
ssh-keygen -T moduli-2048 -f moduli-2048.candidates
```

By default, each candidate is subject to 100 primality tests. You can override the default by using the -a option. The DH generator value is automatically chosen for the prime under consideration. If you want a specific generator, you can request it using the -W option. Valid generator values are 2, 3 and 5.

You can install screened DH groups in /etc/ssh/moduli.

**Requirement:** The /etc/ssh/moduli file must contain moduli of a range of bit lengths, and both ends of a connection must share common moduli.

### Files

**/etc/ssh/moduli**

Contains Diffie-Hellman groups used for DH-GEX. The file format is described in "moduli" on page 167.

**~/.ssh/identity**

Contains the protocol version 1 RSA authentication identity of the user. This file should not be readable by anyone but the user. It is possible to specify a passphrase when generating the key; that passphrase will be used to encrypt the private part of this file using 3DES. This file is not automatically accessed by ssh-keygen, but it is offered as the default file for the private key. ssh reads this file when a login attempt is made.

**~/.ssh/identity.pub**

Contains the protocol version 1 RSA public key for authentication. The contents of this file should be added to the "/.ssh/authorized_keys" file on all machines where the user wants to log in using RSA authentication. You do not need to keep the contents of this file secret.

**~/.ssh/id_dsa**

Contains the protocol version 2 DSA authentication identity of the user. This file should not be readable by anyone but the user. It is possible to specify a passphrase when generating the key; that passphrase will be used to encrypt the private part of this file using 3DES. This file is not automatically accessed by ssh-keygen, but it is offered as the default file for the private key. ssh reads this file when a login attempt is made.

**~/.ssh/id_dsa.pub**

Contains the protocol version 2 DSA public key for authentication. The contents of this file should be added to the "/.ssh/authorized_keys" file on all machines where the user wants to log in using DSA authentication. You do not need to keep the contents of this file secret.

**~/.ssh/id_rsa**

Contains the protocol version 2 RSA authentication identity of the user. This file should not be readable by anyone but the user. It is possible to
**ssh-keygen**

specify a passphrase when generating the key; that passphrase will be used to encrypt the private part of this file using 3DES. This file is not automatically accessed by **ssh-keygen**, but it is offered as the default file for the private key. **ssh** reads this file when a login attempt is made.

`~/.ssh/id_rsa.pub`
Contains the protocol version 2 RSA public key for authentication. The contents of this file should be added to `~/.ssh/authorized_keys` on all machines where the user wants to log in using RSA authentication. You do not need to keep the contents of this file secret.

**Environment variables**

_ZOS_OPENSSH_DEBUG
Contains z/OS-specific debug information. This environment variable is only used internally and is not for external specification.

_ZOS_OPENSSH_MSGCAT
Identifies the OpenSSH message catalog to be used when sending OpenSSH error messages.

_ZOS_SSH_KEY_RING_LABEL
Specifies the key ring owner, followed by that user's SAF key ring and certificate label within the key ring containing the input key, rather than the file specified as `-f input_keyfile`, on some **ssh-keygen** options. The key ring owner and key ring name must be separated by a `/`. One or more blanks separate the key ring name from the certificate label. Labels can contain embedded blanks. When setting the variable on a shell command line, the value must be enclosed in double quotes to preserve the blanks.

For example:

```
KeyRingOwner/KeyRingName CertLabel
```

The key ring can be either real or virtual.

This variable is used on the following options: `-e`, `-l`, `-r`, `-y`, and `-B`. Other options that use the `-f input_keyfile` will ignore this variable.

**Exit values**

0  Successful completion
> 0  Failure

**Related information**

ssh, ssh-add, ssh-agent, sshd

**Authors**

OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen. Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song removed many bugs, re-added newer features and created OpenSSH. Markus Friedl contributed the support for SSH protocol versions 1.5 and 2.0.

**ssh-keyscan — Gather ssh public keys**

**Format**

```
ssh-keyscan [-46Hv] [-f file] [-p port] [-T timeout] [-t type] [host | addrlist namelist] [...]```
ssh-keyscan

Description

ssh-keyscan is a command for gathering the public host keys for a number of hosts. It aids in building and verifying ssh_known_hosts files. ssh-keyscan provides a minimal interface suitable for use by shell and Perl scripts.

ssh-keyscan uses non-blocking socket I/O to contact as many hosts as possible in parallel, so it is very efficient. For successful host key collection, you do not need login access to the machines that are being scanned, nor does the scanning process involve any encryption.

If a machine being scanned is down or is not running sshd, the public key information cannot be collected for that machine. The return value is not altered and a warning message might be displayed.

For example:

```
ssh-keyscan hostname1 hostname2
hostname1: exception!
(hostname2's rsa1 key displayed here)
```

Options

- `-4` Forces ssh-keyscan to use IPv4 addresses only. If both `-4` and `-6` are specified, ssh-keyscan uses the option that appears last on the command line.
- `-6` Forces ssh-keyscan to use IPv6 addresses only. If both `-4` and `-6` are specified, ssh-keyscan uses the option that appears last on the command line.
- `-f file` Reads hosts or addrlist namelist pairs from this file, one per line. If `-` is supplied instead of a file name, ssh-keyscan reads hosts or addrlist namelist pairs from the standard input.
- `-H` Hashes all host names and addresses in the output. Hashed names can be used normally by ssh and sshd, but they do not reveal identifying information if the host's contents are disclosed.
- `-p port` Port to connect to on the remote host.
- `-t type` Specifies the type of the key to fetch from the scanned hosts. The possible values are "rsa1" for protocol version 1 and "rsa" or "dsa" for protocol version 2. If the `-t` option is not specified, ssh-keyscan searches only for SSH protocol version 1 keys ("rsa1") by default. If the target machine does not support SSH protocol version 1, then nothing is returned or displayed for that machine.
- `-T timeout` Sets the timeout for connection attempts. If timeout seconds have elapsed since a connection was initiated to a host or since the last time anything was read from that host, then the connection is closed and the host in question considered unavailable. The default is 5 seconds.
- `-v` Verbose mode. Causes ssh-keyscan to print debugging messages about its progress. Multiple `-v` options increase the verbosity. You can specify up to three `-v` options.
ssh-keyscan

File formats

Input format

Each line of the input file shall consist of either `hosts` or `addrlist namelist` pairs. `Hosts` is either a single or comma-delimited list of hosts. `Addrlist` is a single or comma-separated list of IP addresses and `namelist` is either a single or comma-delimited list of hosts. `Addrlist namelist` pairs are separated by white space.

Example: Examples of input file lines:
- 1.2.3.4
- name.my.domain
- 1.2.3.4,1.2.4.4
- 1.2.3.4,1.2.4.4 name.my.domain,name,n.my.domain,n
- name.my.domain,1.2.3.4,name,n,1.2.4.4,n.my.domain

Output format for rsa1 keys

`host-or-namelist bits exponent modulus`

Output format for rsa and dsa keys

`host-or-namelist keytype base64-encoded-key` where keytype is either `ssh-rsa` for an RSA key or `ssh-dss` for a DSA key

Files

`/etc/ssh/ssh_known_hosts`

System-wide list of known host keys. This file should be prepared by the system administrator to contain the public host keys of all machines in the organization. See "ssh_known_hosts file format" on page 127 for further details of the format of this file. This file must be writeable only by the owner and only be world-readable.

Environment variables

`_ZOS_OPENSSH_DEBUG`

Contains z/OS-specific debug information. This environment variable is only used internally and is not for external specification.

`_ZOS_OPENSSH_MSGCAT`

Identifies the OpenSSH message catalog to be used when sending OpenSSH error messages.

Exit values

- 0 Successful completion
- > 0 An error occurred

Usage note

`ssh-keyscan` generates `Connection closed by remote host` messages on the consoles of all the machines it scans if the server is older than version 2.9. The connection is closed because it opens a connection to the `ssh` port, reads the public key, and drops the connection as soon as it gets the key.

Related information

ssh, ssd
ssh-keysign — ssh helper program for host-based authentication

Format

ssh-keysign

Description

ssh-keysign is used by ssh to access the local host keys and generate the digital signature that is required during host-based authentication with SSH protocol version 2. ssh-keysign is not intended to be invoked by the user, but from ssh. See "ssh" on page 90 and "sshd" on page 121 for more information about host-based authentication.

ssh-keysign is disabled by default. It can only be enabled in the global client configuration file /etc/ssh/ssh_config by setting EnableSSHKeysign to "yes".

Files

/etc/ssh/ssh_config
 Controls whether ssh-keysign is enabled. EnableSSHKeysign must be set to "yes" in this file.

/etc/ssh/ssh_host_dsa_key, /etc/ssh/ssh_host_rsa_key
 These files contain the private parts of the host keys used to generate the digital signature. They should be owned by a superuser, readable only by a superuser, and not accessible by others.

Restriction: Because they are readable only by UID 0, ssh-keysign must be setuid 0 if host-based authentication is used.

Environment variables

_ZOS_OPENSSH_DEBUG
 Contains z/OS-specific debug information. This environment variable is only used internally and is not for external specification.

_ZOS_OPENSSH_MSGCAT
 Identifies the OpenSSH message catalog to be used when sending OpenSSH error messages.

Exit values

0 Successful completion
>0 An error occurred

Related information

ssh, ssh-keygen, ssh_config, sshd

Authors

Markus Friedl
ssh-rand-helper

ssh-rand-helper — Gather random numbers for OpenSSH

Format

ssh-rand-helper [-hvX] [-b bytes]

Description

ssh-rand-helper is a small helper program used by ssh, ssh-add, ssh-agent,
ssh-keygen, ssh-keyscan, ssh-keysign, and ssdh to gather random numbers of
cryptographic quality.

Typically, ssh-rand-helper generates a strong random seed and provides it to the
calling program via standard output. If standard output is a tty, ssh-rand-helper
instead prints the seed in hexadecimal format unless told otherwise.

By default, ssh-rand-helper gathers random numbers from the commands listed in
/etc/ssh/ssh_prng_cmds. The output of each of the commands listed is hashed and
used to generate a random seed for the calling program. The
_ZOS_SSH_PRNG_CMDS_TIMEOUT environment variable can be used to control
the timeout value when running a command. ssh-rand-helper also stores seed files
in ‘/’.ssh/prng_seed between executions.

Options

This program is not intended to be run by the end user, so the few command-line
options are for debugging purposes only.

-b bytes Specifies the number of random bytes to include in the output.
-h Displays a summary of options.
-v Turns on debugging messages. Multiple -v options increase the
debugging level. You can specify up to three -v options.
-x Specifies that seeds are to be output in hexadecimal format instead
of binary format.
-X Forces output of a binary seed, even if standard output is a tty.

Files

~/.ssh/prng_seed
Seed file used by ssh-rand-helper.

/etc/ssh/ssh_prng_cmds
Contains the system commands used to generate random data. This file
can be modified by a system administrator to control the trade-off between
the level of randomness and performance.

Environment variables

_ZOS_OPENSSH_DEBUG
Contains z/OS-specific debug information. This environment variable is
only used internally and is not for external specification.

_ZOS_OPENSSH_MSGCAT
Identifies the OpenSSH message catalog to be used when sending
OpenSSH error messages.
_ZOS_SSH_PRNG_CMDS_TIMEOUT

The timeout value used by ssh-rand-helper when running a command from the /etc/ssh/ssh_prng_cmds file. The timeout value is in milliseconds and has a minimum value of 1 and a maximum value of 2147483646. The default value is 1000. To determine if the software algorithm ssh-rand-helper is being used instead of hardware support to generate a random seed for an OpenSSH command, see “Verifying if hardware support is being used” on page 50.

Exit values

0 Successful completion
> 0 An error occurred.

Related information

ssh, ssh-add, ssh-keygen, sshd

Author

Damien Miller

sshd — OpenSSH daemon

Format

Description

sshd (OpenSSH daemon) is the daemon program for ssh. Together, these programs are an alternative to rlogin and rsh and provide encrypted communications between two untrusted hosts over an insecure network.

sshd listens for connections from clients. It is typically started when z/OS UNIX is initialized. (See Chapter 5, “For system administrators,” on page 21 for more information about starting sshd.) It forks a new daemon for each incoming connection. The forked daemons handle key exchange, encryption, authentication, command execution, and data exchange. This implementation of sshd supports both SSH protocol versions 1 and 2 simultaneously. The default sshd configuration only runs protocol version 2.

OpenSSH can be configured to collect SMF login failure records for sshd as well as server transfer completion records that are associated with “internal-sftp”. See “Steps for setting up the system to collect OpenSSH SMF records” on page 51 for more information. See Chapter 12, “SMF Type 119 records for OpenSSH,” on page 173 for more information about the SMF login failure records (subtype 98) and server transfer completion records (subtype 96).

With the PTF for APAR OA37278, OpenSSH can be set up to use ICSF to implement certain sshd ciphers and MAC algorithms. This extension enables sshd to use hardware support when applicable. See “Setting up OpenSSH to use ICSF ciphers and MAC algorithms” on page 52 for more information.
Options

sshd can be configured using command-line options or a sshd_config configuration file (the default is /etc/ssh/sshd_config); command-line options override values specified in the configuration file. sshd can also obtain z/OS-specific configuration data from a system-wide /etc/ssh/sshd_config configuration file.

sshd rereads its configuration files, including z/OS-specific files, when it receives a hang up signal, SIGHUP, by executing itself with the name and options it was started with; for example, /usr/sbin/sshd.

For more information about the configuration files, see “sshd_config” on page 150 and “zos_sshd_config” on page 164.

–4 Forces sshd to use IPv4 addresses only. If both –4 and –6 are specified, sshd uses the option that appears last on the command line.

–6 Forces sshd to use IPv6 addresses only. If both –4 and –6 are specified, sshd uses the option that appears last on the command line.

–b bits Specifies the number of bits in the ephemeral protocol version 1 server key (default 768).

–d Debug mode. The server sends verbose debug output to the system log (if sshd is invoked with –i) or stderr, and does not put itself in the background. The server also will not fork and will only process one connection. This option is only intended for debugging for the server. Multiple –d options increase the debugging level. You can specify up to three -v options.

–D sshd does not fork and does not become a daemon. This allows for easy monitoring of sshd.

–e sshd sends the output to standard error instead of the system log. This option is only useful when sshd is not running as a daemon (for example, when sshd is started with the –D option).

–f config_file Specifies the name of the sshd_config configuration file. The default is /etc/ssh/sshd_config. sshd will not start if there is no sshd_config configuration file. This option has no effect on the z/OS-specific configuration file.

–g login_grace_time Gives the grace time for clients to authenticate themselves (default 120 seconds). If the client fails to authenticate the user within this many seconds, the server disconnects and exits. A value of zero indicates no limit.

–h host_key_file Specifies a file from which a host key is read.

If sshd is not run as UID(0), a host key must often be provided by another method because the default host key files are normally not readable by anyone but a superuser. Host keys can be provided by either using this option or by specifying a host key with either the HostKey or HostKeyRingLabel configuration options. For full details of the options and their values, see “sshd_config” on page 150 and “zos_sshd_config” on page 164.
The default host key file is `/etc/ssh/ssh_host_key` for protocol version 1. For protocol version 2, the default host key files are `/etc/ssh/ssh_host_rsa_key` and `/etc/ssh/ssh_host_dsa_key`. It is possible to have multiple host keys for the different protocol versions and host key algorithms.

`-i` Specifies that `sshd` is being run from `inetd`. `sshd` is normally not run from `inetd` because it needs to generate the server key before it can respond to the client and this might decrease performance. Clients would have to wait too long if the key was regenerated every time. However, with small key sizes (such as 512), using `sshd` from `inetd` might be feasible.

`-k key_gen_time` Specifies how often the ephemeral protocol version 1 server key is regenerated (default 3600 seconds or one hour). The motivation for regenerating the key fairly often is that the key is not stored anywhere, and after about an hour, it becomes impossible to recover the key for decrypting intercepted communications even if the machine is cracked into or physically seized. A value of zero indicates that the key will never be regenerated. The key will only be regenerated if it has been used.

`-o option` Can be used to give options in the format used in the `sshd_config` and `zos_sshd_config` configuration files. This is useful for specifying options for which there is no separate command-line flag. For full details of the options and their values, see "sshd_config" on page 150 and "zos_sshd_config" on page 164.

`-p port` Specifies the port on which the server listens for connections (default 22). Multiple port options are permitted. Ports specified in the `sshd_config` configuration file with the Port option are ignored when a command-line port is specified. Ports specified using the ListenAddress option override command-line ports. More information about those options can be found in "Port" on page 161 and "ListenAddress" on page 157.

`-q` Quiet mode. Nothing is sent to the system log. Typically, the beginning, authentication, and termination of each connection is logged.

`-t` Test mode. Only checks the validity of the `sshd_config` configuration file and sanity of the keys. This option is useful for updating `sshd` reliably because configuration options might change.

`-u len` This option is used to specify the size of the field in the utmpx structure that holds the remote host name. If the resolved host name is longer than `len`, the dotted decimal value will be used instead. This allows hosts with very long host names that overflow this field to still be uniquely identified. Specifying `-u 0` indicates that only dotted decimal addresses should be put into the utmpx file. `-u 0` can also be used to prevent `sshd` from making DNS requests unless the authentication mechanism or configuration requires it. Authentication mechanisms that might require DNS include Rhostsauthentication, RhostsRSAAuthentication, HostbasedAuthentication, and using a `from="pattern-list"` option in a key file. Configuration options that require DNS include using a `user@host` pattern in AllowUsers or DenyUsers.

Authentication

The OpenSSH SSH daemon supports SSH protocols versions 1 and 2. Protocol version 2 is supported by default, though this can be changed by using the
Protocol keyword in `sshd_config`. (The keyword is described in “Protocol” on page 161.) Protocol version 2 supports both RSA and DSA keys; protocol version 1 only supports RSA keys. For both protocols, each host has a host-specific key used to identify the host.

Forward security for protocol version 1 is provided through an additional server key that is generated when the server starts. This key is typically regenerated every hour if it has been used, and is never stored on disk. Whenever a client connects, the daemon responds with its public host and server keys. The client compares the RSA host key against its own database to verify that it has not changed. The client then generates a 256-bit random number. It encrypts this random number using both the host key and the server key, and sends the encrypted number to the server. Both sides then use this random number as a session key which is used to encrypt all further communications in the session. The rest of the session is encrypted using a conventional cipher, currently Blowfish or 3DES, with 3DES being used by default. The client selects the encryption algorithm to use from those offered by the server.

For protocol version 2, forward security is provided through a Diffie-Hellman key agreement. This key agreement results in a shared session key. The rest of the session is encrypted using a symmetric cipher. The client selects the encryption algorithm to use from those offered by the server. For a list of ciphers, see “Ciphers” on page 152. Additionally, session integrity is provided through a cryptographic message authentication code. For a list of MACs keywords, see “MACs” on page 158.

Finally, the server and the client enter an authentication dialog. The client tries to authenticate itself using host-based authentication (which is disabled by default), public key authentication, challenge-response authentication (which is not supported on z/OS UNIX), or password authentication.

If the client successfully authenticates itself, a dialog for preparing the session is entered. At this time the client can request tasks such as allocating a pty, forwarding X11 connections, forwarding TCP connections, or forwarding the authentication agent connection over the secure channel.

After this, the client either requests a shell or execution of a command. The sides then enter session mode. In this mode, either side can send data at any time, and such data is forwarded to and from the shell or command on the server side, and the user terminal on the client side.

When the user program terminates and all forwarded X11 and other connections have been closed, the server sends command exit status to the client, and both sides exit.

Login process

When a user successfully logs in and privilege separation is disabled, `sshd` goes through the following series of steps. If privilege is enabled, then Step 4 is done first, and then Steps 1, 2, 3, 5, 6, 7, 8, and 9 in that order. As a result, the `/etc/motd`, `/etc/nologin` and `~/.hushlogin` path names are relative to the user’s new root directory.

1. If the login is on a tty and no command has been specified, prints last login time and `/etc/motd` (unless prevented in the configuration file or by `~/.hushlogin`; see “Files” on page 129 for details).
2. If the login is on a tty, records login time to the utmpx database.
3. If the user is not a superuser, checks /etc/nologin; if it exists, prints contents and quits.

4. Changes to run with normal user privileges. The changes include processing the `sshd_config ChrootDirectory` keyword. As a result, path name processing after this point is relative to the user’s new root directory. The keyword is described in “ChrootDirectory” on page 152.

5. Sets up basic environment.

6. Reads the “~/.ssh/environment” file if it exists and if users are allowed to change their environment. See the keyword “PermitUserEnvironment” on page 160.

7. Changes to the user’s home directory.

8. If the “~/.ssh/rc” file exists, runs it; or, if /etc/ssh/sshr does not exist, runs it; otherwise runs the xauth program. The rc files are given the X11 authentication protocol and cookie in standard input. This method of reading only the first startup file found differs from that of the z/OS shells.

9. Runs the user’s shell or command.

Format of the authorized_keys file

The AuthorizedKeysFile keyword specifies the file containing public keys for public key authentication. If none is specified, the default is “~/.ssh/authorized_keys.”

Each line of the file contains one key specification (empty lines and lines starting with # are ignored as comments).

- Protocol version 1 public keys consist of the following space-separated fields: options, bits, exponent, modulus, comment. The bits, exponent, modulus, and comment fields give the RSA key for protocol version 1.

- Protocol version 2 public keys that are not in key rings consist of options, keytype, base64-encoded key, comment. The options field is optional; its presence is determined by whether the line starts with a number (the options field never starts with a number).

 Protocol version 2 public keys that are in a key ring only consist of options, one of which must be the `zos-key-ring-label` option.

 For protocol version 2, the keytype is “ssh-dss” or “ssh-rsa”.

Lines in this file are typically several hundred bytes long (because of the size of the public key encoding) up to a limit of 8 kilobytes, which permits DSA keys up to 8 kilobits and RSA keys up to 16 kilobits. To avoid typing them, copy the identity.pub, id_dsa.pub, or id_rsa.pub file and edit it.

`sshd` enforces a minimum RSA key modulus size for protocol version 1 and protocol version 2 keys of 768 bits.

The options field (if present) consists of comma-separated option specifications. No spaces are permitted, except within double quotes. The following option specifications are supported (note that option keywords are not case sensitive):

- `command=command`
 Specifies that the command is executed whenever this key is used for authentication. The command supplied by the user (if any) is ignored. The command is on a pseudo terminal (pty) if the client requests a pty; otherwise it is run without a tty. If an 8-bit clean channel is required, do not request a pty or should specify no-pty. A quote can be included in the command by quoting it with a backslash. This option can be useful to
restrict certain public keys to perform just a specific operation. An example
might be a key that permits remote backups but nothing else. The client
can specify any combination of TCP and X11 forwarding unless they are
explicitly prohibited. The command originally supplied by the client is
available in the SSH_ORIGINAL_COMMAND environment variable. This
option applies to shell, command, or subsystem execution.

environment="NAME=value"

Specifies that the string is to be added to the environment when logging in
using this key. Environment variables set this way override other default
environment values. See “Environment variables” on page 103 in ssh for
more information. Multiple options of this type are permitted.

Environment processing is disabled by default and is controlled by means
of the PermitUserEnvironment option. This option is automatically
disabled if UseLogin is enabled.

See “PermitUserEnvironment” on page 160 for information about
environment variable processing and precedence rules. The sshd_config
keyword UseLogin is documented in “UseLogin” on page 162.

from="pattern-list"

Specifies that in addition to public key authentication, the canonical name
of the remote host must be present in the comma-separated list of patterns.
The purpose of this option is to increase security; public key authentication
by itself does not trust the network or name servers or anything but the
key. However, if the key is stolen, this additional option makes using a
stolen key more difficult because name servers and routers would have to
be compromised in addition to just the key.

See “Patterns” on page 145 for more information about patterns.

no-agent-forwarding

Prevents authentication agent forwarding when this key is used for
authentication.

no-port-forwarding

Prevents TCP forwarding when this key is used for authentication. Any
port forward requests by the client will return an error. This option can be
used in conjunction with the command option.

no-pty

Prevents tty allocation (a request to allocate a pty will fail).

no-user-rc

Disables execution of the ~/.ssh/rc file.

no-X11-forwarding

Prevents X11 forwarding when this key is used for authentication. Any X11
forward requests by the client will return an error.

permitopen="host:port"

Limits local ssh -L port forwarding such that it can only connect to the
specified host and port. IPv6 addresses can be specified with an alternate
syntax: host/port. Use commas to separate multiple permitopen options. No
pattern matching is performed on the specified host names.

Restriction: The maximum number of permitted opens is 100.

“OpenSSH - port forwarding examples” on page 345 has examples of port
forwarding.
tunnel="n"
This option is ignored on z/OS UNIX. Forces a tunnel device on the server. Without this option, the next available device is used if the client requests a tunnel.

zos-key-ring-label="KeyRingOwner/KeyRingName label"
Specifies the key ring owner, key ring name, and the certificate label within the key ring on the OpenSSH server that contains the user’s public key. One or more blanks separate the key ring (real or virtual) name from the certificate label. Certificate labels can contain embedded blanks. The option value must be enclosed in double quotes. Key fields following the options (on the same line) are ignored.

Requirements: These requirements must be met.
- The certificate must be copied from the client system and added to the user’s key ring on the OpenSSH server.
- If the user is not storing the authorized keys in a key ring, then the public key must be extracted from the certificate and added to the user’s authorized keys on the OpenSSH server.

If a key ring is being used on the server side (for example, SSHAuthKeysRing), it was created in the user authentication setup described in “Steps for setting up user authentication when using key rings to store keys” on page 72.

An example of an authorized_keys file:

```
# Comments allowed at start of line
ssh-rsa AAAAB3Nza...LiPk== user@example.net
from="*.sales.example.net",ifo...19Q== john@example.net
command="dump /home",no-pty,no-port-forwarding ssh-dss AAAAC3...19Q== example.net
permitopen="192.0.2.1:80",permitopen="192.0.2.2:25" ssh-dss AAAAB5...215==
tunnel="0",command="sh /etc/netstart tun0" ssh-rsa AAAA...==jane@example.net
zos-key-ring-label="KeyRingOwner/SSHAuthKeysRing uniq-ssh-rsa"
from="*.example.com",zos-key-ring-label="KeyRingOwner/SSHAuthKeysRing uniq-ssh-dsa"
```

ssh_known_hosts file format

The /etc/ssh/ssh_known hosts and ~/.ssh/known_hosts files contain the host public keys for all known hosts. The use of the global file is optional; if it is used, it must be prepared by the administrator. The per-user file is maintained automatically. Each time the user connects from an unknown host, the key of that unknown host is added to the per-user file.

Each line in these files contains the following fields, and the fields are separated by spaces:

- For RSA1 from the identity.pub file:
 hostnames, bits, exponent, modulus, comment.

- For RSA or DSA from the id_rsa.pub or id_dsa.pub files:
 hostnames, key-type, public-key, comment

- For RSA or DSA from the key ring:
 hostnames, zos-key-ring-label="KeyRingOwner/KeyRingName label"

 zos-key-ring-label specifies the key ring owner, key ring name of the name of the known_hosts SAF key ring, and the certificate label of the certificate within the key ring on the OpenSSH client that contains the host public key. One or more blanks separate the key ring (real or virtual) name from the certificate label. Certificate labels can contain embedded blanks.
option value must be enclosed in double quotes. Any fields following `zos-key-ring-label` on the same line are ignored. The `zos-key-ring-label` specification keyword is not case sensitive.

Requirement: The certificate must be copied from the server system and added to the known hosts file or key ring on the OpenSSH client.

If a key ring is being used on the client side, for example, SSHKnownHostRing, the key ring was created in the server authentication setup as described in "Steps for setting up server authentication when keys are stored in key rings" on page 29.

Hostnames is a comma-separated list of patterns (* and ? act as wildcards). Each pattern is matched against the canonical host name when authenticating a client or against the user-supplied name when authenticating a server. A pattern can also be preceded by ! to indicate negation. If the host name matches a negated pattern, it is not accepted by that line even if it matched another pattern on the line. A hostname or address can optionally be enclosed within '[' and ']' brackets, then followed by ':' and a nonstandard port number.

Alternatively, hostnames can be stored in a hashed form which hides host names and addresses if the file's contents are disclosed. Hashed hostnames start with a '|' character. Only one hashed hostname can appear on a single line and none of the above negation or wildcard operators can be applied.

Bits, exponent, and modulus are taken directly from the RSA host key. They can generally be obtained from the `/etc/ssh/ssh_host_key.pub` file. The optional comment field continues to the end of the line.

Lines starting with # and empty lines are ignored as comments.

When performing host authentication, authentication is accepted if any matching line has the proper key. It is thus permissible (but not recommended) to have several lines or different host keys for the same names. This will happen when short forms of host names from different domains are put in the file. It is possible that the files contain conflicting information. Authentication is accepted if valid information can be found from either file.

The lines in these files are typically hundreds of characters long and should be generated by a script or by taking `/etc/ssh/ssh_host_key.pub` and adding the host names at the front.

An example of a `ssh_known_hosts` file:

```plaintext
# Comments allowed at start of line
closenet,....,192.0.2.53 1024 37 159...93 closenet.example.net
cvs.example.net,192.0.2.10 ssh-rsa AAAA1234.....=
# A hashed hostname
|[j]fKTd8h7.....= ssh-rsa AAAA1234.....=
# An example specification of a known host key from a key ring
mvs* zos-key-ring-label="KeyRingOwner/SSHKnownHostsRing mvs1-ssh-rsa"
```

Running OpenSSH in other locales

Rule: All files used by OpenSSH (such as key files and configuration files) must be in the IBM-1047 code set, with the exception of the rc files (`/etc/ssh/sshrc` and `~/.ssh/rc`). The rc files are parsed by `/bin/sh` and should be in the code set of the
current locale. Do not use the /etc/ssh/sshrc file if there is a possibility of the
users on the system running in different locales.

Restrictions: Some restrictions apply.
- OpenSSH does not run in multibyte locales.
- The OpenSSH daemon (sshd) must be run in the POSIX C locale (which is the
default).

For more information about globalization, see Chapter 7, “Globalization on z/OS
systems,” on page 59.

Limitations
The maximum length of the ephemeral server key is INT_MAX.

Files

~/.hushlogin
This file is used to suppress printing the last login time and /etc/motd, if
the sshd_config keywords PrintLastLog and PrintMotd, respectively, are
enabled. It does not suppress printing of the banner specified by the
sshd_config keyword Banner.

~/.rhosts
This file is used for host-based authentication. On some machines, this file
might need to be world-readable if the user’s home directory is on an NFS
partition, because sshd reads it as a superuser. Additionally, this file must
be owned by the user and must not have write permissions for anyone
else. The recommended permission for most machines is read/write for the
user and not accessible by others.

~/.shosts
This file is used in exactly the same way as ~/.rhosts, but allows
host-based authentication without permitting login with rlogin or rsh.

~/.ssh/
This directory is the default location for all user-specific configuration and
authentication information. There is no general requirement to keep the
entire contents of this directory secret, but the recommended permissions
are read/write/execute for the user, and not accessible by others.

~/.ssh/authorized_keys
Lists the public keys (RSA/DSSA) that can be used for logging in as this
user. For the format of this file, see "Format of the authorized_keys file" on
page 125. The content of this file is not highly sensitive, but the
recommended permissions are read/write for the user, and not accessible
by others.

If this file, the ~/.ssh directory, or the user’s home directory are writable
by other users, then the file could be modified or replaced by unauthorized
users. In this case, sshd will not allow it to be used unless the value for the
sshd_config keyword StrictModes has been set to "no".

~/.ssh/environment
If this file exists, it is read into the environment at login. It can only
contain empty lines, comment lines (starting with #), and assignment lines
of the form name=value. The file must be writable only by the user; it need
not be readable by anyone else. Environment processing is disabled by
default and is controlled by means of the PermitUserEnvironment option,
which is described in “PermitUserEnvironment” on page 160.
~/ssh/known_hosts

Contains a list of host keys for all hosts the user has logged into that are not already in the system-wide list of known host keys. See “ssh_known_hosts file format” on page 127 for further details of the format of this file. This file must be writable only by the owner and can, but need not be, world-readable.

~/ssh/rc

If this file exists, it is run with /bin/sh after reading the environment files, but before starting the user’s shell or command. It must not produce any output on stdout; stderr must be used instead. If X forwarding is in use, it will receive the “proto cookie” pair in its standard input (and DISPLAY in its environment). The script must call xauth, because sshd will not run xauth automatically to add X11 cookies. If you have not configured your system for X11 forwarding, see “Steps for configuring the system for X11 forwarding” on page 47.

The primary purpose of this file is to run any initialization routines which might be needed before the user’s home directory becomes accessible; AFS® is a particular example of such an environment.

This file will probably contain some initialization code, followed by lines similar to this example:

```
if read proto cookie && [ -n "$DISPLAY" ]; then
  if [ "echo $DISPLAY | cut -c1-10" = 'localhost:' ]; then
    # X11UseLocalhost=yes
    echo add unix:"echo $DISPLAY |
            cut -c11-" $proto $cookie
  else
    # X11UseLocalhost=no
    echo add $DISPLAY $proto $cookie
  fi
  xauth -q -
fi
```

If this file does not exist, /etc/ssh/sshrc is run, and if that does not exist either, xauth is used to add the cookie.

This file should be writable only by the user.

/etc/hosts.allow, /etc/hosts.deny

Not supported on z/OS UNIX. Access controls that should be enforced by tcp-wrappers are defined in this file.

/etc/hosts.equiv

This file is for host-based authentication. In the simplest form, this file contains host names, one per line. Users on those hosts are permitted to log in without a password, provided they have the same user name on both machines. The host name can also be followed by a user name; such users are permitted to log in as any user on this machine except superuser.

If the client host/user is successfully matched in this file, login is automatically permitted, provided the client and server user names are the same. Additionally, successful public key authentication is typically required. This file must be writable only by a superuser. It is recommended that it be world-readable.

Guideline: Do not use user names in /etc/hosts.equiv. Be aware that the named users can log in as any user, including bin, daemon, adm, and other accounts that own critical binaries and directories. The only valid use for user names is in negative entries.
/etc/nologin
If this file exists, sshd refuses to let anyone except a superuser log in. The contents of the file are displayed to anyone trying to log in and non-superuser connections are refused. The file must be world-readable.

/etc/motd
Contains the message of the day. See the sshd_config keyword "PrintMotd" on page 161 for more information.

/etc/ssh/moduli
Contains Diffie-Hellman groups used for the Diffie-Hellman Group Exchange. The file format is described in "moduli" on page 167.

/etc/ssh/sshd_config
Contains configuration data for sshd. The file format and configuration options are described in "sshd_config" on page 150.

/etc/ssh/ssh_host_key, /etc/ssh/ssh_host_dsa_key, /etc/ssh/ssh_host_rsa_key
These three files contain the private parts of the host keys. They must only be owned and readable by a superuser. sshd does not start if these files are group-accessible or world-accessible.

/etc/ssh/ssh_host_key.pub, /etc/ssh/ssh_host_dsa_key.pub, /etc/ssh/ssh_host_rsa_key.pub
These three files contain the public parts of the host keys. These files are only provided for the convenience of the user so their contents can be copied to known hosts files. They are created using ssh-keygen. This file must be writable only by a superuser and can, but need not be, world-readable. Their contents must match the respective private parts.

/etc/ssh/shosts.equiv
This file is used in exactly the same way as /etc/hosts.equiv, but allows host-based authentication without permitting login with rlogin or rsh.

/etc/ssh/ssh_known_hosts
System-wide list of known host keys. This file should be prepared by the system administrator to contain the public host keys of all machines in the organization. See "ssh_known_hosts file format" on page 127 for further details of the format of this file. This file must be writable only by the owner and only be world-readable.

/etc/ssh/sshrc
Similar to ~/.ssh/rc, it can be used to specify machine-specific login-time initialization globally. This file should be writable only by a superuser and world-readable.

/etc/ssh/zos_sshd_config
Contains z/OS-specific configuration data for sshd. The file format and configuration options are described in "zos_sshd_config" on page 164.

/var/empty
chroot directory used by sshd during privilege separation in the pre-authentication phase. The directory must not contain any files. It must also be owned by a superuser and not be group-writable or world-writable.

/var/run/sshd.mm.XXXXXXXXX
Temporary files created by sshd for compression with privilege separation.

/var/run/sshd.pid
Contains the process ID of the sshd listening for connections (if there are several daemons running concurrently for different ports, this contains the
process ID of the one started last). The contents of this file are not sensitive. It can be world-readable. This file is not created if the server is running in debug mode.

Environment variables

_**_ZOS_OPENSSH_DEBUG_

Contains z/OS-specific debug information. This environment variable is only used internally and is not for external specification.

_**_ZOS_OPENSSH_MSGCAT_

Identifies the OpenSSH message catalog to be used when sending OpenSSH error messages.

_**_ZOS_SMF_FD_

Set to the file descriptor number used for interprocess communication during SMF-related processing. This environment variable is only used internally and is not for external specification.

_**_ZOS_SSHD_CONFIG_

Specifies the path name of the user-defined _zos_sshd_config_ configuration file. The default is _/etc/ssh/zos_sshd_config_. For a list of available keywords, see [“zos_sshd_config” on page 164](#). The recommended permissions of the specified file are read/write for the user and not accessible by others.

Related information

_moduli, scp, sftp, sftp-server, ssh, ssh-add, ssh-agent, ssh-keygen, sshd_config, zos_sshd_config_

Authors

OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen. Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song removed many bugs, re-added newer features and created OpenSSH. Markus Friedl contributed the support for SSH protocol versions 1.5 and 2.0. Niels Provos and Markus Friedl contributed support for privilege separation.
Chapter 10. OpenSSH files

OpenSSH client configuration files

ssh_config — OpenSSH client configuration files

Description

ssh obtains configuration data from these sources in the following order:
1. Command line options
2. User's configuration file ("/ . ssh/config")
3. System-wide configuration file (/etc/ssh/ssh_config)

For each parameter, the first obtained value is used. The ssh_config configuration files contain sections separated by “Host” specifications and that section is only applied for hosts that match one of the patterns given in the specification. The matched host name is the one given on the command line.

Guideline: Because the first obtained value for each parameter is used, you should put host-specific declarations near the beginning of the file, and put the general defaults at the end.

File format

The ssh_config configuration file views empty lines and lines starting with # as comments.

Configuration options can be specified using two different formats.

- The first format is the keyword argument pair separated by white space.
- The second format is the keyword argument pair separated with exactly one "=" and optional white space. This format is useful to avoid the need to quote white space when specifying configuration options using the scp, sftp and ssh -o options. Arguments can optionally be enclosed in double quotes (") in order to represent arguments containing spaces.

For example:

```
keyword argument
keyword=argument
```

Keywords are not case sensitive and arguments are case sensitive. Following are the possible keywords:

- AddressFamily
 Specifies which address family to use when connecting. Valid arguments are "any", "inet" (for IPv4 only) or "inet6" (for IPv6 only).

- AFSTokenPassing
 Not supported on z/OS UNIX. Specifies whether to pass AFS tokens to remote host. The argument to this keyword must be "yes" or "no".
 Restriction: The AFSTokenPassing option applies to protocol version 1 only.

- BatchMode
 If set to "yes", passphrase/password querying is disabled. This option is
useful in scripts and other batch jobs where no user is present to supply the password. The argument must be set to "yes" or "no". The default is "no".

Rule: An SSH agent, Kerberos authentication (if available), or trusted host authentication must be used for authentication to succeed in batch mode.

BindAddress
Uses the specified address on the local machine as the source address of the connection. This option is only useful on systems with more than one address and does not work if UsePrivilegedPort is set to "yes".

ChallengeResponseAuthentication
Not supported on z/OS UNIX. Specifies whether to use challenge-response authentication. The argument must be set to "yes" or "no". The default is "yes".

CheckHostIP
If this flag is set to "yes", ssh checks the host IP address in the known_hosts file. Regardless of this setting, ssh always checks the known hosts files for the user-specified host name. Enabling this option means that both the user-specified host name and IP address should be in a known hosts file. If not, a warning is issued to inform the user that the missing entry is being written to the ~/.ssh/known_hosts file. This flag allows ssh to detect if a host key changed due to DNS spoofing. If the option is set to "no", the check is not executed. The default is "yes".

Cipher
Specifies the cipher to use for encrypting the session in protocol version 1. Currently, Blowfish, Triple DES (3DES), and DES are supported. The DES cipher is only supported in the ssh client for interoperability with legacy protocol version 1 implementations that do not support the 3DES cipher. Its use is strongly discouraged due to cryptographic weaknesses. The default is 3DES.

Ciphers
Specifies the ciphers to use for encrypting the session in protocol version 2 in the order of preference. Multiple ciphers must be separated by commas. Valid ciphers include:

- **3des-cbc** TripleDES algorithm (3DES)
- **acss@openssh.org** OpenSSH acss@openssh.org cipher
- **aes128-cbc** Advanced Encryption Standard (AES) CBC mode with 128-bit key
- **aes128-ctr** Advanced Encryption Standard (AES) CTR mode with 128-bit key
- **aes192-cbc** Advanced Encryption Standard (AES) CBC mode with 192-bit key
- **aes192-ctr** Advanced Encryption Standard (AES) CTR mode with 192-bit key
- **aes256-cbc** Advanced Encryption Standard (AES) CBC mode with 256-bit key
- **aes256-ctr** Advanced Encryption Standard (AES) CTR mode with 256-bit key
Arcfour algorithm
Arcfour algorithm with 128-bit key
Arcfour algorithm with 256-bit key
Blowfish-CBC algorithm
CAST algorithm
Same as Advanced Encryption Standard (AES) CBC mode with 256-bit key

The ciphers list is typically one long unbroken line; however due to space limitations, the default ciphers list is not shown as one unbroken line. The default is:

aes128-ctr,aes192-ctr,aes256-ctr,arcfour256,arcfour128,aes128-cbc,
3des-cbc,blowfish-cbc,cast128-cbc,aes192-cbc,aes256-cbc,arcfour,
rijndael-cbc@lysator.liu.se

For example:

ssh -o"Ciphers aes128-cbc,blowfish-cbc" Billy@us.pok.ibm.com

The ciphers list might need to be modified based on the ciphers source used. For more information, see the CiphersSource keyword in the z/OS-specific OpenSSH client configuration files zos_ssh_config or zos_user_ssh_config.

ClearAllForwardings
Specifies that all local, remote, and dynamic port forwardings specified in the configuration files or on the command line be cleared. This option is primarily useful from the ssh command line to clear port forwardings set in configuration files and is automatically set by scp and sftp. The argument must be set to "yes" or "no". The default is "no".

Compression
Specifies whether to use compression. The argument must be set to "yes" or "no". The default is "no".

CompressionLevel
Specifies the compression level to use if compression is enabled. The argument must be an integer from 1 (fast) to 9 (slow, best). The default level is 6, which is good for most applications.

Restriction: This option applies to protocol version 1 only.

ConnectionAttempts
Specifies the number of tries (one per second) to make before exiting. The argument must be an integer. This might be useful in scripts if the connection sometimes fails. The default is 1.

ConnectTimeout
Specifies the timeout (in seconds) used when connecting to the SSH server, instead of using the default system's TCP timeout. This value is used only when the target is down or is unreachable, not when it refuses the connection.

ControlMaster
Enables the sharing of multiple sessions over a single network connection. When set to "yes", ssh listens for connections on a control socket specified using the ControlPath argument. Additional sessions can connect to this socket using the same ControlPath with ControlMaster set to "no" (the
These sessions will try to reuse the master instance's network connection rather than initiating new ones, but will fall back to connecting normally if the control socket does not exist, or is not listening.

Setting ControlMaster to "ask" causes ssh to listen for control connections, but requires confirmation using the SSH_ASKPASS program before they are accepted (see "ssh-add" on page 104 for details). If the ControlPath cannot be opened, ssh continues without connecting to a master instance.

X11 and ssh-agent forwarding are supported over these multiplexed connections. However, the display and agent forwarded will be the one belonging to the master connection; that is, it is not possible to forward multiple displays or agents.

Two additional options allow for opportunistic multiplexing: try to use a master connection but fall back to creating a new one if one does not exist. These options are "auto" and "autoask". The latter requires confirmation such as the "ask" option.

ControlPath
Specifies the path to the control socket used for connection sharing as described in the ControlMaster option or the string "none" to disable connection sharing. In the path, %l is substituted by the local host name, %h is substituted by the target host name, %p the port, and %r by the remote login username. To ensure that shared connections are uniquely identified, any ControlPath used for opportunistic connection sharing should include at least %h, %p, and %r.

Restriction: The maximum path length is 107 bytes.

DynamicForward
Specifies that a TCP port on the local machine be forwarded over the secure channel and the application protocol is then used to determine where to connect to from the remote machine. The argument must be a port number. The argument must be either [bind_address:]port or [bind_address/]/port. IPv6 addresses can be specified by enclosing addresses in square brackets or by using the [bind_address/]/port syntax. By default, the local port is bound in accordance with the GatewayPorts setting. However, an explicit bind_address can be used to bind the connection to a specific address. The bind_address of "localhost" indicates that the listening port are to be bound for local use only, while an empty address or * indicates that the port should be available from all interfaces.

Currently, the SOCKS4 and SOCKS5 protocols are supported and ssh will act as a SOCKS server. Multiple forwardings can be specified and additional forwarding can be given on the command line. Only the superuser can forward privileged ports.

ExitOnForwardFailure
Specifies whether ssh is to terminate the connection if it cannot set up all requested dynamic, tunnel, local, and remote port forwardings. The argument must be 'yes' or 'no'. The default is "no".

EnableSSHKeysign
Setting this option to "yes" in the global client configuration file /etc/ssh/ssh_config enables the use of the helper program ssh-keysign during HostbasedAuthentication. (See "ssh-keysign" on page 119 for more information about ssh-keysign.) The argument must be "yes" or "no". The default is "no".

Rule: Put the EnableSSHKeysign option in the non-host-specific section.
EscapeChar
Sets the escape character (default of “~”). The escape character can also be set on the command line. The argument can be a single character, ^ followed by a letter or "none" to disable the escape character entirely (making the connection transparent for binary data).

ForwardAgent
Specifies whether the connection to the authentication agent (if any) is to be forwarded to the remote machine. The argument must be set to "yes" or "no". The default is "no".

Enable agent forwarding with caution. Users with the ability to bypass file permissions on the remote host (for the agent’s UNIX-domain socket) can access the local agent through the forwarded connection. Attackers cannot obtain key material from the agent; however, they can perform operations on the keys that enable them to authenticate using the identities loaded into the agent.

ForwardX11
Specifies whether X11 connections are to be automatically redirected over the secure channel and DISPLAY set. The argument must be set to "yes" or "no". The default is "no".

Enable X11 forwarding with caution. Users with the ability to bypass file permissions on the remote host (for the user’s X11 authorization database) can access the local X11 display through the forwarded connection. An attacker may then be able to perform activities such as keystroke monitoring if the ForwardX11Trusted option is also enabled.

ForwardX11Trusted
If this option is set to "yes", remote X11 clients will have full access to the original X11 display. If this option is set to "no", then remote X11 clients are considered untrusted and will be prevented from stealing or tampering with data belonging to trusted X11 clients. Furthermore, when set to "no", the xauth token (cookie) used for the session will be set to expire after 20 minutes. Remote clients will be refused access after this time. The default is "no".

See the X11 SECURITY extension specification for full details on the restrictions imposed on untrusted clients.

GatewayPorts
Specifies whether remote hosts are allowed to connect to local forwarded ports. By default, ssh binds local port forwardings to the loopback address. The binding prevents other remote hosts from connecting to forwarded ports. Use GatewayPorts to specify that ssh is to bind local port forwardings to the wildcard address, thus allowing remote hosts to connect to forwarded ports. The argument must be set to "yes" or "no". The default is "no".

GlobalKnownHostsFile
Specifies a file to use for the global host key database instead of /etc/ssh/ssh_known_hosts.

GSSAPIAuthentication
Not supported on z/OS UNIX. Specifies whether user authentication (such as Kerberos Authentication) based on GSS-API is allowed. The default is "no".

Restriction: The GSSAPIAuthentication option applies to protocol version 2 only.
GSS-API stands for Generic Security Services Application Programming Interface. It is a generic API for handling client-server authentication. Because it provides security services to callers in a generic way, supportable with a range of underlying mechanisms and technologies, it allows for source-level portability of applications to different environments. For more details, check IETF standard RFC 2743 at http://www.ietf.org/rfc/rfc2743.txt.

GSSAPIDelegateCredentials

Not supported on z/OS UNIX. Forwards (delegates) credentials to the server. The default is "no".

Restriction: This option applies to protocol version 2 only.

GSS-API stands for Generic Security Services Application Programming Interface. It is a generic API for handling client-server authentication. Because it provides security services to callers in a generic way, supportable with a range of underlying mechanisms and technologies, it allows for source-level portability of applications to different environments. For more details, check IETF standard RFC 2743 at http://www.ietf.org/rfc/rfc2743.txt.

HashKnownHosts

If this option is set to "yes", indicates that ssh is to hash host names and addresses when they are added to ~/.ssh/known_hosts. These hashed names can be used normally by ssh and sshd, but they do not reveal identifying information if the file's contents are disclosed. Existing names and addresses in known hosts files are not automatically converted, but can be manually hashed using ssh-keygen. The default is "no".

Host

Restricts the following declarations (up to the next Host keyword) to be only for those hosts that match one of the patterns given after the keyword. A single * as a pattern can be used to provide global defaults for all hosts. The host is the hostname argument given on the command line (the name is not converted to a canonical host name before matching).

See "Patterns" on page 145 for more information about patterns.

HostbasedAuthentication

Specifies whether to try rhosts-based authentication with public key authentication. The argument must be set to "yes" or "no". The default is "no".

Restriction: This option applies to protocol version 2 only.

The HostbasedAuthentication option is similar to RhostsRSAAuthentication.

If the local host (that is, the client system) keys are only stored in a SAF key ring, then a client using host-based authentication will not be able to access those keys because it uses ssh-keysign which only locates host keys in the default UNIX files. However, host-based authentication for clients on the local host can still be set up by an administrator on both the local and remote hosts, as follows:

1. Generate a new public/private key pair for the local host, storing them in the default UNIX files.
2. Extract the local host's public host key from the key pair just created. Copy it into the remote host's /etc/ssh/ssh_known_hosts file.
HostKeyAlgorithms
Specifies the protocol version 2 host key algorithms that the client wants to use in order of preference. The default for this option is "ssh-rsa,ssh-dss".

HostKeyAlias
Specifies an alias that should be used instead of the real host name when looking up or saving host key in the host key database files. This option is useful for tunneling SSH connections or for multiple servers running on a single host.

HostName
Specifies the real host name to log into. You can use this option to specify nicknames or abbreviations for hosts. The default is the name given on the command line. Numeric IP addresses are also permitted both on the command line and in HostName specifications.

IdentitiesOnly
Specifies that ssh should only use the authentication identity files configured in the ssh_config files and key ring certificates configured in the zos_user_ssh_config file, even if the ssh-agent offers more identities. The argument to this keyword must be "yes" or "no". The default is "no".

Guideline: Use this option in situations where ssh-agent offers many different identities.

IdentityFile
Specifies a file from which the user’s RSA or DSA authentication identity is read. The default is "/.ssh/identity" for protocol version 1. For protocol version 2, the default is "/.ssh/id_rsa" and "/.ssh/id_dsa". Additionally, any identities configured with the IdentityKeyRingLabel or represented by the authentication agent are used for authentication. Refer to the -i identity_file description in the ssh command for a summary of the order that identities are tried during public key authentication.

The file name can use the tilde syntax to refer to a user's home directory or one of the following escape characters: %d (local user's home directory), %u (local user name), %l (local host name), %h (remote host name) or %r (remote user name).

It is possible to have multiple identity files specified in configuration files; all these identities will be tried in sequence.

KbdInteractiveAuthentication
Not supported on z/OS UNIX. Specifies whether to use keyboard-interactive authentication. The argument to this keyword must be "yes" or "no".

KbdInteractiveDevices
Not supported on z/OS UNIX. Specifies the list of methods to use in keyboard-interactive authentication. Multiple method names must be comma-separated. The default is to use the server-specified list. The methods available vary depending on what the server supports. For an OpenSSH server, it might be zero or more instances of "bsdauth", "pam", and "skey".

KeepAlive
This keyword is supported for compatibility with versions of OpenSSH before 3.8.1p1. On systems using OpenSSH 3.8.1p1 or later, you should use the keyword TCPKeepAlive instead.
Specifies whether the system should send TCP keepalive messages to the other side. If they are sent, a lost network connection or stopping of one of the machines will be properly noticed. However, this means that OpenSSH connections will end if the route is down temporarily.

The default is "yes" (to send keepalives), and the client will notice if the network goes down or the remote host dies. This is important in scripts as well as to many users. To disable keepalives, set the value to "no".

LocalCommand
Specifies a command to be executed on the local machine after successfully connecting to the server. The command string extends to the end of the line, and is executed with the user's shell. This option is ignored unless PermitLocalCommand has been enabled.

LocalForward
Specifies that a TCP port on the local machine is to be forwarded over the secure channel to the specified host and port from the remote machine. The first argument must be `[bind_address:]port` and the second must be `host:hostport`. IPv6 addresses can be specified by enclosing addresses in square brackets or by using an alternate syntax: `[bind_address/]port` and `host/hostport`. Multiple forwardings can be specified and additional forwardings can be given on the command line. Only the superuser can forward privileged ports. By default, the local port is bound in accordance with the GatewayPorts setting. However, an explicit `bind_address` can be used to bind the connection to a specific address. The `bind_address` of "localhost" indicates that the listening port is to be bound for local use only, while an empty address or * indicates that the port is to be available from all interfaces.

LogLevel
Gives the verbosity level that is used when logging messages from `ssh`. The possible values are: QUIET, FATAL, ERROR, INFO, VERBOSE, DEBUG, DEBUG1, DEBUG2, and DEBUG3. The default is INFO. DEBUG and DEBUG1 are equivalent. DEBUG2 and DEBUG3 each specify higher levels of verbose output.

MACs
Specifies the MAC (message authentication code) algorithms in order of preference. The MAC algorithm is used for data integrity protection. Multiple algorithms must be comma-separated.

The MAC algorithms list is typically one long unbroken line; however due to space limitations, the default MAC algorithms list is not shown as one unbroken line. The default is: `hmac-md5,hmac-sha1,umac-64@openssh.com,hmac-ripemd160,hmac-ripemd160@openssh.com,hmac-sha1-96,hmac-md5-96`.

The MAC algorithms list might need to be modified based on the MAC algorithms source used. For more information, see the MACsSource keyword in the z/OS-specific OpenSSH client configuration files `zos_ssh_config` or `zos_user_ssh_config`.

Restriction: This option applies to protocol version 2 only.

NoHostauthenticationForLocalhost
This option can be used if the home directory is shared across machines (for example, if the home directory is NFS-mounted to multiple machines). In this case, localhost will refer to a different machine on each of the machines and the user will get many warnings about changed host keys.
However, this option disables host authentication for localhost (to avoid these warnings). The argument must be set to "yes" or "no". The default is to check the host key for localhost.

NumberOfPasswordPrompts
Specifies the number of password prompts before giving up. The argument must be an integer. The default is 3.
Regardless of this value, the SSH daemon still regulates the total number of authentication attempts.

PasswordAuthentication
Specifies whether to use password authentication. The argument must be set to "yes" (default) or "no". Password authentication prompts the user for a password or password phrase that is sent to the remote host for checking.

PermitLocalCommand
Allows local command execution by means of the LocalCommand option or using the !command escape sequence in ssh. The argument must be "yes" or "no". The default is "no".

Port
Specifies the port number to connect to on the remote host. The default is 22.

PreferredAuthentications
Specifies the order in which the client should try protocol version 2 authentication methods. This allows a client to prefer one method (such as publickey) over another method (such as password). The default for this option is hostbased,publickey,keyboard-interactive,password.

`gssapi-with-mic` and `keyboard-interactive` are not supported on z/OS UNIX.

Protocol
Specifies the protocol versions ssh should support in order of preference. The possible values are 1 and 2. Multiple versions must be comma-separated. The default is 2. If 2,1 is specified, ssh tries version 2 and falls back to version 1 if version 2 is not available.

ProxyCommand
Specifies the command to use to connect to the server. The command string extends to the end of the line and is executed with the user's shell. In the command string, %h will be substituted by the host name to connect and %p by the port. The command can be basically anything and should read from its standard input and write to its standard output. It should eventually connect an sshd server running on some machine or execute sshd –i. Host key management will be done using the HostName of the host being connected (defaulting to the name typed by the user). The CheckHostIP keyword is not available for connects with a proxy command.

PubkeyAuthentication
Specifies whether to try public key authentication for protocol version 2. The argument must be set to "yes" (default) or "no".

RekeyLimit
Specifies the maximum amount of data that can be transmitted before the session key is renegotiated. The argument is the number of bytes, with an optional suffix of K, M, or G to indicate kilobytes, megabytes, or gigabytes, respectively. The default is between 1G and 4G, depending on the cipher.

Restrictions: Some restrictions apply.
- This option applies to protocol version 2 only.

Chapter 10. OpenSSH files
• The maximum value is UINT_MAX bytes and the minimum value is 16 bytes.

RemoteForward
Specifies that a TCP port on the remote machine is to be forwarded over the secure channel to the specified host and port from the local machine. The argument must be either [bind_address:port] or [bind_address/]/port, and the second must be host:port. IPv6 addresses can be specified by enclosing addresses in square brackets or by using the [bind_address/]/port syntax for the first argument and host:port in the second argument. Multiple forwardings can be specified and additional forwardings can be given on the command line.

If the bind_address is not specified, the default is to only bind to loopback addresses. If the bind_address is “*” or an empty string, then the forwarding is requested to listen on all interfaces. Specifying a remote bind_address succeeds only if the server's GatewayPorts option is enabled as described in “GatewayPorts” on page 137.

Restriction: Only the superuser can forward privileged ports.

RhostsAuthentication
Specifies whether to try rhosts-based authentication in protocol version 1. This declaration only affects the client side and does not affect security. Most servers do not permit RhostsAuthentication because it is not secure. The argument must be set to "yes" or "no". The default is "no".

Requirement: ssh must be setuid 0 and UsePrivilegedPort must be set to "yes".

When connecting to sshd running on a non-z/OS platform using this option, this form of authentication might fail if the server side of OpenSSH version is 3.7 or higher, because RhostsAuthentication is no longer supported at these levels.

Restriction: RhostsAuthentication cannot be used with privilege separation.

RhostsRSAAuthentication
Specifies whether to try rhosts-based authentication with RSA host authentication in protocol version 1. This option requires ssh to be setuid 0. The argument must be set to "yes" or "no". The default is "no".

RSAAuthentication
Specifies whether to try RSA authentication. The argument to this keyword must be "yes" (default) or "no". RSA authentication will only be attempted if the identity file exists, or an authentication agent is running.

Restriction: This option applies to protocol version 1 only.

SendEnv
Specifies which environment variables from the local environment variables are to be sent to the server. Environment variables are specified by name, which can contain wildcard characters. However, the name cannot contain the equal (=) character. Multiple environment variables can be separated by white space or spread across multiple SendEnv options for a maximum of 256 environment variable specifications. The default is not to send any environment variables.

See “Patterns” on page 145 for more information about patterns.
The accepted environment variables are processed after authentication but before general environment variable setup and handling of the `sshd_config` keyword `PermitUserEnvironment`. Therefore, the values of accepted environment variables might be overwritten as a result of this subsequent processing.

Restriction: Environment variable passing is only supported in protocol version 2. The server must also support environment variable passing and the server must be configured to accept these environment variables. See the description of the `sshd_config` keyword `"AcceptEnv"` on page 150 for information about configuring the server.

ServerAliveInterval
Sets a timeout interval in seconds after which if no data has been received from the server, ssh sends a message through the encrypted channel to request a response from the server. The default is 0, indicating that these messages are not sent to the server.

Restriction: This option applies to protocol version 2 only.

ServerAliveCountMax
Sets the number of server alive messages that can be sent without ssh receiving any messages back from the server. If this threshold is reached while server alive messages are being sent, ssh disconnects from the server, thus ending the session. The default value is 3.

Example: If ServerAliveInterval is set to 15, and ServerAliveCountMax is left at the default, if the server becomes unresponsive ssh will disconnect after approximately 45 seconds.

Note: The use of server alive messages is very different from TCPKeepAlive. The server alive messages are sent through the encrypted channel and therefore are not spoofable. The TCP keepalive option enabled by TCPKeepAlive is spoofable. The server alive mechanism is valuable when the client or server depend on knowing when a connection has become inactive.

Restriction: This option applies to protocol version 2 only.

SmartcardDevice
Not supported on z/OS UNIX. Specifies which smart card device to use. The argument to this keyword is the device that ssh should use to communicate with a smart card used for storing the user's private RSA key. By default, no device is specified and smart card support is not activated.

StrictHostKeyChecking
If the argument is set to "yes", ssh will never automatically add host keys to the "/.ssh/known_hosts" file and will refuse to connect to a host whose host key has changed. This provides maximum protection against trojan horse attacks, but can be troublesome when the /etc/ssh/ssh_known_hosts file is poorly maintained or connections to new hosts are frequently made. This option forces the user to manually add all new hosts. If the argument is set to "no", ssh will automatically add new host keys to the user known hosts files. If the flag is set to "ask", new host keys will be added to the user known host files only after the user has confirmed the action and ssh will refuse to connect to hosts whose host key has changed. The host keys of known hosts will be verified automatically in all cases. The argument must be set to "yes", "no", or "ask". The default is "ask".
TCPKeepAlive
Specifies whether the system should send TCP keepalive messages to the other side. If they are sent, a lost network connection or stopping of one of the machines will be properly noticed. However, this means that OpenSSH connections will end if the route is down temporarily. The default is "yes" (to send TCP keepalive messages), and the client will notice if the network goes down or the remote host dies. This is important in scripts as well as to many users. To disable TCP keepalive messages, set the value to "no".

Tunnel
Not supported on z/OS UNIX. Requests tunnel device forwarding between the client and the server. The argument must be "yes", "point-to-point" (layer 3), "ethernet" (layer 2), or "no". Specifying "yes" requests the default tunnel mode, which is "point-to-point". The default is "no".

TunnelDevice
Not supported on z/OS UNIX. Specifies the tunnel devices to open on the client (local_tun) and the server (remote_tun).

The argument must be local_tun[remotetun]. The devices can be specified by numerical ID or the keyword "any", which uses the next available tunnel device. If remote_tun is not specified, it defaults to "any". The default is "any: any".

UsePrivilegedPort
Specifies whether to use a privileged port for outgoing connections. The argument must be set to "yes" or "no". The default is "no".

The following rules apply:
• This option must be set to "yes" if RhostsAuthentication and RhostsRSAAuthentication authentications are needed with servers that only support protocol version 1.
• If UsePrivilegedPort is set to "yes", ssh must be setuid 0.

User
Specifies the name that the user can use when logging on. This can be useful when a different user name is used on different machines. You do not have to remember to give the user name on the command line.

UserKnownHostsFile
Specifies a file to use for the user host key database instead of ~/.ssh/known_hosts.

VerifyHostKeyDNS
Specifies whether to verify the remote key using DNS and SSHFP (SSH fingerprint) resource records. If this option is set to "yes", the client will implicitly trust keys that match a secure fingerprint from DNS. Insecure fingerprints are handled as if this option was set to "ask". If this option is set to "ask", information about fingerprint match is displayed, but the user will still need to confirm new host keys according to the StrictHostKeyChecking option. The argument must be "yes", "no" or "ask".

The default is "no".

Restriction: This option applies to protocol version 2 only.

XAuthLocation
Specifies the full path name of the xauth program. The default is /usr/X11R6/bin/xauth. For more information, see “Steps for configuring the system for X11 forwarding” on page 47.
Patterns
A pattern consists of zero or more non-white space characters, '*' (a wildcard that matches zero or more characters), or '?' (a wildcard that matches exactly one character). For example, to specify a set of declarations for any host in the "co.uk" set of domains, the following pattern could be used:

Host *.co.uk

The following pattern would match any host in the 192.168.0.[0-9] network range:

Host 192.168.0.?

A pattern-list is a comma-separated list of patterns. Patterns within pattern-lists can be negated by preceding them with an exclamation mark ('!'). For example, to allow a key to be used from anywhere within an organization except from the "dialup" pool, the following entry (in the authorized_keys file) could be used:

from=!*.dialup.example.com,.example.com

Limitations
Due to limitations in the SECSH protocol with regards to EBCDIC platforms, user-defined subsystems are only supported between z/OS and z/OS. (For information about the IETF SECSH RFCs and internet drafts, see “RFCs and Internet drafts” on page 349.)

Files

~/.ssh/config
The per-user configuration file. For the format of this file, see “File format” on page 133. The file is used by the SSH client. Because of the potential for abuse, this file must have strict permissions: read/write for the user, and not writeable by others.

/etc/ssh/ssh_config
The system-wide configuration file. This file provides defaults for those values that are not specified in the user's configuration file and for those users who do not have a configuration file. This file must be world-readable.

Related information
scp, sftp, ssh

Authors
OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen. Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song removed many bugs, re-added newer features and created OpenSSH. Markus Friedl contributed the support for SSH protocol versions 1.5 and 2.0.

zos_ssh_config — z/OS-specific system-wide OpenSSH client configuration file

Description
z/OS obtains z/OS-specific system-wide OpenSSH client configuration data only from the /etc/ssh/zos_ssh_config configuration file. It contains sections separated by "Host" specifications, and that section is only applied for hosts that match one of the patterns given in the specification. The matched host name is the one given on the command line.
Restriction: z/OS-specific keywords cannot be specified in the ssh_config configuration files, such as the system-wide configuration file (/etc/ssh/ssh_config) or user-defined configuration file specified with the ssh -F option.

File format
The zos_ssh_config configuration file views empty lines and lines starting with # as comments. Configuration options can be specified using two different formats.

- The first format is the keyword argument pair separated by white space.
- The second format is the keyword argument pair separated with exactly one "=" and optional white space. Arguments can optionally be enclosed in double quotes ("') in order to represent arguments containing spaces.

For example:

```
keyword argument
keyword=argument
```

Keywords are not case sensitive while arguments are case sensitive. Following are the possible keywords:

CiphersSource
Specifies the source used to implement the ciphers specified by the ssh_config keyword Ciphers. Valid arguments are "any", "OpenSSL" or "ICSF". The default is "OpenSSL". Specifying "OpenSSL" requests all ciphers to be implemented using the statically linked OpenSSL cryptographic library. Specifying "ICSF" requests all applicable ciphers to be implemented using Integrated Cryptographic Service Facility (ICSF). Ciphers that are not supported by ICSF will fail if used. Specifying "any" requests all applicable ciphers to be implemented using ICSF if available. Ciphers that are not supported by ICSF are implemented using OpenSSL. If ICSF is not available, all ciphers are implemented using OpenSSL. For more information about the ICSF-supported ciphers and the setup required to use ICSF, see Setting up OpenSSH to use ICSF ciphers and MAC algorithms on page 52.

Restriction: This option applies to protocol version 2 only and is provided via the PTF for APAR OA37278.

ClientSMF
Specifies whether to collect client SMF records. The argument must be set to "TYPE119_U83", "TYPE119_U84" or "none". The default is "none". If set to "TYPE119_U83" or "TYPE119_U84", SMF Type 119 client transfer completion records (subtype 97) are collected for the sftp and scp commands. SMF record exit IEFU83 receives control for "TYPE119_U83". SMF record exit IEFU84 receives control for "TYPE119_U84".

Restriction: Because this keyword can only be set in the z/OS-specific system-wide configuration file (/etc/ssh/zos_ssh_config), it cannot be specified using the -o option of scp, sftp or ssh.

The IEFU83 and IEFU84 exits are documented in z/OS MVS Installation Exits.

Host
Restricts the following declarations (up to the next Host keyword) to be only for those hosts that match one of the patterns given after the keyword. A single * as a pattern can be used to provide global defaults for all hosts. The host is the hostname argument given on the command line (the name is not converted to a canonical host name before matching).

See Patterns on page 145 in ssh_config for more information about patterns.
MACsSource

Specifies the source used to implement the MAC algorithms specified by the `ssh_config` keyword MACs. Valid arguments are "any", "OpenSSL" or "ICSF". The default is "OpenSSL". Specifying "OpenSSL" requests all MAC algorithms to be implemented using the statically linked OpenSSL cryptographic library. Specifying "ICSF" requests all applicable MAC algorithms to be implemented using Integrated Cryptographic Service Facility (ICSF). MAC algorithms that are not supported by ICSF will fail if used. Specifying "any" requests all applicable MAC algorithms to be implemented using ICSF if available. MAC algorithms not supported by ICSF are implemented using OpenSSL. If ICSF is not available, all MAC algorithms are implemented using OpenSSL. For more information about the ICSF-supported MAC algorithms and the setup required to use ICSF, see "Setting up OpenSSH to use ICSF ciphers and MAC algorithms" on page 52.

Restriction: This option applies to protocol version 2 only and is provided via the PTF for APAR OA37278.

Files

`/etc/ssh/zos_ssh_config`

z/OS-specific system-wide client configuration file. This file must be world-readable but writable only by a superuser.

Related information

scp, sftp, ssh

zos_user_ssh_config — z/OS-specific per-user OpenSSH client configuration file

Description

z/OS obtains z/OS-specific per-user client configuration data in the following order:

1. User-specific client options from:
 a. The command-line specification using the `-o` option of the `scp`, `sftp`, or `ssh` command.
 b. The file specified with variable `_ZOS_USER_SSH_CONFIG`. The default is `~/.ssh/zos_user_ssh_config`.

2. System-wide client options from the file `/etc/ssh/zos_ssh_config`.

For each keyword that only supports one instance, the first obtained value is used. If the keyword supports multiple instances, all values are obtained from all sources and used as defined by the keyword.

Restriction: z/OS-specific keywords cannot be specified in the `ssh_config` configuration files, such as the system-wide configuration file (`/etc/ssh/ssh_config`) or user-defined configuration file specified with the `ssh -F` option.

The configuration file contains sections separated by "Host" specifications, and that section is only applied for hosts that match one of the patterns given in the specification. The matched host name is the one given on the command line.
File format
The `zos_user_ssh_config` configuration file views empty lines and lines starting with # as comments. Configuration options can be specified using two different formats.

- The first format is the keyword argument pair separated by white space.
- The second format is the keyword argument pair separated with exactly one “=” and optional white space. This format is useful to avoid the need to quote white space when specifying configuration options using the `scp`, `sftp` and `ssh -o` options. Arguments can optionally be enclosed in double quotes (") in order to represent arguments containing spaces.

For example:
```
keyword argument
keyword=argument
```

Keywords are not case sensitive while arguments are case sensitive. Following are the possible keywords:

CiphersSource
Specifies the source used to implement the ciphers specified by the `ssh_config` keyword Ciphers. Valid arguments are "any", "OpenSSL" or "ICSF". The default is "OpenSSL". Specifying "OpenSSL" requests all ciphers to be implemented using the statically linked OpenSSL cryptographic library. Specifying "ICSF" requests all applicable ciphers to be implemented using Integrated Cryptographic Service Facility (ICSF). Ciphers that are not supported by ICSF will fail if used. Specifying "any" requests all applicable ciphers to be implemented using ICSF if available. Ciphers that are not supported by ICSF are implemented using OpenSSL. If ICSF is not available, all ciphers are implemented using OpenSSL. For more information about the ICSF-supported ciphers and the setup required to use ICSF, see "Setting up OpenSSH to use ICSF ciphers and MAC algorithms" on page 52.

Restriction: This option applies to protocol version 2 only and is provided via the PTF for APAR OA37278.

Host
Restricts the following declarations (up to the next Host keyword) to be only for those hosts that match one of the patterns given after the keyword. A single * as a pattern can be used to provide global defaults for all hosts. The host is the hostname argument given on the command line (the name is not converted to a canonical host name before matching).

See "Patterns" on page 145 in `ssh_config` for more information about patterns.

IdentityKeyRingLabel
Specifies the key ring owner, key ring name and certificate label within the key ring from which the user’s RSA or DSA authentication identity is read. The key ring can be real or virtual, and the certificate label can contain embedded blanks. The key ring and the certificate connected to the key ring were created in the user authentication setup, which is described in "Steps for setting up user authentication when using UNIX files to store keys" on page 70. One or more blanks separate the key ring name from the certificate label. The user’s RSA or DSA authentication identity is read from all certificates before the identities associated with files specified with IdentityFile are checked. Refer to the `-i identity_file` description in "ssh" on page 90 for a summary of the order that identities are tried during public key authentication.
The default is to use only the identity files and agent.

It is possible to have multiple identity files and key ring certificates in configuration files. If both identity files and key ring certificates are used, the key ring certificates are tried first. The maximum combined number of identity key files and key ring certificates that can be specified is 100.

The option value must be surrounded with double quotes.

Example: An example of this option in the `zos_user_ssh_config` file for a key ring named SSHring that is owned by KeyRingOwnerID and a certificate labeled "my label with blanks" is as follows:

```
IdentityKeyRingLabel="KeyRingOwnerID/SSHring my label with blanks"
```

If the option is specified as a command-line option, you might need to escape the double quote characters that surround the argument value:

```
-o IdentityKeyRingLabel="\"KeyRingOwnerID/SSHring my label with blanks\""
```

MACsSource

Specifies the source used to implement the MAC algorithms specified by the `ssh_config` keyword MACs. Valid arguments are "any", "OpenSSL" or "ICSF". The default is "OpenSSL". Specifying "OpenSSL" requests all MAC algorithms to be implemented using the statically linked OpenSSL cryptographic library. Specifying "ICSF" requests all applicable MAC algorithms to be implemented using Integrated Cryptographic Service Facility (ICSF). MAC algorithms that are not supported by ICSF will fail if used. Specifying "any" requests all applicable MAC algorithms to be implemented using ICSF if available. MAC algorithms that are not supported by ICSF are implemented using OpenSSL. If ICSF is not available, all MAC algorithms are implemented using OpenSSL. For more information about the ICSF-supported MAC algorithms and the setup required to use ICSF, see "Setting up OpenSSH to use ICSF ciphers and MAC algorithms" on page 52.

Restriction: This option applies to protocol version 2 only and is provided via the PTF for APAR OA37278.

Environment variable

`_ZOS_USER_SSH_CONFIG`

Specifies the path name of the z/OS-specific per-user OpenSSH client configuration file. The system-wide default is `/etc/ssh/zos_ssh_config` and the user's default is `~/.ssh/zos_user_ssh_config`. If this variable is specified, it replaces the user's default file but not the system-wide default file. The recommended permissions of the specified file are read/write for the user and not accessible by others.

Files

`~/.ssh/zos_user_ssh_config`

z/OS-specific per-user OpenSSH client configuration file. This file must be writable only by the user. It can be readable by others, but need not be.

Related information

scp, sftp, ssh
OpenSSH daemon configuration files

sshd_config — OpenSSH daemon configuration file

Description
sshd reads configuration data from the /etc/ssh/sshd_config file or the file specified with -f on the command line. "File format" describes the file format.

File format
The sshd_config configuration file views empty lines and lines starting with # as comments.

Configuration options can be specified using two different formats.

- The first format is the keyword argument pair separated by white space.
- The second format is the keyword argument pair separated with exactly one "=" and optional white space. This format is useful to avoid the need to quote white space when specifying configuration options using the sshd -o options.

Arguments can optionally be enclosed in double quotes (") in order to represent arguments containing spaces.

For example:

- keyword argument
- keyword=argument

Keywords are not case sensitive and arguments are case sensitive. Following are possible keywords:

AcceptEnv
Specifies which environment variables sent by the client will be copied into the session's environment. See the description of the ssh_config keyword "SendEnv" on page 142 for information about configuring clients. Variables are specified by name, which can contain the wildcard characters "*" and '?'. However, the name cannot contain the equal (=) character. Multiple environment variables can be separated by white spaces or spread across multiple AcceptEnv options for a maximum of 256 environment variable specifications. The default is not to accept any environment variables.

Guideline: Be careful when using the AcceptEnv option because some environment variables can be used to bypass restricted user environments.

The accepted environment variables are processed after authentication but before general environment variable setup and handling of the sshd_config keyword PermitUserEnvironment. Therefore, the values of accepted environment variables might be overwritten as a result of this subsequent processing.

Restriction: Environment variable passing is supported for protocol version 2 only.

AddressFamily
Specifies the address family to be used by sshd. Valid arguments are "any", "inet" (use IPv4 only), or "inet6" (use IPv6 only). The default is "any".

AFSTokenPassing
Not supported on z/OS UNIX. Specifies whether an AFS token can be forwarded to the server. The default is "no".
AllowGroups
This keyword can be followed by a list of group name patterns, separated by spaces. If specified, login is allowed only for users whose primary group or supplementary group list matches one of the patterns. Only group names are valid; a numerical group ID is not recognized. By default, login is allowed for all groups. The allow and deny options are processed in the following order to determine if the user should be disallowed from login: DenyUsers, AllowUsers, DenyGroups, and then AllowGroups. To be allowed to login, you must pass all the tests for the specified keywords.

That is, if you want userx who is in groupy and groupz to be allowed to login, and you plan to specify all four keywords, then:

- userx must not be in DenyUsers, and
- userx must be in AllowUsers, and
- both groupy and groupz must not be in DenyGroups, and
- either groupy or groupz must be in AllowGroups

Note: To be allowed to login, the user must have a group if AllowGroups or DenyGroups is specified.

See "Patterns" on page 145 in ssh_config for more information about patterns.

Refer to the sshd_config keyword "Match" on page 158 for more information about matching z/OS user and group names.

Restriction: The maximum number of AllowGroups specifications is 256.

AllowTcpForwarding
Specifies whether TCP forwarding is permitted. Disabling TCP forwarding does not improve general z/OS security unless users are also denied shell access, because they can install their own forwarders. The default is "no".

AllowUsers
This keyword can be followed by a list of user name patterns, separated by spaces. If specified, login is allowed only for user names that match one of the patterns. Only user names are valid; a numerical user ID is not recognized. If the pattern takes the form user@host, then user and host are separately checked, restricting logins to particular users from particular hosts. The default is to allow login for all users. The allow and deny options are processed in the following order to determine if the user should be disallowed from login: DenyUsers, AllowUsers, DenyGroups, and then AllowGroups. To be allowed to login, you must pass all the tests for the specified keywords.

That is, if you want userx who is in groupy and groupz to be allowed to login, and you plan to specify all four keywords, then:

- userx must not be in DenyUsers, and
- userx must be in AllowUsers, and
- both groupy and groupz must not be in DenyGroups, and
- either groupy or groupz must be in AllowGroups

Note: To be allowed to login, the user must have a group if AllowGroups or DenyGroups is specified.

See "Patterns" on page 145 in ssh_config for more information about patterns.
Refer to the `sshd_config` keyword "Match" on page 158 for more information about matching z/OS user and group names.

Restriction: The maximum number of AllowUsers specifications is 256.

AuthorizedKeysFile
Specifies the file that contains the public keys that can be used for user authentication. AuthorizedKeysFile can contain tokens in the form %T which are substituted during connection setup. The following tokens are defined: %u is replaced by a literal %, %h is replaced by the home directory of the user being authenticated and %i is replaced by the username of that user. After expansion, AuthorizedKeysFile is taken to be an absolute path or one relative to the user's home directory (if no absolute path is given). The default is `.ssh/authorized_keys` anchored off the user's home directory.

Restriction: The maximum path length is 1023 bytes.

Banner
The contents of the specified file are sent to the remote user before authentication is allowed. If the argument is "none", then no banner is displayed. The default is no banner is displayed.

Restriction: This option applies to protocol version 2 only.

ChallengeResponseAuthentication
Not supported on z/OS UNIX. Specifies whether challenge-response authentication is allowed. The default is "no".

ChrootDirectory
Specifies a path to chroot to after authentication. This path, and all its components, must be root-owned directories that are not writable by any other user or group. This path also affects the files used during the login process. The default is not to chroot. For more information, see "Login process" on page 124 in the `sshd` section.

The path can contain the following tokens that are expanded at runtime once the connecting user has been authenticated: %u is replaced by a literal %, %h is replaced by the home directory of the user being authenticated, and %i is replaced by the username of that user.

The ChrootDirectory must contain the necessary files and directories to support the users' session. For interactive sessions, a shell (typically, sh) is required as well as basic /dev nodes such as null, zero, stdin, stdout, stderr, random and tty devices. For file transfer sessions using sftp, no additional configuration of the environment is necessary if the in-process sftp server is used (see "Subsystem" on page 162 for details).

Rule: If the syslog daemon (syslogd) is used to debug the users' session, such as a file transfer session using sftp, then the ChrootDirectory must contain the datagram socket in use by syslogd (for example, /dev/log).

Restriction: The maximum path length is 1023 bytes.

Ciphers
Specifies the ciphers to use for encrypting the session in protocol version 2. Multiple ciphers must be comma-separated. Valid ciphers include:

- 3des-cbc Triple-DES (3DES) algorithm
- `acss@openssh.org` OpenSSH `acss@openssh.org` cipher
sshd_config

<table>
<thead>
<tr>
<th>Cipher</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aes128-cbc</td>
<td>Advanced Encryption Standard (AES) CBC mode with 128-bit key</td>
</tr>
<tr>
<td>aes128-ctr</td>
<td>Advanced Encryption Standard (AES) CTR mode with 128-bit key</td>
</tr>
<tr>
<td>aes192-cbc</td>
<td>Advanced Encryption Standard (AES) CBC mode with 192-bit key</td>
</tr>
<tr>
<td>aes192-ctr</td>
<td>Advanced Encryption Standard (AES) CTR mode with 192-bit key</td>
</tr>
<tr>
<td>aes256-cbc</td>
<td>Advanced Encryption Standard (AES) CBC mode with 256-bit key</td>
</tr>
<tr>
<td>aes256-ctr</td>
<td>Advanced Encryption Standard (AES) CTR mode with 256-bit key</td>
</tr>
<tr>
<td>arcfour</td>
<td>Arcfour algorithm</td>
</tr>
<tr>
<td>arcfour128</td>
<td>Arcfour algorithm with 128-bit key</td>
</tr>
<tr>
<td>arcfour256</td>
<td>Arcfour algorithm with 256-bit key</td>
</tr>
<tr>
<td>blowfish-cbc</td>
<td>Blowfish algorithm</td>
</tr>
<tr>
<td>cast128-cbc</td>
<td>CAST algorithm</td>
</tr>
<tr>
<td>rijndael-cbc@lysat.liu.se</td>
<td>Same as Advanced Encryption Standard (AES) CBC mode with 256-bit key</td>
</tr>
</tbody>
</table>

The ciphers list is typically one long unbroken line; however due to space limitations, the default ciphers list is not shown as one unbroken line. The default is:

```
aes128-ctr,aes192-ctr,aes256-ctr,arcfour256,arcfour128,aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,aes192-cbc,aes256-cbc,arcfour,rijndael-cbc@lysat.liu.se
```

The ciphers list might need to be modified based on the ciphers source used. For more information, see the `zos_sshd_config` keyword.

ClientAliveInterval

Sets a timeout interval in seconds after which if no data has been received from the client, `sshd` sends a message through the encrypted channel to request a response from the client. The default is 0, indicating that these messages will not be sent to the client.

Restriction: This option applies to protocol version 2 only.

ClientAliveCountMax

Sets the number of client alive messages that can be sent without `sshd` receiving any messages back from the client. If this threshold is reached while client alive messages are being sent, `sshd` disconnects the client, thus terminating the session. It is important to note that the use of client alive messages is very different from TCPKeepAlive. Because the client alive messages are sent through the encrypted channel, they will not be spoofable. The TCP keepalive option enabled by TCPKeepAlive is spoofable. The client alive mechanism is valuable when the client or server depend on knowing when a connection has become inactive.

If ClientAliveInterval is set to 15 and ClientAliveCountMax is left at the default value of 3, unresponsive SSH clients are disconnected after approximately 45 seconds.
Compression
Specifies whether compression is allowed (full) or delayed until the user has authenticated successfully. The argument must be set to one of the following selections:
- "no" to disable all compression.
- "yes" to enable both full (zlib) and delayed (zlib@openssh.com) compression.
- "delayed" to enable delayed (zlib@openssh.com) compression only.

The default is "no".

If you use compression with privilege separation, make sure that the sshd daemon address space can memory map at least 656 pages. Either specify at least MAXMMAPAREA (656) in BPXPRMxx to provide a large enough system-wide value, or use a security product such as RACF to specify the MMAPAREAMAX limit for the user ID starting the sshd daemon. See z/OS UNIX System Services Planning for more information about MMAPAREAMAX.

DenyGroups
This keyword can be followed by a list of group name patterns, separated by spaces. Login is disallowed for users whose primary group or supplementary group list matches one of the patterns. Only group names are valid; a numerical group ID is not recognized. The default is to allow login for all groups. The allow and deny options are processed in the following order to determine if the user should be disallowed from login: DenyUsers, AllowUsers, DenyGroups, and then AllowGroups. To be allowed to login, you must pass all the tests for the specified keywords.

That is, if you want userx who is in groupy and groupz to be allowed to login, and you plan to specify all four keywords, then:
- userx must not be in DenyUsers, and
- userx must be in AllowUsers, and
- both groupy and groupz must not be in DenyGroups, and
- either groupy or groupz must be in AllowGroups

Note: To be allowed to login, the user must have a group if AllowGroups or DenyGroups is specified.

See "Patterns" on page 145 in sshd_config for more information about patterns.

Refer to the sshd_config keyword "Match" on page 158 for more information about matching z/OS user and group names.

Restriction: The maximum number of DenyGroups specifications is 256.

DenyUsers
This keyword can be followed by a list of user name patterns, separated by spaces. Login is disallowed for user names that match one of the patterns. Only user names are valid; a numerical user ID is not recognized. The default is to allow login for all users. If the pattern takes the form user@host then user and host are separately checked, restricting logins to particular users from particular hosts. The allow and deny options are processed in the following order to determine if the user should be
disallowed from login: DenyUsers, AllowUsers, DenyGroups, and then AllowGroups. To be allowed to login, you must pass all the tests for the specified keywords.

That is, if you want userx who is in groupy and groupz to be allowed to login, and you plan to specify all four keywords, then:

- userx must not be in DenyUsers, and
- userx must be in AllowUsers, and
- both groupy and groupz must not be in DenyGroups, and
- either groupy or groupz must be in AllowGroups

Note: To be allowed to login, the user must have a group if AllowGroups or DenyGroups is specified.

See “Patterns” on page 143 in sshd_config for more information about patterns.

Refer to the sshd_config keyword “Match” on page 158 for more information about matching z/OS user and group names.

Restriction: The maximum number of DenyUsers specifications is 256.

ForceCommand

Forces the execution of the command specified by ForceCommand, ignoring any command supplied by the client and ".ssh/rc if present. The command is invoked by using the user’s login shell with the -c option. This applies to shell, command, or subsystem execution. It is most useful inside a Match block. The command originally supplied by the client is available in the SSH_ORIGINAL_COMMAND environment variable.

Specifying a command of "internal-sftp" forces the use of an in-process sftp server that requires no support files when used with ChrootDirectory.

Tip: sftp-server options can be specified with the "internal-sftp" command by separating the options with blank spaces.

GatewayPorts

Specifies whether remote hosts are allowed to connect to ports forwarded by the client. By default, sshd binds remote port forwardings to the loopback address. This prevents other remote hosts from connecting to forwarded ports. GatewayPorts can be used to specify that sshd is to allow remote port forwardings to bind to non-loopback addresses, thus allowing other hosts to connect. The argument can be set to one of the following selections:

- "no" to force remote port forwardings to be available to the local host only.
- "yes" to force remote port forwardings to bind to the wildcard address.
- "clientspecified" to allow the client to select the address to which the forwarding is bound.

The default is "no".

GSSAPIAuthentication

Not supported on z/OS UNIX. Specifies whether user authentication based on GSS-API is allowed. The default is "no".

Restriction: This option applies to protocol version 2 only.

GSS-API stands for Generic Security Services Application Programming Interface. It is a generic API for handling client-server authentication.
Because it provides security services to callers in a generic way, supportable with a range of underlying mechanisms and technologies, it allows for source-level portability of applications to different environments. For more details, check IETF standard RFC 2743 at http://www.ietf.org/rfc/rfc2743.txt.

GSSAPICleanupCredentials
Not supported on z/OS UNIX. Specifies whether to automatically clear the user's credentials cache on logout. The default is "yes".

Restriction: This option applies to protocol version 2 only.

GSS-API stands for Generic Security Services Application Programming Interface. It is a generic API for handling client-server authentication. Because it provides security services to callers in a generic way, supportable with a range of underlying mechanisms and technologies, it allows for source-level portability of applications to different environments. For more details, check IETF standard RFC 2743 at http://www.ietf.org/rfc/rfc2743.txt.

HostbasedAuthentication
Specifies whether rhosts or /etc/hosts.equiv authentication together with successful public key client host authentication is allowed (host-based authentication). The default is "no".

Restriction: This option applies to protocol version 2 only and is similar to RhostsRSAAuthentication.

HostbasedUsesNameFromPacketOnly
Specifies whether or not the server will attempt to perform a reverse name lookup when matching the name in the "~/.rhosts," "~/.shosts," and /etc/hosts.equiv files during HostbasedAuthentication. A setting of "yes" means that ssdh uses the name supplied by the client instead of attempting to resolve the name from the TCP connection itself. The default is "no".

HostKey
Specifies a file containing a private host key used by OpenSSH. The default host key is /etc/ssh/ssh_host_key for protocol version 1. For protocol version 2, the default host key is /etc/ssh/ssh_host_rsa_key and /etc/ssh/ssh_host_dsa_key. ssdh will refuse to use a file if it is group/world-accessible. RSA1 keys are used for protocol version 1 and DSA or RSA are used for protocol version 2.

It is possible to have multiple host key files and key ring certificates (as configured by the HostKeyRingLabel option in the zos_ssdh_config file) in configuration files. If both host key files and key ring certificates are listed, the key ring certificates will be tried first. Only the first key found of each key type (for example, RSA, DSA, or RSA1) is used.

The maximum combined number of host key files and key ring certificates that can be specified is 256.

IgnoreRhosts
Specifies that .rhosts and .shosts files will not be used in RhostsAuthentication, RhostsRSAAuthentication or HostbasedAuthentication.

The /etc/hosts.equiv and /etc/ssh/hosts.equiv files are still used. The default is "yes".
IgnoreUserKnownHosts
Specifies whether sshd should ignore the user's ~/.ssh/known_hosts during
RhostsRSAAuthentication or HostbasedAuthentication. The default is "no".

KbdInteractiveAuthentication
Not supported on z/OS UNIX. Specifies whether to use
keyboard-interactive authentication. The argument to this keyword must be
"yes" or "no".

KeepAlive
This keyword is supported for compatibility with versions of OpenSSH
before 3.8.1p1. On systems using OpenSSH 3.8.1p1 or later, you should use
the keyword TCPKeepAlive instead.

Specifies whether the system should send TCP keepalive messages to the
other side. If they are sent, death of the connection or crash of one of the
machines will be properly noticed. However, connections will die if the
route is down temporarily. On the other hand, if keepalives are not sent,
sessions may hang indefinitely on the server, leaving ghost users and
consuming server resources.

The default is "yes" (to send keepalives), and the server will notice if the
network goes down or the client host crashes. This avoids infinitely
hanging sessions.

To disable keepalives, the value should be set to "no".

KerberosAuthentication
Not supported on z/OS UNIX. Specifies whether Kerberos authentication
is allowed. The authentication can be in the form of a Kerberos ticket, or if
PasswordAuthentication is "yes", the password provided by the user will
be validated through the Kerberos KDC. To use this option, the server
needs a Kerberos servtab which allows the verification of the KDC's
identity. The default is "no".

KerberosGetAFSToken
Not supported on z/OS UNIX. If AFS is active and the user has a Kerberos
5 TGT, attempts to acquire an AFS token before accessing the user's home
directory. The default is "no".

KerberosOrLocalPasswd
Not supported on z/OS UNIX. Validates the password by means of the
security product's normal password checking if password authentication
through Kerberos fails. The default is "yes".

KerberosTgtPassing
Not supported on z/OS UNIX. Specifies whether a Kerberos TGT is to be
forwarded to the server. This will work only if the Kerberos server is
actually an AFS kaserver. The default is "no".

KerberosTicketCleanup
Not supported on z/OS UNIX. Specifies whether to automatically erase the
user's ticket cache file on logout. The default is "yes".

KeyRegenerationInterval
In protocol version 1, the ephemeral server key is automatically
regenerated after this many seconds (if it has been used). Regeneration
prevents the decrypting of captured sessions by later breaking into the
machine and stealing the keys. The key is never stored anywhere. If the
value is 0, the key is never regenerated. The default is 3600 (seconds).
ListenAddress
Specifies the local addresses sshd should listen on. The following forms can be used:

ListenAddress host|IPv4addr|IPv6_addr
ListenAddress host|IPv4_addr:port
ListenAddress {host|IPv6_addr}:port

If port is not specified, sshd listens on the address and all prior Port options specified. Multiple ListenAddress options are permitted. Additionally, any Port options must precede this option for non-port qualified addresses. The default is to listen on all local addresses.

LoginGraceTime
The server disconnects after this time if the user has not successfully logged in. If the value is 0, there is no time limit. The default is 120 (seconds).

LogLevel
Gives the verbosity level that is used when logging messages from sshd. The possible values are: QUIET, FATAL, ERROR, INFO, VERBOSE, DEBUG, DEBUG1, DEBUG2, and DEBUG3. The default is INFO. DEBUG and DEBUG1 are equivalent. DEBUG2 and DEBUG3 each specify higher levels of debugging output.

Guideline: Do not log with a DEBUG level because doing so violates the privacy of users.

For more information about these logging levels, also referred to as priority codes, see the syslog daemon chapter in *z/OS Communications Server: IP Configuration Reference*.

MACs
Specifies the MAC (message authentication code) algorithms in order of preference. The MAC algorithm is used for data integrity protection. Multiple algorithms must be comma-separated.

The MAC algorithms list is typically one long unbroken line; however due to space limitations, the default MAC algorithms list is not shown as one unbroken line. The default is: hmac-md5,hmac-sha1,umac-64@openssh.com,hmac-ripemd160,hmac-ripemd160@openssh.com,hmac-sha1-96,hmac-md5-96.

The MAC algorithms list might need to be modified based on the MAC algorithms source used. For more information, see the `zos_sshd_config` keyword MACsSource.

Restriction: This option applies to protocol version 2 only.

Match
Introduces a conditional block. If all of the criteria on the Match line are satisfied, the keywords on the following lines override those set in the global section of the config file, until either another Match line or the end of the file.

Rule: Global settings must be placed before the first Match block.

The arguments to Match are one or more criteria-pattern pairs. The available criteria are User, Group, Host, and Address. The match patterns can consist of single entries or comma-separated lists and can use the wildcard and negation operators described in the ssh_config section “Patterns” on page 145.

Restrictions: Some restrictions apply.
sshd_config

- Only a subset of keywords can be used on the lines following a Match keyword. Those keywords are AllowTcpForwarding, Banner, ChrootDirectory, ForceCommand, GatewayPorts, HostbasedAuthentication, PasswordAuthentication, PermitOpen, PermitRootLogin, PubkeyAuthentication, RhostsRSAAuthentication, RSAAuthentication, X11DisplayOffset, X11Forwarding, and X11UseLocalHost.
- The maximum number of Group Match criteria arguments is 256.

Guideline: User and group names are typically not case sensitive on z/OS systems. However, when matching user and group names for this keyword and for related keywords (such as the sshd_config keywords AllowGroups, AllowUsers, DenyGroups and DenyUsers), the user and group names must be in the same alphabetical case as is stored in the user database, group database and user ID alias table (for example, USERIDALIASTABLE).

Example:

```
AllowTcpForwarding no

Match Address 192.168.32.*,127.0.0.1
  AllowTcpForwarding yes
  GatewayPorts no

Match User bar,baz
  AllowTcpForwarding yes

Match Host t*
  AllowTcpForwarding yes
```

MaxAuthTries

Specifies the maximum number of authentication attempts permitted per connection. When the number of failures reaches half this value, additional failures are logged. The default is 6.

Password authentication failures are always logged.

MaxStartups

Specifies the maximum number of concurrent unauthenticated connections to the SSH daemon. Additional connections will be dropped until authentication succeeds or the LoginGraceTime expires for a connection. The default is 10.

Alternately, random early drop can be enabled by specifying the three colon separated values "start:rate:full" (for example, "10:30:60"). sshd will refuse connection attempts with a probability of "rate/100" (30%, in the example) if there are currently "start" (10) unauthenticated connections. The probability increases linearly and all connection attempts are refused if the number of unauthenticated connections reaches "full" (60).

PAMAuthenticationViaKbdInt

Not supported on z/OS UNIX. Specifies whether PAM challenge-response authentication is allowed. This option allows the use of most PAM challenge-response authentication modules, but it will allow password authentication regardless of whether PasswordAuthentication is enabled.

PasswordAuthentication

Specifies whether password authentication is allowed. The argument must be set to "yes" or "no". The default is "yes". Password authentication checks a user-supplied password or password phrase.
PermitEmptyPasswords
Specifies whether the server allows login to accounts with empty password strings when password authentication is allowed. The default is "no".

Guideline: Set this keyword to "no" for security reasons. However, empty passwords can be allowed by setting up a SURROGAT class. The MVS identity running `sshd` requires READ access to the SURROGAT class profile, BPX.SRV.<userid> (where <userid> is the MVS userid for each user who is permitted to log in with an empty password.) This allows any user to login to user ID <userid> without a password.

PermitOpen
Specifies the destinations to which TCP port forwarding is permitted. The forwarding specification must be one of the following forms:

- PermitOpen host:port
- PermitOpen IPv4_addr:port
- PermitOpen [IPv6_addr]:port

Multiple forwards can be specified by separating them with white space. An argument of "any" can be used to remove all restrictions and permit any forwarding requests. By default, all port forwarding requests are permitted.

Restriction: The maximum number of forwards that can be specified is 100.

PermitRootLogin
Specifies whether a superuser (root) can login using `ssh`. The argument must be "yes" (default), "without-password", "forced-commands-only", or "no".

- If this option is set to "without-password", password authentication is disabled for superusers.
- If this option is set to "forced-commands-only", superuser login with public key authentication will be allowed, but only if the Authorized Keys File "command=" option has been specified (which may be useful for taking remote backups even if superuser login is normally not allowed). All other authentication methods are disabled for superusers.
- If this option is set to "no", a superuser is not allowed to login.

PermitTunnel
Not supported on z/OS UNIX. Specifies whether tunnel device forwarding is allowed. The argument must be "yes", "point-to-point" (layer 3), "ethernet" (layer 2), or "no". Specifying "yes" permits both "point-to-point" and "ethernet". The default is "no".

PermitUserEnvironment
Specifies whether the `~/.ssh/environment` and `environment=` options in `~/.ssh/authorized_keys` are processed by `sshd`. The default is "no". Enabling environment processing might enable users to bypass access restrictions in some configurations using mechanisms such as LD_PRELOAD.

The user's environment variables are processed after authentication and after the `sshd_config` keyword `AcceptEnv` is processed. As a result, the values of the user's environment variables might overwrite the results of the previous environment variable processing.
sshd_config

PidFile
Specifies the file that contains the process ID of the `sshd` daemon. The default is `/var/run/sshd.pid`.

Port
Specifies the port number that `sshd` listens on. The default is 22. Multiple options of this type are permitted. See also `ListenAddress`.

PrintLastLog
Not supported on z/OS UNIX. Specifies whether `sshd` should print the date and time of the last user login when a user logs in interactively. The default is "no". This option only returns information if your system supports lastlog data, such as with a wtmp or wtmpx file.

PrintMotd
Specifies whether `sshd` should print `/etc/motd` when a user logs in interactively. (On some systems, the shell, `/etc/profile`, or equivalent also prints `/etc/motd`.) The default is "yes". For more information about the use of `/etc/motd` during the login process, see "Login process" on page 124.

Protocol
Specifies the protocol versions `sshd` should support. The possible values are "1" and "2". Multiple versions must be comma-separated. The default is "2".

PubkeyAuthentication
Specifies whether public key authentication is allowed. The default is "yes".

Restriction: This option applies to protocol version 2 only.

RhostsAuthentication
Specifies whether authentication using rhosts or `/etc/hosts.equiv` files is sufficient. Normally, this method should not be permitted, because it is insecure. `RhostsRSAAuthentication` should be used instead, because it performs RSA-based host authentication in addition to normal rhosts or `/etc/hosts.equiv` authentication. The default is "no".

Restrictions: Some restrictions apply.
1. This option applies to protocol version 1 only.
2. `RhostsAuthentication` cannot be used with privilege separation.

This option was removed from the OpenSSH open source base distribution.

RhostsRSAAuthentication
Specifies whether rhosts or `/etc/hosts.equiv` authentication together with successful RSA host authentication is allowed. The default is "no".

Restriction: This option applies to protocol version 1 only.

RSAAuthentication
Specifies whether pure RSA authentication is allowed.

Restriction: This option applies to protocol version 1 only.

ServerKeyBits
Determines the number of bits in the ephemeral protocol version 1 server key. The minimum value is 512 and the default is 768.

StrictModes
Specifies whether `sshd` should check file modes and ownership of the user's files and home directory before accepting login. This is normally desirable in case users inadvertently leave their directory or files world-writable. The default is "yes".
Specifically, StrictModes checks that the following files, directories, and component path names are owned by the current user or superuser and that they are not group or world-writable:

- User's home directory
- User's .rhosts and .shosts files
- User's authorized keys file
- User's known hosts file

Subsystem

Configures an external subsystem (such as file transfer daemon) in protocol version 2. Arguments should be a subsystem name and a command with optional arguments to execute upon subsystem request.

The command `/usr/lib/ssh/sftp-server` implements the `sftp` file transfer subsystem. Alternatively, the name "internal-sftp" implements an in-process `sftp` server. Using the in-process sftp-server might simplify configurations that use the ChrootDirectory keyword to force a different file system root on clients. You can specify `sftp-server` options with the "internal-sftp" command by separating the options with blank spaces.

By default, no subsystems are defined. User-defined (non-built-in) subsystems are only supported between z/OS and z/OS. See "Limitations" on page 163 for more information.

SyslogFacility

Gives the facility code that is used when logging messages from `sshd`. The possible values are: DAEMON, USER, AUTH, LOCAL0, LOCAL1, LOCAL2, LOCAL3, LOCAL4, LOCAL5, LOCAL6, LOCAL7. If `sshd` is run in debug mode (invoked with `-d`), logging goes to stderr instead of the syslog. The default is AUTH.

For more information about these log facilities, see the syslog daemon section in z/OS Communications Server: IP Configuration Reference.

TCPKeepAlive

Specifies whether the system should send TCP keepalive messages to the other side. If they are sent, a lost network connection or stopping of one of the machines will be properly noticed. However, this means that connections will die if the route is down temporarily, and some people find it annoying. On the other hand, if keepalives are not sent, sessions may hang indefinitely on the server, leaving ghost users and consuming server resources. The default is "yes" (to send TCP keepalive messages), and the server will notice if the network goes down or the client host crashes. This option avoids infinitely hanging sessions. To disable TCP keepalive messages, set the value to "no".

UseDNS

Specifies whether `sshd` should look up the remote host name and check that the resolved host name for the remote IP address maps back to the same IP address. The default is "yes".

UseLogin

Specifies whether `login` is used for interactive login sessions. `login` is never used for remote command execution. If UseLogin is enabled, X11 forwarding will be disabled because `login` does not know how to handle Xauth cookies. If UsePrivilegeSeparation is specified, UsePrivilegeSeparation is disabled after authentication. The default is "no".
UsePAM
Not supported on z/OS UNIX. Enables PAM authentication (via challenge-response) and session set up. The default is "no".

UsePrivilegeSeparation
Specifies whether sshd separates privileges by creating an unprivileged child process to deal with incoming network traffic. After successful authentication, another process will be created that has the privilege of the authenticated user. The goal of privilege separation is to prevent privilege escalation by containing any corruption within the unprivileged processes. The default is "yes".

VerifyReverseMapping
This keyword is supported for compatibility with versions of OpenSSH before 3.8.1p1. On systems using OpenSSH 3.8.1p1 or later, use the keyword UseDNS.

Specifies whether sshd should try to verify the remote host name and check that the resolved host name for the remote IP address maps back to the same IP address. The default is "yes".

X11DisplayOffset
Specifies the first display number available for sshd's X11 forwarding. This prevents sshd from interfering with real X11 servers. The default is "10".

X11Forwarding
Specifies whether X11 forwarding is permitted. Disabling X11 forwarding does not improve general z/OS security, because users can install their own forwarders. X11 forwarding is automatically disabled if UseLogin is enabled. The default is "no".

X11UseLocalhost
Specifies whether sshd should bind the X11 forwarding server to the loopback address or to the wildcard address. By default sshd binds the forwarding server to the loopback address and sets the hostname part of the DISPLAY environment variable to localhost. This prevents remote hosts from connecting to the fake display. However, some X11 clients may not function with this configuration. X11UseLocalhost can be set to "no" to specify that the forwarding server should be bound to the wildcard address. The argument must be "yes" (default) or "no".

XAuthLocation
Specifies the location of the xauth program. The default is /usr/X11R6/bin/xauth.

Limitations
User-defined subsystems are only supported between z/OS and z/OS. This is due to a limitation in the SECSH protocol with regards to EBCDIC platforms; for information about the IETF SECSH RFCs and internet drafts, see "RFCs and Internet drafts" on page 349. User-defined subsystems are specified by using the sshd_config subsystem keyword. Only the built-in sftp subsystem is supported for transfers between all platforms.

Time formats
sshd command-line arguments and configuration file options that specify time can be expressed using a sequence of the form: time[qualifier] where time is a positive integer value and qualifier is one of the following selections:

- <none> seconds
- s | S seconds
sshd_config

- m | M minutes
- h | H hours
- d | D days
- w | W weeks

Each member of the sequence is added together to calculate the total time value.

Time format examples:
- 600 600 seconds (10 minutes)
- 10m 10 minutes
- 1h30m 1 hour 30 minutes (90 minutes)

Files

`/etc/ssh/sshd_config`
Contains configuration data for `sshd`. This file should be writable by superuser only, but it is recommended (though not necessary) that it be world-readable.

Related information

`sshd`

Authors

OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen. Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song removed many bugs, re-added newer features and created OpenSSH. Markus Friedl contributed the support for SSH protocol versions 1.5 and 2.0. Niels Provos and Markus Friedl contributed support for privilege separation.

zos_sshd_config — z/OS-specific OpenSSH daemon configuration file

Description

z/OS obtains z/OS-specific daemon configuration data in the following order:
1. Command-line specification using the `sshd -o` option.
2. Configuration file specified with the environment variable `_ZOS_SSHD_CONFIG`. The default is `/etc/ssh/zos_sshd_config`. For each keyword, the first obtained value is used.

Restriction: z/OS-specific keywords cannot be specified in the `sshd_config` configuration files such as the system-wide configuration file (`/etc/ssh/sshd_config`) or the user-defined configuration file specified with the `sshd -f` option.

File format

The `zos_sshd_config` configuration file views empty lines and lines starting with `#` as comments. Configuration options can be specified using two different formats.
- The first format is the keyword argument pair separated by white space.
- The second format is the keyword argument pair separated with exactly one “=” and optional white space. This format avoids the need to quote white space when specifying configuration options using the `sshd -o` option. Arguments can optionally be enclosed in double quotes (”) in order to represent arguments containing spaces.

For example:
Keywords are not case sensitive while arguments are case sensitive. Following are the possible keywords:

CiphersSource

Specifies the source used to implement the ciphers specified by the `sshd_config` keyword Ciphers. Valid arguments are “any”, “OpenSSL” or “ICSF”. The default is “OpenSSL”. Specifying “OpenSSL” requests all ciphers to be implemented using the statically linked OpenSSL cryptographic library. Specifying “ICSF” requests all applicable ciphers to be implemented using Integrated Cryptographic Service Facility (ICSF). Ciphers that are not supported by ICSF will fail if used. Specifying “any” requests all applicable ciphers to be implemented using ICSF if available. Ciphers that are not supported by ICSF are implemented using OpenSSL. If ICSF is not available, all ciphers are implemented using OpenSSL. For more information about the ICSF-supported ciphers and the setup required to use ICSF, see [“Setting up OpenSSH to use ICSF ciphers and MAC algorithms” on page 52](#).

Restriction: This option applies to protocol version 2 only and is provided via the PTF for APAR OA37278.

HostKeyRingLabel

Specifies the key ring owner, name of the key ring and certificate label within the key ring containing a private host key used by OpenSSH. The key ring can be real or virtual, and certificate labels can contain embedded blanks. The key ring and the certificate connected to the key ring were created in the server authentication setup, which are described in [“Steps for setting up user authentication when using key rings to store keys” on page 72](#). One or more blanks separate the key ring name from the certificate label. The host private key is read from this key ring before HostKey files are checked. The default is to use only the HostKey file (or files).

It is possible to have multiple host key files and key ring certificates in configuration files. If both host key files and key ring certificates are used, the key ring certificates are tried first. Only the first key found of each type (for example, RSA, DSA, or RSA1) is used. The maximum combined number of host key files and key ring certificates that can be specified is 256.

The option value must be surrounded by double quotes.

Example: An example of this option in the `zos_sshd_config` file for a key ring named SSHDring' that is owned by SSHDAEM and a certificate labeled 'my label with blanks' is as follows:

```
HostKeyRingLabel="SSHDAEM/SSHDring my label with blanks"
```

If the option is specified as a command-line option, you might need to escape the double quote characters that surround the argument value:

```
-o HostKeyRingLabel="\"SSHDAEM/SSHDring my label with blanks\""
```

MACsSource

Specifies the source used to implement the MAC algorithms specified by the `sshd_config` keyword MACs. Valid arguments are “any”, “OpenSSL” or “ICSF”. The default is “OpenSSL”. Specifying “OpenSSL” requests all MAC algorithms to be implemented using the statically linked OpenSSL...
Cryptographic library. Specifying “ICSF” requests all applicable MAC algorithms to be implemented using Integrated Cryptographic Service Facility (ICSF). MAC algorithms not supported by ICSF will fail if used. Specifying “any” requests all applicable MAC algorithms to be implemented using ICSF if available. MAC algorithms that are not supported by ICSF are implemented using OpenSSL. If ICSF is not available, all MAC algorithms are implemented using OpenSSL. For more information about the ICSF-supported MAC algorithms and the setup required to use ICSF, see “Setting up OpenSSH to use ICSF ciphers and MAC algorithms” on page 52.

Restriction: This option applies to protocol version 2 only and is provided via the PTF for APAR OA37278.

Match
Introduces a conditional block. If all of the criteria on the Match line are satisfied, the keywords on the following lines override those set in the global section of the config file, until either another Match line or the end of the file.

Rule: Global settings must be placed before the first Match block.

The arguments to Match are one or more criteria-pattern pairs. The available criteria are User, Group, Host, and Address. The match patterns can consist of single entries or comma-separated lists and can use the wildcard and negation operators described in the ssh_config section “Patterns” on page 145.

Restrictions: Some restrictions apply.
1. Only the ServerSMF keyword can be used on the line following a Match keyword.
2. The maximum number of Group Match criteria arguments is 256.

Guideline: User and group names are typically not case sensitive on z/OS systems. However, when matching user and group names for this keyword, the user and group names must be in the same alphabetical case as is stored in the user database, group database and user ID alias table (for example, USERIDALIASTABLE).

For example:

```
ServerSMF none
Match Address 192.168.32.*,127.0.0.1
  ServerSMF TYPE119_U83

Match User bar,baz
  ServerSMF TYPE119_U84

Match Host t*
  ServerSMF TYPE119_U83
```

ServerSMF
Specifies whether to collect server SMF records. The argument must be set to "TYPE119_U83", "TYPE119_U84" or "none". The default is "none". If set to "TYPE119_U83" or "TYPE119_U84", SMF Type 119 login failure records (subtype 98) are collected as well as server transfer completion records (subtype 96) for the sftp and scp commands. SMF record exit IEFU83 receives control for "TYPE119_U83". SMF record exit IEFU84 receives control for "TYPE119_U84".
Environment variable

_ZOS_SSHD_CONFIG

Specifies the path name of the user-defined _zos_sshd_config configuration file. The default is /etc/ssh/zos_sshd_config. See File format on page 164 for the available keywords. The recommended permissions of the specified file are read/write for the user and not accessible by others.

Files

/etc/ssh/zos_sshd_config

/z/OS-specific system-wide daemon configuration file. This file must be world-readable but writable only by a superuser.

Related information

scp, sftp, sftp-server, ssdh

Other OpenSSH files

moduli — System moduli file

Description

The /etc/ssh/moduli file contains the system-wide Diffie-Hellman prime moduli for ssdh. Each line in this file contains the following fields: Time, Type, Tests, Tries, Size, Generator, Modulus. The fields are separated by white space (tab or blank). The file is searched for moduli that meet the appropriate Time, Size and Generator criteria. When more than one meet the criteria, the selection should be weighted toward newer moduli, without completely disqualifying older moduli.

File format

Time: yyyymmddhhmms

Specifies the system time that the line was appended to the file. The value 00000000000000 means unknown (historic).

Type: decimal

Specifies the internal structure of the prime modulus.

0 Unknown; often learned from peer during protocol operation, and saved for later analysis.

1 Unstructured; a common large number.

2 Safe (p = 2q + 1); meets basic structural requirements.

3 Schnorr.

4 Sophie-Germaine (q = (p-1)/2); usually generated in the process of testing safe or strong primes.

5 Strong; useful for RSA public key generation.

Tests: decimal (bit field)

Specifies the methods used in checking for primality. Usually, more than one test is used.

0 Not tested; often learned from peer during protocol operation, and saved for later analysis.

1 Composite; failed one or more tests. In this case, the highest bit specifies the test that failed.

2 Sieve; checked for division by a range of smaller primes.
moduli

4 Miller-Rabin.
8 Jacobi.
16 Elliptic Curve.

Tries: decimal

- Depends on the value of the highest valid Test bit, where the method specified is:
 - 0 Not tested (always zero).
 - 1 Composite (irrelevant).
 - 2 Sieve; number of primes sieved. Commonly on the order of 32,000,000.
 - 4 Miller-Rabin; number of M-R iterations. Commonly on the order of 32 to 64.
 - 8 Jacobi; unknown (always zero).
 - 16 Elliptic Curve; unused (always zero).

Size: decimal

- Specifies the number of significant bits.

Generator: hex string

- Specifies the best generator for a Diffie-Hellman exchange. 0 = unknown or variable such as 2, 3, or 5.

Modulus: hex string

- The prime modulus.

Related information

sshd
Chapter 11. OpenSSH files Quick Reference

Configuration files

Table 17 lists the configuration files that must be copied into the /etc directory. Samples provided by the installation must be copied into /etc.

Table 17. Configuration files to copy into /etc (including permissions)

<table>
<thead>
<tr>
<th>File</th>
<th>Copied to</th>
<th>Description</th>
<th>Permissions</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>/samples/moduli</td>
<td>/etc/ssh/moduli</td>
<td>Contains Diffie-Hellman groups for sshd. See "moduli" on page 167.</td>
<td>644</td>
<td>UID(0)</td>
</tr>
<tr>
<td>/samples/ssh_prng_cmds</td>
<td>/etc/ssh/ssh_prng_cmds</td>
<td>Commands for gathering entropy</td>
<td>644</td>
<td>UID(0)</td>
</tr>
<tr>
<td>/samples/ssh_config</td>
<td>/etc/ssh/ssh_config</td>
<td>OpenSSH client configuration file. See "ssh_config" on page 133.</td>
<td>644</td>
<td>UID(0)</td>
</tr>
<tr>
<td>/samples/sshd_config</td>
<td>/etc/ssh/sshd_config</td>
<td>OpenSSH daemon configuration file. See "sshd_config" on page 150.</td>
<td>644</td>
<td>UID(0)</td>
</tr>
<tr>
<td>/samples/zos_ssh_config</td>
<td>/etc/zos_ssh_config</td>
<td>z/OS-specific OpenSSH client configuration file. See "zos_ssh_config" on page 145.</td>
<td>644</td>
<td>UID(0)</td>
</tr>
<tr>
<td>/samples/zos_sshd_config</td>
<td>/etc/zos_sshd_config</td>
<td>z/OS-specific OpenSSH daemon configuration file. See "zos_sshd_config" on page 164.</td>
<td>644</td>
<td>UID(0)</td>
</tr>
</tbody>
</table>

Program-generated files

Table 18 lists the files created by OpenSSH and lists the owner and permissions that are set upon creation.

Table 18. Program-generated files (including permissions)

<table>
<thead>
<tr>
<th>File</th>
<th>Produced by</th>
<th>Description</th>
<th>Permissions</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>~/.ssh/prng_seed</td>
<td>ssh-rand-helper</td>
<td>Seed file used by ssh-rand-helper</td>
<td>600</td>
<td>User</td>
</tr>
<tr>
<td>/var/run/sshd.pid</td>
<td>sshd</td>
<td>sshd daemon process ID</td>
<td>644</td>
<td>UID(0)</td>
</tr>
<tr>
<td>/var/run/sshd.mm.XXXXXXX</td>
<td>sshd</td>
<td>Temporary files used for compression with privilege separation</td>
<td>600</td>
<td>UID(0)</td>
</tr>
</tbody>
</table>
Administrator-generated user files

Table 19 lists the files created by the administrator and lists the owner and permissions that are set upon creation.

<table>
<thead>
<tr>
<th>File</th>
<th>Produced by</th>
<th>Description</th>
<th>Permissions</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/ssh/sshrc</td>
<td>Administrator</td>
<td>Optional host-specific initialization script</td>
<td>644</td>
<td>UID(0)</td>
</tr>
<tr>
<td>/etc/ssh/ssh_host_key</td>
<td>ssh-keygen</td>
<td>Host private key file</td>
<td>600</td>
<td>UID(0)</td>
</tr>
<tr>
<td>/etc/ssh/ssh_host_dsa_key</td>
<td>ssh-keygen</td>
<td>Host private DSA key file</td>
<td>600</td>
<td>UID(0)</td>
</tr>
<tr>
<td>/etc/ssh/ssh_host_rsa_key</td>
<td>ssh-keygen</td>
<td>Host private RSA key file</td>
<td>600</td>
<td>UID(0)</td>
</tr>
<tr>
<td>/etc/ssh/ssh_host_key.pub</td>
<td>ssh-keygen</td>
<td>Host public key file</td>
<td>644</td>
<td>UID(0)</td>
</tr>
<tr>
<td>/etc/ssh/ssh_host_dsa_key.pub</td>
<td>ssh-keygen</td>
<td>Host public DSA key file</td>
<td>644</td>
<td>UID(0)</td>
</tr>
<tr>
<td>/etc/ssh/ssh_host_rsa_key.pub</td>
<td>ssh-keygen</td>
<td>Host public RSA key file</td>
<td>644</td>
<td>UID(0)</td>
</tr>
<tr>
<td>/etc/ssh/ssh_known_hosts</td>
<td>Administrator</td>
<td>Public keys for remote hosts allowed by system</td>
<td>644</td>
<td>UID(0)</td>
</tr>
<tr>
<td>/etc/hosts.equiv</td>
<td>Administrator</td>
<td>Not recommended. Hosts listed in .rhosts</td>
<td>644</td>
<td>UID(0)</td>
</tr>
<tr>
<td>/etc/ssh/hosts.equiv</td>
<td>Administrator</td>
<td>Not recommended. Hosts list used in ssh</td>
<td>644</td>
<td>UID(0)</td>
</tr>
<tr>
<td>/etc/nologin</td>
<td>Administrator</td>
<td>If it exists, prevents non-superuser sshd login</td>
<td>644</td>
<td>UID(0)</td>
</tr>
</tbody>
</table>

User-generated files

Table 20 lists the files created by the user and lists the owner and permissions that are set upon creation.

<table>
<thead>
<tr>
<th>File</th>
<th>Produced by</th>
<th>Description</th>
<th>Permissions</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>~/.ssh/known_hosts</td>
<td>User</td>
<td>Remote host key added to the file when user</td>
<td>644</td>
<td>User</td>
</tr>
<tr>
<td></td>
<td></td>
<td>connects to an unknown host.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>~/.ssh/authorized_keys</td>
<td>User</td>
<td>Copied from ~/.ssh/*.pub files of this user's</td>
<td>644</td>
<td>User</td>
</tr>
<tr>
<td></td>
<td></td>
<td>accounts on other (remote) systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>~/.rhosts</td>
<td>User</td>
<td>Not recommended. Hosts and users lists to which</td>
<td>644</td>
<td>User</td>
</tr>
<tr>
<td></td>
<td></td>
<td>user can login without password.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 20. User-generated files (including permissions) (continued)

<table>
<thead>
<tr>
<th>File</th>
<th>Produced by</th>
<th>Description</th>
<th>Permissions</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>~/.shosts</td>
<td>User</td>
<td>Not recommended. Hosts and users lists that users can login (via <code>sshd</code> only) without password.</td>
<td>644</td>
<td>User</td>
</tr>
<tr>
<td>~/.ssh/config</td>
<td>Per-user OpenSSH client configuration file</td>
<td>Copied from <code>/samples/ssh_config</code> by user</td>
<td>644</td>
<td>User</td>
</tr>
<tr>
<td>~/.ssh/zos_user_ssh_config</td>
<td>User</td>
<td>z/OS-specific per-user OpenSSH client configuration file</td>
<td>644</td>
<td>User</td>
</tr>
<tr>
<td>~/.ssh/environment</td>
<td>User</td>
<td>User's environment variable initialization at <code>ssh</code> login</td>
<td>600</td>
<td>User</td>
</tr>
<tr>
<td>~/.ssh/rc</td>
<td>User</td>
<td>User's initialization script at <code>ssh</code> login</td>
<td>600</td>
<td>User</td>
</tr>
<tr>
<td>~/.ssh/identity</td>
<td>ssh-keygen</td>
<td>User private key file (protocol 1)</td>
<td>600</td>
<td>User</td>
</tr>
<tr>
<td>~/.ssh/id_dsa</td>
<td>ssh-keygen</td>
<td>User private DSA key file</td>
<td>600</td>
<td>User</td>
</tr>
<tr>
<td>~/.ssh/id_rsa</td>
<td>ssh-keygen</td>
<td>User private RSA key file</td>
<td>600</td>
<td>User</td>
</tr>
<tr>
<td>~/.ssh/identity.pub</td>
<td>ssh-keygen</td>
<td>User public key (protocol 1)</td>
<td>644</td>
<td>User</td>
</tr>
<tr>
<td>~/.ssh/id_dsa.pub</td>
<td>ssh-keygen</td>
<td>User public DSA key</td>
<td>644</td>
<td>User</td>
</tr>
<tr>
<td>~/.ssh/id_rsa.pub</td>
<td>ssh-keygen</td>
<td>User public RSA key</td>
<td>644</td>
<td>User</td>
</tr>
</tbody>
</table>
Chapter 12. SMF Type 119 records for OpenSSH

This topic describes the SMF Type 119 records collected for OpenSSH servers and clients.

Common SMF Type 119 record format

C-level macros for mapping OpenSSH SMF Type 119 records can be found in /samples/ssh_smf.h. Assembler mappings can be found in FOTSMF77 in SYS1.MACLIB.

All Type 119 SMF records are in the format shown in Table 21. For a list of record subtypes that OpenSSH supports, see “SMF 119 record subtypes for OpenSSH” on page 174.

Table 21. Records types and subtype information

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(x'0')</td>
<td>Standard header</td>
<td>24</td>
<td>Binary</td>
<td>SMF system header</td>
</tr>
<tr>
<td>0(x'0')</td>
<td>SMF_119SSH_HDLength</td>
<td>2</td>
<td>Binary</td>
<td>SMF record length</td>
</tr>
<tr>
<td>2(x'2')</td>
<td>SMF_119SSH_HDSegDesc</td>
<td>2</td>
<td>Binary</td>
<td>Segment descriptor</td>
</tr>
<tr>
<td>4(x'4')</td>
<td>SMF_119SSH_HDFlags</td>
<td>1</td>
<td>Binary</td>
<td>Record flags</td>
</tr>
<tr>
<td>5(x'5')</td>
<td>SMF_119SSH_HDType</td>
<td>1</td>
<td>Binary</td>
<td>Record type; is set to 119 (x'77')</td>
</tr>
<tr>
<td>6(x'6')</td>
<td>SMF_119SSH_HDTime</td>
<td>4</td>
<td>Binary</td>
<td>SMF system time stamp (is local time)</td>
</tr>
<tr>
<td>10(x'A')</td>
<td>SMF_119SSH_HDDate</td>
<td>4</td>
<td>Packed</td>
<td>SMF system date (is local date)</td>
</tr>
<tr>
<td>14(x'D')</td>
<td>SMF_119SSH_HDSSID</td>
<td>4</td>
<td>EBCDIC</td>
<td>SMF system ID</td>
</tr>
<tr>
<td>18(x'12')</td>
<td>SMF_119SSH_HDSSI</td>
<td>4</td>
<td>EBCDIC</td>
<td>SMF subsystem ID</td>
</tr>
<tr>
<td>22(x'16')</td>
<td>SMF_119SSH_HDSubType</td>
<td>2</td>
<td>Binary</td>
<td>Record subtype</td>
</tr>
<tr>
<td>24(x'18')</td>
<td>Self-defining section</td>
<td></td>
<td>Binary</td>
<td>This section indicates how many sections follow and their location in the record.</td>
</tr>
</tbody>
</table>

- TCP/IP identification section for OpenSSH
 - 64 Binary This section is present in every record; it describes the TCP/IP stack that issued the record. Its location and size are indicated by the self-defining section.

- Record-specific data section 1
 - ... Binary First record-specific data section. Its location and size are indicated by the self-defining section.

- Record-specific data section 1, second entry
 - ... Binary The self-defining section indicates how many occurrences of each record-specific data section are present in the record.

- Record-specific data section 2 (optional)
 - ... Binary Second record-specific data section.

- Record-specific data section n, first entry (optional)
 - ... Binary Last record-specific data section. The self-defining section indicates how many types of data sections there are.
SMF Type 119 records

SMF 119 record subtypes for OpenSSH

OpenSSH collects SMF Type 119 records for file transfer activity and login failure information. You can control the collection of these records by using the configuration keywords ClientSMF and ServerSMF in z/OS-specific client and daemon configuration files, respectively. These keywords also indicate whether system-wide SMF record exit IEFU83 or IEFU84 receives control. For more information about those keywords, see “zos_ssh_config” on page 145 and “zos_sshd_config” on page 164.

The specified SMF record exit receives control before each record is written to the SMF data set. A return code from this exit indicates whether the system is to suppress the current SMF record. The parameter passed to this exit is the SMF record to be written. See z/OS MVS System Management Facilities (SMF) for more information.

All the records described in this topic are written using record type x'77' (format 119), and record subtype values, at offset 22(x'16') in the SMF record header, are used to uniquely identify the type of record being collected as well as describing the values that will be seen in the SMF_119SSH_TI_Comp and SMF_119SSH_TI_Reason fields of the TCP/IP identification section. Table 22 correlates the subtypes collected by OpenSSH to the type of record being produced.

Table 22. OpenSSH SMF Type 119 record subtype information and record type

<table>
<thead>
<tr>
<th>Record subtype</th>
<th>Description</th>
<th>Component</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>96(x'60')</td>
<td>Server transfer completion record</td>
<td>SFTPS or SCPS</td>
<td>Event</td>
</tr>
<tr>
<td>97(x'61')</td>
<td>Client transfer completion record</td>
<td>SFTPC or SCPC</td>
<td>Event</td>
</tr>
<tr>
<td>98(x'62')</td>
<td>Login failure record</td>
<td>SSHD</td>
<td>Event</td>
</tr>
</tbody>
</table>

Additional SMF Type 119 subtype records are provided by z/OS Communications Server and are described in z/OS Communications Server: IP Configuration Reference.

Standard data format concepts

The following concepts apply to standard data formats:

- Unless specified otherwise, all times are indicated in units of 1/100 seconds since midnight UTC/GMT (Universal Time, Coordinated/Greenwich Mean Time).
- All dates are indicated in packed binary-coded decimal (BCD) format, with digits x'01yydddF'. If no data is available, a date of x'0000000F' is written
- Interval durations are specified in units of 1/100 seconds.
- All IP addresses are in 128-bit IPv6 format. IPv4 addresses are reported in IPv4-mapped form where the 4-byte IPv4 address is preceded by 12 bytes, the first 10 of which are 0, and the last two of which are 'FFx'. IPv6 addresses appears in numeric form.
- Unless specified otherwise, all path names are absolute path names.
Common TCP/IP identification section for OpenSSH

Table 23 shows a section that is present in every SMF Type 119 record. It identifies the system and stack information associated with the SMF record.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(x'0')</td>
<td>SMF_119SSH_TI_SYSName</td>
<td>8</td>
<td>EBCDIC</td>
<td>System name from SYSNAME in IEASYSxx</td>
</tr>
<tr>
<td>8(x'8')</td>
<td>SMF_119SSH_TI_SysplexName</td>
<td>8</td>
<td>EBCDIC</td>
<td>Sysplex name from SYSPLEX in COUPLExx</td>
</tr>
<tr>
<td>16(x'10')</td>
<td>SMF_119SSH_TI_Stack</td>
<td>8</td>
<td>EBCDIC</td>
<td>TCP/IP stack name</td>
</tr>
<tr>
<td>24(x'18')</td>
<td>SMF_119SSH_TI_ReleaseID</td>
<td>8</td>
<td>EBCDIC</td>
<td>z/OS release identifier</td>
</tr>
<tr>
<td>32(x'20')</td>
<td>SMF_119SSH_TI_Comp</td>
<td>8</td>
<td>EBCDIC</td>
<td>OpenSSH subcomponent (right-padded with blanks):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SFTPS sftp server</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SFTPC sftp client</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SCPS scp server</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SCPC scp client</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSHD sshd daemon</td>
</tr>
<tr>
<td>40(x'28')</td>
<td>SMF_119SSH_TI_ASName</td>
<td>8</td>
<td>EBCDIC</td>
<td>Started task qualifier or address space name of address space that writes this SMF record</td>
</tr>
<tr>
<td>48(x'30')</td>
<td>SMF_119SSH_TI_UserID</td>
<td>8</td>
<td>EBCDIC</td>
<td>User ID of security context under which this SMF record is written</td>
</tr>
<tr>
<td>56(x'38')</td>
<td>Reserved</td>
<td>2</td>
<td>Binary</td>
<td>Reserved</td>
</tr>
<tr>
<td>58(x'3A')</td>
<td>SMF_119SSH_TI_ASID</td>
<td>2</td>
<td>Binary</td>
<td>ASID of address space that writes this SMF record</td>
</tr>
<tr>
<td>60(x'3C')</td>
<td>SMF_119SSH_TI_Reason</td>
<td>1</td>
<td>Binary</td>
<td>Reason for writing this SMF record</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'08' Event record</td>
</tr>
<tr>
<td>61(x'3D')</td>
<td>SMF_119SSH_TI_RecordID</td>
<td>1</td>
<td>Binary</td>
<td>Record ID</td>
</tr>
<tr>
<td>61(x'3E')</td>
<td>Reserved</td>
<td>2</td>
<td>EBCDIC</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Common security section for OpenSSH

Table 24 shows a section that is present in every SMF Type 119 record. It identifies the security information associated with the SMF record.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(x'0')</td>
<td>SMF_119SSH_SSHV</td>
<td>16</td>
<td>EBCDIC</td>
<td>OpenSSH version</td>
</tr>
<tr>
<td>16(x'10')</td>
<td>SMF_119SSH_SSLV</td>
<td>32</td>
<td>EBCDIC</td>
<td>OpenSSL version</td>
</tr>
<tr>
<td>48(x'30')</td>
<td>SMF_119SSH_ZlibV</td>
<td>16</td>
<td>EBCDIC</td>
<td>zlib version</td>
</tr>
<tr>
<td>64(x'40')</td>
<td>SMF_119SSH_Protov</td>
<td>8</td>
<td>EBCDIC</td>
<td>Protocol version (right-padded with blanks):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>'SSHV1' Protocol version 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>'SSHV2' Protocol version 2</td>
</tr>
<tr>
<td>72(x'48')</td>
<td>SMF_119SSH_AuthMethod</td>
<td>2</td>
<td>Binary</td>
<td>Authentication method being used:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0000' Unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0001' None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0002' Password</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0003' Public key</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0004' Host-based</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0005' Rhhosts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0006' RhhostsRSA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0007' RSA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0008' Keyboard-interactive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0009' Challenge-response</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'00A' Control socket 1</td>
</tr>
</tbody>
</table>
SMF Type 119 records

Table 24. Common security section (continued)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>74(x'4A')</td>
<td>SMF_119SSH_Cipher</td>
<td>2</td>
<td>Binary</td>
<td>Cipher type being used:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0000' Unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0001' None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Possible values when protocol version 1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0002' 3DES</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0003' Blowfish</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0004' DES</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Possible values when protocol version 2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0005' 3des-cbc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0006' blowfish-cbc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0007' cast128-cbc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0008' arcfour128</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0009' arcfour256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'000A' arcfour</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'000B' aes128-cbc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'000C' aes192-cbc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'000D' aes256-cbc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'000E' aes128-ctr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'000F' aes192-ctr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0010' aes256-ctr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0011' rijndael-cbc@lysator.liu.se</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0012' acos@openssh.org</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'1005' 3des-cbc (ICSF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'1006' blowfish-cbc (ICSF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'1008' arcfour128 (ICSF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'1009' arcfour256 (ICSF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'100A' arcfour (ICSF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'100B' aes128-cbc (ICSF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'100C' aes192-cbc (ICSF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'100D' aes256-cbc (ICSF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'1011' rijndael-cbc@lysator.liu.se (ICSF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note: Unless indicated otherwise, the cipher source is OpenSSL.</td>
</tr>
<tr>
<td>76(x'4C')</td>
<td>SMF_119SSH_MAC</td>
<td>2</td>
<td>Binary</td>
<td>MAC algorithm being used:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0000' Unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0001' None (protocol version 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0002' hmac-md5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0003' hmac-sha1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0004' umac-64@openssh.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0005' hmac-ripemd160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0006' hmac-sha1-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0007' hmac-md5-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0008' hmac-ripemd160@openssh.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'1002' hmac-md5 (ICSF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'1003' hmac-sha1 (ICSF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'1005' hmac-ripemd160 (ICSF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'1006' hmac-sha1-96 (ICSF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'1007' hmac-md5-96 (ICSF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'1008' hmac-ripemd160@openssh.com (ICSF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note: Unless indicated otherwise, the MAC source is OpenSSL.</td>
</tr>
<tr>
<td>78(x'4E')</td>
<td>SMF_119SSH_COMP</td>
<td>2</td>
<td>Binary</td>
<td>Compression method being used:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0000' Unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0001' None (no)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0002' zlib (yes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'0003' zlib@openssh.com (delayed)</td>
</tr>
</tbody>
</table>

Notes:

1. When the authentication method being used is Control Socket and the ssh connection information cannot be collected from the control socket, the EBCDIC fields are set to blanks and the binary fields are set to x'0000' Unknown.
Server transfer completion record (subtype 96)

The server transfer completion records are collected when the sftp-server (regular or "internal-sftp") or the server side of scp completes processing of one of the following file transfer subcommands:

- Creating, uploading, downloading, renaming or removing files
- Creating and removing directories
- Changing the file permissions, UIDs, or GIDs
- Creating symbolic links

For scp, only file downloading or uploading apply. A common format for the record is used for each sftp file transfer operation, so the record contains an indication of which subcommand was performed.

See Table 23 on page 175 for the contents of the TCP/IP identification section. For the server transfer completion record, the TCP/IP identification section indicates either SFTPS (sftp-server) or SCPS (server side of scp) as the OpenSSH subcomponent and x'08' (event record) as the record reason.

See Table 24 on page 175 for the contents of the security section.

Table 25 shows the server transfer completion record self-defining section.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(x'0')</td>
<td>Standard SMF Header</td>
<td>24</td>
<td>Reserved</td>
<td>Standard SMF header, where the record subtype is 96 (x'60')</td>
</tr>
<tr>
<td>Self-defining section</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24(x'18')</td>
<td>SMF_119SSH_SDTRN</td>
<td>2</td>
<td>Binary</td>
<td>Number of triplets in this record (6)</td>
</tr>
<tr>
<td>26(x'1A')</td>
<td>Reserved</td>
<td>2</td>
<td>Binary</td>
<td>Reserved</td>
</tr>
<tr>
<td>28(x'1C')</td>
<td>SMF_119SSH_IDOffset</td>
<td>4</td>
<td>Binary</td>
<td>Offset to TCP/IP identification section</td>
</tr>
<tr>
<td>32(x'20')</td>
<td>SMF_119SSH_IDLen</td>
<td>2</td>
<td>Binary</td>
<td>Length of TCP/IP identification section</td>
</tr>
<tr>
<td>34(x'22')</td>
<td>SMF_119SSH_IDNum</td>
<td>2</td>
<td>Binary</td>
<td>Number of TCP/IP identification sections</td>
</tr>
<tr>
<td>36(x'24')</td>
<td>SMF_119SSH_S1Offset</td>
<td>4</td>
<td>Binary</td>
<td>Offset to security section</td>
</tr>
<tr>
<td>40(x'28')</td>
<td>SMF_119SSH_S1Len</td>
<td>2</td>
<td>Binary</td>
<td>Length of security section</td>
</tr>
<tr>
<td>42(x'2A')</td>
<td>SMF_119SSH_S1Num</td>
<td>2</td>
<td>Binary</td>
<td>Number of security sections</td>
</tr>
<tr>
<td>44(x'2C')</td>
<td>SMF_119SSH_S2Offset</td>
<td>4</td>
<td>Binary</td>
<td>Offset to server transfer completion section</td>
</tr>
<tr>
<td>48(x'30')</td>
<td>SMF_119SSH_S2Len</td>
<td>2</td>
<td>Binary</td>
<td>Length of server transfer completion section</td>
</tr>
<tr>
<td>50(x'32')</td>
<td>SMF_119SSH_S2Num</td>
<td>2</td>
<td>Binary</td>
<td>Number of server transfer completion sections</td>
</tr>
<tr>
<td>52(x'34')</td>
<td>SMF_119SSH_S3Offset</td>
<td>4</td>
<td>Binary</td>
<td>Offset to server host name section</td>
</tr>
<tr>
<td>56(x'38')</td>
<td>SMF_119SSH_S3Len</td>
<td>2</td>
<td>Binary</td>
<td>Length of server host name section</td>
</tr>
<tr>
<td>58(x'3A')</td>
<td>SMF_119SSH_S3Num</td>
<td>2</td>
<td>Binary</td>
<td>Number of server host name sections</td>
</tr>
<tr>
<td>60(x'3C')</td>
<td>SMF_119SSH_S4Offset</td>
<td>4</td>
<td>Binary</td>
<td>Offset to server first associated path name section</td>
</tr>
<tr>
<td>64(x'40')</td>
<td>SMF_119SSH_S4Len</td>
<td>2</td>
<td>Binary</td>
<td>Length of server first associated path name section</td>
</tr>
<tr>
<td>66(x'42')</td>
<td>SMF_119SSH_S4Num</td>
<td>2</td>
<td>Binary</td>
<td>Number of server first associated path name sections</td>
</tr>
<tr>
<td>68(x'44')</td>
<td>SMF_119SSH_S5Offset</td>
<td>4</td>
<td>Binary</td>
<td>Offset to server second associated path name section</td>
</tr>
<tr>
<td>72(x'48')</td>
<td>SMF_119SSH_S5Len</td>
<td>2</td>
<td>Binary</td>
<td>Length of server second associated path name section</td>
</tr>
<tr>
<td>74(x'4A')</td>
<td>SMF_119SSH_S5Num</td>
<td>2</td>
<td>Binary</td>
<td>Number of server second associated path name sections</td>
</tr>
</tbody>
</table>
Table 26: Server transfer completion record specific section

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(x'0')</td>
<td>SMF_119SSH_FSOper</td>
<td>1</td>
<td>Binary</td>
<td>sftp subcommand code (for scp, only get and put apply):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'01' rmdir</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'02' rm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'03' rename</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'04' get</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'05' put</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'06' chmod</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'07' chown or chgrp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'08' mkdir</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'09' symlink</td>
</tr>
<tr>
<td>1(x'1')</td>
<td>Reserved</td>
<td>3</td>
<td>EBCDIC</td>
<td>Reserved</td>
</tr>
<tr>
<td>4(x'4')</td>
<td>SMF_119SSH_FSCmd</td>
<td>4</td>
<td>EBCDIC</td>
<td>sftp subcommand (the values are right-padded with blanks, and for scp, only GET and PUT apply):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RMD Remove directory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RM Remove file</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RENM Rename file</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GET Download file from the server</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PUT Upload file to the server</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CHMD Change file permission bits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CHOW Change file owner or group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MKD Create directory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SLNK Create symbolic link</td>
</tr>
<tr>
<td>8(x'8')</td>
<td>SMF_119SSH_FSRIP</td>
<td>16</td>
<td>Binary</td>
<td>Remote IP address (client)</td>
</tr>
<tr>
<td>24(x'18')</td>
<td>SMF_119SSH_FSLIP</td>
<td>16</td>
<td>Binary</td>
<td>Local IP address (server)</td>
</tr>
<tr>
<td>40(x'28')</td>
<td>SMF_119SSH_FSRPort</td>
<td>2</td>
<td>Binary</td>
<td>Remote port number (client)</td>
</tr>
<tr>
<td>42(x'2A')</td>
<td>SMF_119SSH_FSLPort</td>
<td>2</td>
<td>Binary</td>
<td>Local port number (server)</td>
</tr>
<tr>
<td>44(x'2C')</td>
<td>SMF_119SSH_FSSUser</td>
<td>8</td>
<td>EBCDIC</td>
<td>Client User ID on server</td>
</tr>
<tr>
<td>52(x'34')</td>
<td>SMF_119SSH_FSType</td>
<td>1</td>
<td>EBCDIC</td>
<td>Data transfer type:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A ASCII</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B Binary</td>
</tr>
<tr>
<td>53(x'35')</td>
<td>SMF_119SSH_FSMode</td>
<td>1</td>
<td>EBCDIC</td>
<td>Transfer mode:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C Compressed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S Stream</td>
</tr>
<tr>
<td>54(x'36')</td>
<td>Reserved</td>
<td>2</td>
<td>Binary</td>
<td>Reserved</td>
</tr>
<tr>
<td>56(x'38')</td>
<td>SMF_119SSH_FSTime</td>
<td>4</td>
<td>Binary</td>
<td>Transmission start time of day</td>
</tr>
<tr>
<td>60(x'3C')</td>
<td>SMF_119SSH_FSDate</td>
<td>4</td>
<td>Packed</td>
<td>Transmission start date</td>
</tr>
<tr>
<td>64(x'40')</td>
<td>SMF_119SSH_FSETime</td>
<td>4</td>
<td>Binary</td>
<td>Transmission end time of day</td>
</tr>
<tr>
<td>68(x'44')</td>
<td>SMF_119SSH_FSEDDate</td>
<td>4</td>
<td>Packed</td>
<td>Transmission end date</td>
</tr>
<tr>
<td>72(x'48')</td>
<td>SMF_119SSH_FSDur</td>
<td>4</td>
<td>Binary</td>
<td>File transmission duration in units of 1/100 seconds</td>
</tr>
<tr>
<td>76(x'4C')</td>
<td>SMF_119SSH_FSBytes</td>
<td>8</td>
<td>Binary</td>
<td>Server execution status (right-padded with blanks):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OK Success</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FAIL Failure</td>
</tr>
<tr>
<td>88(x'58')</td>
<td>SMF_119SSH_FSCH1</td>
<td>8</td>
<td>Binary</td>
<td>Previous read/write/execute permissions of owner/group/other (in octal format) when chmod is used or the previous UID when chown or chgrp is used.</td>
</tr>
<tr>
<td>96(x'60')</td>
<td>SMF_119SSH_FSGP1</td>
<td>8</td>
<td>Binary</td>
<td>Previous GID when chown or chgrp is used.</td>
</tr>
<tr>
<td>104(x'68')</td>
<td>SMF_119SSH_FSCH2</td>
<td>8</td>
<td>Binary</td>
<td>New read/write/execute permissions of owner/group/other (in octal) when chmod is used or the new UID when chown or chgrp is used.</td>
</tr>
</tbody>
</table>
Table 26. Server transfer completion record specific section (continued)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>112(x'70')</td>
<td>SMF_119SSH_FSGP2</td>
<td>8</td>
<td>Binary</td>
<td>New GID when chown or chgrp is used.</td>
</tr>
</tbody>
</table>

Table 27 shows the host name section for the server transfer completion record.

Table 27. Server transfer completion record section: Host name

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(x'0')</td>
<td>SMF_119SSH_FSHostname</td>
<td>n</td>
<td>EBCDIC</td>
<td>Host name</td>
</tr>
</tbody>
</table>

Table 28 shows the first associated path name section for the server transfer completion record. This section represents the server z/OS UNIX path name associated with the sftp or scp operation.

Table 28. Server transfer completion record section: First associated path name

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(x'0')</td>
<td>SMF_119SSH_FSPath1</td>
<td>n</td>
<td>EBCDIC</td>
<td>z/OS UNIX path name associated with the sftp or scp command. When the subcommand is rename or symlink, this refers to the previous path name.</td>
</tr>
</tbody>
</table>

Table 29 shows the second associated path name section for the server transfer completion record. This section represents the server z/OS UNIX file name associated with the rename or symlink subcommand.

Table 29. Server transfer completion record section: Second associated path name

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(x'0')</td>
<td>SMF_119SSH_FSPath2</td>
<td>n</td>
<td>EBCDIC</td>
<td>Second z/OS UNIX path name associated with rename or symlink subcommand. This is the new path name.</td>
</tr>
</tbody>
</table>

Client transfer completion record (subtype 97)

The client transfer completion records are collected when the client side of sftp or scp completes processing of one of the following file transfer operations:

- Uploading files
- Downloading files

A common format for the record is used for each file transfer operation, so the record contains an indication of which subcommand was performed.

See Table 23 on page 175 for the contents of the TCP/IP identification section. For the client transfer completion record, the TCP/IP identification section indicates either SFTPC (sftp client) or SCPC (scp client) as the subcomponent and x'08' (event record) as the record reason.

See Table 24 on page 175 for the contents of the security section.

Table 30 on page 180 shows the client transfer completion record self-defining section.
Table 30. Client transfer completion record self-defining section

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(x'0')</td>
<td>Standard SMF Header</td>
<td>24</td>
<td>Reserved</td>
<td>Standard SMF header, where the record subtype is 97 (x'61)</td>
</tr>
<tr>
<td>24(x'18')</td>
<td>SMF_119SSH_SDTRN</td>
<td>2</td>
<td>Binary</td>
<td>Number of triplets in this record (6)</td>
</tr>
<tr>
<td>26(x'1A')</td>
<td>Reserved</td>
<td>2</td>
<td>Binary</td>
<td>Reserved</td>
</tr>
<tr>
<td>28(x'1C')</td>
<td>SMF_119SSH_IDOff</td>
<td>4</td>
<td>Binary</td>
<td>Offset to TCP/IP identification section</td>
</tr>
<tr>
<td>32(x'20')</td>
<td>SMF_119SSH_IDLen</td>
<td>2</td>
<td>Binary</td>
<td>Length of TCP/IP identification section</td>
</tr>
<tr>
<td>34(x'22')</td>
<td>SMF_119SSH_IDNum</td>
<td>2</td>
<td>Binary</td>
<td>Number of TCP/IP identification sections</td>
</tr>
<tr>
<td>36(x'24')</td>
<td>SMF_119SSH_S1Off</td>
<td>4</td>
<td>Binary</td>
<td>Offset to security section</td>
</tr>
<tr>
<td>40(x'28')</td>
<td>SMF_119SSH_S1Len</td>
<td>2</td>
<td>Binary</td>
<td>Length of security section</td>
</tr>
<tr>
<td>42(x'2A')</td>
<td>SMF_119SSH_S1Num</td>
<td>2</td>
<td>Binary</td>
<td>Number of security sections</td>
</tr>
<tr>
<td>44(x'2C')</td>
<td>SMF_119SSH_S2Off</td>
<td>4</td>
<td>Binary</td>
<td>Offset to client transfer completion section</td>
</tr>
<tr>
<td>48(x'30')</td>
<td>SMF_119SSH_S2Len</td>
<td>2</td>
<td>Binary</td>
<td>Length of client transfer completion section</td>
</tr>
<tr>
<td>50(x'32')</td>
<td>SMF_119SSH_S2Num</td>
<td>2</td>
<td>Binary</td>
<td>Number of client transfer completion sections</td>
</tr>
<tr>
<td>52(x'34')</td>
<td>SMF_119SSH_S3Off</td>
<td>4</td>
<td>Binary</td>
<td>Offset to client transfer completion host name section</td>
</tr>
<tr>
<td>56(x'38')</td>
<td>SMF_119SSH_S3Len</td>
<td>2</td>
<td>Binary</td>
<td>Length of client transfer completion host name section</td>
</tr>
<tr>
<td>58(x'3A')</td>
<td>SMF_119SSH_S3Num</td>
<td>2</td>
<td>Binary</td>
<td>Number of client transfer completion host name sections</td>
</tr>
<tr>
<td>60(x'3C')</td>
<td>SMF_119SSH_S4Off</td>
<td>4</td>
<td>Binary</td>
<td>Offset to client transfer completion user name section</td>
</tr>
<tr>
<td>64(x'40')</td>
<td>SMF_119SSH_S4Len</td>
<td>2</td>
<td>Binary</td>
<td>Length of client transfer completion user name section</td>
</tr>
<tr>
<td>66(x'42')</td>
<td>SMF_119SSH_S4Num</td>
<td>2</td>
<td>Binary</td>
<td>Number of client transfer completion user name sections</td>
</tr>
<tr>
<td>68(x'44')</td>
<td>SMF_119SSH_S5Off</td>
<td>4</td>
<td>Binary</td>
<td>Offset to client transfer completion associated path name section</td>
</tr>
<tr>
<td>72(x'48')</td>
<td>SMF_119SSH_S5Len</td>
<td>2</td>
<td>Binary</td>
<td>Length of client transfer completion associated path name section</td>
</tr>
<tr>
<td>74(x'4A')</td>
<td>SMF_119SSH_S5Num</td>
<td>2</td>
<td>Binary</td>
<td>Number of client transfer completion associated path name sections</td>
</tr>
</tbody>
</table>

Table 30 shows the client transfer completion record self-defining section.

Table 31. Client transfer completion record specific section

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(x'0')</td>
<td>SMF_119SSH_FCCmd</td>
<td>4</td>
<td>EBCDIC</td>
<td>sftp or scp subcommand (right-padded with blanks):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GET</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PUT</td>
</tr>
<tr>
<td>4(x'4')</td>
<td>SMF_119SSH_FCRIP</td>
<td>16</td>
<td>Binary</td>
<td>Remote IP address (server) 1</td>
</tr>
<tr>
<td>20(x'14')</td>
<td>SMF_119SSH_FCLIP</td>
<td>16</td>
<td>Binary</td>
<td>Local IP address (client) 1</td>
</tr>
<tr>
<td>36(x'24')</td>
<td>SMF_119SSH_FCRPort</td>
<td>2</td>
<td>Binary</td>
<td>Remote port number (server) 1</td>
</tr>
<tr>
<td>38(x'26')</td>
<td>SMF_119SSH_FCLPort</td>
<td>2</td>
<td>Binary</td>
<td>Local port number (client) 1</td>
</tr>
<tr>
<td>40(x'28')</td>
<td>SMF_119SSH_FCLUser</td>
<td>8</td>
<td>EBCDIC</td>
<td>Local user ID</td>
</tr>
<tr>
<td>48(x'30')</td>
<td>SMF_119SSH_FCType</td>
<td>1</td>
<td>EBCDIC</td>
<td>Data transfer type:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

Table 31 shows the client transfer completion specific record of this SMF record.
Table 31. Client transfer completion record specific section (continued)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
</table>
| 49(x'31') | SMF_119SSH_FCMode | 1 | EBCDIC | Transfer mode:
C Compressed
S Stream |
| 50(x'32') | Reserved | 2 | Binary | Reserved |
| 52(x'34') | SMF_119SSH_FCSTime | 4 | Binary | Transmission start time of day |
| 50(x'32') | SMF_119SSH_FCSDate | 4 | Packed | Transmission start date |
| 60(x'40') | SMF_119SSH_FCETime | 4 | Binary | Transmission end time of day |
| 64(x'40') | SMF_119SSH_FCEDate | 4 | Packed | Transmission end date |
| 68(x'44') | SMF_119SSH_FCDur | 4 | Binary | File transmission duration in units of 1/100 seconds |
| 72(x'48') | SMF_119SSH_FBytes | 8 | Binary | Transmission byte count; 64-bit integer |
| 80(x'50') | SMF_119SSH_FCStat | 4 | EBCDIC | Subcommand execution status (right-padded with blanks):
OK Success
FAIL Failure |

Notes:
1. This field will be set to zero (0) when the Authentication method being used is Control Socket and the ssh connection information could not be collected from the control socket.
2. This field will be set to blank when the Authentication method being used is Control Socket and the ssh connection information could not be collected from the control socket.

Table 32 shows the client transfer completion host name section.

Table 32. Client transfer completion host name section

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(x'0')</td>
<td>SMF_119SSH_FCHostname</td>
<td>n</td>
<td>EBCDIC</td>
<td>Client host name</td>
</tr>
</tbody>
</table>

Table 33 shows the client transfer completion user name section.

Table 33. Client transfer completion user name section

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(x'0')</td>
<td>SMF_119SSH_FCUserID</td>
<td>n</td>
<td>EBCDIC</td>
<td>User name used to log into the server</td>
</tr>
</tbody>
</table>

Notes:
1. This field will not be set when the Authentication method being used is Control Socket and the ssh connection information could not be collected from the control socket.

Table 34 shows the client transfer completion associated path name section. This section represents the client z/OS UNIX path name associated with the `sftp` or `scp` subcommand.

Table 34. Client transfer completion associated path name section

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(x'0')</td>
<td>SMF_119SSH_FCPath</td>
<td>n</td>
<td>EBCDIC</td>
<td>Client z/OS UNIX path name</td>
</tr>
</tbody>
</table>
SMF Type 119 records

Login failure record (subtype 98)

Login failure records are collected after each unsuccessful attempt to log into the sshd daemon. A login failure record is collected for each authentication method and attempt that fails. A login failure reason code within the SMF record provides information about the cause of the login failure. Only failures during user authentication are collected with the following exception: records are not collected for a "none" authentication failure if it is the first authentication method attempted.

See Table 23 on page 175 for the contents of the TCP/IP identification section. For the login failure record, the TCP/IP identification section indicates SSHD (sshd daemon) as the subcomponent and x'08' (event record) as the record reason.

See Table 24 on page 175 for the contents of the security section.

Table 35 shows the login failure record self-defining section.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(x'0')</td>
<td>Standard SMF Header</td>
<td>24</td>
<td>Reserved</td>
<td>Standard SMF header, where the record subtype is 98 (x'62')</td>
</tr>
<tr>
<td>24(x'18')</td>
<td>SMF_119SSH_SDTRN</td>
<td>2</td>
<td>Binary</td>
<td>Number of triplets in this record (3)</td>
</tr>
<tr>
<td>26(x'1A')</td>
<td>Reserved</td>
<td>2</td>
<td>Binary</td>
<td>Reserved</td>
</tr>
<tr>
<td>28(x'1C')</td>
<td>SMF_119SSH_IDOff</td>
<td>4</td>
<td>Binary</td>
<td>Offset to TCP/IP identification section</td>
</tr>
<tr>
<td>32(x'20')</td>
<td>SMF_119SSH_IDLen</td>
<td>2</td>
<td>Binary</td>
<td>Length of TCP/IP identification section</td>
</tr>
<tr>
<td>34(x'22')</td>
<td>SMF_119SSH_IDNum</td>
<td>2</td>
<td>Binary</td>
<td>Number of TCP/IP identification sections</td>
</tr>
<tr>
<td>36(x'24')</td>
<td>SMF_119SSH_S1Off</td>
<td>4</td>
<td>Binary</td>
<td>Offset to security section</td>
</tr>
<tr>
<td>40(x'28')</td>
<td>SMF_119SSH_S1Len</td>
<td>2</td>
<td>Binary</td>
<td>Length of security section</td>
</tr>
<tr>
<td>42(x'2A')</td>
<td>SMF_119SSH_S1Num</td>
<td>2</td>
<td>Binary</td>
<td>Number of security sections</td>
</tr>
<tr>
<td>44(x'2C')</td>
<td>SMF_119SSH_S2Off</td>
<td>4</td>
<td>Binary</td>
<td>Offset to login failure section</td>
</tr>
<tr>
<td>48(x'30')</td>
<td>SMF_119SSH_S2Len</td>
<td>2</td>
<td>Binary</td>
<td>Length of login failure section</td>
</tr>
<tr>
<td>50(x'32')</td>
<td>SMF_119SSH_S2Num</td>
<td>2</td>
<td>Binary</td>
<td>Number of login failure sections</td>
</tr>
</tbody>
</table>

Table 36 shows the login failure specific section of this SMF record.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(x'0')</td>
<td>SMF_119SSH_LFRIP</td>
<td>16</td>
<td>Binary</td>
<td>Remote IP address</td>
</tr>
<tr>
<td>16(x'10')</td>
<td>SMF_119SSH_LFLIP</td>
<td>16</td>
<td>Binary</td>
<td>Local IP address</td>
</tr>
<tr>
<td>32(x'20')</td>
<td>SMF_119SSH_LFRPort</td>
<td>2</td>
<td>Binary</td>
<td>Remote port number (client)</td>
</tr>
<tr>
<td>34(x'22')</td>
<td>SMF_119SSH_LFLPort</td>
<td>2</td>
<td>Binary</td>
<td>Local port number (server)</td>
</tr>
<tr>
<td>36(x'24')</td>
<td>SMF_119SSH_LFUserID</td>
<td>8</td>
<td>EBCDIC</td>
<td>User name (login name) on server</td>
</tr>
</tbody>
</table>
Table 36. Login failure specific section (continued)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Length</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>44(x'2C')</td>
<td>SMF_119SSH_LFReason</td>
<td>2</td>
<td>Binary</td>
<td>Login failure reason:</td>
</tr>
<tr>
<td></td>
<td>x'0000'</td>
<td></td>
<td></td>
<td>Unexpected authentication failure.</td>
</tr>
<tr>
<td></td>
<td>x'0001'</td>
<td></td>
<td></td>
<td>Unexpected authentication change</td>
</tr>
<tr>
<td></td>
<td>x'0002'</td>
<td></td>
<td></td>
<td>Password or password phrase is not valid.</td>
</tr>
<tr>
<td></td>
<td>x'0003'</td>
<td></td>
<td></td>
<td>User ID has been revoked</td>
</tr>
<tr>
<td></td>
<td>x'0004'</td>
<td></td>
<td></td>
<td>User does not have server access</td>
</tr>
<tr>
<td></td>
<td>x'0005'</td>
<td></td>
<td></td>
<td>User's file has bad file modes or ownership</td>
</tr>
<tr>
<td></td>
<td>x'0006'</td>
<td></td>
<td></td>
<td>Too many failed login attempts</td>
</tr>
<tr>
<td></td>
<td>x'0007'</td>
<td></td>
<td></td>
<td>Password error</td>
</tr>
<tr>
<td></td>
<td>x'0008'</td>
<td></td>
<td></td>
<td>User ID is unknown.</td>
</tr>
<tr>
<td></td>
<td>x'0009'</td>
<td></td>
<td></td>
<td>Root user authentication is not allowed</td>
</tr>
<tr>
<td></td>
<td>x'000A'</td>
<td></td>
<td></td>
<td>Empty passwords are not permitted</td>
</tr>
<tr>
<td></td>
<td>x'000B'</td>
<td></td>
<td></td>
<td>Authentication method did not exist or was not valid</td>
</tr>
<tr>
<td></td>
<td>x'000C'</td>
<td></td>
<td></td>
<td>Key did not exist or was not valid</td>
</tr>
<tr>
<td></td>
<td>x'000D'</td>
<td></td>
<td></td>
<td>Host did not exist or was not valid</td>
</tr>
<tr>
<td>46(x'2E')</td>
<td>Reserved</td>
<td>2</td>
<td>Binary</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

SMF Type 119 records
SMF Type 119 records
Chapter 13. Troubleshooting

This topic discusses performance considerations when troubleshooting setup problems. A FAQ (frequently asked questions) section is included as well as information about setting up the syslogd daemon to debug sshd problems.

Performance considerations

Various setup problems might affect OpenSSH performance.

XPLINK is not set up

If performance is not ideal, verify that you have set up XPLINK as described in “Setting up the XPLINK environment for use by IBM Ported Tools for z/OS: OpenSSH” on page 14.

DNS is not configured properly

The ssh client performs some DNS lookups. If the DNS server is down, some operations might take a while to time out. Verify that the DNS is configured properly. Also verify that the servers in the DNS resolution files (for example, /etc/resolv.conf) are working. If the ssh command, when run in verbose mode (-vvv), seems to be waiting on this line:

debug2: ssh_connect: needpriv 0

then it is likely that the DNS is not configured properly.

The system might need tuning for z/OS UNIX or OpenSSH

The OpenSSH commands invoke /usr/lib/ssh/ssh-rand-helper to gather random data. If your OpenSSH command, when run in verbose mode (-vvv), seems to be waiting on this line:

debug3: Seeding PRNG from /usr/lib/ssh/ssh-rand-helper

then the commands listed in /etc/ssh/ssh_prng_cmds and run by ssh-rand-helper could be timing out. Run ssh-rand-helper manually (from your shell prompt) to see how many and which commands are timing out.

For example:
/usr/lib/ssh/ssh-rand-helper -vvv

If every command is timing out, look for more tuning tips in z/OS UNIX System Services Planning and z/OS MVS Initialization and Tuning Reference. Also consider editing your /etc/ssh/ssh_prng_cmds file to contain different commands or modifying the _ZOS_SSH_PRNG_CMDS_TIMEOUT environment variable. For more information, see “ssh-rand-helper” on page 120.
Frequently asked questions

1. **Question:** The following RACF warning appeared many times on the console while starting ssh. Does that mean that something is wrong?

 ![RACF Warning](image)

 Answer: If ICSF is installed, random numbers can be generated from hardware (/dev/random or /dev/urandom) instead of the software algorithm ssh-rand-helper. In order to use the ICSF random number generate service, the user ID needs to have read access to the CSFRNG profile. The RACF warning is issued due to lack of access authority. For information about how to authorize the user ID to the CSFRNG profile, see "Using hardware support to generate random numbers" on page 49. If you are attempting to use hardware support and /dev/random or /dev/urandom failed, OpenSSH will revert to using ssh-rand-helper and continue.

2. **Question:** The system administrator sees the following messages on the console:

 ![Console Messages](image)

 Answer: A user invoked ssh from a user ID that has READ access to BPX.DAEMON. A user ID that is given READ access to BPX.DAEMON should be set up as a protected user ID (for example, with the NOPASSWORD option). Doing so prevents UID(0) users from working in the shell, because they would be able to perform unauthenticated setuids. It appears such a user does have shell access. The system (or security) administrator should double-check the security setup.

3. **Question:** I was trying to copy a 6GB file to a remote host using scp. The scp progress meter counted up to 100 percent copied. I received a No space left on device error message but I found out that the file system on the remote host didn’t have enough space to begin with. Should scp terminate as soon as the remote file system is full?

 Answer: The server-side scp process will not return an out-of-space error until the client has finished transmitting all its data. If you are concerned about running out of space, run a remote command to check the file system space (such as df or zfsadm) on the remote host before issuing the scp command.

4. **Question:** When a user logs on via the ssh client, we are getting the following message in the system log:

 ![System Log](image)

 Answer: The OpenSSH daemon runs with privilege separation enabled by default. During privilege separation, the daemon cleaves itself into two processes, one with privileges and one without. The unprivileged user (the SSHD privilege separation user) handles network traffic and everything not requiring special privileges. This unprivileged process runs in a chroot jail of /var/empty. The chroot service changes the root directory from the current one to a new one; in this case, /var/empty. The root directory is the starting point for path searches of path names beginning with a slash. At some point, the
privilege separation user invokes a TCP/IP system call which requires access to the TCPIP.DATA file. If this file is stored in the UNIX file system as /etc/resolv.conf, the privilege separation user will not have access to the file because it is not located off the new root file system of /var/empty. The system administrator should copy /etc/resolv.conf to /var/empty/etc/resolv.conf, in order to make this file visible to the privilege separation user.

5. **Question:** I am trying to use ssh with public key authentication, but it can’t seem to find my keys. What is happening?

 Answer: It is likely that you are running ssh from a user that shares a UID. The ssh command description in “ssh” on page 90 provides a tip for avoiding problems when running as a user that shares a UID.

6. **Question:** When I attempt to start the sshd daemon, I see the following error message, and the sshd daemon does not start.

   ```
   FOTS1451 Privilege separation user sshd does not exist.
   ```

 Answer: The sshd daemon runs with privilege separation enabled by default. Using privilege separation requires that a special user be created. For more information, see “Step for creating the sshd privilege separation user” on page 38.

7. **Question:** When I attempt to start the sshd daemon, I see the following error message, and the daemon does not start.

   ```
   /etc/ssh/sshd_config: EDC5129I No such file or directory. (errno2=0x05620062)
   ```

 Answer: The sshd daemon will not start without a configuration file. The default location for this file is /etc/ssh/sshd_config. Verify that you have performed all the setup to run the sshd daemon. See “Steps for creating or editing configuration files” on page 24 for information about copying the sshd_config file.

8. **Question:** If I attempt to start the sshd daemon, I see the following error in the syslog:

   ```
   FOTS1464 Cannot bind any address
   ```

 Answer: Take the following actions:

a. Verify that port 22 is not reserved in your TCP/IP setup and that port 22 is not in use by another application or another sshd daemon. By default, the sshd daemon uses port 22. However, the port can be changed by using the sshd_config keyword Port.

b. Verify that the program control attribute is set for the sshd daemon.

c. Verify that the invoking user ID is defined as UID(0) and has READ access to the BPX.DAEMON profile in the FACILITY class.

For more information about sshd daemon setup and startup, see Chapter 5, “For system administrators,” on page 21.

9. **Question:** When I run an OpenSSH command and receive an error message, I do not see a message number (for example, FOTSnnnn) associated with it.

 Answer: Verify that the _ZOS_OPENSSH_MSGCAT environment variable is unset or set to “openssh.cat” before running the command. For more information, see “Setting up the message catalog for IBM Ported Tools for z/OS: OpenSSH” on page 38. If you have verified that your setup is correct
and you are still not seeing message numbers, it could be that the output in question is considered "log" output that might or might not be an error message.

10. **Question:** When I run `ssh-keyscan`, it does not return the host key for a particular host and exits with a 0 (success) return value. I know the host has sshd running. Why aren't I getting any host key output?

 Answer: By default, `ssh-keyscan` returns only protocol version 1 keys. The `sshd` daemon might only be running protocol version 2. Try issuing `ssh-keyscan` again with a protocol version 2 key type.

 For example:

   ```
   ssh-keyscan -t dsa hostname
   ```

11. **Question:** When I run `ssh-keyscan`, I receive the following error: FOTS0414 hostname: exception! What does this mean?

 Answer: This error is often the result when the remote server is down or not running a `sshd` daemon.

12. **Question:** When I invoke `ssh`, it seems to have poor performance. In particular, if I run in verbose mode (`ssh -vvv`), it appears to hang on this line:

 debug1: ssh_connect: needpriv 0

 Answer: `ssh` performs some DNS lookups. If the DNS server is down, some operations may take a while to time-out. Verify that DNS is configured properly. Check that the servers in the DNS resolution files (for example, `/etc/resolv.conf`) are working.

13. **Question:** When I use the `~#` escape sequence to display forwarded connections, not all of them are displayed.

 Answer: Check if you have nested `ssh` clients. For nested `ssh` clients, escape characters are captured and processed by parent `ssh` processes first. To allow an escape sequence to pass through to a child `ssh` client, you can escape the escape character; for example, `~~`.

14. **Question:** My `sftp` session hangs when I try to use these subcommands: ls, get, or put.

 Answer: You probably have a MTU fragmentation problem. Reduce the TCP/IP MTU (maximum transmission unit) by using the `ifconfig` command.

 For example:

   ```
   ifconfig enth0 mtu 1500
   ```

 Also, specifying a smaller buffer size (the default is 32768) on the `sftp` command line can be a workaround.

 For example:

   ```
   sftp -B 1024 user@host
   ```

15. **Question:** `scp` between two remote hosts doesn't work for me. I specified 'ForwardAgent yes' in my own configuration file and used `-F usr_config_file` to invoke it.

 Answer: When doing `scp` between two remote hosts, you need to specify 'ForwardAgent yes' in the `ssh` global configuration file `/etc/ssh/ssh_config` or the `sshd` default per-user configuration file `~/.ssh/config`. The command-line option `-F usr_config_file` does not get passed to the remote host. `scp` only passes options `-v`, `-r` or `-p` to the remote host regardless of what you specify on the command line.

16. **Question:** When I run `sftp` with protocol version 1 from z/OS to AIX, I keep getting FOTS0841 Connection closed.

 Answer: Due to a limitation of SECSH protocol and how OpenSSH uses channels, `sftp` for protocol version 1 is only supported between z/OS hosts.
17. **Question:** My session hangs part way through logging on when I try to do `sftp -s sftp_server_path usr@host` between z/OS and Linux. I use protocol version 2.

Answer: User-defined subsystems (those specified with the `-s` option) are only supported between z/OS hosts. This is due to a limitation of the SECSH protocol with regards to EBCDIC platforms.

18. **Question:** When I use `ssh` with the `-s` option to utilize a subsystem, my session hangs while logging on. I am using protocol version 2.

Answer: User-defined subsystems (those specified with the `-s` option) are only supported between z/OS hosts. This is due to a limitation of the SECSH protocol with regards to EBCDIC platforms.

19. **Question:** When I attempt to start `ssh`, I get the error message F0TS0944

 buffer_get_bignum_ret: input buffer too small.

Answer: Your public key or private key file might be corrupted. Regenerate your keys and try again.

20. **Question:** When I attempt to copy a file using `scp` or `sftp`, after user authentication succeeds, the command fails and exits with a nonzero (failure) return code. I also saw some output from a sshrc file when using `scp`.

Answer: This error is often seen when the user has `/etc/ssh/sshrc` or `~/.ssh/rc` on the remote host that is generating output to stdout. Make sure that both `/etc/ssh/sshrc` and `~/.ssh/rc` do not send output to stdout when either `scp` or `sftp` is used. Instead, the output should be written to stderr. (Output generated from the `sshrc` file is displayed for `scp` but not for `sftp`.)

21. **Question:** When I ssh to a remote host using public key or password authentication, I never get a chance to enter the passphrase/password, instead receiving the error message F0TS1346 Permission denied, please try again. This causes user authentication to fail. The ssh client then eventually fails with the error message F0TS1373 Permission denied (publickey,password,keyboard-interactive).

Answer: Verify that you are not trying to use `ssh` while switched to another user ID. In other words, did you issue `ssh` after the `su` command? The original controlling terminal (displayed by the `tty` command) is owned by the user ID originally logged in. Your target user might not have permission to read from it.

22. **Question:** I attempt to start `sftp` but I receive error message F0TS0843

 Received message too long xxxx where xxxx is the length of message.

Answer: Possibly, an `sftp` packet was corrupted by TCP/IP RESOLVER trace output written to stdout. To check whether RESOLVER trace output is being sent to stdout, issue the following shell command on both the local host and the remote host:

 netstat -S

If you see messages about RESOLVER trace initialization in the output of the netstat command, then it means the RESOLVER trace output is written to stdout on the system that you issued the netstat command. You can redirect RESOLVER trace output to avoid conflicts with `sftp` by issuing the following command:

 export RESOLVER_TRACE=STDERR

If the RESOLVER trace output is enabled on the remote host (the system running the daemon), the daemon will need to be restarted with the new environment.
23. **Question:** The sshd daemon fails to start and the stderr file contains the signal SIGHUP was received.

 Answer: You have come across a process race condition. You will need to do some setup tasks as described in “Using BPXBATCH” on page 40.

24. **Question:** Sometimes when I run the ssh command on z/OS, I get the following SIGINT messages:

```
/u/user> ssh jim@remotehost
CEE5206S THE SIGNAL SIGINT WAS RECEIVED.
```

The command completes and I am able to log into the remote host.

Answer: The OpenSSH base distribution added functionality to the random number generator, **ssh-rand-helper**. Specifically, if an invoked UNIX command (from the /etc/ssh/ssh_prng_cmds file) is taking too long, it will be killed by a SIGINT signal. You might see this message if your system is heavily loaded. In previous versions of OpenSSH, the process was not killed. Instead, processing continued to the next UNIX command in the file. You might see this message displayed from any of the OpenSSH utilities, not just the ssh client.

The system administrator might also see the following message on the console:

```
IEF4501 JOBNAME =OMVSEX - ABEND=SEC6 U0000 REASON=0000FF02
```

The console message results when **ssh-rand-helper** kills the UNIX command listed in /etc/ssh/ssh_prng_cmds before the kernel is able to initialize the child process for the command. Again, you might see the console message if your system is heavily loaded.

Both messages can be eliminated by having Integrated Cryptographic Service Facility (ICSF) available because OpenSSH uses hardware support (/dev/random or /dev/urandom) to generate random numbers instead of using **ssh-rand-helper**. For more information about using hardware support, see “ssh-rand-helper” on page 120.

If ICSF is not available, then the **ssh-rand-helper** timeout value can be increased in order to eliminate both messages. For more information about the timeout value, see “ssh-rand-helper — Gather random numbers for OpenSSH” on page 120.

25. **Question:** When I use the stty command in a shell profile to set the terminal options for my interactive z/OS OpenSSH session, I see the following error message:

```
stty: FSUMB039 error setting termios attributes: EDC5139I Operation not permitted
```

Answer: The extended packet mode terminal option (PKTXTND in termios.h) setting was changed under APAR OA12576 in the previous release. The option is now turned on. Therefore, using the stty command to turn off the PKTXTND option within an interactive z/OS OpenSSH session will fail. Your stty command needs to be updated to leave the PKTXTND option unchanged (that is, turned on).
Debugging OpenSSH problems

Setting up the syslog daemon (syslogd) can help to debug OpenSSH problems. In addition, most OpenSSH commands provide a verbose (-v) or debug (-d) option to assist debugging. Using syslogd and these options can help resolve common OpenSSH problems. For more information about configuring syslogd, see z/OS Communications Server: IP Configuration Guide. For more information about the OpenSSH command options, see Chapter 9, “OpenSSH command descriptions,” on page 81.

Setting up syslogd to debug sshd

Setting up the syslog daemon (syslogd) can help to debug sshd problems. For more information about configuring syslogd, see z/OS Communications Server: IP Configuration Guide.

Steps for setting up syslogd to debug sshd

Before you begin: You need to have superuser authority in order to start the syslogd daemon.

Perform the following steps to set up syslogd to debug OpenSSH.

1. Create the syslogd configuration file /etc/syslog.conf.
 a. Create directory /tmp/syslogd.
 mkdir /tmp/syslogd
 b. Add a configuration statement in the syslogd.conf file.
 For example:
 echo "daemon.debug /tmp/syslogd/server.logfile" >> /etc/syslog.conf
 Result: Writes debug messages with facility daemon to /tmp/syslogd/server.logfile.
 c. Set the permission bits.
 chmod 644 /etc/syslog.conf
 d. Create the log file.
 touch /tmp/syslogd/server.logfile

2. Start syslogd
 /usr/sbin/syslogd -f /etc/syslog.conf &

3. In the sshd_config configuration file, add the SyslogFacility and LogLevel keywords. The default SyslogFacility is AUTH. The default LogLevel is INFO. In addition, add the syslog facility and log level options to the sftp subsystem configuration. The default syslog facility option is AUTH and the default log level option is ERROR. For example:
 SyslogFacility DAEMON
 LogLevel DEBUG3
 Subsystem sftp /usr/lib/ssh/sftp-server -f DAEMON -l DEBUG3

4. To force syslogd or sshd to reread its configuration files and activate any modified parameters without stopping, issue:
 kill -s SIGHUP PID
 where PID is the process ID of syslogd or sshd.
When you are done, you have set up syslogd.
Chapter 14. OpenSSH vulnerabilities

List of vulnerabilities reported against OpenSSH applications

Table 37 lists vulnerabilities reported by Carnegie Mellon University Software Engineering Institute's CERT Coordination Center (CERT/CC) and by Common Vulnerabilities and Exposures (CVE), which is sponsored by the National Cyber Security Division at the U.S. Department of Homeland Security. The listed vulnerabilities are against OpenSSH. The version of OpenSSH used is 5.0p1.

<table>
<thead>
<tr>
<th>CERT/CVE</th>
<th>Date</th>
<th>Public name description</th>
<th>Is OpenSSH vulnerable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE-2004-1653</td>
<td>08/31/2004</td>
<td>OpenSSH could allow remote authenticated users to perform a port bounce, when configured with an anonymous access program</td>
<td>No, if you retain the default value of "no" for the <code>sshd_config</code> AllowTcpForwarding keyword or if you do not configure OpenSSH with an anonymous access program such as AnonCVS.</td>
</tr>
<tr>
<td>CVE-2007-2243</td>
<td>04/25/2007</td>
<td>OpenSSH, when ChallengeResponseAuthentication is enabled, allows remote attackers to determine the existence of user accounts</td>
<td>No. OpenSSH does not support challenge-response authentication.</td>
</tr>
<tr>
<td>CVE-2007-2768</td>
<td>05/21/2007</td>
<td>OpenSSH, when using OPIE (One-Time Passwords in Everything) for PAM, allows remote attackers to determine the existence of certain user accounts.</td>
<td>No. OpenSSH does not support PAM.</td>
</tr>
<tr>
<td>CVE-2008-3259</td>
<td>07/22/2008</td>
<td>OpenSSH sets the SO_REUSEADDR socket option when the X11UseLocalhost configuration setting is disabled, which allows local users on some platforms to hijack the X11 forwarding port via a bind to a single IP address.</td>
<td>No. OpenSSH on z/OS has applied the patch (fix) for this security vulnerability.</td>
</tr>
<tr>
<td>CVE-2008-5161</td>
<td>11/19/2008</td>
<td>Error handling in the SSH protocol when using a block cipher algorithm in Cipher Block Chaining (CBC) mode, makes it easier for remote attackers to recover certain plaintext data from an arbitrary block of ciphertext in an SSH session via unknown vectors.</td>
<td>No, if you do not use the CBC mode ciphers. If the CBC mode ciphers are used, OpenSSH has applied the patch (fix) that contains countermeasures to mitigate the security vulnerability.</td>
</tr>
<tr>
<td>CVE-2010-4478</td>
<td>12/06/2010</td>
<td>OpenSSH, when J-PAKE is enabled, does not properly validate the public parameters in the J-PAKE protocol, which allows remote attackers to bypass the need for knowledge of the shared secret, and successfully authenticate, by sending crafted values in each round of the protocol.</td>
<td>No. OpenSSH on z/OS does not support J-PAKE.</td>
</tr>
</tbody>
</table>
Table 37. List of vulnerabilities reported against OpenSSH applications (continued)

<table>
<thead>
<tr>
<th>CERT/CVE</th>
<th>Date</th>
<th>Public name description</th>
<th>Is OpenSSH vulnerable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE-2011-0539</td>
<td>02/10/2011</td>
<td>The key_certify function in usrbin/ssh/key.c when generating legacy certificates using the -t command-line option in ssh-keygen, does not initialize the nonce field, which might allow remote attackers to obtain sensitive stack memory contents or make it easier to conduct hash collision attacks.</td>
<td>No. This vulnerability does not affect OpenSSH 5.0p1.</td>
</tr>
</tbody>
</table>

For more information, see the US-CERT Vulnerability Notes Database at http://www.kb.cert.org/vuls and the National Vulnerability Database at http://nvd.nist.gov/nvd.cfm

List of vulnerabilities reported against zlib

zlib is a data compression library used by OpenSSH. Currently, there are no reported vulnerabilities against zlib version 1.2.3.

List of vulnerabilities reported against OpenSSL

Table 38 lists vulnerabilities reported by CERT/CC and by CVE against OpenSSL. OpenSSL provides cryptographic library functions used by OpenSSH. The version of OpenSSL used is 0.9.8k.

Table 38. List of vulnerabilities reported against OpenSSL applications

<table>
<thead>
<tr>
<th>CERT/CVE</th>
<th>Date</th>
<th>Public name description</th>
<th>Is OpenSSH vulnerable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE-2009-1377</td>
<td>05/19/2009</td>
<td>The dtls1_buffer_record function in ssl/d1_pkt.c allows remote attackers to cause a denial of service (memory consumption) via a large series of "future epoch" DTLS records that are buffered in a queue.</td>
<td>No. OpenSSH on z/OS does not use the vulnerable code.</td>
</tr>
</tbody>
</table>

| CVE-2009-1378 | 05/19/2009 | Multiple memory leaks in the dtls1_process_out_of_seq_message function in ssl/d1_both.c allows remote attackers to cause a denial of service (memory consumption) via DTLS records that (1) are duplicates or (2) have sequence numbers much greater than current sequence numbers. | No. OpenSSH on z/OS does not use the vulnerable code. |

| CVE-2009-1379 | 05/19/2009 | Use-after-free vulnerability in the dtls1_retrieve_buffered_fragment function in ssl/d1_both.c allows remote attackers to cause a denial of service (openssl_s_client crash) and possibly have unspecified other impact via a DTLS packet. | No. This vulnerability affects OpenSSL 1.0.0 Beta 2. OpenSSH on z/OS utilizes OpenSSL 0.9.8k. |

<p>| CVE-2009-1387 | 06/04/2009 | The dtls1_retrieve_buffered_fragment function in ssl/d1_both.c allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via an out-of-sequence DTLS handshake message, related to a "fragment bug". | No. OpenSSH on z/OS does not use the vulnerable code. |</p>
<table>
<thead>
<tr>
<th>CERT/CVE</th>
<th>Date</th>
<th>Public name description</th>
<th>Is OpenSSH vulnerable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE-2009-3245</td>
<td>03/05/2010</td>
<td>OpenSSL does not check for a NULL return value from bn_wexpand function calls in (1) crypto/bn/bn_div.c, (2) crypto/bn/bn_gf2m.c, (3) crypto/ec/ec2_smpl.c, and (4) engines/e_ubsec.c, which has unspecified impact and context-dependent attack vectors.</td>
<td>No. OpenSSH on z/OS does not use the vulnerable code.</td>
</tr>
<tr>
<td>CVE-2009-3555</td>
<td>11/09/2009</td>
<td>The TLS and SSL protocols do not properly associate renegotiation handshakes with an existing connection.</td>
<td>No. OpenSSH on z/OS does not use the TLS or SSL protocols for handshake renegotiation.</td>
</tr>
<tr>
<td>CVE-2009-4355</td>
<td>01/14/2010</td>
<td>Memory leak in the zlib_stateful_finish function in crypto/comp/c_zlib.c allows remote attackers to cause a denial of service (memory consumption) via vectors that trigger incorrect calls to the CRYPTO_cleanup_all_ex_data function.</td>
<td>No. OpenSSH on z/OS does not use the vulnerable code.</td>
</tr>
<tr>
<td>CVE-2010-0433</td>
<td>03/05/2010</td>
<td>The ssl_keytab_is_available function in ssl/kssl.c does not check a certain return value, which allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via SSL cipher negotiation.</td>
<td>No. OpenSSH on z/OS does not use the vulnerable code.</td>
</tr>
<tr>
<td>CVE-2010-0740</td>
<td>03/26/2010</td>
<td>The ssl3_get_record function in ssl/s3_pkt.c allows remote attackers to cause a denial of service (crash) via a malformed record in a TLS connection that triggers a NULL pointer dereference, related to the minor version number.</td>
<td>No. OpenSSH on z/OS does not use the vulnerable code.</td>
</tr>
<tr>
<td>CVE-2010-0742</td>
<td>06/03/2010</td>
<td>The Cryptographic Message Syntax (CMS) implementation in crypto/cms/cms_asn1.c in OpenSSL does not properly handle structures that contain OriginatorInfo, which allows context-dependent attackers to modify invalid memory locations or conduct double-free attacks, and possibly execute arbitrary code, via unspecified vectors.</td>
<td>No. OpenSSH on z/OS does not use the vulnerable code.</td>
</tr>
<tr>
<td>CVE-2010-1633</td>
<td>06/03/2010</td>
<td>RSA verification recovery in the EVP_PKEY_verify_recover function in OpenSSL, as used by pkeyutl and possibly other applications, returns uninitialized memory upon failure, which might allow context-dependent attackers to bypass intended key requirements or obtain sensitive information via unspecified vectors.</td>
<td>No. This vulnerability does not affect OpenSSL 0.9.8k.</td>
</tr>
<tr>
<td>CVE-2010-2939</td>
<td>08/17/2010</td>
<td>Double free vulnerability in the ssl3_get_key_exchange function in the OpenSSL client (ssl/s3_clnt.c) when using ECDH, allows context-dependent attackers to cause a denial of service (crash) and possibly execute arbitrary code via a crafted private key with an invalid prime.</td>
<td>No. OpenSSH on z/OS does not use the vulnerable code.</td>
</tr>
<tr>
<td>CERT/CVE</td>
<td>Date</td>
<td>Public name description</td>
<td>Is OpenSSH vulnerable?</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>CVE-2010-3864</td>
<td>11/17/2010</td>
<td>Multiple race conditions in ssl/t1_lib.c in OpenSSL, when multi-threading and internal caching are enabled on a TLS server, might allow remote attackers to execute arbitrary code via client data that triggers a heap-based buffer overflow, related to (1) the TLS server name extension and (2) elliptic curve cryptography.</td>
<td>No. OpenSSH on z/OS does not use the vulnerable code.</td>
</tr>
<tr>
<td>CVE-2010-4180</td>
<td>12/06/2010</td>
<td>OpenSSL, when SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG is enabled, does not properly prevent modification of the ciphersuite in the session cache, which allows remote attackers to force the downgrade to an unintended cipher via vectors involving sniffing network traffic to discover a session identifier.</td>
<td>No. OpenSSH on z/OS does not use the vulnerable code.</td>
</tr>
<tr>
<td>CVE-2010-4252</td>
<td>12/06/2010</td>
<td>OpenSSL, when J-PAKE is enabled, does not properly validate the public parameters in the J-PAKE protocol, which allows remote attackers to bypass the need for knowledge of the shared secret, and successfully authenticate, by sending crafted values in each round of the protocol.</td>
<td>No. OpenSSH on z/OS does not support J-PAKE.</td>
</tr>
<tr>
<td>CVE-2011-0014</td>
<td>02/19/2011</td>
<td>ssl/t1_lib.c allows remote attackers to cause a denial of service (crash), and possibly obtain sensitive information in applications that use OpenSSL, via a malformed ClientHello handshake message that triggers an out-of-bounds memory access.</td>
<td>No. OpenSSH on z/OS does not use the vulnerable code.</td>
</tr>
<tr>
<td>CVE-2011-1945</td>
<td>05/31/2011</td>
<td>The elliptic curve cryptography (ECC) subsystem when the Elliptic Curve Digital Signature Algorithm (ECDSA) is used for the ECDHE_ECDSA cipher suite, does not properly implement curves over binary fields, which makes it easier for context-dependent attackers to determine private keys via a timing attack and a lattice calculation.</td>
<td>No. OpenSSH on z/OS does not use the vulnerable code.</td>
</tr>
</tbody>
</table>

List of past vulnerabilities that affected IBM Ported Tools for z/OS: OpenSSH in Version 1 Release 1

These past vulnerabilities do not affect Version 1 Release 2 of IBM Ported Tools for z/OS: OpenSSH. They are listed for historical purposes only. For more information, see the US-CERT Vulnerability Notes Database at http://www.kb.cert.org/vuls and the National Vulnerability Database at http://nvd.nist.gov/nvd.cfm.

OpenSSH

VU#389665
CVE-2003-0386
CVE-2002-1357
VU#978316
VU#333628
CVE-2003-0693
Chapter 14. OpenSSH vulnerabilities

VU#602204
CVE-2003-0786

VU#209807
CVE-2003-0787

CVE-2004-0175
CVE-2005-2666
CVE-2005-2797
CVE-2005-2798
CVE-2006-0225

VU#787448
CVE-2006-4924
CVE-2006-4925

VU#851340
CVE-2006-5051
CVE-2006-5052
CVE-2006-5794
CVE-2007-4752
CVE-2008-1483
CVE-2008-1657

VU#603189
CVE-2002-0059

VU#142121
CVE-2003-0107

VU#238678

VU#787448
CVE-2006-4924
CVE-2006-4925

VU#851340
CVE-2006-5051
CVE-2006-5052
CVE-2006-5794
CVE-2007-4752
CVE-2008-1483
CVE-2008-1657

zlib

VU#368819
CVE-2002-0059

VU#142121
CVE-2003-0107

VU#238678

OpenSSL

VU#888801
CVE-2003-0131

VU#997481
CVE-2003-0147

VU#255484
CVE-2003-0543

VU#380864
CVE-2003-0544

VU#935264
CVE-2003-0545

VU#412478
CVE-2003-0851

VU#288574
CVE-2004-0079

VU#465542
CVE-2004-0081

VU#484726
CVE-2004-0112
CVE-2005-1797
CVE-2005-2946
CVE-2005-2969

VU#247744
CVE-2006-2937

VU#423396

Chapter 14. OpenSSH vulnerabilities 197
Chapter 15. OpenSSH messages

FOTS0101 unknown key type
Explanation: You specified an option that is not valid for this command.
System action: Command ends.

FOTS0102 bad key type
Explanation: Incorrect key type was passed.
System action: Command ends.
User response: Verify that the key file entered is valid.

FOTS0103 load failed
Explanation: Either the specified file is not the correct type or the passphrase was incorrect.
System action: Command ends.
User response: Check the file, the specified passphrase, and try the command again.

FOTS0104 fgets failed
Explanation: ssh-keygen could not read the answer to the prompt.
System action: Command ends.

FOTS0105 key_to_blob failed
Explanation: ssh-keygen could not convert the key from OpenSSH format.
System action: Command ends.
User response: Check that the key specified is OpenSSH format.

FOTS0106 input line too long.
Explanation: ssh-keygen could not convert the key. Data in the key file had a line that was too long.
System action: Command ends.
User response: Check that you specified the correct key file, and try again.

FOTS0107 uudecode failed.

FOTS0108 decode blob failed.
Explanation: ssh-keygen could not convert the key.
System action: Command ends.
User response: Check that you specified the correct key file, and try again.

FOTS0109 key_write failed
Explanation: The key information could not be written to either stdout or file.
System action: Command ends.
User response: If using options to create or change the key file, check that there is enough space to create a key file.

FOTS0110 filename is not a public key file
Explanation: The command expected the file to be a public key and it is not.
System action: Command ends.

FOTS0111 Bad passphrase.
Explanation: The key file could not be loaded. Either the file given is not the correct format or the passphrase is not correct.
System action: Command ends.
User response: Check the file and the passphrase, and try again.

FOTS0112 Passphrases do not match. Try again.
Explanation: The two passphrases given were not the same.
System action: Command ends.
User response: You need to specify the same passphrase twice.

FOTS0113 Saving the key failed: filename.
Explanation: The key file could not be saved.
System action: Command ends.
User response: Verify that you have correct permissions to create the key file.

FOTS0114
Could not create directory 'directory'.
Explanation: The mkdir() failed and could not create the directory directory.
System action: Command ends.
User response: Check that you have correct permissions to create directory.

FOTS0115
Comments are only supported for RSA1 keys.
Explanation: Comments can only be changed for RSA1 key types.
System action: Command ends.
User response: Check [IBM Ported Tools for z/OS: OpenSSH User's Guide](#) for a list of options and descriptions.

FOTS0116
Key now has comment 'string'
Explanation: Informational message when comment is changed.
System action: Command continues.
User response: None.

FOTS0117
Enter new comment:
Explanation: This is a prompt for specifying a new comment.
System action: Command waiting for input.
User response: Specify the new comment.

FOTS0118
Could not save your public key in filename
Explanation: Creation of the public file failed.
System action: Command ends.
User response: Check that you have correct permissions to create the file.

FOTS0119
fdopen filename failed
Explanation: The system call fdopen() failed.
System action: Command ends.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0120
key_generate failed
Explanation: Could not generate the private key.
System action: Command ends.
User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0121
You don't exist, go away!
Explanation: The getpwuid() system call failed. This may happen when there are multiple users with the same UID and one of them does not have the group defined in the OMVS segment or the default group does not have OMVS segment.
System action: Command ends.
User response: Check the users for the group and the default group.

FOTS0122
Bits has bad value.
Explanation: Allowed range is 768 to 32768 bits.
System action: Command ends.
User response: Change the bits value and reissue the command.

FOTS0123
Too many arguments.
Explanation: You specified arguments that are mutually exclusive.
System action: Command ends.
User response: Check [IBM Ported Tools for z/OS: OpenSSH User's Guide](#) for a list of options.

FOTS0124
Can only have one of -p and -c.
Explanation: You cannot change both the passphrase and the comment in the same command. You have to change them one at a time.
System action: Command ends.
User response: Check [IBM Ported Tools for z/OS: OpenSSH User's Guide](#) for a list of options.

FOTS0125
You must specify a key type (-t).
Explanation: You need to specify the key type when generating a key file. Option -t type and -d specify the key format.
System action: Command ends.

FOTS0126 buffer_get_bignum_bits: input buffer too small: need need_bits have have_bits
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0127 bad magic 0xmagic_value != 0xexpected_value
Explanation: Unexpected value in private key.
System action: Command ends.
User response: Check that you specified the correct key file, and try again.

FOTS0128 unsupported cipher cipher
Explanation: The specified cipher for the key is not supported.
System action: Command ends.
User response: Check that you specified the correct key file, verify that the cipher used to create the key is supported, and then try again.

FOTS0129 line number too long: line...
Explanation: ssh-keygen could not convert the key. Data in the key file had a line that was too long.
System action: Command ends.
User response: Check that you specified the correct key file, and try again.

FOTS0130 do_convert_private_ssh2_from_blob: remaining bytes in key blob rlen
Explanation: ssh-keygen could not convert the key.
System action: Command continues.
User response: Check that you specified the correct key file, and try again.

FOTS0131 strtol failed:
Explanation: A call to strtol() failed. The system error is displayed with this message.
System action: The program ends.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](http://www.ibm.com) for an explanation of the system error.

FOTS0132 version 1 keys are not supported
Explanation: The -e option cannot be used with RSA keys for use by SSH protocol version 1.
System action: The program ends.
User response: Specify a RSA key for use by SSH protocol version 2 or a DSA key.
System programmer response: Not applicable

FOTS0133 Primality trials has bad value.
Explanation: Number of primality trials must be an integer greater than or equal to 4.
System action: The command ends.
User response: Select an integral value greater than or equal to 4.
System programmer response: Not applicable

FOTS0134 Desired generator has bad value.
Explanation: Generator value must be greater than or equal to 1.
System action: The command ends.
User response: Select a generator value greater than or equal to 1.
System programmer response: Not applicable

FOTS0135 Minimum primality trials is TRIAL_MINIMUM
Explanation: The number of trials specified must be greater than or equal to TRIAL_MINIMUM.
System action: The command ends.
User response: Select a trials value greater than or equal to TRIAL_MINIMUM.
System programmer response: Not applicable

FOTS0136 Invalid memory amount (min min_memory, max max_memory)
Explanation: The memory amount must be greater than or equal to min_memory and less than or equal to max_memory.
System action: The command ends.
User response: Select a memory value greater than or equal to min_memory and less than or equal to max_memory.
System programmer response: Not applicable
FOTS0137 Invalid start point.

Explanation: A call to OpenSSL function BN_hex2bn() failed for the specified start point.

System action: The program ends.

User response: Make sure the specified start point is a string which begins with one or more valid hexadecimal digits. If the specified string is valid and the problem persists then contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0138 Couldn't open modulus candidate file "filename": error_message

Explanation: A call to fopen() failed on file filename. The system error is displayed with this message.

System action: The program ends.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0139 modulus candidate generation failed

Explanation: Internal error.

System action: The command ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0140 Couldn't open moduli file "filename": error_message

Explanation: A call to fopen() failed on file filename. The system error is displayed with this message.

System action: The program ends.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0141 modulus screening failed

Explanation: Internal error.

System action: The command ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0142 Memory option has bad value.

Explanation: The value specified for the memory option must be an integer greater than 7 and less than 128.

System action: The command ends.

User response: Select an integer value greater than 7 and less than 128.

System programmer response: Not applicable

FOTS0143 buffer_get_bignum_bits: BN_bin2bn failed

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0144 hash_host failed

Explanation: Internal error. Unable to hash host name information.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0145 Specified known hosts path too long

Explanation: The known_hosts file path name is too long.

System action: The program ends.

User response: Verify that the path name of the known_hosts file is correct, and try the request again. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0146 fopen: error_message

Explanation: The fopen() system call failed. The system error is displayed with the message.

System action: The program ends.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the system error.
FOTS0147 known_hosts path too long
Explanation: The known_hosts file path name is too long.
System action: The program ends.
User response: Verify that the path name of the known_hosts file is correct, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0148 mkstemp: error_message
Explanation: The mkstemp() system call failed. The system error is displayed with the message.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error.

FOTS0149 fdopen: error_message
Explanation: The fdopen() system call failed. The system error is displayed with the message.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error.

FOTS0150 line line_number missing key: line_in_error...
Explanation: Line line_number in the known_hosts file is missing key information.
System action: The program continues.
User response: Verify that a valid known_hosts file is specified, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0151 line line_number invalid key: line_in_error...
Explanation: Line line_number in the known_hosts file contains an invalid key.
System action: The program continues.
User response: Verify that a valid known_hosts file is specified, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0152 line line_number: invalid hashed name: line_in_error...
Explanation: Line line_number in the known_hosts file contains a hashed host name that is not valid.
System action: The program continues.
User response: Verify that a valid known_hosts file is specified, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0153 Warning: ignoring host name with metacharacters: host_name
Explanation: Skipped hashing host name host_name with metacharacters.
System action: The program continues.
User response: If you expected all host names to be hashed, verify that a valid known_hosts file is specified, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0154 filename is not a valid known_hosts file.
Explanation: An error occurred while processing the known_hosts file filename.
System action: The program ends.
User response: Verify that a valid known_hosts file is specified, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0155 Not replacing existing known_hosts file because of errors
Explanation: The existing known_hosts file was not replaced because an error occurred while processing the file.
System action: The program ends.
User response: Verify that a valid known_hosts file is specified, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS0156 unlink filename: error_message

Explanation: The unlink() system call failed. The system error is displayed with the message.

System action: The program ends.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the system error.

FOTS0157 link filename1 to filename2: error_message

Explanation: The link() system call failed. The system error is displayed with the message.

System action: The program ends.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the system error.

FOTS0158 rename "filename1" to "filename2": error_message

Explanation: The rename() system call failed. The system error is displayed with the message.

System action: The program ends.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the system error.

FOTS0159 Identity filename too long

Explanation: The specified identity filename is too long.

System action: The program ends.

User response: Specify a valid identity filename, and try the request again.

FOTS0160 Output filename too long

Explanation: The specified output filename is too long.

System action: The program ends.

User response: Specify a valid output filename, and try the request again.

FOTS0161 no keys found.

Explanation: No keys were found in the key file.

System action: The program ends.

User response: Verify that a valid key file is specified, and try the request again. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0162 no support for smartcards.

Explanation: ssh-keygen on z/OS does not support smart cards.

System action: The program ends.

User response: Do not specify ssh-keygen smart card options. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0163 DSA keys must be 1024 bits

Explanation: The ssh-keygen bits value for the DSA key is not 1024.

System action: The program ends.

User response: Correct the ssh-keygen bits value, and try the request again.

FOTS0164 ungetc: error_message

Explanation: The ungetc() system call failed. The system error is displayed with the message.

System action: The program ends.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the system error.

FOTS0165 filename updated.

Explanation: The known_hosts file filename was updated.

System action: The program continues.

User response: None.

FOTS0166 Original contents retained as filename

Explanation: The original contents of the known_hosts file is retained in file filename.

System action: The program continues.
Chapter 15. OpenSSH messages

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
<th>Explanation</th>
<th>System action</th>
<th>User response</th>
<th>System programmer response</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOTS0167</td>
<td>WARNING: filename contains unhashed entries</td>
<td>The known_hosts file filename contains unhashed host names. The file should be deleted to ensure privacy.</td>
<td>The program continues.</td>
<td>None.</td>
<td>None.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOTS0169</td>
<td>Entering new comment failed: filename.</td>
<td>Failed to enter new comment for key file filename.</td>
<td>The program ends.</td>
<td>Set the variable environment variable to the correct agent pid.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOTS0170</td>
<td>Invalid number of trials: number_of_trials (error_message)</td>
<td>The specified ssh-keygen number of trials value is not valid. The error is displayed with the message.</td>
<td>The program ends.</td>
<td>Refer to IBM Ported Tools for z/OS: OpenSSH User's Guide for valid ssh-keygen number of trials values, and try the request again.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOTS0171</td>
<td>Memory limit is error message: memory_limit</td>
<td>The specified ssh-keygen memory limit value is not valid. The error is displayed with the message.</td>
<td>The program ends.</td>
<td>Check the variable environment variable and its value.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOTS0172</td>
<td>Bits has bad value: bits (error_message)</td>
<td>The specified ssh-keygen bits value is not valid. The error is displayed with the message.</td>
<td>The program ends.</td>
<td>Refer to IBM Ported Tools for z/OS: OpenSSH User's Guide for valid ssh-keygen bits values, and try the request again.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOTS0173</td>
<td>Desired generator has bad value: generator (error_message)</td>
<td>The specified ssh-keygen generator value is not valid. The error is displayed with the message.</td>
<td>The program ends.</td>
<td>Refer to IBM Ported Tools for z/OS: OpenSSH User's Guide for valid ssh-keygen generator values, and try the request again.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOTS0201</td>
<td>variable not set, cannot kill agent</td>
<td>The variable environment variable was not set so ssh-agent could not get the PID of the agent to kill</td>
<td>Command ends.</td>
<td></td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOTS0202</td>
<td>variable="value", which is not a good PID</td>
<td>The variable environment variable does not contain the correct pid so the agent could not be killed.</td>
<td>Command ends.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOTS0203</td>
<td>Internal error, bad protocol version version</td>
<td>ssh-agent supports version 1 and 2. The displayed version is not supported.</td>
<td>Command ends.</td>
<td></td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOTS0204</td>
<td>process_remove_identity: internal error: tab->nentries number</td>
<td>Failure occurred during internal processing of removing keys.</td>
<td>Command ends.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FOTS0205 select: message
Explanation: select() system call failed
System action: Command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0206 Unknown message number
Explanation: ssh–agent could not process the given message.
System action: Command ends.
User response: Contact your system administrator to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0207 fcntl O_NONBLOCK: message
Explanation: fcntl() system call failed.
System action: Command continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0208 accept from AUTH_SOCKET: message
Explanation: accept() system call failed. could not get correct socket number.
System action: Command continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0209 getpeereid id failed: message
Explanation: getpeereid fails for the given socket.
System action: The socket gets closed and command continues.
User response: Check the system error message which follows this message.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0210 uid mismatch: peer euid != uid uid
Explanation: ssh–agent sockets are owned by the uid which created it and can only be used by that uid and superuser.
System action: Command continues.
User response: Check that you are using the correct uid and SSH_AUTH_SOCK environment variable has correct value.

FOTS0211 kill
Explanation: kill system call failed and could not kill the agent.
System action: Command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0212 mkdtemp: private socket dir
Explanation: Could not create the private directory for agent socket.
System action: Command ends.
User response: Check the system error message which follows this message.

FOTS0213 socket
Explanation: Could not create socket because socket system call failed.
System action: Command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0214 bind
Explanation: bind system call failed.
System action: Command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS0215 listen
Explanation: listen system call failed.
System action: Command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0216 fork
Explanation: fork system call failed.
System action: Command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0217 setenv
Explanation: setenv system call failed and ssh-agent could not set either SSH_AUTH_SOCK or SSH_AGENT_PID variables.
System action: Command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0218 setsid: message
Explanation: setsid system call failed
System action: Command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0219 setrlimit RLIMIT_CORE: string
Explanation: setrlimit system call failed.
System action: Command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0220 process_authentication_challenge1: BN_new failed
Explanation: The BN_new function failed.
System action: Command ends.
User response: Contact your system administrator to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0221 Unknown socket type number
Explanation: Internal error.
System action: Command ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0222 Unknown type number
Explanation: Internal error.
System action: Command ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0231 process_add_identity: RSA_blinding_on failed
Explanation: The variable environment variable does not contain the correct pid so the agent could not be killed.
System action: The program ends.
User response: Check the variable environment variable and its value and try the request again.

FOTS0232 variable="value", which is not a good PID: error_message
Explanation: The variable environment variable does not contain the correct pid so the agent could not be killed.
System action: The program ends.
User response: Check the variable environment variable and its value and try the request again.
FOTS0233 process_authentication_challenge: bad challenge length length

Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0234 Warning: identity keysize mismatch: actual keysize1, announced keysize2

Explanation: Possible RSA key problem encountered while removing identity from the agent.
System action: The program continues.
User response: Verify that the RSA key is valid and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0301 Bad key file filename

Explanation: The public key of the specified identity could not be loaded.
System action: Command continues to the next file (if any).
User response: Make sure the public key exists in the same directory as the pathname of the identity.

FOTS0302 Failed to remove all identities.

Explanation: One or more version 1 identities could not be removed from the ssh-agent when trying to remove all.
System action: Command ends.
User response: Check what identities are still present in the ssh-agent. Contact system programmer.

FOTS0303 Could not remove identity: filename

Explanation: ssh-agent returned a bad code when removal was attempted.
System action: Command continues to next identity (if any).
User response: Contact system programmer.

FOTS0304 Could not add identity: filename

Explanation: The specified identity could not be added to the ssh-agent.
System action: Command continues to next file (if any).
User response: Contact system programmer.

FOTS0305 key_write failed

Explanation: The key parameter could not be written to the stdout.
System action: Command continues.
User response: Not applicable

FOTS0306 Passwords do not match.

Explanation: When prompted twice for the password, the passwords must match.
System action: Command ends.
User response: Retry command giving the same password twice.

FOTS0307 Failed to (un)lock agent.

Explanation: The ssh-agent could not be either locked or unlocked.
System action: Command ends.
User response: If unlocking, check that correct password was given. When unlocking, check that the same password was given twice.

FOTS0308 Could not open a connection to your authentication agent.

Explanation: ssh-add needs ssh-agent to be running to execute.
System action: Command ends.
User response: Check that you have ssh-agent running and the SSH_AGENT_PID and SSH_AUTH_SOCK environment variables hold the agent data and are exported.

FOTS0309 Invalid lifetime

Explanation: The format of the -t argument was incorrect and the lifetime could not be set.
System action: Command ends.

FOTS0310 Smartcards are not supported

Explanation: You tried to use -s or -e option which is not supported.
System action: Command ends.
FOTS0311 No user found with uid uid
Explanation: The getpwuid() system call failed. This may happen when there are multiple users with the same uid and one of them does not have the group defined in the omvs segment or the default group does not have omvs segment.
System action: Command ends.
User response: Check the users for the given uid for the group and the default group.

FOTS0327 identity_file : message
Explanation: A call to stat() failed on file identity_file. The system error is displayed with this message.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0401 Impossible! dispatch_run() returned!
Explanation: Call to dispatch_run returned when it should not have.
System action: Command ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0402 Bad port 'port_num'
Explanation: The specified port number is not valid.
System action: Command ends.
User response: Specify a valid port number.

FOTS0403 Bad timeout 'time'
Explanation: The specified timeout value is not valid.
System action: Command ends.
User response: Specify a valid timeout value.

FOTS0404 hostname: invalid packet type
Explanation: Packet received from host was not in the proper format.
System action: Command continues.
User response: Verify connections. If problem persists contact your system administrator to report the problem.

FOTS0405 getaddrinfo hostname: message
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0406 socket: message
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0407 F_SETFL: error_message
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0408 connect (hostname): message
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0409 read (hostname): message
System programmer response: Follow local procedures for reporting problems to IBM.
If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0410 hostname: Connection closed by remote host.

Explanation: The remote host has closed the connection.

System action: Command continues.

User response: Contact the remote host sysadmin for further assistance.

FOTS0411 hostname: bad greeting

Explanation: The greeting received from the server is not in the proper format.

System action: Command continues.

User response: Contact the remote host sysadmin for further assistance.

FOTS0412 write ('hostname'): message

Explanation: Could not write to the socket because the write system call failed. The system error is displayed.

System action: Command continues.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0414 hostname: exception!

Explanation: There is an exception for the socket associated with the indicated hostname. This error is often the result when the remote server is down or not running ssh.

System action: Command continues.

User response: Contact the remote host sysadmin for further assistance.

FOTS0415 conalloc: fdno number too high

Explanation: The file descriptor value exceeds the maximum for the system.

System action: Command ends.

User response: Contact the system programmer for further assistance.

System programmer response: Verify system file descriptor settings. If problem cannot be resolved then follow local procedures for reporting problems to IBM.

FOTS0416 conalloc: attempt to reuse fdno number

Explanation: The program is attempting to allocate a file descriptor that is already in use.

System action: Command continues.

User response: Contact the system programmer for further assistance.

System programmer response: Verify system file descriptor settings. If problem cannot be resolved then follow local procedures for reporting problems to IBM.

FOTS0417 confree: attempt to free bad fdno number

Explanation: The program attempted to free a connection that did not exist.

System action: Command ends.

User response: Contact the system programmer for further assistance.

System programmer response: Verify system file descriptor settings. If problem cannot be resolved then follow local procedures for reporting problems to IBM.

FOTS0418 conread: invalid status status

Explanation: The connection status value is invalid.

System action: Command ends.

User response: Verify the status of hosts being scanned.

FOTS0419 Too high debugging level.

Explanation: The specified debugging level exceeds the maximum value of 3.

System action: Command ends.

User response: Specify a debugging level of 3 or less.

FOTS0420 unknown key type keytype

Explanation: The specified key type is not a valid key type.

System action: Command ends.

User response: Specify a valid key type.

FOTS0421 progname: fdlim_get: bad value

Explanation: The number of file descriptors available to the process is less than zero.

System action: Command ends.

User response: Contact the system administrator for further assistance.

System programmer response: Verify system file descriptor settings. If problem cannot be resolved then
follow local procedures for reporting problems to IBM.

FOTS0422 progname: not enough file descriptors
Explanation: The number of file descriptors available to the process for use for connections is zero or less.
System action: Command ends.
User response: Contact the system administrator for further assistance.
System programmer response: Verify system file descriptor settings. If problem cannot be resolved then follow local procedures for reporting problems to IBM.

FOTS0424 function: set_nonblock(socket)
Explanation: ssh-keyscan failed to set the connection socket socket to non-blocking. The failure occurred in function.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0425 host_hash failed
Explanation: Failed to hash the hostnames and addresses.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0426 snprintf: buffer too small
Explanation: Failed to set up the connection because an internal buffer was too small.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0502 progname: resource_name must be an integer, not buf;
Explanation: Internal error.
System action: Command continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0503 progname: resource_name must be a float, not buf,
Explanation: Internal error.
System action: Command continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0504 progname: can't parse color color
Explanation: Internal error.
System action: Command continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0505 progname: couldn't allocate color color
Explanation: Internal error.
System action: Command continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0506 appName[pid]: Aaahhh! I ran out of memory at line line.
Explanation: Out of memory.
System action: Command ends.
User response: Free more system resources and reissue the command.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0507 appName[pid]: invalid value 'string_resource' for instanceName.
Explanation: Internal error.
System action: Command continues.
User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0508 appName[pid]: performGrab: invalid grab type (grabType).
Explanation: Internal error.
System action: Command continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0509 appName[pid]: performGrab: null grab type name.
Explanation: Internal error.
System action: Command continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0510 appName[pid]: Could not grab grabTypeName (reason)
Explanation: Internal error.
System action: Command ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0511 appName[pid]: "Yawn"...timed out after time seconds.
Explanation: Timed out waiting for user response.
System action: Command ends.
User response: Respond to prompt prior to timeout.

FOTS0512 appName[pid]: setrlimit failed (system error)
Explanation: setrlimit() system call failed.
System action: Command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0513 appName[pid]: This should not happen.
Explanation: Internal error.
System action: Command ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0701 process_read: seek failed
Explanation: System call lseek() failed.
System action: Command continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0702 process_write: seek failed
Explanation: System call lseek() failed.
System action: Command continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0703 process_write: write failed
Explanation: System call write() failed.
System action: Command continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS0704 bad message
Explanation: Internal error.
System action: Command ends.
User response: Contact the system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0705 Unknown message request
Explanation: The displayed request is not supported by sftp-server.
System action: Command continues.
User response: Contact the system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0706 read error
Explanation: System call read() failed.
System action: Command ends.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](http://www.ibm.com/support/docview.wss?uid=swg27013043) for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0707 write error
Explanation: System call write() failed.
System action: Command ends.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](http://www.ibm.com/support/docview.wss?uid=swg27013043) for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0708 iqueue grows
Explanation: Internal error.
System action: Command ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0709 msg_len length < consumed bytes
Explanation: Internal error.
System action: Command ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0711 bad message from client_address local user user_name
Explanation: Internal error. A bad message was received from the client at client_address for local user user_name.
System action: The program ends.
User response: Try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0712 read: error_message
Explanation: The read() system call failed. The system error is displayed with the message.
System action: The program ends.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](http://www.ibm.com/support/docview.wss?uid=swg27013043) for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error.

FOTS0713 write: error_message
Explanation: The write() system call failed. The system error is displayed with the message.
System action: The program ends.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](http://www.ibm.com/support/docview.wss?uid=swg27013043) for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error.

FOTS0714 Invalid log level "log_level"
Explanation: The specified sftp-server log level value is not valid.
System action: The program continues.

FOTS0715 Invalid log facility "log_facility"
Explanation: The specified sftp-server log facility value is not valid.
System action: The program continues.
FOTS0716 Malformed SSH_CONNECTION variable: "value"
Explanation: The SSH_CONNECTION environment variable's value is malformed.
System action: The program ends.
User response: Try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0717 select: error_message
Explanation: The select() system call failed. The system error is displayed with the message.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error.

FOTS0718 No user found for uid UID
Explanation: The getpwuid() system call was unable to get information about a user with UID UID.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0801 pipe: system error
Explanation: System call pipe() failed.
System action: Command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0802 socketpair: system error
Explanation: System call socketpair() failed.
System action: Command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0803 fork: system error
Explanation: System call fork() failed.
System action: Command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0804 dup2: system error
Explanation: System call dup2() failed.
System action: Command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0805 exec: path: system error
Explanation: System call exec() failed.
System action: Command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0806 error (pathname).
Explanation: Error occurred when specifying pathname after `-b`.
System action: Command ends.
User response: Check to make sure that you use a valid path name.

FOTS0807 Filename already specified.
Explanation: You specified option `-b` more than once.
System action: Command ends.
User response: Check and make sure that you specify option `-b` only once.

FOTS0808 Invalid buffer size "size"
Explanation: Buffer size can only be an integer between 1 and 2147483647(LONG_MAX).
System action: Command ends.
User response: Specify a valid buffer size and retry.
FOTS0809 Invalid number of requests "number"
Explanation: Number of requests can only be an integer between 1 and 2147483647 (LONG_MAX).
System action: Command ends.
User response: Specify a valid number of requests and retry.

FOTS0810 Missing username
Explanation: User name is missing from the command line.
System action: Command ends.
User response: Check and make sure you issue a valid username on the command line.

FOTS0811 Missing hostname
Explanation: Host name is missing from the command line.
System action: Command ends.
User response: Check and make sure you issue a valid hostname on the command line.

FOTS0812 Couldn't wait for ssh process: system error
Explanation: System call waitpid() failed.
System action: Command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0813 Shell exited abnormally
Explanation: The child process ended abnormally.
System action: Command continues.
User response: Contact the system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0814 Shell exited with status status
Explanation: The child process ended normally with the status listed above.
System action: Command continues.
User response: Contact the system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0815 Invalid path
Explanation: Internal error.
System action: Command continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0816 ls: Invalid flag –flag
Explanation: You specified an invalid flag flag after the subcommand ls.
System action: Command continues.

FOTS0817 Unterminated quote
Explanation: You specified quoted filename and the quotes are not closed.
System action: Command continues.
User response: Check and make sure the quotes are closed.

FOTS0818 Empty quotes
Explanation: You specified quoted filename and the file name is missing between the quotes.
System action: Command continues.
User response: Check and make sure to specify filename between the quotes.

FOTS0819 File "filename" not found.
Explanation: You specified a file that was not found.
System action: Command continues.
User response: Make sure the file exists before reissuing command.

FOTS0820 Multiple files match, but "path" is not a directory
Explanation: You attempted to upload more than one file but the target indicated by path was not a directory.
System action: Command continues.
User response: When uploading more than one file, ensure that the target path is a directory.

FOTS0821 Can't ls: "path" not found
Explanation: Internal error.
System action: Command continues.
User response: Contact the system programmer.
System programmer response: Follow local
procedures for reporting problems to IBM.

FOTS0822
Invalid command.

Explanation: You entered an invalid subcommand.

System action: Command continues.

User response: Check [IBM Ported Tools for z/OS: OpenSSH User’s Guide](#) for a list of valid subcommands.

FOTS0823
You must specify at least one path after a get or put command.

Explanation: You omitted pathname after get or put command.

System action: Command continues.

User response: Check to make sure you specify at least one pathname after get or put.

FOTS0824
You must specify two paths after a command command.

Explanation: You specified only one pathname after the subcommand.

System action: Command continues.

User response: Check to make sure you specify two pathnames.

FOTS0825
You must specify a path after a command command.

Explanation: You omitted the pathname after the subcommand.

System action: Command continues.

User response: Check to make sure you did not omit the pathname.

FOTS0826
You must supply a numeric argument to the cmd_string command.

Explanation: You specified a non-numeric argument.

System action: Command continues.

User response: Check to make sure you specify a numeric argument.

FOTS0827
Can't change directory: Can't check target

Explanation: You can not change directory because the sftp-server protocol does not support remote file permission bits transferring.

System action: Command continues.

User response: Contact the system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0828
Can't change directory: "dir" is not a directory

Explanation: You can not change the directory because the argument specified after the subcommand cd is not a directory.

System action: Command continues.

User response: Check to make sure the argument you supply is a valid directory.

FOTS0829
Couldn't change local directory to "dir": error

Explanation: You can not change local directory because of the system error.

System action: Command continues.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

FOTS0830
Couldn't create local directory "dir": error

Explanation: You can not create a local directory because of the system error.

System action: Command continues.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

FOTS0831
Can't get current ownership of remote file "pathname"

Explanation: You can not get the ownership of the remote file because the sftp-server protocol does not support file ownership transferring.

System action: Command continues.

User response: Contact the system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0832
Couldn't get local cwd: system error

Explanation: You can not get local working directory because call to getcwd() failed.

System action: Command continues.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.
FOTS0833 Couldn't fork: system error
Explanation: System call fork() failed.
System action: Command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0834 Couldn't wait for child: system error
Explanation: System call waitpid() failed.
System action: Command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0835 Command not implemented
Explanation: The subcommand you specified is not implemented in the program.
System action: Command ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0836 command number is not implemented
Explanation: The specified interactive command is not implemented in the program.
System action: Command ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0837 Couldn't initialize connection to server
Explanation: Internal error.
System action: Command ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0838 Need cwd
Explanation: The program could not get the current working directory from the server.
System action: Command ends.

User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0839 Couldn't execute "shell program": system error
Explanation: You specified interactive command '!' to invoke the local shell and the program failed to execute the local shell.
System action: Command continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0840 Couldn't send packet: system error
Explanation: A call to write() failed while sftp was attempting to send packet to the server.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0841 Connection closed
Explanation: A call to read() failed while sftp was attempting to get packet from the server. Therefore, the connection between the client and the server was closed.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0842 Couldn't read packet: system error
Explanation: A call to read() failed while sftp was attempting to get packet from the server.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS0843 Received message too long length
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0844 ID mismatch (received msg_id != expected msg_id)
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0845 Expected SSH2_FXP_STATUS(packet type1) packet, got packet type2
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0846 Expected SSH2_FXP_HANDLE(handle1) packet, got handle2
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0847 Couldn't stat remote file: error message
Explanation: sftp failed to get the remote file information due to the displayed error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0848 Expected SSH2_FXP_ATTRS(packet type1) packet, got packet type2
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0849 Invalid packet back from SSH2_FXP_INIT (type packet type)
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0850 Couldn't close file: error message
Explanation: sftp failed to close the connection between the client and the server due to the displayed error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0851 Couldn't read directory: error message
Explanation: sftp failed to read the remote directory due to the displayed error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0852 Bad escaped character 'character'
Explanation: An invalid escaped character character was encountered after \ in the file name.
System action: The program continues.
User response: Correct the file name and reissue the command.

FOTS0853 Couldn't delete file: error message
Explanation: sftp failed to delete the remote file due to the displayed error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0854 Couldn't create directory: error message
Explanation: sftp failed to create the remote directory due to the displayed error.
System action: The program continues.
User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0855 Couldn't remove directory: error message
Explanation: sftp failed to remove the remote directory due to the displayed error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0856 Couldn't setstat on "path": error message
Explanation: sftp failed to set remote file attributes due to the displayed error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0857 Couldn't fsetstat: error message
Explanation: sftp failed to set remote file attributes due to the displayed error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0858 Couldn't canonicalise: error_msg
Explanation: Internal error.
System action: The program continues.
User response: Not applicable
System programmer response: Not applicable

FOTS0859 Expected SSH2_FXP_NAME(packet type1) packet, got packet type2
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0860 Got multiple names (count) from SSH_FXP_REALPATH
Explanation: sftp received more than one remote real path.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0861 Couldn't rename file "old_path" to "new_path": error message
Explanation: sftp failed to rename remote file due to the displayed error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0862 This server does not support the symlink operation
Explanation: The sftp server you connected to does not support the ln and symlink subcommands.
System action: The program continues.
User response: Do not use the symlink or ln subcommands.

FOTS0863 Couldn't readlink: error message
Explanation: sftp failed to read the remote symlink.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0864 Got multiple names (count) from SSH_FXP_READLINK
Explanation: sftp received more than one symbolic names resolved for remote symlink.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0865 Cannot download a directory: remote path
Explanation: You can not download a remote directory.
System action: The program continues.
User response: Check to make sure that you do not specify a remote directory.

FOTS0866 Couldn't open local file "local path" for writing: system error
Explanation: Opening local file failed due to the displayed error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0867 Unexpected reply message id
Explanation: Received unexpected reply from the server while attempting to download remote file.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0868 Received more data than asked for length of transferred data > buffer size
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0869 Expected SSH2_FXP_DATA(packet type1) packet, got packet type2
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0870 Transfer complete, but requests still in queue
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0871 Couldn't read from remote file "remote path": error message
Explanation: Sftp server failed to read from the remote file during downloading due to the displayed error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0872 Couldn't write to "local file": system error
Explanation: Sftp failed to write to the local file during downloading due to the displayed system error.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0873 Couldn't set mode on "local file": system error
Explanation: Sftp failed to change the mode of the local file due to the displayed system error.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0874 Can't set times on "local file": system error
Explanation: Sftp failed to set the access and modification times of the local file due to the displayed system error.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0875 Couldn't open local file "local file" for reading: system error
Explanation: Sftp failed to open the local file for reading (while attempting to upload the local file) due to the displayed system error.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0876 Couldn't fstat local file "local file": system error

Explanation: Sftp failed to retrieve status information about the local file (while attempting to upload the local file) due to the displayed system error.

System action: The program continues.

User response: Refer to [z/OS XL C/C++ Run-Time](#) Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0877 Couldn't read from "local file": system error

Explanation: Sftp failed to read from the local file (while attempting to upload the local file) due to the displayed system error.

System action: The program ends.

User response: Refer to [z/OS XL C/C++ Run-Time](#) Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0878 Unexpected ACK message id

Explanation: Internal error. Unexpected acknowledgment was received.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0879 Expected SSH2_FXP_STATUS(packet type1) packet, got packet type2

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0880 Can't find request for ID request id

Explanation: Sftp failed to find the request from the request queue.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0881 Couldn't write to remote file "filename": error_message

Explanation: Sftp failed to write to the remote file filename (while attempting to upload file) due to the displayed error message.

System action: The program continues.

User response: Correct the error, if possible, and attempt to upload the file again. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0882 Couldn't close local file "local file": system error

Explanation: Sftp failed to close the local file (after uploading the local file to the remote host) due to the displayed system error.

System action: The program continues.

User response: Refer to [z/OS XL C/C++ Run-Time](#) Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0883 Couldn't get handle: error message

Explanation: Sftp failed to get handle sent from the server due to the displayed error message.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0884 skipping non-regular file file_name

Explanation: While processing file to be uploaded, a non-regular file file_name was encountered and was ignored by Sftp.

System action: The program continues.

User response: Check to make sure not to upload a non-regular file.
FOTS0885 stat path: system_error
Explanation: System call stat() failed on path due to the displayed system error.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0886 Batch file already specified.
Explanation: You specified option `-b` more than once.
System action: Command ends.
User response: Check and make sure that you specify option `-b` only once.

FOTS0887 Couldn't symlink file "old_path" to "new_path": error message
Explanation: sftp failed to symlink from old_path to new_path due to the displayed error.
System action: The program continues.
User response: If unable to resolve based on the displayed error, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0888 Cannot download non-regular file:
file_name
Explanation: You were trying to download a non-regular file file_name from the remote host. This cannot be performed by sftp.
System action: The program continues.
User response: Check and make sure not to download a non-regular file.

FOTS0889 file_name is not a regular file
Explanation: You were trying to download a non-regular file file_name from the remote host. This cannot be performed by sftp.
System action: The program continues.
User response: Check and make sure not to download a non-regular file.

FOTS0890 Outbound message too long msg_len
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.

FOTS0891 Read packet: system_error
Explanation: System call read() failed due to the displayed system error.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0893 remote_glob failed with return code return code.
Explanation: A call to the OpenSSH function remote_glob failed. The function's return value is displayed with this message.
System action: If running in an interactive session, the command continues. If running in batchmode, the command ends.
User response: Internal error. Contact your system administrator to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0894 command: Invalid flag –flag
Explanation: You specified an invalid flag flag after the subcommand command.
System action: Command continues.

FOTS0895 string too long
Explanation: sftp encountered a command string that was too long.
System action: The program continues.
User response: Shorten the command string length and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0896 Unterminated quoted argument
Explanation: sftp encountered an unterminated quoted argument while parsing a command string.
System action: The program continues.
User response: Verify quoted arguments are properly terminated and try the request again. If unable to
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0897 Unknown ls sort type
Explanation: You specified an unknown ls sort type.
System action: The program ends.

FOTS0901 Couldn't obtain random bytes (error err)
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0902 fstat for key file file_name failed: system_error
Explanation: System call fstat() failed on key file file_name due to the displayed system error.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0903 key_load_private_rsa1: RSA_blinding_on failed
Explanation: A call to OpenSSL function RSA_blinding_on() failed.
System action: The program continues.
User response: Check OpenSSL function RSA_blinding_on() for more information.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0904 key_load_private_pem: RSA_blinding_on failed
Explanation: A call to OpenSSL function RSA_blinding_on() failed.
System action: The program continues.
User response: Check OpenSSL function RSA_blinding_on() for more information.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0905 buffer_put_bignum2_ret: negative numbers not supported
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0906 buffer_put_bignum2_ret: BN too small
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0907 ssh1_3des_cbc: no context
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0908 ssh_rijndael_iv: no context
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0909 ssh_aes_ctr_iv: no context
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0910 Authentication response too long: length
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS0914 mktemp("temp file"): system error
Explanation: Failed to open/create temp file due to the displayed system error.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0915 function: UsePrivilegeSeparation=yes and Compression=yes not supported
Explanation: ssh does not support when you specify both UsePrivilegeSeparation=yes and Compression=yes at the same time.
System action: The program continues.
User response: Check to make sure that you do not specify UsePrivilegeSeparation=yes and Compression=yes at the same time.

FOTS0916 Error writing to authentication socket.
Explanation: Failure occurred while writing to authentication socket.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0917 Error reading response length from authentication socket.
Explanation: Failure occurred while reading from authentication socket.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0918 Error reading response from authentication socket.
Explanation: Failure occurred while reading from authentication socket.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0919 Authentication response too long: length
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0920 Bad authentication reply message type: type
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0921 Too many identities in authentication reply: number
Explanation: Received too many identities in reply.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0922 Bad authentication response: response type
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0923 Bad response from authentication agent: response type
Explanation: Received unsupported response from ssh-agent.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0924 open filename failed: system error.
Explanation: Failure occurred while attempting to open the key file. The system error is displayed.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0926
write to key file filename failed: system error

Explanation: Failure occurred while attempting to write into a key file. The system error is displayed.

System action: The program continues.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0927
passphrase too short: have number bytes, need > 4

Explanation: The new passphrase is too short. ssh-keygen does not allow passphrases that are less than or equal to 4 bytes.

System action: The program ends.

User response: Check to make sure that you enter a passphrase greater than 4 bytes long. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for an explanation of a valid passphrase.

System programmer response: Not applicable.

FOTS0928
key file filename too large

Explanation: The RSA key file filename is too large.

System action: The program continues.

User response: Verify that the file filename is a valid RSA key file, and try the request again. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0929
fdopen filename failed: system error.

Explanation: Failure occurred while attempting to open the file for write. The system error is displayed.

System action: The program ends.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0930
key_save_private: cannot save key type type

Explanation: The displayed key type can not be saved.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Not applicable.

FOTS0931
fdopen failed: system error

Explanation: Failure occurred while attempting to open the file for read. The system error is displayed.

System action: The program continues.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0932
PEM_read_PrivateKey: mismatch or unknown EVP_PKEY save_type save_type

Explanation: Internal error.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0934
@ WARNING: UNPROTECTED PRIVATE KEY FILE! @ Permissions 0permission bits for 'file name' are too open. It is recommended that your private key files are NOT accessible by others. This private key will be ignored.

Explanation: The permission bits of your key file is too open and that makes your key file insecure.

System action: The program continues.

User response: Check to make sure that your private key file is only readable by you.

FOTS0939
bad permissions: ignore key: file name

Explanation: The key file is readable by others.

System action: The program continues.

User response: Check to make sure that the private key file is only readable by you.
FOTS0941 save_private_key_rsa: bad cipher
Explanation: The cipher used to encrypt private keys is not supported.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0942 buffer_put_bignum_ret: BN_bn2bin() failed: oi length != bin_size size
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0943 buffer_get_bignum_ret: cannot handle BN of size bytes
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0944 buffer_get_bignum_ret: input buffer too small
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0945 buffer_put_bignum2_ret: BN_bn2bin() failed: oi length != bin_size size
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0946 buffer_get_bignum2_ret: cannot handle BN of size bytes
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0947 buffer_get_string_ret: bad string length number
Explanation: Internal error. Received string too long.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0948 buffer_put_cstring: s == NULL
Explanation: s is the input string to function buffer_put_cstring(). s cannot be an empty string.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0949 buffer_append_space: len length not supported
Explanation: Appended space cannot be greater than 1048576 bytes.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0950 buffer_append_space: alloc number not supported
Explanation: Cannot allocate buffer of size greater than 10485760 bytes.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0951 buffer_get_ret: trying to get more bytes length than in buffer size available
Explanation: The size of the available buffer is not big enough for the string.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS0952 buffer_consume: buffer error
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0953 buffer_consume_end: trying to get more bytes than in buffer
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0954 buffer_get_string_bin_ret: bad string length string_length
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0955 buffer_get_short: buffer error
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0956 get_socket_ipaddr: getnameinfo flag failed
Explanation: A call to getnameinfo() failed. flag is the argument of getnameinfo().
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0957 getsockname failed: system error
Explanation: A call to getsockname() failed with the displayed system error.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0958 get_remote_hostname: getnameinfo NI_NUMERICHOST failed
Explanation: A call to getnameinfo() failed.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of argument NI_NUMERICHOST. Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0959 get_sock_port: getnameinfo NI_NUMERICSERV failed
Explanation: A call to getnameinfo() failed.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of argument NI_NUMERICSERV. Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0960 channel channel identifier: wfd write_fd is not a tty?
Explanation: The write file descriptor of the channel is not associated with a terminal.
System action: The program continues.
User response: Check your command line options to see whether you need a tty. If the code sets were changed for the terminal, for example by issuing the chcp command, conversion may not be performed properly. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0961 X11 fake_data_len length != saved_data_len length
Explanation: During X11 forwarding, fake data length is not equal to the saved data length.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS0962 accept: system error
Explanation: A call to accept() failed. The system error
is displayed.
System action: The program continues.
User response: Refer to \textit{z/OS XL C/C++ Run-Time Library Reference} for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0963 setsockopt SO_REUSEADDR fd
file descriptor: system error
Explanation: A call to setsockopt() failed. SO_REUSEADDR is one of the arguments of setsockopt().
System action: The program continues.
User response: Refer to \textit{z/OS XL C/C++ Run-Time Library Reference} for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0964 accept from auth socket: system error
Explanation: A call to accept() failed. Authentication agent socket failed to accept the connection from the client. The system error is displayed.
System action: The program continues.
User response: Refer to \textit{z/OS XL C/C++ Run-Time Library Reference} for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0965 getsockopt SO_ERROR failed
Explanation: A call to getsockopt() failed. SO_ERROR is one of the arguments of getsockopt().
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0966 No forward host name.
Explanation: Port forwarding host name is NULL.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0967 Forward host name too long.
Explanation: The size of the forwarding host name is greater than 255.
System action: The program continues.
User response: Check to make sure that you do not specify a host name greater than 255. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0968 channel_setup_fwd_listener: getnameinfo failed
Explanation: A call to getnameinfo() failed.
System action: The program continues.
User response: Follow local procedures for reporting problems to IBM.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0969 setsockopt SO_REUSEADDR: system error
Explanation: A call to setsockopt() failed. The system error is displayed.
System action: The program continues.
User response: Refer to \textit{z/OS XL C/C++ Run-Time Library Reference} for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0970 bind: system error
Explanation: A call to bind() failed. The system error is displayed.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0971 listen: system error
Explanation: A call to listen() failed. The system error is displayed.
System action: The program continues.
User response: Refer to \textit{z/OS XL C/C++ Run-Time Library Reference} for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
procedures for reporting problems to IBM.

FOTS0972 channel_setup_fwd_listener: cannot listen to port: port
Explanation: Port forwarding failed to listen to the displayed port.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0973 connect_to hostname: unknown host (system error)
Explanation: A call to getaddrinfo() failed. The system error is displayed.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0974 connect_to: getnameinfo failed
Explanation: A call to getnameinfo() failed.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0975 socket: system error
Explanation: A call to socket() failed. The system error is displayed.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0976 connect_to: host name port service name: system error
Explanation: A call to connect() failed and the system error is displayed. host name and service name are the host name and the service location of the socket to which a connection was attempting. The system error is displayed.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error.

FOTS0977 connect_to host port port: failed.
Explanation: Failed to connect to host on port.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0978 WARNING: Server requests forwarding for unknown listen_port listen_port
Explanation: Internal error occurred. The displayed listen_port is not permitted for forwarding.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0979 getaddrinfo: system error
Explanation: A call to getaddrinfo() failed. The system error is displayed.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0980 channel_setup_fwd_listener: getaddrinfo(address): error_message
Explanation: The getaddrinfo() system call failed. The system error is displayed with the message.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0981 setsockopt IPV6_V6ONLY: system error
Explanation: A call to setsockopt() failed. IPV6_V6ONLY is one of the arguments of setsockopt(). The system error is displayed.
FOTS0982 Failed to allocate internet-domain X11 display socket.

Explanation: The number of internet-domain X11 display sockets is greater than 1000.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0983 x11_request_forwarding_with_spoofing : different $DISPLAY already forwarded

Explanation: Unable to complete the X11 forwarding request because a different display has already been forwarded.

System action: The program continues.

User response: Verify that the value of your $DISPLAY environment variable is correct, and try the request again. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0984 socket: system error

Explanation: A call to socket() failed. The system error is displayed.

System action: The program continues.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0985 connect path_name: system error

Explanation: A call to connect() failed. The system error is displayed.

System action: The program continues.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0986 DISPLAY not set.

Explanation: Environment variable DISPLAY is not set.

System action: The program continues.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0987 Could not parse display number from DISPLAY: display

Explanation: A call to scanf() failed. UNIX domain display number cannot be parsed from environment variable DISPLAY display.

System action: The program continues.

User response: Refer to ssh in IBM Ported Tools for z/OS: OpenSSH User’s Guide on how to set environment variable DISPLAY. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0988 Could not find ':' in DISPLAY: display

Explanation: Did not find ':' in environment variable DISPLAY display.

System action: The program continues.

User response: Refer to ssh in IBM Ported Tools for z/OS: OpenSSH User’s Guide on how to set environment variable DISPLAY. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0989 function: unexpected data on ctl fd

Explanation: Unexpected data read from the control file descriptor. The error occurred in function.

System action: The program ends.

User response: Try the request again. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0990 host_name: unknown host. (system error)

Explanation: A call to getaddrinfo() failed. The host_name is unknown. The system error is displayed.

System action: The program continues.
User response: Check to make sure the host name specified by the DISPLAY environment variable is valid. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0991 connect host_name port port: system error

Explanation: A call to connect() failed. Failure occurred while attempting to connect to host_name on port. The system error is displayed.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0992 Warning: ssh server tried agent forwarding.

Explanation: The ssh configuration option ForwardAgent was disabled but ssh server requested a connection to the authentication agent.

System action: The program continues.

User response: Enable ForwardAgent option in ssh_config or on the command line.

FOTS0993 Warning: ssh server tried X11 forwarding.

Explanation: The ssh configuration option ForwardX11 was disabled but ssh server requested an X11 channel.

System action: The program continues.

User response: Enable ForwardX11 option in ssh_config or on the command line.

FOTS0994 deny_input_open: type request type

Explanation: Internal error. The request type is unsupported.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0995 Warning: this is probably a break–in attempt by a malicious server.

Explanation: Internal error or you requested to open an X11/Agent forwarding channel without enabling ForwardX11/ForwardAgent.

System action: The program continues.

User response: Enable ForwardX11 or ForwardAgent option in ssh_config or on the command line. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0996 channel_new: internal error:
channels_alloc number of allocations too big.

Explanation: Internal error occurred. The number of allocated channels is greater than 10000.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0997 cannot happen: SSH_CHANNEL_LARVAL

Explanation: Channel type SSH_CHANNEL_LARVAL cannot happen with SSH Protocol 2.0

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0998 cannot happen: OUT_DRAIN

Explanation: Channel type OUT_DRAIN cannot happen with SSH Protocol 1.3

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS0999 channel_still_open: bad channel type

Explanation: Channel is still open with invalid channel type.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1001 evp_crypt: EVP_Cipher failed during discard

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local
procedures for reporting problems to IBM.

FOTS1002 channel_find_open: bad channel type

Explaination: Found a channel open with invalid channel type.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1003 channel_open_message: bad channel type

Explaination: Channel with invalid channel type is open.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1004 channel_activate for non–larval channel

Explaination: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1005 channel channel_id: decode socks4: len

Explaination: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1006 cannot happen: istate ==
INPUT_WAIT_DRAIN for proto 1.3

Explaination: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1007 channel_add_permitted_opens: too many forwards

Explaination: A request for forwarding an application over a new channel was denied because the internal maximum of forwarded channels has been reached.
System action: The program ends.
User response: Refer to IBM Ported Tools for z/OS OpenSSH User's Guide for more information on the authorized keys file permitopen option. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1009 connect_to: F_SETFL: system error

Explaination: A call to fcntl() failed. The system error is displayed.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1010 x11_request_forwarding: bad authentication data: data

Explaination: Internal error or your xauth program generated invalid authentication data.
System action: The program ends.
User response: Check xauth program to make sure it generates valid authentication data or contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1011 Warning: use of DES is strongly discouraged due to cryptographic weaknesses

Explaination: You are using cipher type DES and it is strongly discouraged due to cryptographic weaknesses.
System action: The program continues.
User response: Refer to ssh in IBM Ported Tools for z/OS: OpenSSH User’s Guide for an explanation of DES.

FOTS1012 cipher_cleanup: EVP_CIPHER_CTX_cleanup failed

Explaination: A call to OpenSSL function EVP_CIPHER_CTX_cleanup() failed.
System action: The program continues.
User response: Check OpenSSL function
EVP_CIPHER_CTX_cleanup() for more information.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1013 ssh1_3des_cbc: no context
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1014 ssh_rijndael_cbc: no context
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1015 cipher_init: key length length is insufficient for cipher type.
Explanation: Internal error occurred. The length of the key is insufficient for the displayed cipher type.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1016 cipher_init: iv length length is insufficient for cipher type
Explanation: Internal error occurred. IV length is not sufficient for the displayed cipher type.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1017 cipher_init: EVP_CipherInit failed for cipher type
Explanation: A call to OpenSSL function EVP_CipherInit() failed.
System action: The program ends.
User response: Check OpenSSL function EVP_CipherInit() for more information. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1018 cipher_init: set keylen failed (key_length -> key_length setting to)
Explanation: A call to OpenSSL function EVP_CIPHER_CTX_set_key_length() failed.
System action: The program ends.
User response: Check OpenSSL function EVP_CIPHER_CTX_set_key_length() for more information. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1019 cipher_init: EVP_CipherInit: set key failed for cipher type
Explanation: A call to OpenSSL function EVP_CipherInit() failed.
System action: The program ends.
User response: Check OpenSSL function EVP_CipherInit() for more information. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1020 cipher_encrypt: bad plaintext length
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1021 evp_crypt: EVP_Cipher failed
Explanation: A call to OpenSSL function EVP_Cipher() failed.
System action: The program ends.
User response: Check OpenSSL function EVP_Cipher() for more information. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1022 ssh_rijndael_cbc: bad len length
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1023 function: wrong iv length expected length != actual length
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1024 function: no rijndael context
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1025 function: bad 3des iv length: length
Explanation: Internal error. The error occurred in function.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1026 function: no 3des context
Explanation: Internal error. The error occurred in function.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1027 function: bad cipher cipher_type
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1028 mac_compute: unknown MAC type
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1029 mac MAC_name len MAC_length
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1030 mac_compute: mac too long MAC_length maximum_MAC_length
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1031 No available ciphers found.
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1032 Bad compression level number.
Explanation: You specified an invalid compression level.
System action: The program ends.
User response: Check your ssh_config file or command line to make sure you specify a valid CompressionLevel.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1033 buffer_compress: deflate returned status
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1034 buffer_uncompress: inflate returned status
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1035
detect_attack: bad length number

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1036
Bad prime description in line line_number

Explanation: File moduli or primes contains invalid prime description in line_number.

System action: The program continues.

User response: Check moduli or primes to make sure prime descriptions are valid.

FOTS1037
parse_prime: BN_new failed

Explanation: A call to OpenSSL function BN_new() failed. BN_new() allocates and initializes a BIGNUM structure.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1038
function: BN_new failed

Explanation: Internal error. The error occurred in function.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1039
WARNING: line line_num disappeared in file, giving up

Explanation: Internal error or the displayed line_num is missing from file primes.

System action: The program continues.

User response: Check your primes file to make sure the displayed line_num exists. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1040
dh_gen_key: dh->p == NULL

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1041
dh_gen_key: group too small: bits (2*need bits)

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1042
dh_gen_key: BN_new failed

Explanation: A call to OpenSSL function BN_new() failed. BN_new() allocates and initializes a BIGNUM structure.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1043
dh_gen_key: BN_rand failed

Explanation: A call to OpenSSL function BN_rand() failed.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1044
DH_generate_key

Explanation: A call to OpenSSL function DH_generate_key() failed.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1045
dh_gen_key: too many bad keys: giving up

Explanation: Internal error. Too many invalid public keys are generated.

System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1046 dh_new_group_asc: DH_new
Explanation: A call to OpenSSL function DH_new() failed.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1047 BN_hex2bn p
Explanation: A call to OpenSSL function BN_hex2bn() failed.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1048 BN_hex2bn g
Explanation: A call to OpenSSL function BN_hex2bn() failed.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1049 dh_new_group: DH_new
Explanation: A call to OpenSSL function DH_new() failed.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1050 protocol error
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1051 mac_init: no key
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1052 mac_compute: mac too long
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1053 ssh_msg_send: write
Explanation: Internal error. Partial data was written from the buffer into the file descriptor.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1054 add_host_to_hostfile: host_hash failed
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1055 ssh_msg_recv: read: header bytes
Explanation: Internal error. Partial data was read from the file descriptor into the buffer.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1056 ssh_msg_recv: read: bad msg_len bytes
Explanation: Internal error. The data received was too long.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1057 ssh_msg_recv: read: bytes != msg_len
Explanation: Internal error. Partial data was read from the file descriptor into the buffer.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1058 add_host_to_hostfile: saving key in file failed
Explanation: Adding keys to host file failed.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1059 no key to look up
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1060 write_bignum: BN_bn2dec() failed
Explanation: A call to OpenSSL function BN_bn2dec() failed.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1061 key_read: uudecode key failed
Explanation: Internal error. A call to uudecode() failed.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1062 key_read: key_from_blob key failed
Explanation: Internal error. A call to key_from_blob() failed.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1063 key_read: type mismatch: encoding error
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1064 key_write: failed for RSA key
Explanation: Internal error. A call to OpenSSL function BN_bn2dec() failed.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1065 key_from_blob: cannot handle type key_type
Explanation: Internal error. The displayed key type is not valid.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1066 key_from_blob: remaining bytes in key blob bytes
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1067 key_to_blob: key == NULL
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1068 key_to_blob: unsupported key type type
Explanation: The displayed key type is not valid.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1069 key_sign: illegal key type type
Explanation: Internal error. The displayed key type is not valid.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1070 key_verify: illegal key type type
Explanation: The displayed key type is not valid.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1071 key_new: RSA_new failed
Explanation: A call to OpenSSL function RSA_new() failed.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1072 key_new: BN_new failed
Explanation: A call to OpenSSL function BN_new() failed.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1073 host_hash: __b64_ntop failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1074 key_new: DSA_new failed
Explanation: A call to OpenSSL function DSA_new() failed.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1079 key_new: bad key type type
Explanation: Internal error. The displayed key type is not valid.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1080 key_new_private: BN_new failed
Explanation: A call to OpenSSL function BN_new() failed.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1085 key_from_private: BN_copy failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1086 key_free: key is NULL
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1087 key_free: bad key type type
Explanation: Internal error. The displayed key type is not valid.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1088 key_equal: bad key type type
Explanation: Internal error. The displayed key type is not valid.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1089 key_fingerprint_raw: bad digest type
MAC_algorithm

Explanation: The displayed MAC_algorithm is not supported.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1090 key_fingerprint_raw: bad key type

Explanation: Internal error. The displayed key type is not valid.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1091 key_fingerprint_raw: blob is null

Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1092 key_fingerprint: null from
key_fingerprint_raw()

Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1093 key_fingerprint_ex: bad digest
representation fingerprint

Explanation: Internal error. The displayed fingerprint is not valid.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1094 key_read: bad key type

Explanation: The key type type is not valid.
System action: The program ends.
User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1095 rsa_generate_private_key: key
generation failed.

Explanation: A call to OpenSSL function RSA_generate_key() failed.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1096 dsa_generate_private_key:
DSA_generate_parameters failed

Explanation: A call to OpenSSL function DSA_generate_parameters() failed.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1097 dsa_generate_private_key:
DSA_generate_key failed.

Explanation: A call to OpenSSL function DSA_generate_key() failed.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1098 dsa_generate_private_key: NULL.

Explanation: A call to OpenSSL function DSA_generate_key() generated a NULL private DSA key.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1099 key_generate: unknown type

Explanation: You specified an invalid key type on the
command line.
System action: The program continues.
User response: Check to make sure you specify a valid key type on the command line.
FOTS1101 key_from_private: unknown type

key_type

Explanation: The **key_type** is not valid. The error is usually caused by an invalid key type specified after option -t. This message can also be displayed for an internal error.

System action: The program ends.

User response: Check to make sure you specify a valid key type after option -t. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1102 key_demote: RSA_new failed

Explanation: A call to OpenSSL function RSA_new() failed.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1103 key_demote: BN_dup failed

Explanation: A call to OpenSSL function BN_dup() failed.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1105 key_demote: DSA_new failed

Explanation: A call to OpenSSL function DSA_new() failed.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1108 function: bad server modulus (len length)

Explanation: Internal error. The error occurred in **function**.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1109 function: bad host modulus (len length)

Explanation: Internal error. The error occurred in **function**.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1110 bad key md size MD_size

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1111 Hm, kex protocol error: type protocol_type seq packet_id

Explanation: Internal error.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1112 kex_send_kexinit: no kex, cannot rekey

Explanation: The kex structure is NULL.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1113 kex_send_kexinit: kex proposal too short

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1114 kex_input_kexinit: no kex, cannot rekey

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.
Chapter 15. OpenSSH messages

FOTS1115 Unsupported key exchange type
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1116 no matching cipher found: client proposal server proposal
Explanation: Did not find the cipher that the client and the server both support.
System action: The program ends.
User response: Reissue the command with specifying the cipher that the server supports.

FOTS1117 matching cipher is not supported: cipher
Explanation: The cipher is not supported by the daemon.
System action: The program ends.
User response: Reissue the command with specifying the cipher that the server supports either in ssh_config file or on the command line.

FOTS1118 no matching mac found: client proposal server proposal
Explanation: Did not find the MAC that the client and the server both support.
System action: The program ends.
User response: Reissue the command with specifying the MAC that the server supports either in ssh_config file or on the command line.

FOTS1119 unsupported mac MAC
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1120 no matching comp found: client proposal1 server proposal2
Explanation: Did not find the Compression option that the client and the server both support.
System action: The program ends.
User response: Reissue the command specifying the Compression option that the server supports either in ssh_config file or on the command line.

FOTS1121 unsupported comp compression
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1122 Unable to negotiate a key exchange method
Explanation: Did not find the key-exchange algorithm that the client and the server both support.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1123 bad kex alg algorithm
Explanation: The displayed key-exchange algorithm is not supported.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1124 no hostkey alg
Explanation: Did not find the key type that the client and the server both support.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1125 bad hostkey alg 'key_type'
Explanation: The displayed key_type is not supported.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1126 cannot decode server_host_key_blob
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1130 type mismatch for decoded server_host_key_blob
 Explanation: Internal error.
 System action: The program ends.
 User response: Contact your system programmer.
 System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1131 cannot verify server_host_key
 Explanation: Internal error.
 System action: The program ends.
 User response: Contact your system programmer.
 System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1132 server_host_key verification failed
 Explanation: Internal error.
 System action: The program ends.
 User response: Contact your system programmer.
 System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1133 dh_server_pub == NULL
 Explanation: Internal error.
 System action: The program ends.
 User response: Contact your system programmer.
 System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1134 kexdh_client: BN_new failed
 Explanation: Internal error. A call to OpenSSL function BN_new() failed.
 System action: The program ends.
 User response: Contact your system programmer.
 System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1135 key_verify failed for server_host_key
 Explanation: Internal error.
 System action: The program ends.
 User response: Contact your system programmer.
 System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1136 Cannot load hostkey
 Explanation: Internal error.
 System action: The program ends.
 User response: Contact your system programmer.
 System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1137 Unsupported hostkey type key_type
 Explanation: Internal error.
 System action: The program ends.
 User response: Contact your system programmer.
 System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1138 dh_client_pub == NULL
 Explanation: Internal error.
 System action: The program ends.
 User response: Contact your system programmer.
 System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1139 kexdh_server: BN_new failed
 Explanation: Internal error.
 System action: The program ends.
 User response: Contact your system programmer.
 System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1144 BN_new
 Explanation: The BN_new() function failed.
 System action: The program ends.
 User response: Contact your system programmer to report the problem.
 System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1146 DH_GEX group out of range: min !< num_bits !< max
 Explanation: The big number returned by BN_new is malformed.
 System action: The program ends.
 User response: Contact your system programmer to report the problem.
 System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1147 cannot decode server_host_key_blob
Explanation: Unable to decode the server host key blob.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1148 type mismatch for decoded server_host_key_blob
Explanation: The key received from the server is not the proper type.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1149 cannot verify server_host_key
Explanation: Unable to verify the server host key.
System action: The program ends.
User response: Verify that the public key for the remote host is accurate. Contact the system programmer of the server for further assistance.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1150 server_host_key verification failed
Explanation: Server host key verification failed.
System action: The program ends.
User response: Verify that the public key for the remote host is accurate. Contact the system programmer of the server for further assistance.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1151 dh_server_pub == NULL
Explanation: The value of dh_server_pub generated by BN_new is NULL.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1152 kexgex_client: BN_new failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1153 key_verify failed for server_host_key
Explanation: The key_verify() function failed for the given server_host_key.
System action: The program ends.
User response: Verify that the public key for the remote host is accurate. Contact the system programmer of the server for further assistance.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1154 Cannot load hostkey
Explanation: Unable to load the host key.
System action: The program ends.
User response: Verify that the host key exists on your system or contact the system programmer for further assistance.
System programmer response: Verify host key file. If problem cannot be resolved follow local procedures for reporting problems to IBM.

FOTS1155 Unsupported hostkey type keytype
Explanation: The type of host key specified is not supported.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1156 protocol error during kex, no DH_GEX_REQUEST: type
Explanation: Packet received does not match recognized request types.
System action: The program ends.
User response: Verify connectivity and ssh server status. If problem persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1157 DH_GEX_REQUEST, bad parameters:
\[min < num_bits < max \]

Explanation: The number of bits received in a server packet is incorrect.

System action: The program ends.

User response: Verify connectivity and ssh server status. If problem persists contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1158 dh_client_pub == NULL

Explanation: BN_new() function call returned NULL.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1159 keygex_server: BN_new failed

Explanation: BN_new() function call failed.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1165 fatal_remove_cleanup: no such cleanup function: 0x proced 0xcontext

Explanation: Cleanup error.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1168 Unrecognized internal syslog level code level

Explanation: Invalid syslog level specified. An internal error has occurred.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1169 Unrecognized internal syslog facility code facility

Explanation: Invalid syslog facility specified. An internal error has occurred.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS171 fcntl(fd, F_GETFL, 0): error_code

Explanation: fcntl() system call failed.

System action: Command continues.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1173 setsockopt TCP_NODELAY: error_code

Explanation: setsockopt() system call failed.

System action: The program continues.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1174 setsockopt TCP_NODELAY: error_code

Explanation: setsockopt() system call failed.

System action: The program continues.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1175 Warning: identity keysize mismatch: actual keysize1, announced keysize2

Explanation: The agent's RSA identity contains a keysize mismatch.

System action: The program continues.

User response: Verify that the agent's RSA identity is valid, and try the request again. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1176 Compatibility with ssh protocol version 1.0 no longer supported.
Explanation: RSA authentication challenge not supported with SSH protocol version 1.0.
System action: The program continues.
User response: Use a newer version of SSH protocol version 1, and try the request again.

FOTS1177 Agent admitted failure to authenticate using the key.
Explanation: The agent failed the RSA authentication challenge.
System action: The program continues.
User response: Try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1178 Agent admitted failure to sign using the key.
Explanation: The agent failed to generate a signature using a key.
System action: The program continues.
User response: Verify that the agent’s RSA identity is valid, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1179 SSH_AGENT_FAILURE
Explanation: The agent indicated a failure to handle a request.
System action: The program continues.
User response: Verify that the agent’s identities, connection, and request are valid, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1180 parse_tty_modes: unknown opcode
Explanation: The tty mode opcode is undefined.
System action: The program continues.
User response: Verify the tty mode opcode, and try the request again. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1185 Function: Out of memory (allocating size bytes)
Explanation: Unable to allocate requested number of bytes. The error occurred in function.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1186 Finished discarding for ip_address
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1187 Bad packet length packet_length.
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1188 Padding error: need needed_size block block_size mod modulus
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1189 Corrupted MAC on input.
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1190 Internal error need needed_size
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1241 Too high debugging level.
Explanation: For ssh, the -v (verbose) option was specified too many times. For ssdh, the -d (debug) option was specified too many times.
System action: The program ends.
User response: Reissue the command with less instances of -v (or -d) specified.

FOTS1242 Cannot fork into background without a command to execute.
Explanation: The ssh -f option was specified without a command to execute.
System action: The program ends.
User response: Reissue ssh with a command or without the -f option.

FOTS1243 Can't open user config file filename: system error
Explanation: ssh was unable to open the user configuration file filename. The system error is displayed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1244 Compression level must be from 1 (fast) to 9 (slow, best).
Explanation: An invalid compression level was specified.
System action: The program ends.
User response: Reissue the command with an appropriate compression level.

FOTS1245 daemon() failed: system error
Explanation: Either a call to fork() or setsid() failed while ssh was attempting to continue running in the background. The system error is displayed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1246 Request for subsystem 'command' failed on channel channel
Explanation: The ssh daemon rejected the client's request for subsystem command on channel channel.
System action: The program ends.
User response: Verify ssdh is configured to use the subsystem or contact your system programmer.
System programmer response: Verify ssdh is configured to use the subsystem.

FOTS1247 dup() in/out/err failed: system error
Explanation: A call to dup() for stdin, stdout or stderr failed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1248 No support for forwarding GSSAPI credentials.
Explanation: ssh on z/OS does not provide support for forwarding GSS-API credentials.
System action: The program continues.
User response: Issue the command without the options to enable or disable forwarding GSS-API credentials (-k or -K for ssh).
System programmer response: None.

FOTS1252 The SSH client cannot be run under OMVS.
Explanation: The SSH client cannot be run under OMVS (a 3270 session) due to password visibility issues.
System action: The program ends.
User response: Reissue the command from a non-OMVS environment, for example, a TCP/IP session.
System programmer response: Not applicable.

FOTS1254 function listen(): error_message
Explanation: The listen() system call failed. The system error is displayed with the message. The error occurred in function.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error.
If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the system error.

FOTS1255
load_public_identity_files: getpwuid failed

Explanation: The getpwuid() system call failed.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1256
load_public_identity_files: gethostname:

error_message

Explanation: The gethostname() system call failed. The system error is displayed with the message.

System action: The program ends.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](https://www.ibm.com/support/docview.ws/docview/122714) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the system error.

FOTS1257
env_permitted: name

"environment_variable..." too long

Explanation: The environment variable name "environment_variable..." is too long.

System action: The program ends.

User response: Verify that your environment variable names do not exceed 1023 bytes, and try the request again. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1258
Control socket connect(control_path):

error_message

Explanation: The connect() system call failed. The system error is displayed with the message.

System action: The program ends.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](https://www.ibm.com/support/docview.ws/docview/122714) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the system error.

FOTS1259
open(/dev/null):

error_message

Explanation: The open() system call failed. The system error is displayed with the message.

System action: The program ends.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](https://www.ibm.com/support/docview.ws/docview/122714) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the system error.

FOTS1260
dup2:

error_message

Explanation: The dup2() system call failed. The system error is displayed with the message.

System action: The program ends.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](https://www.ibm.com/support/docview.ws/docview/122714) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the system error.

FOTS1261
function: msg_send

Error

Explanation: Internal error. The error occurred in function.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1262
function: msg_recv

Error

Explanation: Internal error. The error occurred in function.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1263
function: wrong version

Error

Explanation: Internal error. The error occurred in function.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1264 Connection to master denied

Explanation: The master process denied access to its shared connection.

System action: The program ends.

User response: Verify that the control path is valid and that the master process permits access to its shared connection, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the ssh_config ControlPath and ControlMaster keywords. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1265 silly mux_command command_value

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1266 function: send fds failed

Explanation: Internal error. The error occurred in function.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1267 function: read error_message

Explanation: The read() system call failed. The system error is displayed with the message. The error occurred in function.

System action: The program ends.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the system error.

FOTS1268 function: master returned too much data (actual_data_length > expected_data_length)

Explanation: Internal error. The error occurred in function.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1272 Control socket connect(control_path): error_message

Explanation: The connect() system call failed. The system error is displayed with the message.

System action: The program continues.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the system error.

FOTS1273 Warning: Identity file filename not accessible: error_message.

Explanation: The ssh –i option is set to a file that is not accessible. The system error is displayed with the message.

System action: The program continues.

User response: Verify that the value for the ssh –i option is correct, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the ssh –i option. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1274 Bad local forwarding specification 'value'

Explanation: The ssh –L option is set to a bad value value.

System action: The program ends.

User response: Verify that the value for the ssh –L option is correct, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the ssh –L option. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1275 Bad remote forwarding specification 'value'

Explanation: The ssh –R option is set to a bad value value.

System action: The program ends.

User response: Verify that the value for the ssh –R option is correct, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the ssh –R option. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1276 Invalid multiplex command.
Explanation: The ssh –O option is set to an unsupported value.
System action: The program ends.
User response: Verify that the value for the ssh –O option is correct, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the ssh –O option. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1277 gethostname: error_message
Explanation: The gethostname() system call failed. The system error is displayed with the message.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error.

FOTS1278 No ControlPath specified for “–O” command
Explanation: The ssh –O option was specified, but no control path was set via the ssh –S option or the ssh_config ControlPath keyword.
System action: The program ends.
User response: Verify that a control path is set, and try the request again. Refer to IBM Ported Tools for z/OS OpenSSH User’s Guide for more information on the ssh options and the ssh_config keywords.

FOTS1279 Could not request local forwarding.
Explanation: A local forwarding request has failed.
System action: The program ends.
User response: Check for additional error messages displayed with this message, and take appropriate action. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the error messages displayed with this message. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1280 Could not request remote forwarding.
Explanation: A remote forwarding request has failed.
System action: The program ends.
User response: Check for additional error messages displayed with this message, and take appropriate action. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the error messages displayed with this message. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1282 Bad dynamic forwarding specification “value”
Explanation: The ssh –D option is set to a bad value.
System action: The program ends.
User response: Verify that the value for the ssh –D option is correct, and try the request again. Refer to IBM Ported Tools for z/OS OpenSSH User’s Guide for more information on the ssh –D option. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1283 Master running (pid=pid)
Explanation: The master process of the specified multiplexed connection is running. Its process id is pid.
System action: The program ends.
User response: No response required. This message reports information on a multiplexed connection.

FOTS1284 Exit request sent.
Explanation: An exit request was sent to the master process of the specified multiplexed connection.
System action: The program ends.
User response: No response required. This message reports information on a multiplexed connection.

FOTS1285 Shared connection to host_name closed.
Explanation: The shared connection to the master process of the specified multiplexed connection on host host_name has been closed.
System action: The program ends.
User response: No response required. This message reports information on a multiplexed connection.

FOTS1287 Warning: Identity file filename does not exist.
Explanation: The filename specified with the ssh -i option does not exist.
System action: The program continues.
FOTS1288 no support for smartcards.
Explanation: ssh on z/OS does not provide support for smart cards.
System action: The program continues.
User response: Reissue the command without the smart card option (-I for ssh).
System programmer response: None.

FOTS1289 No support for Kerberos ticket or AFS token forwarding.
Explanation: ssh on z/OS does not provide support for Kerberos tickets or AFS tokens.
System action: The program continues.
User response: Reissue the command without the option to disable Kerberos ticket and AFS token forwarding (-k for ssh).
System programmer response: None.

FOTS1290 Bad escape character 'escape char'.
Explanation: You specified an invalid escape character.
System action: The program ends.
User response: An escape character can be either a single character or a control character. Reissue the command with a valid escape character.
System programmer response: None.

FOTS1291 Unknown cipher type 'cipher_spec'.
Explanation: ssh does not recognize the cipher specified with the -c option.
System action: The program ends.
User response: Check ssh documentation for a valid cipher specification.
System programmer response: None.

FOTS1292 Unknown mac type 'mac_spec'.
Explanation: ssh does not recognize the message authentication code specified with the -m option.
System action: The program ends.
User response: Check ssh documentation for a valid MAC specification.
System programmer response: None.

FOTS1293 Bad port 'port'
Explanation: The port number specified is invalid. It should be greater than zero and less than or equal to 65535.
System action: The program ends.
User response: Reissue ssh with a valid port number.
System programmer response: None.

FOTS1294 Bad forwarding port(s) 'port'
Explanation: One of the port numbers specified with ssh options -R or -L are invalid. A port number should be greater than zero and less than or equal to 65535.
System action: The program ends.
User response: Reissue ssh with valid port numbers.
System programmer response: None.

FOTS1295 Bad forwarding specification 'specification'
Explanation: The syntax of specification is incorrect.
System action: If the forwarding specification was issued through an opened command line (through an escape character), the program continues. Otherwise, the program ends.
User response: Check ssh documentation for the proper syntax.
System programmer response: None.

FOTS1296 Bad dynamic port 'port'
Explanation: The port number specified is invalid. It should be greater than zero and less than or equal to 65535.
System action: The program ends.
User response: Reissue ssh with a valid port number.
System programmer response: None.

FOTS1297 You must specify a subsystem to invoke.
Explanation: You specified ssh -s without a subsystem.
System action: The program ends.
User response: Reissue ssh -s with a subsystem as the command.

FOTS1298 rresvport: af='family system_error'
Explanation: An error occurred while ssh was attempting to connect to a privileged port (because configuration option UsePrivilegedPort was specified). A call to bind(), socket(), or getsockname() may have
failed, or the address family family is not supported. The system error is displayed with this message.

System action: The program continues.

User response: Check that ssh is setuid root. Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1299 socket: system error

Explanation: A call to socket() failed. The system error is displayed.

System action: The program continues.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1301 getaddrinfo: bindaddress: system error

Explanation: The ssh client failed when trying to get the address information for the interface specified by ssh configuration option BindAddress. The system error is displayed with this message.

System action: The program continues.

User response: Verify bindaddress is valid.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1302 bind: bindaddress: system error

Explanation: A call to bind() failed with the bind address specified by ssh configuration option BindAddress.

System action: The program continues.

User response: Verify bindaddress is valid.

FOTS1303 ssh_connect: getnameinfo failed

Explanation: ssh was unable to get the name information from an IP address.

System action: The program continues.

User response: Check that all the specified addresses for the host are valid.

FOTS1304 setsockopt SO_KEEPALIVE: system error

Explanation: The KeepAlive configuration option was specified but the setsockopt() system call for SO_KEEPALIVE failed. The system error is displayed.

System action: The program continues.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1305 No key type host key is known for hostname and you have requested strict checking.

Explanation: While ssh is checking if a host key is valid, it could not find a key for hostname.

System action: The program ends.

User response: Check that the file containing the list of known hosts exists. Check that the key for the desired host is in the known hosts file.

System programmer response: None.

FOTS1306 Keyboard-interactive authentication is disabled to avoid man-in-the-middle attacks.

Explanation: Strict host key checking has been requested, so keyboard-interactive authentication has been disabled to prevent man-in-the-middle attacks. Challenge-response authentication is also disabled.

System action: The program continues.

User response: Check that the host key in the user's known hosts file is valid.

FOTS1307 Challenge/response authentication is disabled to avoid man-in-the-middle attacks.

Explanation: Strict host key checking has been requested, so challenge-response authentication has been disabled to prevent man-in-the-middle attacks.

System action: The program continues.

User response: Check that the host key in the user's known hosts file is valid.

FOTS1308 @ WARNING: POSSIBLE DNS SPOOFING DETECTED! @ The type host key for hostname has changed, and the key for the according IP address ip address problem. This could either mean that DNS SPOOFING is happening or the IP address for the host and its host key have changed at the same time.

Explanation: See message text.

System action: The program continues unless strict host key checking is enabled.

User response: Check whether the host key is accurate.
FOTS1314 Offending key for IP in filename: line_number

Explanation: The key found on line line_number of file filename is not valid. The host's public key may have changed.

System action: The program continues unless strict host key checking is enabled.

User response: Check the specified line number and file for a valid host key.

FOTS1315 Update the SSHFP RR in DNS with the new host key to get rid of this message.

Explanation: The SSH fingerprint resource record in DNS does not have the proper data for the host key.

System action: The program continues.

User response: Contact your system administrator to fix the resource record.

System programmer response: Update the DNS server to correct the problem.

FOTS1316 Bogus return (return code) from select()

Explanation: A call to select() failed with return code return code.

System action: The program ends.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1317 @ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @ IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY! Someone could be eavesdropping on you right now (man–in–the–middle attack)! It is also possible that the keytype host key has just been changed. The fingerprint for the keytype key sent by the remote host is fingerprint. Please contact your system administrator. Add correct host key in userhostfile to get rid of this message. Offending key in hostfile:line_number

Explanation: ssh has detected that the remote host key has changed.

System action: The program continues unless strict host key checking is enabled.

User response: Check that you have a valid host key for the remote host.

FOTS1325 key type host key for host name has changed and you have requested strict checking.

Explanation: Strict host key checking (ssh configuration option StrictHostKeyChecking) is enabled which causes ssh to exit if the host key has changed.

System action: The program ends.

User response: Edit the key in your user known hosts file.

System programmer response: None.

FOTS1326 Password authentication is disabled to avoid man–in–the–middle attacks.

Explanation: Strict host key checking (ssh configuration option StrictHostKeyChecking) has not been requested, so the connection is allowed, but password authentication is disabled.

System action: The program continues.

User response: Check that the host key in the user's known hosts file is valid.

System programmer response: None.

FOTS1327 Agent forwarding is disabled to avoid man-in-the-middle attacks.

Explanation: Strict host key checking (ssh configuration option StrictHostKeyChecking) has not been requested, so the connection is allowed, but agent forwarding is disabled.

System action: The program continues.

User response: Check that the host key in the user's known hosts file is valid.

System programmer response: None.

FOTS1328 X11 forwarding is disabled to avoid man-in-the-middle attacks.

Explanation: Strict host key checking (ssh configuration option StrictHostKeyChecking) has not been requested, so the connection is allowed, but X11 forwarding is disabled.

System action: The program continues.

User response: Check that the host key in the user's known hosts file is valid.

System programmer response: None.

FOTS1329 Port forwarding is disabled to avoid man-in-the-middle attacks.

Explanation: Strict host key checking (ssh configuration option StrictHostKeyChecking) has not
been requested, so the connection is allowed, but port forwarding is disabled.

System action: The program continues.
User response: Check that the host key in the user’s known hosts file is valid.
System programmer response: None

FOTS1330 Exiting, you have requested strict checking.
Explanation: Strict host key checking (ssh configuration option StrictHostKeyChecking) has been requested, CheckHostIp was enabled, and the host name is not known.
System action: The program ends.
User response: Make sure the host key for the remote host is in the user’s known hosts file.
System programmer response: None.

FOTS1331 dup2 stdin
Explanation: A call to dup2() failed. The system error is displayed with this message.
System action: The program continues.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference] for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1332 dup2 stdout
Explanation: A call to dup2() failed. The system error is displayed with this message.
System action: The program continues.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference] for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1333 shell_path : message
Explanation: A call to execv() failed to execute shell_path. The system error is displayed with this message.
System action: The program ends.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference] for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1334 Could not create pipes to communicate with the proxy: system error
Explanation: A call to pipe() failed. The system error is displayed with this message.
System action: The program ends.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference] for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1335 fork failed: error_message
Explanation: The fork() system call failed. The system error is displayed with this message.
System action: The program ends.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference] for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1336 program name: Could not resolve hostname host: system error
Explanation: The ssh client failed when trying to get the address information for host. The system error is displayed with this message.
System action: The program ends.
User response: Verify host is valid.

FOTS1337 ssh_exchange_identification: read: system error
Explanation: ssh was unable to read the other side of the connection’s identification information. A read() on the socket failed. The system error is displayed with this message.
System action: The program ends.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference] for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1338 ssh_exchange_identification: Connection closed by remote host
Explanation: While attempting to read the other side of the connection’s version identification, the connection was closed by the remote host.
System action: The program ends.
User response: Verify that the remote host is still
operable. Verify that the remote host has an implementation of SSH which is compatible with OpenSSH.

FOTS1339 Bad remote protocol version

 identification: 'server version string'

Explanation: The OpenSSH version of the server does not match the version of the client.

System action: The program ends.

User response: Check that the local and remote versions of OpenSSH are compatible.

System programmer response: None.

FOTS1340 Remote machine has too old SSH software version.

Explanation: The remote sshd minor version is less than 3.

System action: The program ends.

User response: Verify local OpenSSH suite is compatible with remote version.

FOTS1341 Protocol major versions differ:

 localprotocol vs. remoteprotocol

Explanation: The ssh client requested using SSH Protocol Version localprotocol, but the remote server requires remoteprotocol.

System action: The program ends.

User response: Reissue ssh using the protocol that the server expects, or contact system administrator of remote machine.

FOTS1342 write: system error

Explanation: A call to write() failed for the outgoing socket. The system error is displayed with this message.

System action: The program ends.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1343 check_host_key: getnameinfo failed

Explanation: ssh was unable to get the name information for the current host.

System action: The program ends.

User response: Check that all the specified addresses for the host are valid.

FOTS1344 internal error

Explanation: An internal error has occurred.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1345 Bad passphrase.

Explanation: During RSA authentication for protocol version 1, the given passphrase is invalid for the current RSA key.

System action: The program continues.

User response: Verify you entered the correct passphrase.

FOTS1346 Permission denied, please try again.

Explanation: You do not have permission to log into the system.

System action: The program continues.

User response: Contact system administrator for the system in which you are refused access.

FOTS1347 try_agent_authentication: BN_new failed

Explanation: The ssh client tried to authenticate using the ssh-agent. A call to the OpenSSL function BN_new() failed. BN_new() allocates and initializes a BIGNUM structure. An internal error has occurred.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1348 try_rsa_authentication: BN_new failed

Explanation: The ssh client tried to authenticate using RSA authentication. A call to the OpenSSL function BN_new() failed. BN_new() allocates and initializes a BIGNUM structure. An internal error has occurred.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1349 try_rhosts_rsa_authentication: BN_new failed

Explanation: The ssh client tried to authenticate using combined rhosts or /etc/hosts.equiv authentication and RSA authentication. A call to the OpenSSL function BN_new() failed. BN_new() allocates and initializes a
FOTS1351 Kerberos v4: Malformed response from server
Explanation: The ssh client got an invalid response from the server.
System action: The program ends.
User response: Verify Kerberos is configured properly. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1352 Host key verification failed.
Explanation: During SSH key exchange, ssh was unable to verify the host key.
System action: The program continues.
User response: Verify your list of known hosts is accurate. Check if the remote host changed their host key.

FOTS1353 ssh_kex: BN_new failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1354 respond_to_rsa_challenge: host_key
hostbits < server_key serverbits + SSH_KEY_BITS_RESERVED bits
Explanation: SSH Protocol Version 1 key exchange failed because the difference between the number of bits in the host's public key and the number of bits of the server key was not greater than bits. The host key length and server key length need to differ by at least bits bits.
System action: The program ends.
User response: Try a different authentication method.

FOTS1355 respond_to_rsa_challenge: server_key
serverbits < host_key hostbits + SSH_KEY_BITS_RESERVED bits
Explanation: SSH Protocol Version 1 key exchange failed because the difference between the number of bits in the host's public key and the number of bits of the server key was not greater than bits. The host key length and server key length need to differ by at least bits bits.
System action: The program ends.
User response: Try a different authentication method.

FOTS1356 Selected cipher type cipher not supported by server.
Explanation: The cipher cipher is not supported by the remote sshd. Note that cipher "des" is not supported by IBM z/OS sshd.
System action: The program ends.
User response: Reissue ssh client with a remotely-supported cipher.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1357 ssh_userauth1: server supports no auth methods
System action: The program ends.

FOTS1358 Permission denied.
Explanation: All authentication methods have failed.
System action: The program ends.
User response: Verify your setup is correct.

FOTS1359 input_userauth_pk_ok: type mismatch for decoded key (received keytype, expected keytype2)
Explanation: The key from across the network claimed to be a key of type keytype2, but the decoded key was actually key type keytype.
System action: The program continues.
User response: Check that your public key on the remote host is correct.

FOTS1361 ssh_keysign: no installed: system error
Explanation: Could not stat() /usr/lib/ssh/ssh-keysign.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1362 ssh_keysign: fflush: system error
Explanation: A call to fflush() failed for stdout. The system error is displayed with this message.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1363 ssh_keysign: pipe: system error
Explanation: A call to pipe() failed for stdout. The system error is displayed with this message.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1364 ssh_keysign: couldn't send request
Explanation: The ssh client could not successfully send a request to ssh-keysign.
System action: The program ends.
User response: Verify that ssh-keysign exists. Verify your setup is correct. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1365 ssh_keysign: fork: system error
Explanation: A call to fork() failed for stdout. The system error is displayed with this message.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1366 ssh_keysign: no reply
Explanation: The ssh client did not receive a response from ssh-keysign.
System action: The program continues.
User response: Verify that ssh-keysign exists. Verify your setup is correct. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1367 ssh_keysign: bad version
Explanation: The version of ssh-keysign does not match that of the ssh client.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Verify that the ssh-keysign and ssh clients installed are those provided by IBM. Follow local procedures for reporting problems to IBM.

FOTS1368 userauth_hostbased: cannot get local ipaddr/name
Explanation: During hostbased authentication, ssh could not find a name for the local host.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Verify that the DNS setup on the local system is correct. Follow local procedures for reporting problems to IBM.

FOTS1369 key_sign failed
Explanation: The ssh client was unable to authenticate using RSA-based host authentication because ssh-keysign failed.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Verify that ssh-keysign exists. Verify that the setup is correct. Follow local procedures for reporting problems to IBM.

FOTS1370 Host key verification failed.
Explanation: The ssh client was unable to authenticate using hostbased authentication because it could not verify the host key.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Verify that the SSH setup is correct. Follow local procedures for reporting problems to IBM.

FOTS1371 denied SSH2_MSG_SERVICE_ACCEPT: type
Explanation: During user authentication, ssh expected a packet of type SSH2_MSG_SERVICE_ACCEPT but instead received one of type type.
System action: The program ends.

Chapter 15. OpenSSH messages 257
User response: Verify that the remote server is working properly. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1372 ssh_userauth2: internal error: cannot send userauth none request
Explanation: During user authentication, an internal error occurred.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1373 Permission denied (authentication_list).
Explanation: You were refused access to the system after all the authentication methods in authentication_list were attempted.
System action: The program ends.
User response: Verify you typed your password and/or passphrase correctly. Verify with remote system security administrator whether or not they intended you have access. Your user may be listed as part of DenyUsers or DenyGroups on the remote server.
System programmer response: None.

FOTS1374 input_userauth_error: bad message during authentication: type type
Explanation: During user authentication, ssh received a packet type it did not expect.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1375 input_userauth_success: no authentication context
Explanation: During user authentication, an internal error occurred.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1376 input_userauth_failure: no authentication context
Explanation: During user authentication, an internal error occurred.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1377 input_userauth_pk_ok: no authentication context
Explanation: During user authentication, an internal error occurred.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1378 input_userauth_passwd_changereq: no authentication context
Explanation: During user authentication, an internal error occurred.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1379 userauth_pubkey: internal error
Explanation: An internal error has occurred.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1380 input_userauth_info_req: no authentication context
Explanation: During user authentication, an internal error occurred.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1381 ssh_keysign: dup2: system error

Explanation: A call to dup2() failed.

System action: The program ends.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1382 Server denied authentication request: type

Explanation: During user authentication, ssh expected a packet of type SSH2_MSG_SERVICE_ACCEPT but instead received one of type type.

System action: The program ends.

User response: Verify that the remote server is working properly. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1383 ssh_keysign: exec(keysignpath): system error

Explanation: A call to exec() failed when trying to execute ssh-keysign.

System action: The program ends.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1385 tcsetattr

Explanation: A call to tcsetattr() failed.

System action: The program continues.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1386 tcgetattr

Explanation: A call to tcgetattr() failed.

System action: The program continues.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1388 filename: line line number: Bad configuration option: configuration option

Explanation: An option specified in an ssh configuration file is invalid.

System action: The program ends.

User response: Check line number of the ssh configuration file filename for the invalid option.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1389 Privileged ports can only be forwarded by root.

Explanation: While ssh was attempting to add a locally forwarded port, the port number specified is privileged but the user isn't authorized to use a privileged port.

System action: The program ends.

User response: Reissue the ssh command with a valid port (either in ssh configuration file or on command line.)

System programmer response: None.

FOTS1390 Too many local forwards (max max forwards).

Explanation: The user attempted to specify more local forwards than are allowed by ssh. ssh currently allows max forwards.

System action: The program ends.

User response: Reissue ssh without a locally forwarded port.

System programmer response: None.

FOTS1391 Too many remote forwards (max max forwards).

Explanation: The user attempted to specify more remote forwards than are allowed by ssh. ssh currently allows a maximum of max forwards.

System action: The program ends.

User response: Reissue ssh without a remotely forwarded port.

System programmer response: None.

FOTS1392 filename line line number: Missing yes/no argument.

Explanation: While parsing the configuration file filename, ssh expected a yes/no argument but it is missing.

System action: The program ends.
User response: Check the specified line number in the file for syntax errors. Contact your system administrator if the configuration file is global.

System programmer response: Check the specified line number in the file for syntax errors.

FOTS1393 filename line line number: Bad yes/no argument.

Explanation: While parsing the configuration file filename, ssh expected a yes/no argument but instead encountered a syntax error.

System action: The program ends.

User response: Check the specified line number in the file for syntax errors. Contact your system administrator if the configuration file is global.

System programmer response: Check the specified line number in the file for syntax errors.

FOTS1394 filename line line number: Missing yes/no/ask argument.

Explanation: While parsing the configuration file filename, ssh expected a yes/no/ask argument with the StrictHostKeyChecking option, but it is missing.

System action: The program ends.

User response: Check the specified line number in the file for syntax errors. Contact your system administrator if the configuration file is global.

System programmer response: Check the specified line number in the file for syntax errors.

FOTS1395 filename line line number: Bad yes/no/ask argument.

Explanation: While parsing the configuration file filename, ssh expected a yes/no/ask argument with the StrictHostKeyChecking option, but instead encountered a syntax error.

System action: The program ends.

User response: Check the specified line number in the file for syntax errors. Contact your system administrator if the configuration file is global.

System programmer response: Check the specified line number in the file for syntax errors.

FOTS1396 filename line line number: Missing argument.

Explanation: A ssh_config keyword in file filename at line line number is missing its value.

System action: The program ends.

User response: Verify that a value for the ssh_config keyword is set, and try the request again. Refer to [Ported Tools for z/OS: OpenSSH User's Guide](IBM Ported Tools for z/OS: OpenSSH V1.2.0 User's Guide) for more information on the ssh_config keywords. If unable to resolve, contact your system programmer.

FOTS1397 filename line line number: Too many identity files specified (max max).

Explanation: The maximum number of authentication identity files and key ring certificates (max) that can be specified in configuration files or command line has been exceeded.

System action: The program ends.

User response: Reissue the command with a smaller number of identity files or key ring certificates. Check the number of times the IdentityFile or IdentityKeyRingLabel configuration options were specified in the configuration files.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1398 filename line line number: missing time value.

Explanation: The ssh configuration file filename or command line has a configuration option which expects a time value, but the corresponding time value is missing. Options which expect time values include ConnectTimeout.

System action: The program ends.

User response: Check line number of the ssh configuration file filename for the failing option, add a time value and reissue ssh.

FOTS1399 filename line line number: invalid time value.

Explanation: The ssh configuration file filename has a configuration option which expects a time value, but the corresponding time value is invalid. Options which expect time values include ConnectTimeout.

System action: The program ends.

User response: Check line number of the ssh configuration file filename for the failing option, correct the time value and reissue sshd.

FOTS1401 filename line line number: Bad number "number".

Explanation: While parsing filename, ssh encountered an invalid number.
• With option NumberOfPasswordPrompts or ConnectionAttempts, number must be an integer between 0 and 2147483647 (LONG_MAX).
• With option CompressionLevel, number must be an integer between 1 and 9.
• With option Port, number must be an integer between 1 and 65535 (USHRT_MAX).

System action: The program ends.
User response: Check the specified line number in the file to make sure number is valid. Contact your system administrator if the configuration file is global.
System programmer response: Check the specified line number in the file for syntax errors.

FOTS1404 filename line line number: Bad cipher ‘cipher’.
Explanation: While parsing filename, ssh encountered an invalid cipher after the Cipher option.
System action: The program ends.
User response: Check the specified line number in the file to make sure the cipher is valid. Contact your system administrator if the configuration file is global.
System programmer response: Check the specified line number in the file for syntax errors.

FOTS1405 Unsupported AddressFamily "argument"
Explanation: The argument supplied with the ssh configuration option AddressFamily is invalid. Valid arguments include "inet", "inet6", or "any".
System action: The program ends.
User response: Reissue the command with a valid value for AddressFamily.

FOTS1406 filename line line number: Bad SSH2 cipher spec ‘ciphers’.
Explanation: While parsing filename, ssh encountered invalid ciphers after the Ciphers option.
System action: The program ends.
User response: Check the specified line number in the file to make sure ciphers are valid. Contact your system administrator if the configuration file is global.
System programmer response: Check the specified line number in the file for syntax errors.

FOTS1407 filename line line number: Unsupported option "keyword"
Explanation: The ssh configuration option keyword is not supported.
System action: The program continues.
User response: Remove the unsupported option from the specified line in the ssh configuration file filename.

FOTS1408 filename line line number: Bad SSH2 Mac spec ‘MAC algorithms’.
Explanation: While parsing filename, ssh encountered invalid MAC algorithms after the MACs option.
System action: The program ends.
User response: Check the specified line number in the file to make sure the MAC algorithms are valid. Contact your system administrator if the configuration file is global.
System programmer response: Check the specified line number in the file for syntax errors.

FOTS1410 filename line line number: Bad protocol 2 host key algorithms ‘algorithms’.
Explanation: While parsing filename, ssh encountered invalid protocol 2 host key algorithms after the HostKeyAlgorithms option.
System action: The program ends.
User response: Check the specified line number in the file to make sure the protocol 2 host key algorithms are valid. Contact your system administrator if the configuration file is global.
System programmer response: Check the specified line number in the file for syntax errors.

FOTS1412 filename line line number: Bad protocol spec ‘protocol’.
Explanation: While parsing filename, ssh encountered an invalid protocol version after the Protocol option.
System action: The program ends.
User response: Check the specified line number in the file to make sure you have a valid protocol version. Contact your system administrator if the configuration file is global.
System programmer response: Check the specified line number in the file for syntax errors.

FOTS1413 filename line line number: unsupported log level ‘level’
Explanation: While parsing filename, ssh encountered an invalid log level after the LogLevel option.
System action: The program ends.
User response: Check the specified line number in the file to make sure you have a valid log level. Contact your system administrator if the configuration file is global.
System programmer response: Check the specified line number in the file for syntax errors.
FOTS1414 filename line line number: Missing port argument.

Explanation: While parsing filename, ssh encountered a syntax error for a configuration option. The configuration option requires an argument after the keyword.

System action: The program ends.

User response: Check the specified line number in the file for syntax errors. Contact your system administrator if the configuration file is global.

System programmer response: Check the specified line number in the file for syntax errors.

FOTS1415 filename line linen0: Bad listen port.

Explanation: While parsing filename, ssh encountered an invalid argument for either the LocalForward or RemoteForward configuration option.

System action: The program ends.

User response: Check the specified line number in the file to make sure you have a valid argument for the configuration option in error. Contact your system administrator if the configuration file is global.

System programmer response: Check the specified line number in the file for syntax errors.

FOTS1416 filename line linen0: Missing target argument.

Explanation: While parsing filename, the target argument for either the LocalForward or RemoteForward configuration option is missing.

System action: The program ends.

User response: Check the specified line number in the file to make sure you have a valid argument for the configuration option in error. Contact your system administrator if the configuration file is global.

System programmer response: Check the specified line number in the file for syntax errors.

FOTS1417 filename line linen0: Bad forwarding specification.

Explanation: While parsing filename, ssh encountered an invalid argument for either the LocalForward, RemoteForward or DynamicForward configuration option.

System action: The program ends.

User response: Check the specified line number in the file to make sure you have a valid argument for the configuration option in error. Contact your system administrator if the configuration file is global.

System programmer response: Check the specified line number in the file for syntax errors.

FOTS1418 filename line linen0: Bad forwarding port.

Explanation: One of the port numbers specified with ssh configuration options LocalForward or RemoteForward is invalid. A port number should be greater than zero and less than or equal to 65535.

System action: The program ends.

User response: Check the specified line number in the file to make sure you have a valid argument for the configuration option in error. Contact your system administrator if the configuration file is global.

System programmer response: Check the specified line number in the file for syntax errors.

FOTS1420 filename line linen0: Badly formatted port number.

Explanation: While parsing filename, ssh encountered an invalid argument for the DynamicForward configuration option.

System action: The program ends.

User response: Check the specified line number in the file to make sure you have a valid argument for the configuration option in error. Contact your system administrator if the configuration file is global.

System programmer response: Check the specified line number in the file for syntax errors.

FOTS1422 filename line line number: Bad escape character.

Explanation: You specified an invalid escape character in the ssh configuration file.

System action: The program ends.

User response: An escape character can be either a single character or a control character. Reissue the command with a valid escape character.

System programmer response: None

FOTS1423 process_config_line: Unimplemented opcode opcode

Explanation: An internal error has occurred.

System action: The program ends.

User response: Contact your system administrator to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1424 filename line line number: garbage at end of line; "text".
Explanation: The extra text text was found after a configuration option. Please check the specified filename.
System action: The program ends.
User response: Check the specified line number in the file for syntax errors. Contact your system administrator if the configuration file is global.
System programmer response: Check the specified line number in the file for syntax errors.

FOTS1425 filename: terminating, options bad configuration options
Explanation: ssh has encountered at least one invalid configuration option.
System action: The program ends.
User response: Check the specified filename for syntax errors. Contact your system administrator if the configuration file is global.
System programmer response: Check the specified line number in the file for syntax errors.

FOTS1426 fork: system error
Explanation: A call to fork() failed. The system error is displayed.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1427 client_channel_closed: id id1 != session_ident id2
Explanation: The ssh client is closing a channel with id1 but the current session id is id2.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1428 Write failed flushing stdout buffer.
Explanation: A call to write() failed when attempting to write to stdout.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1429 Write failed flushing stderr buffer.
Explanation: A call to write() failed when attempting to write to stderr.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1430 Warning: ssh server tried X11 forwarding.
Explanation: The ssh configuration option ForwardX11 was disabled but the server requested an X11 channel.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for handling security problems.

FOTS1431 Warning: this is probably a break-in attempt by a malicious server.
Explanation: The ssh client detected the server attempting to bypass some ssh setup. This error message is usually displayed with another message describing what ssh sees in error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for handling security problems.

FOTS1432 Warning: ssh server tried agent forwarding.
Explanation: The ssh configuration option ForwardAgent was disabled but the server requested an X11 channel.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for handling security problems.

FOTS1434 client_input_channel_req: no channel session channel identifier
Explanation: The server wanted to request a new channel, but no session channel exists for the client.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
procedures for reporting problems to IBM.

FOTS1435 client_input_channel_req: channel
session channel identifier: wrong channel:
requested channel

Explanation: The server wanted to request a new
channel, but the channel requested by the server
doesn't match that of the client's session.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local
procedures for reporting problems to IBM.

FOTS1436 client_input_channel_req: channel
requested channel: unknown channel

Explanation: The channel identifier sent by the server
is not recognized by the client.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local
procedures for reporting problems to IBM.

FOTS1437 Killed by signal signal number.

Explanation: The ssh client was killed by signal signal number.
System action: The program ends.
User response: Determine what caused a signal to be
sent to your process.
System programmer response: None.

FOTS1438 Could not load host key: host key file

Explanation: The file host key file could not be loaded.
The file may not exist or is not readable. The
permissions on the file may be incorrect. The
passphrase may have been entered incorrectly.
System action: The program continues.
User response: Check that host key file exists and has
the proper permissions. Verify that the correct
passphrase was used.
System programmer response: None.

FOTS1439 getnameinfo failed: system error

Explanation: ssh was unable to get the name
information for the current host.
System action: The program continues.
System programmer response: Check that all the
specified addresses for the host are valid.

FOTS1440 listen_sock O_NONBLOCK: system error

Explanation: A call to fcntl() to set O_NONBLOCK
failed for the listening socket.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time
Library Reference for an explanation of the system error.
If unable to resolve, contact your system programmer.
System programmer response: Follow local
procedures for reporting problems to IBM.

FOTS1441 setsockopt SO_REUSEADDR: system error

Explanation: A call to setsockopt() to set
SO_REUSEADDR failed for the listening socket. The
system error is displayed with this message.
System action: The program continues.
System programmer response: Refer to z/OS XL
C/C++ Run-Time Library Reference for an explanation of
the system error. If unable to resolve, follow local
procedures for reporting problems to IBM.

FOTS1442 Bind to port port on host failed: system error

Explanation: sshd was unable to bind the socket to
the desired port. A call to bind() failed and the system
error is displayed.
System action: The program continues.
System programmer response: Refer to z/OS XL
C/C++ Run-Time Library Reference for an explanation of
the system error. If unable to resolve, follow local
procedures for reporting problems to IBM.

FOTS1443 select: system error

Explanation: sshd is waiting in a select() call until
there is a connection. This call to select() failed. The
system error is displayed.
System action: The program continues.
System programmer response: Refer to z/OS XL
C/C++ Run-Time Library Reference for an explanation of
the system error. If unable to resolve, follow local
procedures for reporting problems to IBM.

FOTS1444 accept: system error

Explanation: A call to accept() failed. The system error
is displayed.
System action: The program continues.
System programmer response: Refer to z/OS XL
C/C++ Run-Time Library Reference for an explanation of
the system error. If unable to resolve, follow local
procedures for reporting problems to IBM.
FOTS1445 newsock del O_NONBLOCK: system error
Explanation: A call to fcntl() failed. The system error is displayed.
System action: The program continues.
System programmer response: Refer to [z/OS XL C/C++ Run-Time Library Reference](https://publib.boulder.ibm.com/infocenter/zos/v2r13/index.jsp?topic=/com.ibm.zos.zoscm200/zoscm200_homa0013.html) for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1446 __poe() failed for accepted socket: system error
Explanation: A call to __poe() failed. The system error is displayed.
System action: The daemon handling the connection ends.
System programmer response: Refer to [z/OS XL C/C++ Run-Time Library Reference](https://publib.boulder.ibm.com/infocenter/zos/v2r13/index.jsp?topic=/com.ibm.zos.zoscm200/zoscm200_homa0013.html) for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1447 setsid: system error
Explanation: While sshd was attempting to create a new session and process group, a call to setsid() failed. The system error is displayed.
System action: The program continues.
System programmer response: Refer to [z/OS XL C/C++ Run-Time Library Reference](https://publib.boulder.ibm.com/infocenter/zos/v2r13/index.jsp?topic=/com.ibm.zos.zoscm200/zoscm200_homa0013.html) for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1448 setsockopt SO_KEEPALIVE: system error
Explanation: A call to setsockopt() to set SO_KEEPALIVE failed for the listening socket. The system error is displayed with this message.
System action: The program continues.
System programmer response: Refer to [z/OS XL C/C++ Run-Time Library Reference](https://publib.boulder.ibm.com/infocenter/zos/v2r13/index.jsp?topic=/com.ibm.zos.zoscm200/zoscm200_homa0013.html) for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1449 do_ssh1_kex: bad session key len from remote_ip: session_key_int length > sizeof(session_key) session_key_length
Explanation: During key exchange, the remote host's session key (length) is larger than what this daemon supports (session_key_length).
System action: The program continues.
User response: Follow local procedures for reporting problems to IBM.

FOTS1450 Timeout before authentication for remote_ip
Explanation: sshd timed-out before the user authenticated itself. The sshd administrator may have configured too low a value for the login grace time. The sshd -g option or sshd_config keyword LoginGraceTime controls this value.
System action: The program ends.
System programmer response: Follow local procedures for handling user authentication timeouts.

FOTS1451 Privilege separation user user_name does not exist
Explanation: The user user_name must exist when privilege separation is enabled via the sshd_config UsePrivilegeSeparation keyword.
System action: The program ends.

FOTS1452 chroot("chroot_dir"): system error
Explanation: sshd attempted to chroot() to chroot_dir, which is the chroot directory used by sshd during privilege separation.
System action: The program ends.
System programmer response: Refer to [z/OS XL C/C++ Run-Time Library Reference](https://publib.boulder.ibm.com/infocenter/zos/v2r13/index.jsp?topic=/com.ibm.zos.zoscm200/zoscm200_homa0013.html) for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1453 chdir("/"): system error
Explanation: sshd failed while attempting to chdir() to "/". The system error is displayed with this message.
System action: The program ends.
System programmer response: Refer to [z/OS XL C/C++ Run-Time Library Reference](https://publib.boulder.ibm.com/infocenter/zos/v2r13/index.jsp?topic=/com.ibm.zos.zoscm200/zoscm200_homa0013.html) for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1454 setgid failed for groupid
Explanation: A call to setgid() failed for the privilege separation user's group id.
System action: The program ends.
System programmer response: Refer to [z/OS XL C/C++ Run-Time Library Reference](https://publib.boulder.ibm.com/infocenter/zos/v2r13/index.jsp?topic=/com.ibm.zos.zoscm200/zoscm200_homa0013.html) for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.
FOTS1455 setgroups: system error

Explanation: A call to setgroups() failed for the privilege separation user’s group id. The system error is displayed with this message.

System action: The program ends.

System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1456 fork of unprivileged child failed: system error

Explanation: While sshd was attempting to set up the unprivileged child process, a call to fork() failed. The system error is displayed with this message.

System action: The program ends.

System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1457 TCP/IP TERMINATED. Will attempt to restart every seconds seconds.

Explanation: TCP/IP has gone down or has not been started yet. sshd will sleep for seconds seconds, and try again. This message will only be displayed once, not for each restart attempt.

System action: The program continues.

System programmer response: Wait until sshd recognizes the new stack.

FOTS1458 setibmssockopt SO_EioIfNewTP : error_code

Explanation: The setibmssockopt() system call failed.

System action: The program continues.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1459 Missing privilege separation directory: chroot_dir

Explanation: The directory used by sshd during privilege separation is missing or is not a directory.

System action: The program ends.

System programmer response: Check that chroot_dir exists and is a directory. It should also be owned by uid 0, and not be group or world-writable.

FOTS1460 Bad owner or mode for chroot_dir

Explanation: The directory used by sshd during privilege separation is not owned by uid 0 or is group or world-writable.

System action: The program ends.

System programmer response: chroot_dir should also be owned by uid 0, and not be group or world-writable.

FOTS1461 Couldn't create pid file "filename": system error

Explanation: The sshd pid file filename could not be opened. A call to fopen() failed when attempting to open the file. The system error is displayed with this message.

System action: The program continues.

System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1462 Too many listen sockets. Enlarge MAX_LISTEN_SOCKS

Explanation: The number of sockets for which sshd is attempting to listen is greater than what it can currently handle. The current value is 16.

System action: The program ends.

System programmer response: Verify less than 16 addresses are specified with configuration option ListenAddress.

FOTS1463 listen: system error

Explanation: sshd attempted to listen on a port, and a call to listen() failed. The system error is displayed with this message.

System action: The program ends.

System programmer response: Check the log information for the failing port number. Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1464 Cannot bind any address.

Explanation: sshd was not able to bind to any of the addresses listed by configuration option ListenAddress.

System action: The program ends.

System programmer response: Check sshd log output for specific bind failures.
FOTS1465 directory must be owned by root and not group or world-writable.

Explanation: The chroot directory directory used by sshd during privilege separation is either not owned by root, or is group or world-writable.

System action: The program ends.

System programmer response: Check the permissions and ownership of the directory.

FOTS1466 do_connection: remote_ip: server_key
server_num_bits < host_key host_num_bits
+ SSH_KEY_BITS_RESERVED
ssh_key_bits_reserved

Explanation: The host key length host_num_bits and the server key length server_num_bits should differ by the number of bits specified by ssh_key_bits_reserved.

System action: The program ends.

System programmer response: Invoke sshd (using the -b option) with a larger number of bits for the server key.

FOTS1467 do_connection: remote_ip: host_key
host_num_bits < server_key
server_num_bits +
SSH_KEY_BITS_RESERVED
ssh_key_bits_reserved

Explanation: The host key length host_num_bits and the server key length server_num_bits should differ by the number of bits specified by ssh_key_bits_reserved.

System action: The program ends.

System programmer response: Make the host key and the server key conform to this property.

FOTS1468 do_ssh1_kex: BN_new failed

Explanation: During key exchange, a call to the OpenSSL function BN_new() failed. An internal error has occurred.

System action: The program ends.

System programmer response: Follow local procedures for handling user authentication timeouts.

FOTS1487 TCP/IP TERMINATED, or new stack started.

Explanation: sshd has received an error which is interpreted as indicating that TCP/IP has terminated or that a new stack has been started. This message is preceded by one or more other messages indicating what error was received. Typically, a call to accept() will have failed with a system error of EIO.

System action: The program continues. sshd attempts to reinitialize the sockets for the services in the configuration file. If that fails, sshd attempts to reinitialize the sockets in repeated intervals.

System programmer response: Wait until sshd recognizes a new TCP/IP stack.

FOTS1488 too many ports.

Explanation: The sshd -p option was specified more times than it can handle. The maximum number of ports allowed by sshd is 256.

System action: The program ends.

System programmer response: Reissue sshd with a valid number of ports.

FOTS1489 Bad port number.

Explanation: The port number specified with sshd -p is invalid. It should be a number greater than 0 and less than or equal to 65535.

System action: The program ends.

System programmer response: Reissue sshd with a valid port number.

FOTS1490 Invalid login grace time.

Explanation: The login grace time specified with sshd –g is invalid.

System action: The program ends.

FOTS1491 Invalid key regeneration interval.

Explanation: The key regeneration interval specified with sshd –k is invalid.

System action: The program ends.

FOTS1492 too many host keys.

Explanation: The maximum number of host key files and host key ring certificates that can be specified in configuration files or the command line has been exceeded.

System action: The program ends.

FOTS1493 Invalid utmp length.
Explanation: The length specified with sshd -u is larger than what can be stored in the utmpx database.
System action: The program ends.
System programmer response: Reissue sshd with a smaller value for the -u option.

FOTS1494 Extra argument argument.
Explanation: sshd was specified with too many arguments.
System action: The program ends.
System programmer response: Reissue sshd with the proper syntax.

FOTS1495 Bad server key size.
Explanation: The number of bits specified for the server key is invalid. The server key bits (controlled by configuration option ServerKeyBits) must be between 512 and 32768 inclusive.
System action: The program ends.
System programmer response: Reissue sshd with a valid number of bits for the server key.

FOTS1496 do_authloop: BN_new failed
Explanation: During RSA authentication in sshd, a call to the OpenSSL function BN_new() failed. An internal error has occurred.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1497 INTERNAL ERROR: authenticated invalid user username
Explanation: The user username is not a valid user, but was successfully authenticated.
System action: The program ends.
System programmer response: Follow local procedures for handling security problems.

FOTS1498 Port of Entry information not retained. uname() failed : system error
Explanation: A call to uname() failed. If there is a system error, it is displayed with this message. Because of this failure, the port of entry information has not been retained. Access to the system by the attempting user may fail.
System action: The program continues.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1499 Port of Entry information not retained.
strtol() failed : system error
Explanation: A call to strtol() failed. If there is a system error, it is displayed with this message. Because of this failure, the port of entry information has not been retained. Access to the system by the attempting user may fail.
System action: The program continues.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1501 input_userauth_request: no authctxt
Explanation: An internal error has occurred.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1502 INTERNAL ERROR: authenticated invalid user user
Explanation: The user username is not a valid user, but was successfully authenticated.
System action: The program ends.
System programmer response: Follow local procedures for handling security problems.

FOTS1503 __passwd: system error
Explanation: A call to __passwd() failed. The system error is displayed with this message.
System action: The program continues.
User response: Check that you entered the right password. Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1504 userauth_hostbased: cannot decode key: keytype
Explanation: During hostbased authentication, sshd was unable to decode the public key of type keytype which was sent from across the network.
System action: The program continues.
System programmer response: If unable to resolve, follow local procedures for reporting problems to IBM.
Chapter 15. OpenSSH messages

FOTS1505 userauth_hostbased: type mismatch for decoded key (received keytype1, expected keytype2)

Explanation: The key sshd received across the network declared it's type to be keytype2, but was actually keytype1 when decoded.

System action: The program continues.

System programmer response: If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1506 userauth_pubkey: cannot decode key: keytype

Explanation: During public key authentication, sshd was unable to decode the public key of type keytype which was sent from across the network.

System action: The program continues.

System programmer response: If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1507 userauth_pubkey: type mismatch for decoded key (received keytype1, expected keytype2)

Explanation: The key sshd received across the network declared it's type to be keytype2, but was actually keytype1 when decoded.

System action: The program continues.

System programmer response: If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1508 get_challenge: numprompts < 1

Explanation: Challenge-response authentication failed because the number of prompts to the user was exceeded.

System action: The program ends.

System programmer response: If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1509 input_userauth_info_response: no authctxt

Explanation: During user authentication, an internal error occurred.

System action: The program ends.

System programmer response: If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1510 input_userauth_info_response: no kbdintctxt

Explanation: During user authentication, an internal error occurred.

System action: The program ends.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1511 input_userauth_info_response: no device

Explanation: During user authentication, an internal error occurred.

System action: The program ends.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1512 input_userauth_info_response: wrong number of replies

Explanation: During user authentication, an internal error occurred.

System action: The program ends.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1513 input_userauth_info_response: too many replies

Explanation: During user authentication, an internal error occurred.

System action: The program ends.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1514 Bugs in auth-options.c option processing.

Explanation: sshd encountered an error while parsing authorization options in the authorized_keys file.

System action: The program ends.

System programmer response: Notify the user of errors in their authorized keys file.

FOTS1529 auth_rsa_verify_response: RSA modulus too small: bits < minimum minbits bits

Explanation: During RSA authentication, the number of bits bits in the key was found to be too small. It needs to be bigger than minbits.

System action: The program continues.

System programmer response: Notify the user their key is too small.
FOTS1530
auth_rsa_generate_challenge: BN_new() failed

Explanation: During RSA authentication in sshd, a call to the OpenSSL function BN_new() failed. An internal error has occurred.

System action: The program ends.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1531
auth_rsa_generate_challenge: BN_CTX_new failed

Explanation: During RSA authentication in sshd, a call to the OpenSSL function BN_CTX_new() failed. An internal error has occurred.

System action: The program ends.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1532
auth_rsa_verify_response: bad challenge length

Explanation: During RSA authentication in sshd, the challenge length was found to be too short. An internal error has occurred.

System action: The program ends.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1533
auth_rsa_challenge_dialog: BN_new() failed

Explanation: During RSA authentication in sshd, a call to the OpenSSL function BN_new() failed. An internal error has occurred.

System action: The program ends.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1535
__tcsetcp() failed: system error

Explanation: A call to __tcsetcp() failed while sshd was trying to set the code set for the master pty. The system error is displayed with this message.

System action: The program continues.

System programmer response: Refer to IBM Ported Tools for z/OS OpenSSH V1.2.0 User's Guide for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1536
chown ttyname 0 0 failed: system error

Explanation: A call to chown() failed while sshd was trying to release the pty and return ownership to uid 0. The system error is displayed with this message.

System action: The program continues.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1537
chmod ttyname 0666 failed: system error

Explanation: A call to chmod() failed while sshd was trying to release the pty and make the permissions 666.

System action: The program continues.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1562
setsid: system error

Explanation: A call to setsid() failed while sshd was trying to make the tty the process controlling tty. The system error is displayed with this message.

System action: The program continues.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1563
Failed to disconnect from controlling tty.

Explanation: A call to open() failed while sshd was trying to open the controlling tty with O_RDWR and O_NOCTTY. The system error is displayed with this message.

System action: The program continues.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1564
open /dev/tty failed – could not set controlling tty: system error

Explanation: A call to open() failed for /dev/tty. The system error is displayed with this message.

System action: The program continues.

User response: Refer to IBM Ported Tools for z/OS OpenSSH V1.2.0 User's Guide for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.
Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1568
`chown(ttyname, userid, groupid) failed: system error`

Explanation:
sshd is attempting to change the owner and group of the tty `ttyname` to that of `userid` and `groupid` respectively. The call to `chown()` failed because the file system is read-only. The current owner of the tty is already that of `userid` or of a superuser.

System action: The program continues.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1569
`chmod(ttyname, mode) failed: system error`

Explanation:
sshd is attempting to change the permissions of the tty `ttyname` to that of `mode`. The call to `chmod()` failed because the file system is read-only. The current permissions allow read access for group and other.

System action: The program continues.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1572
`stat(ttyname) failed: system error`

Explanation:
A call to `stat()` failed for `ttyname`. The system error is displayed with this message.

System action: The program ends.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1573
`chown(ttyname, userid, groupid) failed: system error`

Explanation:
sshd is attempting to change the owner and group of the tty `ttyname` to that of `userid` and `groupid` respectively. A call to `chown()` failed. The system error is displayed with this message.

System action: The program ends.

System programmer response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1574
`chmod(ttyname, mode) failed: system error`

Explanation:
sshd is attempting to change the permissions of the tty `ttyname` to that of `mode`. The call to `chmod()` failed. The system error is displayed with this message.

System action: The program ends.

System programmer response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1575
`login_get_lastlog: Cannot find account for uid uid`

Explanation:
A call to `getpwuid()` failed for UID `uid`.

System action: The program ends.

System programmer response: Verify there is a user account for `uid`. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1576
`login_init_entry: Cannot find user "userid"`

Explanation:
sshd was unable to find the definition for user id `userid`. A call to `getpwuid()` failed.

System action: The program ends.

System programmer response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1577
`This platform does not support both privilege separation and compression`

Explanation:
The configuration options Compression and UsePrivilegeSeparation were both enabled. IBM z/OS does not support both privilege separation and compression.

System action: Compression is disabled and the program continues.

System programmer response: Determine if compression is necessary for your network.

FOTS1578
`Compression disabled`

Explanation:
The configuration options Compression and UsePrivilegeSeparation were both enabled. IBM z/OS does not support both privilege separation and compression, so compression is disabled.

System action: The program continues.

System programmer response: Determine if compression is necessary for your network.
FOTS1579 filename: line line number: Bad configuration option: configuration option
Explanation: An option specified in an sshd configuration file is invalid.
System action: The program ends.
System programmer response: Check line number of the sshd configuration file filename for the invalid option.

FOTS1581 bad addr or host: address (system error)
Explanation: The sshd daemon failed when trying to get the address information for address. The system error is displayed with this message.
System action: The program ends.
User response: Verify address is valid.

FOTS1582 filename line line numbers: ports must be specified before ListenAddress.
Explanation: In the sshd configuration file, the Port option was not specified before the ListenAddress option.
System action: The program ends.
System programmer response: Check line number of the sshd configuration file filename for the option which caused this error. Change the order of these options in the sshd configuration file and reissue sshd.

FOTS1583 filename line line numbers: too many ports.
Explanation: The sshd Port option was specified more times than sshd supports. The maximum number of ports allowed by sshd is 256.
System action: The program ends.
System programmer response: Check line number of the sshd configuration file filename for the Port option which caused this error. Reissue sshd with a valid number of ports.

FOTS1584 filename line line numbers: missing port number.
Explanation: The sshd configuration file filename has the Port option, but is missing the corresponding port number.
System action: The program ends.
System programmer response: Check line number of the sshd configuration file filename for the Port option, add a port number, and reissue sshd.

FOTS1585 filename line line numbers: Badly formatted port number.
Explanation: The sshd configuration file filename has the Port option, but the corresponding port number has caused a syntax error.
System action: The program ends.
System programmer response: Check line number of the sshd configuration file filename for the Port option, correct the port number, and reissue sshd.

FOTS1586 filename line line numbers: missing integer value.
Explanation: The sshd configuration file filename has a configuration option which expects an integer argument, but the argument is missing.
System action: The program ends.
System programmer response: Check line number of the sshd configuration file filename for the Port option, add an integer argument, and reissue sshd.

FOTS1587 filename line line numbers: missing time value.
Explanation: The sshd configuration file filename has a configuration option which expects a time value, but the corresponding time value is missing. Options which expect time values include LoginGraceTime, KeyRegenerationInterval, and ClientAliveInterval.
System action: The program ends.
System programmer response: Check line number of the sshd configuration file filename for the failing option, add a time value and reissue sshd.

FOTS1588 filename line line numbers: invalid time value.
Explanation: The sshd configuration file filename has a configuration option which expects a time value, but the corresponding time value is invalid. Options which expect time values include LoginGraceTime, KeyRegenerationInterval, and ClientAliveInterval.
System action: The program ends.
System programmer response: Check line number of the sshd configuration file filename for the failing option, correct the time value and reissue sshd.

FOTS1589 filename line line numbers: missing address
Explanation: The sshd configuration file filename has the ListenAddress option, but the corresponding internet address on which to listen is missing.
System action: The program ends.
System programmer response: Check line number of the sshd configuration file filename for the
ListenAddress option, add an internet address, and reissue sshd.

FOTS1590 filename line line number: bad ipv6 inet addr usage.

Explanation: The sshd configuration file filename has the ListenAddress option. The corresponding ipv6
internet address on which to listen is the wrong syntax. A left-bracket is missing a corresponding right bracket.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the
ListenAddress option, correct the internet address, and reissue sshd.

FOTS1591 filename line line number: bad address:port usage.

Explanation: The sshd configuration file filename has the ListenAddress option. The corresponding internet
address on which to listen is the wrong syntax. A port number should follow the colon.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the
ListenAddress option, correct the internet address, and reissue sshd.

FOTS1592 filename line line number: bad port number.

Explanation: The port number specified with sshd
configuration option ListenAddress is invalid. It should be a number greater than 0 and less than or equal to
65535.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the
ListenAddress option, correct the port specification, and reissue sshd.

FOTS1593 filename line line number: bad inet addr usage.

Explanation: The sshd configuration file filename has the ListenAddress option. The corresponding internet
address or host on which to listen is the wrong syntax. Invalid data appears where a port specification might be.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the
ListenAddress option, correct the port specification, and reissue sshd.

FOTS1594 filename line line number: too many host keys specified (max hostkeys).

Explanation: The maximum number of host keys and host key ring certificates that can be specified in
configuration files or the command line has been exceeded.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the HostKey or
HostKeyRingLabel keywords which caused this error. Reissue sshd with a valid number of HostKey or
HostKeyRingLabel keywords.

FOTS1595 filename line line number: missing file name.

Explanation: The sshd configuration file filename has a configuration option specified which expects a filename argument. The filename argument for this option is missing.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the configuration
option which caused this error, and add a filename. Reissue sshd.

FOTS1596 filename line line number: missing yes/no/without-password/
forced–commands–only/no argument.

Explanation: The sshd configuration file filename has the PermitRootLogin option specified. The argument for this option is missing.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the
PermitRootLogin option which caused this error, and add an argument. Reissue sshd.

FOTS1597 filename line line number: Bad yes/no/without–password/
forced–commands–only/no argument: arg

Explanation: The sshd configuration file filename has the PermitRootLogin option specified. The argument arg for this option is invalid.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the
PermitRootLogin option which caused this error, and correct the argument. Reissue sshd.
FOTS1598 filename line line numbers: missing yes/no argument.

Explanation: The sshd configuration file filename has a configuration option specified which expects a yes/no argument. The argument for this option is missing.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the AllowUsers option which caused this error. Reissue sshd with a valid number of AllowUsers options.

FOTS1599 filename line line numbers: Bad yes/no argument: arg

Explanation: The sshd configuration file filename has a configuration option specified which expects a yes/no argument. The argument arg for this option is invalid.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the DenyUsers option which caused this error. Reissue sshd with a valid number of DenyUsers options.

FOTS1600 filename line line numbers: unsupported log facility 'arg'

Explanation: The sshd configuration file filename has the SyslogFacility option specified. The argument arg for this option is invalid.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the AllowGroups option which caused this error. Reissue sshd with a valid number of AllowGroups options.

FOTS1601 filename line line numbers: unsupported log level 'arg'

Explanation: The sshd configuration file filename has the LogLevel option specified. The argument arg for this option is invalid.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the DenyGroups option which caused this error. Reissue sshd with a valid number of DenyGroups options.

FOTS1602 filename line line numbers: too many allow users.

Explanation: The sshd AllowUsers option was specified more times than sshd supports. The maximum number of AllowUsers specifications allowed by sshd is 256.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the option which caused this error, and add an argument. Reissue sshd.

FOTS1603 filename line line numbers: too many allow users.

Explanation: The sshd AllowUsers option was specified more times than sshd supports. The maximum number of AllowUsers specifications allowed by sshd is 256.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the option which caused this error, and add an argument. Reissue sshd.
FOTS1608 filename line line number: Bad SSH2 cipher spec 'arg'.

Explanation: The sshd configuration file filename has the Ciphers option specified. The argument arg for this option is invalid.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the Ciphers option which caused this error, and correct the argument. Reissue sshd.

FOTS1610 filename line line number: Bad SSH2 mac spec 'arg'.

Explanation: The sshd configuration file filename has the MACs option specified. The argument arg for this option is invalid.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the MACs option which caused this error, and correct the argument. Reissue sshd.

FOTS1613 filename line line number: too many subsystems defined.

Explanation: The sshd Subsystem option was specified more times than sshd supports. The maximum number of Subsystem specifications allowed by sshd is 256.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the Subsystem option which caused this error, and correct the argument. Reissue sshd.

FOTS1614 filename line line number: Missing subsystem name.

Explanation: The sshd configuration file filename has the Subsystem option specified. The argument for this option is missing.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the option which caused this error, and add an argument. Reissue sshd.

FOTS1615 filename line line number: Subsystem 'name' already defined.

Explanation: The sshd configuration file filename has the Subsystem option specified. The subsystem name is already defined.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the Subsystem option which caused the error.

FOTS1616 filename line line number: Missing subsystem command.

Explanation: The sshd configuration file filename has the Subsystem option specified. The command argument for this option is missing.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the Subsystem option which caused the error.

FOTS1617 filename line line number: Missing MaxStartups spec.

Explanation: The sshd configuration file filename has the MaxStartups option specified. The argument for this option is missing.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file filename for the option which caused this error, and add an argument. Reissue sshd.

FOTS1618 filename line line number: Illegal MaxStartups spec.

Explanation: The sshd configuration file filename has the MaxStartups option specified. The argument arg for this option is invalid.

System action: The program ends.
System programmer response: Check line number of the sshd configuration file *filename* for the MaxStartups option which caused this error, and correct the argument. Reissue `sshd`.

FOTS1619 `server_input_global_request: no/invalid user`

Explanation: An internal error has occurred.

System action: The program ends.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1620 `filename line line number: Missing handler for opcode arg (opcode)`

Explanation: An internal error has occurred.

System action: The program ends.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1621 `filename line line number: garbage at end of line; "arg"`

Explanation: The sshd configuration file *filename* contains the invalid data *arg*.

System action: The program ends.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1622 `filename: terminating, options bad configuration options`

Explanation: sshd encountered too many bad configuration options in *filename*.

System action: The program ends.

System programmer response: Check line number of the sshd configuration file *filename* for the data which caused this error, and correct the argument. Reissue `sshd`.

FOTS1623 `pipe(notify_pipe) failed` system error

Explanation: A call to `pipe()` failed. The system error is displayed with this message.

System action: The program continues.

System programmer response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer. Follow local procedures for reporting problems to IBM.

FOTS1624 `fcntl(notify_pipe, F_SETFD) failed` system error

Explanation: A call to `fcntl()` failed. The system error is displayed with this message.

System action: The program continues.

System programmer response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer. Follow local procedures for reporting problems to IBM.

FOTS1625 `select:` system error

Explanation: A call to `select()` failed. The system error is displayed with this message.

System action: The program continues.

System programmer response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer. Follow local procedures for reporting problems to IBM.

FOTS1626 `Strange, wait returned pid pid1, expected pid2`

Explanation: A call to `waitpid()` returned *pid1* but sshd expected *pid2*.

System action: The program continues.

System programmer response: Follow local procedures for handling multiple agent forwarding requests.

FOTS1627 `server_input_global_request: no user`

Explanation: An internal error has occurred.

System action: The program ends.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1628 `authentication forwarding requested twice.`

Explanation: The remote ssh client has requested agent forwarding twice.

System action: The program continues.

System programmer response: Follow local procedures for handling multiple agent forwarding requests.

FOTS1629 `setsid failed:` system error

Explanation: A call to `setsid()` failed while sshd was trying to create a new session and process group. The system error is displayed with this message.

System action: The program continues.
FOTS1630 dup2 stdin: system error
Explanation: A call to dup2() failed for stdin. The system error is displayed with this message.
System action: The program continues.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer. Follow local procedures for reporting problems to IBM.

FOTS1631 dup2 stdout: system error
Explanation: A call to dup2() failed for stdout. The system error is displayed with this message.
System action: The program continues.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer. Follow local procedures for reporting problems to IBM.

FOTS1632 dup2 stderr: system error
Explanation: A call to dup2() failed for stderr. The system error is displayed with this message.
System action: The program continues.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer. Follow local procedures for reporting problems to IBM.

FOTS1633 passwd
Explanation: A attempt to exec the passwd utility failed. The system error is displayed with this message.
System action: The program ends.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer. Follow local procedures for reporting problems to IBM.

FOTS1634 setlogin failed: system error
Explanation: A call to setlogin() failed. The system error is displayed with this message.
System action: The program continues.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1635 no more sessions
Explanation: Too many session channels were attempted to be opened in sshd. The maximum number of session channels allowed by sshd is 10.
System action: The program continues.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1636 session_by_pid: unknown pid pid
Explanation: ssh attempted to get a session id from the pid number pid.
System action: The program continues.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1637 session_pty_req: session sessionid alloc failed
Explanation: While sshd was requesting a pty for the session sessionid, a pty could not be allocated.
System action: The program continues.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1638 subsystem: cannot stat command: system error
Explanation: While sshd was attempting to run a subsystem, the command for the subsystem failed. Specifically, a call to stat() failed for the command. The system error is displayed with this message.
System action: The program continues.
System programmer response: Verify that the command specified for the subsystem (in the sshd configuration file) is in the search order specified by PATH. Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer. Follow local procedures for reporting problems to IBM.

FOTS1639 session_pty_cleanup: no session
Explanation: An internal error has occurred.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1640 close(s->ptymaster/ptynum): system error
Explanation: While sshd was attempting to close the pty, a call to close() failed. The system error is displayed with this message.
System action: The program continues.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer. Follow local procedures for reporting problems to IBM.

FOTS1641 no user for session sessionid
Explanation: sshd cannot find a user associated with session sessionid.
System action: The program continues.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1642 Can't get IP address for X11 DISPLAY.
Explanation: While ssh was attempting to set up X11 forwarding, a call to gethostbyname() failed.
System action: The program ends.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer. Follow local procedures for reporting problems to IBM.

FOTS1643 dup2 stdin
Explanation: A call to dup2() failed for stdin. The system error is displayed with this message.
System action: The program continues.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer. Follow local procedures for reporting problems to IBM.

FOTS1644 dup2 stdout
Explanation: A call to dup2() failed for stdout. The system error is displayed with this message.
System action: The program continues.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

FOTS1645 dup2 stderr
Explanation: A call to dup2() failed for stderr. The system error is displayed with this message.
System action: The program continues.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact IBM.

FOTS1646 shell_program : message
Explanation: Internal error.
System action: The program ends.
System programmer response: Contact your system programmer to report the problem.

FOTS1647 shell_program : message
Explanation: A call to execve() failed on executing shell_program. The system error is displayed with this message.
System action: The program ends.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1650 setgid
Explanation: A call to setgid() failed. The system error is displayed with this message.
System action: The program ends.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

FOTS1651 initgroups
Explanation: A call to initgroups() failed. The system error is displayed with this message.
System action: The program ends.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

FOTS1652 login
Explanation: An error occurred while sshd tried to execute the login program. A call to execl() failed. The system error is displayed with this message.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1657 do_exec_no_pty: no session
Explanation: An internal error occurred while sshd was attempting to execute a command with no tty.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1658 do_exec_pty: no session
Explanation: An internal error occurred while sshd was attempting to execute a command with a tty.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1659 child_set_env: too many env vars, skipping: varname
Explanation: sshd could not set the environment variable varname because the maximum allowed (1000) to be set has been reached.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1660 Too many lines in environment file filename
Explanation: sshd failed while reading the user's environment file because the file has exceeded the maximum number of lines (1000) supported by sshd.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1661 Failed to set uids to uid.
Explanation: sshd failed to set the uid of the process to uid.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1662 no user for session sessionid
Explanation: sshd could not find a user id associated with the session sessionid. An internal error has occurred.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1663 child_set_env: too many env vars
Explanation: sshd could not set an environment variable because the maximum allowed (1000) to be set has been reached.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1664 session_set_fds: called for proto != 2.0
Explanation: An internal error has occurred.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1665 no channel for session sessionid
Explanation: An internal error has occurred.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1666 session_exit_message: session sessionid: no channel channel
Explanation: An internal error has occurred.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1667 gethostname: system error
Explanation: A call to gethostname() failed. The system error is displayed with this message.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1668 WARNING: Your password has expired.
Explanation: Your password has expired. You will be prompted to change it.
System action: The program ends.
User response: Enter your new password, and login again.
FOTS1669 Password change required but no TTY available.
Explanation: Your password has expired, but your session does not have a tty available from which to read the password.
System action: The program ends.
User response: Run a ssh session with a tty allocated, then change your password.

FOTS1671 Bad line line number in filename
Explanation: sshd failed while reading the user's environment file because it encountered a line with an invalid syntax.
System action: The program continues.
System programmer response: Notify the user their environment file has a syntax error on line line number.

FOTS1675 Could not run filename
Explanation: While sshd was running the user's startup files, a call to popen() failed while attempting to run filename.
System action: The program continues.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1679 Could not run command
Explanation: While sshd was running the user's startup files, a call to popen() failed while attempting to run command.
System action: The program continues.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1681 Could not chdir to home directory dir: system error
Explanation: A call to chdir() failed while sshd was attempting to change to the user's home directory dir.
System action: The program continues.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1687 mm_make_entry(address); double address pointer->address2(size)
Explanation: An internal error has occurred.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1688 mmap(size); system error
Explanation: While sshd was attempting to create a shared memory space, a call to mmap() failed. The system error is displayed with this message.
System action: The program ends.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1689 munmap(address, size); system error
Explanation: While sshd was attempting to create a shared memory space, a call to munmap() failed. The system error is displayed with this message.
System action: The program ends.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS1690 mm_memvalid: address too large: address
Explanation: An internal error has occurred.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1691 function: mm_mallocc(size)
Explanation: An internal error has occurred.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1692 mm_mallocc try to allocate 0 space
Explanation: An internal error has occurred.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1693 mm_mallocc size too big
Explanation: An internal error has occurred.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1694
Function: mm_free
Address: address1
Cannot find: address2

Explanation: An internal error has occurred.

System action: The program ends.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1695
Function: mm_free
Address: address1
Double address: address2

Explanation: An internal error has occurred.

System action: The program ends.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1696
Function: mm_free
Memory corruption: addr1(size) > addr2

Explanation: An internal error has occurred.

System action: The program ends.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1697
Function: mm_free
Memory corruption: addr1(size) < addr2

Explanation: An internal error has occurred.

System action: The program ends.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1698
Function: mm_memvalid
Address too small: address

Explanation: An internal error has occurred.

System action: The program ends.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1699
Function: mm_memvalid
End address too small: address

Explanation: An internal error has occurred.

System action: The program ends.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1702
Function: fdr
File descriptor: fd0 != 0

Explanation: open() system call on /dev/null did not return 0.

System action: The program continues.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1703
Function: unexpected authentication from reqtype

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1704
Function: authenticated invalid user

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1705
Function: unpermitted request type

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1706
Function: unsupported request type

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1707
Function: bad parameters: min want max

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1708 function: data length incorrect: data_len
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1709 function: no hostkey from index keyid
Explanation: Internal error
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1710 function: key_sign failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1711 function: multiple attempts for getpwnam
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1712 function: no bsd auth session
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1713 function: key type and protocol mismatch
Explanation: Key type does not match protocol being used.
System action: The program ends.
User response: Verify key is correct type. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1714 function: unknown key type type
Explanation: Unknown key type.
System action: The program ends.
User response: Verify key type. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1715 function: bad key, not previously allowed
Explanation: Bad key.
System action: The program ends.
User response: Verify key is correct. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1716 function: bad public key blob
Explanation: Public key data is bad.
System action: The program ends.
User response: Verify public key file is correct. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1717 function: bad signature data blob
Explanation: Key signature data is bad.
System action: The program ends.
User response: Verify key file is correct. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1718 function: dup2
Explanation: dup2() system call failed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local
For FOTS1719 function: `open(/dev/null): error_message`

Explanation: `open()` system call failed.

System action: The program ends.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](https://www.ibm.com/docs/en/zos-ke) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

For FOTS1720 function: `BN_new`

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

For FOTS1721 function: `bad ssh1 session id`

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

For FOTS1723 function: `key_to_blob failed`

Explanation: Key error.

System action: The program ends.

User response: Verify key file is correct. If error persists contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

For FOTS1724 function: `authctxt not valid`

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

For FOTS1725 function: `bad key, not previously allowed`

Explanation: Key error.

System action: The program ends.

User response: Verify key file is correct. If error persists contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

For FOTS1726 function: `key type mismatch`

Explanation: Key error.

System action: The program ends.

User response: Verify key file is correct. If error persists contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

For FOTS1727 function: `received bad key`

Explanation: Key error.

System action: The program ends.

User response: Verify key file is correct. If error persists contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

For FOTS1729 function: `no ssh1 challenge`

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

For FOTS1730 ssh–keysign not enabled in `filename`

Explanation: `EnableSSHKeysign` is not enabled in the ssh configuration file `filename`.

System action: The program ends.

User response: Change the ssh configuration file to enable `EnableSSHKeysign`.

System programmer response: Follow local procedures for reporting problems to IBM.

For FOTS1731 ssh_msg_send failed

Explanation: A read or write failed during ssh-keysign processing.

System action: The program ends.
User response: Follow local procedures for reporting problems to IBM.

FOTS1733 function: received bad response to challenge

Explanation: Communication error.
System action: The program ends.
User response: Verify connectivity and remote host status. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1734 function: auth too large

Explanation: Communication error.
System action: The program ends.
User response: Verify connectivity and remote host status. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1735 mm_get_get: internal error: bad session id

Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1736 function: bad request size

Explanation: Communication error.
System action: The program ends.
User response: Verify connectivity and remote host status. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1738 function: mm_zalloc(ncount, size)

Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1739 fnctl(file_descriptor, F_SETFD)

Explanation: The fnctl() system call failed.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1740 function: socketpair

Explanation: socketpair() system call failed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1742 filename: skipping, filename contains a newline

Explanation: Filename contains a newline character.
System action: The command continues.
User response: Verify that the filename specified is correct.

FOTS1743 pipe: error_message

Explanation: pipe() system call failed.
System action: The command ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1744 filename: error_message

Explanation: A file operation failed on the specified file.
System action: The command continues.
User response: Verify that the file exists and has proper access permissions. If error persists contact your system programmer.
System programmer response: If specified file does not appear to have any problems, follow local procedures for reporting the problem to IBM.
<table>
<thead>
<tr>
<th>FOTS1745</th>
<th>unknown user userid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation:</td>
<td>getpwuid() system call failed to return a user.</td>
</tr>
<tr>
<td>System action:</td>
<td>The command ends.</td>
</tr>
<tr>
<td>User response:</td>
<td>Verify that the specify user exists.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOTS1748</th>
<th>pathname: not a regular file</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation:</td>
<td>File specified is not a regular file.</td>
</tr>
<tr>
<td>System action:</td>
<td>The command continues.</td>
</tr>
<tr>
<td>User response:</td>
<td>Only specify regular files.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOTS1750</th>
<th>name/filename: name too long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation:</td>
<td>Filename is too long.</td>
</tr>
<tr>
<td>System action:</td>
<td>The command continues.</td>
</tr>
<tr>
<td>User response:</td>
<td>Specify a filename less than 1100 characters long.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOTS1753</th>
<th>ambiguous target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation:</td>
<td>Target specified on the command line is ambiguous.</td>
</tr>
<tr>
<td>System action:</td>
<td>The command ends.</td>
</tr>
<tr>
<td>User response:</td>
<td>Specify a nonambiguous target.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOTS1754</th>
<th>message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation:</td>
<td>Connection error.</td>
</tr>
<tr>
<td>System action:</td>
<td>The program ends.</td>
</tr>
<tr>
<td>User response:</td>
<td>Verify connection and remote host status. If error persists contact your system programmer to report the problem.</td>
</tr>
<tr>
<td>System programmer response:</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOTS1755</th>
<th>user name: invalid user name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation:</td>
<td>Invalid user name specified.</td>
</tr>
<tr>
<td>System action:</td>
<td>The program continues.</td>
</tr>
<tr>
<td>User response:</td>
<td>Specify a valid username.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOTS1756</th>
<th>RSA_blinding_on failed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation:</td>
<td>Internal error.</td>
</tr>
<tr>
<td>System action:</td>
<td>The program continues.</td>
</tr>
<tr>
<td>User response:</td>
<td>Contact your system programmer to report the problem.</td>
</tr>
<tr>
<td>System programmer response:</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOTS1757</th>
<th>Hostbased authentication not enabled in config_file</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation:</td>
<td>The user attempted Hostbased authentication, but it is not enabled.</td>
</tr>
<tr>
<td>System action:</td>
<td>The program ends.</td>
</tr>
<tr>
<td>User response:</td>
<td>Enable host based authentication in configuration file.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOTS1758</th>
<th>could not open any host key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation:</td>
<td>Could not open any host keys.</td>
</tr>
<tr>
<td>System action:</td>
<td>The program ends.</td>
</tr>
<tr>
<td>User response:</td>
<td>Verify that host keys exist, and that access permissions are properly set.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOTS1759</th>
<th>getpwuid failed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation:</td>
<td>getpwuid() system call failed.</td>
</tr>
<tr>
<td>System action:</td>
<td>The program ends.</td>
</tr>
<tr>
<td>User response:</td>
<td>Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.</td>
</tr>
<tr>
<td>System programmer response:</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOTS1760</th>
<th>no hostkey found</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation:</td>
<td>No host key found.</td>
</tr>
<tr>
<td>System action:</td>
<td>The program ends.</td>
</tr>
<tr>
<td>User response:</td>
<td>Verify that host keys exist, and that access permissions are properly set.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOTS1761</th>
<th>ssh_msg_recv failed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation:</td>
<td>Internal error.</td>
</tr>
<tr>
<td>System action:</td>
<td>The program ends.</td>
</tr>
<tr>
<td>User response:</td>
<td>Contact your system programmer to report the problem.</td>
</tr>
<tr>
<td>System programmer response:</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOTS1762</th>
<th>bad version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation:</td>
<td>SSH version is not correct.</td>
</tr>
<tr>
<td>System action:</td>
<td>The program ends.</td>
</tr>
<tr>
<td>User response:</td>
<td>Verify that you are running the proper version of SSH.</td>
</tr>
<tr>
<td>System programmer response:</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
</tbody>
</table>
FOTS1763 bad fd
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1764 cannot get sockname for fd
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1765 not a valid request
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1766 no matching hostkey found
Explanation: No matching host key found.
System action: The program ends.
User response: Verify that the host keys exist, and access permissions are properly set.

FOTS1767 key_sign failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1768 pathname: set times: error_message
Explanation: utimes() system call failed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1770 program: message
Explanation: A call to execvp() failed. The system error is displayed with this message.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1771 path: truncate: error_message
Explanation: ftruncate() system call failed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1772 path: set mode: error_message
Explanation: chmod() system call failed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1776 protocol error: error_message
Explanation: scp error.
System action: The program ends.
User response: This is a catchall for a number of scp errors. See the error message at the end of this message for the specific error that occurred.

FOTS1778 fstat: error_message
Explanation: fstat() system call failed.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1779 unexpected <newline>
Explanation: Unexpected newline in buffer read from socket.
System action: The program ends.
User response: Verify connectivity and remote host status. If problem persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1780 lost connection
Explanation: Connection Lost.
System action: The program ends.
User response: Verify connectivity and remote host status. If problem persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1781 mtime.sec not delimited
Explanation: Buffer read from socket is not in proper format.
System action: The program ends.
User response: Verify connectivity and remote host status. If problem persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1784 atime.usec not delimited
Explanation: Buffer read from socket is not in proper format.
System action: The program ends.
User response: Verify connectivity and remote host status. If problem persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1785 expected control record
Explanation: Buffer read from socket is not in proper format.
System action: The program ends.
User response: Verify connectivity and remote host status. If problem persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1786 bad mode
Explanation: Buffer read from socket is not in proper format.
System action: The program ends.
User response: Verify connectivity and remote host status. If problem persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1787 mode not delimited
Explanation: Buffer read from socket is not in proper format.
System action: The program ends.
User response: Verify connectivity and remote host status. If problem persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1788 size not delimited
Explanation: Buffer read from socket is not in proper format.
System action: The program ends.
User response: Verify connectivity and remote host status. If problem persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.
procedures for reporting problems to IBM.

FOTS1789 setenv failed for _BPXK_SUID_FORK:
<error_message>

Explanation: The setenv system call failed and sshd could not set _BPXK_SUID_FORK. This may cause the user's session to have incorrect properties, including jobname, region size, and SMF accounting information.

System action: The program continues.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1803 Couldn't connect to PRNGD port: tcp_port "path": <error_message>

Explanation: connect() system call failed.

System action: The program continues.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1804 Couldn't write to PRNGD socket: <error_message>

Explanation: write() system call inside atomicio() failed.

System action: The program continues.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1805 Couldn't read from PRNGD socket: <error_message>

Explanation: read() system call inside atomicio() failed.

System action: The program continues.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1806 Couldn't wait for child 'cmd_string' completion: <error_message>

Explanation: waitpid() system call failed.

System action: The program continues.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1807 bad entropy command, cmd_filename line
 line
Explanation: Error in ssh_prng_cmds file.
System action: The program continues.
User response: Make sure the ssh_prng_cmds file is set up properly. See the ssh-rand-helper man page for information.

FOTS1808 missing or bad command string, cmd_filename line linenum -- ignored
Explanation: Error in ssh_prng_cmds file.
System action: The program continues.
User response: Make sure the ssh_prng_cmds file is set up properly. See the ssh-rand-helper man page for information.

FOTS1809 missing command path, cmd_filename line linenum -- ignored
Explanation: Error in ssh_prng_cmds file.
System action: The program continues.
User response: Make sure the ssh_prng_cmds file is set up properly. See the ssh-rand-helper man page for information.

FOTS1810 missing entropy estimate, cmd_filename line linenum -- ignored
Explanation: Error in ssh_prng_cmds file.
System action: The program continues.
User response: Make sure the ssh_prng_cmds file is set up properly. See the ssh-rand-helper man page for information.

FOTS1811 garbage at end of line linenum in cmd_filename
Explanation: Error in ssh_prng_cmds file.
System action: The program continues.
User response: Make sure the ssh_prng_cmds file is set up properly. See the ssh-rand-helper man page for information.

FOTS1812 ignored extra commands (max maximum), filename line linenum
Explanation: Error in ssh_prng_cmds file filename. The maximum number of command-line arguments passed to a command in the ssh_prng_cmds file has exceeded the internal limit of maximum.
System action: The program continues.
User response: Make sure the ssh_prng_cmds file is set up properly. See the ssh-rand-helper man page for information.

FOTS1813 Invalid commandline option
Explanation: Invalid command line option.
System action: The program continues.
User response: Enter a valid command line option.

FOTS1814 You must specify a port or a socket
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1815 Random pool path is too long
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1816 Too many bytes to read from PRNGD
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1817 Couldn't gettimeofday: error_message
Explanation: gettimeofday() system call failed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1818 Couldn't open /dev/null: error_message
Explanation: open() system call failed.
System action: The program ends.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](Library Reference) for an explanation of the system error.
If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1819 Couldn't open pipe: error_message
Explanation: pipe() system call failed.
System action: The program ends.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](Library Reference) for an explanation of the system error.
If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1820 Couldn't fork: error_message
Explanation: fork() system call failed.
System action: The program ends.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](Library Reference) for an explanation of the system error.
If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1821 PRNG seedfile filename is not a regular file
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1822 Couldn't get password entry for current user (uid): error_message
Explanation: getpwnam() system call failed.
System action: The program ends.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](Library Reference) for an explanation of the system error.
If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1823 problem writing PRNG seedfile filename (error_message)
Explanation: write() system call within atomicio() failed.
System action: The program ends.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](Library Reference) for an explanation of the system error.
If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1824 PRNG seed extraction failed
Explanation: A call to the OpenSSL function RAND_bytes failed.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1825 could not open PRNG seedfile filename (error_message)
Explanation: open() system call failed.
System action: The program ends.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](Library Reference) for an explanation of the system error.
If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1826 couldn't read entropy commands file cmdfilename: error_message
Explanation: fopen() system call failed.
System action: The program ends.
User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](Library Reference) for an explanation of the system error.
If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1827 Invalid number of output bytes
Explanation: Invalid number of bytes specified with -b option on the command line.
System action: The program ends.
User response: Specify a valid number of bytes. See man page for assistance.
FOTS1829 Entropy collection failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1830 PRNG initialisation failed -- exiting.
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1831 Not enough entropy in RNG
Explanation: Internal error.
System action: The program ends.
User response: Try reissuing the command. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1838 Couldn’t fork: error_message reason code = reasoncode
Explanation: fork() system call failed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on reason code.

FOTS1840 mkdir dirname: error_message
Explanation: The directory dirname could not be created. The mkdir() system call failed. The system error is displayed with the message.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error.

FOTS1841 PRNG seed filename too long
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1842 problem renaming PRNG seedfile from filename1 to filename2 (error_message)
Explanation: The seedfile filename1 could not be renamed. The rename() system call failed. The system error is displayed with the message.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error.

FOTS1901 channel channel: protocol error: rcvd_oclose for istate istate
Explanation: Invalid input from channel.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1902 channel channel: chan_read_failed for istate istate
Explanation: Channel error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1903 channel channel: chan_ibuf_empty for non empty buffer
Explanation: Channel error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1904 channel channel: chan_ibuf_empty for istate istate
Explanation: Channel error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1905 channel channel: protocol error: rcvd_i_eof for ostate ostate
Explanation: Channel error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1906 channel channel: chan_write_failed for ostate ostate
Explanation: Channel error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1907 channel channel: chan_obuf_empty for non empty buffer
Explanation: Channel error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1908 channel channel: protocol error: obuf_empty for ostate ostate
Explanation: Channel error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1909 channel channel: cannot send i_eof for istate istate
Explanation: Channel error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1910 channel channel: cannot send oclose for ostate ostate
Explanation: Channel error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1911 channel channel: protocol error: close rcvd twice
Explanation: Channel error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1912 rsa_public_encrypt: BN_bin2bn failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
<table>
<thead>
<tr>
<th>Message ID</th>
<th>Description</th>
<th>Explanation</th>
<th>System Action</th>
<th>User Response</th>
<th>System Programmer Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOTS1913</td>
<td>Channel $channel$: cannot send eof for istate $istate$</td>
<td>Channel error.</td>
<td>The program continues.</td>
<td>Contact your system programmer to report the problem.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td>FOTS1914</td>
<td>Channel $channel$: cannot send close for istate/ostate $istateostate$</td>
<td>Channel error.</td>
<td>The program continues.</td>
<td>Contact your system programmer to report the problem.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td>FOTS1915</td>
<td>Channel $channel$: already sent close</td>
<td>Channel error.</td>
<td>The program continues.</td>
<td>Contact your system programmer to report the problem.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td>FOTS1916</td>
<td>Channel $channel$: chan_shutdown_read: shutdown() failed for fdsocket [iostate oostate]: $error_code$</td>
<td>Channel error</td>
<td>The program continues.</td>
<td>Contact your system programmer to report the problem.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td>FOTS1917</td>
<td>Chan_set_istate: bad state $ostate$ -> next_state</td>
<td>Channel error.</td>
<td>The program ends.</td>
<td>Contact your system programmer to report the problem.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td>FOTS1918</td>
<td>Chan_set_ostate: bad state $ostate$ -> next_state</td>
<td>Channel error.</td>
<td>The program ends.</td>
<td>Contact your system programmer to report the problem.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td>FOTS1919</td>
<td>Fcntl _O_NONBLOCK: $error_message$</td>
<td>Channel error</td>
<td>The program continues.</td>
<td>Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td>FOTS1920</td>
<td>RSA_private_decrypt: BN_bin2bn failed</td>
<td>Internal error.</td>
<td>The program ends.</td>
<td>Contact your system programmer.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td>FOTS1921</td>
<td>Setsockopt IPTOS_LOWDELAY: $error_code$</td>
<td>Setsockopt() system call failed.</td>
<td>The program continues.</td>
<td>Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td>FOTS1922</td>
<td>Setsockopt IPTOS_THROUGHPUT: $error_code$</td>
<td>Setsockopt() system call failed.</td>
<td>The program continues.</td>
<td>Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
</tbody>
</table>
FOTS1923 packet_set_connection: cannot load cipher 'none'

Explanation: Error loading ciphers.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1924 packet_set_seqnr: bad mode mode

Explanation: Packet error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1925 Compression already enabled.

Explanation: Program attempted to enable compression when it is already active.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1926 packet_set_encryption_key: unknown cipher number number

Explanation: Cipher error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1927 packet_set_encryption_key: keylen too small: keylen

Explanation: Key length is less than 20.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1928 packet_set_encryption_key: keylen too big: keylen

Explanation: Key length is greater than SSH_SESSION_KEY_LENGTH.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1929 newkeys: no keys for mode mode

Explanation: Packet error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1930 Read from socket failed: error_code

Explanation: read() function call failed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1931 padding error: need size_needed block block_size mod modulus

Explanation: The needed size is not a multiple of the block size.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1932 packet_disconnect called recursively.

Explanation: Recursive invocation of packet_disconnect.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS1933 Write failed: error_code
Explanation: write() system call failed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1934 put_host_port: asprintf: error_message
Explanation: The asprintf() call failed. The error is displayed with the message.
System action: The program ends.
User response: Try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1935 addargs: argument too long
Explanation: The vasprintf() call failed. An argument was too long and could not be added to the argument string.
System action: The program ends.
User response: Try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1936 replacearg: argument too long
Explanation: The vasprintf() call failed. An argument was too long and could not be replaced in the argument string.
System action: The program ends.
User response: Try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1937 replacearg: tried to replace invalid arg argument_number >= total_arguments
Explanation: Argument argument_number does not identify a valid argument to replace.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1938 tilde_expand_filename: username too long
Explanation: Unable to complete tilde expansion for the specified filename. The user name is too long.
System action: The program ends.
User response: Verify that the user name is correct, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1939 tilde_expand_filename: No such user user_name
Explanation: Unable to complete tilde expansion for the specified filename. The user name user_name is not valid.
System action: The program ends.
User response: Verify that the user name is correct, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1940 tilde_expand_filename: No such uid UID
Explanation: Unable to complete tilde expansion for the specified filename. The UID UID is not valid.
System action: The program ends.
User response: Verify that the UID is correct, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1941 Couldn't open /dev/null: error_message
Explanation: The open() system call failed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1942 tilde_expand_filename: Path too long
Explanation: The expanded filename is too long.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local
FOTS1943 rsa_generate_additional_parameters: BN_sub/mod failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1944 Couldn't read from ssh-rand-helper:
error_message
Explanation: read() system call failure from ssh–rand–helper.
System action: The program ends.
User response: Verify all ssh components are installed and configured correctly. Refer to the z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Verify all ssh components are installed and configured correctly. If error persists follow local procedures for reporting problems to IBM.

FOTS1945 ssh-rand-helper child produced insufficient data
Explanation: Error with pseudo-random number generating functions.
System action: The program ends.
User response: This error often occurs due to errors in installation and setup of ssh. Verify all ssh components are installed and configured correctly. If error persists contact your system programmer to report the error.
System programmer response: Verify all ssh components are installed and configured correctly. If error persists follow local procedures for reporting problems to IBM.

FOTS1946 Couldn't wait for ssh–rand–helper completion:
error_message
Explanation: waitpid() system call failed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1947 ssh-rand-helper terminated abnormally
Explanation: Error with pseudo-random number generating functions.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1948 ssh-rand-helper exit with exit status exit_status
Explanation: Error with pseudo-random number generating functions.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1949 PRNG is not seeded
Explanation: OpenSSL error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1950 OpenSSL version mismatch. Built against req_version, you have cur_version
Explanation: OpenSSL error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1951 getuid: error_message
Explanation: getuid() system call failed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
Chapter 15. OpenSSH messages
FOTS1962 rsa_public_encrypt() exponent too small or not odd
Explanation: RSA exponent value is bad.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1963 rsa_public_encrypt() failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1964 rsa_generate_additional_parameters: BN_new failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS1965 rsa_generate_additional_parameters: BN_CTX_new failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2003 ssh_dss_sign: no DSA key
Explanation: DSA key not found or wrong type.
System action: The program continues.
User response: Verify DSA key. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2004 ssh_dss_sign: sign failed
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2005 bad sig size ren slen
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2006 ssh_dss_verify: no DSA key
Explanation: DSA key not found or wrong type.
System action: The program continues.
User response: Verify DSA key. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2007 ssh_dss_verify: cannot handle type ktype
Explanation: DSA key type error.
System action: The program continues.
User response: Verify DSA key. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2008 ssh_dss_verify: remaining bytes in signature ren
Explanation: DSA key signature error.
System action: The program continues.
User response: Verify DSA key. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2009 bad sigbloblen len != SIGBLOB_LEN
Explanation: Key signature error.
System action: The program ends.
User response: Verify DSA key. If error persists
FOTS2010 ssh_dss_verify: DSA_SIG_new failed
Explanation: Error generating DSA signature.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2011 ssh_dss_verify: BN_new failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2012 ssh_dss_verify: BN_bin2bn failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2013 ssh_rsa_sign: no RSA key
Explanation: RSA key not found or wrong type.
System action: The program continues.
User response: Verify RSA key exists and is the correct type. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2014 ssh_rsa_sign: EVP_get_digestbynid nid failed
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2015 ssh_rsa_sign: RSA_sign failed:

 error_message
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2016 ssh_rsa_sign: slen len1 slen2 len2
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2017 ssh_rsa_verify: no RSA key
Explanation: RSA key not found or wrong type.
System action: The program continues.
User response: Verify RSA key exists and is the correct type. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2018 ssh_rsa_verify: RSA modulus too small:

 key_modulus < minimum rsa_min_modulus bits
Explanation: Modulus for RSA key is too small.
System action: The program continues.
User response: Verify that the RSA key was properly generated. If the error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2019 ssh_rsa_verify: cannot handle type

 key_type
Explanation: The RSA key is not the proper type.
System action: The program continues.
User response: Verify RSA key exists and is the correct type. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS2020 ssh_rsa_verify: remaining bytes in signature \textit{rlen}
Explanation: RSA key signature error.
System action: The program continues.
User response: Verify RSA key exists and is the correct type. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2021 ssh_rsa_verify: len \textit{len} > modlen \textit{modlen}
Explanation: RSA key error.
System action: The program continues.
User response: Verify RSA key exists and is the correct type. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2022 ssh_rsa_verify: EVP_get_digestbynid \textit{nid} failed
Explanation: RSA key error.
System action: The program continues.
User response: Verify RSA key exists and is the correct type. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2023 bad hashlen
Explanation: RSA key error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2024 bad siglen
Explanation: RSA key error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2025 RSA_public_decrypt failed: \textit{error_string}
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2026 bad decrypted len: \textit{len} \neq \textit{hlen} + \textit{oidlen}
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2027 oid mismatch
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2028 hash mismatch
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2029 User name after tilde too long.
Explanation: User name is greater than 100 characters.
System action: The program ends.
User response: User name must be less than 100 characters.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2030 Unknown user \textit{user}.
Explanation: Unknown user.
System action: The program ends.
User response: Verify that the user exists on the system. If error persists contact your system
FOTS2031 Home directory too long (len > maxpathlen)
Explanation: The pathlen of the home directory exceeds maxpathlen.
System action: The program ends.
User response: Home directory cannot exceed maxpathlen characters.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2032 cfsetispeed failed for baud
Explanation: TTY error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2033 cfsetospeed failed for baud
Explanation: TTY error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2034 getgroups: error_message
Explanation: getgroups() system call failed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2035 initgroups: pw_name: error_message
Explanation: initgroups() system call failed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2036 function: was able to restore old [e]gid"
Explanation: The function function failed because the process was able to switch back to its original group id. Internal error.
System action: The program ends.
User response: Follow local procedures for reporting problems to IBM.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2037 setgroups: error_message
Explanation: setgroups() system call failed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2038 setgid gid: error_message
Explanation: setgid() system call failed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2039 seteuid uid: error_message
Explanation: seteuid() system call failed.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2040 restore_uid: temporarily_use_uid not effective
Explanation: Error restoring original uid.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS2041 function: egid incorrect gid: egid egid (should be newgid)

Explanation: The function function failed because the process was able to switch back to its original group id. Internal error. gid is the current group id of the process. egid is the current effective group id of the process. newgid is the group id the process should be running as.

System action: The program ends.
User response: Follow local procedures for reporting problems to IBM.

FOTS2042 function: was able to restore old [egid]

Explanation: The function function failed because the process was able to switch back to its original user id. Internal error.

System action: The program ends.
User response: Follow local procedures for reporting problems to IBM.

FOTS2043 function: euid incorrect uid: euid euid (should be newuid)

Explanation: The function function failed because the process was able to switch back to its original user id. Internal error. uid is the current user id of the process. euid is the current effective user id of the process. newuid is the user id the process should be running as.

System action: The program ends.
User response: Follow local procedures for reporting problems to IBM.

FOTS2044 permanently_set_uid:
temporarily_use_uid effective

Explanation: Error setting uid.

System action: The program ends.
User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2045 setgid gid: error_message

Explanation: setgid() system call failed.

System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2046 setuid UID: error_message

Explanation: The setuid() system call failed. The system error is displayed with the message.

System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2047 xmalloc: zero size

Explanation: Call to xmalloc specified zero size.

System action: The program ends.
User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2048 xmalloc: out of memory (allocating size bytes)

Explanation: Unable to allocate requested number of bytes.

System action: The program ends.
User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2049 xrealloc: zero size

Explanation: Call to xrealloc specified zero size.

System action: The program ends.
User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2050 xrealloc: out of memory (new_size size bytes)

Explanation: Unable to allocate requested number of bytes.

System action: The program ends.
User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.
FOTS2051 xfree: NULL pointer given as argument
Explanation: NULL pointer given as argument to xfree.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2052 newkeys_from_blob: remaining bytes in blob len
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2053 function: newkey == NULL
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2054 close(s->ptymaster): error_message
Explanation: close() system call failed.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2055 function: write
Explanation: Failure writing to a socket.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2056 xalloc: zero size
Explanation: The call to xalloc() specified size of zero.
System action: The program ends.
User response: Try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2057 function: read: return_value
Explanation: Could not read from a socket.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2058 function: read: bad msg_len msg_len
Explanation: Message read from socket is too long.
System action: The program ends.
User response: Verify connectivity and remote host status. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2059 function: read: ret_value != msg_len
Explanation: Number of bytes read from socket is incorrect.
System action: The program ends.
User response: Verify connectivity and remote machine status. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2060 function: read: rtype rtype != type type
Explanation: Type read from socket does not match type expected.
System action: The program ends.
User response: Verify connectivity and remote host status. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS2061 function: MONITOR_ANS_MODULI failed
Explanation: Response received is not correct.
System action: The program ends.
User response: Verify connectivity and remote host status. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2062 function: BN_new failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2063 xmalloc nmem * size > SIZE_T_MAX
Explanation: The call to xmalloc() specified a size that is too large.
System action: The program ends.
User response: Try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2064 function: struct passwd size mismatch
Explanation: passwd structure received is not the correct size.
System action: The program ends.
User response: Verify connectivity and remote host status. If error persists contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2065 function: bad ivlen: expected block_size != len
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2066 function: bad cipher name name or pointer cipher
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2067 function: can not setup mac mac_name
Explanation: Internal error. The error occurred in function.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2068 function: bad mac key length: len > mac_len
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2069 function: conversion of newkeys failed
Explanation: Error converting keys.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2070 key_from_blob: can't read key type
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2071 function: key_from_blob failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2072 key_from_blob: can't read rsa key
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2073 function: key_to_blob failed
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2074 key_from_blob: can't read dsa key
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2075 function: sendmsg: expected sent 1 got len
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2076 function: UsePrivilegeSeparation=yes not supported
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2077 function: recvmsg: system error
Explanation: recvmsg() system call failed.
System action: The program continues.
User response: Refer to 《z/OS XL C/C++ Run-Time Library Reference》 for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2078 function: recvmsg: expected received 1 got len
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2079 function: expected type SCM_RIGHTS got cmsg_type
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer to report the problem.
System programmer response: Follow local procedures for reporting problems to IBM.
<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
<th>Explanation</th>
<th>System Action</th>
<th>User Response</th>
<th>System Programmer Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOTS2083</td>
<td>percent_expand: NULL replacement</td>
<td>Unable to expand escape characters. A NULL escape character was found.</td>
<td></td>
<td>Verify that the escape characters are valid, and try the request again. If unable to resolve, contact your system programmer.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td>FOTS2088</td>
<td>percent_expand: too many keys</td>
<td>Unable to expand escape characters. Too many escape characters were specified.</td>
<td></td>
<td>Verify that the escape characters are valid and don't exceed the limit, and try the request again. If unable to resolve, contact your system programmer.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td>FOTS2089</td>
<td>percent_expand: string too long</td>
<td>Unable to expand escape characters. The resulting string is too long.</td>
<td></td>
<td>Verify that the escape characters are valid, and try the request again. If unable to resolve, contact your system programmer.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td>FOTS2090</td>
<td>XXX too many packets with same key</td>
<td>Internal error.</td>
<td></td>
<td>Try the request again. If unable to resolve, contact your system programmer.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td>FOTS2091</td>
<td>setsockopt IP_TOS tos: message:</td>
<td>setsockopt() system call failed.</td>
<td></td>
<td>Try the request again. If unable to resolve, contact your system programmer.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td>FOTS2092</td>
<td>percent_expand: unknown key %escape_key</td>
<td>Unable to expand escape character. An unknown escape character %escape_character was specified.</td>
<td></td>
<td>Verify that the escape characters are valid, and try the request again. If unable to resolve, contact your system programmer.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td>FOTS2093</td>
<td>xmalloc: out of memory (allocating size bytes)</td>
<td>Unable to allocate the requested number of bytes size.</td>
<td></td>
<td>Try the request again. If unable to resolve, contact your system programmer.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td>FOTS2094</td>
<td>xasprintf: could not allocate memory</td>
<td>Unable to allocate the requested memory.</td>
<td></td>
<td>Try the request again. If unable to resolve, contact your system programmer.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td>FOTS2095</td>
<td>xrealloc: nmemb * size > SIZE_T_MAX</td>
<td>The call to xrealloc() specified a size that is too large.</td>
<td></td>
<td>Try the request again. If unable to resolve, contact your system programmer.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
<tr>
<td>FOTS2096</td>
<td>WARNING: filename does not exist, using fixed modulus</td>
<td>The fopen() system call failed to open file filename. Fixed modulus will be used.</td>
<td></td>
<td>Try the request again. If unable to resolve, contact your system programmer.</td>
<td>Follow local procedures for reporting problems to IBM.</td>
</tr>
</tbody>
</table>
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2097 WARNING: no suitable primes in filename

Explanation: No suitable primes were found in file filename. Fixed modulus will be used.

System action: The program continues.

User response: Verify that the contents of file filename are valid, and try the request again. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2098 Warning: filename, line line_number: keysize mismatch for host host_name:
actual actual_keysize vs. announced announced_keysize.

Explanation: The keysize announced_keysize on line line_number in file filename is incorrect. The correct keysize is actual_keysize.

System action: The program continues.

User response: Correct the keysize, and try the request again. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2099 Warning: replace announced_keysize with actual_keysize in filename, line line_number.

Explanation: The keysize announced_keysize on line line_number in file filename is incorrect. The correct keysize is actual_keysize.

System action: The program continues.

User response: Correct the keysize, and try the request again. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2101 No key to look up!

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2102 Error calculating host key fingerprint.

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2103 dns_export_rr: unsupported algorithm

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2104 Too many bits: bits > TEST_MAXIMUM

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2105 Too few bits: bits < TEST_MINIMUM

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2106 Insufficient memory for tiny sieve: need bytes bytes

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2107 Insufficient memory for small sieve: need bytes bytes

Explanation: Internal error.

System action: The program ends.
User response: Contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2108 Error writing to modulus candidate file:

error_message

Explanation: A call to fflush() failed on file *filename*. The system error is displayed with this message.

System action: The program ends.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](https://www.ibm.com/support/knowledgecenter/SCEJRT_1.2.0/rt_api.html) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2109 BN_new failed

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2110 BN_copy: failed

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2111 BN_set_bit: failed

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2112 BN_set_word failed

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2113 BN_add failed

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2114 BN_CTX_new failed

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2115 BN_hex2bn failed

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2116 kexdh_client: BN_bin2bn failed

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2117 function: set_nonblock(file_descriptor)

Explanation: Unable to set file descriptor *file_descriptor* to non-blocking. The error occurred in function.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2118 channel_add_adm_permittedOpens: too many forwards

Explanation: Too many port forwarding destinations specified for the sshd_config PermitOpen keyword.

System action: The program ends.

User response: Refer to [IBM Ported Tools for z/OS OpenSSH User's Guide](https://www.ibm.com/support/knowledgecenter/SSD78A_1.2.0/openssh_user.html) for valid sshd_config PermitOpen keyword values, and try the request again.
FOTS2119 channel_prepare_select: max_fd
(maximum_file_descriptor) is too large

Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2120 reverse mapping checking getaddrinfo
for host_name [ipaddr] failed – POSSIBLE
BREAK–IN ATTEMPT!

Explanation: When sshd attempted to map host_name
back to an IP address, a call to getaddrinfo() failed.
sshd will use the socket IP address rather than the
returned hostname from the Domain Name System
(DNS) server.
System action: The program continues.
System programmer response: Verify that the entries
in the Domain Name System (DNS) database are
correct.

FOTS2121 get_socket_address: getnameinfo flag
failed: system error

Explanation: A call to getnameinfo() failed with
system error system error. flag is the argument of
getnameinfo().
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local
procedures for reporting problems to IBM.

FOTS2122 get_sock_port: getnameinfo
NI_NUMERICSERV failed: system error

Explanation: A call to getnameinfo() failed with
system error system error.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time
Library Reference for an explanation of argument
NI_NUMERICSERV. Contact your system programmer.
System programmer response: Follow local
procedures for reporting problems to IBM.

FOTS2123 BN_rand failed

Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local
procedures for reporting problems to IBM.

FOTS2124 buffer_consume_ret: trying to get more
bytes than in buffer

Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local
procedures for reporting problems to IBM.

FOTS2125 buffer_get: buffer error

Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local
procedures for reporting problems to IBM.

FOTS2126 buffer_put_bignum: buffer error

Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local
procedures for reporting problems to IBM.

FOTS2127 buffer_get_bignum_ret: invalid length

Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local
procedures for reporting problems to IBM.

FOTS2128 buffer_get_bignum_ret: BN_bin2bn
failed

Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local
procedures for reporting problems to IBM.

FOTS2129 buffer_get_bignum_ret: buffer_consume
failed

Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local
procedures for reporting problems to IBM.

Chapter 15. OpenSSH messages 309
FOTS2130 buffer_get_bignum: buffer error
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2131 buffer_put_bignum2: buffer error
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2132 buffer_get_bignum2_ret: invalid bignum
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2133 buffer_get_bignum2_ret: negative numbers not supported
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2134 buffer_get_bignum2_ret: BN_bin2bn failed
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2135 buffer_get_bignum2: buffer error
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2136 BN_lshift failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2137 BN_add_word failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2138 BN_rshift failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2139 ssh_msg_recv: read: header
Explanation: Internal error. Partial data was read into an internal buffer.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2140 ssh_msg_recv: read: error_message
Explanation: Internal error. Partial data was read into an internal buffer. The system error is displayed with the message.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error.

FOTS2142 buffer_get_int: buffer error
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local
procedures for reporting problems to IBM.

FOTS2143 buffer_get_string_ret: buffer_get failed
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2144 buffer_get_string: buffer error
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2145 buffer_get_char_ret: buffer_get_ret failed
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2146 buffer_get_char: buffer error
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2147 buffer_get_string_bin: buffer error
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2148 buffer_get_string_bin_ret: buffer_get_ret failed
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2149 buffer_put_cstring_bin: s == NULL
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2150 RESTART FAILED: av[0]='arg0', error: system error.
Explanation: A SIGHUP signal was sent to sshd, but sshd was unable to restart. A call to execv() with the argument arg0 failed.
System action: The program ends.
User response: Attempt to run arg0 manually. If unable to resolve, follow local procedures for reporting problems to IBM.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2151 Could not write ident string to ipaddr
Explanation: A write to the socket failed while sshd was trying to send the SSH protocol version identification string to the peer.
System action: The daemon handling the connection ends.
User response: Follow local procedures for reporting problems to IBM.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2152 Did not receive identification string from ipaddr
Explanation: sshd could not read the remote system's version identification.
System action: The daemon handling the connection ends.
User response: Follow local procedures for reporting problems to IBM.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2153 Bad protocol version identification 'versionstring' from ipaddr
Explanation: The local SSH daemon discovered a version incompatibility. sshd discovered that the remote system's version of SSH is not compatible with this version of SSH. The remote system is ipaddr. The version of SSH on the remote system is versionstring.
System action: The program ends.
User response: Upgrade the SSH client on the remote system. Verify that the version on the remote system works properly.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS2154 probed from remote_ip with version.
Don't panic.

Explanation: During version identification exchange, sshd discovered that the remote system's version of SSH indicates it is a probe. The remote system is remote_ip. The version string of SSH that attempted a connection is version.
System action: The daemon handling the connection ends.
System programmer response: Follow local procedures for handling probes.

FOTS2155 scanned from remote_ip with version.
Don't panic.

Explanation: During version identification exchange, sshd discovered that the remote system's version of SSH indicates it is a scanner, such as what might be sent by a ScanSSH program. The remote system is remote_ip. The version string of SSH that attempted a connection is version.
System action: The daemon handling the connection ends.
System programmer response: Follow local procedures for handling SSH scans.

FOTS2156 Protocol major versions differ for remoteip version vs. version

Explanation: During version identification exchange, sshd discovered that the remote system's version of SSH, version, is not compatible with the local version of SSH, sversion. The remote system is remote_ip.
System action: The daemon handling the connection ends.
System programmer response: Verify that the remote version of SSH is compatible with the local version being run by the daemon. If compatible, follow local procedures for reporting problems to IBM.

FOTS2157 sshd: no hostkeys available -- exiting.

Explanation: During initialization, sshd could not find any host keys for either Protocol Version 1 or Protocol Version 2.
System action: The program ends.
System programmer response: Generate the host keys. See IBM Ported Tools for z/OS: OpenSSH User's Guide for information on setting up the host keys for sshd.

FOTS2158 User username not allowed because shell shell does not exist

Explanation: sshd refused access to user username because the user's default program is set to shell, and shell does not exist.
System action: The program continues.
System programmer response: Follow local procedures for setting up user accounts.

FOTS2159 User username not allowed because shell shell is not executable

Explanation: sshd refused access to user username because the user's default program is set to shell, and shell is not marked as executable.
System action: The program continues.
System programmer response: If the intent is to allow access to the user, change the POSIX permissions of shell to make it executable. See the "chmod" command in z/OS UNIX System Services Command Reference for more information.

FOTS2160 User username not allowed because listed in DenyUsers

Explanation: sshd refused access to user username because the user was denied access through the DenyUsers keyword in the sshd_config file.
System action: The program continues.
System programmer response: None.

FOTS2161 User username not allowed because not listed in AllowUsers

Explanation: sshd refused access to user username because the username is not listed with the AllowUsers keyword in the sshd_config file.
System action: The program continues.
System programmer response: None.

FOTS2162 User username not allowed because not in any group

Explanation: sshd refused access to user username because the user does not have any groups associated with it.
System action: The program continues.
System programmer response: Follow local procedures for setting up user accounts.
FOTS2163 User username not allowed because a group is listed in DenyGroups
Explanation: sshd refused access to user username because the user belongs to a group which was denied access through the DenyGroups keyword in the sshd_config file.
System action: The program continues.
System programmer response: None.

FOTS2164 User username not allowed because none of user's groups are listed in AllowGroups
Explanation: sshd refused access to user username because the user belongs to a group which is not listed with the AllowGroups keyword in the sshd_config file.
System action: The program continues.
System programmer response: None.

FOTS2165 ROOT LOGIN REFUSED FROM ipaddr
Explanation: sshd refused access to a superuser due to the setting of the PermitRootLogin keyword in the sshd_config file.
System action: The program continues.
System programmer response: None.

FOTS2166 Authentication refused for username: bad owner or modes for filename
Explanation: sshd refused access to a user username because the permissions on the user's hostfile filename are too open, the file is not owned by username, or a call to stat() failed for filename.
System action: The program continues.
System programmer response: Instruct the user to correct their setup.

FOTS2167 User username from ipaddr not valid
Explanation: sshd refused access to a user username because sshd does not recognize username as a valid user on the local system. Specifically, a call to getpwnam() for username failed.
System action: The program continues.
System programmer response: None.

FOTS2168 Authentication tried for username with correct key but not from a permitted host (host=hostname, ip=hostip).
Explanation: sshd refused access to a user username because the user's authorized_keys file has a "from=
System action: The program continues.
System programmer response: None.

FOTS2169 Bad options in authfile file, line linenum: options
Explanation: sshd refused access to a user because the user's authorized_keys file authfile has a bad options specification string options on line linenum of the file.
System action: The program continues.
System programmer response: None.

FOTS2170 Client on hostname failed to respond correctly to host authentication.
Explanation: sshd refused access to a user during RhostsRSAAuthentication because the ssh client on hostname did not respond correctly to the challenge.
System action: The program continues.
System programmer response: Check that the public host key for hostname is valid in the system-wide known hosts file. Instruct the user to verify that the public host key for hostname is valid in their known hosts file.

FOTS2171 Rhosts authentication refused for username: no home directory dirname
Explanation: sshd refused access to user username because the user's HOME directory dirname does not exist or is inaccessible. A call to stat() for dirname failed.
System action: The program continues.
System programmer response: Follow local procedures for setting up user accounts.

FOTS2172 Rhosts authentication refused for username: bad ownership or modes for home directory.
Explanation: sshd refused access to user username because the user's HOME directory is writable by others, or is not owned by the user.
System action: The program continues.
System programmer response: Follow local procedures for setting up user accounts.

FOTS2173 Rhosts authentication refused for username: bad modes for filename
Explanation: sshd refused access to user username because the user's rhosts file filename is writable by others, or is not owned by the user.
System action: The program continues.
FOTS2174 Authentication refused: errortext
Explanation: sshd refused access to a user because the user's authorized keys file, or some component of the pathname, is not secure. The text errortext explains further the cause of the problem.
System action: The program continues.
System programmer response: Instruct the user to correct the file modes and/or ownership.

FOTS2175 Nasty PTR record "name" is set up for ipaddr, ignoring
Explanation: When sshd performed a reverse lookup for ipaddr, it received a numeric hostname name. sshd will use the IP address rather than the returned hostname.
System action: The program continues.
System programmer response: Instruct the user to take action based on errortext.

FOTS2176 reverse mapping checking getaddrinfo for hostname failed – POSSIBLE BREAK–IN ATTEMPT!
Explanation: When sshd attempted to map hostname back to an IP address, a call to getaddrinfo() failed. sshd will use the socket IP address rather than the returned hostname.
System action: The program continues.
System programmer response: Verify that the entries in the Domain Name System (DNS) database are correct.

FOTS2177 Address ipaddr maps to hostname, but this does not map back to the address – POSSIBLE BREAK–IN ATTEMPT!
Explanation: When sshd attempted to map hostname back to an IP address using DNS, the returned IP address ipaddr differed from that associated with the socket. sshd will use the socket IP address rather than the returned hostname from the Domain Name System (DNS) server.
System action: The program continues.
System programmer response: Verify that the entries in the Domain Name System (DNS) database are correct.

FOTS2178 Connection from ipaddr with IP options options
Explanation: A call to getsockopt() failed for the IP address ipaddr with options options.
System action: The program ends.
System programmer response: If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2179 Invalid command.
Explanation: The ssh user attempted to open a command line using the escape character with "C". Only -L and -R (to add port forwardings) are supported commands, but the user entered something else.
System action: The program continues.
User response: Only use the -L or -R options with the command line escape.

FOTS2180 Not supported for SSH protocol version 1.
Explanation: The ssh user attempted to open a command line and specify local port forwarding (using -L) using the escape character with "C". This is not supported for SSH Protocol Version 1.
System action: The program continues.

FOTS2181 Bad forwarding port(s)."
Explanation: One of the port numbers specified with ssh options -R or -L are invalid. A port number should be greater than zero and less than or equal to 65535.
System action: The program continues.
User response: Reissue ssh with valid port numbers.

FOTS2182 Port forwarding failed.
Explanation: ssh was unable to set up port forwarding. Another error message describes the problem.
System action: The program continues.
User response: If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2183 User username not allowed because progoname exists
Explanation: User username was not allowed to log in because the nologin program, progoname, exists.
System action: The program ends.
System programmer response: None.
FOTS2184 You don't exist, go away!
Explanation: A call to getpwuid() failed for the current running user id.
System action: The program ends.
User response: Follow local procedures for reporting problems to IBM.

FOTS2185 Packet integrity error (length bytes remaining) at filename:linenum
Explanation: An internal error occurred.
System action: The program ends.
User response: Follow local procedures for reporting problems to IBM.

FOTS2186 tcgetattr: error_message
Explanation: The tcgetattr() system call failed. The daemon is unable to set the terminal modes for the child session. The system error is displayed with the message.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2187 Setting tty modes failed: system error
Explanation: A call to tcsetattr() failed. The daemon is unable to set the terminal modes for the child session.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2188 type host key for IP address 'ipaddr' not in list of known hosts.
Explanation: ssh found the user has an old-style user known_hosts file, known_hosts2, and checked that file for the host key for ipaddr. ssh was unable to find the host key of type type for ipaddr. The IP address is being checked because CheckHostIP is enabled.
System action: The program continues.
User response: Verify you really meant to use the known_hosts2 file. If so, add the correct host key for ipaddr. It is possible the host key just changed.

FOTS2189 Failed to add the type host key for IP address 'ipaddr' to the list of known hosts (hostfile).
Explanation: ssh attempted to add the host key for ipaddr to the user hostfile hostfile, but failed. The host key attempted is of type type. The IP address is being checked because CheckHostIP is enabled.
System action: The program continues.
User response: Verify that the user hostfile hostfile is writable by the user.

FOTS2190 Failed to add the host to the list of known hosts (hostfile).
Explanation: ssh detected a new host key and attempted to add it to the user hostfile hostfile, but failed.
System action: The program continues.
User response: Verify that the user hostfile hostfile is writable by the user.

FOTS2191 WARNING: Encryption is disabled! Password will be transmitted in clear text.
Explanation: The user is using ssh with Protocol Version 1 and password authentication. ssh detected a cipher is not getting used for encryption. This should not occur, since in Protocol Version 1 if "none" is specified, 3des should be used.
System action: The program continues.
User response: Follow local procedures for reporting problems to IBM.

FOTS2192 Warning: privilege separation user should not be UID 0.
Explanation: The privilege separation user (SSHD) is defined to be UID 0, but it should be defined to an unprivileged (non-UID 0) user ID. Defining this user as UID 0 may decrease the effectiveness of privilege separation. This may also cause problems with some security products.
System action: The program continues.
System programmer response: Redefine the SSHD privilege separation user to be a non-UID 0 user ID.

FOTS2193 Failed to change code sets to convert between "from_codeset" and "to_codeset".
Explanation: The OpenSSH daemon attempted to change the internal code sets used for data conversion. This occurs if the remote process changes the code sets of the terminal. For example, a user issuing the chcp
command from the remote shell could initiate this processing.

System action: The daemon will continue to use the previous setting for data conversion. The program continues.

User response: Verify that conversion is possible between the code sets specified by the user. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2194 __tcgetcp() failed: system error

Explanation: A call to __tcgetcp() failed while ssdh was trying to obtain the code set information for the master pty. The system error is displayed with this message.

System action: The program continues.

System programmer response: Refer to [z/OS XL C/C++ Run-Time Library Reference](http://www.ibm.com) for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2195 function failed: system error

Explanation: A call to function failed. The system error is displayed with this message.

System action: The program continues.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](http://www.ibm.com) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2196 iconv failed. Conversion stopped at 0xhexbyte. System Error: system error

Explanation: A call to iconv() failed indicating that a byte did not have a representation in the destination codeset. Conversion failed at byte hexbyte. The system error is displayed with this message.

System action: The program continues.

User response: Verify that conversion is possible between the code sets specified by the user. Refer to [z/OS XL C/C++ Run-Time Library Reference](http://www.ibm.com) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2197 function_name: read only partial extended packet data. lenbytes data:packet flag

System Error: system error

Explanation: A call to read() expected at least four bytes of extended packet data and received only bytes bytes, shown in packet flag. If an application attempted to change the codesets for the allocated terminal, this action may not have been performed. The system error is displayed with this message.

System action: The program continues.

User response: Verify that conversion is possible between the code sets specified by the user. If applicable, reissue the chcp command. Refer to [z/OS XL C/C++ Run-Time Library Reference](http://www.ibm.com) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2198 kexgex_client: BN_bin2bn failed

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2199 X11 connection rejected because of wrong authentication.

Explanation: An X11 connection has been rejected because of incorrect authentication information.

System action: The program continues.

User response: Verify that the authentication information for the X11 connection is correct, and try the request again. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2201 ssh_kex: BN_set_word failed

Explanation: Internal error.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.
FOTS2202 ssh_kex: BN_lshift failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2203 ssh_kex: BN_add_word failed
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2204 ssh: connect to host host_name port: port error_message
Explanation: Connection to host host_name on port port could not be established. The system error is displayed with the message.
System action: The program continues.
User response: Verify that a server is listening for connections on the specified host and port, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2205 Connection timed out during banner exchange
Explanation: The connection timed out while exchanging banner information.
System action: The program ends.
User response: Verify that a server is listening for connections on the specified host and port, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2206 ssh_exchange_identification: select: error_message
Explanation: The select() system call failed. The system error is displayed with the message.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error.

FOTS2207 ssh_exchange_identification: No banner received
Explanation: The connection failed to complete the banner exchange. No banner was received.
System action: The program ends.
User response: Verify that a server is listening for connections on the specified host and port, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2208 Tunnel forwarding is disabled to avoid man–in–the–middle attacks.
Explanation: Strict host key checking (refer to the ssh_config StrictHostKeyChecking keyword) has not been requested, so the connection is allowed, but tunnel forwarding is disabled.
System action: The program continues.
User response: The ssh_config Tunnel keyword is not supported on z/OS UNIX. Remove the keyword from the file, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the ssh_config keywords. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2209 Couldn't execute shell_path –c "shell_arguments": error_message
Explanation: The execl() system call failed. The system error is displayed with the message.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error.

FOTS2210 Couldn't wait for child: error_message
Explanation: The waitpid() system call failed. The system error is displayed with the message.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error.

FOTS2211 PRIV_START: seteuid: error_message
Explanation: The seteuid() system call failed. The system error is displayed with the message.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error. Also, verify that the ssh command has the noshareas extended attribute set.

FOTS2212 PRIV_END: seteuid: error_message
Explanation: The seteuid() system call failed. The system error is displayed with the message.
System action: The program ends.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error. Also, verify that the ssh program has the noshareas extended attribute set. The attribute can be set via the extattr command.

FOTS2213 Warning: No xauth data; using fake authentication data for X11 forwarding.
Explanation: Unable to generate xauth key data for X11 forwarding. Fake data will be used.
System action: The program continues.
User response: Verify that the location of the xauth program is valid and that the program is capable of generating the required xauth key data, and try the request again. Refer to IBM Ported Tools for z/OS OpenSSH User’s Guide for more information on the ssh_config XAuthLocation keyword.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2214 Timeout, server not responding.
Explanation: The ssh session ended because the server did not respond within the time allowed. The number of server alive messages sent exceeded the value set by the ssh_config ServerAliveCountMax keyword.
System action: The program ends.
User response: Verify that the server is active, and try the request again. Refer to IBM Ported Tools for z/OS OpenSSH User’s Guide for more information on the ssh_config ServerAliveCountMax keyword.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2215 Could not request tunnel forwarding.
Explanation: The tunnel forwarding request has failed.
System action: The program ends.
User response: Tunnel forwarding is not supported on z/OS UNIX. Remove the tunnel forwarding request, and try again. Refer to IBM Ported Tools for z/OS OpenSSH User’s Guide for more information on tunnel forwarding. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2216 Could not request tunnel forwarding.
Explanation: The tunnel forwarding request has failed.
System action: The program continues.
User response: Tunnel forwarding is not supported on z/OS UNIX. Remove the tunnel forwarding request, and try again.Refer to IBM Ported Tools for z/OS OpenSSH User’s Guide for more information on tunnel forwarding. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2217 Error: remote port forwarding failed for listen port listen_port
Explanation: A remote forwarding request failed for listen port listen_port.
System action: The program ends.
User response: The server failed to complete the remote forwarding request. Verify that the remote forwarding request is valid on the server, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2218 ControlPath too long
Explanation: The control path is too long.
System action: The program ends.
User response: Verify that the control path is valid, and try the request again. Refer to IBM Ported Tools for z/OS OpenSSH User’s Guide for more information on the ssh_config ControlPath keyword. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
Chapter 15. OpenSSH messages 319

FOTS2219 *function socket(): error_message*

Explanation: The socket() system call failed. The system error is displayed with the message. The error occurred in *function*.

System action: The program ends.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the system error.

FOTS2220 Not supported.

Explanation: Cancel local forwarding –KL is not a supported ssh command line option.

System action: The program continues.

User response: Refer to [IBM Ported Tools for z/OS: OpenSSH User’s Guide](#) for more information on the ssh command line options.

FOTS2221 Bad forwarding close port

Explanation: Bad port specified for the –KR ssh command line option.

System action: The program continues.

User response: Verify that a valid port is specified, and try the request again. Refer to [IBM Ported Tools for z/OS: OpenSSH User’s Guide](#) for more information on the ssh command line options.

FOTS2222 Bad forwarding specification.

Explanation: Bad forwarding specification for a ssh command line option.

System action: The program continues.

User response: Verify that a valid forwarding specification was specified, and try the request again. Refer to [IBM Ported Tools for z/OS: OpenSSH User’s Guide](#) for more information on the ssh command line options.

FOTS2224 ControlSocket control_path already exists

Explanation: The control socket for the control path control_path already exists.

System action: The program ends.

User response: Verify that the control path does not exist, and try the request again. Refer to [IBM Ported Tools for z/OS: OpenSSH User’s Guide](#) for more information on the ssh_config ControlPath keyword. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2225 *function bind(): error_message*

Explanation: The bind() system call failed. The system error is displayed with the message. The error occurred in *function*.

System action: The program ends.

User response: Refer to [z/OS XL C/C++ Run-Time Library Reference](#) for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the system error.

FOTS2226 *client_input_channel_req: request for channel –1*

Explanation: Internal error.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2227 *client_input_channel_req: unexpected channel session_id*

Explanation: Internal error.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2228 Warning: untrusted X11 forwarding setup failed: xauth key data not generated

Explanation: Untrusted X11 forwarding could not be set up because xauth key data could not be generated.

System action: The program continues.

User response: Verify that the location of the xauth program is valid and that the program is capable of generating the required xauth key data, and try the request again. Refer to [IBM Ported Tools for z/OS: OpenSSH User’s Guide](#) for more information on the ssh_config XAuthLocation keyword.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2229 *function: no channel for id channel_id*

Explanation: Internal error. The error occurred in *function*.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.
FOTS2230 Request failed on channel channel_id
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2231 function: cctx == NULL
Explanation: Internal error. The error occurred in function.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2232 function: accept: error_message
Explanation: The accept() system call failed. The system error is displayed with the message. The error occurred in function.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error.

FOTS2233 function: getpeereid failed: error_message
Explanation: Internal error. The error occurred in function.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2234 control mode uid mismatch: peer euid peer_effective_UID != uid real_UID
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2235 function: client msg_recv failed
Explanation: Internal error. The error occurred in function.
System action: The program continues.

FOTS2236 function: wrong client version version
Explanation: Internal error. The error occurred in function.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2237 function: client msg_send failed
Explanation: Internal error. The error occurred in function.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2238 Unsupported command command_value
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2239 Refused control connection
Explanation: Internal error.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2240 client_session2_setup: channel channel_id: unknown channel
Explanation: Internal error.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
Chapter 15. OpenSSH messages

FOTS2241 function: failed to receive fd file_descriptor from slave
Explanation: Internal error. The error occurred in function.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2242 function: tcgetattr: error_message
Explanation: The tcgetattr() system call failed. The system error is displayed with the message. The error occurred in function.
System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error.

FOTS2243 Tunnel forwarding is not supported for protocol 1
Explanation: Tunnel forwarding is not supported for SSH protocol version 1.
System action: The program continues.
User response: The ssh_config Tunnel keyword is not supported on z/OS UNIX. Remove the keyword from the ssh_config file, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User's Guide for more information on the ssh_config Tunnel keyword. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2244 Tunnel device open failed.
Explanation: The tunnel device failed to open.
System action: The program continues.
User response: The ssh_config Tunnel keyword is not supported on z/OS UNIX. Remove the keyword from the ssh_config file, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User's Guide for more information on the ssh_config Tunnel keyword. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2245 filename line line_number: Bad number.
Explanation: The value for the ssh_config keyword in file filename at line line_number contains a bad number.
System action: The program ends.
User response: Verify that the value for the ssh_config keyword is correct, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User's Guide for more information on the ssh_config keywords. If unable to resolve, contact your system programmer.
System programmer response: If file filename refers to the system-wide ssh_config file then correct the error in the file, and have the user try the request again. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2246 filename line line_number: Invalid RekeyLimit suffix
Explanation: The ssh_config RekeyLimit keyword in file filename at line line_number is set to a value that contains an invalid suffix.
System action: The program ends.
User response: Verify that the value for the ssh_config RekeyLimit keyword is correct, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User's Guide for more information on the ssh_config RekeyLimit keyword. If unable to resolve, contact your system programmer.
System programmer response: If file filename refers to the system-wide ssh_config file then correct the error in the file, and have the user try the request again. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2247 filename line line_number: RekeyLimit too large
Explanation: The ssh_config RekeyLimit keyword in file filename at line line_number is set to a value that is too large.
System action: The program ends.
User response: Verify that the value for the ssh_config RekeyLimit keyword is correct, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User's Guide for more information on the ssh_config RekeyLimit keyword. If unable to resolve, contact your system programmer.
System programmer response: If file filename refers to the system-wide ssh_config file then correct the error in the file, and have the user try the request again. If unable to resolve, follow local procedures for reporting problems to IBM.
FOTS2248 filename line line_number: RekeyLimit too small

Explanation: The ssh_config RekeyLimit keyword in file filename at line line_number is set to a value that is too small.

System action: The program ends.

User response: Verify that the value for the ssh_config RekeyLimit keyword is correct, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the ssh_config RekeyLimit keyword. If unable to resolve, contact your system programmer.

System programmer response: If file filename refers to the system–wide ssh_config file then correct the error in the file, and have the user try the request again. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2249 filename line line_number: missing address family.

Explanation: The ssh_config AddressFamily keyword in file filename at line line_number is missing its value.

System action: The program ends.

User response: Verify that a value for the ssh_config AddressFamily keyword is set, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the ssh_config AddressFamily keyword. If unable to resolve, contact your system programmer.

System programmer response: If file filename refers to the system–wide ssh_config file then correct the error in the file, and have the user try the request again. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2250 filename line line_number: Invalid environment name.

Explanation: The sshd_config SendEnv keyword in file filename at line line_number is set to a value that contains an invalid environment variable name.

System action: The program ends.

User response: Verify that the value for the sshd_config SendEnv keyword is correct, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the sshd_config SendEnv keyword. If unable to resolve, contact your system programmer.

System programmer response: If file filename refers to the system–wide sshd_config file then correct the error in the file, and have the user try the request again. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2251 filename line line_number: too many send env.

Explanation: Too many environment variables have been specified by the sshd_config SendEnv keywords.

System action: The program ends.

User response: Verify that the sshd_config SendEnv keywords do not specify too many environment variables, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the sshd_config SendEnv keyword. If unable to resolve, contact your system programmer.

System programmer response: If file filename refers to the system–wide sshd_config file then correct the error in the file, and have the user try the request again. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2252 filename line line_number: Missing ControlMaster argument.

Explanation: The ssh_config ControlMaster keyword in file filename at line line_number is missing its value.

System action: The program ends.

User response: Verify that a value for the ssh_config ControlMaster keyword is set, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the ssh_config ControlMaster keyword. If unable to resolve, contact your system programmer.

System programmer response: If file filename refers to the system–wide sshd_config file then correct the error in the file, and have the user try the request again. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2253 filename line line_number: Bad ControlMaster argument.

Explanation: The sshd_config ControlMaster keyword in file filename at line line_number is set to an unsupported value.

System action: The program ends.

User response: Verify that the value for the sshd_config ControlMaster keyword is correct, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the sshd_config ControlMaster keyword. If unable to resolve, contact your system programmer.

System programmer response: If file filename refers to the system–wide sshd_config file then correct the error in the file, and have the user try the request again. If unable to resolve, follow local procedures for reporting problems to IBM.
FOTS2254 filename line line_number: Missing
yes/point–to–point/ethernet/no argument.

Explanation: The ssh_config Tunnel keyword in file
filename at line line_number is missing its value.

System action: The program ends.

User response: The ssh_config Tunnel keyword is not supported on z/OS UNIX. Remove the keyword from
the file, and try the request again. Refer to [IBM Ported
Tools for z/OS: OpenSSH User’s Guide] for more information on the ssh_config Tunnel keyword. If
unable to resolve, contact your system programmer.

System programmer response: If file filename refers to
the system-wide ssh_config file then correct the error
in the file, and have the user try the request again. If
unable to resolve, follow local procedures for reporting
problems to IBM.

FOTS2255 filename line line_number: Bad
yes/point–to–point/ethernet/no argument: value

Explanation: The ssh_config Tunnel keyword in file
filename at line line_number is set to an unsupported
value value.

System action: The program ends.

User response: The ssh_config Tunnel keyword is not supported on z/OS UNIX. Remove the keyword from
the file, and try the request again. Refer to [IBM Ported
Tools for z/OS: OpenSSH User’s Guide] for more information on the ssh_config Tunnel keyword. If
unable to resolve, contact your system programmer.

System programmer response: If file filename refers to
the system-wide ssh_config file then correct the error
in the file, and have the user try the request again. If
unable to resolve, follow local procedures for reporting
problems to IBM.

FOTS2256 filename line line_number: Bad tun device.

Explanation: The ssh_config TunnelDevice keyword in file
filename at line line_number is set to an unsupported
value.

System action: The program ends.

User response: The ssh_config TunnelDevice keyword is not supported on z/OS UNIX. Remove the keyword from
the file, and try the request again. Refer to [IBM Ported
Tools for z/OS: OpenSSH User’s Guide] for more information on the ssh_config TunnelDevice keyword. If
unable to resolve, contact your system programmer.

System programmer response: If file filename refers to
the system-wide ssh_config file then correct the error
in the file, and have the user try the request again. If
unable to resolve, follow local procedures for reporting
problems to IBM.

FOTS2257 fstat filename: error_message

Explanation: The fstat() system call failed. The system
error is displayed with the message.

System action: The program ends.

User response: Refer to [z/OS XL C/C++ Run-Time
Library Reference] for an explanation of the system error.
If unable to resolve, contact your system programmer.

System programmer response: Take appropriate
action based on the system error.

FOTS2258 Bad owner or permissions on filename

Explanation: The owner or access permissions on file
filename are set to values that are not secure.

System action: The program ends.

User response: Verify that you own the file and that
write access permission is only granted to the owner,
and try the request again.

FOTS2259 Commands:

Explanation: Help was requested for the ssh
command line options.

System action: The program continues.

User response: Refer to [IBM Ported Tools for z/OS:
OpenSSH User’s Guide] for more information on the ssh
command line options.

FOTS2260 –L[bind_address:]port:host:hostport
Request local forward

Explanation: Help was requested for the ssh
command line options.

System action: The program continues.

User response: Refer to [IBM Ported Tools for z/OS:
OpenSSH User’s Guide] for more information on the ssh
command line options.

FOTS2261 –R[bind_address:]port:host:hostport
Request remote forward

Explanation: Help was requested for the ssh
command line options.

System action: The program continues.

User response: Refer to [IBM Ported Tools for z/OS:
OpenSSH User’s Guide] for more information on the ssh
command line options.

FOTS2262 –KR[bind_address:]port Cancel remote
forward

Explanation: Help was requested for the ssh
command line options.
System action: The program continues.
User response: Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the ssh command line options.

FOTS2263 largs Execute local command
Explanation: Help was requested for the ssh command line options.
System action: The program continues.
User response: Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the ssh command line options.

FOTS2264 No support for tunnel device forwarding.
Explanation: The ssh –w option is not supported on z/OS UNIX.
System action: The program continues.
User response: Verify that the ssh –w option is not specified, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the ssh –w option.

FOTS2265 Warning: Could not request remote forwarding.
Explanation: A remote forwarding request has failed.
System action: The program continues.
User response: Check for additional error messages displayed with this message, and take appropriate action. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the error messages displayed with this message. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2266 Warning: remote port forwarding failed for listen port listen_port
Explanation: A remote forwarding request failed for listen port listen_port.
System action: The program continues.
User response: The server failed to complete the remote forwarding request. Verify that the remote forwarding request is valid on the server, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2267 Pseudo-terminal will not be allocated because stdin is not a terminal.
Explanation: A pseudo–terminal will not be allocated because stdin is not a terminal.
System action: The program continues.
User response: If a pseudo–terminal must be allocated then use the ssh –t option to force the allocation of a pseudo–terminal. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the ssh –t option.

FOTS2268 Warning: Remote host refused compression.
Explanation: The compression request sent to the server failed or was denied.
System action: The program continues.
User response: Verify that the server is set up to allow compression, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2269 Warning: Remote host failed or refused to allocate a pseudo tty.
Explanation: The pseudo tty request sent to the server failed or was denied.
System action: The program continues.
User response: Verify that the server is set up to allow pseudo tty allocation, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2270 Warning: Remote host denied X11 forwarding.
Explanation: The X11 forwarding request sent to the server failed or was denied.
System action: The program continues.
User response: Verify that the server is set up to allow X11 forwarding, and try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2271 Warning: Remote host denied authentication agent forwarding.
Explanation: The agent forwarding request sent to the server failed or was denied.
System action: The program continues.
User response: Verify that the server is set up to allow agent forwarding, and try the request again. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2272 Agent forwarding disabled for protocol 1.3

Explanation: Agent forwarding not supported with SSH protocol version 1.3.

System action: The program continues.

User response: Use SSH protocol version 2, and try the request again.

FOTS2273 Warning: Permanently added the key_type host key for IP address 'ip_address' to the list of known hosts.

Explanation: The key_type host key for IP address ip_address was added to your known hosts file.

System action: The program continues.

User response: Verify that the added host key matches the server's actual host key. Refer to [IBM Ported Tools for z/OS: OpenSSH User’s Guide] for more information on setting up server authentication.

FOTS2274 Warning: Permanently added 'host_name' (key_type) to the list of known hosts.

Explanation: The key_type host key for host host_name was added to your known hosts file.

System action: The program continues.

User response: Verify that the added host key matches the server's actual host key. Refer to [IBM Ported Tools for z/OS: OpenSSH User’s Guide] for more information on setting up server authentication.

FOTS2275 WARNING: key_type key found for host host_name

in filename:line_number key_type
key fingerprint key_fingerprint.

Explanation: The key_type host key for host host_name was found in file filename at line line_number.

System action: The program continues.

User response: Verify that the host key found matches the server's actual host key. Refer to [IBM Ported Tools for z/OS: OpenSSH User’s Guide] for more information on setting up server authentication.

FOTS2276 Warning: the key_type host key for 'host_name' differs from the key for the IP address 'ip_address'

Offending key for IP in filename:line_number.

Explanation: The host key found for host name host_name differs from the key found for IP address ip_address. The offending IP address key was found in file filename at line line_number.

System action: The program continues.

User response: Correct the host keys, and try the request again. Refer to [IBM Ported Tools for z/OS: OpenSSH User’s Guide] for more information on setting up server authentication.

FOTS2277 Matching host key in filename:line_number.

Explanation: The host key found for the host name differs from the key found for the IP address. The offending host name key was found in file filename at line line_number.

System action: The program continues.

User response: Correct the host key, and try the request again. Refer to [IBM Ported Tools for z/OS: OpenSSH User’s Guide] for more information on setting up server authentication.

FOTS2278 function: no channel for id channel_id

Explanation: Internal error. The error occurred in function.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2279 function: stat("filename") failed:

error_message.

Explanation: The stat() system call failed. The system error is displayed with the message. The error occurred in function.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Take appropriate action based on the system error. If unable to resolve, follow local procedures for reporting problems to IBM.
FOTS2280
function: fstat(file descriptor) failed:

error message

Explanation: The fstat() system call failed. The system error is displayed with the message. The error occurred in function.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Take appropriate action based on the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2281
function: open("filename") failed:

error message

Explanation: The open() system call failed. The system error is displayed with the message. The error occurred in function.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Take appropriate action based on the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2282
function: open("/dev/zero") not valid

Explanation: The /dev/zero file opened is not valid. The error occurred in function.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Verify that the /dev/zero file is a valid character special file. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2283
function: dup2(file descriptor1, file descriptor2) failed: error_message

Explanation: The dup2() system call failed. The system error is displayed with the message. The error occurred in function.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Take appropriate action based on the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2306
User user_name from host_name not allowed because listed in DenyUsers

Explanation: Access denied for user user_name. The user was denied access through the sshd_config DenyUsers keyword.

System action: The program continues.

System programmer response: Verify that the value of
the sshd_config AuthorizedKeysFile keyword is valid. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2312 auth_rsa_generate_challenge: BN_rand failed
Explanation: Internal error.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2313 auth_rsa_generate_challenge: BN_mod failed
Explanation: Internal error.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2314 kexdh_server: BN_bin2bn failed
Explanation: Internal error.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2315 function: Unexpected KEX type KEX_type
Explanation: Internal error. The error occurred in function.
System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2316 DH_compute_key: failed
Explanation: Internal error.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2317 kexgex_server: BN_bin2bn failed
Explanation: Internal error.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2318 function: Cannot find account for uid UID
Explanation: The getpwuid() system call failed to get information about a user with UID UID. The failure occurred in function.
System action: The program ends.
System programmer response: Verify that the UID is valid. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2319 function: Cannot find user "user_name"
Explanation: The getpwnam() system call failed to get information about user user_name. The failure occurred in function.
System action: The program ends.
System programmer response: Verify that the user name user_name is valid. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2323 function: authentication method name unknown
Explanation: A client attempted an unknown authentication method. The failure occurred in function.
System action: The program ends.
System programmer response: Verify that the client is requesting valid authentication methods. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2324 function: send fds failed
Explanation: Failed to send terminal file descriptors to the unprivileged child process. The failure occurred in function.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2326 function: write: error_message
Explanation: The write() system call failed. The system error is displayed with the message. The failure occurred in function.
System action: The program ends.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error and take the appropriate action. If unable to resolve, follow local procedures for reporting problems to IBM.
FOTS2327 function: read: error_message
Explanation: The read() system call failed. The system error is displayed with the message. The failure occurred in function.
System action: The program ends.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error and take the appropriate action. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2328 function: option block size mismatch
Explanation: Internal error. The error occurred in function.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2329 function: receive fds failed
Explanation: Failed to receive terminal file descriptors from the monitor process. The failure occurred in function.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2330 listen on [host_name]:port: error_message
Explanation: The sshd daemon failed to listen on port port. The listen() system call failed. The system error is displayed with the message.
System action: The program ends.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2331 reexec socketpair: error_message
Explanation: The socketpair() system call failed. The system error is displayed with the message.
System action: The program continues.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2332 function: ssh_msg_send failed
Explanation: Internal error. The error occurred in function.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2333 function: ssh_msg_recv failed
Explanation: Internal error. The error occurred in function.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2334 function: reexec version mismatch
Explanation: Internal error. The error occurred in function.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2335 sshd re–exec requires execution with an absolute path
Explanation: The sshd command was called without using an absolute path.
System action: The program ends.
System programmer response: Call the sshd command using an absolute path, and try the request again.

FOTS2336 reexec of filename failed: error_message
Explanation: The execv() system call failed. The system error is displayed with the message.
System action: The program continues.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2337 session_x11_req: session session_id: x11 forwarding already active
Explanation: The client requested X11 forwarding for session session_id when X11 forwarding is already active.
System action: The program continues.
System programmer response: Verify that the client requests X11 forwarding only when it's not already
active. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2338 chroot path does not begin at root

Explanation: The chroot directory pathname does not begin at the current root directory (/).

System action: The program ends.

System programmer response: Verify that the value of the sshd_config ChrootDirectory keyword is valid, and try the request again. Refer to IBM Ported Tools for z/OS OpenSSH User’s Guide for more information about the sshd_config ChrootDirectory keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2339 chroot path too long

Explanation: The chroot directory pathname is too long.

System action: The program ends.

System programmer response: Verify that the value of the sshd_config ChrootDirectory keyword is valid, and try the request again. Refer to IBM Ported Tools for z/OS OpenSSH User’s Guide for more information about the sshd_config ChrootDirectory keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2340 function: stat("pathname_component"); error_message

Explanation: The stat() system call failed. The system error is displayed with the message. The failure occurred in function while processing pathname component pathname_component of the chroot directory pathname.

System action: The program ends.

System programmer response: Verify that the value of the sshd_config ChrootDirectory keyword is valid, and try the request again. Refer to IBM Ported Tools for z/OS OpenSSH User’s Guide for more information about the sshd_config ChrootDirectory keyword. Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2341 bad ownership or modes for chroot directory string"pathname_component"

Explanation: The pathname component pathname_component of the chroot directory pathname has incorrect ownership or mode settings.

System action: The program ends.

System programmer response: Verify that the ownership and mode settings of the chroot directory pathname components are valid, and try the request again. Refer to IBM Ported Tools for z/OS OpenSSH User’s Guide for more information about the sshd_config ChrootDirectory keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2342 chroot path string"pathname_component" is not a directory

Explanation: The pathname component pathname_component of the chroot directory pathname is not a directory.

System action: The program ends.

System programmer response: Verify that all pathname components of the chroot directory pathname are directories, and try the request again. Refer to IBM Ported Tools for z/OS OpenSSH User’s Guide for more information about the sshd_config ChrootDirectory keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2343 Unable to chdir to chroot path "pathname": error_message

Explanation: The chdir() system call failed to change the working directory to the chroot directory pathname pathname. The system error is displayed with the message.

System action: The program ends.

System programmer response: Verify that the value of the sshd_config ChrootDirectory keyword is valid, and try the request again. Refer to IBM Ported Tools for z/OS OpenSSH User’s Guide for more information about the sshd_config ChrootDirectory keyword. Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2344 chroot("pathname"): error_message

Explanation: The chroot() system call failed to change the root directory to the chroot directory pathname pathname. The system error is displayed with the message.

System action: The program ends.

System programmer response: Verify that the value of the sshd_config ChrootDirectory keyword is valid, and try the request again. Refer to IBM Ported Tools for z/OS OpenSSH User’s Guide for more information about the sshd_config ChrootDirectory keyword. Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.
FOTS2345 function: chdir() after chroot:
error_message
Explanation: The chdir() system call failed. The system error is displayed with the message. The error occurred in function.
System action: The program ends.
System programmer response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2346 session_close_single_x11: no x11 channel
channel_id
Explanation: Internal error.
System action: The program ends.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2347 You must change your password now and login again!
Explanation: Your password has expired and must be changed.
System action: The program continues.
User response: Change your password and login again.

FOTS2348 function: no message header
Explanation: No message header found while attempting to receive a file descriptor. The error occurred in function.
System action: The program continues.
User response: Try the request again. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2349 filename line line_number: Directive 'keyword' is not allowed within a Match block
Explanation: The keyword keyword in file filename at line line_number is not allowed within a Match block specified by the Match keyword.
System action: The program ends.
System programmer response: Verify that the keywords within the Match block are correct, and try the request again. Refer to the OpenSSH daemon configuration files information in IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the Match keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2350 filename line line_number: missing address family.
Explanation: The sshd_config AddressFamily keyword in file filename at line line_number is missing its value.
System action: The program ends.
System programmer response: Verify that a value for the sshd_config AddressFamily keyword is set, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the sshd_config AddressFamily keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2351 filename line line_number: address family must be specified before ListenAddress.
Explanation: The sshd_config AddressFamily keyword in file filename at line line_number must be specified before the sshd_config ListenAddress keyword.
System action: The program ends.
System programmer response: Specify the sshd_config AddressFamily keyword before the sshd_config ListenAddress keyword in the file filename, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the sshd_config keywords. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2352 filename line line_number: unsupported address family "value".
Explanation: The sshd_config AddressFamily keyword in file filename at line line_number is set to an unsupported value value.
System action: The program ends.
System programmer response: Verify that the value for the sshd_config AddressFamily keyword is correct, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the sshd_config AddressFamily keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2353 filename line line_number: missing yes/no/delayed argument.
Explanation: The sshd_config Compression keyword in file filename at line line_number is missing its value.
System action: The program ends.
System programmer response: Verify that a value for the sshd_config Compression keyword is set, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the sshd_config Compression keyword. If unable to resolve, follow local procedures for reporting problems to IBM.
FOTS2354 filename line line_number: Bad
 yes/no/delayed argument: value

Explanation: The sshd_config Compression keyword in file filename at line line_number is set to an unsupported value value.

System action: The program ends.

System programmer response: Verify that the value for the sshd_config Compression keyword is correct, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the sshd_config Compression keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2355 filename line line_number: missing
 yes/no/clientspecified argument.

Explanation: The sshd_config GatewayPorts keyword in file filename at line line_number is missing its value.

System action: The program ends.

System programmer response: Verify that a value for the sshd_config GatewayPorts keyword is set, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the sshd_config GatewayPorts keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2356 filename line line_number: Bad
 yes/no/clientspecified argument: value

Explanation: The sshd_config GatewayPorts keyword in file filename at line line_number is set to an unsupported value value.

System action: The program ends.

System programmer response: Verify that the value for the sshd_config GatewayPorts keyword is correct, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the sshd_config GatewayPorts keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2357 filename line line_number: Invalid
 environment name.

Explanation: The sshd_config AcceptEnv keyword in file filename at line line_number is set to a value that contains an invalid environment variable name.

System action: The program ends.

System programmer response: Verify that the value for the sshd_config AcceptEnv keyword is correct, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the sshd_config AcceptEnv keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2358 filename line line_number: too many allow
 env.

Explanation: Too many environment variables have been specified by the sshd_config AcceptEnv keywords.

System action: The program ends.

System programmer response: Verify that the sshd_config AcceptEnv keywords do not specify too many environment variables, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the sshd_config AcceptEnv keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2359 filename line line_number: Missing
 yes/point–to–point/ethernet/no
 argument.

Explanation: The sshd_config PermitTunnel keyword in file filename at line line_number is missing its value.

System action: The program ends.

System programmer response: The sshd_config PermitTunnel keyword is not supported on z/OS UNIX. Remove the keyword from the file, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the sshd_config PermitTunnel keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2360 filename line line_number: Bad
 yes/point–to–point/ethernet/no
 argument: value

Explanation: The sshd_config PermitTunnel keyword in file filename at line line_number is set to an unsupported value value.

System action: The program ends.

System programmer response: The sshd_config PermitTunnel keyword is not supported on z/OS UNIX. Remove the keyword from the file, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information on the sshd_config PermitTunnel keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2361 Match directive not supported as a
 command–line option

Explanation: The Match keyword is not supported as a command–line option.

System action: The program ends.

System programmer response: Specify the Match
keyword in the appropriate configuration file, and try the request again. Refer to the OpenSSH daemon configuration files information in IBM Ported Tools for z/OS: OpenSSH User's Guide for more information on the Match keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2362 filename line line_number: Bad Match condition
Explanation: The Match keyword in file filename at line line_number is set to a bad Match condition.
System action: The program ends.
System programmer response: Verify that the value for the Match keyword is correct, and try the request again. Refer to the OpenSSH daemon configuration files information in IBM Ported Tools for z/OS: OpenSSH User's Guide for more information on the Match keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2363 filename line line_number: missing PermitOpen specification
Explanation: The sshd_config PermitOpen keyword in file filename at line line_number is missing its value.
System action: The program ends.
System programmer response: Verify that a value for the sshd_config PermitOpen keyword is set, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User's Guide for more information on the sshd_config PermitOpen keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2364 filename line line_number: missing host in PermitOpen
Explanation: The sshd_config PermitOpen keyword in file filename at line line_number is missing the host value.
System action: The program ends.
System programmer response: Verify that the value for the sshd_config PermitOpen keyword is correct, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User's Guide for more information on the sshd_config PermitOpen keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2365 filename line line_number: bad port number in PermitOpen
Explanation: The sshd_config PermitOpen keyword in file filename at line line_number contains a bad port number.
System action: The program ends.
System programmer response: Verify that the value for the sshd_config PermitOpen keyword in file filename at line line_number contains a bad port number.

FOTS2366 filename line line_number: too many groups in Match Group
Explanation: The Match keyword at line line_number contains too many values for the Group Match criteria.
System action: The program continues.
System programmer response: Verify that the value for the Match keyword is correct, and try the request again. Refer to the OpenSSH daemon configuration files information in IBM Ported Tools for z/OS: OpenSSH User's Guide for more information on the Match keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2367 filename line line_number: unsupported criteria value
Explanation: The Match keyword is set to an unsupported criteria value.
System action: The program continues.
System programmer response: Verify that the criteria value for the Match keyword is correct, and try the request again. Refer to the OpenSSH daemon configuration files information in IBM Ported Tools for z/OS: OpenSSH User's Guide for more information on the Match keyword. If unable to resolve, follow local procedures for reporting problems to IBM.
configuration files information in \textit{IBM Ported Tools for z/OS: OpenSSH User's Guide} for more information on the Match keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

\textbf{FOTS2371 permanently_set_uid: no user given}

\textbf{Explanation:} Internal error.

\textbf{System action:} The program ends.

\textbf{User response:} Contact your system programmer.

\textbf{System programmer response:} Follow local procedures for reporting problems to IBM.

\textbf{FOTS2372 password change not supported}

\textbf{Explanation:} A user requested a password change during password authentication. The password change is not supported.

\textbf{System action:} The program continues.

\textbf{System programmer response:} Inform the user that a password change must be requested after password authentication.

\textbf{FOTS2373 wrong user name passed to monitor: expected \textit{expected_user_name} != \textit{user_name}}

\textbf{Explanation:} The wrong user name \textit{user_name} was passed to the monitor process during authentication. The monitor process expected user name \textit{expected_user_name}.

\textbf{System action:} The program continues.

\textbf{System programmer response:} Verify that the client passed a valid user name. If unable to resolve, follow local procedures for reporting problems to IBM.

\textbf{FOTS2374 \textit{filename} line line_number: Deprecated option \textit{keyword}}

\textbf{Explanation:} The keyword \textit{keyword} in file \textit{filename} at line \textit{line_number} is no longer supported.

\textbf{System action:} The program continues.

\textbf{System programmer response:} Remove the keyword from the file, and try the request again. Refer to \textit{IBM Ported Tools for z/OS: OpenSSH User's Guide} for more information on the \texttt{sshd} configuration keywords. If unable to resolve, follow local procedures for reporting problems to IBM.

\textbf{FOTS2375 \textit{filename} line line_number: Unsupported option \textit{keyword}}

\textbf{Explanation:} The keyword \textit{keyword} in file \textit{filename} at line \textit{line_number} is not supported.

\textbf{System action:} The program continues.

\textbf{System programmer response:} Remove the keyword from the file, and try the request again. Refer to \textit{IBM Ported Tools for z/OS: OpenSSH User's Guide} for more information on the \texttt{sshd} configuration keywords. If unable to resolve, follow local procedures for reporting problems to IBM.

\textbf{FOTS2376 subsystem request for \textit{subsystem} failed, \textit{subsystem} not found}

\textbf{Explanation:} Subsystem request failed. The subsystem \textit{subsystem} was not found.

\textbf{System action:} The program continues.

\textbf{System programmer response:} Verify that the subsystem requested by the client is valid and is supported by the \texttt{sshd} configuration Subsystem keyword. Refer to \textit{IBM Ported Tools for z/OS: OpenSSH User's Guide} for more information on the \texttt{sshd} configuration Subsystem keyword. If unable to resolve, follow local procedures for reporting problems to IBM.

\textbf{FOTS2377 Disabling protocol version 1. Could not load host key}

\textbf{Explanation:} Protocol version 1 was disabled because one or more host keys could not be loaded.

\textbf{System action:} The program continues.

\textbf{System programmer response:} Verify that a host key specification for protocol version 1 exists. Refer to \textit{IBM Ported Tools for z/OS: OpenSSH User's Guide} for more information on the \texttt{sshd} configuration \texttt{HostKey} keyword. Host keys specified by the \texttt{HostKeyRingLabel} keyword are not supported for protocol 1. If unable to resolve, follow local procedures for reporting problems to IBM.

\textbf{FOTS2378 Disabling protocol version 2. Could not load host key}

\textbf{Explanation:} Protocol version 2 was disabled because one or more host keys could not be loaded.

\textbf{System action:} The program continues.

\textbf{System programmer response:} Verify that a host key specification for protocol version 2 exists. Refer to \textit{IBM Ported Tools for z/OS: OpenSSH User's Guide} for more information on the \texttt{HostKey} and \texttt{HostKeyRingLabel} keywords. If unable to resolve, follow local procedures for reporting problems to IBM.

\textbf{FOTS2379 Attempt to write login records by non–root user (aborting)}

\textbf{Explanation:} The \texttt{sshd} daemon attempted to write login records under a user with a UID not equal to zero.

\textbf{System action:} The program continues.

\textbf{System programmer response:} Verify that the \texttt{sshd} daemon was started with a user with a UID of zero.
FOTS2380 function: utmp_write_library() failed
Explanation: Internal error. The error occurred in function.
 System action: The program continues.
 System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2381 function: invalid type field
Explanation: Internal error. The error occurred in function.
 System action: The program continues.
 System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2382 Warning: filename, line line_number: keysize mismatch: actual actual_keysize vs. announced announced_keysize.
Explanation: The keysize announced_keysize on line line_number in file filename is incorrect. The correct keysize is actual_keysize.
 System action: The program continues.
 System programmer response: Correct the keysize, and try the request again. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2383 Timeout, client not responding.
Explanation: The number of client alive messages sent without response from the client exceeded the threshold set by the sshd_config ClientAliveCountMax keyword.
 System action: The program ends.

FOTS2384 function: open("/dev") failed: error_message
Explanation: The open() system call failed. The system error is displayed with the message. The error occurred in function.
 System action: The program continues.
 System programmer response: Take appropriate action based on the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2385 function: Unable to set the controlling tty.
Explanation: The controlling tty could not be set because /dev/tty is not accessible. The error occurred in function.
 System action: The program continues.
 System programmer response: Verify that SSH protocol version 2 is being used, and try the request again. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2386 function: fchdir(file_descriptor) failed: error_message
Explanation: The fchdir() system call failed. The system error is displayed with the message. The error occurred in function.
 System action: The program ends.
 System programmer response: Take appropriate action based on the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2387 function: chdir("filename") failed: error_message
Explanation: The chdir() system call failed. The system error is displayed with the message. The error occurred in function.
 System action: The program ends.
 System programmer response: Take appropriate action based on the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2388 function: stat("filename") failed: error_message
Explanation: The stat() system call failed. The system error is displayed with the message. The error occurred in function.
 System action: The program ends.
 System programmer response: Take appropriate action based on the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2389 function: stat("filename") mismatch: expected_st_ino actual_st_ino expected_st_dev actual_st_dev
Explanation: The stat() system call returned unexpected stat information. The error occurred in function.
 System action: The program ends.
 System programmer response: Follow local procedures for reporting problems to IBM.
FOTS2390 function: close(file_descriptor) failed:

Explanation: The close() system call failed. The system error is displayed with the message. The error occurred in function.

System action: The program ends.

System programmer response: Take appropriate action based on the system error. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2401 do_local_cmd: no arguments

Explanation: Internal error. No arguments for the local command.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2402 do_local_cmd: fork: error_message

Explanation: The fork() system call failed. The system error is displayed with the message.

System action: The program ends.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the system error.

FOTS2403 do_local_cmd: waitpid: error_message

Explanation: The waitpid() system call failed. The system error is displayed with the message.

System action: The program ends.

User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the system error.

FOTS2502 function: offset < 0

Explanation: Internal error. Unexpected file offset was calculated. The error occurred in function.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2701 filename line line_number; keyword

key word is not allowed in file filename.

Explanation: The z/OS–specific keyword keyword can not be specified in file filename.

System action: The program ends.

User response: Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for information about keyword, and try the request again.

System programmer response: Take appropriate action based on the system error.

FOTS2702 filename line line_number; missing keyword value.

Explanation: The keyword keyword in file filename at line line_number is missing its value.

System action: The program ends.

User response: Verify that the value for keyword is correct, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information about the keyword keyword. If unable to resolve, contact your system programmer.

System programmer response: If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2703 filename line line_number; unsupported keyword value ‘value’.

Explanation: The keyword keyword in file filename at line line_number is set to an unsupported value value.

System action: The program ends.

User response: Verify that the value for keyword is correct, and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information about the keyword keyword. If unable to resolve, contact your system programmer.

System programmer response: If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2704 filename1 line line_number; keyword

keyword is only allowed in file filename2.

Explanation: The z/OS–specific keyword keyword can only be specified in the file filename2.

System action: The program ends.

User response: Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for information about keyword, and try the request again.

System programmer response: If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS2705 filename line line_number; keyword

keyword is not allowed in a z/OS–specific configuration file.

Explanation: The keyword keyword is not a valid z/OS–specific client configuration keyword.

System action: The program ends.
FOTS2707 function: system_call: system_error
Explanation: The system_call call failed. The system error is displayed with the message. The error occurred in function.
System action: The program continues.
User response: Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2708 filename line line_number: keyword
keyword is not allowed in a z/OS–specific per–user configuration file
Explanation: The keyword keyword can not be specified in file filename.
System action: The program ends.
User response: Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for information about keyword, and try the request again.

FOTS2709 file_name line line_number: keyword
value requires additional system setup.
Explanation: The support provided by keyword value requires additional system setup.
System action: The program continues.
User response: Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for information on setting up OpenSSH to collect SMF records.

FOTS2710 function: callable_service failed with message number number.
Explanation: Language Environment callable service failed. The error occurred in function.
System action: The program continues.
User response: Refer to IBM Ported Tools for z/OS Language Environment Programming Reference for an explanation of the message number. If unable to resolve, contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2711 filename line line_number: keyword
keyword is not allowed in a z/OS–specific daemon configuration file.
Explanation: The keyword keyword is not a valid z/OS–specific daemon configuration keyword.
System action: The program ends.
User response: Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for valid z/OS–specific daemon configuration keywords, and try the request again.

FOTS2801 function: No SMF data received from master process.
Explanation: The master process of the specified multiplexed connection did not send the requested SMF data.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2802 function: Error writing SMF record: system_error
Explanation: Failure occurred while writing an SMF record.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2803 function: Error collecting SMF data.
Explanation: Failure occurred while collecting data for an SMF record. The SMF record will not be written.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2804 function: Error collecting SMF data for field_name.
Explanation: Failure occurred while collecting SMF record data for the specified field. The SMF record will be written without valid data for that field.
System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS2805 function: Bad request size for SMF data
length actual_data_length, expected expected_data_length.

Explanation: Communication error occurred while collecting data for an SMF record. The SMF record will not be written.

System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2806 function: unexpected server login failure
reason.

Explanation: An unexpected server login failure reason was identified. The problem occurred in function.

System action: The program continues.
User response: None.

FOTS2807 function: bad SMF global data length
actual_data_length, expected expected_data_length.

Explanation: Internal error. The error occurred in function.

System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2808 function: unexpected SMF error for type
SMF_record_type, subtype SMF_record_subtype
record: error_message.

Explanation: The __smf_record2() system call failed. The system error is displayed with the message. The error occurred in function.

System action: SMF records will not be recorded. The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error.

FOTS2809 function: bad authentication method
authentication_method.

Explanation: Internal error. The error occurred in function.

FOTS2810 function: unable to resolve pathname
pathname during SMF data collection:
error_message.

Explanation: The realpath() system call failed. The SMF data may not contain an absolute pathname. The system error is displayed with the message. The error occurred in function.

System action: The program continues.
User response: Refer to z/OS XL C/C++ Run-Time Library Reference for an explanation of the system error. If unable to resolve, contact your system programmer.
System programmer response: Take appropriate action based on the system error.

FOTS2811 function: Incorrect SMF request_type value.

Explanation: Internal error. The error occurred in function.

System action: The program ends.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2812 function: Unknown option value.

Explanation: Internal error. The error occurred in function.

System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2813 function: Incorrect data length length read
from SMF pipe.

Explanation: Failure occurred while collecting data for an SMF record. The SMF record will not be written.

System action: The program continues.
User response: Contact your system programmer.
System programmer response: Follow local procedures for reporting problems to IBM.
FOTS2814 function: ClientSMF keyword value value requires additional system setup.

Explanation: The support provided by the zos_ssh_config file keyword ClientSMF value requires additional system setup.

System action: SMF records will not be recorded. The program continues.

User response: Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for information on setting up OpenSSH to collect SMF records.

FOTS2815 function: Caller not permitted to use __smf_record2(): error_message.

Explanation: The __smf_record2() system call failed. The system error is displayed with the message. The error occurred in function.

System action: The program ends.

User response: Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for information on what you need to verify before using OpenSSH. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2816 function: __smf_record2() system call not supported.

Explanation: The __smf_record2() system call is not supported. Additional system setup is required to use this system call. The error occurred in function.

System action: The program continues.

User response: Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for information on what you need to verify before using OpenSSH. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2817 function: Pathname pathname with resolved directory pathname dirname is too long.

Explanation: Unable to resolve the pathname. The resulting pathname is too long. The SMF data may not contain an absolute pathname.

System action: The program continues.

User response: Verify that the pathname is correct, and try the request again. If unable to resolve, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2818 function: Received SMF status status1, expected status2.

Explanation: An unexpected SMF status value was read. The value does not match the SMF status set in the z/OS–specific client configuration file. The problem occurred in function.

System action: The program ends.

User response: Verify connectivity and ssh server status. If unable to resolve, contact your system programmer to report the problem.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2901 function: RSA_new failed

Explanation: Internal error. The failure occurred in function.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2902 function: BN_bin2bn failed on component

Explanation: Internal error. The failure occurred in function.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2903 function: RSA_blinding_on failed

Explanation: Internal error. The failure occurred in function.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2904 function: gsk_factor_public_key_rsa failed (return_code).

Explanation: The gsk_factor_public_key_rsa() system call failed when trying to read an RSA public key associated with a certificate in a key ring. The failure occurred in function. The return_code_description indicates the problem with the certificate.

System action: The program continues.

User response: If more information is needed about the error, refer to z/OS Cryptographic Services System SSL.
Programming for an explanation of the return code. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the return code.

FOTS2905
function: gsk_factor_private_key_rsa failed (return_code).

Explanation: The gsk_factor_private_key_rsa() system call failed when trying to read an RSA private key associated with a certificate in a key ring. The failure occurred in *function*. The return_code_description indicates the problem with the certificate.

System action: The program continues.

User response: If more information is needed about the error, refer to [IBM Cryptographic Services System SSL Programming](https://www.ibm.com) for an explanation of the return code. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the return code.

FOTS2906
function: d2i_DSAparams on public key failed

Explanation: The d2i_DSAparams() system call failed when trying to read a DSA public key associated with a certificate in a key ring. The failure occurred in *function*.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2907
function: ASN1_item_d2i on key_usage key failed

Explanation: The ASN1_item_d2i() system call failed when trying to read a DSA key component from a key associated with a certificate in a key ring. The failure occurred in *function*.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2908
function: unexpected algorithm ID algorithm_ID, key ring 'key_ring' label 'certificate_label'

Explanation: The algorithm type of the keys associated with the certificate is neither RSA nor DSA. The failure occurred in *function*.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.
FOTS2913

Function: Could not get all keys from key ring 'key_ring'

Explanation: Valid keys could not be extracted from the certificates associated with key_ring. The failure occurred in function.

System action: The program ends.

User response: Verify that the key ring correctly identifies the key ring containing valid certificates with keys to be used on this ssh-add request and try the request again. There may be other error messages preceding this message that provide more details about the problem. If unable to resolve the problem, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2914

Function: Certificate validation for key ring 'key_ring' label 'certificate_label' failed (return_code), return_code_description.

Explanation: The return_code_description indicates the problem with the certificate. If more information is needed about the error, refer to z/OS Cryptographic Services System SSL Programming for an explanation of the return code. If unable to resolve, contact your system programmer. The failure occurred in function.

System action: The program continues.

User response: Correct the condition causing the certificate to fail validation, and try the request again. If unable to resolve the problem, contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS2915

Function: gsk_open_keyring on 'key_ring' failed (return_code), return_code_description.

Explanation: The gsk_open_keyring() system call failed when trying to open the key ring. The failure occurred in function. The return_code_description indicates the problem.

System action: The program continues.

User response: If more information is needed about the error, refer to z/OS Cryptographic Services System SSL Programming for an explanation of the return code. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the return code.

FOTS2916

Function: gsk_get_record_by_label from key ring 'key_ring' for label 'certificate_label' failed (return_code), return_code_description.

Explanation: The gsk_get_record_by_label() system call failed when trying to obtain the data base record for the certificate. The failure occurred in function. The return_code_description indicates the problem.

System action: The program continues.

User response: If more information is needed about the error, refer to z/OS Cryptographic Services System SSL Programming for an explanation of the return code. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the return code.

FOTS2917

Function: gsk_get_record_by_index from key ring 'key_ring' for index 'record_index' failed (return_code), return_code_description.

Explanation: The gsk_get_record_by_index() system call failed when trying to obtain the data base record for the certificate. The failure occurred in function. The return_code_description indicates the problem.

System action: The program continues.

User response: If more information is needed about the error, refer to z/OS Cryptographic Services System SSL Programming for an explanation of the return code. If unable to resolve, contact your system programmer.

System programmer response: Take appropriate action based on the return code.

FOTS2918

Function: Value 'value' is not valid, trailing double quote was found

Explanation: Either the format of the value is not correct, or unmatched double quotes were found in the string. The failure occurred in function.

System action: The program continues.

User response: Correct the value and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide for information on the correct format when specifying a key ring or certificate label.

System programmer response: Take appropriate action based on the return code.

FOTS2919

Function: Value 'value' is not valid, trailing double quote not found

Explanation: Either the format of the value is not correct, or unmatched double quotes were found in the string. The failure occurred in function.

System action: The program continues.

User response: Correct the value and try the request again. Refer to IBM Ported Tools for z/OS: OpenSSH User’s Guide.
FOTS2920 function: Private key not available for certificate in key ring 'key_ring' with label 'certificate_label'

Explanation: Either there is no private key associated with the certificate, or the user is not authorized to read the private key for the certificate. Only a certificate owner may read the private key for a certificate. The failure occurred in function.

System action: The program continues.

User response: If the program obtained a private key from another certificate, then this error may be ignored. If the program did not obtain a private key, then an alternate certificate needs to be specified when trying the request again.

FOTS3001 function (line_number): callable_service failed: return code = return_code, reason code = reason_code

Explanation: The Integrated Cryptographic Service Facility (ICSF) callable_service callable service failed. The callable service return and reason codes are displayed with the message. The failure occurred in function at line line_number.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: See z/OS Cryptographic Services ICSF Application Programmer’s Guide for an explanation of the ICSF callable service failure. Also see IBM Ported Tools for z/OS: OpenSSH User’s Guide for the setup required to use ICSF ciphers and MAC algorithms. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS3002 function (line_number): callable_service failed: return code = return_code, reason code = reason_code

Explanation: The Integrated Cryptographic Service Facility (ICSF) callable_service callable service failed. The callable service return and reason codes are displayed with the message. The failure occurred in function at line line_number.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: See z/OS Cryptographic Services ICSF Application Programmer’s Guide for an explanation of the ICSF callable service failure. Also see IBM Ported Tools for z/OS: OpenSSH User’s Guide for the setup required to use ICSF ciphers and MAC algorithms. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS3003 function: support requires newer ICSF FMID, current ICSF FMID is 'ICSF_FMID'

Explanation: The ICSF ciphers and MAC algorithms support requires ICSF FMID HCR7770 or later installed. The problem occurred in function.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: See IBM Ported Tools for z/OS: OpenSSH User’s Guide for the setup required to use ICSF ciphers and MAC algorithms. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS3004 function: ICSF is required but not available

Explanation: The Integrated Cryptographic Service Facility (ICSF) was requested to implement the ciphers or MAC algorithms, however ICSF is not available or cannot be used. The problem occurred in function.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: See IBM Ported Tools for z/OS: OpenSSH User’s Guide for the setup required to use ICSF ciphers and MAC algorithms. In addition, see any previously issued messages for more information.

FOTS3005 function: ICSF is not available, switching to OpenSSL source

Explanation: The Integrated Cryptographic Service Facility (ICSF) is not available or cannot be used. All ciphers and MAC algorithms will be implemented using OpenSSL. The problem occurred in function.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: See IBM Ported Tools for z/OS: OpenSSH User’s Guide for the setup required to use ICSF ciphers and MAC algorithms. In addition, see any previously issued messages for more information.

FOTS3006 function: unable to determine ICSF FMID

Explanation: The ICSF ciphers and MAC algorithms support requires ICSF FMID HCR7770 or later installed. The ICSF FMID could not be verified against this requirement. The problem occurred in function.

System action: The program continues.

User response: Contact your system programmer.

System programmer response: See IBM Ported Tools for z/OS: OpenSSH User’s Guide for the setup required to
use ICSF ciphers and MAC algorithms. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS3007 function: MAC algorithm length
information not valid: key length =
key_length, block length = block_length

Explanation: Internal error. The error occurred in function.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS3008 function: ICSF is required but not available or cannot be used to implement algorithm_name

Explanation: The Integrated Cryptographic Service Facility (ICSF) was requested to implement the cipher or MAC algorithm algorithm_name, however ICSF is not available or cannot be used. The problem occurred in function.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: See IBM Ported Tools for z/OS: OpenSSH User’s Guide for the setup required to use ICSF ciphers and MAC algorithms. If unable to resolve, follow local procedures for reporting problems to IBM.

FOTS3009 function: cipher information not valid:
name = cipher_name, block size = cipher_block_size

Explanation: Internal error. The error occurred in function.

System action: The program ends.

User response: Contact your system programmer.

System programmer response: Follow local procedures for reporting problems to IBM.

FOTS3010 function: cannot fork into the background when using ICSF source

Explanation: The ssh -f option was specified and the Integrated Cryptographic Service Facility (ICSF) was requested to implement the ciphers or MAC algorithms. The options cannot be specified together. The error occurred in function.

System action: The program ends.

User response: Do not request ICSF to implement the ciphers or MAC algorithms, and try the request again. See IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information about ICSF ciphers and MAC algorithms.

FOTS3011 function: cannot fork into the background when using ICSF source

Explanation: The ssh & escape option was specified and the Integrated Cryptographic Service Facility (ICSF) was requested to implement the ciphers or MAC algorithms. The options cannot be specified together.

System action: The program continues.

User response: Do not request ICSF to implement the ciphers or MAC algorithms, and try the request again. See IBM Ported Tools for z/OS: OpenSSH User’s Guide for more information about ICSF ciphers and MAC algorithms.
Accessing MVS data sets within sftp

OpenSSH’s sftp does not have built-in support for MVS data sets. However, there are alternate (indirect) ways to access MVS data sets within sftp.

Solution 1:

From within sftp, use a shell escape to copy between MVS and the z/OS UNIX file system. Do this by preceding any shell command by a '!'.

For example:

```
!cp "//CTWARE.C(HELLO)" hello.c
```

The ‘HELLO’ member is copied to a local file hello.c, which could then be transferred from sftp. This would be executed while you are within an sftp shell.

Note: The hello.c file will remain in the z/OS UNIX file system until it is manually removed.

You can use this solution from within an sftp batch file as well, to automate certain tasks or help in removal of the file:

```
> cat batchfile
lcd sftp
cd Test
!cp "//CTWARE.C(HELLO)" hello.c
put hello.c
!rm hello.c
> sftp -b batchfile user@remotehost
```

This example would change directories (both local and remote), copy an MVS dataset to the z/OS UNIX file system (on the local machine), transfer the file (to the remote system), and then remove the (local) z/OS UNIX file system copy. This would save you some work, and you would not have to manually remove 'temporary' files.

Tip: Because the sftp exit value is not affected by shell command escapes, Solution 2 is preferred if verification of a successful copy is required.

Solution 2:

Copy the data from an MVS dataset to the z/OS UNIX file system prior to using sftp.

For example:

```
cp "CTWARE.C(HELLO)" hello.c
```

The ‘HELLO’ member is copied to a local file hello.c, which could then be transferred from sftp. This would be executed from a standard z/OS UNIX shell.

Note: The hello.c file remains in the z/OS UNIX file system until it is manually removed.
OpenSSH - port forwarding examples

OpenSSH - without TCP forward ing

Direct client/server connection (no forwarding)

OpenSSH - with TCP port forwarding

OpenSSH provides TCP port forwarding, also known as tunnelling, which allows other TCP applications to forward their network data over a secure SSH connection. In other words, existing TCP applications that do not encrypt their data before sending it across the network can send their network traffic through an SSH channel, thereby securing it.

Without TCP forwarding, an application's client connections directly to its server across the network, as shown in Figure 8. To use port forwarding, an existing SSH session must exist.

Example: An example of invoking the ssh client to support local port forwarding is:

```
ssh -L 2001:remotehost:27 billy@remotehost
```

Result: The ssh client on Host A listens on port 2001 for connections (see Figure 9 on page 346). The TCP application will now connect to port 2001 on the local host (Host A), rather than connect to its well-known port on Host B, where the remote server is listening. This is demonstrated in Figure 10 on page 346. The ssh client accepts the connection on port 2001 and forwards the application's data to the OpenSSH server (sshd) on Host B. sshd then forwards the data to the application's well-known port on Host B, as specified on invocation of the ssh client to be port 27. This is demonstrated in Figure 11 on page 347.

© Copyright IBM Corp. 2010, 2012

345
The TCP application wants to contact the server through a SSH connection.

ssh forwards the data through an SSH tunnel; sshd delivers to server.
Figure 11. The ssh client accepts the connection on port 2001, forwards the application's data to sshd on Host B, sshd then forwards the data to the application's server, listening on Port 27.
RFCs and Internet drafts

The Internet Engineering Task Force [http://www.ietf.org/] has a Secure Shell (SECSH) working group whose goal is to update and standardize the popular SSH protocol. The following SECSH RFCs describe some of the different layers of the protocol:

Because internet drafts can be updated, replaced, or obsoleted by newer versions, OpenSSH may only conform to a particular version of the draft. Refer to the IETF Web site at [http://www.ietf.org/] for a list of drafts.
Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision, to use software products successfully. The major accessibility features in z/OS enable users to:

- Use assistive technologies such as screen readers and screen magnifier software
- Operate specific or equivalent features using only the keyboard
- Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user interfaces found in z/OS. Consult the assistive technology documentation for specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for information about accessing TSO/E and ISPF interfaces. These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library Server versions of z/OS books in the Internet library at:

http://www.ibm.com/systems/z/os/zos/bkserv/
Notices

This information was developed for products and services offered in the U.S.A. or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This publication documents intended Programming Interfaces that allow the customer to write programs that use the OpenSSH portion of Ported Tools for z/OS.

Trademarks

IBM and the IBM logo are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe and the Adobe logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
Glossary

This glossary defines technical terms and abbreviations used in the OpenSSH portion of the IBM Ported Tools for z/OS documentation. If you do not find the term you are looking for, view IBM Glossary of Computing Terms, located at: http://www.ibm.com/ibm/terminology

A

address space identifier (ASID). A unique, system-assigned identifier for an address space.

ASID. See address space identifier

B

Basic Encoding Rules (BER). A set of rules used to encode Abstract Syntax Notation One (ASN.1) values as strings of octets.

BER. See Basic Encoding Rules

binary-coded decimal (BCD). A system for encoding decimal numbers in binary form to avoid rounding and conversion errors. In BCD, the digits of a decimal number are individually represented in 4-bit binary notation. For example, the decimal number 1024 is recorded in BCD as 0001000000100100.

C

CERT Coordination Center (CERT/CC). The CERT/CC is a major reporting center for Internet security problems. Staff members provide technical advice and coordinate responses to security compromises, identify trends in intruder activity, work with other security experts to identify solutions to security problems, and disseminate information to the broad community. The CERT/CC also analyzes product vulnerabilities, publishes technical documents, and presents training courses. For more detailed information about the CERT/CC, see “Meet the CERT/CC” at http://www.cert.org/meet_cert/meetcertcc.html.

CERT/CC. See CERT Coordination Center (CERT/CC)

certificate. In computer security, a digital document that binds a public key to the identity of the certificate owner, thereby enabling the certificate owner to be authenticated. A certificate is issued by a certificate authority and is digitally signed by that authority.

certificate authority. An organization that issues digital certificates. The certificate authority authenticates the certificate owner's identity and the services that the owner is authorized to use, and revokes certificates belonging to users who are no longer authorized to use them.

D

Data Encryption Standard (DES). A cryptographic algorithm designed to encrypt and decrypt data using a private key.

DES. See Data Encryption Standard

Diffie-Hellman Group Exchange (DH-GEX). A key agreement method that allows two parties to derive a shared secret key securely over an open (unprotected) network.

digital certificate. A digital document that binds a public key to the identity of the certificate owner, thereby enabling the certificate owner to be authenticated. A certificate is issued by a certificate authority.

digital signature algorithm (DSA). A security protocol that uses a pair of keys (one public and one private) and a one-way encryption algorithm to provide a robust way of authenticating users and systems. If a public key can successfully decrypt a digital signature, a user can be sure that the signature was encrypted using the private key.

Digital Signature Algorithm (DSA). A standard, based on the Basic Encoding Rules, that is designed to ensure a unique encoding of each ASN.1 value, defined in ITU-T X.690.

DSA. See digital signature algorithm

E

Federal Information Processing Standard (FIPS). A standard produced by the National Institute of Standards and Technology when national and international standards are nonexistent or inadequate to satisfy the U.S. government requirements.

FIPS. See Federal Information Processing Standard
G

Generic Security Services Application Programming Interface (GSS-API). An Internet Standard protocol (R2078) that specifies calling conventions by which an application (typically another communication protocol) can obtain authentication, integrity, and confidentiality security services independently of the underlying security mechanisms and technologies, thus allowing the application source code to be ported to different environments.

globalization. In computing, the provision of a single software solution that has (1) multicultural support and (2) a user interface and documentation that is available in one or more languages.

GSS-API. See [Generic Security Services Application Programming Interface](#).

I

Integrated Cryptographic Service Facility (ICSF). A z/OS licensed program that provides access to the hardware cryptographic feature for programming applications. The combination of the hardware cryptographic feature and ICSF provides secure high-speed cryptographic services.

Internet Engineering Task Force (IETF). The task force of the Internet Architecture Board (IAB) that is responsible for solving the short-term engineering needs of the Internet. The IETF consists of numerous working groups, each focused on a particular problem. Specifications proposed as standards typically undergo a period of development and review before they are adopted as standards.

ICSF. See [Integrated Cryptographic Service Facility](#).

IETF. See [Internet Engineering Task Force](#).

K

Kerberos. The security system of Massachusetts Institute of Technology’s (MIT) Project Athena. It uses symmetric key cryptography to provide security services to users in a network.

key. In computer security, a sequence of symbols that is used with a cryptographic algorithm for encrypting or decrypting data. See also [private key](#), [public key](#).

key pair. In computer security, a public key and a private key. The sender uses the private key to encrypt the message. The recipient uses the public key to decrypt the message. Because the private key holds more of the encryption pattern than the public key does, the key pair is called asymmetric.

key ring. In computer security, a file that contains public keys, private keys, trusted roots, and certificates.

M

message authentication code (MAC). In computer security, a value that is a part of a message or accompanies a message and is used to verify that the contents, origin, author, or other attributes of all or part of the message are as they appear to be.

MAC. See [message authentication code](#).

MTU. See [maximum transmission unit](#).

multilevel security. A security policy that allows the classification of data and users based on a system of hierarchical security levels (for example: unclassified, secret, top secret) combined with a system of non-hierarchical security categories (for example: Project A, Project B, Project C). The system imposes mandatory access controls restricting which users can access data based on a comparison of the classification of the users and the data. In order to access data, a user must have a security level greater than or equal to that of the data, and be authorized to all of the categories assigned to the data. The mandatory access controls exist in addition to any discretionary access controls (such as access lists) that users can manipulate, and a user must pass both the mandatory controls and any discretionary controls in order to access the data protected by those controls.

maximum transmission unit (MTU). The largest possible unit of data that can be sent on a given physical medium in a single frame. For example, the maximum transmission unit for Ethernet is 1500 bytes.

P

PAM. See [Pluggable Authentication Module](#).

Pluggable Authentication Module (PAM). A programming interface that enables third-party security methods to be used. PAM enables multiple types of authentication, such as Kerberos and the Rivest-Shamir-Adleman (RSA) algorithm, to be used without changing login services.

passphrase. A type of password that is used to control access to OpenSSH authentication keys. It typically contains a sequence of words, punctuation, numbers, white space, or any string of characters, with a mix of uppercase and lowercase letters, numbers, and nonalphanumeric characters.

password phrase. A string consisting of mixed-case letters, numbers, and special characters, including blanks, that is used to control access to data and systems.
private key. In secure communication, an algorithmic pattern used to encrypt messages that only the corresponding public key can decrypt. The private key is also used to decrypt messages that were encrypted by the corresponding public key. The private key is kept on the user’s system and is protected by a password. See also public key.

public key. In secure communication, an algorithmic pattern used to decrypt messages that were encrypted by the corresponding private key. A public key is also used to encrypt messages that can be decrypted only by the corresponding private key. Users broadcast their public keys to everyone with whom they must exchange encrypted messages. See also private key.

R

Rivest-Shamir-Adleman algorithm (RSA). A public-key encryption technology developed by RSA Data Security, Inc, and used in the IBM implementation of SSL.

RSA. See Rivest-Shamir-Adleman algorithm.

S

SAF. See System Authorization Facility.

seed. A value that adds randomness to the creation of pseudorandom numbers.

Secure Sockets Layer (SSL). A security protocol that provides communication privacy. With SSL, client/server applications can communicate in a way that is designed to prevent eavesdropping, tampering, and message forgery.

SMF. See System Management Facilities.

SOCKS server. A proxy server that provides a secure one-way connection through a firewall to server applications in a nonsecure network. The server applications in the secure network must be compatible with the socket interface.

SSL. See Secure Sockets Layer.

System Authorization Facility (SAF). A z/OS interface with which programs can communicate with an external security manager, such as RACF.

System Management Facilities (SMF). A component of z/OS that collects and records a variety of system and job-related information.

T

TLS. See Transport Layer Security.

Transport Layer Security. An Internet Engineering Task Force (IETF)-defined security protocol that is based on Secure Sockets Layer (SSL) and is specified in RFC 2246.
Index

Special characters
>ZOS_OPENSSH_DEBUG 9
>ZOS_OPENSSH_MSGCAT 9
values for 38
>ZOS_SMF_FD 9
>ZOS_SSH_KEY_RING 9
>ZOS_SSH_KEY_RING_LABEL 9
>ZOS_SSH_PRNG_CMDS_TIMEOUT 9
>ZOS_SSHD_CONFIG 9
>ZOS_USER_SSH_CONFIG 9
/etc/rc shell script
starting sshd 41
/etc/sshd
creating 24
/etc/ssh/moduli
See moduli
/etc/ssh/ssh_config
See ssh_config
/etc/sshd_config
See sshd_config
/etc/ssh/zos_ssh_config
See zos_ssh_config
/etc/sshd/zos_sshd_config
See zos_sshd_config
/var/empty
creating 24
/var/run
creating 24

A
AcceptEnv keyword (sshd_config) 150
accessibility 351
AddressFamily keyword (sshd_config) 133
AddressFamily keyword (ssh_config) 133
AFSTokenPassing keyword (sshd_config) 150
AFSTokenPassing keyword (ssh_config) 133
AllowGroups keyword (sshd_config) 151
AllowTcpForwarding keyword (sshd_config) 151
AllowUsers keyword (sshd_config) 151
authentication
ssh 97
sshd 124
authorized_keys file
creating 71
editing 71
format of 125
AuthorizedKeysFile keyword (sshd_config) 152

B
Banner keyword (sshd_config) 152
BatchMode keyword (ssh_config) 134
BindAddress keyword (sshd_config) 134
BPX.POE 39
BPXBATCH 40

certificate
validating 58
challenge-response authentication 97, 98
ChallengeResponseAuthentication keyword (ssh_config) 134
ChallengeResponseAuthentication keyword (sshd_config) 152
CheckHostIP keyword (ssh_config) 134
ChrootDirectory keyword (sshd_config) 152
Cipher keyword (ssh_config) 134
ciphers
list of 152
Ciphers keyword (sshd_config) 152
Ciphers keyword (ssh_config) 134
ClearAllForwardings keyword (ssh_config) 135
client configuration files
setting up 69
ClientAliveCountMax keyword (sshd_config) 153
ClientAliveInterval keyword (sshd_config) 153
ClientSMF keyword (zos_ssh_config) 146
certificate
coexistence considerations 13
compatibility considerations 13
Compression keyword (sshd_config) 135
Compression keyword (ssh_config) 154
CompressionLevel keyword (ssh_config) 135
configuration files
 See also ssh_config
see also sshd_config
See also zos_ssh_config
See also zos_sshd_config
See also zos_user_ssh_config
creating 24
configuring
for other locales 61
ConnectionAttempts keyword (ssh_config) 135
ConnectTimeout keyword (sshd_config) 135
ControlMaster keyword (sshd_config) 136
ControlPath keyword (ssh_config) 136
CSFRNG (random number generate service)
authorizing users to 49
CVE
list of past vulnerabilities against
OpenSSH 196
OpenSSL 197
zlib 197
list of vulnerabilities against
OpenSSH 193
OpenSSL 194
zlib 194
© Copyright IBM Corp. 2010, 2012
361
DenyGroups keyword (sshd_config) 154
DenyUsers keyword (sshd_config) 155
Diffie-Hellman prime moduli 167
disability 351
DynamicForward keyword (ssh_config) 136

EnableSSHKeysign keyword (ssh_config) 136
EscapeChar keyword (ssh_config) 137
ExitOnForwardFailure keyword (ssh_config) 136

file name system space
limiting sftp access to 45
ForwardCommand keyword (sshd_config) 155
ForwardAgent keyword (ssh_config) 137
ForwardX11 keywod (ssh_config) 137
ForwardX11Trusted keyword (ssh_config) 137
ftp differences from sftp 21

GatewayPorts keyword (ssh_config) 137
GatewayPorts keyword (sshd_config) 155
glob characters 86
global profile checking 57
globalization
on OpenSSH 60
on z/OS systems 59
GlobalKnownHostsFile keyword (ssh_config) 137
GSSAPIAuthentication keyword (ssh_config) 137
GSSAPIAuthentication keyword (sshd_config) 155
GSSAPICleanupCredentials keyword (sshd_config) 156
GSSAPIDelegateCredentials keyword (ssh_config) 138

host key checking 97
Host keyword (sshd_config) 138
Host keyword (zod_ssh_config) 146
Host keyword (zos_user_ssh_config) 148
host-based authentication 97
HostbasedAuthentication keyword (ssh_config) 138
HostbasedAuthentication keyword (sshd_config) 156
HostbasedUsesNameFromPacketOnly keyword (sshd_config) 156
HostKey keyword (sshd_config) 156
HostKeyAlgorithms keyword (ssh_config) 139
HostKeyAlias keyword (ssh_config) 139
HostKeyRingLabel keyword (zos_sshd_config) 165
HostName keyword (ssh_config) 139

IBM Ported Tools for z/OS publications
on CD-ROM xiii
softcopy xiii
ICSF ciphers
setting up OpenSSH for 52
IdentitiesOnly keyword (ssh_config) 139
IdentityFile keyword (ssh_config) 139
IdentityKeyRingLabel keyword (zos_user_ssh_config) 148
IgnoreRhosts keyword (sshd_config) 156
IgnoreUserKnownHosts keyword (sshd_config) 157
Internet drafts 349

KbdInteractiveAuthentication keyword (ssh_config) 139
KbdInteractiveAuthentication keyword (sshd_config) 157
KbdInteractiveDevices keyword (ssh_config) 139
KeepAlive keyword (ssh_config) 139
KeepAlive keyword (sshd_config) 157
KerberosAuthentication keyword (sshd_config) 157
KerberosGetAFSToken keyword (sshd_config) 157
KerberosOrLocalPasswd keyword (ssh_config) 157
KerberosTgtPassing keyword (sshd_config) 157
KerberosTicketCleanup keyword (sshd_config) 157
key ring 1
managing access to 57
restricting access to 57
setting up user authentication 73
storing
UNIX files versus key rings 57
keyboard 351
KeyRegenerationInterval keyword (sshd_config) 157
known hosts file
creating the
real keys stored in UNIX files 28

ListenAddress keyword (sshd_config) 158
LocalCommand keyword (ssh_config) 140
locales
running OpenSSH in other 100
LocalForward keyword (sshd_config) 140
LoginGraceTime keyword (sshd_config) 158
LogLevel keyword (ssh_config) 140
LogLevel keyword (sshd_config) 158

MAC algorithms
setting up OpenSSH for 52
MACs keyword (ssh_config) 140
MACs keyword (sshd_config) 158
Match keyword (sshd_config) 158
Match keyword (zos_ssh_config) 166
MaxAuthTries keyword (ssh_config) 159
MaxStartups keyword (sshd_config) 159
message catalog
setting up 38
message numbers
preventing 20
migrating
from unsupported versions of OpenSSH 13

hardware support
verifying 50
HashKnownHosts keyword (ssh_config) 138
heap management 56
migration action
steps for 14
host based authentication 97
Host keyword (ssh_config) 138
Host keyword (zos_ssh_config) 146
Host keyword (zos_user_ssh_config) 148

message numbers
preventing 20
migrating
from unsupported versions of OpenSSH 13
migrating (continued)
to 5.0p1 level of OpenSSH
migration actions
for Version 1 Release 2
multilevel security
configuring sshd
running the sshd daemon
verifying directories created during installation

N
NetAccess profile
NoHostAuthenticationForLocalhost keyword (ssh_config)
Notices
NumberOfPasswordPrompts keyword (ssh_config)

O
OpenSSH
collecting SMF records
configuration files
description of
list of past vulnerabilities against
CERT/CC
CVE
list of vulnerabilities against
CERT/CC
CVE
running in other locales
setting up the system to collect SMF records
setup problems for users
verifying setup prerequisites
OpenSSH client
getting ready to use
running in other locales
OpenSSL
list of past vulnerabilities against
CERT/CC
CVE
list of vulnerabilities against
CERT/CC
CVE

P
PAMAuthenticationViaKbdInt keyword (sshd_config)
password authentication
PasswordAuthentication keyword (ssh_config)
PasswordAuthentication keyword (sshd_config)
pattern (ssh_config)
pattern-list (ssh_config)
PermitEmptyPasswords keyword (sshd_config)
PermitLocalCommand keyword (sshd_config)
PermitOpen keyword (sshd_config)
PermitRootLogin keyword (sshd_config)
PermitTunnel keyword (sshd_config)
PermitUserEnvironment keyword (sshd_config)
PidFile keyword (sshd_config)
port forwarding
adding, using the -L and -R options
in /etc/ssh/sshd_config
limiting
with TCP
without TCP
Port keyword (ssh_config)
Port keyword (sshd_config)
PreferredAuthentications keyword (ssh_config)
PrintLastLog keyword (sshd_config)
PrintMotd keyword (sshd_config)
privilege separation user
creating the
Protocol keyword (ssh_config)
Protocol keyword (sshd_config)
protocol version 1
supported by ssh
supported by sshd daemon
protocol version 2
supported by ssh
supported by sshd daemon
ProxyCommand keyword (ssh_config)
PubkeyAuthentication keyword (ssh_config)
PubkeyAuthentication keyword (sshd_config)
public key authentication
setting up
public key pairs
generating
publications
on CD-ROM
softcopy

R
R_datalib callable service
managing key rings
random number generate service (CSFRNG)
authorizing users to
random number generate support
setting up for OpenSSH
RekeyLimit keyword (ssh_config)
RemoteForward keyword (ssh_config)
RFC
RhostsAuthentication keyword (ssh_config)
RhostsAuthentication keyword (sshd_config)
RhostsRSAAuthentication keyword (ssh_config)
RhostsRSAAuthentication keyword (sshd_config)
ring-specific profile checking
RSAAuthentication keyword (ssh_config)
RSAAuthentication keyword (sshd_config)

S
SAF (System Authorization Facility)
scp
SECSH (Secure Shell) working group
Secure Shell (SECSH) working group
security administrators
setting up random number generate support
security, z/OS UNIX level
setting up the
SendEnv keyword (ssh_config)
server authentication
performing setup for
setting up
ServerAliveCountMax keyword (ssh_config)
ServerAliveInterval keyword (ssh_config)
ServerKeyBits keyword (sshd_config)
ServerSMF keyword (zos_sshd_config)
sshd command (continued)
 starting under inetd 42
 without bringing it down 42
 stopping the 42
 user-generated files 170

sshd_config 150

keywords
 AcceptEnv 150
 AddressFamily 150
 AFSTokenPassing 150
 AllowGroups 151
 AllowTcpForwarding 151
 AllowUsers 151
 AuthorizedKeysFile 152
 Banner 152
 ChallengeResponseAuthentication 152
 ChrootDirectory 152
 Ciphers 152
 ClientAliveCountMax 153
 ClientAliveInterval 153
 Compression 154
 DenyGroups 154
 DenyUsers 155
 ForceCommand 155
 GatewayPorts 155
 GSSAPIAuthentication 155
 GSSAPICleanupCredentials 156
 HostbasedAuthentication 156
 HostbasedUserNameFromPacketOnly 156
 HostKey 156
 IgnoreRhosts 156
 IgnoreUserKnownHosts 157
 KbdInteractiveAuthentication 157
 KeepAlive 157
 KerberosAuthentication 157
 KerberosGetAFSToken 157
 KerberosOrLocalPasswd 157
 KerberosTgtPassing 157
 KerberosTicketCleanup 157
 KeyRegenerationInterval 157
 ListenAddress 158
 LoginGraceTime 158
 LogLevel 158
 MACs 158
 Match 158
 MaxAuthTries 159
 MaxStartups 159
 PAMAuthenticationViaKbdInt 159
 PasswordAuthentication 159
 PermitEmptyPasswords 160
 PermitOpen 160
 PermitRootLogin 160
 PermitTunnel 160
 PermitUserEnvironment 160
 PidFile 161
 Port 161
 PrintLastLog 161
 PrintMotd 161
 Protocol 161
 PubkeyAuthentication 161
 RhostsAuthentication 161
 RhostsRSAAuthentication 161
 RSAAuthentication 161
 ServerKeyBits 161
 StrictModes 161
 SyslogFacility 162

sshd_config (continued)
 keywords (continued)
 TCPKeepAlive 162
 UseDNS 162
 UseLogin 162
 UsePAM 163
 UsePrivilegeSeparation 163
 VerifyReverseMapping 163
 X11DisplayOffset 163
 X11Forwarding 163
 X11UseLocalhost 163
 XAuthLocation 163
 migration actions 18

 StrictHostKeyChecking keyword (ssh_config) 143
 StrictModes keyword (sshd_config) 161
 subcommands 86
 Subsystem keyword (sshd_config) 162
 syslogd daemon
 setting up to debug sshd 191
 SyslogFacility keyword (sshd_config) 162

T

tasks
 configuring your system for X11 forwarding
 steps for 47
 creating configuration files
 steps for 24
 creating sshd privilege separation user
 step for 38
 editing configuration files
 steps for 24
 migration actions for preventing message numbers
 steps for 20
 migration actions for sftp
 steps for 15
 migration actions for ssh
 steps for 15
 migration actions for ssh_config
 steps for 16
 migration actions for ssh-keygen
 steps for 19
 migration actions for ssh-keygendiff
 steps for 20
 migration actions for sshd
 steps for 17
 migration actions for sshd_config
 steps for 18
 performing setup for server authentication (storing keys in
 key rings)
 steps for 29
 performing setup for server authentication (storing keys in
 UNIX files)
 steps for 27
 setting up authorization to CSFRNG (random number
 generate service)
 steps for 49
 setting up heap management
 steps for 14
 setting up OpenSSH to collect SMF records
 steps for 51
 setting up OpenSSH to use ICSF ciphers and MAC
 algorithms
 steps 52
 setting up syslogd to debug sshd)
 steps for 191

Index 365
tasks (continued)

setting up the client configuration files
steps for 69

setting up the system to collect OpenSSH SMF records
steps for 51

setting up user authentication, using key rings
steps for 73

setting up user authentication, using UNIX files
steps for 70

setting up XPLINK environment for OpenSSH
steps for 14

starting the sshd daemon under inetd
steps for 42

verifying the prerequisites for using OpenSSH
steps for 21

TCP forwarding 100

TCPKeepAlive keyword (ssh_config) 144
TCPKeepAlive keyword (sshd_config) 162
TERMINAL class settings 45
Tunnel keyword (ssh_config) 144
TunnelDevice keyword (sshd_config) 144
tunnelling 345

UNIX files

setting up user authentication 70
UseDNS keyword (sshd_config) 162
UseLogin keyword (sshd_config) 162
UsePAM keyword (sshd_config) 163
UsePrivilegedPort keyword (ssh_config) 144
UsePrivilegeSeparation keyword (sshd_config) 163
user authentication
 setting up 70
user ID alias table 38
User keyword (ssh_config) 144
UserKnownHostsFile keyword (ssh_config) 144

VerifyHostKeyDNS keyword (ssh_config) 144
VerifyReverseMapping keyword (sshd_config) 163

vulnerabilities
 against OpenSSH 193
 against OpenSSL 194
 against zlib 194
 past against
 OpenSSH 196
 OpenSSL 197
 zlib 197

wildcard characters 86

X11 forwarding
 configure setup for 78
 configure your system for 47
 ssh 99
X11DisplayOffset keyword (sshd_config) 163
X11Forwarding keyword (sshd_config) 163